of Hybrid
hybr I d Systems
Informatik 2

The present work was submitted to the LUFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

CONTEXT-DEPENDENT REACHABILITY ANALYSIS
FOR HYBRID AUTOMATA

Justin Winkens

Examiners:]
Prof. Dr. Erika Abraham
Prof. Dr. Thomas Noll

Additional Advisor:
Stefan Schupp M.Sc.
Aachen, May 22, 2018

Abstract

This thesis is focused on the analysis of hybrid automata, which incorporate
discrete and continuous behavior of a given system into one model.

A common approach to analyze these automata for safety is so called flowpipe
construction that iteratively constructs a set of over-approximative geometric
objects that contain all reachable states of the automaton. Implementations
of this approach can be found in toolboxes like FLow*, HyPro/HYDRA or
SPACEEX.

Unfortunately, the computational cost of flowpipe construction is exponential
in the number of variables/dimensions.

This thesis aims at improving the HyPrRo/HYDRA toolbox by implement-
ing a context-based approach to flowpipe analysis using variable set separation,
in which the state space of the underlying automaton is decomposed into syn-
tactically independent sets of variables allowing for separate analysis of the now
lower dimensional subspaces.

The different subspaces can then be analyzed for their properties enabling us
to perform a context-based analysis where we will be able to dynamically choose
data structures and algorithms based on the context defined by the automaton’s
current location and the state’s subspaces.

In the process HYPRo is augmented with a new representation called differ-
ence bound matriz that is especially suited for the analysis of timed automata.

Experimental results in common benchmarks show a speedup of up to 11 000%
for decomposed analysis. For decomposed analysis with context-based optimiza-
tion a speedup of up to 200 000% can be observed.

Contents

2 Hybrid Systems Analysis|
2.1 Hybrid Automata). oo
2.2 Linear Hybrid Automataf.
2.3 Flowpipe Construction|

B_HYPRJ

d_HyDRA]

4.2 Decision Entity| o o
A3~ Context-Based Workerd

11
11
13
14
20

25
25
27
29

35
35
37
41
43
47

53
53
56

59
59

63

Chapter 1

Introduction

In our everyday lives we are surrounded by hybrid systems that exhibit discrete and
continuous behavior. Upon waking up you raise the thermostat, brew a cup of coffee
or tea, fry an egg for breakfast and then drive to work in your car. All these activities
involve the use of hybrid systems.

The thermostat continuously changes the temperature after the discrete step of
raising it while the coffee machine continuously produces coffee after being turned on.
The stove continuously produces heat after being turned on and your car is controlled
by dozens of microcontrollers. The digital systems controlling these devices interact
with our continuous world and together make up a hybrid system.

Hybrid systems are everywhere and we use them without even thinking, relying
on their functionality and safety. We trust in the manufacturer who hopefully tested
the ins and outs of their product. But all this testing will never guarantee safety.
Theres always a chance that the testers stopped their tests too early, maybe even one
iteration before a critical malfunction.

The past has been riddled with stories of car manufactures calling back millions
of vehicles due to malfunction of various hybrid components such as cruise control,
resulting in e.g. uncontrollable acceleration.

All these concerns raised the needs for more formal methods and spawned the
research area of hybrid systems verification trying to ensure functionality and safety.

In verification of hybrid systems we try to confirm that a system has certain
properties. One of these properties is the so called safety property which states that
nothing bad is going to happen with the system, i.e. no critical malfunctions occur.
This malfunctioning is often characterized by a set of bad states. Given a system and
an initial state we then try to show that these bad states cannot occur and ipso facto
the system is safe.

Unfortunately, proving that a hybrid system is safe is undecidable but by using
over-approximative techniques we can at least come up with semi-decision procedures.

One of these semi-decision procedures to show that a system is safe and therefore
does not reach its bad states is by taking its initial state and over-approximatively
compute reachable successor states ultimately yielding a set of states that hopefully
does not contain the bad states. Since the over-approximation of reachable successor
states does not contain the bad states, we know that the actual successor states do
not contain the bad states as well. However, if the over-approximation contains the
bad states, we can not say whether or not the system is unsafe because the bad states

10 Introduction

may only be contained in the over-approximation and not the actual successor states.

This semi-decision procedure is called flowpipe construction and there are many
toolboxes implementing this approach such as FLow* |[CAS13|, SPacEEX [FLGDT11]
and HYPrRO/HYDRA [SAMK17]. These tools differ in the used techniques and the
way they represent the state of a system.

In this thesis we will improve the HYPRO/HYDRA toolbox by implementing a
divide and conquer approach to verification of hybrid systems based on wvariable set
separation.

Furthermore, the toolbox will be augmented by a new representation and analysis
algorithm for timed systems (an important subclass of hybrid systems) based on zones.

The main contribution of this thesis is a strategy that is able to choose the
most suitable representation and technique for the different variable sets based on
the current context of the system to significantly improve the performance of the
HyPrO/HYDRA toolbox.

Outline In Chapter 2| we are going to introduce all necessary preliminaries needed
to understand what hybrid systems are and how to analyze them using flowpipe
construction. Additionally, timed automata are explored and the concept of zone-
based analysis is introduced. Subsequently, in Chapter [3] we will learn about the
HYPRO toolbox and augment it with a new data structure called zones. Thereafter,
in Chapter [] we explore the HYDRA toolbox and enhance it with a framework
for analysis based on variable set separation and an algorithm for analyzing timed
automata. Finally, in Chapter [we are going to evaluate our implementations against
common benchmarks.

1.1 Related Work

This thesis combines the work of multiple researchers into one powerful analysis al-
gorithm. The idea of a divide and conquer approach to hybrid systems analysis has
been explored in [SNA17] and [CS16]. This idea is combined with software design
ideas from [FR09| to implement a variable set separation-based analysis algorithm in
the HYPRO/HYDRA toolbox, in which algorithms and operation implementations
can be switched dynamically.

The representation and analysis algorithm for timed systems is based on the work
of [BY04] and [Sril2]. In this thesis, we will elaborate on the idea of difference
bound matrices as a representation by defining additional operations which makes
them suitable to be used in a flowpipe construction algorithm instead of a zone-based
abstraction algorithm.

Chapter 2

Hybrid Systems Analysis

In this thesis we are concerned with the reachability problem in hybrid systems. Our
goal is to find out if the system at hand can reach a (possibly undesirable) state.
This chapter introduces the necessary theoretical background to perform reachability
analysis for hybrid systems.

We will start by defining an abstraction for hybrid systems by using hybrid au-
tomata. Then, we will define the semantics of such an automaton followed by a de-
scription of the reachability problem. Subsequently, we will investigate the common
analysis approach of flowpipe construction for linear hybrid automata, an important
subclass of hybrid automata. Finally, we will introduce the concept of timed au-
tomata. We will see that for this subclass the reachability problem is easier to solve
than for general linear hybrid automata.

2.1 Hybrid Automata

Hybrid systems describe both continuous and discrete behavior and a common ap-
proach to model these systems is by means of hybrid automata. A hybrid automaton’s
continuous behavior is described by activities in their locations that define the evolu-
tion of variables over a certain amount of time. The discrete behavior is modeled by
transitions that put the automaton from one state into another. Formally, a hybrid
automaton can be given by the following definition:

Definition 2.1.1 (Hybrid automaton [ACHH93])
A hybrid automaton A is described by a tuple A = (Loc, Var, Lab, Edge, Act, Inv, Init)
where

e Loc is a finite set of locations.

e Var is a finite set of real-valued variables. A function v : Var — R that assigns
values to variables is called valuation. The set of valuations of all variables is
denoted by V.

e Lab is a finite set of (synchronization) labels.

e Edge C Locx Labx2V*Y x Loc is a finite set of edges or transitions. Transitions
are described by a transition relation p € V xV that specifies guard and effect of

12 Hybrid Systems Analysis

a transition. We can take a transition with a valuation v changing the valuation
to v" iff (v') € p.

o Act is a function that assigns a set of time invariant activities f : R>g =V to
each location. These activities model the continuous dynamics of a variable in
a location.

e Inv is a function that assigns a set of invariants Inv(l) C V to each location
that specifies the set of valid valuations for a location. This enforces discrete
behavior as the automaton must leave a location before the valuation violates the
location’s invariant.

e Init C Loc XV is a set of initial states. The set of all states is denoted as 3.

Note that in later chapters when things become more technical we refer to activities
as flows. A common example for a hybrid system is a thermostat.

Example 2.1.1 (Thermostat [ACHH93|)

A thermostat is a controller that tries to maintain a certain temperature in a room.
In order to achieve this goal it senses the temperature in the room and if it is lower
(higher resp.) than the desired temperature it turns the heater on (off resp.).

In this example the controller tries to maintain a temperature between 18°C' and
22°C. Initially we assume a temperature of x = 20°C' and that the heater is turned
on. If the heater is turned on the continuous dynamics of the room temperature can
be given by the differential equation & = K (h — x) where K and h are some physical
constants.

If the heater is turned off the continuous dynamics of the room temperature can
be given by the differential equation & = —Kux. If the temperature reaches 22°C' the
controller turns off the heating and turns it back on if the temperature has fallen to
18°C.

Considering Example 2.1.1] a hybrid automaton for this thermostat can be given
by Figure

xr=20—

xr <18

Figure 2.1: Hybrid automaton for Example

2.1.1 Semantics of Hybrid Automata

The semantics of a hybrid automaton can be defined by an operational semantics that
consists of one rule for discrete steps and one for continuous time steps.

Linear Hybrid Automata 13

Definition 2.1.2 (Discrete step semantics [Abr15])
Let A = (Loc, Var, Lab, Edge, Act, Inv, Init) be a hybrid automaton. The opera-
tional semantics for a discrete step in A is defined as:

(la,(v,0")l') € Edge ' € Inv(l')
(Lo) 5 (W)
The above rule works as follows. If (l,a,(v,v"),l') € Edge and v € Inv(l") this
means that (v,0") € p (i.e. the guard of the transition is satisfied) and that the new
valuation v’ satisfies the invariant in the new location I’. Consequently, if these two

conditions hold the automaton can be transferred from state (I,v) to (I’,v’) using the
transition with label a.

(discrete)

Definition 2.1.3 (Continuous time step semantics [Abr15])
Let A = (Loc, Var, Lab, Edge, Act, Inv, Init) be a hybrid automaton. The opera-
tional semantics for a continuous time step in A is defined as:

feAc(l) f(O)=v f@)=v t>0 [f([0,4]) C Inv(l)
(Lw) 5 (L")

The above rule states that if f is one of the activities of location [whose valuation
at time point 0 is v and v’ at the end of time step ¢ > 0, and the valuations of the
activity during that timespan satisfies the invariant of location [, we can transfer the
automaton from (I,v) to (I,v’). Note that the automaton does not leave its current
location, but only applies the activity to the current valuation.

(continuous)

With these two rules we can define the reachability problem for hybrid automata.

Definition 2.1.4 (Reachability [Abr15])
Let A = (Loc, Var, Lab, Edge, Act, Inv, Init) be a hybrid automaton. An execution

step of A is either a discrete or a continuous step denoted by —=— U 5.

An execution w of A is a sequence of execution steps mg — T — o ... where my 18
an initial state. A state o in A is reachable iff o is an initial state or there exists an
execution m in A withm =71 — --- — 0.

As stated earlier we are interested in finding out whether or not a hybrid system
can reach a (possibly undesirable) state. Hence, the reachability problem is to find
out if there exists an execution in a hybrid automaton that reaches a set of bad states
Bad = {(b1,v1), - - ,(bn,vn)} € Loc x V.

In general, the reachability problem for hybrid automata is undecidable due to the
fact that hybrid automata are able to differentiate real points in time with infinite
precision [HKPV9S8| [Frd99]. However, over-approzimating the reachable states of a
hybrid automaton leads to a semi-decidable version of the problem. If the over-
approximation does not reach the bad states we know that the precise set of reachable
states does not as well and hence the automaton can be called safe. This will lead us
to the notion of linear hybrid automata and flowpipe construction as an approach for
a semi-decision procedure [LG09].

2.2 Linear Hybrid Automata

Linear hybrid automata differ from general hybrid automata in that the activities
in linear hybrid automata are given by linear ordinary differential equations (linear

14 Hybrid Systems Analysis

ODE) of the form
z=A z(t) (2.1)

where z € RIVel is a vector and A is a square R!VerIXIVarl matrix, the entries of
which define coefficients for the continuous dynamics of each variable [LG09).

It can be shown that the solution to a linear ODE, i.e. the valuation in a location
at time ¢ can be given by computing

z(t) = et - g (2.2)

where g is the initial value of z [LG09]. The term e** denotes the matrix exponential
that can be compute as
o0
Aoy
k=0

which converges for a square matrix X (or tA in our case) [Bel97] and can be approxi-
mated with moderate effort [MLO0O3]. It can be deduced that for any set Y of valuations
the reachable set at time ¢ can be computed by computing 4 - Y [LG09]. Conse-
quently, we can iteratively build a sequence of reachable sets by repeatedly applying
the matrix exponential to the solution of the last application and over-approximating
the result, leading to a so called flowpipe. A first algorithm is given in Algorithm [2.2]
a graphical version of the idea is given in Figure [2.2]

| —

- X" (2.3)

=

il [D

6| y 61 a
= =
4t y 4t a
2} y 2} (a
| | | | | | | | | |
1 2 3 4 5 1 2 3 4 5
(a) Actual continuous dynamic. (b) Over-approximated continuous dynamic.

Figure 2.2: Flowpipe over-approximation.

The algorithm iteratively computes the next reachable states using Reach (...)
in line [7] and adds the newly computed sets to the already computed reachable sets
in line [6} If there are no new reachable sets the algorithm terminates. In the next
section we will learn how Reach (...) is computed.

2.3 Flowpipe Construction

In the previous section we concluded that the set of reachable states of a hybrid
automaton starting at an initial set of valuations Xy can be computed by iteratively
multiplying the current reachable set with a matrix exponential. However, we are
yet to consider how to represent such a set of valuations. In this section we start

R N R

Flowpipe Construction 15

Algorithm 2.2 Simple Reachability Analysis [Abr15]

Input: A hybrid automaton A with initial states Inita
Output: Set Res of reachable states
Rpew = Inita;
Res := 0;
while (Rpew # 0){
Res := Res U Rpew;
Rpew := Reach(Rpew)\ Res;
}

return Res;

by representing sets of valuations by convex polytopes and define operations on this
representation. Subsequently, we will see how we can over-approximate the reachable
sets in such a way that it actually contains all reachable valuations in between two
points in time. Finally, we will give an algorithm for reachability analysis that employs
flowpipe construction and also considers discrete jumps in an automaton.

2.3.1 Representation

In this section we are going to use convex polytopes as a means of representing sets of
valuations. Note that there are many other representations (e.g. boxes, ellipsoids, sup-
port functions etc.) that can be used coming with their own strengths and weaknesses
w.r.t. computational complexity and precision [LG09].

Polytopes are commonly represented as either the convex hull of a finite set of
vertices or as an intersection of a finite set of half-spaces. In this section we will
choose the latter.

Definition 2.3.1 (Convex polytope [Ziel2])
A half-space is defined as the set of points bounded by a hyperplane with normal n
and an offset d:

h={z:z-n<d}

A polytope is the bounded intersection of finite number of half-spaces H.:

P=(\h

heH

A common way of representing a polytope is as a matriz-vector combination
P={z:A z<b}
where A is matrix constructed from mormal vectors and b is a vector of offsets.

An example of a convex polytope is given in Figure 2.3

16 Hybrid Systems Analysis

10| :
8, [— |
6, |
SN
4, |
/
2, |
O, |
| | | | |
0 2 4 6 8

Figure 2.3: Two dimensional convex polytope (red) over-approximating another set
(blue).

With the definition of a convex polytope we can define a number of useful op-
erations that will aid us during flowpipe construction. Convex polytopes are closed
under the following operations i.e. the results itself will be a convex polytope as well.

Intersection with a hyperplane [LGO09]:

An intersection with a hyperplane will be used to obtain the set of values that fulfill
a guard or invariant. The intersection with a hyperplane can be done by adding the
corresponding half-space to the set of half-spaces.

Closure of the union with another polytope [LG09]:

The union will be used to unify the different flowpipe segments. The closure of the
union of two polytopes combines their vertices in a single set and computes the convex
hull of that set.

Linear transformation [LG09]:

Among other things, the linear transformation is used to apply the matrix exponen-
tial to the current set of valuations to obtain the reachable set of valuations for the
next time step. The linear transformation of a polytope can be computed by either
applying the transformation directly to the vertices of the polytope or, in case the
transformation matrix is invertible, by applying it to the hyperplanes.

Minkowski sum [LGO09]:

The Minkowski sum will be used to over-approximate the reachable valuations. The
operation is performed with another geometric object, e.g. a box or sphere. The
Minkowski sum is the set-theoretical equivalent to addition and given two set of
position vectors A and B (e.g. defined by geometric objects) is defined as

A+B={z:x=a+b, a€ Abe B}.

Flowpipe Construction 17

Intuitively, one can imagine this as tracing the bounds of the original geometric
object with the center of the e.g. box or sphere yielding a larger object. Note that this
tracing is only correct if the object has its center in the origin. In hybrid reachability
analysis this operation is often times referred to as “bloating”. An example is given in

Figure [2:4]

Figure 2.4: Minkowski sum of a square and a disk [LG09].

2.3.2 Over-approximation

As we stated earlier, determining the exact reachable set starting from a given set is
undecidable. Nonetheless, over-approximating the reachable set is possible. Consider
the set X and its first time successor X; after time step ¢ in Figure 2.5a where the
dashed line denotes the actual continuous dynamics of the values. As we can see,
some of these so called trajectories lie outside the closure of the union of Xy and X3
(green region & original polytopes) so we need over-approximation to include these
trajectories in our set as they cannot be computed precisely.

20 20

- 15 |-

> 10 - - - 10 -
50 : 5F
0p I I I L] Of . I I I L]
0 5 10 15 20 0 5 10 15 20
o x
(a) Reachable set without bloating. (b) Reachable set with bloating.

Figure 2.5: Over-approximation of the initial set.

This over-approximation is done by applying the Minkowski sum with a bloating
object to the convex hull of the union of Xy and X, effectively including the missing
trajectories (see Figure . This leaves us with the question of how large such
an object must be such that it is large enough to successfully over-approximate the
precise set. There are multiple approaches for estimating the size of such an object.
For example, one can use the Hausdorff distance to estimate the difference between

18 Hybrid Systems Analysis

the actual trajectories and their linear approximations. The Hausdorff distance of
two sets S and S’ defines the maximum of the shortest paths from any point in S to
any point in S’ (red line in Figure [2.5a) [LG09]:

h(S,S") = maz{sup inf||a — b||, sup inf|la —b||}
a€S bes’ beS’ a€S

Note that this over-approximation is only done for the first segment of a flowpipe,

because subsequent multiplication of this set with e*4 will maintain the over-approx-

imation property for the rest of the computation [LG09]. Consequently, the first

segment Qq of a flowpipe for time interval [0,¢] starting with an initial state (I,p)

consisting of a location [and variable valuation p is computed as

Qo = (conv(pUe™ - p) @ B) N Inv(l) . (2.4)

Here, A defines the activities of location I, conv(...) computes the convex hull, B is
a bloating object and @ is the Minkowski sum operator [LG09].
All subsequent segments of the flowpipe in a location are given by the recurrence
relation [LGO09|:
Qi+1 =efh. ;N I’I’L’U(l) (25)

Note that the time step t is fixed at the beginning of flowpipe construction based
on the problem instance. It cannot be altered during flowpipe construction with-
out recomputing the bloating as changing the time step invalidates the bloating and
therefore the over-approximation. As an example for such a flowpipe construction we
consider the bouncing ball example, whose automaton and flowpipe can be found in

Figure

Example 2.3.1 (Bouncing Ball |[Abr15])

Imagine a ball with initial height x > 0 and velocity v = 0. Gravity with an accelera-
tion of v = —9.81 m/s? immediately starts pulling downwards on the ball, accelerating
it towards the ground. Upon reaching the ground the ball is going to bounce, i.e. the
velocity of the ball is going to invert while also losing some of it due to the impact
as the ball is elastic. While rising, gravity will again start pulling down on the ball
decreasing its velocity until the ball reaches its apex and the ball will start falling back
down.

In order to have a full flowpipe construction-based analysis algorithm we still
have to consider what happens to the current flowpipe upon discrete transitions. In
particular, we have to consider a transition’s guard and its effects. Considering the
bouncing ball automaton in Example [2.3.1] the transition is taken when the ball hits
the ground, i.e. when its guard z = 0 A v < 0 is satisfied, which in turn applies the
effect to v and sets its new velocity to v := —c - v.

A transition (l,a,u,l’) is enabled if there exists a set of valuations that satisfies
the guard condition, i.e. the set is contained in u. However, since valuations are
represented by over-approximative geometric objects it may be the case that only
some subset of an object is in p and therefore actually satisfies the guard. For example
in case of the bouncing ball the polytope that intersects the v axis meaning that z = 0
(i.e. the ball touches the ground) also contains some valuations of z that are larger
than 0. These values do not intersect the guard and hence must be cut off. This is
done by intersecting the half-spaces of the polytope with the half-spaces defined by
the guard.

Flowpipe Construction 19

)

10

r=10,v =0

:
o -/
- T
S
Toonsl . / / %w%%%

T=v
v =—-9.81
x>0

-15 -10 -

a1
o
(&3]

10

Figure 2.6: Bouncing ball automaton and flowpipe.

After we have computed the guard satisfying set the effect of the transition is
applied to the set by inverting the valuation of v. In practice this is done by applying
this reset as an affine transformation to the guard satisfying set.

The resulting set acts as a new initial set in the target location I’ of the taken
discrete transition. Consequently we have to compute a new initial set using Equa-
tion . This is due to the fact that in the new location the activities or so called
flows may have changed. A changed flow may result in new trajectories that are
outside our over-approximation and as a consequence we have to recompute a new
bloating.

Now we have all tools needed to define a full flowpipe construction-based reachabil-
ity analysis algorithm for hybrid automata (see Algorithm. First Res and Ryeq
are initialized with the initial state set of automaton A in lines[3land @ Res will store
all reachable sets computed during flowpipe construction whereas R,,¢,, will store sets
that are used as starting points for future flowpipe constructions. The algorithm itera-
tively takes a stateSet from the set of states Ry, in line[6land constructs a flowpipe
starting with that stateSet in line[7]l When the flowpipe is constructed jump succes-
sors are computed in line [§] Note that the method computeJumpSuccessor (...)
adds all newly computed reachable sets to R,.,, and Res. Computation terminates
when either R,.,, becomes empty or a termination condition e.g. a maximum number
of jumps is met.

Although this algorithm is suitable for linear hybrid automata and its subclasses
the run time of this algorithm tends to explode with increasing number of variables/di-
mensions as the complexity of the operations on the state set (i.e. the polytope) in-
creases. In fact, for some subclasses of linear hybrid automata the computation of
reachable sets can be done much more efficiently than using flowpipe construction. In
this thesis we aim for a dynamic approach that can decide what algorithm to use for
reachability computation based on the automaton’s current location. In the scope of
this thesis we will employ this approach for timed automata which are presented in
the next section.

[R S R R

20 Hybrid Systems Analysis

Algorithm 2.3.2 Flowpipe construction-based reachability analysis

Input: A linear hybrid automaton A with initial states Inita
Output: Set Res of reachable states

Res := computelnitialSegement (Inita)
Rnew := Res
while (Rpew # 0 A —~termination condition) {
stateSet := Rpew.pop()
R’ := computeFlowpipe(stateSet)

computeJumpSuccessor (R’)

}

return Res

2.4 Timed Automata

Timed automata are a subclass of linear hybrid automata, whose purpose is to model
real-time systems using real-valued variables called clocks. Clocks differ from variables
in linear hybrid automata in that their activities are always 1, i.e. they progress at a
constant rate [AD94]. Furthermore, a clock’s valuation is always positive and can only
be observed, i.e. compared to constants, or reset to zero after which it will continue
to increase its value with constant rate 1. Consequently, clocks are used to measure
the time spent in a certain location or set of locations as well as to regulate the order
in time in which locations are visited by defining constraints over clocks.

Definition 2.4.1 (Clock constraints [Sril2])
Let C be a set of variables called clocks that range over R>qg. A clock constraint ¢
over C is defined by the grammar

pi=z~c|lphp

where x € C, ¢ € N and ~€ {<,<,=,>,>}. The set of all clock constraints is
denoted as CC(C). A clock valuation is a function v : C — Rxq that assigns values to
clocks. We say that valuation v satisfies clock constraint ¢, or v |= ¢ for short, when
replacing every occurrence of all x € C in ¢ with its respective valuation v(x) satisfies
all constraints in .

Consequently, a timed automaton can be defined as a hybrid automaton whose
variables are clocks that progress at constant rate 1 and whose location invariants
and transition guards are clock constraints. The effect of a transition is a set of clocks
that is going to be reset when taking the corresponding transition.

Definition 2.4.2 (Timed automaton [BKO0S])
A timed automaton A is a tuple A = (Loc, C, Lab, Edge, Act, Inv, Init) where

e Loc is a finite set of locations.
e C is a finite set of clocks.
e Lab is a finite set of transition labels.

e Edge C Loc x CC(C) x Lab x 2¢ x Loc is a finite set of edges, written as a tuple
(1,9,a,R,l") meaning that a transition labeled a from 1 to l' can be taken if guard
g € CC(C) is satisfied. Upon transitioning, all clocks r € R are reset to 0.

Timed Automata 21

e Act is a function assigning a set of time invariant activities to each location.
Note than in this case this function is the constant function 1.

e Inv is a function that assigns a set of invariants Inv(l) € CC(C) to each location.
A timed automaton must leave its current location before the clock valuations
invalidate the current location’s invariant.

e Init C Loc x T is a set of initial states where T € CC(C) is a set of clock
constraints defining the initial clock valuations.

Example 2.4.1 (Bolognese sauce)

More than for my achievements in hybrid automaton analysis I am known for my
world class bolognese sauce. The secret of this sauce is to repeatedly reheat it which,
according to popular belief, breaks down more amino acids and browns more sugar to
enhance its savory, umami taste [MSTMIJ).

After mizing all the ingredients in the cooking pot the mizture is cooked for 30
minutes without stirring. After 30 minutes we enter a reheating cycle by starting to
cool the sauce down. Cooling proceeds for 10 minutes during which every 4 minutes
the sauce is stirred for 1 minute. After those ten minutes, we switch to reheating the
sauce for 10 minutes stirring it every 4 minutes for 1 minute as well. We then switch
back to cooling and the cycle starts over.

As always, a sauce is done when it’s done.

A depiction of the corresponding timed automaton can be found in in Figure 2.7
Note that clocks that have to be reset are denoted by curly braces on the edge label.

z=0y=0

cooking

cooling z = 10:{zy} heating

x = 30;{x,y}

y=1;{y} y = 4;{y}

stirring stirring
(cooling) (heating)

Figure 2.7: Timed automaton for Example

2.4.1 Zone-based Analysis

Basically, there are two common approaches to computing the reachable set of states
in a timed automaton. The first one divides the reachable state space into a finite set of

22 Hybrid Systems Analysis

equisized regions in which the valuations cannot be distinguished by the automaton,
thereby defining a finite region graph that is then analyzed. However, it can be
shown that the number of regions, although finite, grows exponentially in the number
of clocks [AD94].

Therefore, we are going to use the improved approach of zone-based abstraction
to analyze a timed automaton’s reachable state set [BY04]. Intuitively, a zone is a
set of clock valuations that is defined by a finite set of clock constraints.

Definition 2.4.3 (Zones [BY04])
Let C be a set of clocks. A zome is a set of clock valuations defined by a finite con-
junction of clock constraints of the form:

T~
T—y~c
forzyel, ~e{<,<,=,>,>}andc€eZ

Figure 2.8 illustrates what a zone may look like.

10 - N

Figure 2.8: Example of a Zone.

Note that contrary to the definition of clock constraints in Definition 2:4.1] we
allow the constant ¢ to be an integer rather than a natural number and allow the
constraints to be defined over clock differences. In Section when we are going
to talk about the implementation details of zones we will see that this will greatly
simplify the data structure and operations needed to work with zones.

As we can see, zones are not much different from polytopes used for flowpipe
construction-based reachability analysis. However, zones can exploit the fact that the
clocks evolve at a fixed rate of 1 so that we neither have to bloat the zone, nor do
we have to iteratively construct a flowpipe using costly matrix multiplications until
we reach some time horizon or the location’s invariant is invalidated. Instead, we
can just elapse the entire time by moving the upper bounds of our zone (z < 8 and
y < 8 in Figure to the end of our time horizon while considering the location’s
invariants reducing the computation of reachable valuations in a location to a single
step. Because the time horizon is merely given as a constant and invariants are given

[. T R S

Timed Automata 23

as clock constraints of the form z ~ ¢ (see Definition this computation comes
down to altering the constants in the clock constraints defining our zone and thus can
be done with very little effort.

Technical details on how to actually compute the elapsed zone will be subject of
Section [3:2] An example of an elapsed zone can be found in Figure 2.9 Note that
the amount of constraints needed to describe the original and the elapsed zone is the
same.

v <15
15} y= y
y—x <2
10+ B
BN
T—y<2
5, .
y=>2
ot r <15 |
| | | |
0 5 10 15
T

Figure 2.9: Example of zone in Figure elapsed with time horizon 15.

Discrete jumps in zone-based reachability analysis are equally easy to compute
since we can exploit the fixed rate of clock movement as well as the fact that the effect
of a transition is a reset that sets clocks back to 0. Consequently, intersection with a
guard can be done by adding the corresponding clock constraint to the constraints of
our zone while the effect of a transition is a projection to the axes.

Accordingly, a full zone-based analysis algorithm looks very similar to a flowpipe
construction-based analysis algorithm (see Algorithm . It is different in that
it does not call computeFlowipe (...) in line |Z|, but calls the much more efficient
method computeElapsedZone (...) that employs the above strategy.

Additionally, the implementation of computeJumpSuccessors (...) is altered
to exploit the concept of zones.

Algorithm 2.4.1 Zone-based reachability analysis

Input: A linear hybrid automaton A with initial states Inita
Output: Set Res of reachable states

Res := computelnitialSegement (Inits)

Rnew = Res

while (Rpew # 0 A —~termination_condition) {
stateSet := Rpew.pop()
R := computeElapsedZone(stateSet)

computeJumpSuccessor (R')

}

return Res;

24

Hybrid Systems Analysis

Chapter 3

HYPRO

In the previous chapter we have seen that in order to perform analysis of hybrid
systems we need an abstraction of the system, i.e. a hybrid automaton, as well as
geometric representation of the current state in the form of a geometric object like
for example a hyperplane polytope.

In this thesis we will make use of the HYPrRO [SAMKI17] toolbox that offers an
implementation of a hybrid automaton as well as a large variety of different geometric
objects that can be used to represent the current state of the automaton.

In Section[3.1]we will give a brief overview of HYPRO’s architecture considering the
data structures and geometric representations it offers. Subsequently, in Section
we are going to augment HYPRO’s rich variety of geometric objects with a new repre-
sentation called difference bound matrix that is suitable to efficiently represent zones
as introduced in Definition

3.1 Architecture

The HYPRO toolbox is a free and open-source C+-+ libraryEI that basically consists
of two main components (see Figure .

The first big part are the data structures that contain implementations of a Point,
Half-space and Hybrid automaton. The second big part are the representations that
provide a large variety of geometric objects that all implement an interface of the same
name to support interchangeability achieved by a converter that converts between the
different representations.

Note that HYPRO also offers its own reachability algorithm that we are not going
to use in this thesis. Instead, we will use the HYDRA toolbox which offers a much
more sophisticated analysis algorithm featuring multi-threading support among other
useful features.

HYPRO’s implementation of a hybrid automaton is very close to the definition of a
hybrid automaton given in Definition A hybrid automaton in HYPRO consists
of a list of locations (with flows and invariants) and transitions (with guards and
resets) as well as a list of initial and bad states.

However, HYPRO’s hybrid automaton components have been altered to support
multi-sets. This means that we are able to store more than one flow function and in-

LA current version of the library can be found at https://github.com /hypro/hypro

26 HyPro

algorithms
_’i g |HPolytope |— ———————— :%
3 [rn
=s) % |VPolytope I» 777777 G UL § R,cachfxblllty
g analysis
- 8|l |PPLfPolytope |» ***** R g;‘
E E |Zonotoe |————— RN
== bt ‘
2 S tFuncti
E | Upportaneron |_L GeometricObject d 37
5}
§ = | Orthogonal polyhedra | <Interface> | Converter |
g.__:% | Taylor model |
£ i
Optimizer Lo
gger
e L
[crrx | [sMT-RAT|[23 |[SoPrex]

Figure 3.1: Basic architecture of the HYPRo library [SAMK17].

variant per location as well as more than one guard and reset per transition. Similarly,
an automaton’s state can store more than one state set representation to describe its
variable valuations. This effectively enables us to separate the automaton’s variable
set into smaller subsets that can then be analyzed independently as we will see in
Chapter [4]

All of HYPRO’s state set representation implement the GeometricObject inter-
face which ensures that all representations implement the same basic functions that
allow them to be used in hybrid system reachability analysis (see Figure .

Looking back at Section the bare minimum of operations necessary are in-
tersection with a hyperplane, conver union with another geometric object, linear
transformation and Minkowski sum. Nonetheless, the GeometricObject interface
requires state set representations to provide a few more functions to either allow for
convenience features like plotting state sets or performance enhanced computations,
e.g. intersection with multiple hyperplanes.

The representations differ from each other in how precise they describe a set
of values and how complex the basic operations intersection, convex union, linear
transformation and Minkowski sum are to compute. For example, a box merely can be
represented as a minimal and maximal point which makes operations like Minkowski
sum very fast and easy to compute. However, boxes are very imprecise when used to
describe arbitrary sets.

Hyperplane polytopes (HPolytopes) on the other hand can describe a set of values
more precise the more hyperplanes it uses, but apart from the operations intersection
and linear transformation, all other operations are hard to compute.

A trade off between precision and complexity can be achieved by support func-
tions. In theory, support functions describe a set of values exactly as it can be seen as
an HPolytope with an uncountable number of hyperplanes. Naturally, it is impossible
to store an uncountable number of constraints so hyperplanes are computed on-the-
fly where needed so additional precision directly correlates to increased complexity.
Operations on support functions are stored as a sequence of operations on the under-
lying hyperplanes that are not applied directly. Actual computational overhead arises
when we have to check properties of the support function, e.g. whether or not a point

Difference Bound Matrices 27

is contained in the support function.

<<interface>>
GeometricObject

dimension () : int

empty () : bool

vertices () : vector<Point>

satisfiesHalfspace (Halfspace) : pair<bool,GeometricObject>
satisfiesHalfspaces (matrix, vector) : pair<bool,GeometricObject>
project (vector<int>) : GeometricObject
linearTransformation (matrix) : GeometricObject
affineTransformation (matrix, vector) : GeometricObject
minkowskiSum (GeometricObject) : GeometricObject
intersectHalfspace (Halfspace) : GeometricObject
intersectHalfspace (matrix,vector) : GeometricObject
contains (Point) : bool

unite (GeometricObject) : GeometricObject

Figure 3.2: GeometricObject interface.

3.2 Difference Bound Matrices

One of the main contributions of this thesis is an implementation of a state set repre-
sentation for zones (see Definition called difference bound matriz [BY04] that
satisfies the GeometricObject interface of HYPRO (see Figure . The repre-
sentation exploits the fact that clocks progress at constant rate 1 which restricts the
maximum number of constraints needed to represent an arbitrary zone to be quadratic
in the number of clocks [BY04]. This will enable us to represent clock valuations ex-
actly without the need of over-approximation while requiring less memory and offering
optimized operations during reachability computation.

Recall that a zone is a finite conjunction of clock constraints of the form x ~ ¢
and — y ~ ¢ where z,y € C are clocks, ~€ {<, < ,=,>,>} and ¢ € Z. The most
efficient form to store these constraints is in form of a special matrix that contains
bounds on the difference between values of two clocks, hence the name difference
bound matrix (DBM) [Bel57, [Dil90]. The basic idea is that row and column index of
a DBM specify the clocks compared while the value at that position is the difference
between the clock values.

However, the above definition contains constraints of the form x ~ ¢ which techni-
cally is not a difference between two clocks and therefore it is unclear where to place
the bound of this constraint in the difference bound matrix. It is for that reason
that we introduce a zero clock 0 with constant value 0 so that we can represent clock
constraint uniformly as x —y ~ ¢ where z,y € Cp := CU{0}. This has the convenient
effect that we consequently can reduce the number of comparison operators needed
to represent a zone. For example equality constraints of the form z = ¢ can now be
represented as the conjunction of x — 0 < ¢ and 0 — x < —c¢. This leads us to the
following lemma:

28 HyPro

Lemma 3.2.1 (Uniform zone representation [BY04])
Let Z be a zone according to Definition[2.].3, then Z can be rewritten as a conjunction
of constraints of the form

rT—1y=c

for z,y € Co, 2€ {<, <} and ¢ € Z. The mazimum number of constraints needed to
describe zone Z is |Col?*.

Consequently, we can store clock constraints in a |Co| X |Co| matrix described by
the following definition:

Definition 3.2.1 (Difference bound matrix [BY04])

Let Z be a zone whose constraint have been rewritten to fit Lemma[3.2.1] over clocks
Co := {xg := 0,x1,29,...,x,}, then Z can be represented as a |Co| % |Co| difference
bound matriz D whose elements (denoted as D;; for index i,j) are constructed by the
following rules:

o For each difference x; —x; < n of Z, let D;; = (n, <X).
e For each unbounded difference x; — x; let D;j = oo

An example DBM for the zone in Figure can be found in Figure [3.3

10 x> 2 7
0 T y 8ty <8 -
—x <2

0 /(0,<) (-2.5) (-29) 6f T]
w((&ﬁ) (0, <) (2,S)> =

y \8,<) (2,9 (0,%) ar l

T—y<2
2+ y > 2+
ol r <8 i

Figure 3.3: Example difference bound matrix.

Note that diagonal entries in a DBM are always (0, <) because a clock can not
run faster/slower as itself, i.e. ; — x; < 0. As we want to run algorithms on a DBM,
but the actual DBM entries are a non standard construct rather than numbers we
define basic operations on DBM entries.

Definition 3.2.2 (DBM entry operations [BY04])
Let D be a DBM according to Definition [3.2.1] and let mn € Z \ {oo} as well as
=€ {<, <}. We define the following operations on DBM entries:

e Comparison:

1. (n, <) < oo

Operations on Difference Bound Matrices 29

2. (m, 2) < (n, =) if m<n
3. (n

(n, <) < (n, <)
o Addition:
1. (n,=) +00=00
2. (m, <)+ (n, <) =(m+n,<)
3. (m, <)+ (n, 2)=(Mm+n,<)

A DBM is called canonical [BY04] if none of its entries can be changed without
changing the zone it defines. Intuitively, one can imagine that all constraints in a
canonical DBM are tight in the sense that their graphical representation touches the
zone. Note that the DBM defined in Figure [3.3]is canonical. This property is very
important because it simplifies operation like intersection and emptiness check and
our goal is to maintain the canonicity property throughout the entire computation.

In the following section we are going to investigate the implementation of various
operations on DBMs.

3.3 Operations on Difference Bound Matrices

To use DBMs in HYDRA’s reachability analysis algorithm it must be a HYPRO
representation satisfying the GeometricObject interface. In this section we are
going to explore DBM specific operations such as elapsing and constraint intersection.

The attentive reader will notice that some of the important operations of the
GeometricObject interface e.g. linear transformation are missing in this section.
This is due to the fact that these operations are not directly applicable to DBMs
as they were not designed to support these operations. They are replaced by DBM
specific methods that are suitable for the intended use of e.g. linear transformation.
Recall that linear transformation is intended to compute time successors as well as
transition resets. As clocks move at a fixed rate of 1 and can only be reset to 0, the
linear transformation is replaced by the new DBM specific methods elapse, shift and
reset.

For the sake of interface completeness the methods not directly applicable are
nonetheless provided by first converting the DBM to a representation that supports
the operation, applying the operation and then converting back to DBM. Note that
this may introduce over-approximation.

We already learned that DBMs can be used to represent zones and that zones are
a means to capture clock valuations of timed automata. Consequently, there are a
few timed automaton specific operations that are not part of the GeometricObject
interface (e.g. elapsing) because they are not applicable to general state set represen-
tations.

Here, we are going to introduce the operations intersection with clock constraints
as well as elapsing, shifting and resetting of clocks.

3.3.1 Intersection with Clock Constraints [BY04]

Intersecting zones with clock constraints models the intersection with transition guards
and location invariants during reachability analysis.

© w9 e v e W N e

11

12

13

14

15

16

17

18

19

30 HyPro

Contrary to other HYPRO representations where intersections can be performed
with arbitrary hyperplanes zones can only be intersected by clock constraints (see
Definition because that is the only form of constraint the underlying timed
automaton allows. Consequently we can exploit the general form of the constraints
to efficiently manipulate the DBM that describes our zone (see Algorithm [3.3.1)).

Algorithm 3.3.1 intersectConstraint(D,z; —z; < ¢)

Input: DBM D, clock constraint z; —z; X¢
Output: DBM D intersected with clock constraint z; —z; <c
if (Dji+ (¢, %) <0){

Doy = (-1, <)
}
else if((¢, X) < Dy;){
Dij = (¢, %)
// restore canonicity
for(k = 0...n){
for(l = 0...n){
if (Dri + Da < Di){
Dy = D + Dy
}
lf(DkJ + Djl < Dkz){
Dii = Dij + Dji
}
}
}
}

Recalling the definitions of clock constraints and DBMs we trivially know which
entry of the DBM has to be altered. Given a clock constraint of the form z; —2; < ¢
and a DBM D we check if (¢, <) < D;; using Definition If this inequality does
not hold the constraint does not further constrain our zone and we are already done.
Otherwise, we replace entry D;; with (¢, <) (see line .

The attentive reader may notice that performing such an operation may invalidate
the canonicity property of a DBM (see Figure|3.4]) or make the zone empty altogether.

Therefore, after intersection with the new constraint we explicitly have to check
and if necessary restore the canonicity property of the DBM (see lines |§| to .

Fortunately, the problem of possible emptiness is easier to handle. Before we
actually intersect the DBM with the new constraint we first check whether the in-
tersection would move the upper (lower) bound of the affected clocks lower (higher)
as their lower (upper) bound because in that case we can deduce that the zone be-
comes empty after intersection. If the DBM becomes empty we neither perform the
intersection nor do we have to consider maintaining canonicity. Instead, we abuse
the otherwise unused entry Dy by replacing it with (—1, <) as an indicator that the
underlying zone is empty (see line . Consequently, we will save a lot of time when
performing a future emptiness check by first checking whether the first entry of the
DBM is (—1, <) and in that case skip the emptiness computation since we already
know the zone is empty.

o s W N e

Operations on Difference Bound Matrices 31

10{ 1

4 T—y<2 B

8

Figure 3.4: Non-canonical DBM from Figure after intersection with z — 0 < 5
(y < 8 is not tight).

3.3.2 Elapse [BY04]

Elapsing of zones models the passage of time in a location during which clocks will
tick at rate 1, i.e. the reachable zone of clock valuations by staying in a location (see

Algorithm |3.3.2)).

Algorithm 3.3.2 elapse(D)

Input: DBM D
Output: Elapsed DBM D
for(i = 0...n){

Dio = O

}

Starting from a DBM D representing the initial zone this operation is computed
by removing the upper bounds of all clocks by setting D;o to co (see line .

Note that elapsing a zone maintains canonicity. As all upper bounds are moved
to oo and the DBM was canonical before the operation this means that none of the
upper bounds in the DBM can be changed after the operation without changing the
zone it defines, which is the definition of canonicity we introduced earlier.

3.3.3 Shift [BY04]

Shifting of a clock is the act of adding or subtracting a clock with a value, effectively
moving the zone a certain distance in the direction of the specified clock. In this
thesis we are going to use a slightly altered version of the shifting operation found
in [BY04], but note that an implementation of the original shift can also be found in
HyPro.

The original shift operation only shifts one clock by a given distance and therefore
moves it along one of the clock axes. Consequently, shifting a zone along one of the

32 HyPro

clock axes changes the difference between clocks and therefore raises the need to also
move the diagonals in that direction (see Figure [3.5)).

10 | B
= B 10 - B
6 |- -
= = 5 -
4 |- -
2| 1 ol i
0 |- -
0 2 4 6 s 1 0 510 15 2
T X
(a) Original DBM (b) Shift of upper and lower bound of x
by 10
10 B
8 |- -
6 |- -
=
4 |- -
2 |- -
O |- -

10 12 14 16 18 20
T

(c) Shift of diagonals.

Figure 3.5: Example of a shift operation of x by 10 as described in [BY04].

In this thesis we implement a uniform shift that adds or subtracts all clocks with a
value and hence the difference between clocks stays the same. This greatly simplifies
the shift operation because we only have to alter the DBM entries in the first row and
column to account for the lower and upper bounds of the clocks and make sure that
all clock values stay positive (see Algorithm lines [5| and @ Recall that lower
bounds in a DBM are represented by negative numbers so we have to subtract the
distance for those bounds (see line @

We will use the uniform shift to model clock ticks i.e. the valuation of clocks after
one time step and consequently this operation enables us to use DBMs in flowpipe con-
struction-based reachability analysis that always considers the valuation of variables
at one specific time step.

@ 9 e e W N e

Operations on Difference Bound Matrices 33

Algorithm 3.3.3 uniformshift(D,t)

Input: DBM D, distance t
Output: DBM D with all clocks shifted by ¢
for(i = 0...n){

Dio = Dio + (¢, <)

Dio = max(Dm,(O, S))
Do; = Do, + (—t, <)
Do; = min(Do;,(0, <))

3.3.4 Reset [BY04]

The effect of a transition in timed automata is the reset of some subset of clocks to 0.
Intuitively, this operation is the projection of the zone to the axes of the clocks that
are not reset (see Figure [3.6).

8, |
y<38
6 y—x <8 |
= 4
rz—y<0
y=>2
2, |
ok z>0ANx <0]
| | | | |

Figure 3.6: Zone from Figure after reset of x to 0.

Suppose we want to reset clock x in DBM D to 0, then the operation begins with
first setting the upper and lower bound of z to 0 by setting D,o = Do, = (0, <) = Dy
followed by moving the diagonal constraints that are defined over x to the upper/lower
bound of the other variable in that constraint, i.e. D,; = Dg; and D;, = D;g. Pseudo
code of the reset operation can be found in Algorithm [3:3.4]

Algorithm 3.3.4 Reset(D,z)

Input: DBM D, clock x to be reset
Output: DBM D with clock x reset to 0
for(i = 0...n){

Dy = Do

Diz = Do

}

34

HyPro

Chapter 4

HyDRA

In the previous chapters we have discussed flowpipe construction-based analysis and
the HYPRO toolbox. In this chapter we are going to improve on HYDRA’s flowpipe
construction-based analysis algorithm that uses the tools offered by HYPrRO. The
overarching goal of this part of the thesis is to construct a framework that supports
variable set separation, i.e. independent analysis of syntactically independent subsets
of the automaton’s variables to reduce computational complexity.

The ability to perform independent analysis of the subspaces defined by the vari-
able subsets enables us to take a more sophisticated approach based on the context
the subspaces define, e.g. use the previously introduced difference bound matrix if the
variable subset solely consists of clocks.

In Section we are going to give a brief overview of HYDRA’s architecture
and its flowpipe construction-based reachability algorithm. Thereafter, we are going
to introduce a decision entity that is able to determine a variable set separation
of syntactically independent subspaces. Furthermore, the decision entity is able to
analyze the subspaces and recommend a preferred representation to represent that
subspace. Subsequently in Section we are going to introduce a context-based
worker that is able to dynamically choose an algorithm used for flowpipe construction
in a location from a set of algorithms called contexts. Consequently in Section 1.4 we
present the default context, a context that performs the general flowpipe construction
algorithm presented in Algorithm At the end of this chapter we present a timed
context that is able to perform optimized reachability analysis in a timed automaton
setting.

4.1 Architecture

HYDRA is an extensive implementation of the flowpipe construction algorithm pre-
sented in Algorithm [2:3.2] that has been extended by various perks and features.
These features for example include multi-threading support using a thread pool
pattern [Neul6, ISA18b| or counter example guided refinement using backtracking
[[iit16, SA18a|. An overview of HYDRA's basic structure can be found in Figure

At the heart of HYDRA sits the reachability procedure (yellow). In its core it
maintains a queue of so called tasks that contain the current state (location and vari-
able valuation) of the automaton alongside parameters for analysis that are processed
by workers in a multi-threaded fashion.

36 HyDRA

The procedure starts by creating a hybrid automaton based on a specification file
by using HYPRO’s integrated parser for automaton model files (gray). It continues
by creating initial tasks based on the initial states of the created automaton and
enqueues them in the task queue (red). Subsequently, the workers are created and
added to the worker pool (blue) after which the reachability procedure will wait for
the workers to finish processing the tasks. When all tasks are processed, the workers
are terminated and the result is plotted.

pparseAutomaton

Reachability

pcreateHA — createTasks — createWorkers — joinWorkers — plot

WorkerPool

CEXQueue | [J[J[] ¢+ k----=------~

Figure 4.1: HYDRA architecture.

A worker (green) begins his work by popping the first available task from the task
or counter example queue (magenta). Based on the automaton’s state in that task
a worker computes the reachable flowpipe for location and starting valuation defined
by the state. When a worker is done computing the flowpipe in a location discrete
jump successors are computed, wrapped in a task and enqueued in the task queue
after which the worker goes back into the pool to wait for the next available task.

If a bad state was hit during flowpipe construction a worker wraps the hitting state
in a task and enqueues it in the counter example queue. The next worker available
can then use the counter example task to first backtrack and then recompute the
flowpipe with finer analysis parameters, e.g. a more precise representation or smaller
time step to check whether or not the counter example was spurious.

Decision Entity 37

In the current version of HYDRA there is only one worker type. This worker per-
forms general flowpipe analysis and the worker’s implementation contains the whole
reachability algorithm for a location which currently hinders rapid prototyping and
extensibility.

In case someone wants to implement an algorithm to analyze timed automata one
has to copy the whole worker implementation to a new worker type and change the
code where needed to fit timed automata. Recalling the flowpipe algorithms for linear
hybrid automata (Algorithm [2.3.2) and timed automata (Algorithm [2.4.1)) we can see
that they only differ in the way they compute continuous successors so copying the
whole worker implementation for very few changes is extremely inefficient and hard to
maintain. Changes to how tasks are created or how the underlying reachability tree
for backtracking computation is handled would have to be changed in every single
worker.

In Section we will construct a new type of worker that is way more extensible
and supports rapid prototyping.

4.2 Decision Entity

As stated earlier we strive for an implementation of HYDRA that supports variable
set separation to perform less complex reachability analysis in independent subspaces,
but we are yet to define how a hybrid automaton’s variables can be decomposed such
that a reachability algorithm still produces valid results.

This section will start by formally describing what variable set separation in a
hybrid automaton is, how it can be achieved and how an algorithm has to proceed
in order to produce valid results. We introduce the idea of a decision entity that
is able to compute a variable decomposition and furthermore classify the subspace
defined by a variable subset, e.g. whether it solely consists of clock variables. This
classification enables us to dynamically decide on a representation for a subspace that
may be better suited for analysis, e.g. difference bound matrices for timed subspaces.

4.2.1 Variable Set Separation and Automaton Decomposition

In flowpipe construction-based analysis complexity increases in the number of vari-
ables and even automata modeling smaller programs (20 variables) can be a signifi-
cant challenge. The reason for this is that the more variables are involved in modeling
complex behavior, the higher the dimensionality of the underlying state set represen-
tation becomes. Since the complexity of operations on state set representations is
directly correlated to the number of dimensions, more variables entail longer run
times and higher memory consumption.

To reduce the effects of high dimensionality recent efforts proposed the idea of
variable set separation [SNA177 CS16]. The approach is based on the assumption
that in most scenarios the evolution of a variable’s valuation, besides the common
notion of time, only depends on a subset of the other variables in the scenario, if any.
Consequently, as long as variables do not influence each other we are able to analyze
them separately from one another while the iterative nature of flowpipe computa-
tion considers the common notion of time passing synchronously in the respective
subspaces.

This leads us to the concept of syntactical independence of variable sets. Intu-
itively, this syntactical independence states that two variables are syntactically in-

38 HyDRA

dependent if they do not occur in the same predicate (function resp.) or are not
dependent to one another via transitivity in the predicates (functions resp.).

Let X be a set of variables in a hybrid automaton, Predx the set of predicates
i.e. guards and invariants in that automaton and X; U---U X,, a decomposition of
X into disjoint subsets. The variable subsets are called syntactically independent
if all predicates ¢ € Predx (similarly for jump resets and flows) are decomposable
to a conjunction ¢ = 1 A --- A ¢, where each @; is defined over the respective
variable subset X; [SNA17]. Note that the decomposition must be the same for all
@ € Predy, i.e. it is not allowed that e.g. guards are decomposed over a different
variable decomposition than invariants.

If for an automaton such a decomposition into syntactical independent variable
sets exists, we are able to represent the automaton’s state (I,p) € Loc x V by its
projective representation (I,p1,...,pn) where each p; is the projection of state set p
to the variables in variable subset X;. In general however, projecting p to subspaces
p; introduces additional over-approximation (see Figure 7 because the implicit
connection between the subspaces is lost, i.e. the combination of the subspaces by
computing the cartesian product p; X - -+ X p, does not yield the original state set p
ISNA17].

Figure 4.2: Original polytope p (blue) versus cartesian product of projections (green).

A way to account for this over-approximation is to either use boxes, as the cartesian
product of the projections of a box yields the box itself, or use a smaller time step to
limit the absolute over-approximation error introduced.

Recall the definitions of flowpipe construction-based analysis introduced in Sec-
tion [2:3:2] In a flowpipe construction-based reachability algorithm based on variable
set separation we extend these definitions to work on the projective representation of
a state.

Definition 4.2.1 (Automaton decomposition [SNA17])
Let H be a hybrid automaton with variables X. Further let X;,..., X, be a decom-
position of X into syntactically independent variable sets.

Decision Entity 39

Any flow function in H of the form © = Ax can be decomposed into

/"\ Xi = AiX,

i=1

and any reset function of the form ¥’ = Ax can be decomposed into
n
/\ X! = A X;
i=1

where each of the A; is a block matriz that defines the flow (reset resp.) for each of
the syntactically independent variable subsets.
Similarly, any invariants or guards ¢ € Predx can be decomposed into

/\gﬁi, cpiGPredXi.
i=1

Consequently, flowpipe construction for subspaces can be defined as follows.

Definition 4.2.2 (Subspace flowpipe [SNA17))
Let H be a hybrid automaton with variables X. Let X1,...,X, be a decomposition
of X into syntactically independent variable sets, (I, p1,...,pn) the projective repre-
sentation of a state in H and all functions and predicates decomposed as described in
Definition[{.2.1 Furthermore, let B; be the projection of a bloating object to variable
set X;.

Then the first segment of a flowpipe for the subspace given by variable set X; can
be defined as

Qo = (conv(p; U et - py) @ Bi) N Inw(l);.

Accordingly, any subsequent segments of the flowpipe for the subspace defined by vari-
able set X; are given by the recurrence relation

Qj—i—l,i = 6tA1 . Qj7i N Inv(l)l

For the computation of jump successors, we require that a transition can only
be taken when the respective guard is satisfied in all subspaces. In a similar vein an
invariant is no longer satisfied, if one of the subspaces violates its respective invariant.

The only puzzle piece missing at this point is an automated way to obtain a syn-
tactically independent variable set separation. We propose a simple undirected graph
based algorithm that computes a separation of variables into a maxzimal decomposition,
i.e. there is no decomposition that has more disjoint subsets and respects syntactical
independence as described above. Keep in mind that this is only one approach for au-
tomated variable decomposition and that it is unclear whether it is the best approach.
A quick rundown of possible other decompositions will be part of Chapter [6]

The algorithm works as follows (for pseudo code see Algorithm . The algo-
rithm creates an empty graph and then adds a node for each variable in the automa-
ton (line . Thereafter, the algorithm parses the automaton to find the dependencies
between variables by investigating each function (e.g. line and constraint (e.g.
line and if two variables occur in the same function (constraint resp.) an edge
between the corresponding nodes is added in the graph (e.g. line to imply that
there is a dependency between these two variables. When the whole automaton is

40 HyDRA

parsed the connected components of the graph (line are computed as a set of set of
indices where each subset describes one of the connected components. Two variables
must be in the same subspace if they are in the same connected component because
a connection in the graph implies dependency.

4.2.2 Decomposition Classification

When an automatons variable set is decomposed into syntactically independent sub-
spaces it opens up manifold possibilities for optimization. One of these optimizations
is to classify a subspace to apply specialized representations and algorithms to that
subspace.

Assume we have a hybrid automaton with variables # and y that depend on each
other and clocks ¢y and ¢y that are neither dependent to each other, nor to x and
y. Consequently, Algorithm would suggest a decomposition of X = {z,y,c1,c2}
into X7 = {z,y}, Xo = {c1} and X3 = {¢2} for individual subspace computations.

The attentive reader will notice that X5 and X3 solely consist of clock variables,
S0 it is a wise choice to not use the representation that would be used without decom-
position for variable set X, e.g. a support function, but instead switch to a difference
bound matrix to analyze these two subspaces to save both time and memory.

We introduce three possible classifications for a subspace type.

Linear A linear classification for a subspace states that the variables have no ex-
ploitable behavior to our knowledge, i.e. they behave like normal flowpipe variables
whose flow is described by linear ODE and are analyzed as such.

Timed A timed classification for a subspace states that the variables of the subspace
are clocks and hence can be analyzed using difference bound matrices that are both
faster and more precise than general representations. A subspace is called timed if
all the variables in it evolve at constant rate 1, invariants and guards of outgoing
transitions are clock constraints and resets, if present, are resets to 0.

Note that a location is called timed if all subspaces are timed. Furthermore, an
automaton is called timed, if all locations are timed. A timed location’s flowpipe can
be computed in one step by zone elapsing (see Section .

Discrete A discrete classification for a subspace states that the variables of the
subspace have no continuous evolution, i.e. the flow of all variables is 0 and hence
flowpipe construction can be skipped. Furthermore, since the variable valuations do
not evolve over time intersection with invariants and guards has to be computed only
once when entering a location as the result of that intersection never changes.

With subspace classifications and an algorithm for variable set separation Fig-
ure [L.3] presents a singleton class that offers this functionality in the HYDRA toolbox.

4.3 Context-Based Worker

In the previous section we introduced a decision entity that is able to compute and
classify a subspace decomposition. To tap the full potential of the decision entity we
implement a new context-based approach in a context-based worker that will replace

Context-Based Worker

Algorithm 4.2.1 Syntactically independent variable decomposition

1 Input: Hybrid automaton A with variables X :=ux1,...,2n
> Output: A set of sets of variable indices

« Graph g
s // add node for each variable
s for(z; € X){
7 g.addNode (zx;)
8
}

1 // for each location in A

1 foreach(l € A.getLocations ()){

12 foreach (flow € 1.getFlows()){

13 foreach ((x;,z;) € flow.getVariables()){
1 g.addEdge (x; ,z;)

15 }

16 }

17 foreach(inv € 1.getInvariants ()){
18 foreach ((z;,x;) € inv.getVariables()){
19 g.addEdge (x; ,z;)

o }
21 }
22 }

24 // for each transition in A

:s foreach(t € A.getTransitions()){

26 foreach(guard € t.getGuards()){

27 foreach ((z;,x;) € guard.getVariables()){
28 g.addEdge (x; ,z;)

29 }

30 }

3 foreach(reset € t.getResets()){
32 foreach ((z;,x;) € reset.getVariables()){
33 g.addEdge (x; ,z;)

34 }
s)
36 }

s //for each bad state
s foreach(state € A.getBadStates()){

a0 foreach(constraint € state.getConditions()){
n foreach ((z;,x;) € constraint.getVariables()){
2 g.addEdge (x; ,z;)

. }

44 }

45 }

46

17 // compute connected components
i return g.connected components()

42 HyDRA

DecisionEntity

getRepresentationForSubspace (Location, index) : representation
getRepresentationForLocation (Location) : representation
getRepresentationForAutomaton (Automaton) : representation
getSubpaceDecomposition (Automaton) : vector<vector<int»
isTimedSubspace (Location, index) : bool

isTimedLocation (Location) : bool

isTimedAutomaton (Automaton) : bool

isDiscreteSubspace (Location, index) : bool

Figure 4.3: DecisionEntity class.

the only current available reachability worker which is, as stated earlier, too inflexible
to support such an approach.

The approach is a refinement of the scenario-based design introduced in [FR09].
The idea of that design is to have a collection of algorithms called scenarios imple-
menting a common interface that are suitable to analyze specific types of automata.
Each scenario has to offer functionality to compute continuous and discrete behavior
as well as functionality to maintain a list of passed and waiting states, similar to
the task queue in HYDRA (see Figure . In fact, the current reachability worker
can be seen as a scenario for linear hybrid automata, currently the only scenario
implemented in the HYDRA toolbox.

In our approach we introduce the idea of a context that is a refinement of the au-
tomaton based scenario to a location based context. Based on the location’s compo-
sition of classified subspaces a context is provided by a builder pattern that combines
an algorithm (e.g. flowpipe analysis or zone elapsing) with specialized operations for
continuous dynamics and discrete jumps of the respective subspace classification.

4.3.1 General Structure

Recall that HYDRA'’s architecture uses a thread pool pattern, in which workers re-
peatedly process and create tasks until no tasks are left. These workers first get a
task from the task queue followed by a reachability computation for the state given
by the task after which they will create new tasks based on the jump successors com-
puted during analysis. In the current reachability worker’s implementation the entire
analysis algorithm is inside the computeReachability () method (see Figure.

The new context-based worker uses switchable contexts such that a worker can now
perform reachability analysis based on the problem instance at hand. This worker is
based on the observation that a lot of reachability algorithms for hybrid automata
perform the same steps (invariant checks, guard intersections) and only differ in how
the steps are implemented for the problem instance.

In order to make contexts interchangeable they all have to provide common func-
tionality to perform reachability analysis. This functionality includes computation of
a first segment, intersection with invariants, guards and bad states as well as con-
tinuous evolution and creation of jump successors. Consequently, we introduce an
interface that all contexts have to implement to provide the methods needed to be
used in the workers reachability algorithm (see Figure .

Context-Based Worker 43

<<interface>>
IContext

execOnStart () : void

execOnEnd () : void
execBeforeFirstSegment () : void
firstSegment () : void
execAfterFirstSegment () : void
execBeforeCheckInvariant () : void
checkInvariant () : void
execAfterCheckInvariant () : void
execBeforeBadStates () : void
checkBadStates () : void
execAfterBadStates () : void
execBeforeLoop () : void
execAfterLoop () : void
terminationCondition () : bool
execOnLoopItEnter () : void
execOnLoopItExit () : void
execBeforeCheckTransition () : void
checkTransition () : void
execAfterCheckTransition () : void
execBeforeContinuousEvolution () : void
continuousEvolution () : void
execAfterContinuousEvolution () : void
execBeforeProcessDiscreteBehavior () : void
processDiscreteBehavior () : void
execAfterProcessDiscreteBehavior () : void

Figure 4.4: Context interface.

Additionally to these methods, the interface introduces methods prefixed by “exec”
that provide strategic entry points for contexts extending other contexts. For example
a flowpipe construction-based context that would like to perform a check for zeno
behavior would extend a context implementing a default flowpipe algorithm and then
use one of the “exec”-methods to “inject” the zeno checking code at the specific position,
thus eliminating duplicate code and allowing for rapid prototyping.

If an extending context does not want to inject code at that position, it provides
an empty implementation of that method. Consequently, as one can suspect, one does
no longer have to program an algorithm. The algorithm is defined by the order the
methods of the context are called in by the worker, hence one only has to define a
context implementing these methods. In Section 4.5 we will see how we can implement
a context for timed locations/automata with very little effort.

To get a better understanding of how the concept works we take a look at the
algorithm used by the context-based worker as depicted in Algorithm The
methods that are not meant for code injection are highlighted by bold text and define
the general reachability procedure. Note that none of the work is actually performed
in the worker, instead it is handled by the context and its defined behavior.

44 HyDRA

The algorithm hands the task off to a context builder which is an entity that
uses the decision entity of Section [£.2] to classify the task and return a context that
is suitable for analyzing the state given in the task (line . This classification step
also involves converting any unsuitable subspace representations to the representation
suggested by the decision entity.

After obtaining its context, the algorithm computes the first segment of the flow-
pipe (line 7)) followed by a check for intersection with the location’s invariant (line
and automaton’s bad states (line. Subsequently it will start computing continuous
successor states while the termination condition has not been met (line 20).

In each iteration the algorithm checks for possible jump successors (line7 applies
the continuous dynamics to the variables (line followed by another invariant and
bad states check. When the termination condition is met and the loop terminates
the collected jump successors are processed in line 45| to create follow-up tasks for the
task queue.

In the next two sections of this chapter we are going to introduce implementations
of two contexts the first one being the default context. As the name suggests it is
intended to be the most general context. The second one will be a timed context that
extends the default context to allow for faster analysis in timed locations/automata
using zone elapsing.

On top of that, we will learn how a context copes with the different subspace
types, i.e. decides which operation has to be used for a certain subspace.

4.4 Default Context

In this part of the thesis we are going to implement a context that is able to perform
general flowpipe construction-based reachability analysis for a linear hybrid automa-
ton. It will also be capable of performing this computation in syntactically inde-
pendent subspaces w.r.t. the individual subspace classifications. As it is supposed to
serve as the most general context it solely implements the core methods of the context
interface (bold in Algorithm and none of the “exec” methods.

The default context employs a handler-based approach to perform the different
operations required for reachability analysis by assigning a set of possibly stateful
handlers to each subspace that will perform the operations for the specific subspace.

To give an idea of what a handler may look like we present pseudo code for an
invariant intersection handler for a linear classified subspace.

The given invariant handler is initialized with a reference to the current state
of the automaton (line [3)) and an index of the subspace it is supposed to work on
(line . When the handle () method is called the intersection of the subspace at
the specified index with the invariant for that subspace is performed (line E[) and the
result is stored in boolean variable (line [5)) which can be read at a later point. If we
have to perform another invariant check we just call the handle () method again
to update the boolean variable. Accordingly, a handler for invariant intersection in a
timed classified subspace would perform intersection with a constraint as described in
Algorithm [3:3.3] because the underlying subspace can be represented by a difference
bound matrix.

Consequently, the default context maintains a list of handlers for each operation
and when one of the operations has to be performed calls every handler and thereafter
processes the results. An exception to the rule are handlers for guard intersection,

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Default Context 45

Algorithm 4.3.1 computeReachability in a context based worker

computeReachability{

context =

ContextBuilder. getContext (task)

context.execOnStart ()

context.execBeforeFirstSegment ()
context.firstSegment ()
context.execAfterFirstSegment ()

context.execBeforeCheckInvariant ()
context .checkInvariant ()
context.execAfterCheckInvariant ()

context .execBeforeCheckBadStates ()
context .checkBadStates ()
context .execAfterCheckBadStates ()

context .execBeforeLoop ()

while (! context .terminationCondition ()){

context

context

context

context

context.
context.
context.

context
context

context

}

.execOnLoopItEnter ();

.execBeforeCheckTransition ()
context.
context .

checkTransition ()
execAfterCheckTransition ()

.execBeforeContinuousEvolution ()
context.

continuousEvolution ()

.execAfterContinuousEvolution ()

execBeforeCheckInvariant ()
checkInvariant ()
execAfterCheckInvariant ()

.execBeforeCheckBadStates ()
context.
.execAfterCheckBadStates ()

checkBadStates ()

.execOnLooplItExit ()

context .execAfterLoop ()

context.execBeforeProcessDiscreteBehavior ()
context .processDiscreteBehavior ()
context.execAfterProcessDiscreteBehavior ()

context .execOnEnd ()

10

11

12

14

15

46 HyDRA

Algorithm 4.4.0 LinearInvariantHandler

class LinearInvariantHandler {

State state;
int index;
bool satisfies;

void handle (){
List<Halfspace> inv = state.getInvariant (index);
satisfies = state.getSubspace(index).satisfiesHalfSpaces (inv);

}

bool satisfiesInvariant (){
return satisfies;
}
}

which are stored in a map rather than a list. The reason for this is that a location
in general can have more than one outgoing transition and each of these transitions
has its own guards and therefore deserves its own list of handlers (see Figure . To
support interchangeability of the handlers they implement an according interface for
each operation.

DefaultContext

List<IFirstSegmentHandler> firstSegmentHandlers
List<IInvariantHandler> invariantHandlers
List<IBadStateHandler> badStateHandlers
List<IContinuousEvolutionHandler> continuousEvolutionHandlers
Map<Transition,List<IGuardHandler» transitionHandlerMap

Figure 4.5: DefaultContext.

In the following section we are going to explore how the default context performs
its operations by calling the respective handlers. Note that its the task of the decision
entity to decide which handlers are constructed based on the subspace classification
it decides on.

4.4.1 Algorithm

As mentioned before, the default context implements all of the core methods that
are printed in boldface in Algorithm [£:3.1] As most of the methods are implemented
by only calling the respective handlers we are only going to investigate testing the
termination condition and invariant intersection as an example for result processing.

Termination condition

The termination condition in a default context involves checking a flag for early ter-
mination of the loop as well as whether the current time has passed the time horizon

Default Context 47

for this location, i.e. the flowpipe has been fully computed for the given time horizon.

Algorithm 4.4.1 terminationCondition()

bool terminationCondition (){
return endLoop || (currentTime > timeHorizon);
}

Invariant intersection

Invariant intersection consists of a call to each handler (line [5) while simultaneously
evaluating the result (line@. If one of the handlers returns a violation of its invariant,
the whole states intersection with the invariant is empty.

Furthermore, each handler is able to request its removal from the list of handlers
and is removed when the computation is done (line . This is especially useful if
a subspace is classified as a discrete subspace. In case of a discrete subspace the
intersection with an invariant only has to be performed once as the valuations in that
subspace are persistent.

Algorithm 4.4.1 checkInvariant()

void checkInvariant (){
bool satisfied = true;
vector<int> toDelete;
for (int 1=0; i < invariantHandlers.size ();i++){
invariantHandlers [i]. handle ();
satisfied &= invariantHandlers[i].satisfiesInvariant ();

if (invariantHandlers[i]. deleteRequested ()){
toDelete.push back(1i);
}

}

invariantHandlers . erase(toDelete);

Transition checks are performed similarly. For each transition the respective list
of handlers is called and the result evaluated. If all subspaces satisfy their transition
guards the respective transition is enabled and the state saved for later task creation.
If a handler requests its removal it is removed from its list.

A special case arises when a discrete subspace dissatisfies its transition guard. In
this case the transition can never be taken and the whole list of handlers is removed
to avoid future checks. Consequently, it is a wise choice to check discrete subspaces
first and if they invalidate the transition guard, we can disregard that transition for
the rest of flowpipe construction which can save thousands of intersection operations.

Adding a sort index to handlers that imposes an order on handlers (and therefore
implicitly on subspaces) is an interesting idea, but raises the question of what ordering

48 HyDRA

may be the best and some ideas will be suggested in Chapter [f]

4.5 Timed Context

The main difference between a timed and a default context lies in the way continuous
evolution of the variables is computed. In a default context, continuous evolution
for linear subspaces is performed by applying a linear transformation as described
in Definition and for timed subspaces by performing shift operations as defined
in Section to let the clocks tick. A timed context on the other hand is used if
the automaton’s current location is a timed location where all subspaces are timed
subspaces, hence we aim at computing the whole reachable state space in a location
at once using zone elapsing.

At first, this seems like an easy task. We can just implement a continuous evolution
handler that performs zone elapsing instead of clock shifting. Technically, this works
perfectly and precise as long as we do not decompose the state space into syntactically
independent subspaces. If the state space is decomposed, enormous over-approxima-
tion errors are introduced that make the result unusable. This is due to the fact that
clocks are directly tied to the passage of time and the default context respects this
by only allowing clock ticks to maintain synchronicity with the other subspaces. Any
over-approximation error by decomposition is therefore limited by the size of the time
step used for flowpipe construction.

In a timed context where any time span can be elapsed in a single step this
synchronicity is lost and arbitrary large errors are introduced. Consider the following
simple example of timed location and state on entrance in Figure

[V}
no
31
w
bl
[
'y
I
(3
-

Figure 4.6: Time location and state on entrance.

Elapsing the zone and intersecting it with the transition guard yields the zone in
Figure [£.7]

Now consider the same example with a decomposition into subspaces (Figure .
As z and y do not depend on each other they are in independent subspaces. On the
left hand side the entrance state is projected to the individual subspaces. On the
right hand side we see the result after first elapsing the subspace zones by removing
their upper bounds followed by the guard intersection with x < 10 in the x subspace.
As we can see, the = subspace reaches from 2 to 10 as it would in the non decomposed

Timed Context 49

12

10 - b

Figure 4.7: Zone from Figure elapsed and intersected with z < 10.

setting. The y subspace however was not constrained by any guard and hence became
infinite introducing an infinite over-approximation error.

20 R
4, —

3l i 15+ R
> 2 B > 10 B
1 N 51 8
0 R 0 R

1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 0 2 4 6 8 10

T x

Figure 4.8: Reachability in a decomposed setting.

Naturally, this result is unusable because clocks are directly tied to the passage of
time and it cannot be that one clock elapsed 5 to 8 seconds while the other elapsed an
infinite amount of time. Therefore, simply replacing a continuous evolution handler
performing a clock shift with a handler performing zone elapsing is not enough to
compute a valid reachable state set in one step - at least not if variable set separation
is used.

This leads to the idea of a handshake, where clocks agree on a time frame that has
passed since location entrance to maintain synchronicity.

4.5.1 Handshaking

As we have seen in the previous section, the use of zone elapsing in a decomposed
timed context introduces arbitrary large over-approximation errors that render any

50 HyDRA

reachability computation almost useless. In this section, we present a handshake
procedure to solve this issue.

In this handshake procedure all clocks have to agree on a time span that may
have passed between a state before and after an operation happened. Reconsider
Figure [£.8 and that x is constrained whereas y is not. Consequently, in z’s universe
a time of 5 to 8 seconds has passed before the transition guard was invalidated while
in y’s universe an infinite time span has passed. Consequently, x has to tell y that
it has to restrict itself to a time span that is y’s starting span (1 to 4 in Figure [4.8)
plus the time that x says has passed before the guard was invalidated, which is 5 to 8
seconds. As a result, the valid range of y values should be between 1 and 9 seconds.

Note that the main problem in a handshake procedure is that clocks can be reset
to 0. Therefore it is not enough to take the clocks valuations, intersect them and
then somehow compute the new elapsed time span for each clock, since the absolute
valuations of the clock are not the point of interest. Its the relative time that has
elapsed since the start of the operation that has to be considered when handshaking.
For example, x has to tell y that 5 to 8 seconds have passed since the earliest possible
start at 2, not that its time is between 2 and 10 after the operation because that
information has no value for y, since in y’s universe time started at 1.

Consequently, for each operation there is a time span described by each clock
before that operation and one time span described by the clock after that operation.
The time span after an operation can either become larger in case of continuous
evolution, or shorter in case of invariant/guard intersection since these operations cut
invalid clock values. As all clocks evolve at the same constant rate of 1 no handshake
is needed after continuous evolution.

After intersection with a guard or invariant there are basically two cases that have
to be considered when performing a handshake, i.e. whether or not the elapsed time
intersects. We will see that both of these cases come down to finding the tightest
overlapping time span over all timed subspaces.

We start by investigating the case where time spans do not intersect.

Consider two clocks x and y that both started at 0 and are about to check for a
transition with guard x > 8 Ay < 4. In a decomposed setting, this yields the following
subspace valuations for the transition.

O
o —
g]

X

Without a handshake, both subspaces would signal that they satisfy their part of
the guard and hence the transition would be taken. However, taking a closer look we
can see that y states that an amount anywhere between [0,4] has passed before the
transition was taken whereas x states that at least [8,00] time units must have passed
before its guard is satisfied. Consequently, a handshake procedure fails at that point

Timed Context 51

as both clocks did not manage to agree on a time span for the transition and hence
it is not taken.

Now consider an example where both time spans intersect and agreement is possi-
ble. Let x and y be about to check a transition with guard x > 10 A x < 15 Ay < 25.
Furthermore, let the valuations after elapsing be = [4,00] and y = [17,00]. After
intersecting each clock with its transition guard we obtain the following situation.
Note that the axes describe different points in time. The blue intervals are a visual
indicator of the valuation before the intersection, red intervals depict the situation
after intersection.

\ [| | L] | | | |
[[\ \ i \ \ \ |
16 18 20 22 24 26 28 30 32
y
\ | | | [| T | |
[l L \ \ C \] | \ \
2 4 6 8 10 12 14 16 18

The guard satisfying sections of time are x = [10,15] and y = [17,25]. As we
can see, intersecting these two absolute intervals would yield an empty intersection
and consequently a transition would not be taken. However, as we stated earlier, the
absolute time intervals are irrelevant because we have to consider the intervals since
the start of x and y, which is x = 4 and y = 17. Consequently we shift the valuation
before guard intersection to the origin of time (i.e. 0) and shift the guard satisfying
intervals accordingly. Note that this is possible because according to Definition [2.41]
all clock valuations have to be > 0 so no clock interval can be of the form [—o0,c]
which would render a shift to 0 impossible. Shifting the clocks as described above
yields the following normalized view of passed time.

L | | | | | |
L I I I] | |
0 2 4 6 8 10
y
L | | [| | | |
L [[T T T 1| I
0 2 4 6 8 10
X

This view tells us that in y’s universe [0,8] time units may have passed before the
transition was taken whereas an amount of at least [6,10] time units may have passed
in 2’s universe. The intersecting time interval of [6,8] is the agreed time span that has
to be passed in both subspaces before the transition is taken. Consequently, a valid
time span for the transition is = [44+6,4+8] = [10,12] and y = [17+6,17+8] = [23,25]
and the subspaces are constraint accordingly.

52 HyDRA

Recall that the original goal of this section was to come up with a timed con-
text that is able to analyze timed locations by zone elapsing and while simply using
an elapse handler for continuous evolution works when we do not decompose the
automaton, it failed in a decomposed setting due to the lack of handshake.

With a handshake at our disposal a timed context can be implemented by perform-
ing zone elapsing for continuous evolution and following up each operation performed
during analysis (e.g. guard/invariant intersection) with our handshake method de-
scribed above to ensure that the result of each operation is valid. Consequently, a
timed context is an extension of the default context where each of the execAfter(Operation)-
methods is implemented by performing a handshake between the subspaces (see e.g.
line |§| in Algorithm . Furthermore, the termination condition is replaced with a
simple flag (line|3|and line that is turned to true after the first iteration (line
since the whole reachable zone is computed in one step. Since the transition check is
performed at the start of the loop, we have to redo it at the end of loop when the
zone has been elapsed (line [31)).

As stated earlier, it is the task of the decision entity to decide on which handlers
to use, so using a zone elapsing-based continuous evolution handler is done in the
default context based on the fact that the decision entity determined that we are in
a timed location.

In the following section we are going to test our implementation against common
benchmarks.

Timed Context

33

Algorithm 4.5.1 TimedContext

class TimedContext extends DefaultContext {

}

bool done = false;

void execAfterFirstSegment (){
performHandShake (beforeState , currentState);

}

void execAfterCheckInvariant (){
performHandShake (beforeState , currentState);

}

void execAfterCheckBadStates (){
performHandShake (beforeState , currentState);

}

void execAfterCheckTransitions (){
performHandShake (beforeState , currentState);

}

void execAfterContinuousEvolution (){
performHandShake (beforeState , currentState);

}

bool terminationCondition (){
return done;

}

void execOnLooplItExit (){
execBeforeCheckTransition ();
checkTransition ();
execAfterCheckTransition ();
done = true;

}

54

HyDRA

Chapter 5

Benchmarks

In this section of the thesis we evaluate our implementation against common bench-
marks, i.e. elaborate versions of the thermostat, leaking tank and two tanks example.
Furthermore, we add our cooking automaton from Section [2.4] as an example for a
timed automaton to show the drastic effect zone elapsing-based reachability analysis
can have by using the aforementioned timed context.

5.1 Benchmark Suite

The majority of this benchmark suit is taken from [SNA17] and are common examples
in hybrid reachability analysis. For the purpose of their work, the authors altered these
automata to model programmable logic controllers (PLCs) such that they have a lot
more variables, i.e. clocks and discrete variables to simulate PLC cycles. Furthermore,
as actuators, sensors and controller of a device controlled by a PLC are somewhat
separated by definition it is to be expected that such a system decomposes whereas
standard examples in literature tend not to as they abstract from hardware.

5.1.1 Thermostat

This example models the thermostat from Example 2.1.1] augmented by a PLC con-
troller. The initial temperature is 20°C' and the heater is turned on. The controller
then tries to maintain a temperature between 16°C and 23°C' by switching off the heat
at 22°C' and turning it back on if below 18°C. The PLC controller has an internal
cycle time of 0.5 seconds and a global time horizon of 10 seconds is observed.

The model augmented by a PLC controller consists out of a total 8 variables: 5
discrete variables and 2 clocks for the controller as well as one variable that stores the
current temperature.

The results of a reachability computation for this example can be found in Fig-

ure 511

5.1.2 Leaking Tank

A leaking tank is a water filled tank that has a constant outflow. To keep the tank
from becoming empty it can be refilled with a constant inflow from an unlimited
resource of water. A PLC controller tries to maintain a water level between 6 and 12.

56 Benchmarks

23
22
21
g
3
*§ 20
[9)
Q.
§ 10
18
17
0 2 4 6 8 10
time

Figure 5.1: Thermostat example (box representation).

When the water level is low the PLC triggers refilling of the tank and stops refilling
when it is full. Additionally, this examples models a user who can decide to manually
refill the tank until it is full. The PLC controller has an internal cycle time of 2
seconds and a global time horizon of 40 seconds is observed.

The model consists out of a total 12 variables: 9 discrete variables and 2 clocks
for the controller as well as one variable that stores the current water level.

The results of a reachability computation for this example can be found in Fig-
ure

13 /\
AN N
s
0 ||

Ty

0 5 10 15 20 25 30 35 40
time

water level

Figure 5.2: Leaking tank example (box representation).

Benchmark Suite 57

5.1.3 Two Tanks

The two tank example models the water level of two water tanks that are connected
via pipes. Both tanks have a constant in- and outflow such that the amount of water
that flows out the first tank equals the amount of water that flows into the second
tank and vice versa. A PLC controller tries to maintain a water level between 8 and
32 and as in the leaking tank example a user is modeled who can decide to pump
water from one tank to another. The PLC controller has an internal cycle time of 1
second and a global time horizon of 20 seconds is observed.

The model consists out of a total 22 variables: 17 discrete variables and 3 clocks
for the controller as well as 2 variables that store the current water levels in the
respective tanks.

The results of a reachability computation for this example can be found in Fig-

ure 5.3 and Figure [5.4]
25
24
s\

22

21

20

water level tank 1

19

18

17

time

Figure 5.3: Two tanks example first tank (box representation).

33

32
31

30

29

28
27 /—
26

25

water level tank 2

time

Figure 5.4: Two tanks example second tank (box representation).

58 Benchmarks

5.1.4 Cooking Automaton

In this example we observe the cooking automaton from Example The example
has been altered such that all guards and invariants in this automaton are given in
seconds rather than minutes to pose a more significant challenge. The automaton is
observed for a total amount of 7200 seconds (2 hours).

The results of a reachability computation for this example can be found in Fig-
ure

1500

1000

500

0 500 1000 1500
y

Figure 5.5: Cooking automaton example (DBM representation).

5.2 Experimental Results

All experiments were carried out on an AMD Ryzen 5 1600 3.2GHz six-core CPU
with 8GB RAM. A time step of § = 0.01 and unlimited jump depth were used. The
times are obtained as an average of 10 subsequent runs. We distinguish 5 different
types of run configurations:

Original In this run configuration we performed reachability analysis as it is per-
formed by the current implementation of HYDRA to serve as a point of reference
for the enhancements of this thesis. Consequently, none of the improvements of this
thesis are employed.

Decider In this run we use the decision entity, but do not chose to decompose the
automaton. Hence, in this run a classification of a non decomposed automaton is
performed. Consequently, these runs differ from “original” runs by using the timed
context if a timed automaton is analyzed.

Decompose In this run we use the decision entity to decompose the state space into
syntactically independent subspaces, but we do not use it to classify the subspaces.
Consequently, none of the classification specific enhancements, like e.g. switching the

Ezperimental Results 59

representation to a difference bound matrix in case of a timed subspace, are performed.
Solely the effect of decomposing an automaton is benchmarked here.

Decider + decompose In this run we combine the “decider’- and “decompose”
run configuration. Consequently, the state space is decomposed into syntactically
independent subspaces and the classification of these subspaces is used to switch to
difference bound matrices where timed subspaces occur.

Context Switch (decider + decompose) In this experimental run we combine
the “decider 4+ decompose” run configuration with the possibility to switch from a
default context to a timed context in case we enter a location where all subspaces
are classified as timed. Note that if this run is performed on a non timed automaton
and has an effect this means that at least one of the variables that is not a clock by
definition behaves like a clock in at least one of the locations. This can happen e.g. if
a linear flow variable that is only compared against constants happens to have a flow
of 1 in a location and is not reset on any outgoing transition (or reset to 0).

We label this run as experimental, because it can have an arbitrary large over-ap-
proximation error when converting the representation of a variable set that previously
did not behave like a clock to a difference bound matrix that assumes clocks.

Performing the above runs on all 4 automata yields the benchmark results given in
Table The table presents both the absolute run time in seconds averaged over 10
consecutive runs and the relative speed-up compared to the “original” run computed
as tpew/toriginal. The runs are performed for the imprecise but very fast box and the
more precise but slower support function.

Furthermore, the speed-up table cells are color coded. A yellow table cell states
there is no significant speed-up (< 5% faster/slower). A red table cell states that we
are significantly slower (> 5%) and a green table cell states that we are significantly
faster (> 5%).

Before we dive into individual results there are some global remarks regarding the
benchmark results:

e The cooking automaton differs from the other automaton in that it is the only
timed automaton of the benchmark. Naturally, it has extreme speed-ups in
any run where the decision entity is used to employ difference bound matrices.
The speed-up is especially large when one step reachability via zone elapsing is
performed.

e On the other hand, decider runs gain no speed up for the other automata as it
has literally no effect on them.

e We stated that an automaton is complexer the more variables it has. We can
see this looking at the original run times where thermostat < leaking tank <
two tanks holds for the run times.

e “decider + decompose” runs are always faster than “original” runs.

e Decomposing the state space is always faster for support functions, but not
always for boxes.

60 Benchmarks
original decider | decompose | decider+decompose | context switch

Thermostat

Box Average 0,175 0,177 0,173 0,148 0,237
Speed-up 1 0,992 1,010 1,181 0,739

Support Function | Average 8,356 8,288 0,527 0,186 0,269
Speed-up 1 1,008 15,845 44,790 30,971

Leaking tank

Box Average 1,683 1,666 2,005 1,267 0,888
Speed-up 1 1,010 0,839 1,328 1,894

Support Function | Average 151,118 150,833 9,357 2,538 1,941
Speed-up 1 1,001 16,149 59,540 77,839

Two tanks

Box Average 11,357 11,401 2,538 1,729 1,547
Speed-up 1 0,996 4,475 6,568 7,340

Support Function | Average 854,694 844,282 7,641 2,323 2,266
Speed-up 1 1,012 111,846 367,855 377,110

Cooking

Box Average 15,903 0,315 29,905 0,157 0,156
Speed-up 1 50,485 0,531 101,082 101,670

Support Function | Average 322,218 0,318 249,338 0,155 0,156
Speed-up 1| 1011,447 1,292 2066,082 2056,168

Table 5.1: Benchmark results.

e The individual results heavily depend on the context and the relative speed-ups
range from 0,53 (about 50% slower) to 2066,082741 (about 200.000% faster).

The first thing that catches a readers eye is that a decompose run is almost
always slower (or equal) than an “original” run when using boxes. The reason for
this behavior is the union operation. When taking a transition, usually multiple
states intersect the transitions guard. An algorithm could enqueue all of them as
individual tasks, or aggregate them using the union operation and in fact HYyDRA
offers the option to choose whether to aggregate or not. The union operator for
boxes is extremely fast and it is faster to unite e.g. 15 6-dimensional boxes than to
unite 90 1-dimensional boxes. As the box is rather fast in general, performance gains
at other operations (intersection) do not outweigh the performance loss performing
union. One may notice that this effect is especially significant in the leaking tank
example. This is because the leaking tank example has the longest PLC cycle time,
so naturally a transition may be enabled the longest in this example, generating more
and more successor states that have to be aggregated.

Another rather interesting result is that in the thermostat example the context
switch is rather slow. This is due to the fact that when the automaton enters a timed
location, but spends no time in it, we still have to perform handshake operations for
the individual operations and subspaces. These handshakes involve multiple intersec-
tion that are pretty costly. This raises the question whether or not there is a way to
tell of what the “expected” time spent in a location is to avoid switching to the timed
context and handshakes if we spent no time in a location. The idea that it may be
possible to have an expectation of time spent stems from the fact that some variables
are clock variables in the entire automaton, so if an invariant of a location states that
a clock has to have the same value as the clock has on entrance that suggests that we
do not spend any time in that location.

On the contrary, the context switch runs for leaking tank and two tanks is faster
because we actually spent time in a timed location.

Ezperimental Results 61

Regarding the cooking automaton, which is a timed automaton, we can see that
runs that do not involve the timed context (no decider runs) are 1000 — 2000 times
slower than runs using a decider and hence the timed context using one step reacha-
bility. Furthermore, for the cooking automaton a timed context using decomposition
is 100% faster than without decomposition. The fact that a “context switch” run is
slightly slower than a “decider + decompose” run can only be explained by operating
system load and additional boolean checks.

Overall, the results suggest that run times of flowpipe construction-based reacha-
bility analysis are extremely dependent on the context they run in, so having a more
and more intelligent decision entity is a practicable way to reduce running times.

62

Benchmarks

Chapter 6

Conclusion

In this thesis the effects of context-dependent reachability analysis in hybrid system
have been explored. A decision entity was developed that is able to identify various
properties of a hybrid automaton and still leaves room for a lot of experiments and
discoveries.

Furthermore, a context-dependent framework was developed in the HYDRA tool-
box that supports reachability analysis based on variable set separation as well as
rapid prototyping. It has been shown that with this framework a timed context for
analyzing timed locations/automata can be implemented with very little effort.

To demonstrate the capabilities of such a framework as well as to emphasize the
result achievable by an intelligent, decomposed analysis we enriched HYPRO’s vari-
ous representations by an efficient difference bound matriz that exploits the special
properties of clock variables in a timed scenario to both save time and memory.

It has been shown that a speed-up of up to 2000 times is possible, growing with the
size of the problem instance. It has also been shown, that run times heavily depend
on the context defined by a location, its initial valuation and variable set separation.
Consequently it is to be a expected that a more and more intelligent decision entity
with a more elaborate subspace classification as well as more static information about
the automaton may lead to faster run times.

6.1 Future Work

This thesis is a gateway for a lot of enhancements and discoveries to come as it
lays a powerful framework for variable set separation-based and intelligent flowpipe
construction. Along our way, we encountered a lot of questions and curiosities that
exceeded the scope of the thesis, although I would have loved to take a peak at them.
Consequently, I pose these suggestions as future work.

64

Conclusion

Regarding HYyPro and DBMs

As DBMs where only one part of the thesis, they are not at 100% of
their potential. Especially functionality that is part of the geometric object
interface, i.e. conversion to other representations and operations not designed
for DBMs are implemented via conversion to hyperplane polytopes followed
by performing the corresponding conversion/operation and then converting
back. This is not very performant, so a specialized implementation of these
conversions,/operations is desirable. Furthermore, papers hint at the fact
that sparsity of DBMs may be exploitable.

Regarding HYDRA

As a decision entity becomes more intelligent HYDRA should offer more
functionality for different types of automata. For example, rectangular au-
tomata are not supported by HyPrRO/HYDRA. With additional constructs,
additional handlers and contexts should be developed. Hopefully, this leads
to a rich environment of contexts and handlers in the future.

Another thing that should be investigated on is that timed subspaces should
always be analyzable using zone elapsing regardless of whether the other
subspaces are timed or not. This is due to the fact that the elapsed subspace
should always be restrictable to the current time step. The question is
whether or not this actually saves time or not.

The benchmark suggests that it is not always the best choice to decompose
the state space of the automaton as much as possible. There are various ideas
on how to condense variable sets to allow for faster computation. Some of
the ideas include but are not limited to:

e Grouping of clocks. The attentive reader may have noticed that our
decomposition algorithm puts each clock into its own subspace due to
the fact that difference constraints on clocks are disallowed in a general
timed automaton.

e Grouping of discrete variables.

o Grouping of variables based on the underlying representation. It may
be the case that a coarser separation is advisable for a box (as unions
are fast at high dimensionalities) but is discouraged for hyperplane
polytopes where unions are particularly slow.

The current decomposition algorithm assumes that the dependency relation
is symmetric, i.e. if x depends on y then y also depends on x. In general,
that is not the case as x may not need y valuations to be computed, but y
may need z valuations to be computed, e.g. x = 2 -t and y = 2 - z. Thus,
it may be possible to first compute the entire evolution of x and compute
y on-the-fly as some kind of projection or transformation of z, opening up
further optimization potential.

Future Work

65

The benchmarks suggest that even a rough estimation of how much time is
spent in a location could speed up computations. It should be investigated
whether or not it is possible given certain circumstances.

Certain subspaces may be faster to analyze using certain representations,
as DBMs for timed subspaces suggest. It should be investigated whether or
not there are more instances where this is the case, i.e. boxes for discrete
subspaces since they do not evolve over time. Furthermore, we have seen
that some representations are more precise (e.g. support function) than
others (e.g. box), so using a more precise representation in a subspace may
counteract the over-approximation error introduced by subspace computa-
tions.

We have seen that ordering of handlers can play a crucial role regarding
performance. For instance, it is advisable to check discrete subspaces first
when considering a transition because a transition can never be enabled
when a discrete subspace violates the transition guard. As more and more
contexts and handlers are developed, we should have an eye for possible
optimizations regarding handler ordering.

Furthermore, the location we are in should gain priority. The benchmarks,
i.e. the context switch runs, suggest that there are significant performance
enhancements when we disregard the overall properties of an automaton but
restrict our view to the current location. For instance, when a variable be-
haves like a clock in a location it can be analyzed as a clock, regardless of
whether or not it was a clock variable prior to this location. However, one
should not forget about possible over-approximation errors and representa-
tion conversion costs.

66

Conclusion

Bibliography

[Abr15]

[ACHH93]

[ADY4|
[Bel57]
[Bel97]
[BKOS]

[BY04]

[CAS13]

[CS16]

[Dil90]

[FLGD*11]

Erika Abraham. Lecture notes in modeling and analysis of hybrid sys-
tems, Summer Term 2015.

Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei Hsin
Ho. Hybrid automata: An algorithmic approach to the specification
and verification of hybrid systems. In Hybrid Systems, pages 209-229.
Springer Berlin Heidelberg, 1993.

Rajeev Alur and David L. Dill. A theory of timed automata. In Theo-
retical Computer Science, volume 126, pages 183 — 235. 1994.

Richard. Bellman. Dynamic Programming. Princeton University Press,
1957.

Richard Bellman. Introduction to Matriz Analysis. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

Christel Baier and Joost P. Katoen. Principles of Model Checking. MIT
Press, 2008.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets: Advances in Petri
Nets, pages 87—124. Springer Berlin Heidelberg, 2004.

Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In Computer Aided Verification,
pages 258-263. Springer Berlin Heidelberg, 2013.

Xin Chen and Sriram Sankaranarayanan. Decomposed reachability anal-
ysis for nonlinear systems. In 2016 IEEFE Real-Time Systems Symposium
(RTSS), pages 13-24, 2016.

David L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Automatic Verification Methods for Finite State Sys-
tems, pages 197-212. Springer Berlin Heidelberg, 1990.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. Spaceex: Scalable verification of hybrid sys-
tems. In Computer Aided Verification, pages 379-395. Springer Berlin
Heidelberg, 2011.

68

Bibliography

[FRO9]

[Fra99]

[HKPV9g]

[Hiit16]

[LGOY]

[MLO03]

[MSJIM14]

[Neul6]

[SA18a]

[SA18b]

[SAMK17]

[SNA17]

Goran Frehse and Rajarshi Ray. Design principles for an extendable ver-
ification tool for hybrid systems. IFAC Proceedings Volumes, 42(17):244
— 249, 2009. 3rd IFAC Conference on Analysis and Design of Hybrid
Systems.

Martin Frénzle. Analysis of hybrid systems: An ounce of realism can
save an infinity of states. In Computer Science Logic: 13th International
Workshop, CSL’99 8th Annual Conference of the EACSL Madrid, Spain,
September 20-25, 1999 Proceedings, pages 126—139. Springer Berlin Hei-
delberg, 1999.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94 — 124, 1998.

Dustin Hiitter. Adaptive dynamic reachability analysis for linear hybrid
automata. Master’s thesis, RWTH Aachen University, September 2016.

Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. Theses, Université Joseph-Fourier - Grenoble I,
October 2009.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to com-
pute the exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3-49, 2003.

Ole G. Mouritsen, Klavs Styrback, Mariela Johansen, and Jonas D.
Mouritsen. Umami: Unlocking the Secrets of the Fifth Taste. Arts and
Traditions of the Table: Perspectives on Culinary History. Columbia
University Press, 2014.

Johannes Neuhaus. Development of a modular approach for hybrid sys-
tems reachability analysis. Bachelor’s thesis, RWTH Aachen University,
September 2016.

Stefan Schupp and Erika Abraham. Efficient dynamic error reduction
for hybrid systems reachability analysis. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 287-302. Springer Interna-
tional Publishing, 2018.

Stefan Schupp and Erika Abrahdm. Spread the work: Multi-threaded
safety analysis for hybrid systems. To appear, 2018.

Stefan Schupp, Erika Abraham, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. Hypro: A c++ library of state set representations for hybrid
systems reachability analysis. In NASA Formal Methods, pages 288-294.
Springer International Publishing, 2017.

Stefan Schupp, Johanna Nellen, and Erika Abraham. Divide and con-
quer: Variable set separation in hybrid systems reachability analysis.
In Proceedings 15th Workshop on Quantitative Aspects of Programming
Languages and Systems, QAPL@QETAPS 2017, Uppsala, Sweden, 23rd
April 2017., pages 1-14, 2017.

Bibliography 69

[Sril2] Balaguru Srivathsan. Abstractions for Timed Automata. Theses, Uni-
versité De Bordeaux, June 2012.

[Ziel2] G.M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics.
Springer New York, 2012.

	Introduction
	Related Work

	Hybrid Systems Analysis
	Hybrid Automata
	Linear Hybrid Automata
	Flowpipe Construction
	Timed Automata

	HyPro
	Architecture
	Difference Bound Matrices
	Operations on Difference Bound Matrices

	HyDRA
	Architecture
	Decision Entity
	Context-Based Worker
	Default Context
	Timed Context

	Benchmarks
	Benchmark Suite
	Experimental Results

	Conclusion
	Future Work

	Bibliography

