
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

PROBABILISTIC HYPERPROPERTIES WITH REWARDS

Lukas Wilke

Examiners:
Prof. Dr. Erika Ábrahám, RWTH Aachen
Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen, RWTH Aachen

Additional Advisors:
Ezio Bartocci, TU Wien
Borzoo Bonakdarpour, Michigan State University
Oyendrila Dobe, Michigan State University Aachen, August 13, 2021

Abstract

HyperPCTL is a temporal logic designed to reason about hyperproperties
of probabilistic systems. It has been introduced for both DTMCs as well as
MDPs, which allow nondeterminism. Essentially, HyperPCTL allows arguing
about multiple executions of a system at the same time. In this thesis, we discuss
hyperproperties with rewards. We add state rewards to DTMCs and MDPs
and extend the syntax and semantics of HyperPCTL to allow reasoning about
the rewards of paths in a model. Furthermore, we modify an existing model
checking algorithm for HyperPCTL to work with the modified logic. Finally,
we also present two case studies as possible applications for HyperPCTL with
rewards.

iv

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Discrete-time Markov Chains . 9
2.2 Markov Decision Processes . 10
2.3 HyperPCTL . 12
2.4 HyperPCTL Model Checking . 14

3 HyperPCTL with Rewards 21
3.1 MDPs with Rewards . 21
3.2 Syntax & Semantics . 22
3.3 Model Checking Algorithm . 24

4 Case Studies 35
4.1 Timing Attack . 35
4.2 Probabilistic Conformance . 36
4.3 Implementation . 37

5 Conclusion 39
5.1 Summary . 39
5.2 Discussion . 39
5.3 Future work . 40

Bibliography 41

vi Contents

Chapter 1

Introduction

In computer science, we are often interested in certain properties of computer systems.
Since many of these systems include elements of randomness, we are also particularly
interested in properties of probabilistic systems. For the modeling and verification
of such properties, logics such as PCTL [HJ95] have been introduced. This allows
us to reason about the probability that an execution of a system will fulfill certain
conditions. However, not all interesting characteristics of probabilistic systems can
be examined this way. This leads us to the notion of hyperproperties [CS08]. Hyper-
properties describe sets of properties. In contrast to standard temporal properties,
hyperproperties can describe multiple executions of a system at the same time. They
allow us, for instance, to describe whether any given pair of executions of a system has
the same probabilities of satisfying some requirement, whereas regular properties only
allow us to consider executions individually. This notion of hyperproperties allows us
to examine some interesting characteristics that could not be expressed as properties,
such as probabilistic noninterference [GM82].

In [ÁB18], the temporal logic HyperPCTL as an extension of PCTL was proposed
for Discrete-Time Markov Chains to reason about hyperproperties of probabilistic
systems. In [ÁBBD20], this logic was extended to Markov Decision Processes to
allow for nondeterminism. In this thesis, we would like to further extend HyperPCTL
to include rewards. Rewards allow us to easily model interesting aspects like execution
time or energy consumption, so adding rewards to HyperPCTL would allow us to argue
about these aspects in combination with hyperproperties in probabilistic systems.

In Chapter 2, we will introduce preliminary concepts necessary for understanding
this thesis. This includes DTMCs and MDPs as models for probabilistic systems as
well as the logic HyperPCTL, which can be used to reason about hyperproperties of
these models. In Chapter 3, we will extend these models and HyperPCTL to reason
about rewards. In Chapter 4, we will present two case studies that will serve as
examples for possible applications of HyperPCTL with rewards. Finally, in Chapter 5,
we will draw a conclusion and present possibilities for future work.

8 Introduction

Chapter 2

Preliminaries

This chapter introduces preliminary concepts adapted from [ÁBBD20] that are nec-
essary to understand this thesis. First, we will present DTMCs and MDPs as models
for probabilistic systems. After that, we will introduce the temporal logic HyperPCTL,
which extends the well-known logic PCTL (Probabilistic Computational Tree Logic) to
allow the examination of hyperproperties. Finally, we will present a model checking
algorithm for HyperPCTL formulas.

In this thesis, we will write R for the real numbers and N for the natural numbers.
We consider 0 to be a natural number. If x is a vector, we will write xi for the ith
element of the vector.

2.1 Discrete-time Markov Chains
Definition 2.1.1. A discrete-time Markov chain (DTMC) is a tuple D=(S,P,AP, L)
with the following components:

• S is a nonempty finite set of states;

• P : S×S → [0, 1] ⊆ R is a transition probability function with
∑
s′∈S P(s, s′) =

1 for all s ∈ S;

• AP is a finite set of atomic propositions and

• L : S → 2AP is a labeling function.

A path of D is a sequence π = (s0,s1,s2,...) of states, where si ∈ S and P(si,si+1) >
0 for all i ∈ N. A finite path is a non-empty prefix of a path. We use PathsDs to
denote the set of all infinite paths starting in the state s ∈ S and fPathsDs to denote
the set of all finite paths starting in s. For a path π = (s0,s1,s2, . . .), we denote
the state si reached after i steps as πi for all i ∈ N. We define the length of a
finite path π = (s0,s1, . . . ,sn) as |π| = n. We define the probability of a finite path
π = (s0,s1, . . . ,sn) as P(π) =

∏n−1
i=0 P(si,si+1). The probability of a set R ⊆ fPathsDs

of finite paths starting in a state s ∈ S is defined as PrD(R) =
∑
π∈R′ P(π) with R′ =

{π ∈ R |no π′ ∈ R \ {π} is a prefix of π}. For a finite path π ∈ fPathsDs , its cylinder
set CylD(π) is the set of all infinite paths of D with π as a prefix. The probability of
a union of cylinder sets R = ∪π∈R′CylD(π) ⊆ PathsDs with R′ ⊆ fPathsDs is defined
as PrD(R) = PrD(R′).

10 Preliminaries

Definition 2.1.2. The parallel composition of two DTMCs D1 = (S1,P1,AP1, L1)
and D2 = (S2,P2,AP2, L2) with AP1 ∩ AP2 = ∅ is defined as the DTMC D1||D2 =
(S,P,AP, L), where

• S = S1 × S2;

• P(s, s′) = P1(s1,s
′
1) ·P2(s2,s

′
2) for all s = (s1,s2) ∈ S and s′ = (s′1,s

′
2) ∈ S;

• AP = AP1 ∪ AP2 and

• L(s) = L1(s1) ∪ L2(s2) for all s = (s1,s2) ∈ S.

We require AP1 and AP2 to be disjoint so that it will always be clear which of
the two DTMCs the atomic propositions in any state of the parallel composition
originate from. As an example, Figure 2.1 shows two DTMCs and their parallel
composition. The figure also serves as an example of how DTMCs are commonly
depicted graphically.

s0∅ s1

{a}

s′0

{b}

s′1

∅

(s0, s
′
0){b} (s1, s

′
0) {a,b}

(s0, s
′
1)∅ (s1, s

′
1) {a}

0.6

0.4

1

0.5

0.5

1

0.3

0.2

0.2
0.3

0.5

0.5

0.6

0.4 1

Figure 2.1: Two DTMCs and their parallel composition.

2.2 Markov Decision Processes
Definition 2.2.1. A Markov Decision Process (MDP) is a tupleM = (S,Act,P,AP, L)
with the following components:

• S is a nonempty finite set of states;

• Act is a nonempty finite set of actions;

• P : S × Act × S → [0, 1] ⊆ R is a transition probability function such that for
every state s ∈ S there is a nonempty set of enabled actions Act(s) ⊆ Act such
that

∑
s′∈S P(s, α, s′) = 1 for all α ∈ Act(s) and

∑
s′∈S P(s, α, s′) = 0 for all

α ∈ Act \Act(s);

• AP is a finite set of atomic propositions and

Markov Decision Processes 11

• L : S → 2AP is a labeling function.

MDPs differ from DTMCs through the introduction of nondeterminism enabled
by the actions. In every state, there is a choice of one or more actions which determine
the probabilities of transitioning to other states. This nondeterminism can be removed
through the use of schedulers.

Definition 2.2.2. A scheduler for an MDP M = (S,Act,P,AP, L) is a tuple σ =
(Q, act,mode, init) with the following components:

• Q is a countable set of modes;

• act : Q× S × Act→ [0,1] ⊆ R is a function such that
∑
α∈Act(s) act(q,s,α) = 1

for every s ∈ S and q ∈ Q and act(q,s,α) = 0 for all α ∈ Act \Act(s) for every
q ∈ Q, s ∈ S;

• mode : Q× S → Q is a mode transition function and

• init : S → Q assigns each state ofM a starting mode.

The set of all schedulers for the MDPM is ΣM. A scheduler is finite-memory if
Q is finite, memoryless if |Q| = 1 and non-probabilistic if act(q,s,α) ∈ {0,1} for all
q ∈ Q, s ∈ S, α ∈ Act. A non-probabilistic, memoryless scheduler therefore essentially
just assigns one action to every MDP state. Since schedulers remove nondeterminism,
every scheduler of an MDP induces a DTMC.

Definition 2.2.3. Assume an MDP M = (S,Act,P,AP, L) and a scheduler σ =
(Q, act,mode, init) for M. The DTMC induced by M and σ is defined as Mσ =
(Sσ,Pσ,AP, Lσ) with:

• Sσ = Q× S;

• Pσ((q,s),(q′,s′)) =

{∑
α∈Act(s) act(q,s,α) ·P(s,α,s′) if q′ = mode(q,s)

0 if q′ 6= mode(q,s)
and

• Lσ(q,s) = L(s) for all q ∈ Q and s ∈ S.

If σ is memoryless, we will sometimes omit the mode in the states of Mσ and
write s for (q,s) ∈ Sσ with q ∈ Q, s ∈ S. As an example, Figure 2.2 depicts an MDP
as well as its induced DTMC for a scheduler σ that always chooses the action α in
s0.

Definition 2.2.4. The n-ary self composition of an MDP M = (S,Act,P,AP, L)
for a sequence σ = (σ1, . . . ,σn) ∈ (ΣM)n of schedulers for M is the DTMC parallel
composition Mσ = (Sσ,Pσ,APσ, Lσ) = Mσ1

1 || . . . ||Mσn
n , where Mσi

i is the DTMC
induced by Mi and σi, with Mi = (S,Act,P,APi, Li) with APi = {ai | a ∈ AP} and
Li(s) = {ai | a ∈ L(s)} for all s ∈ S.

It would be possible to allow the composition of multiple different MDPs, but this
would make the semantics of HyperPCTL more complicated, which is why we restrict
ourselves to the self-composition. We also note that this is the parallel composition of
the DTMCs induced by the MDPs. The parallel composition of the MDPs themselves
would also be possible to define, but is not of interest to us.

12 Preliminaries

s0

{a}

s1

{b}

s2

∅

s0

{a}

s1

{b}

s2

∅

α

β

1

1

α

α

1

1

1

1

1

Figure 2.2: An MDP and one of its induced DTMCs.

2.3 HyperPCTL
HyperPCTL is an extension of PCTL. Compared to PCTL, HyperPCTL allows arithmetic
operations with probabilities and comparing probabilities to each other. Through the
use of state quantifiers, it is possible to consider multiple executions of a model at the
same time and thus examine hyperproperties of models. It is also possible to compare
experiments with different schedulers through the use of scheduler quantifiers. These
extensions give HyperPCTL more expressivity than PCTL.

Definition 2.3.1. HyperPCTL (quantified) state formulas ϕq for MDPs are induc-
tively defined as follows:

quantified formula ϕq ::= ∀σ̂.ϕq | ∃σ̂.ϕq | ∀ŝ(σ̂).ϕq | ∃ŝ(σ̂).ϕq | ϕnq
non-quantified formula ϕnq ::= true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕar < ϕar

arithmetic expression ϕar ::= P(ϕpath) | f(ϕar1 , . . . ,ϕ
ar
k)

path formula ϕpath ::= ©ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

where σ̂ is a scheduler variable from an infinite set Σ̂, ŝ is a state variable from an
infinite set Ŝ, a ∈ AP is an atomic proposition, f : [0,1]k → R are k-ary arithmetic
operators (addition, subtraction, multiplication), where constants are 0-ary functions,
and k1,k2 ∈ N are nonnegative integers such that k1 ≤ k2.

We will sometimes just write ϕ for any formula when the type of formula is clear
from context. We use ŝ and σ̂ for state and scheduler variables, while s and σ are used
for states and schedulers. A HyperPCTL formula is well-formed if every occurrence of
an aŝ with a ∈ AP, ŝ ∈ Ŝ is in the scope of a state quantifier for ŝ(σ̂) for a σ̂ ∈ Σ̂ and
every state quantifier for ŝ(σ̂) is in the scope of a scheduler quantifier for σ̂.

We allow the following standard syntactic sugar:

false = ¬true
ϕnq1 ∨ ϕ

nq
2 = ¬(¬ϕnq1 ∧ ¬ϕ

nq
2)

ϕnq1 → ϕnq2 = ¬ϕnq1 ∨ ϕ
nq
2

ϕar1 > ϕar2 = ϕar2 < ϕar1
ϕar1 ≤ ϕar2 = ¬(ϕar1 > ϕar2)
ϕar1 ≥ ϕar2 = ¬(ϕar1 < ϕar2)
ϕar1 = ϕar2 = (ϕar1 ≤ ϕar2) ∧ (ϕar1 ≥ ϕar2)
ϕar1 6= ϕar2 = ¬(ϕar1 = ϕar2)
♦ϕnq = trueU ϕnq
P(�ϕnq) = 1− P(♦¬ϕnq)

HyperPCTL 13

HyperPCTL state formulas are evaluated in the context of

• an MDPM,

• a sequence σ = (σ1, . . . ,σn) of schedulers

• and a sequence r = ((q1,s1), . . . ,(qn,sn)) ∈ Sσ of states.

We let () be the empty sequence and use ◦ for concatenation. The satisfaction of a
HyperPCTL quantified formula by an MDPM is defined as follows:

M |= ϕ iff M,(),() |= ϕ .

Formulas are evaluated by structural recursion. Formally, the semantics judgment
rules are as follows, where σ and r are defined as above and n is their length:

M,σ, r |= true

M,σ, r |= ai iff ai ∈ Lσ(r)
M,σ, r |= ϕnq1 ∧ ϕ

nq
2 iff M,σ,r |= ϕnq1 andM,σ, r |= ϕnq2

M,σ, r |= ¬ϕnq iff M,σ, r 6|= ϕnq

M,σ, r |= ∀σ̂.ϕq iff ∀σ ∈ ΣM.M,σ,r |= ϕq[σ̂ ; σ]
M,σ, r |= ∃σ̂.ϕq iff ∃σ ∈ ΣM.M,σ,r |= ϕq[σ̂ ; σ]
M,σ, r |= ∀ŝ(σ).ϕq iff ∀s ∈ S.M,σ ◦ σ,r ◦ (init(s), s) |= ϕq[ŝ; n+ 1]
M,σ, r |= ∃ŝ(σ).ϕq iff ∃s ∈ S.M,σ ◦ σ,r ◦ (init(s), s) |= ϕq[ŝ; n+ 1]
M,σ, r |= ϕar1 < ϕar2 iff Jϕar1 KM,σ,r < Jϕar2 KM,σ,r

JP(ϕpath)KM,σ,r = PrM
σ(
{π ∈ PathsM

σ

r | M,σ,π |= ϕpath}
)

Jf(ϕar1 , . . . , ϕ
ar
k)KM,σ,r = f

(
Jϕar1 KM,σ,r , . . . , Jϕark KM,σ,r

)
where ϕq[σ̂ ; σ] is the formula obtained by instantiating ∃σ̂.ϕq or ∀σ̂.ϕq with a
scheduler σ ∈ ΣM, which is done by replacing every occurrence of the scheduler
variable σ̂ in any subformula of ϕq with σ.

Likewise, ϕq[ŝ ; n + 1] is the formula obtained by instantiating ∃ŝ(σ).ϕq or
∀ŝ(σ).ϕq with a state s, which is done by replacing every occurrence of the state
variable ŝ in any subformula of ϕq with n+ 1.

The satisfaction relation for path formulas is defined as follows, where π = (r0,r1, . . .)
with r i = ((qi,1,si,1), . . . ,(qi,n,si,n)) is a path ofMσ:

M,σ,π |=©ϕ iff M,σ, π1 |= ϕ

M,σ,π |= ϕ1 U ϕ2 iff ∃j ≥ 0.
(
M,σ,πj |= ϕ2 ∧ ∀i ∈ [0, j).M,σ,πi |= ϕ1

)
M,σ,π |= ϕ1 U [k1,k2] ϕ2 iff ∃j ∈ [k1, k2].

(
M,σ,πj |= ϕ2 ∧ ∀i ∈ [0, j).M,σ,πi |= ϕ1

)
As an example, we will evaluate the formula ϕ = ∃σ̂.∃σ̂′.∃ŝ(σ̂).∃ŝ′(σ̂′).P((a1 ∧
a2)U (b1 ∧ ¬b2)) = 1 on the MDP presented in Figure 2.2 in the previous section,
which we will now callM. We first need to instantiate the scheduler and state vari-
ables. We instantiate σ̂ with a scheduler σ1 that always chooses action α in s0, and
we instantiate σ̂′ with a scheduler σ2 that always chooses β in s0. We instantiate
both ŝ and ŝ′ with s0. Thus, we now want to verify if M, (σ1,σ2),(s0,s0) |= P((a1 ∧
a2)U (b1 ∧ ¬b2)) = 1. We must evaluate JP((a1 ∧ a2)U (b1 ∧ ¬b2))KM,(σ1,σ2),(s0,s0).
There is only one infinite path in M(σ1,σ2) that starts in (s0,s0) and it begins with
π = ((s0,s0),(s1,s2), . . .). Since s1 is labeled with b and s2 is not, M, (σ1,σ2),(s1,s2)
satisfies (b1 ∧¬b2). Since s0 is labeled with a, every state before (s1, s2) on the path,
which is only (s0,s0) in this case, satisfies (a1 ∧a2). Since the probability of this path
is 1, JP((a1 ∧ a2)U (b1 ∧ ¬b2))KM,(σ1,σ2),(s0,s0) = 1. Therefore, M, (σ1,σ2),(s0,s0) |=
P((a1 ∧ a2)U (b1 ∧ ¬b2)) = 1 andM, (), () |= ϕ.

14 Preliminaries

2.4 HyperPCTL Model Checking

PCTL model checking is decidable, but the additional expressivity makes HyperPCTL
for MDPs in general undecidable. For PCTL model checking, only non-probabilistic,
memoryless schedulers are relevant. This is not the case for HyperPCTL model check-
ing, as the restriction to only those schedulers changes the semantics of HyperPCTL.
However, an MDP only has a finite amount of non-probabilistic memoryless sched-
ulers, so if the semantics are restricted to only this kind of scheduler, the model
checking problem becomes decidable. The following is an SMT-based algorithm from
[ÁBBD20] for HyperPCTL model checking for non-probabilistic schedulers. The al-
gorithm is restricted to formulas with only one scheduler quantifier. The case for
formulas with multiple scheduler quantifiers would be similar, but technically more
complicated.

Algorithm 1: Main SMT encoding algorithm
Input: M = (S,Act,P,AP, L): MDP; Qσ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq:

HyperPCTL formula.
Output: WhetherM satisfies the input formula.

1 Function Main(M, Qσ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq):
2 E :=

∧
s∈S(

∨
α∈Act(s) σs = α); // scheduler choice

3 if Q is existential then
4 E := Semantics(M, ϕnq, n);
5 E := E ∧ Truth(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq);
6 if check(E) = SAT then return TRUE ;
7 else return FALSE ;

8 else if Q is universal then
// Qi is ∀ if Qi = ∃ and ∃ else

9 E := Semantics(M,¬ϕnq, n);
10 E := E ∧ Truth(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).¬ϕnq);
11 if check(E) = SAT then return FALSE ;
12 else return TRUE ;

The algorithm works by generating an SMT formula from the HyperPCTL input
formula and MDP such that the generated formula is satisfiable exactly if the MDP
satisfies the input formula. In line 2 of Algorithm 1, the main SMT encoding algo-
rithm, the scheduler choice is encoded with a variable σs for each state s in the MDP,
which must be assigned to one of the available actions in state s in any solution of the
SMT formula. If the scheduler quantifier is existential, we first encode the semantics
of the non-quantified part of the input formula (line 4), and then we encode which
states must satisfy the non-quantified part of the formula for the entire formula to
be satisfied (line 5). We then use an SMT solver to find a solution for this SMT
formula. If there is one, the MDP satisfies the input formula and we return TRUE,
otherwise we return FALSE. If the scheduler quantifier is a universal quantifier, we use
the fact that ∀σ̂.ϕ is logically equivalent to ¬∃σ̂.¬ϕ by encoding the formula ∃σ̂.¬ϕ
and inverting the result of the SMT solver, which is what happens in lines 8-12 of
Algorithm 1. In this case, a satisfying assignment for the SMT formula will give us a
counterexample of a scheduler for which the formula is not satisfied.

HyperPCTL Model Checking 15

Algorithm 2: SMT encoding for the meaning of the input formula
Input: M = (S,Act,P,AP, L): MDP; ϕ: quantifier-free HyperPCTL formula

or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in the n-ary self-composition of

M.
1 Function Semantics(M, ϕ, n):
2 if ϕ is true then E :=

∧
s∈Sn holdss,ϕ;

3 else if ϕ is aŝi then
4 E := (

∧
s∈Sn, a∈L(si)(holdss,ϕ)) ∧ (

∧
s∈Sn, a 6∈L(si)(¬holdss,ϕ));

5 else if ϕ is ϕ1 ∧ ϕ2 then
6 E := Semantics(M, ϕ1, n) ∧ Semantics(M, ϕ2, n)∧
7

∧
s∈Sn((holdss,ϕ ∧ holdss,ϕ1

∧ holdss,ϕ2
)∨

8 (¬holdss,ϕ ∧ (¬holdss,ϕ1
∨ ¬holdss,ϕ2

)));

9 else if ϕ is ¬ϕ′ then
10 E := Semantics(M, ϕ′, n) ∧

∧
s∈Sn(holdss,ϕ ⊕ holdss,ϕ′);

11 else if ϕ is ϕar1 < ϕar2 then
12 E := Semantics(M, ϕar1 , n) ∧ Semantics(M, ϕar2 , n)∧
13

∧
s∈Sn((holdss,ϕ ∧ vals,ϕar

1
< vals,ϕar

2
)∨

14 (¬holdss,ϕ ∧ vals,ϕar
1
≥ vals,ϕar

2
));

15 else if ϕ is P(©ϕ′) then
16 E := Semantics(M, ϕ′, n)∧
17

∧
s∈Sn((holdsToInts,ϕ′ = 1 ∧ holdss,ϕ′)∨

18 (holdsToInts,ϕ′ = 0 ∧ ¬holdss,ϕ′));
19 foreach s = (s1, . . . ,sn) ∈ Sn do
20 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
21 E := E ∧ ([

∧n
i=1 σsi = αi]→ [vals,ϕ =∑

s′∈supp(α1)×...×supp(αn)
((
∏n
i=1 P (si,αi,s

′
i)) ·holdsToInts′,ϕ′)]);

22 else if ϕ is P(ϕ1 U [k1,k2]ϕ2) then
E := SemanticsBoundedUntil(M, ϕ, n);

23 else if ϕ is P(ϕ1 U ϕ2) then
E := SemanticsUnboundedUntil(M, ϕ, n);

24 else if ϕ is c then E :=
∧
s∈Sn(vals,ϕ = c);

25 else if ϕ is ϕar1 op ϕar2 then
26 E := Semantics(M, ϕar1 , n) ∧ Semantics(M, ϕar2 , n)∧
27

∧
s∈Sn(vals,ϕ = (vals,ϕar

1
op vals,ϕar

2
));

28 return E;

Algorithm 2 encodes the semantics of a quantifier-free formula or expression. Es-
sentially, for every combination of the formula ϕ and a state s ∈ Sn, this function
will create a variable holdss,ϕ with constraints such that any solution of the SMT
formula will satisfy holdss,ϕ exactly if s satisfies ϕ for the scheduler chosen through
the assignment of the σs variables. If ϕ is the boolean constant true for instance,
the constraint holdss,ϕ will be added for every state s ∈ Sn (line 2). If ϕ is an
atomic proposition aŝi , we add the constraint holdss,ϕ for every state where si has

16 Preliminaries

the label a and ¬holdss,ϕ for every other state. If ϕ contains subformulas, e.g. if ϕ
is a conjunction ϕ1 ∧ ϕ2 of two formulas (line 5), we first encode the semantics of
both subformulas before adding constraints for every state that force holdss,ϕ to be
true in a solution if both holdss,ϕ1

and holdss,ϕ2
are true, and force it to be false

if either of these variables is assigned to false (lines 7, 8). For every arithmetic ex-
pression that occurs in the formula, we add variables vals,ϕ for every state s ∈ Sn
that will hold the value of the arithmetic expression ϕ in the state s. The cases
where ϕ is a constant value c (line 24) or an arithmetic operation performed on n
other arithmetic expressions (line 25) are fairly simple: In the first case, we add a
constraint that forces vals,ϕ to be equal to the constant value for every state; in the
second case, we first encode the n operand expressions and then add a constraint that
forces vals,ϕ to be the result of the mathematical operation performed on the corre-
sponding variables. The cases where the arithmetic expression is of the form P(ϕpath)
are more complicated, however. In these cases, vals,ϕ will hold the probability of
satisfying ϕpath in s. We first look at the case where ϕpath is ©ϕ′, a next formula.

s0

{a}

s1

{a}

s2

∅

0.4

0.3

0.3

1

1

Figure 2.3: Example for the prob-
ability of a next formula.

We first encode the semantics for the formula ϕ′
in line 16. After that, we introduce integer vari-
ables holdsToInts,ϕ′ that will be assigned 1 if s
satisfies ϕ′ and 0 if it does not. The value of
P(©ϕ′) in state s is the probability that the next
state transition will lead to a state that satisfies
ϕ′. This means that the probability is the sum of
the transition probabilities to all states that sat-
isfy ϕ′. Obviously, we only need to sum over the
set of states to which the transition probability is
greater than 0. In the encoding, we therefore add
that vals,ϕ should be equal to the sum of the tran-
sition probability multiplied by holdsToInts′,ϕ′
over all states s′ ∈ supp(α1)×. . . supp(αn), where
supp(αi) refers to the support of αi, i.e. the
states in S to which the transition probability
from si is greater than 0 for the action αi. Because the transition probabilities
depend on the chosen scheduler, we add a separate implication for each possible com-
bination of actions in the state s such that the left side of the implication is satisfied
exactly if these actions are chosen through the assignment of the σs variables, and
the right side of the implication contains the constraint that vals,ϕ is the desired
sum with the transition probabilities for the chosen scheduler. For states that do
not satisfy ϕ′, holdsToInts′,ϕ′ will be 0 and we therefore add 0 to vals,ϕ for these
states. This can be seen in lines 20 and 21. As an example, we consider the expres-
sion ϕ = P(©a), where we omit the state quantifier for simplicity, in the state s0 in
Figure 2.3. We can see that there is a probability of 0.4 to transition into s1, which
is labeled with a, a probability of 0.3 to transition into s0, which is also labeled with
a, and a probability of 0.3 to transition into s2, which is not labeled with a. Accord-
ingly, holdss0,a and holdss1,a will be true while holdss2,a will be false. This results in
probs0,P(©a) = 0.3 · 1 + 0.4 · 1 + 0.3 · 0 = 0.7. The cases where ϕ = P(ϕpath) with ϕpath

being either an unbounded or bounded until formula are more complicated and have
been placed in separate functions because of this.

We will first discuss the case where ϕpath is a bounded until formula of the form
P(ϕ1U [k1,k2]ϕ2), which is handled in Algorithm 3. We would like vals,ϕ to have the

HyperPCTL Model Checking 17

Algorithm 3: SMT encoding for the meaning of bounded until formulas
Input: M = (S,Act,P,AP, L): MDP; ϕ: HyperPCTL bounded until formula

of the form P(ϕ1U [k1,k2]ϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function SemanticsBoundedUntil(M, ϕ = P(ϕ1U [k1,k2]ϕ2), n):
2 if k2 = 0 then
3 E := Semantics(M, ϕ1, n) ∧ Semantics(M,ϕ2, n);
4 foreach s = (s1, . . . ,sn) ∈ Sn do
5 E := E ∧ (holdss,ϕ2

→ vals,ϕ = 1) ∧ (¬holdss,ϕ2
→ vals,ϕ = 0);

6 else if k1 = 0 then
7 E := SemanticsBoundedUntil(M, ϕ = P(ϕ1U [0,k2−1]ϕ2), n);
8 foreach s = (s1, . . . ,sn) ∈ Sn do
9 E := E ∧ (holdss,ϕ2 → vals,ϕ = 1)∧

10 ((¬holdss,ϕ1
∧ ¬holdss,ϕ2

)→ vals,ϕ = 0);
11 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
12 E := E ∧ ((holdss,ϕ1

∧ ¬holdss,ϕ2
∧
∧n
i=1 σsi = αi)→

13 (vals,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) ·

vals′,P(ϕ1U [0,k2−1]ϕ2)
)));

14 else if k1 > 0 then
15 E := SemanticsBoundedUntil(M, ϕ = P(ϕ1U [k1−1,k2−1]ϕ2), n);
16 foreach s = (s1, . . . ,sn) ∈ Sn do
17 E := E ∧ (¬holdss,ϕ1

→ vals,ϕ = 0);
18 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
19 E := E ∧ ((holdss,ϕ1 ∧

∧n
i=1 σsi = αi)→

20 (vals,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) ·

vals′,P(ϕ1U [k1−1,k2−1]ϕ2)
)));

21 return E;

probability of reaching a state that satisfies ϕ2 in at least k1, but at most k2 state
transitions when starting from s, with the constraint that every state on the path
before that must satisfy ϕ1. If the upper bound is 0, ϕ2 has to be satisfied now or
the probability will be 0, if the lower bound is 0 and the upper bound is not, we can
satisfy ϕ2 either now or later and if the lower bound is greater than 0, whether or not
ϕ2 is satisfied is irrelevant and it has to be satisfied later. We distinguish between
three cases. If k2 = 0, then a state satisfies ϕ2 must be reached in 0 transitions, i.e.
the current state must satisfy ϕ2. Thus, if s satisfies ϕ2, the desired probability is
1, otherwise it is 0. This case is covered in lines 2-5. The second case is if k2 does
not equal 0, but k1 does. In this case we would like to reach a state that satisfies
ϕ2 in at most k2 steps, with every state on the path before that satisfying ϕ1. We
first encode the semantics for reaching such a state in k2 − 1 steps to obtain those
probabilities. If s satisfies ϕ2, then the probability is once again 1. On the other hand,
if s does not satisfy ϕ2, but also does not satisfy ϕ1, the probability is 0 because every
path from this state obviously begins in a state that does not satisfy ϕ1. These two
simple cases are shown in lines 9 and 10. If the state satisfies ϕ1, but not ϕ2, then

18 Preliminaries

the desired probability is given as the expected value of the probability of reaching a
state satisfying s2 in k2 − 1 steps from the successor states of s. Since the transition
probabilities are dependent on the chosen scheduler, we add one implication for every
possible combination of actions in s, like in the semantics for next formulas. Thus, if a
scheduler is chosen, the state does not satisfy ϕ2, but does satisfy ϕ1, the probability
will be the sum over all successor states of the probability P(ϕ1U [0,k2−1]ϕ2), multiplied
by the probability to transition into that successor state with the chosen scheduler.
This can be seen in lines 11-13. Finally, if k1 is greater than 0, we want to reach
a state satisfying ϕ2 in at least k1 steps, so it does not matter if the current state
satisfies s2 or not. Apart from that, this case is generally similar to the previous one.
If the state does not satisfy ϕ1, the probability is 0, if it does, we sum up over the
possible successors the probabilities to reach a goal state in at least k1 − 1 and at
most k2 − 1 steps. This final case is covered by lines 14-20.

Algorithm 4: SMT encoding for the meaning of unbounded until formulas
Input: M = (S,Act,P,AP, L): MDP; ϕ: HyperPCTL unbounded until

formula of the form P(ϕ1Uϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function SemanticsUnboundedUntil(M, ϕ = P(ϕ1Uϕ2), n):
2 E := Semantics(M, ϕ1, n) ∧ Semantics(M, ϕ2, n);
3 foreach s = (s1, . . . ,sn) ∈ Sn do
4 E := E ∧ (holdss,ϕ2

→ vals,ϕ = 1)∧
5 ((¬holdss,ϕ1 ∧ ¬holdss,ϕ2)→ vals,ϕ = 0);
6 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
7 E := E ∧ ((holdss,ϕ1

∧ ¬holdss,ϕ2
∧
∧n
i=1 σsi = αi)→

8 (vals,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) · vals′,ϕ′)∧

9 (vals,ϕ > 0→ (
∨
s′∈supp(α1)×...×supp(αn)

(holdss′,ϕ2
∨ ds,ϕ2

>

ds′,ϕ2
)))));

10 return E;

s1

vals1,ϕ = 1

s2

vals2,ϕ = 1

s3

vals3,ϕ = 1

s4

vals4,ϕ = 1

Figure 2.4: A possible variable
assignment without line 9.

The case for an unbounded until formula, which
is handled in Algorithm 4, is generally fairly simi-
lar to the bounded until formula with k2 > 0 and
k1 = 0. The main difference can be found in line
9. In the bounded until formula, the time point at
which a state can satisfy ϕ2 is restricted. In the
unbounded case however, there is no bound on the
number of steps needed until reaching a state that
satisfies ϕ2. Figure 2.4 shows why this can cause
issues. Let ϕ = P(trueU false). Obviously, every
state satisfies true, but no state satisfies false.
Thus, the probability should always be 0 in all
states. However, because of the cycle, it would
be possible to assign every state the probability 1
in a solution for the SMT formula. Line 9 prevents
this by assigning every state a d variable and forcing that at least one successor either
satisfies ϕ2 or has a lower d value than that of the current state if a probability larger

HyperPCTL Model Checking 19

than 0 is assigned. Because of this requirement, we enforce smallest fixed points for
the solutions and all positive probability values must lead to a state that satisfies
ϕ2 eventually. Because of this, the probabilities can be clearly determined for every
scheduler.

Algorithm 5: SMT encoding of the truth of the input formula
Input: M = (S,Act,P,AP, L): MDP; ∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq:

HyperPCTL formula.
Output: Encoding of the truth of the input formula inM.

1 Function Truth(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq):
2 foreach i = 1, . . . ,n do
3 if Qi = ∀ then Bi := ”

∧
si∈S ”;

4 else Bi := ”
∨
si∈S ”;

5 return B1 . . . Bn holds(s1,...,sn),ϕnq ;

The last algorithm, Algorithm 5, encodes the meaning of the state quantifiers. A
forall quantifier ∀ŝi(σ).ϕ means that every state si ∈ S must satisfy the formula ϕ, so
we add a conjunction over all possible states si. Likewise, an exists quantifier ∃ŝi(σ).ϕ
means that at least one state si ∈ S must satisfy ϕ, so we create a disjunction over
all si in this case. With this, we have encoded the entire input formula and MDP in
an SMT formula that is satisfiable if and only if the MDP satisfies the input formula.
Using an SMT solver, we can therefore solve the satisfiability problem for HyperPCTL
restricted to non-probabilistic, memoryless schedulers.

20 Preliminaries

Chapter 3

HyperPCTL with Rewards

In this chapter, we would like to modify HyperPCTL to allow reasoning about rewards.
In the first section, we will modify the definitions of DTMCs and MDPs to include
state rewards. After that, we extend the syntax and the semantics of HyperPCTL to
include a new expression that can be used to calculate the expected rewards of paths
in the model. Finally, we make the needed changes to the model checking algorithm
introduced in the last chapter to include the new expression in the algorithm.

3.1 MDPs with Rewards
We would like to extend HyperPCTL with a rewards mechanism. To do this, we first
need to extend the MDPs we are examining with a reward model. In this thesis, we
are focusing on state rewards, i.e. we extend the definition of MDPs as follows:

Definition 3.1.1. An MDP with n-ary rewards (MDPR) is defined as a tupleM =
(S,Act,P,AP, L,R) where (S,Act,P,AP, L) is an MDP and R : S → Rn is a reward
function, assigning each state of the MDP a reward vector.

We will assume all MDPRs to have unary rewards unless specified otherwise.
Analogously to MDPRs, we can also add a reward function to the definition of DTMCs
to obtain DTMCs with n-ary rewards (DTMCRs). We will write Ri(s) for (R(s))i.
We define the reward of a finite path π = (s0, s1, . . . , sn) in the ith component as
Ri(π) =

∑n
j=0 Ri(sj) for both MDPRs and DTMCRs. Furthermore, an MDPR and

a scheduler will induce a DTMCR:

Definition 3.1.2. Assume an MDPR M = (S,Act,P,AP, L,R) and a scheduler
σ = (Q, act,mode, init) forM. The DTMCR induced byM and σ is defined asMσ =
(Sσ,Pσ,AP, Lσ,Rσ) with (Sσ,Pσ,AP, Lσ) = (S,Act,P,AP, L)σ and Rσ(q,s) = R(s)
for all q ∈ Q, s ∈ S.

For the semantics of HyperPCTL with rewards, we also need to define the n-ary
self composition of an MDPR, which requires defining the parallel composition of two
DTMCRs:

Definition 3.1.3. The parallel composition of a DTMC with n-ary rewards D1 =
(S1,P1,AP1, L1,R1) and a DTMC with m-ary rewards D2 = (S2,P2,AP2, L2,R2)
is an (n+m)-ary DTMCR defined as D1||D2 = (S,P,AP, L,R), where (S,P,AP, L)

22 HyperPCTL with Rewards

is the DTMC parallel composition (S1,P1,AP1, L1)||(S2,P2,AP2, L2) and R : S →
Rn+m with R(s) = (R1,1(s1), . . . ,R1,n(s1),R2,1(s1), . . . ,R2,m(s1)) for all s = (s1,s2) ∈
S.

Definition 3.1.4. The n-ary self composition of an MDPRM = (S,Act,P,AP, L,R)
for a sequence σ = (σ1, . . . ,σn) ∈ (ΣM)n of schedulers for M is the DTMCR par-
allel composition Mσ = (Sσ,Pσ,APσ, Lσ,Rσ) = Mσ1

1 || . . . ||Mσn
n , where Mσi

i is
the DTMCR induced by Mi and σi, with Mi = (S,Act,P,APi, Li,R) with APi =
{ai | a ∈ AP} and Li(s) = {ai | a ∈ L(s)} for all s ∈ S.

Figure 3.1 displays an MDPR as well as its binary self composition for the sequence
of schedulers σ = (σ1,σ2) where σ1 always selects action α in s0 and σ2 always selects
β in s0.

s0
5

∅
s1
7

{a}

(s0, s0)
(5,5)

∅
(s1, s0)
(7,5)

{a1}

(s0, s1)
(5,7)

{a2}
(s1, s1)
(7,7)

{a1,a2}

α

β

0.5

0.5

1

α

1
0.5

0.5
1

0.5

0.5 1

Figure 3.1: An MDPR and one of its binary self compositions.

3.2 Syntax & Semantics

To examine rewards in HyperPCTL, we must first extend the syntax of the logic with
reward operators. We extend the syntax as follows:

Definition 3.2.1. HyperPCTL (quantified) state formulas ϕq for MDPRs are induc-
tively defined as follows:

quantified formula ϕq ::= ∀σ̂.ϕq | ∃σ̂.ϕq | ∀ŝ(σ̂).ϕq | ∃ŝ(σ̂).ϕq | ϕnq
non-quantified formula ϕnq ::= true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕar < ϕar

arithmetic expression ϕar ::= P(ϕpath) | Rŝ(ϕpath) | f(ϕar1 , . . . ,ϕ
ar
k)

path formula ϕpath ::= ©ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

Since the only difference from the original syntax consists of the addition of a
reward operator that can be used as an arithmetic expression, all the expressivity of
regular HyperPCTL is maintained. In an expression Rŝ(ϕpath), we use ŝ to specify for

Syntax & Semantics 23

which state quantifier we would like to accumulate rewards. We allow the following
additional syntactic sugar:

Rŝ(Ct) := Rŝ(trueU [t,t]true)
Rŝ(It) := Rŝ(Ct)−Rŝ(Ct−1) , if t > 0

Rŝ(Ct) , else

These are similar to properties that can be used in the probabilistic model checker
PRISM [KNP11]. Essentially, the expression Rŝ(Ct) will have the expected cumula-
tive reward accumulated over the next t steps as its value, while Rŝ(It) will have the
expected reward in the state reached after t steps as its value.

Intuitively, the value of Rŝ(©ϕnq) is the expected reward of the successor state
plus the reward of the current state, if the probability that the successor state satisfies
ϕnq is 1. The value of Rŝ(ϕnq1 U ϕ

nq
2) or Rŝ(ϕnq1 U [k1,k2] ϕnq2) is the expected cumu-

lative reward accumulated until the first time a state is reached that satisfies ϕnq2 , as
long as the probability of satisfying ϕnq1 U ϕ

nq
2 , or ϕnq1 U [k1,k2] ϕnq2 respectively, is 1.

The value of Rŝ(ϕpath) is undefined if the value of P(ϕpath) is not equal to 1.
We define the following:

fPaths(ϕnq1 U ϕ
nq
2)M

σ

r = {π ∈ fPathsM
σ

r | ∃π′ ∈ PathsM
σ

r : π is a prefix of π′∧
M,σ,π′ |= ϕnq1 U [|π|,|π|]ϕnq2 ∧M,σ,π′j 6|= ϕ2∀j < |π|}

fPaths(ϕnq1 U [k1,k2]ϕnq2)M
σ

r = {π ∈ fPathsM
σ

r | ∃π′ ∈ PathsM
σ

r : π is a prefix of π′∧
k1 ≤ |π| ≤ k2 ∧M,σ,π′ |= ϕnq1 U [|π|,|π|]ϕnq2 ∧
M,σ,π′j 6|= ϕ2∀k1 ≤ j < |π|}

Formally, the semantics for the reward operator JRsi(ϕpath)KM,σ,r is as follows,
given that JP(ϕpath)KM,σ,r = 1. If that is not the case, JRsi(ϕpath)KM,σ,r is undefined.

JRsi(©ϕnq)KM,σ,r = Rσ
i (r) +

∑
r ′∈Sσ Pσ(r , r ′) ·Rσ

i (r ′)
JRsi(ϕ

nq
1 U ϕ

nq
2)KM,σ,r =

∑
π∈fPaths(ϕnq

1 U ϕ
nq
2)Mσ

r
(Pσ(π) ·Rσ

i (π))

JRsi(ϕ
nq
1 U [k1,k2]ϕnq2)KM,σ,r =

∑
π∈fPaths(ϕnq

1 U
[k1,k2]ϕ

nq
2)Mσ

r
(Pσ(π) ·Rσ

i (π))

Since arithmetic values can be undefined, it is necessary to also define the semantics
for the handling of undefined values. Formally defining in which cases a value is
undefined would be very complicated, as this needs to be done for every type of
expression that can be used in HyperPCTL. We will therefore forgo a formal definition
at this point and use the following more informal definition:

Definition 3.2.2. The value JϕKM,σ,r/π of an expression ϕ is undefined for an
MDPR M, a sequence of schedulers σ and a state r ∈ Sσ or a path π ∈ PathsM

σ

r
exactly if

• ϕ is of the form Rsi(ϕpath) and JP(ϕpath)KM,σ,r 6= 1 or

• the value of ϕ forM,σ and r or π is dependent on one or more other expressions
ϕ1, . . . ,ϕn with undefined values such that there are multiple different values that
JϕKM,σ,r/π could take for different values of ϕ1, . . . ,ϕn.

We will go into further detail on when a value is undefined when presenting the
algorithm in the next section.

24 HyperPCTL with Rewards

3.3 Model Checking Algorithm
We will now present the modified algorithm for model checking of HyperPCTL with
rewards. A significant difficulty is added due to the fact that rewards of until and
next formulas are undefined in states where these formulas are not or not guaranteed
to be satisfied. Clearly, a comparison between two reward values where one of them
is undefined cannot be assigned a clear truth value. To solve this problem, we make
some major changes to the algorithm. First, we allow the previously boolean variables
holdss,ϕ to take three different values: true, false and undefined. We will use 1, 0 and
⊥ as shorthand for these values in the algorithm. We extend the semantics of the ∧
and ¬ operators for ⊥ as follows:

⊥ ∧ 0 = 0
⊥ ∧⊥ = ⊥
⊥ ∧ 1 = ⊥
¬⊥ = ⊥

Furthermore, for every variable vals,ϕ, we introduce an additional boolean variable
defs,ϕ that states whether or not the value of the arithmetic expression ϕ is defined
in s. Since expressions of the form Rŝ(ϕpath) are arithmetic expressions, these will
also have vals,ϕ variables holding the expected reward for satisfying ϕ in s as well as
defs,ϕ variables stating whether or not this reward is defined. In the following, we will
detail the modified algorithm, explain in which cases a value is undefined, and detail
the new additions to encode the semantics of reward-related expressions.

Algorithm 6: Main SMT encoding algorithm
Input: M = (S,Act,P,AP, L,R): MDPR; Q1ŝ1. . . . Qnŝn.ϕ

nq: HyperPCTL
formula.

Output: WhetherM satisfies the input formula.
1 Function Main(M, Qσ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq):
2 E :=

∧
s∈S(

∨
α∈Act(s) σs = α); // scheduler choice

3 if Q is existential then
4 E := Semantics(M, ϕnq, n);
5 T := E ∧ Truth(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq);
6 N := E ∧ NotFalsehood(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq);
7 if check(T) = SAT then return TRUE;
8 else if check(N) = SAT then return UNDEF ;
9 else return FALSE;

10 else if Q is universal then
// Qi is ∀ if Qi = ∃ and ∃ else

11 E := Semantics(M,¬ϕnq, n);
12 T := E ∧ Truth(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).¬ϕnq);
13 N := E ∧ NotFalsehood(M,∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).¬ϕnq);
14 if check(T) = SAT then return FALSE;
15 else if check(N) = SAT then return UNDEF ;
16 else return TRUE;

Due to the introduction of undefined values, a single satisfiability check is not
sufficient to differentiate between all three cases. We therefore generate two different

Model Checking Algorithm 25

Algorithm 7: SMT encoding for the meaning of the input formula
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in the n-ary self-composition of

M.
1 Function Semantics(M, ϕ, n):
2 if ϕ is true then E :=

∧
s∈Sn holdss,ϕ = 1;

3 else if ϕ is aŝi then
4 E := (

∧
s∈Sn, a∈L(si)(holdss,ϕ = 1)) ∧ (

∧
s∈Sn, a 6∈L(si)(holdss,ϕ = 0));

5 else if ϕ is ϕ1 ∧ ϕ2 then
6 E := Semantics(M, ϕ1, n) ∧ Semantics(M, ϕ2, n)∧
7

∧
s∈Sn((holdss,ϕ1

= 1 ∧ holdss,ϕ2
= 1)→ holdss,ϕ = 1)∧

8
∧
s∈Sn((holdss,ϕ1

= 0 ∨ holdss,ϕ2
= 0)→ holdss,ϕ = 0)∧

9
∧
s∈Sn((holdss,ϕ1

= ⊥ ∧ holdss,ϕ2
= 1)→ holdss,ϕ = ⊥)∧

10
∧
s∈Sn((holdss,ϕ1

= 1 ∧ holdss,ϕ2
= ⊥)→ holdss,ϕ = ⊥)∧

11
∧
s∈Sn((holdss,ϕ1 = ⊥ ∧ holdss,ϕ2 = ⊥)→ holdss,ϕ = ⊥);

12 else if ϕ is ¬ϕ′ then
13 E := Semantics(M, ϕ′, n)∧
14

∧
s∈Sn(holdss,ϕ′ = 0→ holdss,ϕ = 1)∧

15
∧
s∈Sn(holdss,ϕ′ = 1→ holdss,ϕ = 0)∧

16
∧
s∈Sn(holdss,ϕ′ = ⊥ → holdss,ϕ = ⊥);

17 else if ϕ is ϕar1 < ϕar2 then
18 E := Semantics(M, ϕar1 , n) ∧ Semantics(M, ϕar2 , n)∧
19

∧
s∈Sn((defs,ϕar

1
∧ defs,ϕar

2
∧ vals,ϕar

1
< vals,ϕar

2
)→ holdss,ϕ = 1)∧

20
∧
s∈Sn((defs,ϕar

1
∧ defs,ϕar

2
∧ vals,ϕar

1
≥ vals,ϕar

2
)→ holdss,ϕ = 0)∧

21
∧
s∈Sn((¬defs,ϕar

1
∨ ¬defs,ϕar

2
)→ holdss,ϕ = ⊥);

22 else if ϕ is P(©ϕ′) then
23 E := Semantics(M, ϕ′, n)∧
24

∧
s∈Sn(holdss,ϕ′ = 0→ holdsToInts,ϕ′ = 0)∧

25
∧
s∈Sn(holdss,ϕ′ = 1→ holdsToInts,ϕ′ = 1);

26 foreach s = (s1, . . . ,sn) ∈ Sn do
27 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
28 E := E ∧ ([

∧n
i=1 σsi = αi]→ [

29 ((
∨
s′∈supp(α1)×...×supp(αn)

(holdss′,ϕ′ = ⊥))↔ ¬defs,ϕ)∧
30 (defs,ϕ → vals,ϕ =

∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) ·

holdsToInts′,ϕ′))]);

31 else if ϕ is P(ϕ1 U ϕ2) then
E := SemanticsUnboundedUntil(M, ϕ, n);

32 else if ϕ is P(ϕ1 U [k1,k2]ϕ2) then
E := SemanticsBoundedUntil(M, ϕ, n);

33 else if ϕ is c then E :=
∧
s∈Sn(vals,ϕ = c ∧ defs,ϕ);

34 else if ϕ is ϕar1 op ϕar2 then
35 E := Semantics(M, ϕar1 , n) ∧ Semantics(M, ϕar2 , n)∧
36

∧
s∈Sn((defs,ϕar

1
∧ defs,ϕar

2
)→ (defs,ϕ ∧ vals,ϕ = (vals,ϕar

1
op

vals,ϕar
2

)))∧
37

∧
s∈Sn((¬defs,ϕar

1
∨ ¬defs,ϕar

2
)→ ¬defs,ϕ);

38 else E := RewSemantics(M, ϕ, n);
39 return E;

26 HyperPCTL with Rewards

SMT formulas. In the case of an existential scheduler quantifier, the first one, shown
in line 5 of Algorithm 6, will be satisfiable if and only ifM satisfies the input formula,
the second (line 6) will be true if and only ifM satisfies the formula or the satisfaction
value is undefined. This will allow us to distinguish between all three cases. In the
case of a universal scheduler quantifier, we negate the input formula as well as the
result of the satisfiability check, just like in the original algorithm.

The encoding for the cases where ϕ is the boolean constant true or an atomic
proposition are identical to the original, unmodified algorithm, as seen in lines 2-
4 of Algorithm 7. For the case where ϕ is a conjunction ϕ1 ∧ ϕ2, we add several
implications to force holdss,ϕ to take the correct value as described above for every
possible combination of holdss,ϕ1

and holdss,ϕ2
. This is encoded in lines 5-11. If ϕ is

a negation ¬ϕ′, we add three implications for the three possible values of holdss,ϕ′ .
If ϕ is a comparison ϕar1 < ϕar2 , then we consider its satisfiability to be undefined
in a state s if one of the two values that are compared is undefined in the state s
(line 21). If both values are defined, then the satisfiability is clearly defined as before,
which is encoded in lines 19 and 20. The probability value of a next formula P(©ϕ′)
in a state s is dependent on the satisfaction value of ϕ′ in all possible successors of
s. Thus, if the satisfaction value of ϕ′ is undefined in at least one successor of s, we

Algorithm 8: SMT encoding for the meaning of reward-related input for-
mula
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: quantifier-free HyperPCTL

formula or expression; n: number of state variables in ϕ.
Output: SMT encoding of the meaning of ϕ in the n-ary self-composition of

M.
1 Function RewSemantics(M, ϕ, n):
2 if ϕ is Rŝi(©ϕ′) then
3 E := Semantics(M,P(©ϕ′), n);
4 foreach s = (s1, . . . ,sn) ∈ Sn do
5 E := E ∧ ((vals,P(©ϕ′) 6= 1 ∨ ¬defs,P(©ϕ′))↔ ¬defs,ϕ);
6 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
7 E := E ∧ ([defs,ϕ ∧

∧n
j=1 σsj = αj]→ [vals,ϕ =

R(si) +
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
j=1 P (sj ,αj ,s

′
j)) ·R(s′i))]);

8 else if ϕ is Rŝi(Ct) then
9 E := CumulativeReward(M,ϕ,n);

10 else if ϕ is Rŝi(It) then
11 E := InstantaneousReward(M,ϕ,n);

12 else if ϕ is Rŝi(ϕ1 U ϕ2) then
13 E := SemanticsUnboundedUntil(M,P(ϕ1 U ϕ2), n);
14 E := E ∧ RewardUnboundedUntil(M, ϕ, n);

15 else if ϕ is Rŝi(ϕ1 U [k1,k2]ϕ2) then
16 E := SemanticsBoundedUntil(M,P(ϕ1 U [k1,k2]ϕ2), n);
17 E := E ∧ RewardBoundedUntil(M, ϕ, n);

18 return E;

Model Checking Algorithm 27

Algorithm 9: SMT encoding for the meaning of bounded until formulas
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL bounded until

formula of the form P(ϕ1U [k1,k2]ϕ2); n: number of state variables in
ϕ.

Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.
1 Function SemanticsBoundedUntil(M, ϕ = P(ϕ1U [k1,k2]ϕ2), n):
2 if k2 = 0 then
3 E := Semantics(M, ϕ1, n) ∧ Semantics(M,ϕ2, n);
4 foreach s = (s1, . . . ,sn) ∈ Sn do
5 E := E ∧ (holdss,ϕ2 = 1→ (probs,ϕ = 1 ∧ defs,ϕ));
6 E := E ∧ (holdss,ϕ2

= 0→ (probs,ϕ = 0 ∧ defs,ϕ));
7 E := E ∧ (holdss,ϕ2

= ⊥ → ¬defs,ϕ);

8 else if k1 = 0 then
9 E := SemanticsBoundedUntil(M, ϕ = P(ϕ1U [0,k2−1]ϕ2), n);

10 foreach s = (s1, . . . ,sn) ∈ Sn do
11 E := E ∧ (holdss,ϕ2 = 1→ (probs,ϕ = 1 ∧ defs,ϕ));
12 E := E ∧ ((holdss,ϕ1

= 0∧ holdss,ϕ2
= 0)→ (probs,ϕ = 0∧ defs,ϕ));

13 E := E ∧ ((holdss,ϕ1
= 0 ∧ holdss,ϕ2

= ⊥)→ ¬defs,ϕ);
14 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
15 E := E ∧ ((holdss,ϕ1 6= 0 ∧ holdss,ϕ2 6= 1 ∧

∧n
i=1 σsi = αi)→

16 [probs,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) ·

probs′,P(ϕ1U [0,k2−1]ϕ2)
)∧

17 (¬defs,ϕ ↔ [(
∨
s′∈supp(α1)×...×supp(αn)

¬defs′,P(ϕ1U [0,k2−1]ϕ2)
)∨

18 (holdss,ϕ1
= ⊥ ∧ holdss,ϕ2

= ⊥)∨
19 (holdss,ϕ1 = ⊥ ∧ holdss,ϕ2 = 0 ∧ probs,ϕ 6= 0)∨
20 (holdss,ϕ1 = 1 ∧ holdss,ϕ2 = ⊥ ∧ probs,ϕ 6= 1)])]);

21 else if k1 > 0 then
22 E := SemanticsBoundedUntil(M, ϕ = P(ϕ1U [k1−1,k2−1]ϕ2), n);
23 foreach s = (s1, . . . ,sn) ∈ Sn do
24 E := E ∧ (holdss,ϕ1

= 0→ (probs,ϕ = 0 ∧ defs,ϕ));
25 E := E ∧ ((holdss,ϕ1

= ⊥ ∧ probs,ϕ 6= 0)→ ¬defs,ϕ);
26 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
27 E := E ∧ ((holdss,ϕ1 6= 0 ∧

∧n
i=1 σsi = αi)→

28 [probs,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) ·

probs′,P(ϕ1U [k1−1,k2−1]ϕ2)
)∧

29 (¬defs,ϕ ↔
[(
∨
s′∈supp(α1)×...×supp(αn)

¬defs′,P(ϕ1U [k1−1,k2−1]ϕ2)
)∨

30 (holdss,ϕ1 = ⊥ ∧ probs,ϕ 6= 0)])]);

31 return E;

do not assign a clear probability value to ϕ and it is therefore undefined (line 29). If
the probability is defined, it is calculated as before (line 30). The semantics for until
formulas is more complicated once again and have been placed in separate functions.

28 HyperPCTL with Rewards

If an arithmetic expression is a constant, then its value is always defined, as covered
in line 33. The value of a function applied to n arithmetic expressions is defined if
the values of all of the expressions are defined (line 36), and it is undefined if one of
the values is undefined (line 37).

Algorithm 8 encodes the semantics for those expressions that were added to the
syntax of HyperPCTL for arguing about rewards. In the case that ϕ is Rŝi(©ϕ′), we
first encode the corresponding probability expression so we can use the probability of
satisfying ©ϕ′ in the encoding for the reward expression. This reward is undefined
if the probability is not 1 or if it is undefined (line 5). If the probability is defined,
then it is simply the sum of the reward of the ith component of the current state and
the expected reward in the next state (line 7). The other cases are more involved,
so the encoding is done in individual functions for each. For until formulas, we also
encode the equivalent probability expression first to be able to use these values in the
encoding.

holdss,ϕ1
holdss,ϕ2

probs,ϕ defs,ϕ
* 1 1 true

0 0 0 true

0 ⊥ - false

⊥ 0 0 true

⊥ 0 > 0 false

⊥ ⊥ * false

1 0 * true

1 ⊥ 1 true

1 ⊥ < 1 false

Table 3.1: Overview over definedness of
until formulas

Algorithm 9 is the modified algo-
rithm for encoding the semantics of a
formula ϕ of the form P(ϕ1U [k1,k2]ϕ2).
We distinguish between the same three
cases as in the original algorithm. The
case where k2 = 0 is simple: If a state
s satisfies ϕ2, the probability is 1, if it
does not satisfy ϕ2, the probability is 0
and if the satisfaction of ϕ2 in s is unde-
fined, the probability is also undefined.
We have to be careful how to handle the
case where k2 6= 0, but k1 = 0. Table 3.1
details in which cases the probability will
be defined, with * standing for an arbi-
trary value. This table is split into two
parts. The first part depicts the cases
where definedness and the probability can be derived from the two holds variables
alone. If the state s satisfies ϕ2, the probability will always be defined and 1. This
case is covered in line 11. If the state satisfies neither ϕ1 nor ϕ2, the probability will be
defined to be 0 (line 12). However, if the state does not satisfy ϕ1 and the satisfaction
of ϕ2 is undefined, the probability will also be undefined. Intuitively, this is because
we can interpret an undefined value as an unknown value. If the state satisfied ϕ2,
the probability would be 1, if it did not satisfy ϕ2, it would be 0 instead. Since the
satisfaction is undefined, we do not know which is the case and cannot assign a clear
probability. This case is covered in line 13.

The second part of the table depicts the cases where the left side of the implication
in line 15 will be satisfied for one combination of actions, which means that the
probability will be calculated from the probabilities of the successor states, in the
same way as we have explained in the original algorithm. A special case not mentioned
in the table is that if one of the successor states has an undefined probability, the
probability will always be undefined. The second part of the table therefore only refers
to the case where all successors have a defined probability. If s does not satisfy ϕ2

and the satisfaction of ϕ1 in s is undefined, the probability will be defined only if it is
calculated to be 0 from the successors. If the state did not satisfy ϕ1, the probability
would be 0, but if it did, the probability would be derived from the successors. Since it

Model Checking Algorithm 29

Algorithm 10: SMT encoding for the reward of bounded until formulas
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL bounded until

formula of the form Rŝi(ϕ1U [k1,k2]ϕ2); n: number of state variables
in ϕ.

Output: SMT encoding of ϕ’s reward in the n-ary self-composition ofM.
1 Function RewardBoundedUntil(M, ϕ = Rŝi(ϕ1 U [k1,k2]ϕ2), n):
2 ϕ′ := P(ϕ1 U [k1,k2]ϕ2);
3 if k2 = 0 then
4 E := true;
5 foreach s = (s1, . . . ,sn) ∈ Sn do
6 E := E ∧ (holdss,ϕ2

= 1→ (rews,ϕ = R(si) ∧ defs,ϕ));
7 E := E ∧ (holdss,ϕ2 6= 1→ ¬defs,ϕ);

8 else if k1 = 0 then
9 E := RewardBoundedUntil(M, ϕ = Rŝi(ϕ1 U [0,k2−1]ϕ2), n);

10 foreach s = (s1, . . . ,sn) ∈ Sn do
11 E := E ∧ (holdss,ϕ2

= 1→ (rews,ϕ = R(si) ∧ defs,ϕ));
12 E := E ∧ ((probs,ϕ′ 6= 1 ∨ ¬defs,ϕ′)→ ¬defs,ϕ);
13 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
14 E := E ∧ ((probs,ϕ′ = 1 ∧ defs,ϕ′ ∧ holdss,ϕ2 6= 1 ∧

∧n
j=1 σsj =

αj)→
15 [rews,ϕ = R(si) +

∑
s′∈supp(α1)×...×supp(αn)

((
∏n
j=1 P (sj ,αj ,s

′
j)) ·

rews′,Rŝi
(ϕ1 U [0,k2−1]ϕ2)

)∧
16 (¬defs,ϕ ↔ [(

∨
s′∈supp(α1)×...×supp(αn)

¬defs′,P(ϕ1U [0,k2−1]ϕ2)
)∨

17 (holdss,ϕ2
= ⊥ ∧ rews,ϕ 6= R(si))])]);

18 else if k1 > 0 then
19 E := RewardBoundedUntil(M, ϕ = Rŝi(ϕ1 U [k1−1,k2−1]ϕ2), n);
20 foreach s = (s1, . . . ,sn) ∈ Sn do
21 E := E ∧ ((probs,ϕ′ 6= 1 ∨ ¬defs,ϕ′)→ ¬defs,ϕ);
22 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
23 E := E ∧ ((probs,ϕ′ = 1 ∧ defs,ϕ′ ∧

∧n
j=1 σsj = αj)→

24 [rews,ϕ = R(si) +
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
j=1 P (sj ,αj ,s

′
j)) ·

rews′,Rŝi
(ϕ1 U [k1−1,k2−1]ϕ2)

)∧
25 ((

∨
s′∈supp(α1)×...×supp(αn)

(¬defs′,ϕ))↔ ¬defs,ϕ)]);

26 return E;

is undefined and we do not know which is the case, we can only define the probability
clearly if both of these values are the same, i.e. 0. In the algorithm, this condition
is encoded in line 19. If holdss,ϕ1

and holdss,ϕ2
are both undefined, the probability

is always undefined (line 18). If the state satisfies ϕ1, but not ϕ2, the probability is
defined. Finally, if s satisfies ϕ1, but the satisfaction of ϕ2 is undefined, the probability
will only be defined if the calculation equals 1. The reasoning is similar as before: If
the state satisfied ϕ2, the probability would be 1, otherwise it would be calculated
from the successors. Since we do not know which is the case, we can only define the

30 HyperPCTL with Rewards

probability clearly if both values are the same, i.e. 1. This case is handled in line 20.
The last case is the one where k1 and k2 are both greater than 0. This case is

essentially a simplified version of the previous case: Since the satisfaction of ϕ2 will
not satisfy the formula unless k1 is 0, we can act as though ϕ2 is always unsatisfied
and simplify the formula appropriately, which results in lines 21-30.

Algorithm 10 encodes the semantics for the reward of bounded until formulas.
Structurally, this function is similar to Algorithm 9. For the case where k2 = 0,
the reward is defined and is the reward of the ith component of s if s satisfies ϕ2,
otherwise it is undefined.

1

holdss,ϕ2
= ⊥

1

holdss′,ϕ2
= 1

Figure 3.2: An example for undefined
rewards.

The case where k1 = 0, but k2 > 0 is
once again more complicated. If s satisfies
ϕ2, the reward is defined and is the reward
of the ith component of s, just like in the
previous case. Naturally, if the probability
of satisfying the until formula is lower than
1 or undefined, the reward will also be un-
defined. Furthermore, the reward will also
be undefined if the satisfaction of ϕ2 in s is
undefined, even if the probability of the until formula is still 1. Figure 3.2 exemplifies
why this is the case. Assume both states satisfy ϕ1 and the value in the nodes is
the relevant state reward. Evidently, the probability of satisfying ϕ2 eventually is 1.
However, if s satisfied ϕ2, vals,ϕ would be equal to its state reward, 1. If s did not
satisfy ϕ2, the reward would instead be equal to the sum of the state rewards of s and
s′, which is 2. Therefore, it is necessary for holdss,ϕ2 to be defined to have a clear

Algorithm 11: SMT encoding for the meaning of unbounded until formulas
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL unbounded until

formula of the form P(ϕ1Uϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function SemanticsUnboundedUntil(M, ϕ = P(ϕ1Uϕ2), n):
2 E := Semantics(M, ϕ1, n) ∧ Semantics(M, ϕ2, n);
3 foreach s = (s1, . . . ,sn) ∈ Sn do
4 E := E ∧ (holdss,ϕ2 = 1→ (probs,ϕ = 1 ∧ defs,ϕ));
5 E := E ∧ ((holdss,ϕ1

= 0 ∧ holdss,ϕ2
= 0)→ (probs,ϕ = 0 ∧ defs,ϕ));

6 E := E ∧ ((holdss,ϕ1
= 0 ∧ holdss,ϕ2

= ⊥)→ ¬defs,ϕ);
7 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
8 E := E ∧ ((holdss,ϕ1 6= 0 ∧ holdss,ϕ2 6= 1 ∧

∧n
i=1 σsi = αi)→

9 [probs,ϕ =
∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (si,αi,s

′
i)) · probs′,ϕ)∧

10 (probs,ϕ > 0→ (
∨
s′∈supp(α1)×...×supp(αn)

(holdss′,ϕ2
= 1 ∨ ds,ϕ2

>

ds′,ϕ2)))∧
11 (¬defs,ϕ ↔ [(

∨
s′∈supp(α1)×...×supp(αn)

¬defs′,ϕ)∨
12 (holdss,ϕ1

= ⊥ ∧ holdss,ϕ2
= ⊥)∨

13 (holdss,ϕ1
= ⊥ ∧ holdss,ϕ2

= 0 ∧ probs,ϕ 6= 0)∨
14 (holdss,ϕ1

= 1 ∧ holdss,ϕ2
= ⊥ ∧ probs,ϕ 6= 1)])]);

15 return E;

Model Checking Algorithm 31

Algorithm 12: SMT encoding for the reward of unbounded until formulas
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL unbounded until

formula of the form Rŝi(ϕ1Uϕ2); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function RewardUnboundedUntil(M, ϕ = Rŝi(ϕ1Uϕ2), n):
2 ϕ′ := P(ϕ1 U ϕ2);
3 E := true;
4 foreach s = (s1, . . . ,sn) ∈ Sn do
5 E := E ∧ (holdss,ϕ2

= 1→ (rews,ϕ = R(si) ∧ defs,ϕ));
6 E := E ∧ ((probs,ϕ′ 6= 1 ∨ ¬defs,ϕ′)→ ¬defs,ϕ);
7 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
8 E := E ∧ ((probs,ϕ′ = 1∧defs,ϕ′ ∧holdss,ϕ2

6= 1∧
∧n
j=1 σsj = αj)→

9 [rews,ϕ =
R(si) +

∑
s′∈supp(α1)×...×supp(αn)

((
∏n
i=1 P (sj ,αj ,s

′
j)) · rews′,ϕ)∧

10 (¬defs,ϕ ↔ [(
∨
s′∈supp(α1)×...×supp(αn)

¬defs′,ϕ)∨
11 (holdss,ϕ2

= ⊥ ∧ rews,ϕ 6= R(si))])]);

12 return E;

reward value. In any case other than those just mentioned, the expected reward of ϕ
in s will be the sum of the reward of the ith component of s and the expected value of
the reward for reaching a state satisfying ϕ2 within k2 − 1 steps from the successors
of s.

Like in the semantics for the probability formula, the case where k1 > 0 is es-
sentially a simplified version of the previous case where we can assume ϕ2 to be
unsatisfied in s.

Algorithm 11 encodes the semantics of an unbounded until formula. Like in the

Algorithm 13: SMT encoding for the cumulative reward after t steps
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL cumulative reward

formula of the form Rŝi(Ct); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function CumulativeReward(M, ϕ = Rŝi(Ct), n):
2 E := true

3 foreach s = (s1, . . . ,sn) ∈ Sn do
4 E := E ∧ (defs,Rŝi

(C0) ∧ rews,Rŝi
(C0) = R(si));

5 foreach k ∈ {1, . . . ,t} do
6 foreach s = (s1, . . . ,sn) ∈ Sn do
7 E := E ∧ defs,Rŝi

(Ck)
;

8 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
9 E := E ∧ ([

∧n
j=1 σsj = αj]→ rews,Rŝi

(Ck) = R(si) +∑
s′∈succ(s1)×...×succ(sn)((

∏n
j=1 P (sj ,s

′
j)) · rews,Rŝi

(Ck−1)));

10 return E;

32 HyperPCTL with Rewards

original algorithm, the semantics of an unbounded until formula are very similar to
those of a bounded until formula for the case where k1 = 0 and k2 > 0. The main
difference is once again the addition of line 10 which enforces that positive probabilities
can eventually be traced back to states that satisfy ϕ2.

Algorithm 14: SMT encoding for the instantaneous reward after t steps
Input: M = (S,Act,P,AP, L,R): MDPR; ϕ: HyperPCTL instantaneous

reward formula of the form Rŝi(It); n: number of state variables in ϕ.
Output: SMT encoding of ϕ’s meaning in the n-ary self-composition ofM.

1 Function InstantaneousReward(M, ϕ = Rŝi(It), n):
2 E := true

3 foreach s = (s1, . . . ,sn) ∈ Sn do
4 E := E ∧ (defs,Rŝi

(I0) ∧ rews,Rŝi
(I0) = R(si));

5 foreach k ∈ {1, . . . ,t} do
6 foreach s = (s1, . . . ,sn) ∈ Sn do
7 E := E ∧ defs,Rŝi

(Ik)
;

8 foreach α = (α1, . . . ,αn) ∈ Act(s1)× . . .×Act(sn) do
9 E := E ∧ ([

∧n
j=1 σsj = αj]→ rews,Rŝi

(Ik) =∑
s′∈succ(s1)×...×succ(sn)((

∏n
j=1 P (sj ,s

′
j)) · rews,Rŝi

(Ik−1)));

10 return E;

As was the case for the equivalent probability expression, the encoding for the re-
ward of unbounded until formulas seen in Algorithm 12 is very similar to the encoding
for bounded until formulas for the case k1 = 0 and k2 > 0.

Algorithm 13 shows the encoding for the cumulative reward within t steps. Since
this expression has been defined as syntactic sugar, it is not actually necessary to
encode it separately. However, it is a much simpler case than the equivalent until
formula, so adding a separate encoding for this expression can reduce the number of
variables and subformulas generated and improve the running time of the algorithm.
We simply sequentially define the cumulative reward for each step count starting from
0 until we have reached t. For 0 steps, the reward is simply the current state reward
(line 4). For k steps with k > 0, the reward is simply the current state reward added
to the expected cumulative reward within k − 1 steps of the successors (line 9). This

Algorithm 15: SMT encoding of the truth of the input formula
Input: M = (S,Act,P,AP, L,R): MDPR; Q1ŝ1. . . . Qnŝn.ϕ

nq: HyperPCTL
formula.

Output: Encoding of the truth of the input formula inM.
1 Function Truth(M,∃σ̂.Q1ŝ1. . . . Qnŝn.ϕ

nq):
2 foreach i = 1, . . . ,n do
3 if Qi = ∀ then Bi := ”

∧
si∈S ”;

4 else Bi := ”
∨
si∈S ”;

5 return B1 . . . Bn (holds(s1,...,sn),ϕnq = 1);

Model Checking Algorithm 33

reward is always defined, which makes this case comparatively simple.
Algorithm 14 shows the encoding for the instantaneous reward after t steps. This

algorithm is almost identical to Algorithm 13. The only difference is that the instan-
taneous reward after k > 0 steps is simply identical to the expected instantaneous
reward after k − 1 steps of the successors, without the addition of the current state
reward (line 9).

Algorithm 15 encodes the meaning of the state quantifiers for the SMT formula
that will be satisfiable exactly ifM satisfies the input formula. There are no major
changes to the original version presented in Chapter 2.

Algorithm 16: SMT encoding of the input formula not being definitely false
Input: M = (S,Act,P,AP, L,R): MDPR; Q1ŝ1. . . . Qnŝn.ϕ

nq: HyperPCTL
formula.

Output: Encoding of the input formula not being definitely false inM.
1 Function NotFalsehood(M,∃σ̂.Q1ŝ1. . . . Qnŝn.ϕ

nq):
2 foreach i = 1, . . . ,n do
3 if Qi = ∀ then Bi := ”

∧
si∈S ”;

4 else Bi := ”
∨
si∈S ”;

5 return B1 . . . Bn (holds(s1,...,sn),ϕnq 6= 0);

Algorithm 16 encodes the meaning of the state quantifiers for the SMT formula
that will be satisfiable exactly if M satisfies the input formula or the satisfaction is
undefined. The only difference to the previous function is that holds(s1,...,sn),ϕnq = 1
has been replaced with holds(s1,...,sn),ϕnq 6= 0, which means that it is not necessary for
the states to satisfy the formula, but that it is also fine if the satisfaction is undefined
instead. If the first generated SMT formula is satisfiable, the MDP M satisfies the
input formula, if the first formula is unsatisfiable, but the second one is satisfiable,
the satisfaction of the input formula for M is undefined, and if both formulas are
unsatisfiable,M does not satisfy the input formula.

34 HyperPCTL with Rewards

Chapter 4

Case Studies

In this chapter, we will present two case studies to exemplify possible applications
of HyperPCTL with rewards. These case studies are based on those presented in
[ÁBBD20], modified to make use of the new reward property added to HyperPCTL.

4.1 Timing Attack

1 void mexp(){
2 c = 0 ; d = 1 ; i = k ;
3 while (i >= 0){
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b(i) = 1)
7 c = c+1;
8 d = (d∗a) % n ;
9 }

10 }

Figure 4.1: Modular exponentiation algorithm

The security of cryptographic
systems is generally based on the
secrecy of certain information, like
encryption keys. If an attacker
was able to access this secret in-
formation, the security of the sys-
tem would be compromised. There-
fore, special care must be taken to
ensure that the cryptographic algo-
rithm does not leak any information
about the secret. One way this could
happen is if the execution time of
the algorithm is different depending
on the value of the secret. As an
example, RSA uses the modular ex-
ponentiation algorithm to compute ab mod n, where a is the message and b is the
encryption key. An implementation of this algorithm is shown in Figure 4.1. This
implementation is flawed, however: The if in line 6, which checks whether the cur-
rent bit of b is 0 or 1 does not have an else branch, so the execution of the algorithm
will take longer if b contains more 1-bits. An attacker could therefore measure the
execution time of the algorithm to derive the number of 1-bits in the encryption key.
This is known as a timing attack. To prevent such vulnerabilities, we would like the
execution time to be independent of the encryption key. We can represent this pro-
gram in an MDPR by letting states represent the current position in the code as well
as the current loop iteration. We represent the encryption key b by letting the two
branches of the if -statement be entered with two nondeterministic actions. Thus, the
value of the encryption key b will correspond to the chosen scheduler. The addition
of rewards allows us to model execution time fairly easily: If we assign every state a

36 Case Studies

constant reward of 1, the reward on two paths from the initial state to the end state
will be the same if and only if the paths contain the same number of states and their
execution time will be the same. Ideally, every encryption key should have the same
execution time, so the desired property is for the algorithm to satisfy the following
HyperPCTL formula:

∀σ̂1.∀σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2). (initŝ ∧ initŝ′)→ (Rŝ(♦endŝ) = Rŝ′(♦endŝ′))

If the model satisfies the formula, any two schedulers, i.e. encryption keys will have the
same reward, i.e. execution time for the algorithm. If it does not satisfy the formula,
we can derive encryption keys with differing execution times from a non-satisfying
pair of schedulers.

4.2 Probabilistic Conformance

We will consider the example of a 6-sided die. We are interested in simulating the
behavior of this die by repeatedly throwing a coin. It is possible to model this problem
with MDPs and HyperPCTL such that a satisfying scheduler for a certain formula
describes an algorithm for simulating the 6-sided die with repeated coin tosses. The
first part of the model will have an initial state and six absorbing states, each of
which represents one result of the die and is entered with probability 1/6. This
part models the die. The second part, which models the coin-tossing, includes six
absorbing states for the outcomes as well as a given maximal number of states. For
each choice of two successor states, a state will have an action that transitions into
each of these states with probability 1/2 to model a coin toss. The choice of scheduler
therefore decides which two states each state will transition into and this way defines
an implementation. The following formula describes if the two parts of the model
conform to each other probabilistically:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).dieinitŝ →

(
coininitŝ′ ∧

6∧
l=1

(P(♦(die = l)ŝ) = P(♦(die = l)ŝ′))

)

A scheduler for which this formula is satisfied describes a coin-implementation such
that the probability of each result is the same as in the die model. Extending this
model with rewards also allows us to synthesize efficient implementations: If we give
every state except the absorbing states a reward of 1, the expected reward until
reaching one of the absorbing states will be equal to the expected number of coin
tosses in that implementation. If we add the condition that the reward must be below
a certain value x, the formula will only be satisfied by a scheduler corresponding to an
algorithm where the expected number of coin tosses is below x. The following formula
for instance specifies that the expected number of coin tosses in the implementation
must be less than 4:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).dieinitŝ →

(
ϕ ∧Rŝ′(♦(

6∨
l=1

(die = l)ŝ′)) < 4

)

with ϕ = coininitŝ′ ∧
6∧
l=1

(P(♦(die = l)ŝ) = P(♦(die = l)ŝ′)).

Implementation 37

Experiment Encoding Solving Total SMT Sub- States Tran-
time(s) time(s) time(s) vars formulas sitions

1-bit TA 0.11 0.01 0.12 344 1008 8 10
2-bit TA 0.22 0.01 0.23 708 2016 12 16
3-bit TA 0.38 0.03 0.41 1200 3344 16 22
4-bit TA 0.61 0.06 0.67 1820 4992 20 28
1-state PC 5.03 2.03 7.06 7281 34681 20 186
3-state PC 6.66 8.91 15.57 7281 61631 20 494
5-state PC 8.82 35.0 43.82 7281 88581 20 802
7-state PC 11.64 53.05 64.69 7281 115531 20 1110

Table 4.1: Results of the experiments. TA is Timing Attack, PC is Probabilistic
Conformance.

4.3 Implementation
We have modified the implementation of the algorithm presented in Chapter 2 that
was mentioned in [ÁBBD20] to support reward properties. The implementation was
written in Python and makes use of the libraries Lark [Lar] for parsing the input
formula and Stormpy [Sto] for storing the input MDP. The generated formula is solved
with the SMT solver Z3 [MB08]. The extension of the algorithm is not complete, as it
cannot handle undefined values correctly yet, but the case studies have been designed
such that this does not pose a problem.

For the timing attack case study, we have modeled the problem with 1, 2, 3 and 4
bit encryption keys. Since the HyperPCTL formula for the property has two scheduler
quantifiers while the algorithm was only defined for one algorithm, we have added
a second copy of the model to the input MDPR such that the single scheduler can
assign different actions to the states in the two copies of the model.

For the case study on probabilistic conformance, we have limited number of states
to 7. The first experiment fixed the actions for 6 of those states and only allowed the
scheduler free choice for the first state. Each successive experiment gave the scheduler
a choice of actions in two additional states until the final experiment, which allows any
implementation with 7 states. We have limited the expected number of coin tosses to
4.

Table 4.1 lists the results of the experiments. The experiments have been per-
formed in a Docker container running on a laptop with a 2.80 GHz i7 CPU and 16
GB of RAM. Because of the incomplete implementation of undefined values, which
would add a significant number of additional subformulas and variables, these values
are lower than they would normally be. The simple time attack example can be solved
in a very short time, but we can already see that more complicated examples with
many actions will have very long running times.

38 Case Studies

Chapter 5

Conclusion

5.1 Summary

In this thesis, we have discussed hyperproperties with rewards. First, we have intro-
duced important preliminary concepts such as DTMCs as a model for probabilistic
systems as well as MDPs, which allow nondeterminism. This nondeterminism can
be eliminated with the use of schedulers to induce DTMCs in an MDP. We have
also introduced the temporal logic HyperPCTL which was designed to reason about
hyperproperties in MDPs. We have also introduced a model checking algorithm for
HyperPCTL restricted to non-probabilistic, memoryless schedulers.

After that, we have added reward properties: We have extended the DTMC and
MDP models with state rewards so that we could add a reward operator to HyperPCTL
and reason about the reward of paths in the MDPR. We have also modified the original
model checking algorithm to support the new reward property as well as undefined
values.

Finally, we have presented two case studies to exemplify possible uses of HyperPCTL
with rewards. The timing attack case study showed that rewards make it very easy
to model certain hyperproperties, while the case study on probabilistic conformance
gave an example of using rewards to add performance constraints to models.

5.2 Discussion

As the case studies show, rewards can be very useful to easily model certain properties
like the execution time of a program. Other use cases for rewards could include energy
consumption of systems or path costs in robotics. We can conclude that the extension
of HyperPCTL with rewards has a number of practical applications. However, we note
that the undefined values that can occur due to the addition of rewards increase
the complexity of the algorithm by adding a number of variables and constraints.
This means that the running time of the model checking algorithm could increase
significantly, even in formulas where no rewards occur. It is therefore likely preferable
to use the original algorithm if rewards are not needed.

40 Conclusion

5.3 Future work
There are several possibilities for future work. We have only discussed state rewards
in this thesis. It would be possible to also assign rewards to the transitions of an MDP
and extend the Semantics of HyperPCTL to include these transition rewards. Naturally,
this would also require further modifications to the model checking algorithm.

Another possibility concerns the handling of undefined values: Consider Figure
5.1. With the current implementation, the probability of finally reaching a state that
satisfies ϕ from s is undefined. The formula P(♦ϕ) ≥ 0.5 would have an undefined
value in s0. However, we can see that one of the two successors of s0 satisfies ϕ.
Therefore, regardless of the satisfaction of ϕ in s2, the probability in s0 would always
be at least 0.5. A possibility for future work would be to extend the algorithm such
that we give upper and lower boundaries for undefined arithmetic values. That way,
we could assign clear satisfaction values to formulas that have undefined values in the
current implementation.

s0 holdss0,ϕ = 0

s1

holdss1,ϕ = 1

s2

holdss2,ϕ = ⊥

0.5

0.5

1

1

Figure 5.1: Example for undefined values.

Bibliography

[ÁB18] Erika Ábrahám and Borzoo Bonakdarpour. HyperPCTL: A temporal logic
for probabilistic hyperproperties. In Annabelle McIver and Andras Hor-
vath, editors, Quantitative Evaluation of Systems, pages 20–35, Cham,
2018. Springer International Publishing.

[ÁBBD20] Erika Ábrahám, Ezio Bartocci, Borzoo Bonakdarpour, and Oyendrila
Dobe. Probabilistic hyperproperties with nondeterminism. In Dang Van
Hung and Oleg Sokolsky, editors, Automated Technology for Verification
and Analysis, pages 518–534, Cham, 2020. Springer International Publish-
ing.

[CS08] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In 2008 21st
IEEE Computer Security Foundations Symposium, pages 51–65, 2008.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy, pages 11–11, 1982.

[HJ95] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6, 02 1995.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, edi-
tors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[Lar] Lark. https://lark-parser.readthedocs.io. [Accessed 30-July-
2021].

[MB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
TACAS’08/ETAPS’08 Proceedings of the Theory and practice of software,
14th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, 2008.

[Sto] Stormpy. https://moves-rwth.github.io/stormpy/. [Accessed
26-July-2021].

https://lark-parser.readthedocs.io
https://moves-rwth.github.io/stormpy/

	Introduction
	Preliminaries
	Discrete-time Markov Chains
	Markov Decision Processes
	HyperPCTL
	HyperPCTL Model Checking

	HyperPCTL with Rewards
	MDPs with Rewards
	Syntax & Semantics
	Model Checking Algorithm

	Case Studies
	Timing Attack
	Probabilistic Conformance
	Implementation

	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

