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Abstract

Parameter synthesis raises the question of which parameter values lead to
the satisfaction of a logical formula. To directly address this problem we do not
want to know if a logical formula is satisfying or unsatisfying but instead, we
are interested in which combination of parameters satisfy or does not satisfy the
formula. This is especially interesting for satis�ability modulo theories (SMT)
solving when considering speci�c intervals for di�erent parameters. The problem
with nonlinear real arithmetic is to �nd solutions or counterexamples in systems
of equalities or inequalities. Combining both problems leads to a satis�ability
problem of high theoretical interest. This thesis presents a Python-based tool
to �nd and visualize satisfying (safe) and unsatisfying (unsafe) regions of the
parameter space on nonlinear real arithmetic (NRA).
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Chapter 1

Introduction

The tool developed during this thesis, namely PaSyPy, uses parameter synthesis to
�nd satisfying (safe) and unsatisfying (unsafe) regions of the parameter space for a
logical formula. This is done with satis�ability modulo theories (SMT) solving on
nonlinear real arithmetic (NRA) formulas, with addition of a given domain for every
parameter.

This tool goes through three basic steps:

� Satis�ability modulo theories (SMT) solving on nonlinear real arithmetic (NRA).

� Adding boundaries to the parameters tackling the parameter synthesis problem.

� Visualizing the found safe (green) and unsafe (red) regions.

The combination of all these steps is already what makes this tool unique and stand
out from other tools and is discussed more in Section 5.4.

1.1 Related Work

While there are several tools and techniques available for satis�ability modulo theories
(SMT) solving, only a small part of them is capable of proving whole regions as safe or
unsafe. To realize this, we need to add boundaries to our parameters represented by a
box, being the Cartesian product of intervals, one for each parameter. Often not taken
into consideration is the parameter synthesis problem which is described in Section 2.3.
An approach on parameter synthesis for Markov models was done in [2][3], where
a tool was introduced, namely PROPhESY [4], for analyzing parametric Markov
chains. As an input PROPhESY expects a rational function which is a fraction
of two polynomials representing model parameters. This rational function is then
computed to �nd satisfying (safe) and unsatisfying (unsafe) regions which can then
be visualized with the help of a featured web front-end. Di�erent to PROPhESY
instead of a rational function, our tool expects a logical formula with parameters on
nonlinear real arithmetic.
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Because quanti�er elimination is automatically performed by the underlying solver
we used, i.e., the z3 theorem prover [5] and its Python interface, we can not guaran-
tee its correctness nor its e�ciency and will mostly stick to quanti�er-free nonlinear
real arithmetic (QF NRA), even though our tool was able to solve formulas con-
taining multiple quanti�ers. The goal of this thesis is to develop and implement a
pure Python-based tool, which uses satis�ability modulo theories (SMT) solving for
nonlinear real arithmetic to �nd safe and unsafe regions with consideration of the
parameter synthesis problem.

1.2 Outline

In this thesis, a Python-based tool named PaSyPy was developed, which uses param-
eter synthesis to �nd safe and unsafe regions of the parameter space.

Chapter 2 introduces the underlying theoretical and technical background of this
tool, necessary for an understanding of how this tool works and what it can be used
for.

Chapter 3 summarizes the underlying problems and explains the methodology
especially the algorithms used by this tool to solve these problems.

Chapter 4 is dedicated to this tool, speci�cally all functionalities, the graphical user
interface (GUI), the currently supported solvers, how this tool is validated, a manual
for installation and usage and known challenges that appeared during development
with problems and potential solutions.

In Chapter 5 other tools are considered and compared with their functionality and
performance.

In Chapter 6 this tool is tested on various benchmarks. We will use di�erent logic
and theories to illustrate the tool's capabilities and to verify that this tool provides
the correct results. We will analyze the time needed by the solver to �nd the safe and
unsafe regions and the time needed to visualize the graph. Di�erent parts of this tool
will be considered here. Also at some point, all currently implemented heuristics are
used and compared to each other. To complete the case study we will use our tool on
di�erent benchmarks from SMT-LIB [6].

The last Chapter 7 summarizes the perception obtained after developing this tool
and also gives a quick outlook on how this tool can be further extended and improved.



Chapter 2

Preliminaries

This chapter provides the basic knowledge and background necessary to understand
how this tool works.

2.1 Real Arithmetic

Real arithmetic, often also known as nonlinear real arithmetic (NRA) is a �rst-order
logic theory (R, +, ·, 0, 1, <) over the real numbers (R) together with addition (+),
multiplication (·) and the comparison operator smaller (<). [7, Ch. 2]

The syntax of real algebra is de�ned as follows:

Terms: t ::= 0 | 1 | x | t+ t | t · t
Constraints: c ::= t < t
Formulas: ϕ ::= c | ¬ϕ | ϕ ∧ ϕ | ∃xϕ

where x ∈ Var(ϕ) is a variable.

As syntactic sugar, additional relations and boolean functions can be derived based
on the already de�ned operators, such as (t1 ≤ t2), (t1 = t2), (t1 6= t2), (t1 ∨ t2), etc.

Nonlinear real arithmetic (NRA) is a theory that may contain nonlinear con-
straints, i.e., constraints or more speci�cally polynomials p with degrees larger than
one. We are most interested in quanti�er-free nonlinear real arithmetic (QF NRA),
which are all formulas without quanti�ers. Note that our tool also allows using quan-
ti�cation and was able to solve such formulas.

A term is a coe�cient a ∈ R times a monomial. A monomial is a product of
variables {x1,...,xm} with non-negative exponents e. A sum of terms is then called
a polynomial p, which we can rewrite in quanti�er-free nonlinear real arithmetic
(QF NRA) as follows:

p :=

n∑
i=0

ai ·
m∏
j=1

x
eij
j
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Free and Bound Variables

Free variables are all variables that are not bound by any quanti�er. In contrast, a
variable can be bound by a quanti�er to a speci�c domain or universe.

Free : (x > 0.25) ∧ (x < 0.75)

Bound : ∃x((x > 0.25) ∧ (x < 0.75))

If the quanti�er is in the outer scope it bounds the inner scope variables. Quanti�ers
in an inner scope cannot bound variables from an outer scope. Note that the same
variable in a formula can be both bound and free, e.g., (x > 0.25) ∧ ∃x(x < 0.75)
where x is both bound and free. Our parameters are exactly all free variables. Bound
variables are internally considered in the solving process but we are not interested in
their values.

Satisfaction Relation

The problem with nonlinear real arithmetic is to �nd solutions or counterexamples
in systems of equalities or inequalities. This means that to satisfy a formula in
nonlinear real arithmetic we have to �nd a combination of all parameters that satisfy
the system of equalities or inequalities. Such system can consist of multiple equalities
or inequalities that are connected by logical connectors:

And : ∧
Or : ∨

The formula satis�es if and only if we �nd a combination of values for our parameters
so that all clauses connected by ∧ hold and at least one clause connected by ∨ holds.

Hyperrectangle

Because we want to address the parameter synthesis problem (see Section 2.3), we
have to restrict all parameters which are all free variables. For this, every parameter
is restricted by a closed interval which includes the borders:

[a, b] = {x ∈ R | a ≤ x ≤ b}

where a, b ∈ R. A hyperrectangle or a box is the Cartesian product of intervals where
each interval is assigned to a di�erent parameter. We then get a multidimensional
rectangle with one interval for each unique parameter.
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2.2 Satis�ability Modulo Theories

The boolean satis�ability problem or propositional satis�ability problem (SAT) is the
most basic form of satis�ability problems and checks a single boolean formula ϕ for
satis�ability. SAT is the �rst problem proven to be NP-complete by Cook [8] and
Levin [9]. That implies several decision and optimization problems being at most
as di�cult to solve as SAT. Therefore this problem is of theoretical importance and
provides a central starting point for most problems.

An extension to the basic boolean satis�ability problem (SAT) is the satis�ability
modulo theories problem (SMT) which is a decision problem based on �rst-order
logic with respect to a given theory, e.g., NRA as de�ned in Section 2.1. This means
that single constraints are connected by logical operators, i.e., the operators de�ned
in Section 2.1. SMT-LIB (see Section 2.4) describes a large part of those theories.
Di�erent from the satis�ability modulo theories problem (SMT) where exact values
are checked for di�erent variables, PaSyPy checks a whole interval of values for all
variables yielding areas classi�ed into three di�erent categories which are described
in Section 3.2.

Based on the theory and logic used there are two di�erent approaches for solving
satis�ability modulo theories (SMT) problems. [10, Ch. 3]

Eager SMT Solving

The eager approach is commonly used for theories whose formulas can be naturally
encoded in propositional logic. It is well-suited for the theories of quanti�er-free linear
integer arithmetic (QF LIA), bit-vector arithmetic and uninterpreted functions. The
eager SMT solving approach is similar to the polynomial reduction where a problem
gets reduced to a problem with an already known solution. For this, all formulas from
a given logic are transformed to satis�ability-equivalent propositional logic formulas
which are then checked by basic SAT-solvers for satis�ability.

Because we are mostly interested in nonlinear real arithmetic (NRA) logic where the
eager approach is not very e�ective, we need to follow another approach for SMT
solving.

Lazy SMT Solving

The lazy approach is more powerful than the eager approach and combines a basic
SAT-solver with a theory-solver. The basic architecture needed for SMT solving
is shown in Figure 2.1. The input formula ϕ over some logic is abstracted to a
boolean formula which is processed by a SAT-solver. Here every theory constraint is
represented by a boolean variable. The SAT-solver provides a partial solution which
is then further processed by a special theory solver that is suited for the used logic.
The theory solver checks the given Boolean solution for consistency in the theory and
returns the answer to the SAT-solver which is either sat with a solution or unsat with
an explanation. Before returning an unsat solution the theory solver tries to re�ne
its abstraction to return a proper explanation which the SAT-solver uses to search
for further solutions. The SAT-solver �nally returns whether the given formula is
sat or unsat. Our tool adds a box B to the original input formula ϕ which assigns
boundaries for each parameter.
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Figure 2.1: Basic architecture for SMT solving

Incremental Approach

An incremental approach in satis�ability modulo theories (SMT) solving tries to re-
duce overall solving cost by grouping similar constraints together. Also on incremental
solving the solver can take advantage of previous queries. The z3 theorem prover [5]
can automatically apply incremental solving. Our tool gives the formula to the solver
and the negated formula to the other solver once at the beginning and then only
changes the interval borders for our parameters. Resetting the whole formula on ev-
ery step yields a much worse performance compared to the incremental approach of
only changing the boundaries.
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2.3 Parameter Synthesis

Parameter synthesis raises the question of which parameter values lead to the sat-
isfaction of a logical formula. To directly address this problem we do not want to
know if a logical formula is satisfying or unsatisfying but instead, we are interested in
which combination of parameters satisfy or does not satisfy the formula. This means
that for the parameter synthesis problem all parameters with all their possible values
have to be taken into consideration. Each parameter represents a property inside the
overall system. Often the parameter synthesis problem tries to �nd optimal solutions
which we are not interested in here. The feasible area shows the combination of val-
ues for all parameters which satisfy the given formula. In contrast, the infeasible area
shows the combination of values for all the parameters which do not satisfy the given
formula.

Solving parameter synthesis is hard to realize since this problem is not trivial by
having a potentially in�nite number of di�erent combinations with capable depen-
dencies. There are di�erent approaches to solving the parameter synthesis problem.
Most approaches have been developed for Markov models as explained in [2].

One iterative approach which we will use here to solve the approximate synthesis
problem is parameter space partitioning. [2, Ch. VIII] An exact synthesis problem
would mean that we get a complete solution including all possible values for all pa-
rameters which is not possible for most nonlinear real arithmetic formulas because
of having a potentially in�nite number of di�erent combinations. Therefore, instead
of giving all possible values, we approximate the solution space. The approximation
happens on the borders between satisfying (safe) and unsatisfying (red) regions where
each iteration re�nes closer to the borders. We start with the complete region which
is represented by an interval for each parameter. In case this region contains both
safe (green) and unsafe (red) regions, it is split into one or more smaller sub-regions
such that all sub-regions together cover the whole domain. This is recursively done in
a way that each new sub-region is processed inside a queue using the FIFO principle
(First In - First Out) to ensure that all regions are split to an equal depth. A region
is complete and not further split when it either contains only safe (green) or unsafe
(red) areas.

The problem and the approach are described in more detail in Chapter 3.

2.4 SMT-LIB

Satis�ability Modulo Theories LIBrary is an interface language or �le format for
describing SMT problems. The main intention with SMT-LIB was to assist the
development and research in the �eld of SMT solving. SMT-LIB supports many
di�erent logics over many di�erent theories. We are mainly interested in nonlinear
real arithmetic (NRA), which PaSyPy operates on. Our tool is able to read constraints
from .smt2 �les and also save constraints back to .smt2 �les. SMT-LIB includes over
100.000 benchmarks classi�ed into all di�erent logics. All examples contained in this
paper are either parsed from self-created SMT-LIB �les which can be found on the
project's page or were found on the o�cial SMT-LIB benchmark repository. Figure 2.2
shows an example .smt2 �le. [6]
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(set-logic NRA)
(set-info :source | Produced by Alexander Wiegel |)
(set-info :smt-lib-version 2.0)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (exists ((z Real))

(and
(>= x 0.5)
(>= y 0.5)
(> z x)
(< z y)

)
)

)
(check-sat)

Figure 2.2: Example .smt2 �le

2.5 Python

PaSyPy is written in Python, a high-level general-purpose programming language.
Python was �rst released in 1991 and is today one of the most popular programming
languages. The main characteristics of Python are easy syntax and code readability
which both increase the maintainability of code. One big advantage of Python is the
several libraries available which this tool also takes advantage of. The used packages
are:

� z3 [5] and its Python interface Z3Py for every solver related action.

� tkinter [11] for the complete graphical user interface (gui).

� matplotlib [12] for plotting satisfying (safe) and unsatisfying (unsafe) regions.

� scikit-learn [13] which uses numpy [14] arrays �lled with all satisfying (safe)
and unsatisfying (unsafe) regions to create an approximation curve known as
Large Margin Classi�er by regression to separate the regions.

We use Python 3 [15] which is the most recent version and an extension to the original
Python.



Chapter 3

The Synthesis Algorithm

With this tool, we try to tackle the parameter synthesis problem on nonlinear real
arithmetic (NRA). More precisely we want to �nd and prove as much of the whole
parameter space as feasible or infeasible as possible in a relatively short and e�cient
time. PaSyPy tries to solve this problem by separating all satisfying (safe) and
unsatisfying (unsafe) regions for all possible combinations of parameters. We will
separate the implementation into three parts:

� The general procedure on how safe and unsafe regions are found and proven.

� Splitting regions into smaller sub-regions.

� Optimize performance by sampling.

This method is speci�ed in Algorithm 1. First an optional pre-sampling is performed.
Then the queue Q which initially contains the complete region represented by intervals
for every parameter is processed. The �rst element of the queue Q is analyzed whether
it is a safe (green), an unsafe (red) or an unknown (white) region. In case it is an
unknown (white) region it is split into smaller sub-regions which are then appended
to the queue Q. An optional sampling before every split is possible to increase the
e�ciency of splitting. This procedure is repeated until the queue Q is either empty
or a pre-de�ned depth is reached.

3.1 Find Safe and Unsafe Regions

When we look at single points inside a box B, every point is either satisfying or
unsatisfying. For the parameter synthesis problem, we do not want to analyze single
points but whole regions to get the feasibility area of the parameter space. To realize
this, we replace the single point which is represented by a coordinate consisting of
a number for every parameter, with an interval for every parameter. Each region
then consists of an in�nite amount of points based on the accuracy of the numbers,
e.g., if we have the border 0.1 for x and the previous candidates 0.09 and 0.11 found
by our solver, we then approach this border by re�ning the approximation on each
step 0.09 > ... > 0.1 < ... < 0.11 where the dots represent a more re�ned number
between the border 0.1 and the previous candidates. Because we are in the range of
real numbers R, the re�nement of the approximation yields an in�nite number of new
candidates.
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The formula has one or multiple clear borders based on all contained constraints
which divide the feasible and infeasible area. If the original region which is our starting
box B contains both feasible and infeasible areas it is impossible to get a solution for
the whole area with every combination of possible parameter values, but we can get
a solution for a major part of it (approximately 90%+) in a matter of seconds.

Algorithm 1 General procedure for �nding safe and unsafe regions
Input: ϕ . ϕ is the logical formula

Input: Q := [B] . B is a box with an interval for each pa-
rameter and a depth that represents the
number of splits

Output: G, R . Set of all safe (green) and unsafe (red) re-
gions

G := [ ] . The satisfying (safe) regions

R := [ ] . The unsatisfying (unsafe) regions

(optional: pre-sample)
while (Q is not empty) AND (Q[0].depth ≤ DEPTH_LIMIT) do

. Q[0] is the next box inside the queue,
here we check if the global depth limit
was reached

if ϕ ∧B sat then
if ¬ϕ ∧B sat then

(optional: sample)
Split B and append to Q . Depth on B is multiplied by the number

of new boxes
else

G.append(B) . B is safe (green)

end if
else

R.append(B) . B is unsafe (red)

end if
Q.pop(0)

end while

The algorithm to �nd safe and unsafe regions of the parameter space uses a satis�-
ability modulo theories (SMT) solver to not only analyze single points for satis�ability
but whole regions. For this as input, the algorithm gets the formula together with a
box B which is represented by an interval for each parameter and a depth. The result
either yields sat or unsat for the whole region. If the result is unsat, the whole region
does not contain a single solution. This region is called unsafe and is represented by
a red color. If the result is sat, the whole region contains at least one feasible solution
but it is unclear if the region also contains infeasible solutions. To di�erentiate if the
area also contains infeasible solutions this time the original formula from the input
is replaced by a counterexample which is the negated version of this formula. If the
result is unsat, the whole region exclusively contains feasible solutions. This region is
called safe and is represented by a green color. Should both steps result in sat, the
region contains both safe and unsafe areas which means there is both a feasible and in-
feasible solution inside this region. This region is called unknown and stays white just
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as in the beginning. To extract the safe (green) and unsafe (red) areas of an unknown
(white) region another algorithm is used which we call Splitting (see Section 3.2).

Correctness

On the �rst step, the underlying solver internally proves if a solution for the formula
within the given region exists which can be written as ϕ∧B. If not then this is already
evidence for this region to be unsafe (red) which means that all counterexamples or
the negated formula hold in a given region B. On the other hand, if a solution
exists, this does not mean that the formula on a given region holds for all values.
Therefore we try to �nd a counterexample by checking the satis�ability of ¬ϕ ∧ B.
If no counterexample exists this is evidence for this region to be safe (green) which
means that the formula holds on all values in a given region B. In the third case, the
formula on the given box B contains both a solution and also a counterexample where
we have to split the region into smaller sub-regions. This proof is done recursively on
all sub-regions.

3.2 Splitting

When trying to �nd safe and unsafe regions of the parameter space there are three
di�erent outcomes:

� If the formula on viewed area is sat and the negated formula is not sat, the
area is considered safe (green).

� If the formula on viewed area is not sat, the area is considered unsafe (red).

� If the formula on viewed area is both sat and the negated formula is sat, the
area contains both safe and unsafe regions (white).

In the last case, the viewed area has to be split into smaller regions. Splitting is really
important in terms of performance, especially when regarding multiple parameters.
Unfortunately because of the nature of constraints with real arithmetic logic, �nding a
good splitting heuristic is not trivial. Therefore this tool provides di�erent heuristics
for splitting unknown (white) regions. Figure 3.1 shows the general procedure when
splitting is applied. In the activity diagram, B is the current box, ϕ is the formula,
G are the safe (green) areas and R are the unsafe (red) areas. The initial box B
is the whole parameter space which can be set individually for each parameter. By
default this is set to [0.0,1.0] ∈ R for every parameter. All satisfying (safe) regions are
appended to the solution set G and all unsatisfying (unsafe) regions are appended to
the solution set R. If the area is unknown meaning it both contains satisfying (safe)
and unsatisfying (unsafe) regions, this area is split by the pre-selected split heuristic.
This splits the original area into smaller sub-areas which are then added to the queue.
The queue is traversed until it either is empty or the selected accuracy or depth limit
is reached.
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Figure 3.1: Activity diagram showing the general procedure of splitting

This tool uses an incremental approach which means that the main constraints
from the formula are inserted once at the beginning and then only the interval bound-
aries are updated at each iteration. The incremental approach yields a huge perfor-
mance lead over the non-incremental approach.

While all heuristics di�er at some point, they all have two characteristics in com-
mon:

1. Always at the beginning the complete parameter space is taken into considera-
tion.

2. All heuristics can use sampling (see Section 3.3) to determine in which dimension
and where to split.

Currently PaSyPy provides four di�erent heuristics:

Default

The Default heuristic splits every box in exactly 2dimensions boxes. I.e., for 2 dimen-
sions 22 = 4 boxes, for 3 dimensions 23 = 8 boxes and for 4 Dimensions 24 = 16 boxes
on every split.

Without sampling, it uses the middle point in every dimension as the point for
splitting, yielding equally large boxes.

This heuristic was also used in [2, Ch. VIII: Equal splitting]
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Simple

The Simple heuristic splits every box into two boxes, starting with the �rst dimension
and iterating through all. I.e., the �rst cut is on the x-axis, the second cut on the
y-axis, the third cut on the z-axis. To know which dimension we have to split next
we use a counter modulo NUMBER_OF_PARAMETERS.

Without sampling it splits every dimension in the middle, yielding two equally
large halves.

Extended

The Extended heuristic �rst gets a model for a white box. This is usually the �rst
matching point found by the underlying solver. Then this heuristic checks, if splitting
on the found point is possible, i.e., the point must not lie on the border. Otherwise
the Default heuristic has to be used. In general, this heuristic operates similar to the
Default heuristic with the di�erence, that no �xed point is used but the underlying
solver is exploited to �nd an appropriate point. This is also the main problem of this
heuristic as we do not have any in�uence on which point is found by the underlying
solver. We tried to convert this into an optimization problem where we take the
minimum or maximum found value for our parameters but this turned out to be only
possible on formulas containing really easy constraints.

Random

The Random heuristic operates like the Default heuristic but chooses a random point
between the interval on every dimension.

With sampling, it chooses a random point for splitting on the sampled area.

Other Heuristics

Because we examine on the whole region if the original formula is satisfying and also
if the negated formula is satisfying, we get a model for both a satisfying point and also
for an unsatisfying point. We tried to use those points as starting points to separate
the satisfying and unsatisfying regions. The problem was again the underlying solver
which could not �nd good points reliably. Also, the solver did not �nd the same exact
points on every program execution for the exact same formula.

Correctness

The correctness of splitting is trivial and ful�lled if the new split sub-regions all
together form back the original region. Therefore splitting can only be incorrect if it
either adds a new area or dismisses the area from the original region which is not the
case for this tool.
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3.3 Sampling

Combining the general logic for �nding safe and unsafe regions of the parameter space
together with di�erent splitting heuristics is already enough and leads to a solution
where it �nds satisfying and unsatisfying regions. Based on how the formula �ts the
used splitting heuristic, this solution and the time taken for computing might not be
optimal or very e�cient. For this we will use a method called sampling to get better
candidates for splitting.

Because the complexity of a constraint matters we can separate the problem of
sampling into two smaller problems, which we will call sampling on easy constraints
and sampling on composed constraints.

Sampling on Easy Constraints

A formula can have a possibly in�nite number of dimensions where each dimension
represents one parameter. Each parameter introduces a new edge which is repre-
sented by an interval in R. An easy constraint is a constraint of the form param-
eter {≥ , ≤ , > , < , = , 6=} a and a ∈ R. We name those constraints easy because
such constraints separate the feasible and infeasible regions exactly on the edge of
this parameter. This can easily be sampled as soon as the formula is given. We call
this method Pre-Sampling. For this, we �rst extract all constraints classi�ed as easy
from the formula.

We have three di�erent classes which sample slightly di�erent:

� {≥ , <}, which results in three intervals [..., a− ε], [a− ε, a], [a, ...].

� {> , ≤}, which results in three intervals [..., a], [a, a+ ε], [a+ ε, ...].

� {= , 6=}, which results in three intervals [..., a− ε], [a− ε, a+ ε], [a+ ε, ...].

where ε ∈ R is a pre-de�ned low number, a ∈ R the number from the constraint and
the mid-interval is a relatively small gap between accepting and rejecting regions.

Having such constraint, the a�ected interval can be split into three new intervals
with two bigger intervals and one very small interval in between those intervals be-
having like a gap. E.g., if we have the constraint x ≥ 0.5 for x in the interval [0.0,
1.0], with Pre-Sampling we get the new intervals [0.0, 0.5-ε], [0.5-ε, 0.5] and [0.5, 1.0]
for the parameter x and a low number ε (e.g., 0.0001). Usually, we would split the
interval inside our box into two intervals [0.0, 0.5] and [0.5, 1.0] on this dimension.
While [0.5, 1.0] is an accepting region for the constraint x ≥ 0.5, [0.0, 0.5] contains
both accepting and rejecting regions because the interval contains the border 0.5.
Therefore, we introduced a small gap where [0.5, 1.0] is an accepting region, [0.0, 0.5-
ε] is a rejecting region and [0.5-ε, 0.5] is an unknown region that can then be further
processed and split. With this method, we can extract most accepting and rejecting
regions with a relatively small remaining unknown region. The algorithm is de�ned
in Algorithm 2.



3.3. Sampling 23

Algorithm 2 Pre-Sampling
Input: SIMPLE := [[Var, [[Op, Num],...]],...] . An array of arrays sorted by pa-

rameters (Var) with all inserted
easy constraints �ltered by op-
erator and number of the con-
straints

Input: Q := [B] . B is a box with an interval for each parameter and a depth
that represents the number of splits

Output: Q . The queue containing all newly sampled elements

ε = 0.001 . Smallest factor to use since solver crashes on lower numbers

for index, parameter in enumerate(SIMPLE) do . Iterate through all parameters

for candidate in parameter[1] do . Iterate through all easy con-
straints of a parameter

delete = 0
for queue_index, element in enumerate(Q[:]) do

. Iterate through all queue elements where the queue is
copied so we do not get any problems in the process

if . Check if the border of the easy constraint is inside the
element of the queue

(candidate[1] ≥ queue[index][0]) and
(candidate[1] ≤ queue[index][1]) then

if candidate[0] in {≥ , <} then . [..., a− ε], [a− ε, a], [a, ...]
pre_sampling.append(

[queue[index][0], candidate-ε],
[candidate-ε, candidate],
[candidate, queue[index][1]])

else if candidate in {≤ , >} then . [..., a], [a, a+ ε], [a+ ε, ...]

pre_sampling.append(
[queue[index][0], candidate],
[candidate, candidate+ε],
[candidate+ε, queue[index][1]])

else . [..., a− ε], [a− ε, a+ ε], [a+ ε, ...]

pre_sampling.append(
[queue[index][0], candidate-ε],
[candidate-ε, candidate+ε],
[candidate+ε, queue[index][1]])

end if

Q.pop(queue_index-delete) . Track the already deleted ele-
ments to stay on the correct index

delete += 1
end if

end for

end for

end for
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Sampling on Composed Constraints

Complex constraints are all other constraints not classi�ed as easy constraints. This
is due to those constraints not separating the feasible and infeasible regions exactly
on the edge of a parameter but diagonally or curvy based on the degree of the poly-
nomial. Here, we will follow another approach where we sample before every split
to �nd a more suitable candidate for splitting. For this, when we get an unknown
region, meaning a region which we have to split into smaller sub-regions, we calculate
satis�ability for the exact middle point of the region. We then iterate through all
axes or parameters and compare the borders of the interval corresponding to the axis
with the middle point in terms of satis�ability. If they di�er we know that there must
be a more suitable candidate for splitting than the middle point. We then recursively
approach new candidates on this segment until we �nd a well-suited one that we use
for splitting on this axis.

We �rst have to say that we could not get an e�cient and bug-free implementation
of the sampling algorithm and disabled it in the most recent build. Nevertheless, we
will present both of our approaches. In our �rst approach on sampling de�ned in
Algorithm 3 we started on the left border of an axis and iterated by a factor of 0.1%
of the whole interval size of this parameter. We stopped at the exact mid of the
interval. If we could not �nd a suitable candidate we tried the same from the right
border. A suitable candidate is one with a di�erent satis�ability status than the exact
middle point. This approach was of course really ine�cient and resource-heavy. Most
of the time we could not �nd a more suitable candidate than the middle point and
therefore we wasted time going through the whole interval. In our second approach
on sampling de�ned in Algorithm 4 we replaced the iteration and the factor by always
taking the mid of the considered interval. We started by taking the mid between the
left border and the exact middle point of the interval. If both points di�er in their
satis�ability status we found a more suitable candidate. If not we again took the mid
of the left border and the last checked candidate. If we could not �nd a candidate
after some time we repeated this process with the right border.

Correctness

Since sampling is an optimization problem there is no need to prove the correctness.
The only important condition is that the new sampled candidate has to be inside the
given region otherwise we would create new areas or dismiss old ones.
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Algorithm 3 Sampling with Incrementation
Input: B . B is the given box with an interval for each parameter where

the status of the box B is unknown
Output: borders . The new borders either with new candidate or with just the

middle point as without sampling

borders = [ ]
ε = (B[index][1] - B[index][0])*0.001 . steps to explore new candidates

for index, parameter in enumerate(NUMBER_OF_PARAMETERS) do
. Iterate through all parameters

�rst_point = (B[index][0] + B[index][1]) / 2 . Middle point of the in-
terval of the current
parameter

solver.push()
solver.add(parameter == �rst_point)
status1 = check_satis�ability()
solver.pop()
found = False
counter = 0
test_point = B[index][0]
while (counter < 499) and (not found) do . ε is exactly 0.1% and we it-

erate to the exact mid
test_point += ε
solver.push()
solver.add(parameter == test_point)
status2 = check_satis�ability()
solver.pop()
if status1 != status2 then . Stop if status of middle point and

new candidate di�ers
found = True

else

counter += 1
end if

end while

if not found then

counter = 0
test_point = B[index][1]
while (counter < 499) and (not found) do . ε is exactly 0.1% and we it-

erate to the exact mid
test_point -= ε
solver.push()
solver.add(parameter == test_point)
status2 = check_satis�ability()
solver.pop()
if status1 != status2 then . Stop if status of middle point and

new candidate di�ers
found = True

else

counter += 1
end if

end while

end if

if found then . Take new found candidate otherwise take the original middle

borders.append([[B[index][0], test_point], [test_point, B[index][1]]])
else

borders.append([[B[index][0], �rst_point], [�rst_point, B[index][1]]])
end if

end for
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Algorithm 4 Sampling with Division of the Mid
Input: B . B is the given box with an interval for each parameter where

the status of the box B is unknown
Output: borders . The new borders either with new candidate or with just the

middle point as without sampling

borders = [ ]
for index, parameter in enumerate(NUMBER_OF_PARAMETERS) do

. Iterate through all parameters

�rst_point = (B[index][0] + B[index][1]) / 2 . Middle point of the in-
terval of the current
parameter

solver.push()
solver.add(parameter == �rst_point)
status1 = check_satis�ability()
solver.pop()
found = False
new_mid = (B[index][0] + �rst_point) / 2
while not found do . Check the mid between left border

and the middle point
solver.push()
solver.add(parameter == new_mid)
status2 = check_satis�ability()
solver.pop()
if status1 != status2 then . Stop if status of middle point and

new candidate di�ers
found = True

else

new_mid = (B[index][0] + new_mid) / 2
. New candidate is between checked point and the left border

end if

end while

if not found then

new_mid = (B[index][1] + �rst_point) / 2
while not found do . Check the mid between right border and the middle

solver.push()
solver.add(parameter == new_mid)
status2 = check_satis�ability()
solver.pop()
if status1 != status2 then . Stop if status of middle point and

new candidate di�ers
found = True

else

new_mid = (B[index][1] + new_mid) / 2
. New candidate is between checked point and the right border

end if

end while

end if

if found then . Take new found candidate otherwise take the original middle

borders.append([[B[index][0], new_mid], [new_mid, B[index][1]]])
else

borders.append([[B[index][0], �rst_point], [�rst_point, B[index][1]]])
end if

end for
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PaSyPy

PaSyPy is a Python-based tool using parameter synthesis to �nd safe and unsafe
regions of the parameter space. This chapter will explain the implementation of
this tool and also how to use it. Extensive documentation, source code, tests and
benchmarks can be found on the projects page of PaSyPy hosted on GitHub [1].
Further explanation can be found in Appendix A.

Figure 4.1 shows the full graphical user interface (GUI) of this tool. All di�erent
parts of it are explained in this chapter.

Figure 4.1: Full GUI of PaSyPy
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4.1 Functionality

PaSyPy provides di�erent functionalities, some parts that are pretty obvious but also
parts that might be hidden. This section will cover every feature that this tool has to
o�er. Very roughly said, this tool computes and plots safe (green) and unsafe (red)
regions for an input formula on nonlinear real arithmetic (NRA) combined with a box
containing intervals for each parameter. The steps before computing and receiving a
result are:

1. Input a logical formula.

2. Choose the splitting heuristic (see Section 3.2)

3. Adjust the maximum number of splits for the computation.

4. Select the interval for all parameters.

5. Select a parameter on each axis for plotting.

When all these tasks are completed, this tool will compute the result in the form of
visualizing the safe (green) and unsafe (red) areas for the selected parameters on the
given interval.

4.1.1 Computing

and Visualizing

This subsection describes
the main purpose of
this tool. A given
formula in nonlinear
real arithmetic (NRA)
combined with a box
with pre-de�ned inter-
vals for each parame-
ter is computed. This
means that at �rst, the
full area for a given for-
mula and its negation
is checked for satis�a-
bility. Then areas are
either �agged as safe
(green), unsafe (red) or
unknown (white). The
unknown (white) areas
are split into smaller
regions where the procedure is repeated. As a result, we will get a list of all found safe
(green) and unsafe (red) regions which are then visualized for two chosen parameters.
Note that all parameters are considered and the area is calculated for all of them, but
due to the nature of 2D plots, only two parameters can be visualized at once. It is
also possible to showcase single parameters in the form of a bar.
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Status

The status �eld will indicate the
current state of the program.
Initially, the state isWAITING.
Then based on if correct pre-conditions are met, the state is switched to ERROR or
READY. When the computation is started the state will be COMPUTING... for the
actual computation and VISUALIZING... for creating the graph. Finally, the state
is switched to FINISHED to indicate the end of the computation and visualization.

Visualization �eld

One key part of this
tool, the �eld where the
found safe (green) and
unsafe (red) regions are
displayed. On the
edge, the visualized pa-
rameters and the inter-
val can be found. The
main box represents
the full viewed area.
Inside it will contain
safe (green) and unsafe
(red) boxes, white left
area and also a poten-
tial approximation curve which is called regression here. The boxes are those that are
proven by the underlying solver. Red boxes are those that are proven to be unsatis�-
able, more speci�cally this area only contains unsat solutions. Green boxes are those
that are proven to be satis�able, more speci�cally this area only contains sat solu-
tions. The remaining white areas are those that contain both safe (green) and unsafe
(red) regions. Regression, which is represented by a blue curve is an approximation
of the exact border between safe (green) and unsafe (red) regions.

4.1.2 Information

This part contains useful informa-
tion about the already computed
and visualized process. Note that all
information refers to the whole re-
sult and not to the currently shown
dimensions which means all dimen-
sions are considered.
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Number of Splits

This �eld shows the currently com-
puted number of splits. The num-
ber of splits indicates the depth. A
number of splits of one or 20 mean that there is one box, a number of splits of four
or 22 will indicate that there are four boxes and a number of splits of 256 or 28 will
indicate that there are 256 boxes. Regarding our split heuristics the Default tactic
splits every box into 2dimensions new boxes, which means if we have two parameters
a number of splits of four or 22 allow us to split the box into four new boxes and will
stop computing any further. The Simple tactic on the other hand splits every box
into two new boxes, where our original box is split once and the two new boxes are
also split, having four boxes at the end.

4.1.3 Formula Handling

There are two choices for inputting
a formula. Either the formula is
parsed from a .smt2 �le or written
manually. Independently from the
chosen input the formula inside the
text�eld may be edited freely with compliance to the syntax. The expected input is
a formula from nonlinear real arithmetic (NRA) logic.

Exists(z, And(x >= 1/2, y >= 1/2, z > x, z < y))

Figure 4.2: Example syntax for a logical formula

4.1.4 Settings

There are several settings the user can adjust. Most set-
tings will initially have a default value set.
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Increase/Decrease MaximumNumber of Splits

The Number of splits were already explained. This
option will set the grade of re�nement with which
the computation is performed. Increasing the maximum number of splits will reduce
white area and approach the constraint boundaries with much smaller found regions.
Initially, the maximum number of splits is 28 or 256 which for two parameters means
it will split a box for a maximum of four times. One key feature of changing the
max splits between computations is, that the results of the previous computation
are always saved and increasing or decreasing the maximum number of splits will not
lead to recalculation of already calculated regions. Therefore, increasing the maximum
number of splits will only calculate the safe (green) and unsafe (red) regions of the
additional maximum number of splits level. Decreasing the maximum number of
splits will only update the graph and do not require new calculations.

Adjust Parameter Boundaries

This option is really important considering the pa-
rameter synthesis problem. Here the boundaries for
our parameters can be adjusted. Each paramater has
its own interval which can be modi�ed separately or
we can modify all values at once. Most satis�abil-
ity modulo theories (SMT) solving tools can check
for satis�ability of a given formula but cannot give
whole areas proven sat or unsat. This tool however will gather safe (green) and un-
safe (red) areas inside the chosen boundaries for our parameters. Initially, the interval
is set to [0.0,1.0] ∈ R for each parameter.

Choosing the Split Heuristic

This option allows the user to choose from all currently
implemented split heuristics, i.e., Default, Simple, Ex-
tended and Random. (see Section 3.2) Initially, the split
heuristic is set to Default.

Select shown parameter

While all involved parameters are computed, only two parameters
can be visualized at once. The user can select which parameters
should be visualized on x-axis and y-axis respectively. Initially,
the �rst parsed parameters are set for the x-axis and y-axis. In
case of one parameter only the x-axis is set.
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More Settings

Clicking on the settings wheel will open up
a new window with further settings for cus-
tomization.

Regression

This tool computes an approx-
imation of the function consid-
ering all safe (green) and unsafe
(red) areas which is done by a
Large Margin Classi�er and re-
gression. This option toggles
the visibility of said regression
on and o�. Initially, regression
is deactivated.

White Boxes

Usually only safe (green) and
unsafe (red) boxes are drawn,
while the outline of white boxes
is left out. This option toggles
the visibility of the outline of
white boxes on and o�. Initially,
the outline for white boxes is de-
activated.
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Hatch Pattern

This option toggles a hatch pattern for better dif-
ferentiation between safe (green) and unsafe (red)
areas. Initially, the hatch pattern is deactivated.

Colorblind Mode

The colorblind option will support those people
who have di�culties di�erentiate green and red
colors. The colorblind mode will display the safe
area (green) with blue color and the unsafe area
(red) with yellow color.

4.2 Supported Solvers

To provide satis�ability modulo theories (SMT) solving capabilities we need to embed
a solver. Most parts or modules inside PaSyPy are solver independent, i.e., gui.py,
visualize.py, timer.py, logger.py, color.py and area_calculation.py. The remaining
parts or modules are in need of a solver. At the moment the only supported solver is
the z3 theorem prover, but integrating additional solvers is planned in the future.

4.2.1 Z3 Theorem Prover

The z3 theorem prover [5] is a satis�ability modulo theories (SMT) solver by Microsoft
Research. Its main purpose is to solve problems in software veri�cation and software
analysis. The default input format for the z3 theorem prover is SMT-LIB, more
speci�cally SMT-LIB2 which is described in Section 2.4.

While the Microsoft z3 theorem prover is originally written in C++, a Python API
is provided with Z3Py. Our tool uses the z3 Python API for de�ning solvers, reading
constraints from .smt2 �les, and checking the formula for satis�ability and unsatis�-
ability. Most solvers provide the capability to de�ne solvers, adding constraints and
checking for satis�ability and unsatis�ability. But the function we use to read con-
straints from .smt2 �les is z3 speci�c. This has to be considered when replacing the
z3 theorem prover with any other solver. One solution is to let z3 parse the formula
and then convert the formula to the needed data type by the new solver.

Further information on how to use the z3 Python API can be found in [16].
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4.3 Validation

To validate that all modules and underlying functions are working properly the unit
testing framework of Python was utilized to write unit tests [17]. Unit tests allow
mocking a program sequence and give the possibility to verify exact variable values
with assertions. The coverage rate of the written unit tests was then measured with
the Coverage.py package, which tells exactly what lines of code were invoked by
providing a detailed HTML report.

To check for some basic programming errors and help to enforce a coding standard
the source code got checked with the static code analysis tool pylint [18].

4.4 Installation and Usage

To install this tool, clone the directory from GitHub [1] and install all dependencies:

� z3-solver

� matplotlib

� scikit-learn

� numpy

All dependencies are also included in requirements.txt and can be installed by
pip install -r requirements.txt.

To start this tool, simply execute main .py.

4.5 Known Challenges

In general, the Python interface of the z3 theorem prover sometimes has di�culties
automatically select the correct theory solver needed for the speci�c problem. This
often results in a timeout even on relatively easy formulas. As a solution multiple
theory solvers are used in parallel in case the default one fails to process the given
formula. This does not have any e�ect on the performance or time needed to solve
the problem.

The performance of Python in comparison to hardware-related programming lan-
guages (f.e. C and C++) is very weak. This problem can potentially be counteracted
by integrating C into Python which is talked about in Section 7.2.

Performance is also highly dependent on the splitting heuristic and sampling re-
garding the computation step and array processing regarding the visualization step.
While Pre-Sampling is really e�cient and often leads to a huge performance boost,
Sampling lacks e�ciency and needs a rework. This can be further worked on to
achieve optimal results.
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Other Tools

This chapter will introduce other tools that might have a relation to PaSyPy.

5.1 PROPhESY

PROPhESY [4] is probably the most similar tool to our tool PaSyPy, due to its
nature of tackling the parameter synthesis problem together with satis�ability modulo
theories (SMT) solving. PROPhESY is also written in Python and provides methods
for parameter synthesis. As an input PROPhESY expects a rational function which
is a fraction of two polynomials representing model parameters. It serves more as a
library with interfaces to model checkers, i.e., PRISM [19] and Storm [20] and SMT
solvers, i.e., SMT-RAT [21] and z3 [5]. Therefore the full power of PROPhESY can
only be utilized by using other packages.

5.2 pySMT

pySMT [22] is a Python API for satis�ability modulo theories (SMT) solving. It is
not a direct tool for satis�ability modulo theories (SMT) solving, moreover, it acts
as an interface for using the simple Python syntax on di�erent originally non-Python
solvers.

5.3 rise4fun

rise4fun [23] provides a web front end for software engineering tools and is hosted by
Microsoft. It is a collection of various tools with the advantage of not having to worry
about the con�guration of the used machine. rise4fun also supports the z3 theorem
prover. There an .smt2 �le can be parsed and checked for satis�ability. This can tell
if the original formula combined with a box of intervals for each parameter is sat, but
cannot split the box into smaller boxes and return safe and unsafe regions.
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5.4 Similarities and Di�erences

As already teased at the beginning of Chapter 1, this tool combines satis�ability
modulo theories (SMT) solving with the parameter synthesis problem and visualizes
it. While there are several tools available for performing satis�ability modulo theories
(SMT) solving, only a few can tackle the parameter synthesis problem and even fewer
tools are able to visualize the results, especially for nonlinear real arithmetic (NRA).
PROPhESY is more complex than PaSyPy and also provides more functionality.
While PROPhESY is used to tackle the parameter synthesis problem on Markov
models and expects a rational function as an input, PaSyPy expects other logical
formulas and operates mostly on nonlinear real arithmetic (NRA). Both PaSyPy and
PROPhESY use the z3 Theorem Prover and its Python interface, but PaSyPy is
currently limited to it due to the missing implementation for other solvers.
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Case Study

In this chapter, we will analyze this tool regarding solutions and performance. Also we
will compare all available split heuristics, particularly Default, Simple, Extended and
Random. All tests were done on a computer with an AMD Ryzen 5 2600X Six-
Core processor and 16 Gigabytes of RAM. We will �rst use our own examples
to investigate di�erent properties, i.e., number of parameters, degree of polynomial,
quanti�cation and sampling. In the end, we will use some heavier examples found on
the benchmarks from the SMT-LIB [6].

Number of Parameters

At �rst, we will compare all split heuristics on very basic formulas for one, two
and three parameters. The table displays time in seconds and total area found,
meaning either safe (green) or unsafe (red) area, for di�erent accuracies. Also, the
table contains the underlying formula and considered interval.

Number of Splits 22 28 216

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 0.094 75.00 0.272 99.61 0.511 100.00
Simple 0.094 75.00 0.272 99.61 0.511 100.00
Extended 0.075 100.00 - - - -
Random 0.096 69.09 0.309 99.52 0.581 100.00

Formula x >= 1/2

Interval [0.0,1.0] ∈ R

Table 6.1: Simple formula with one parameter

Number of Splits 24 210 214

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 0.381 56.25 3.259 95.21 13.012 98.82
Simple 0.494 56.25 4.905 95.21 14.205 98.82
Extended 0.371 87.50 2.441 98.44 11.331 99.61
Random 0.242 58.83 3.071 91.58 13.379 98.09

Formula And(x >= 1/2, y >= 1/2, x >= y)

Interval [0.0,1.0] ∈ R

Table 6.2: Formula with two parameters
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Number of Splits 29 212 215

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 3.951 88.48 10.841 95.19 35.945 97.82
Simple 5.327 88.48 16.764 95.19 56.601 97.82
Extended 2.439 96.48 8.241 98.05 32.195 98.95
Random 1.146 87.32 9.909 94.63 34.421 97.75

Formula And(x >= 1/2, y >= 1/2, z >= 1/2, x >= y, y >= z)

Interval [0.0,1.0] ∈ R

Table 6.3: Simple formula with three parameters

Looking at the results we can already have an interim conclusion. The Simple
split heuristic does yield the exact same results as the Default split heuristic. The
di�erence is that on the Default tactic every split happens on every dimension at the
same time, while on the Simple tactic the dimensions get cut split by split. This
makes the Simple tactic loosing time compared to the Default tactic.

The Random split heuristic has the potential to yield very good and fast results.
The problem is the unreliability of the randomness factor. Every execution of the
Random tactic gives other results. On one iteration the safe (green) and unsafe (red)
areas are nearly found instantly, while on the next iteration this tactic cannot �nd any
valuable area. Therefore we will not consider the Simple and Random split heuristics
on the next tests, but we will focus on the more interesting Default and Extended
split heuristics.

Figure 6.1: Formula with two parameters.

(a) Default (b) Simple

(c) Extended (d) Random
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Degree of Polynom

Next we will use nonlinear formulas, i.e., with polynomial degree greater than one.
For the sake of simplicity all nonlinear formulas will consist of two parameters.

Number of Splits 28 212 216

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 2.251 87.89 9.380 96.90 38.845 99.22
Extended 3.273 88.67 12.649 96.47 57.009 98.90

Formula x >= y2

Interval [0.0,1.0] ∈ R

Table 6.4: Formula with polynomial degree of two

Figure 6.2: Quadratic Formula

(a) Default Quadratic (b) Extended

We can already see, that the Extended split heuristic is struggling on nonlinear
formulas from the time in Table 6.4 and also from the found are in Figure 6.2b. It is
slower than the Default tactic and also more unreliable. This is due to the underlying
solver having di�culties with �nding reliable solution points for splitting. If the
Extended tactic cannot �nd a splitting candidate, it switches to the Default tactic.
This means that even though the Default tactic is applied, the calculation from the
Extended tactic is still performed prior which results in a loss of time.

Number of Splits 28 212 216

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 1.706 90.62 7.077 97.66 29.377 99.41
Extended 3.118 88.66 16.301 89.47 69.188 97.44

Formula 2x <= y4 + 0.5

Interval [0.0,1.0] ∈ R

Table 6.5: Formula with polynomial degree of four
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Figure 6.3: Quartic Formula

(a) Default (b) Extended

As a conclusion to the di�erent tactics, we can say that the most reliable split
heuristic is the Default tactic as it yields good performance and also provides reliable
solutions even on multi polynomial formulas. The Extended tactic struggles on non-
linear formulas but outperforms the Default tactic on linear formulas as it �nds more
safe (green) or unsafe (red) areas in less amount of time.

The di�erence between the Extended tactic and the Default tactic in �nding so-
lutions do not only depend on the number of parameters or the degree of the polyno-
mials, but also on the formula itself. While the Default tactic always exactly splits
in the middle meaning that it cannot take any shortcut even if the solution for the
formula is really easy to see. The Extended tactic on the other hand has the potential
to �nd the complete area nearly instantly as shown in Figure 6.4.

Figure 6.4: Extended tactic beats Default tactic

(a) Default (b) Extended
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Number of Splits 22 212 222

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
Default 0.109 25.00 5.894 97.83 219.228 99.93
Extended 0.159 100.00 - - - -

Formula And(x >= 0.3, y >= 0.3)

Interval [0.0,1.0] ∈ R

Table 6.6: Extended tactic beats Default tactic

Existential Quanti�cation vs. No Quanti�cation

We will compare a technically equal formula in real arithmetic and in quanti�er-free
real arithmetic.

Number of Splits 28 214 220

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
without quanti�er 1.842 87.89 16.484 98.44 138.366 99.80
with quanti�er 1.952 87.89 17.568 98.44 147.415 99.93

Formula Without Quanti�er: x >= y

Formula With Quanti�er: Exists(z, And(x >= z, z >= y))

Interval [0.0,1.0] ∈ R

Table 6.7: Existential Quanti�cation vs. No Quanti�cation

Figure 6.5: Existential Quanti�cation vs. No Quanti�cation

(a) Without Quanti�cation (b) With Quanti�cation

As shown in Figure 6.5, both formulas output the exact same graph regardless
of quanti�cation used or not. There are only some minor di�erences in performance
as shown in Table 6.7, where the formula without quanti�cation is computed slightly
faster.
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Pre-Sampling

On some formulas that are considered easy, the solver has di�culties separating safe
(green) and unsafe (red) regions. For this, we use pre-sampling which can increase
performance by �ltering the initial region to get more favorable regions.

Number of Splits 28 214 220

Split Heuristic Time/s Area% Time/s Area% Time/s Area%
without Sampling 1.501 90.62 13.131 98.82 107.994 99.85
with Sampling 1.136 90.18 9.428 98.77 67.729 99.85

Formula And(x >= 1/5, y <= 5/7, x >= y)

Interval [0.0,1.0] ∈ R

Table 6.8: Pre-Sampling

Figure 6.6: No Sampling vs. Sampling

(a) No Sampling - Multiple Parameters (b) Sampling - Multiple Parameters

(c) No Sampling - Single Parameter (d) Sampling - Single Parameter

(e) No Sampling - Complex Polynom (f) Sampling - Complex Polynom
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As shown in Figure 6.6, pre-sampling can give an initial advantage on the bor-
ders. This advantage scales with the number of parameters. On ten di�erent param-
eters, pre-sampling founds over 99.99% in a relatively short amount of time. Without
pre-sampling �nding any safe (green) or unsafe (red) region on this high number of
parameters is not possible in a feasible time.

Split Heuristic Time/s Area%
without Pre-Sampling 1000.000 0.10
with Pre-Sampling 20.000 99.99

Formula And(x1 >= 1/5, x2 >= 1/5, ..., x10 >= 1/5)

Interval [0.0,1.0] ∈ R

Table 6.9: Pre-Sampling with multiple parameters

Correctness

It is not easy to verify the correctness of our visualization. For this, we will abuse
the nature of polynomials of the form (x − 1) · (x + 2) · . . . as we exactly know the
roots there with one and minus two on this example. Also, we can see how this tool
computes formulas with only one parameter and also on di�erent intervals other than
[0.0,1.0] ∈ R.

Figure 6.7: Correctness of Roots for (x− 7.5) · (x− 5) · (x− 2.5) · x · (x+2.5) ·
(x+ 5) · (x+ 7.5) 6= 0 for interval [−10.0,10.0] ∈ R

(a) Roots with low accuracy (b) Roots with higher accuracy

As we can see in Figure 6.7 this tools yields us the correct roots for our formula,
i.e., the expected roots {−7.5,−5.0,−2.5, 0, 2.5, 5.0, 7.5} for our polynomial (x−7.5) ·
(x − 5) · (x − 2.5) · x · (x + 2.5) · (x + 5) · (x + 7.5). One big topic we did not cover
yet is the solution as it is only an approximation and it gets more accurate with
increasing accuracy. Therefore, we will usually do not get to 100% area coverage but
only close to it, except if the formula lies favorably as in Figure 6.4b.
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We will also take a simple formula with four parameters to show that all axes are
visualized correctly. Figure 6.8 shows that all axes are visualized as expected. The
scale from all graphs is in the range from 0 to 1.

Figure 6.8: Formula: And(x1>=0.2, x2>=0.4, x3>=0.6, x4>=0.8)

(a) x-axis:x1 | y-axis:x2 (b) x-axis:x2 | y-axis:x3

(c) x-axis:x4 | y-axis:x1 (d) x-axis:x3 | y-axis:x4

Time Analysis

Analyzing all parts inside the computation leads to the following breakdown of time:

� Under 1% for initializing the solvers, resetting previous constraints, checking
conditions like current zoom-level and creating the log�le.

� 5% for assigning boundaries of the current region.

� The remaining time (90%+) is used by the underlying solver for checking the
region inside the assigned boundaries.

SMT-LIB Benchmarks

Now we will use examples we found on the benchmarks from SMT-LIB. For this, we
�rst searched for benchmarks that have a model. We then got the model by inputting
the benchmark in the Z3 Online Demonstrator [24] and added a (get-model) line at
the end. If the Z3 Online Demonstrator found a model we noted down the satis�able
value for every parameter and set our region around those values. We also used some
unsatis�able formulas where we slowly increased the region to check if we also get an
unsatis�able result.
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Figure 6.9: QF_NRA/meti-tarski/asin/8/vars4/asin-8-vars4-chunk-0056.smt2

(a) x-axis:skoSM|y-axis:skoSP

And(Not(skoSP*(13/8 + skoS2*(63/20)) <=
-1/5 + skoSM*(61/40 + skoS2*(63/20))),

And(Not(skoX*
(8 +
skoSM*2 +
skoSP*2 +
skoX*
(2/5 +
skoSM*(-61/20 + skoS2*(-63/10)) +
skoSP*(13/4 + skoS2*(63/10)) +
skoX*(-4 + skoSM*-1 + skoSP*-1))) <=

2/5 +
skoSM*(-61/20 + skoS2*(-63/10)) +
skoSP*(13/4 + skoS2*(63/10))),

And(Not(skoX*
(4 +
skoSM +
skoSP +
skoX*
(1/5 +
skoSM*(-61/40 + skoS2*(-63/20)) +
skoSP*(13/8 + skoS2*(63/20)))) <=

1/5 +
skoSM*(-61/40 + skoS2*(-63/20)) +
skoSP*(13/8 + skoS2*(63/20))),

And(Not(skoX <= 0),
And(Not(skoSP <= 0),

And(Not(skoSM <= 0),
And(Not(skoS2 <= 0),

Not(1 <= skoX))))))))

Green Area% Red Area% White Area Left% Time/s
67.19 15.62 17.19 57.911

Interval skoSP:=[0.9,1.1],skoS2:=[0.9,1.1],skoSM:=[0.9,1.1],skoSX:=[0.4,0.6]

Table 6.10: SMT-LIB - in-8-vars4-chunk-0056.smt2

As we can see from Figure 6.9 and Table 6.10 we parsed the formula correctly and
could compute it on our region.

Figure 6.10: QF_NRA/20161105-Sturm-MBO/mbo_E28.smt2

(a) Interval: [−∞,∞]

And(h3 > 0,
h5 > 0,
h6 > 0,
16*h3*h3*h5 +
16*h3*h3*h6 +
4*h3*h5*h5 +
8*h3*h5*h6 +
4*h3*h6*h6 +
h5*h5*h6 +
h5*h6*h6 ==
0)
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Figure 6.11: QF_NRA/20180501-Economics-Mulligan/MulliganEconomicsModel0001a.smt2

(a) Interval: [−∞,∞]

And(v1*v5 + v3*v7 == v4,
v2*v6 + v3*v8 == v4,
v5 == 1,
v6 == 1,
v7 < 0,
v8 > 0,
v4 > 0)

In Figure 6.10 and Figure 6.11 we started on our default region with interval
borders [0.0,1.0] for every parameter and slowy increased the interval borders until
we reached [-∞,∞] to prove that this formula is unsatis�able. After only a few seconds
we already got our results and covered the whole parameter space.

Figure 6.12: QF_NRA/hong/hong_11.smt2

(a) Interval: [−1000,1000]

And(x_0*x_0 +
x_1*x_1 +
x_2*x_2 +
x_3*x_3 +
x_4*x_4 +
x_5*x_5 +
x_6*x_6 +
x_7*x_7 +
x_8*x_8 +
x_9*x_9 +
x_10*x_10 <
1,
x_0*x_1*x_2*x_3*x_4*x_5*
x_6*x_7*x_8*x_9*x_10 > 1)

The formula from Figure 6.12 took a bit more time for �nding unsatisfying values
for our parameters. On an interval of [-1000,1000] for every parameter, we got the
results after around 60 seconds.
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Figure 6.13: QF_NRA/kissing/kissing_2_4.smt2

(a) Partial solution after 120 seconds

And(x_0_0*x_0_0 + x_0_1*x_0_1 == 1,
x_1_0*x_1_0 + x_1_1*x_1_1 == 1,
x_2_0*x_2_0 + x_2_1*x_2_1 == 1,
x_3_0*x_3_0 + x_3_1*x_3_1 == 1,
(x_0_0 - x_1_0)*(x_0_0 - x_1_0) +
(x_0_1 - x_1_1)*(x_0_1 - x_1_1) >=
1,
(x_0_0 - x_2_0)*(x_0_0 - x_2_0) +
(x_0_1 - x_2_1)*(x_0_1 - x_2_1) >=
1,
(x_0_0 - x_3_0)*(x_0_0 - x_3_0) +
(x_0_1 - x_3_1)*(x_0_1 - x_3_1) >=
1,
(x_1_0 - x_2_0)*(x_1_0 - x_2_0) +
(x_1_1 - x_2_1)*(x_1_1 - x_2_1) >=
1,
(x_1_0 - x_3_0)*(x_1_0 - x_3_0) +
(x_1_1 - x_3_1)*(x_1_1 - x_3_1) >=
1,
(x_2_0 - x_3_0)*(x_2_0 - x_3_0) +
(x_2_1 - x_3_1)*(x_2_1 - x_3_1) >=
1)

On the formula from Figure 6.13 which has a satisfying solution, we could not
get it in time. But we could get unsatisfying regions that slowly got discovered the
longer the program was running. Re�ning the region, i.e., setting each interval for
every parameter, would eventually �nd a satisfying (safe) region. After around 300
seconds we found 0% safe area but over 20% unsafe area.

Figure 6.14: QF_NRA/meti-tarski/Arthan/1C/Arthan1C-chunk-0007.smt2

(a) x-axis:skoSINS,y-axis:skoCOSS

And(
Not(

skoSINS*skoSINS
== 1 + skoCOSS*skoCOSS*-1
),

217/100 <= skoS)
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The formula from Figure 6.14 returned really interesting results on the interval
borders [0.0,1.0] for skoSINS and skoCONS and the interval border [2.0,3.0] for sko.
We could �nd around 73% of safe regions and around 17% of unsafe regions in around
87 seconds. The formula from Figure 6.15 also worked very well but this time on the
region with [0.0,1.0] as an interval for every parameter. This time it returned around
45% for both safe and unsafe regions in around 30 seconds.

Figure 6.15: QF_NRA/meti-tarski/Arthan/KM2/ArthanKM2-chunk-0007.smt2

(a) x-axis:skoCOSS,y-axis:skoSINS with
partial result

And(
Not(
skoSINS*skoSINS
== 1 + skoCOSS*skoCOSS*-1
),

9/20 <= skoS)

Conclusion on SMT-LIB Benchmarks

We could further work through every available benchmark from SMT-LIB but we will
stop here and make a conclusion. First, we have to annotate that most benchmarks
available are not suitable for our tool. Some benchmarks even timeout on �nding a
single model. Proving whole regions as satisfying (safe) or unsatisfying (unsafe) is
close to impossible there. Our tool always starts with a default interval for every
parameter. If a formula contains multiple parameters often all parameters have dif-
ferent accepting and rejecting ranges. E.g., a formula with three parameters x, y and
z expects x to be in [-100,-50], y to be in [275,975] and z to be in [0.001,0.003]. If
the expected intervals are known prior this is no problem but otherwise, it is nearly
impossible to �nd a solution in a feasible time. This problem gets worse the more pa-
rameters a formula has. The second problem is constraints having either the equal-to
operator == or the not-equal-to operator ! =. Our tool cannot �nd an exact solution
for such constraints but can only approximate to its borders. E.g., if we have the
formula x == 2 we will never get a satis�able value for x since our tool works on
regions and not exact points. Nevertheless, we could get interesting results on the
used benchmarks.
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Conclusion

The goal of this thesis, mainly developing and implementing a Python-based tool
to �nd safe and unsafe regions of the parameter space using parameter synthesis,
was successfully accomplished. PaSyPy is a useful, easy-to-use tool for �nding those
regions with consideration of all parameters tackling the parameter synthesis problem
on nonlinear real arithmetic logic. It is especially useful in visualizing the interesting
areas.

7.1 Summary

The problem of parameter synthesis in satis�ability modulo theories (SMT) solving
is of high theoretical and also practical interest, due to its optimization potential
in terms of optimal system composition. Unfortunately, this problem is not trivial.
The tool developed during this thesis, namely PaSyPy, provides promising results
regarding satis�ability modulo theories (SMT) solving with parameter synthesis on
nonlinear real arithmetic.

7.2 Future Work

Even though PaSyPy is already a working and complete tool, there are still possi-
bilities for extension and improvement. At this moment, the only solver supported
by PaSyPy is the z3 Theorem Prover speci�cally its Python interface. Adding more
solvers e.g. SMT-RAT would diversify this tool and allow comparing di�erent solvers
inside PaSyPy concerning performance.

To �nd safe and unsafe regions of the parameter space, di�erent splitting heuristics
are available for selection. Because of how well-structured the source code of this tool
is, it is pretty easy to add further splitting heuristics. This gives a great opportunity
to optimize speci�c problems with speci�c algorithms and bene�t from the underlying
visualization of PaSyPy. The same applies to sampling where we could not �nd an
e�cient and bug-free implementation.
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In general, even though Python is a great programming language and has a lot
of advantages, it does not yield the best performance. One approach to bene�t from
the simplicity of Python and not dispense with high performance, is to integrate
Cython [25] an optimizing static compiler. This would give us the combined power of
Python and the programming language C, which is well known for high performance
due to hardware-related functionality to speed up the execution of our Python code.

Right now our tool only allows nonlinear real arithmetic and similar logic. This
means our tool only accepts a system of equalities or inequalities connected by ∧
and ∨. The next step could be implementing support for boolean structures and
trigonometric functions. For this, parsing has to be adapted.

Another improvement would apply to formulas with a lot of parameters. Because
every parameter has a di�erent feasible region which is a region where the parameter
satis�es the formula, there is a problem as we always start on the default region
[0.0, 1.0] ∈ R for every parameter. An approach would be to �rst give the formula to
the solver to get a model containing a satisfying value for each parameter. This would
of course only work if the formula has a satisfying solution. We then could build the
region around the found model for every parameter.
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Appendix A

Further Tool Explanation

We give an extended overview of all parts of our tool that we have not covered yet.

A.1 Buttons

Compute button

This button will ini-
tiate the computing.
This will only work if
all pre-conditions are
ful�lled, i.e., a cor-
rect formula. The 'X'-
button immediately stops the computation and returns a partial solution.

Navigation toolbar

The navigation toolbar
provides useful func-
tions, i.e., zooming in-
side an area and also
saving the current plot in a �le. If zooming is active the next computation will
only consider the zoomed area which can be used to re�ne speci�c regions.

Open File

With this button, one can select an SMT-FILE (.smt2), which
then gets parsed by the z3 Python interface and the formula is
shown in the text �eld.
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Reload File

Reloads the last opened �le, restoring the original formula.

Edit

The user has the possibility to write own constraints or edit the
parsed formula from a SMT-FILE (.smt2). To apply the made
changes and give the new formula to the solver, one has to press
this button.

Save

This button allows the user to save the formula from the text �eld
into a SMT-FILE (.smt2).

Show green area

All safe (green) boxes containing the interval for every parameter
are saved to a log-�le (safe_area.log), which can be opened by this
button.

Show red area

All unsafe (red) boxes containing the interval for every parameter
are saved to a log-�le (unsafe_area.log), which can be opened by
this button.

GitHub

Clicking on the GitHub icon will redirect to the o�cial GitHub page of PaSyPy [1].

University Logo

Clicking on the RWTH Theory of Hybrid Systems icon will redirect to their o�cial
website https://ths.rwth-aachen.de/.

https://ths.rwth-aachen.de/
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A.2 Information Fields

Number of green boxes

This �eld shows the sum of all safe
(green) boxes across all dimensions.

Green area

This �eld shows the percentage of safe
(green) area in comparison to the overall
area.

Number of red boxes

This �eld shows the sum of all unsafe
(red) boxes across all dimensions.

Red area

This �eld shows the percentage of unsafe
(red) area in comparison to the overall
area.

White area left

This �eld shows the percentage of white
area in comparison to the overall area,
meaning all area that contains both safe (green) and unsafe (red) regions.

Computation Time

This �eld shows the required time
for computing the formula and �nd-
ing the safe (green) and unsafe (red)
regions.
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Visualization Time

This �eld shows the required time
for calculating and visualizing the
underlying graph.

Filename

This �eld re�ects the name of the cur-
rently opened (.smt2 ) �le.

Text�eld

This �eld either
represents the for-
mula parsed from the last opened (.smt2 ) �le or a self-de�ned formula. The formula
inside this �eld may be edited freely and reparsed by hitting the Edit button.

A.3 Settings

Pre-Sampling

This option toggles the pre-sampling mechanism when inputting a formula. Initially,
pre-sampling is activated.

Sampling

This option toggles the sampling mechanism before every splitting. Initially, sampling
is deactivated.

Skip Visualization

Activating this option will skip the visualization part. The safe (green) and unsafe
(red) areas can still be acquired by the logs.
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A.4 Miscellaneous

Keyboard Shortcuts

There are some keyboard shortcuts available to facilitate the user experience. Holding
the control key (CTRL) and:

� +, for increasing the current accuracy.

� -, for decreasing the current accuracy.

� o, for opening a �le.

� r, for realoading the currently opened �le.

� s, for saving the current formula in a �le.

Logs

This tool saves several logs:

� log�le.log, with the internal sequence of the normal solver.

� log�le_neg.log, with the internal sequence of the negated solver.

� safe_area.log, with all safe regions found.

� unsafe_area.log, with all unsafe regions found.
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