Non-holonomic integrator

Classification

# of variables # of modes # of jumps
3 4 5
Type Continuous dynamics Guards & Invariants Resets
hybrid non-linear polynomial non-linear polynomial identity

Download

Flow* nonholonomic.model

Model description

A simplified version of the hybrid control for Brockett’s non-holonomic integrator is described by the following ODE.

     \[ \left\{ \begin{array}{lcl} \dot{x} & = & u \\ \dot{y} & = & v \\ \dot{z} & = & x\cdot v - y\cdot u \end{array} \right. \]

wherein  u ,  v are the control inputs defined by

     \[ u \ = \ \left\{ \begin{array}{ll} 1, & x^2 + y^2 \leq |z| \\ -x + \frac{2\cdot y\cdot z}{x^2 + y^2}, & x^2 + y^2 > |z| \end{array} \right. \]

     \[ v \ = \ \left\{ \begin{array}{ll} 1, & x^2 + y^2 \leq |z| \\ -y + \frac{2\cdot x\cdot z}{x^2 + y^2}, & x^2 + y^2 > |z| \end{array} \right. \]

Reachability settings

We consider the initial set  x = 0 ,  y = 0 and  z \in [14.9,15.1] .

Results

The following figures show an over-approximation computed by Flow* for the time horizon  [0,7.5] :

nonholonomic_x_y

nonholonomic_x_z

References

[1] J. Hespanha, A. Morse. Stabilization of nonholonomic integrators via logic-based switching. In Automatica, volume 35(3), pages 385–393, Elsevier, 1999.