Download
| Flow* | biology_I.model |
Model description
We present a seven-dimensional continuous model which is adapted from a biological system given in [1]. The modeling ODE is given as below.
![Rendered by QuickLaTeX.com \[ \left\{ \begin{array}{lcl} \dot{x}_1 & = & -0.4\cdot x_1 + 5\cdot x_3 \cdot x_4 \\ \dot{x}_2 & = & 0.4\cdot x_1 - x_2 \\ \dot{x}_3 & = & x2 - 5\cdot x_3 \cdot x_4 \\ \dot{x}_4 & = & 5\cdot x_5 \cdot x_6 - 5\cdot x_3 \cdot x_4 \\ \dot{x}_5 & = & -5\cdot x_5\cdot x_6 + 5\cdot x_3 \cdot x_4 \\ \dot{x}_6 & = & 0.5\cdot x_7 - 5\cdot x_5\cdot x_6 \\ \dot{x}_7 & = & -0.5\cdot x_7 + 5\cdot x_5\cdot x_6 \end{array} \right. \]](https://ths.rwth-aachen.de/wp-content/ql-cache/quicklatex.com-1425cf573bd68ee827175834c6160687_l3.png)
Reachability settings
We consider the initial set
.
Results
The following figure shows an overapproximation computed by Flow* for the time horizon
:

