
Diese Arbeit wurde vorgelegt am Lehr- und Forschungsgebiet
Theorie der hybriden Systeme

Optimierung von Zielpunktstrategien für Heliostaten in
solarthermischen Kraftwerken

Optimization of Aiming Strategies for Heliostats in
Solar-Thermal Power Plants

Bachelorarbeit
Informatik

Januar 2018

Vorgelegt von Georg Wicke
Presented by Nizzaallee 9, 52072 Aachen

Matrikelnummer: 333047
georg.wicke@rwth-aachen.de

Erstprüferin Prof. Dr. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüferin Jun.-Prof. Dr. Christina Büsing
Second examiner Lehrstuhl II für Mathematik

RWTH Aachen University

Korefferent Dr. rer. nat. Pascal Richter
Co-supervisor Lehr- und Forschungsgebiet Kontinuierliche Optimierung

RWTH Aachen University

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat in dieser oder einer
ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.

Aachen, im Januar 2018

Georg Wicke

II

Contents

List of Figures V

List of Tables VI

1. Introduction 1
1.1. Preliminaries . 1
1.2. Related Work . 3
1.3. Structure of this Work . 5

2. Optical Model 6
2.1. General Setup . 6
2.2. Notation . 7
2.3. Image Generation Algorithm . 7

3. Optimization Problem 11
3.1. Notation . 11
3.2. Ideal Flux Map Model . 11
3.3. Maximum Flux Map Model . 14
3.4. Summarized Problem Description . 15

4. Solving 17
4.1. MIP . 17
4.2. Grouping . 17
4.3. Genetic Algorithm . 19

4.3.1. Caching the Image . 22
4.3.2. The Local Flux Tree . 22

5. Test Cases 25
5.1. General . 25
5.2. MIP . 25
5.3. Grouping . 28
5.4. Genetic Algorithm . 30

6. Conclusion and Outlook 33

A. Interface Documentation 35
A.1. Project Layout . 35
A.2. Building and Running . 35
A.3. JSON Interface . 35

B. Code Documentation 35
B.1. ILP Framework . 36

B.1.1. Remarks Related to the LP File Format 36

III

B.2. Solar Tower Representation . 37
B.2.1. SolarTowerSite . 37
B.2.2. ReceiverModel . 37
B.2.3. BeamEnergyProvider . 37
B.2.4. Receiver . 37
B.2.5. Evaluator . 38

B.3. Solver Interface . 38
B.3.1. JsonCommandProcessor . 38
B.3.2. GroupingAlgorithm . 38
B.3.3. SolvingAlgorithm . 38
B.3.4. SimpleSolution . 38

B.4. Utility classes . 38
B.4.1. Array2D . 39
B.4.2. Vector2<T> . 39

C. Nomenclature 40
C.1. Symbols used throughout the document 40
C.2. Symbols used in the context of the image generation algorithm 40
C.3. Symbols used in the context of the Ideal Flux Map Model 41
C.4. Symbols used in the context of the Maximum Flux Map Model 42

References 43

IV

List of Figures

1. The PS10 plant in Spain, which is used in the example calculations. . . 1
2. Rough illustration of a solar tower plant.1 2
3. An example image, i. e. an evaluation of Q(h, a,m) for fixed a and h,

with 12 × 6 measure points. The white mark in the centre is the aim
point. 6

4. The adapted HFLCAL method. The coloured/labelled lines represent
the width of a fixed quantile of the CGD in one dimension. 9

5. How the heliostat is aligned (α = α′). The vectors
−−−→
tower, −→n and −→sun

are, unlike displayed here, unit vectors in the calculations. 10
6. The heliostats as they are grouped by the k-means algorithm. The

representatives are red, the original heliostats are on the tips of the
lines. 5 iterations, 100 groups. 20

7. Parameters used for performance measurements. 21
8. The dependency graph for sequential addition. An edge indicates that

the result of the outgoing node influences the result of the incoming
node. If Q0 changes, all gray nodes have to be recalculated. 23

9. The dependency graph for tree addition. If any single Qh changes, only
the path to the root is invalidated, the other calculations can be reused. 23

10. The receiver model used - this is the distribution that should be archived.
The scale is relative, i.e. 0.01 means 1 % of the total energy reaching
the receiver should be collected in this area. 25

11. The first solution that was found for the first model using the MIP solver. 26
12. The last solution that was found for the first model using the MIP solver. 27
13. The first and last solution found for the second model by the MIP solver. 27
14. The first solution that was found for by the MIP solver the first model

with the grouping from Figure 6. 29
15. The first solution that was found by the MIP solver for the second model

with the grouping from Figure 6. 29
16. The resulting flux map for the solution generated by the genetic algo-

rithm for the first model. 30
17. Convergence of the GA with two different sets of parameters. On the

left, 100 iterations at 10 individuals in each population, 10 % mutation,
1.7 s required. On the right, 1000 iterations at 100 individuals in each
population, with 0.1 % mutation and 0.1 % swaps, 13.7 s required. . . . 31

18. Convergence of the genetic algorithm applied to the first model. The
parameters for the two instances of the genetic algorithm are on the
right. The total running time was 16.9 s. 31

19. Convergence of the genetic algorithm applied to the second model. The
“worst” line was omitted, as it would rescale the vertical axis too much.
After a brief period at the start, the worst solution score fluctuates
chaotically between 1.5 and 16. The total running time was 15.0 s. . . . 32

V

List of Tables

1. The parameters used for the test cases. 26
2. The results. For the MIP, the time and objective to the first solution

are shown. For the GA, the same parameters as above are used. 26

VI

1. Introduction

Image source: https://commons.wikimedia.org/wiki/File:PS10_desde_PS20.jpg

Figure 1: The PS10 plant in Spain, which is used in the example calculations.

Solar tower power plants are facilities that produce electricity from solar radiation.2

The radiation is collected with mirrors, called heliostats, and concentrated onto a
receiver mounted on a tower3. On the receiver, the incoming rays are heating a medium
(e.g. water, molten salt, air), which is used to transport the energy to systems that
make use of it and, finally, generate electricity. Increasing the efficiency of solar power
plants may lead to higher adoption of this technology, providing clean energy at a low
price in a scalable way.

The receiver system is a complex piece of hardware that makes use of the incoming
radiation in an efficient way. Excess heat or thermal stress can damage the receiver -
the manufacturer has to make sure that this doesn’t happen. For this purpose, it is
necessary to aim the heliostats properly. If they are all aiming onto the centre, the
receiver may not withstand the literal power of a thousand suns and may get damaged.
This thesis presents multiple improvements for aiming strategies in solar-thermal power
plants, with the goal of meeting a light distribution that is energetically optimal while
not endangering people or property.

1.1. Preliminaries

In solar tower power plants, energy is collected by heliostats and directed to a receiver
mounted on a central tower (see Figure 2). This device heats a medium to transfer the
heat to a power generator (e.g. a turbine) or a heat storage, where the energy can be
stored for later use (e.g. at night).

The heliostats are equipped with precise motors to aim their light onto a defined
spot on the receiver. As the sun direction changes over the course of a day, the
heliostats have to track that movement. As the motors are, although precise, not
perfect, the casted image5 may be off-centre. This is known as the tracking error.

2Another frequently used term is Concentrating Solar Power, or CSP for short, which also includes
parabolic mirrors and similar systems.

3Sometimes multiple towers are used with a single central steam turbine.
4Figure is joint work with Hannah Arndt.
5The casted image is sometimes called the flux profile of the heliostat in literature.

1

heat

storage

steam generator

+ turbine

(to electricity grid)

Figure 2: Rough illustration of a solar tower plant.4

Other factors, such as optical and sun shape errors, are adding up to an image that can
be approximated by a normal distribution. One algorithm that uses this approximation
to generate the heliostat image is HFLCAL. We will present an adapted version of it
in Section 2.3.

The images casted by the heliostats are summing up to a total flux distribution
on the receiver’s surface. A metric often used when discussing efficiency of this flux
distribution is the spillage loss, which is the (relative) difference of the received power
and the power that would be received if all heliostats were targeting the centre of the
receiver. The spillage losses increase when more heliostats are targeting points near
the edge of the receiver.

Note that the power that reaches the receiver is not the same as the power that
can be made use of. An energetically ideal power distribution on the receiver can
be determined with thermal simulations. The first optimization model, presented in
Section 3.2, assumes that such an ideal distribution is available and optimizes towards
reaching it.

The flux distribution may also be relevant for safety reasons: if too many heliostats
are targeting a single point, the material may melt or catch fire. And if the temperature
gradient on the receiver is high, thermal stress is created, which lowers the life span
of the receiver. These constraints can be encoded in a maximum distribution, which
is dependant on the total power reaching the receiver. In Section 3.3, an optimization
model based on the assumption that such distributions are available is presented.

Aiming strategies that can be computed in real-time are quite an advantage, as
partial cloud coverage can quickly and drastically change the amount of radiation that
individual heliostats are sending. Pre-computed strategies can only work on cloud-free
days.

For the data, the properties of the PS10 plant in Andalusia, Spain are used for the
field layout and tower properties. For both the ideal and maximum distributions, data
was taken from a DLR publication [6, p. 10] instead, as such data was not available
for this plant.

An important limitation for the performance of the presented algorithms is the
number of heliostats involved. The PS10 has 624 of them, but bigger plants can

2

have multiple thousand mirrors. At the time of writing, the biggest plant in operation
– the Ivanpah plant in California – has 170 000 heliostats distributed over three fields.

Note that the used data does not describe an existing plant: It combines the re-
ceiver model from one with the field layout and tower properties of another. However,
it demonstrates the feasibility, performance and potential outcomes of the described
algorithms.

1.2. Related Work

A review from 2014 [10] gives a good overview over existing techniques for aimpoint
strategy optimization. It does also mention a lack of publications for commercially
used strategies, which doesn’t seem to have changed since then. It becomes apparent
that most approaches only cover the security, but not the optimization aspects of the
problem. This applies to most of the works presented in this subsection.

A. Grobler [9] presents two ways of determining aiming strategies and combines
them. The goal here is to minimize stress, which means minimizing temperature gra-
dients. This leads to very even distributions. The techniques used are a genetic
algorithm and a tabu search. The work focuses on rather small, experimental fields,
such as the Helio40 and the Helio100 systems6 – the 624-heliostat PS10 plant is already
considered big by its standards. However, it does also provide significant contributions
to the Gaussian flux approximation methods, which can be used to generate receiver
images.

The company Abengoa Solar, which operates several such plants, targets a flux
distribution that is flat on the vertical central 75 % of the cylindrical receiver and drops
to 20 % at the edges, which they claim to have determined to be a good distribution via
a spreadsheet [11, p. 116]. Five vertical aim levels are defined to which the heliostats are
randomly assigned according to an unspecified weight function, then they are shifted in
an again unspecified way so that they meet the objective. Although called a“challenge”,
a detailed description of the algorithm is missing.

For the GemaSolar plant, two basic strategies are proposed [2, pp. 67-71] to lower
peak flux and temperature gradients compared to targeting a single point. Under the
first proposal, closer (resp. more distant) heliostats target the lower (resp. higher) end
of the receiver7. The second proposal takes into account that closer heliostats have
a much smaller image than those that are far away from the tower. Therefore, close
heliostats should target the edges, while more distant heliostats target the centre. This
limits the spillage losses while meeting the primary objectives. These strategies seem
to be rather primitive and leave a lot of room for optimization.

Until 1998 the retargeting of the heliostats required a lot of manual control: heliostats
that overheated certain portions of the receiver could automatically be removed from
operation, but not be re-activated. For the PSA CESA-1 plant a closed-loop automated

6With 20 and 100 heliostats respectively.
7The Gemasolar plant has a cylindrical receiver. This means that it’s sufficient to only move the

aimpoints along the vertical axis to illuminate the entire receiver.

3

control system was developed [7] to reduce the manpower required to operate such a
plant. It uses thermocouples integrated into the receiver for measurements and five
aimpoints for targeting. Heliostats can be moved from one aimpoint to another, and
the aimpoints themselves can be moved within their zone. Whenever certain thresholds
are exceeded, the heliostats or aimpoints are adjusted to homogenize the temperatures
on the receiver surface. The work mainly focuses on reducing workload for the operator
and is not really concerned with efficiency.

For the Jülich Solar Tower, operated by the DLR8, an extensive optimization system
has been built, which also includes aiming strategy optimizations [3]. The project is
generally aimed at doing whole-system optimization, and thus uses the system’s energy
output as its quality metric. Technologically, the mapping of heliostats to aimpoints is
formulated as a directed graph, and a genetic ant colony algorithm is used to minimize
the length of a path through this graph, which is constructed such that this length
corresponds to the system’s output. It is inspired by real-world ant colonies, where ants
are guided by other ant’s pheromones when finding a path, and use their other senses
to locate the resources when they’re close. An ant produces pheromones proportional
to the quality of its path. More ants following the same way lead to a higher chance
of an individual ant to follow that way. For each path, every visited node corresponds
to a heliostat targeting a specific aimpoint, and the path length corresponds to the
quality of the solution. This approach seems promising, but is rather slow, so that it
can’t be used as a real-time approach. At the same time, it does not always converge
to the global optimum, so that it’s not as suitable for a reference solution either.

For the french THEMIS solar tower, two local search strategies have been evaluated
[14]: hill-climbing and tabu search, where a modification of the latter proved most
efficient. The goal of this optimization was, again, to minimize thermal stress on the
receiver, while not getting too inefficient. However, the efficiency is only measured by
the spillage losses, which are restricted by a hard limit. As such, the system is not
making any cheap trade-offs where e.g. much less stress could lead to an only slightly
reduced efficiency.

A new approach [4] works with a more conventional genetic algorithm, where the
mapping of heliostats to aimpoints is encoded in a binary matrix. The fitness is
given by the standard deviation of the flux density distribution, crossover is done by
selecting matrix columns, and mutation is done by randomizing individual columns.
The complications introduced by encoding aimpoints as rows in the matrix does not
seem to have any advantage over simply using a single number per aimpoint. Apart
from this, the general approach of using a genetic algorithm to tackle this problem is
adapted in this work.

A recent paper [1] is the basis for one part of the thesis: the authors describe a
method to optimize the aim point strategy with Mixed-Integer Programming (MIP).
Their goal is to maximize the received energy, with constraints that limit stress and set
maximum energies. This work extends on the general layout of the MIP formulation,
giving more realistic objectives and constraints.

8Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace Centre

4

1.3. Structure of this Work

This thesis is structured as follows: At first, the general framework is explained in
Section 2. After that, two optimization models are proposed in Section 3. For these
models, multiple solving approaches are presented in Section 4, which are then evalu-
ated in Section 5. Finally, in Section 6, the results are summarized and some future
work is given.

There are multiple areas of research that this work depends on, which aren’t covered
here. These areas are:

• Simulation and/or measurement of heliostat images.
This thesis assumes that data about the heliostat images is available. For all
simulations and calculations, an adapted version of HFLCAL is used (see Sec-
tion 2.3). As all profiles can be precomputed once, the speed of the optimizations
presented here is independent from the speed of the profile calculation (e.g. ex-
pensive raytracing).

• Determination of ideal and maximum flux densities on the receiver (the“model”).
It is assumed that a proper thermal simulation is available that returns those ideal
profiles. These computations depend on the available radiation and therefore
have to be redone for every new scenario (e.g. different time of day or year,
different cloud coverage, ...).9

Whether the approaches were successful or not can’t really be said, as there are
no proper requirements that can be met or missed. Neither are realistic parameters
available, nor is there a hard time limit for the solutions (although it reportedly exists,
and it is somewhere in the area of seconds to minutes) or a limit on accuracy for the
approximations. What can however be said is that a genetic algorithm without further
adaptions does not converge in an acceptable time frame to anything near the global
optimum, and that the MIP does not scale well but can be approximated, yielding
scalable results.

9There is the possibility to precompute these receiver models for multiple fixed numbers of total
radiation in the field. This would introduce slight rounding errors in most cases, as there is
probably no model available for the exact incidence at a given moment, but would allow to re-
use those computations for multiple sun positions or cloud coverage scenarios with similar total
radiation.

5

2. Optical Model

2.1. General Setup

The general problem consists of the assignment of a set of heliostats H, to a set of
aimpoints A on the receiver. We measure the power that reaches the receiver surface
at a set of measure points M . Essentially, we’re searching for a function H → A that
violates no safety constraints, resembles a given flux density distribution as close as
possible, and has minimum spillage losses.

In reality, there are infinitely many possible aimpoints, as the receiver surface is con-
tinuous. However, the heliostats can’t be aligned beyond a certain exactness. There-
fore, we can discretize the surface of the receiver. One of the aimpoints is somewhere
off, functioning as a standby location to enable deactivating certain heliostats. Any
heliostat pointing on it won’t be shining any light on the receiver. The other points
will be aligned in a rectangular grid.

The same holds true for the set of measure points: as the light distribution curve
of a heliostat shouldn’t have jumps, we can afford to discretize the receiver surface
and only measure the light distribution in certain points. Usually, it makes sense to
measure at least on all aimpoints, as there will be local maxima there. The measure
points will, as well, be aligned in a rectangular grid.

We first formalize the images as a function Q ∈ H × A ×M → R+. This function
returns the power that is being received in measure point m when heliostat h points
to aimpoint ah.

We then define the local flux density on a point m on the surface of the receiver as
the sum of the flux densities contributed by all heliostats, and the total received power
as the sum of all local flux densities.

Qm
local =

∑
h∈H

Q(h, ah,m) ∀m ∈M (1)

Qtotal =
∑
m∈M

Qm
local (2)

0 2 4 6 8 10
mx

0

1

2

3

4

5

m
y

Figure 3: An example image, i. e. an evaluation of Q(h, a,m) for fixed a and h, with
12× 6 measure points. The white mark in the centre is the aim point.

6

Note that the last definition has to incorporate the represented area of each measure
point if they are not evenly distributed over the receiver surface. However, as we’re
evenly distributing the measure points in this work, we can skip this.

We also define spillage losses as

s = 1− Qtotal

Qmax
total

(3)

where Qmax
total is the theoretical upper bound for the total power.

This upper bound is obtained by evaluating Qtotal for the scenario that all heliostats
are targeting the upper right or upper left corner of the receiver (depending on the sun’s
position), as this configuration yields maximal power due to slightly different heliostat
alignment (as we will see in Section 2.3 later). To make sure that the radiation doesn’t
miss the receiver, the receiver is extended by its own size in all directions while retaining
the same measure point density.

In the following, we will first present the notation that will be used in the rest of the
chapter, then we will introduce our light model.

2.2. Notation

We define lerp(a, b, x) to be the result of a linear interpolation from a to b by an amount
x, i.e.

lerp(a, b, x) = a · (1− x) + b · x (4)

We also define its inversion:

lerp−1(a, b, x) =
x− a
b− a

(5)

We can use both R and Rn as domains for this operation. In the latter case, all
operations apply pointwise.

When using (euclidean) vectors, −→a ·
−→
b denotes the dot product. The normalization

function normalize(−→a) is defined as

normalize(−→a) =
−→a
|−→a |

(6)

2.3. Image Generation Algorithm

The function Q ∈ H×A×M → R+ that was used previously (see Equation 1) creates
the images: Assuming that heliostat h ∈ H points to the aimpoint a ∈ A, what is the
flux density in the point m ∈M ? We shorten the notation to Q(m) here by assuming
a fixed h and a.

There are currently three methods that can be used to generate these images:

7

1. Raytracing.
This method is well-known in computer graphics to produce physically accurate
results on the one hand and to be computationally expensive on the other. For
this reason, several approximations have been considered in existing literature
and this technique has not been used here.

2. Using cone optics. [8]
This quite new technique generates almost exact results (it barely relies on ap-
proximations) by not tracing individual rays, but calculating the light of an entire
facet that shines onto a given point on the receiver at once10. With the help of
precomputation, this can be done in constant time for a fixed radially symmetri-
cal sun shape. Due to the increased implementation effort – the algorithm works
best when implemented on a GPU –, this method was not used here.

3. HFLCAL and similar methods. [15]
These are formulas that are approximating the flux density purely analytically.
Only a few terms have to be evaluated, which makes them both simple to imple-
ment and fast to compute. For these reasons, they were applied here. A further
source [5] claims HFLCAL to be of superior quality when compared to other
methods, which, together with its widespread application in most of the papers
discussed in Section 1.2, has lead to the decision to use this technique.

It has been widely discussed, both in theory and through experimental verification
[9], that most errors affecting the heliostat image are statistically independent from
each other as well as not too strongly correlated between the heliostats. They add
up to a Circular Gaussian Distribution profile due to the central limit theorem. This
fact is used by the HFLCAL algorithm: It models an image as a Circular Gaussian
Distribution with its centre in m. The width of this distribution is dependent on a
range of errors created by the sun shape, tracking, optical errors etc. All these errors
are summarized into a single value σtotal. Additionally, the width of the distribution
scales linearly with the distance of the heliostat to the tower dh. To model the increase
in width at high incidence angles, the width is additionally modified by a 1/

√
cosφ,

where φ is the incidence angle. This resizes the distribution such that a given quantile
covers an appropriately larger area. The complete formula is as follows:

Q(x, y) =
P

2πσeffective

· exp

(
− x2 + y2

2σeffective

)
with σeffective =

dh · σtotal√
cosφ

(7)

where

10To be exact, only the light of a triangle belonging to a certain triangular decomposition of the
triangle is computed at once. However, the number of triangles generated by such a decomposition
is in O(k), where k is the number of corners of the facet polygon. The algorithm assumes flat
facets with a polygonal edge. The facets may have a focusing/parabolic effect, but this effect is
only considered in the distortion of the image and not in the geometry of the facets themselves.

8

heliostat
−→
h

receiver

projected image (our approach)

reflected
sunlight

original HFLCAL approach

(scaling σ by 1/
√
cosφ)

receiver normal

·
φ

un
pr

oj
ec

te
d

im
ag

e

(w
/o
√ co

sφ
te

rm
)

×

× marks the aimpoint −→a

Figure 4: The adapted HFLCAL method. The coloured/labelled lines represent the
width of a fixed quantile of the CGD in one dimension.

• P is the beam power, i.e. the total amount of power that is reflected by the
heliostat,

• (x, y) is the position of the measure point relative to the aim point (i.e. −→m−−→a).

• Q(x, y) is the flux density in that point radiated by the current heliostat.

In the HFLCAL model, the incidence angle effect is also considered to be a statistical
error, which simply scales the radius of the circular distribution evenly (by scaling σ).
This creates slightly larger circles (for the quantile borders) at high incidence angles.
But the real outcome of projecting a circle onto a plane under an angle is not a scaled
circle, but an ellipsis. The fact that this error is not uncorrelated among heliostats and
therefore may add up has been noted in the past [12, 13]. This makes it necessary to
be more exact about that effect in this work.

Contrary to available literature, we simply project the undistorted HFLCAL image
onto the receiver instead of approximating the effect of incidence angles by using two
σ values for both directions or similar complications.

This projection is done by a slight change to the formula, where the approximation
is removed and replaced by a more accurate term:

Q(−→m) = cosφ · P

2πσeffective

· exp

(
−dist(−→m,

−→
h → −→a)

2σeffective

)
with σeffective = dh · σtotal

(8)

where

• −→m is the measure point m as a position vector

9

−→sun
−−−→
tower

−→n

α α
′

Figure 5: How the heliostat is aligned (α = α′). The vectors
−−−→
tower, −→n and −→sun are,

unlike displayed here, unit vectors in the calculations.

• dist(−→m,
−→
h → −→a) is the (smallest) distance between −→m and the ray from the

heliostat position to its aimpoint.

• Q(−→m) is the flux density in m radiated by this heliostat.

See also Figure 4 for an illustration of the parameters.
Note the term cosφ at the beginning, which is crucial for energy conservation as the

light is now distributed over a larger area. This gets clear when looking at Figure 4:
the red line is scaled to the size of the green one - if the integral over the function
(i.e. the total radiation of the heliostat) should keep constant, the function has to be
multiplied by a stretching factor, which is the ratio between the length of the red and
green lines. This ratio is cosφ.

To calculate the beam power, we have to consider the sun strength, the atmospheric
absorption, the mirror surface, and the turning angle of the mirror. The first three of
these effects are constant for the entire field (when assuming equal mirror surfaces),
and are therefore incorporated into a single factor Praw here. The last angle, however,
is different for each mirror in the field, and has to be considered in more detail.

The two turning angles of a heliostat can be written as a single normal vector −→n .
The vector

−−−→
tower shall denote the direction of the tower as seen from the heliostat (to

be exact: the direction of the aim point), and −→sun shall be the direction of the sun. As
incoming and outgoing angles are equal (see Figure 5), the receiver normal is

−→n = normalize(

−−−→
tower +−→sun

2
) = normalize(

−−−→
tower +−→sun) (9)

and the beam power is
P = −→n · −−−→tower · Praw (10)

This approach keeps the calculation fast while being simple and graphically intuitive,
and eliminates the most obvious flaws of HFLCAL.

10

3. Optimization Problem

3.1. Notation

In the following, tuples over all measure points will be used, which we will call distri-
butions. This concept has already been used: Qlocal for example is such a distribution.
They take values from R|M |. When stating d ∈ R|M | or d ∈ R|M |+ , we indicate explicitly
that d is such a distribution. Let d be an example distribution.

When writing dm, the element in the distribution assigned to the measure point
m ∈M is meant. Distributions can be written as

(dm1 , . . . , dmn) (11)

For example, when having three measure points, we can have a distribution (3, 6, 9),
which means that the value assigned to the first measure point is 3, the value of the
second one is 6 and the value for the third one is 9.

When taking a norm of such a distribution, it is interpreted as a vector, i.e.

‖d‖r = r

√∑
m∈M

|dm|r (12)

‖d‖∞ = max
m∈M

|dm| (13)

For example, the distribution (3, 6, 9) from above would have a 1-norm of 18 (=
|3|+ |6|+ |9|) and a ∞-norm of 9 (= max(|3|, |6|, |9|)).

All operators that are not defined otherwise shall mean point-wise application. E.g.

(1, 2, 3) · (4, 5, 6) = (1 · 4, 2 · 5, 3 · 6) = (4, 10, 18) (14)

and
1

(2, 3, 4)
= (

1

2
,
1

3
,
1

4
) (15)

3.2. Ideal Flux Map Model

In this model, we want to reach an ideal flux density Qm
target for each point m. For this

purpose, we define the distances between the desired and actual distributions, which
we call ε:

Qlocal −Qtarget = ε (16)

We want to minimize all |εm|.
Minimizing these values requires some additional definitions that contain several

pitfalls. This is discussed in the following.
For combining the individual (local) epsilons into a single variable to optimize, we

will use a norm. Usually, one would use a quadratic norm for summing up errors, but

11

as quadratic constraints aren’t particularly compatible with linear MIPs, we will use a
weighted sum of the 1- and ∞-norm11:

εtotal = lerp(
‖k · ε‖1

|M |
, ‖k · ε‖∞, wε) (17)

with k ∈ R|M |+ as weighting factors, allowing to weigh the ε-values of individual points
differently (see later), and wε ∈ [0, 1] as a factor to weigh the 1- and ∞-norm.

This combination of 1- and ∞-norm is used because the ∞-norm alone would leave
room for Pareto optimizations: for example, ε1 = (−2,−1, 1, 2) and ε2 = (−2, 0, 0, 2)
have the same ∞-norm (2), while the latter is in fact preferable and should therefore
score better. Similar examples can be constructed for the 1-norm: a distribution
(1, 1,−1,−1) would be preferable over (0, 0, 2,−2), where both would have a 1-norm
of 4.

The factor k in the last equation allows us to weight individual epsilon values, de-
pending on the sensitivity of the thermal model in m. For now, we will assume that a
lower Qm

target means more sensitivity, i.e. that we’re interested in the relative distribu-
tion of power:

k =
1

Qtarget

(18)

There is still a subtle problem with this definition: The Qtarget is scaled for a specific
amount of spillage losses – usually 0 %. This means that Qtarget would be an ideal
distribution if the entire available power would hit the target. However, this is mu-
tually exclusive with the property that we’re trying to achieve with this constraint: a
distribution where all heliostats are targeting the centre of the receiver is most likely
never equivalent to the thermodynamically ideal distribution.

A first thought may now be: When we’re trying to reach a certain fixed distribution,
which can physically not be reached, the optimum value would be a value that both
matches the distribution and uses as much power as possible. This would, of course,
never reach the desired distribution, but would at least come very close to it, and
therefore minimize the spillage losses on the way. However, using an unreachable (i.e.
wrongly-normalized) Qtarget creates certain artefacts. In the remainder of this section,
we will first explain what the possible artefacts are, then propose a solution, and then
come back and compare the solution with this first idea.

Assume that we have an example Qtarget distribution

Qtarget = (90, 90, 90) (19)

and two Qlocal distributions

Qlocal,1 = (72, 72, 90) Qlocal,2 = (72, 81, 81) (20)

11To get comparable results, the 1-norm is divided by |M |, essentially resulting in the average (ε).

12

The latter is better, as it distributes the power more evenly, which is what the image
describes. However, when looking at the ε-values, we’re getting the following results:

Using the ∞-norm:

‖Qtarget −Qlocal,1‖∞ = max(18, 18, 0) = 18

‖Qtarget −Qlocal,2‖∞ = max(18, 9, 9) = 18

Using the average:

|Qtarget −Qlocal,1| = {18, 18, 0} = 12

|Qtarget −Qlocal,2| = {18, 9, 9} = 12

(21)

Using Equation 16, these solutions are equally good, on both metrics. But actually
only 72 + 72 + 90 = 72 + 81 + 18 = 234 units are to be distributed in either system,
which means that a more fitting target distribution would be Q′target = Qtarget · 234

270
=

(78, 78, 78). In that case, we would get

Using the ∞-norm:

‖Q′target −Qlocal,1‖∞ = max(6, 6, 12) = 12

‖Q′target −Qlocal,2‖∞ = max(6, 3, 3) = 6

Using the average:

|Q′target −Qlocal,1| = {6, 6, 12} = 8

|Q′target −Qlocal,2| = {6, 3, 3} = 4

(22)

And now the second solution is clearly better, just as expected.
Now, this is a rather realistic example, and the solution may be highly non-optimal

when we’re not considering this effect. This requires us to integrate the corrected
Qtarget into the calculation of ε (compare to Equation 16):

Qlocal − (1− s) ·Qtarget = ε (23)

However, if we minimize εtotal now, we get an optimal solution that has Qlocal =
0: this configuration has 100 % spillage losses, which makes ε = 0. Therefore, we
will optimize for the weighted sum of spillage losses and epsilon, using a weighting
parameter ws ∈ 0, 1:

Minimize 2 · lerp(s, εtotal, ws) (24)

(The factor of 2 is just there for easier reasoning about the results, as it simplifies
the formula to s+ εtotal for ws = 0.5.)

An alternative would be to introduce an additional constraint that limits the spillage
losses, but experimentation with the MIP revealed that this leads to the maximum
spillage losses being almost exactly reached and never fall significantly below that
value. This goes against the goal to maximize the energy output.

13

A second alternative would be to run the optimization without the correction, inspect
the spillage losses, and use them to scale Qtarget accordingly, then run the optimization
again. However, it’s not known whether this results in anything near the “true” opti-
mum, or whether this process stabilizes at all. In any case, the optimization would take
multiple times longer. For all of these reasons, we’re not considering these alternatives.

The only unknown parameter for our system is now ws.
With ws = 0.5 (and a k as defined in Equation 18), we will get a very similar result

to the approach of using an unscaled Qtarget, where the spillage losses and the deviation
are handled at once, except that it is corrected for the effect described above. This
value can also be refined by experimenting with the thermal simulation.

If we would assume that the epsilon already contains the spillage losses, and that we
can only optimize for the epsilon, ignoring the above correction, then we’re effectively
just weighting s and εtotal equivalently, except that there will be errors introduced by
not applying the correction. Therefore, this approach is definitely preferable to the
second idea stated above.

We will refer to this model as the “first model” for short.

3.3. Maximum Flux Map Model

While ideal flux densities are not available yet, more information from the producers
of the receivers revealed that strict maximum flux densities are. Multiple images for
maximum allowed flux densities (Qmax) can be calculated for different values of Qtotal.
These can be approximated by linear interpolation.

This leads us to the definition of a second model: If we know upper and lower bounds
for the spillage losses, we can calculate two maximum images for those values of total
received powers, and use them to interpolate maximum images for arbitrary values
of Qtotal. The maxima in turn can be formulated as a constraint. When we add the
spillage losses as the objective, we get a model that is entirely linear and thus suited
for a MIP solver.

Formally, we interpolate using the total energy, which we normalize between 0 and
1 for convenience. We call this normalized value r, where 0 corresponds to 100 %
spillage losses and 1 corresponds to 0 % spillage losses. The values between which we
interpolate between shall be called Q0 and Q1, which should be the supporting points
at 0 and 1 respectively.

r =
Qtotal

Qmax
total

= 1− s (25)

Qm
max = lerp(Qm

0 , Q
m
1 , r) ∀m ∈M (26)

Then we add the constraint

Qm
local

Qmax
total

≤ Qm
max ∀m ∈M (27)

14

and set the objective to
Minimize s (28)

For our example calculations, we’re using a single receiver model Qbase which is
normalized such that

∑
m∈M Qm

base = 1 and multiply it with factors f0 and f1 to get to
Q0 and Q1.

Q0 = f0 ·Qbase

Q1 = f1 ·Qbase

(29)

This simplifies our formula to:

Qmax = lerp(f0, f1, r) ·Qbase (30)

We will refer to this model as the “second model” for short.

3.4. Summarized Problem Description

In summary, we have two optimization problems. Both of them share some constraints:

(Shared constraints:)

Qm
local =

∑
h∈H

Q(h, ah,m) ∀m ∈M

Qtotal =
∑
m∈M

Qm
local

(see Eqn. 1)

s = 1− Qtotal

Qmax
total

(see Eqn. 3)

(31)

The first model is then summarized as:

Minimize

2 · ws · s+ 2 · (1− ws) · εtotal (see Eqn. 24)

Subject to:

(Shared constraints)

Qm
local − (1− s) ·Qm

target = εm ∀m ∈M (see Eqn. 23)

εtotal = wε ·
‖k · ε‖1

|M |
+ (1− wε) · ‖k · ε‖∞ (see Eqn. 17)

(32)

with default weights of

km =
1

Qm
target

∀m ∈M (see Eqn. 18) (33)

wε = 0.5 (34)

ws = 0.5 (35)

15

The second model is summarized as

Minimize

s (see Eqn. 28)

Subject to:

(Shared constraints)

Qmax = lerp(Q0, Q1, r) (see Eqn. 26)

simplified: Qmax = lerp(f0, f1, r) ·Qbase (see Eqn. 30)

Qm
local

Qmax
total

≤ Qm
max ∀m ∈M (see Eqn. 27)

(36)

We will use default parameters of f0 = 0.3 and f1 = 1.2, chosen arbitrarily.

16

4. Solving

4.1. MIP

The MIP is based on a construct where we have boolean variables bh,a for all a ∈ A,
h ∈ H. These variables are set to 1 if the heliostat h targets the aimpoint a, otherwise
they are set to 0. Obviously, one heliostat can only point to at most one aimpoint, so
the following constraints are introduced:∑

a∈A

bh,a ≤ 1 ∀h ∈ H (37)

We can now introduce continuous variables for the local flux density in certain spots,
which are defined via constraints.

Qm
local =

∑
h∈H

∑
a∈A

Q(h, a,m) · bh,a ∀m ∈M (38)

All the other constraints – from both models – can be used directly as they are
formulated in Section 3.

Note that the constraint from Equation (38) causes the size of the MIP (in number
of linear terms) to be in O(|H × A ×M |). As the receiver surface area is probably
linearly dependent on the number of heliostats in the field, the size of the MIP is in
approximately O(|H|3). Due to this high complexity, we will approximate and try
other methods later.

The idea of this formulation was taken from [1].

4.2. Grouping

A natural simplification of the MIP is the unification of heliostats with very similar
images. For this purpose, the set of heliostats H is divided into a partitioning P and
each set H ′ ∈ P will be represented by a single “virtual” heliostat v(H ′).

For a cluster of heliostats H ′ ⊂ H, all boolean variables bh,a (with h ∈ H ′) for a
single aimpoint a can be replaced by only one variable zH′,a. The limitation that a
heliostat can only point onto a single aimpoint can be relaxed – a cluster of heliostats
may point onto as many aimpoints as it contains heliostats:∑

a∈A

zH′,a ≤ |H ′| ∀ H ′ ∈ P (39)

The idea behind this approach is to improve the solver performance in multiple ways:
First of all, it simply reduces the number of variables. This both decreases the time

spent in Simplex and the time required to load the problem file.
Then it also decreases the size of the search space. Heliostats that have a very

similar image anyway are not differentiated any more by which heliostat points on
what exactly, so this decision is removed from the solver.

17

Finally, this reformulation may create a MIP that is more suited for the solver by
having less binary variables and more linearity to use. Subtrees could potentially be
cut off quicker by the branch-and-bound algorithm, and there’s a possibility that a
bigger part of the search space doesn’t have to be touched. There are more valid
integer solutions in the vicinity of the linear relaxation optimum, which may mean
that some of them are being reached faster.

The questions that arise here are:

1. What is Q(v(H ′), a,m) for a given group, i.e. what image does the virtual helio-
stat project onto the receiver surface?

2. Which metric should be used to evaluate how good a grouping H ′ is?

3. Which algorithm should be used to optimize on that metric?

All of these questions are interconnected.
The first approach, for demonstration purposes, was to simply put the heliostats

into equally sized groups of similar distance and calculate the arithmetic mean posi-
tion for the representative heliostat. The HFLCAL model then provided values for
Q(v(H ′), a,m). This of course makes only limited sense, but served as a demonstrator
that this indeed improves the solver performance drastically.

For the more structured approaches, we need to first define a metric. When grouping
up heliostats, we want to minimize the error that is created. To be exact, we want to
minimize the maximum error that occurs in Qlocal by replacing a heliostat h ∈ H ′ by
its representative v(H ′):

Error bound on Qlocal = min
P∈PP(H)

max
m∈M

∑
H′∈P

∑
h∈H′

max
a∈A
|Q(h, a,m)−Q(v(H ′), a,m)| (40)

where PP(H) is the set of all partitions of H. Knowing this error bound also allows us
to make sure that Qmax is never exceeded in the second mode: When minimizing the
maximum error that occurs, we can give an upper bound for the total error in each
Qlocal. As Qtotal is simply the sum over Qlocal, its relative error is bound by the maxi-
mum relative error on Qlocal. This, in turn, allows us to calculate the maximum error
on s and on Qmax. We can then use these numbers to scale Qmax down appropriately,
so that its never exceeded even with the errors that we’re introducing.

For the algorithm, a k-means seemed suitable for this task. It works as follows:

1. Choose k heliostats. Each of them is the representative of one cluster.

2. Assign every heliostat to the cluster it has the lowest error with (i.e. where
maxa∈A maxm∈M |Q(h, a,m)−Q(v, a,m)| is minimal, where v is the representa-
tive for the cluster as it was in the last iteration).

3. Update the representative heliostat of each cluster, i.e. update Q(v, a, m) (see
below).

18

4. Repeat the second and third steps for n iterations.

Finally, the Q function was defined as the average of the individual heliostats Q
values:

Q(v(H ′), a,m) =

∑
h∈H′ Q(h, a,m)

|H ′|
(41)

This definition, however, resulted in the algorithm converging after very few (<5)
iterations with all heliostats within one cluster and all other clusters being empty.
This might be due to the nature of the central limit theorem, where many individual
uncorrelated distributions eventually converge into a Gaussian distribution. When
creating a single “average” distribution by summing up all profiles and dividing the
values at the individual points by the number of profiles, there seems to be an average
that is very close to all of the distributions.

As an alternative, the method from the first approach was reused: the arithmetic
mean position of the heliostats of the group is taken, and its position is used for the
representative heliostat, of which the flux density is calculated via HFLCAL. This
worked better, the results of this approach can be seen in Figure 6.

4.3. Genetic Algorithm

As the MIP generation didn’t seem to provide more room for optimization without
approximation (see Section 5), other options were investigated. The choice fell on a
Genetic Algorithm (GA), as some literature [4] claimed it to work well and it seemed
easy to implement. Furthermore, by implementing MIP and GA methods side-by-side,
a proper comparison between them can be made. Finally, the results can give a rough
idea on how well similar search methods that consider the problem a black box like
local search, simulated annealing etc. may work.

For the genetic algorithm, we use the objective as the fitness function of an align-
ment, alignments from H → A are the individuals. Other than this, we need to define
recombination and mutation operators, and a simple method to generate starting so-
lutions.

The starting solutions have all heliostats pointing onto the standby aimpoint, i.e.
the spillage losses are 1. This solution is copied for the entire population. We don’t
really care about duplicate solutions as these are mostly vanishing very quickly due to
mutations.

The selection is being done in two ways: first, a small part of the population with
the highest objective value is always copied to the following iteration. The ratio be-
tween the number of elite individuals and the total population is a parameter to the
optimization, which we call elitismRate.

In a second selection step, individuals are selected using the roulette wheel selection,
i.e. the probability of each individual to survive is proportional to its score. As we’re
trying to minimize the objective, we use the inverse as the score:

Score =
1

ObjVal
(42)

19

Figure 6: The heliostats as they are grouped by the k-means algorithm. The represen-
tatives are red, the original heliostats are on the tips of the lines. 5 iterations,
100 groups.

20

Parameter Value

populationSize 100
selectionRate 0.5
mutationRate 0.005
swapRate 0.005
elitismRate 0.01
iterations 100
Model used First model

Figure 7: Parameters used for performance measurements.

The ratio between the number of individuals being selected using this method and the
total population size is called selectionRate and is also a parameter to the optimization.

The rest of the population is then filled up by recombination. This is done by
selecting the aimpoint for each heliostat of the child randomly from one of its parents.
In detail, the algorithm to generate a new solution is as follows:

1. Select two parents randomly. Both of the parents must be part of the group
that was selected through either of the methods described above, i.e. both of the
parents must survive.

2. For each heliostat, choose one of the two parents. In the new solution, the
aimpoint of that heliostat is the same as the aimpoint of the selected parent of
that heliostat.

After recombination, all non-elite individuals (i.e. those that weren’t selected through
elitism) are up for mutation. This is done by repeatedly selecting one of those indi-
viduals, selecting one heliostat, and assigning that heliostat to a random different
aimpoint. The average ratio of mutated heliostat-aimpoint assignments per heliostat
and individual is called the mutationRate and is a further parameter to the algorithm.

Another mutation operator was added which swaps the aimpoints of two heliostats
within one individual. The parameter for the rate of swaps per heliostat per individual
is called the swapRate.

Generally, constraint violations in the second model are reflected by increasing the
objective massively. As the spillage losses can be at most 1, the value that is added per
violation is 1, which means that every solution (with the second model) that violates
constraints has an objective greater than or equal to 1. Inversely, whenever a solution
has a reported objective smaller than 1, it does not violate any constraint.

The idea for using a genetic algorithm for this kind of problem was taken from [4].
Unlike the MIP approach, which is a black-box performance-wise due to the usage

of the closed-source solver, we have a lot of influence on the performance of the GA.
The evaluation of the model, as expected, proved to be the most expensive step in the
GA. This will be subject to two optimizations in the following subsections.

As a baseline, the parameters as shown in Figure 7 were used. In this case, the first
model was taken, but this has barely any influence on the overall performance, as the

21

biggest part of the calculation is the determination of Qlocal. This setup needs 28.3 s
to compute. When setting the iteration count to 0, we get to about 0.5 s, which is our
initialization overhead and can’t be reduced by tweaking this algorithm.

4.3.1. Caching the Image

A first and simple optimization was to apply memorization onto the task of comput-
ing the individual local energies. As hashtables had too much overhead to produce
significant speedup, the memory locations were calculated directly. This was done by
assigning consecutive indices to each heliostat. Aimpoints and measurepoints were
indexed similarly. This allowed to compute a gap-free index:

index(h, a) = index(h) · |A| + index(a)

index(h, a,m) = index(h, a)· |M |+ index(m)
(43)

In the following, two chunks of memory were allocated: one for an array of booleans
that indicated whether the image for an alignment (h, a) ∈ H × A has already been
computed, the other one for the images of those alignments. When the image for an
alignment is requested, it is first looked up in the boolean array whether this image
has already been computed, and if it hasn’t, it computes this image. In the end, it
returns a pointer to the first element in this image.

For the same setup as above, this optimization results in a computation time of 7.4
s, creating a 3.8x speedup. With lower mutation rates and higher iteration counts,
even higher speedups can be achieved.

4.3.2. The Local Flux Tree

Being an O(|H×M |) operation, the computation of local energies is the most expensive
step while evaluating a solution, with all other steps only making up for O(|H| + |M|)
operations.

We assume that we have a lot of very similar solutions, as the “survival of the fittest”
method of the GA is very likely to let many descendants of a very successful individual
survive, which then again recombine their already-similar genomes. This means that
most of the time, the same numbers are added up to calculate Qlocal.

However, when computing Qlocal by sequentially adding the flux contributions of the
individual heliostats, memorization of partial sums doesn’t help much: on average,
half of the additions are becoming invalidated (see Figure 8). One approach would be
to subtract the old value from the sum and add the new one, but this may lead to
diverging results due to floating-point inaccuracies that are getting bigger with each
step.

Instead, we are organizing the additions in a balanced tree (see Figure 9). Each leaf
contains the image of one heliostat with the alignment of the last computed solution.
Each node contains the sum of the images of its children. When one of the leaves now
changes their value, only additions on the path to the root have to be redone. When
multiple leaves change, there is a chance that they invalidate the same nodes.

22

Q0 Q1 Q2 Q3 Q4 Q5

+ + + + +
∑
Q

Figure 8: The dependency graph for sequential addition. An edge indicates that the
result of the outgoing node influences the result of the incoming node. If Q0

changes, all gray nodes have to be recalculated.

+

+

+

Q0 Q1

+

Q2 Q3

+

Q4 Q5

∑
Q

Figure 9: The dependency graph for tree addition. If any single Qh changes, only the
path to the root is invalidated, the other calculations can be reused.

23

In terms of complexity, the worst case doesn’t get worse, and the best and average
case improve in comparison to a sequential system. In all cases, the number of re-
calculated nodes is in O(log |H|), or O(|M | · log |H|) for the time complexity, as the
recalculation of each node requires Θ(|M |) operations. When all leaves change their
values, the entire tree has to be recalculated - this is the worst case.12 The tree con-
struction just makes use of associativity, and when applying associativity laws, the total
number of operations is conserved. This means that the complexity for recalculating
the entire tree is in Θ(|H|).

In comparison, memorizing partial sums of the sequential addition have a best case
time complexity when one image changes of only one addition having to be redone,
resulting in an Θ(1) operation. The worst case, on the other hand, invalidates the
entire chain of additions, resulting in a Θ(|H|) operation. As the invalidation of each
image has the same probability in the GA, the average is that half of the nodes are
invalidated, which is proportional to |H|, resulting in an average case time complexity
of Θ(|H|) for a single change. For an arbitrary number of n changes, the situation is
similar, with Θ(n) being the best case and average and worst case staying the same.

This results in the average case time complexity for updating the tree for an arbi-
trary but fixed number of changed leaves never being higher than the average case of
recalculating a sequentially memorized result.

When being fed our test setup, this optimization - together with the caching above -
takes 3.4 s to compute, creating another 2.2x speedup versus the previous optimization,
or an 8.3x speedup in total.

12This does not only apply if all leaves change, half of them is enough if they are distributed in an
unfortunate way.

24

5. Test Cases

5.1. General

For all test cases, the parameters as shown in Table 1 were used. Model-specific default
values are as stated in Section 3.4. For the receiver model, i.e. the distribution used
as both Qtarget and Qbase, the data shown in Figure 10 was used.

Summarized results can be found in Table 2.

5.2. MIP

For testing, it was assumed that all heliostats have Praw = 1 for the beam power.
12× 6 aimpoints and measurepoints were used, distributed in a grid-like pattern over
the surface of the receiver. All 624 heliostats of the PS10 plant were used. The
optimization ran on Gurobi 7.5.1 on a 2013 laptop (see Appendix A.1).

The MIP generation took about 5.3 s for both scenarios. The resulting problem files,
62.3 MB each13, took another 3 s to be read by the solver.

For the first model, the first solution was found within 50 s. It already had an
objective value with a gap of only 2.37 % (ObjVal = 14.24 %, see Figure 11). After
1000 s, the solver was aborted - the last solution, found at 721 s, only reduced that gap
to 1.35% (ObjVal = 14.09 %, see Figure 12). The best bound didn’t change at all, it
was constantly at about 13.90 %.

In the second model, we’re setting Q0 = 0.3 and Q1 = 1.2. Again, the solver is run
for 1000 s. The first solution is found after 27 s, the last one at 980 s (see Figure 13).
The best bound didn’t change this time either, it was constantly at about 4.24 %.

Note however that for the second model, these timings are extremely dependant on
the parameter choice. For example, when changing Q1 to 10 the solver only needs 6 s
to do its job, while a setup with Q0 = 0 and Q1 = 1.3 doesn’t find any (non-trivial)
solution in a reasonable time (tried for 1000 s).

13In the .lp file format.

0

5

0

0.01

0 5 10

Figure 10: The receiver model used - this is the distribution that should be archived.
The scale is relative, i.e. 0.01 means 1 % of the total energy reaching the
receiver should be collected in this area.

25

Parameter Value

Total variance 4.525 mrad
Tower height 110 m
Aimpoints 12× 6
Measurepoints 12× 6
Receiver size 13.78 m× 12.00 m
Field layout from PS10
Receiver model See Figure 10
Receiver surface normal South

Table 1: The parameters used for the test cases.

Method
Ideal flux map model Maximum flux map model

Obj. Time Obj. Time Max.Violations

MIP 14.24 % 59 s 1 5.49 % 27 s 1 0 %
Grouping 15.60 % 7 s 2 6.38% 15 s 2 0.66 %
GA 27.52 % 17 s 41.33 % 15 s 0 %
Lower bound (from MIP) 13.09 % - 4.24 % - -

Remarks:
1 Includes time for MIP generation and loading.
2 Includes time for grouping, MIP generation and loading.

Table 2: The results. For the MIP, the time and objective to the first solution are
shown. For the GA, the same parameters as above are used.

0

5
0

2

0 5 10

0

5
-0.05

0

0.05

0 5 10

Qm
local

Qmtarget−Qmlocal
Qmtarget

s = 9.90% ‖ε‖∞ = 5.83% ‖ε‖1 = 2.85% ObjVal = 14.24%

Figure 11: The first solution that was found for the first model using the MIP solver.

26

0

5
0

2

0 5 10

0

5
-0.05

0

0.05

0 5 10

Qm
local

Qmtarget−Qmlocal
Qmtarget

s = 9.91% ‖ε‖∞ = 5.58% ‖ε‖1 = 2.78% ObjVal = 14.09%

Figure 12: The last solution that was found for the first model using the MIP solver.

0

5
0

2

4

0 5 10

0

5
0

2

4

0 5 10

s = 5.49 % s = 4.87 %

Figure 13: The first and last solution found for the second model by the MIP solver.

27

This means that solving the problem in real-time with an MIP might be a viable
strategy if enough computing power is employed. However, it does also mean that
adapting within seconds (due to cloud coverage) is currently not possible.

Although the single-core performance of newer CPUs, which is crucial for solving
MIPs, stagnated over the recent years, the speed of the available solvers still increases
exponentially, which may lead to the conclusion that it is only a matter of time until
these problems can be solved in an acceptable time. However, due to the large MIP
size, generating and loading of the MIP creates a lower bound. And since many plants
have much more than 624 heliostats, this approach is probably not applicable for the
time being.

5.3. Grouping

The first area of investigation regarding this approach was the overhead introduced by
the k-means itself. We want to find out:

1. How many iterations are required?

2. How long do they take?

3. How big is the error introduced?

To answer the first question, we can visualize the individual steps of the algorithm.
It shows some interesting behaviour: Instead of converging to a fixed point, it first
shifts some of the groups to the front, where smaller groups appear. After that, the
group in the back doesn’t seem to stabilize, but is instead repeatedly replaced by one
of the groups from the side. This may indicate that the method of taking the average
position and recalculating the flux from there might not be the ideal approach.

The complexity of the k-means in its current state is in O(k·n), where k is the number
of groups and n is the number of iterations. A setup with 50 groups and 5 iterations
takes about 4.8 s to compute. The total time for grouping and MIP generation is at
5.3 s. This is about the same as needed for MIP generation without grouping, as the
resulting LP file is much smaller.

The error introduced is quite bad in the worst case. Equation (40) gives a worst-case
error of 2.42 on Qlocal on any measure point (compare with the solutions above, e.g.
Figures 11 and 12). This means that the approach of scaling up Qmax in the second
model is not viable.

The MIPs generated are much faster at being solved. For the first model, the group-
ing from Figure 6 takes only 2 s to get to a solution, down from 50 s without grouping
(see Figure 14). It is, however, noticeable that the objective bound has changed slightly
- it is now at 13.75 % (compare to 13.90 % from the last section). The situation is
less extreme for the second model, with 10 s for the first solution - down from 27 s (see
Figure 15). Apart from the grouping, the same parameters as in the last section have
been used.

As the theoretical error introduced by this approximation is very high, it was inves-
tigated how big the error is in practice. For this purpose, the last solutions generated

28

0

5
0

2

0 5 10

0

5 -0.05

0

0.05

0 5 10

Qm
local

Qmtarget−Qmlocal
Qmtarget

s = 10.06% ‖ε‖∞ = 6.57% ‖ε‖1 = 2.63% ObjVal = 14.66%

Figure 14: The first solution that was found for by the MIP solver the first model with
the grouping from Figure 6.

0

5
0

2

4

0 5 10

s = 6.16 %

Figure 15: The first solution that was found by the MIP solver for the second model
with the grouping from Figure 6.

by the solver were taken and the aimpoints of heliostat groups were randomly assigned
to the original heliostats. When evaluating this solution, it became apparent that, for
the first model, the objective value was 15.60 %, up from the 14.66 % obtained without
grouping (see above). The second model had 7 violations of its Qmax-constraints, the
biggest of which was 0.66 % (relative to the local Qmax). Additionally, the spillage
losses are 6.38 %, up from 6.06 %14. This means that the errors that occur in practice
are very small. In the second model, fQ0 and fQ1 can just slightly be scaled down
before given to the optimizer, and still return a result that is very close to the opti-
mum. Depending on the exact requirements, the number of groups could be scaled up
to reduce the error even further, at the cost of more computation time.

Finally, a small instance was created where it was simply assumed that the existing
heliostats are already representative heliostats for groups of 16, creating a field of
almost 10’000 heliostats. The solver showed no significant performance difference to
the original field. This shows that the grouping approach scales very well, but it does

14This number is slightly different from the one found depicted in Fig. 15, because the randomized
grouping returned a slightly different result.

29

0

5
0

2

0 5 10

Figure 16: The resulting flux map for the solution generated by the genetic algorithm
for the first model.

also indicates that the speculative claim that this reformulation is faster due to the
different nature of the search space from the last subsection is actually wrong. If it
was true, it would be expected that bigger groups actually make the solver take less
time.

5.4. Genetic Algorithm

The following remarks are valid for both models, but we will use the first model for
demonstration purposes.

After experimenting a bit, it became apparent that there is a tradeoff between fast
convergence to a bad value at the beginning and slow convergence, but to a better
value long-term (see Figure 17). To overcome this issue, we run the genetic algorithm
multiple times, each instance having different parameters. This way, we can use the
high mutation rate in the beginning to get into “the right direction”, and then move
the limit later.

Figures 18 and 19 show the convergence for both models. Notice how the limits
that are reached are much higher than the values obtained from the MIP. Lowering
the mutation rate further does not improve convergence at this point, as it results in
an average of less than one mutation per solution per iteration.

The swaps did not lead to a faster convergence or better goal, as toggling them
showed. When looking at the returned solutions (see Figure 16), it becomes apparent
why this may be the case. Consider the bulk of superfluous light in the bottom left
and the missing flux in the top center. It seems like there is potential for a pareto
improvement there by moving some of the heliostats over. However, the algorithm is
not aware of the fact that the swaps are a very fine-tuning operation, while the actual
problem is that low-hanging fruits are not gathered.

30

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

Sc
o
re

Iteration

Best Worst

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900

Sc
o
re

Iteration

Best Worst

Figure 17: Convergence of the GA with two different sets of parameters. On the left,
100 iterations at 10 individuals in each population, 10 % mutation, 1.7 s
required. On the right, 1000 iterations at 100 individuals in each population,
with 0.1 % mutation and 0.1 % swaps, 13.7 s required.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000

Sc
o
re

Iteration

Best Worst

Parameter Value

populationSize 10
selectionRate 0.5
mutationRate 0.1
swapRate 0.1
elitismRate 0.1
iterations 30

↓
Parameter Value

populationSize 100
selectionRate 0.5
mutationRate 0.001
swapRate 0.001
elitismRate 0.01
iterations 1000

Figure 18: Convergence of the genetic algorithm applied to the first model. The pa-
rameters for the two instances of the genetic algorithm are on the right.
The total running time was 16.9 s.

31

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Sc
or
e

Iteration

Best

Parameter Value

populationSize 10
selectionRate 0.5
mutationRate 0.1
swapRate 0.1
elitismRate 0.1
iterations 10

↓
Parameter Value

populationSize 100
selectionRate 0.5
mutationRate 0.001
swapRate 0.001
elitismRate 0.01
iterations 1000

Figure 19: Convergence of the genetic algorithm applied to the second model. The
“worst”line was omitted, as it would rescale the vertical axis too much. After
a brief period at the start, the worst solution score fluctuates chaotically
between 1.5 and 16. The total running time was 15.0 s.

32

6. Conclusion and Outlook

In summary, the Aiming Problem was tackled by the development of two models. A
new light model, derived from HFLCAL, was added. A MIP formulation was presented
and evaluated, and an approximation was made by grouping similar heliostats together.
Finally, a Genetic Algorithm was implemented.

The models have the big flaw of not being validated in any way. There hasn’t
even been any direct contact to the responsible manufacturers, and no real-world or
simulation data was available for testing. In fact, the receiver model has a different
aspect ratio than the assumed receiver, and is actually for a cylindrical receiver and a
360 field, while the site in question has a flat receiver and a south field.

The models could be further extended to cover other restrictions of such plants.
For example, many real-world receivers have a ceramic protective edge to protect the
tower from excess heat and radiation. Although these covers can take a bigger amount
of thermal energy than the materials in the receiver before they break, the latter is
being cooled by the relatively cold medium that transports the heat away. This means
that the flux density on these areas has additional constraints. Also, covering local
minima in between the aimpoints with measurepoints may be interesting for stress
computation.

The HFLCAL adaption might be useful not only when working on the Aiming Prob-
lem, but for all kinds of problems affiliated with solar power towers, e.g. field layout
or performance prediction. It fills a gap between oversimplifying and overcomplicated,
compute-heavy light models.

Using MIP to solve the Aiming Problem does not seem promising when trying to
get exact results, especially with plants bigger than the 624-heliostat PS10. However,
the approach to group heliostats together is very scalable and may pose as a solu-
tion. Although the theoretical error bounds are quite high, there is not much error in
practice.

When further investigating the path of grouping heliostats together, another opti-
mization problem appears: the assignment of heliostats to the aimpoints of their group.
This is considered future work.

A Genetic Algorithm, on the other hand, does not seem suitable for these kind of
problems in its raw form. Although the solutions can be generated much faster than
by the MIP solver, their quality is very poor. There may be potential to improve upon
these results by modifying the algorithm.

One such modification could be non-uniform probability distributions for the mu-
tations of heliostats: when the light distribution is altered in areas where it’s already
good, it’s very likely that the only result is wasted computation time. If it’s less likely
to touch these heliostats, convergence to higher values may be achieved. This may
work well with modifications to the local flux tree, which could have less depth for
heliostats that are regularly moved. Then the decision on which heliostats to move to
which aimpoint with which probability poses much room for optimization. As arbi-
trary amounts of data can be generated on which decisions are good and which aren’t,
unsupervised learning could be used for this purpose. In particular, neural networks

33

would be feasible: the inputs could be differences of the local flux, the image of one
heliostat, and ideal/maximum flux densities, while the output is a probability to move
that heliostat.

Generally, a path that hasn’t been investigated so far is parallelism. All of the com-
putations (with the exceptions of the black-box MIP solver) are running sequentially
right now. However, many areas are open to being parallelized. These are:

• The MIP generation. Many parts of the MIP are independent of each other (e.g.
the constraints defining the local energy) and could be generated at the same
time. Only the composition of these parts needs to be done sequentially.

• The grouping. In each iteration, every heliostat’s image must be compared with
every group to assign it optimally. This can be done in parallel for all heliostats
at once, however requires some synchronization for the gathering of the results.

• The genetic algorithm. In each iteration, many individuals are evaluated. All of
this evaluation can be done in parallel (when using seperate local energy trees
and caches for each thread), only the selection steps need to be done sequentially.

When considering that processors with 20 or more (logical) cores are becoming more
and more common - with individual core speeds stagnating -, these avenues should be
definitely considered if there is a need for more performance.

34

A. Interface Documentation

A.1. Project Layout

The code was mainly written in C++, with a frontend written in C] to interactively
display the solver progress and graphics generation. For solving, Gurobi 7.5 was used.
GCG was also briefly tried, but quickly exhausted more than 8 GB of memory, even
for simple MIPs.

Most calculations were run on the author’s machine (Intel Core i7-3630QM @ 2.4
GHz; 8 GB RAM @ 1600 MHz).

The C++ code was embedded into the SolarTower project15, although there are
barely any dependencies to the rest of that project. It could be easily departed from
it.

A.2. Building and Running

In its current state, the project builds with CMake on Linux. When using Windows
to build the project, it is recommended to use the Linux Subsystem for Windows16.
Also, the use of Ninja17 instead of make can considerably speed up builds, especially
consecutive ones.

The design of the program is such that it takes in commands via JSON. The specifi-
cation of these commands is outlined in Section A.3. A JSON command file file.json
can be executed by starting the program with the parameter --commandFile=file.

json. By default, the output is written to ../../output.txt, but an alternative
output file otherFile.txt can be specified by using the command line parameter --

output=otherFile.txt. Alternatively, the program can be started with the --server
flag, which opens a server on port 12456 that listens for incoming TCP connections.
When a connection is established, it reads the JSON code from the TCP stream, eval-
uates it, and writes the result back into the stream. This mechanism is used by the
frontend application, which assumes that a command server is running at localhost.

A.3. JSON Interface

The JSON interface is documented through a JSON Schema file, which can be found
under data/AimingStrategyRequestSchema.json.

B. Code Documentation

This section gives a brief overview over the main C++ codebase to assist reading the
code. It is not intended to cover all details, and not the entire public interface, either.

15https://git.rwth-aachen.de/Computational-Renewable-Energy/Solar-Tower.git
16https://msdn.microsoft.com/en-us/commandline/wsl/about
17https://ninja-build.org/, run CMake with -G Ninja

35

https://git.rwth-aachen.de/Computational-Renewable-Energy/Solar-Tower.git
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://ninja-build.org/

1 std::unique_ptr <ILP > ilp = std:: make_unique <ILP >();

2 auto a = ilp ->addVariable("a", CONTINUOUS_POSITIVE);

3 auto b = ilp ->addVariable("b", INTEGER);

4 auto c = ilp ->addVariable("c", BINARY);

5

6 ilp ->objective = 3 * a + 5 * b + 22.3 * c;

7 ilp ->addConstraint("someConstraint", 2 * a + 5 < b);

8 ilp ->addConstraint("someOtherConstraint", 1.34 * c == 5);

9

10 std::cout << ilp ->toString () << std::endl;

Listing 1: Intuitive operator usage

B.1. ILP Framework

To generate the ILPs, a simple framework was written. This section gives a brief
overview of this framework.

The class structure is laid out as follows:

• The main class, ILP, contains one objective of type LinearTerm, a list of Con-

straints, and a list of Variables. It can be serialized into an LP file.

• A Constraint represents an inequality, and has two LinearTerms for the left
and right side, as well as a ConstraintType, which is an enum representing its
sense (<, >, <=, >=, =)

• A LinearTerm contains a list of AtomicLinearTerms.

• An AtomicLinearTerm contains a Variable and a double. If the variable is set
to an empty value, the term is interpreted as a constant. Otherwise, it represents
a product of a constant and a variable.

• A Variable has a name (a std::string) and a type (an enum VariableType

that can take the values Binary, Integer and Continuous).

By overloading the operators, constraints can be generated in a very intuitive fashion,
as showed in Listening 1.

B.1.1. Remarks Related to the LP File Format

Note that the generated LP files are normalized to be compatible with Gurobi. There
does not seem to be a standard definition of the .lp file format, but the documentation
of various solvers in combination with additional experiments suggest that purely linear
constraints will be interpreted correctly when they conform to the regular expression18

18These are standard Perl Regular Expressions, as used in most RegEx libraries. \w stands for an
alphanumeric or underscore character, \d stands for a digit. See e.g. http://perldoc.perl.org/
perlre.html for a complete documentation.

36

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

(number? varname)+ sense number

where

number is (\d+(\.\d+)?),
varname is [a-zA-Z]\w*, and

sense is <|<=|=|>=|>.

This means that individual summands may be moved to the correct side of the in-
equation, and single constant on the right hand side is a sum of all constant summands
in the inequation.

To specify which values a variable can take (e.g. whether its values must be integer,
binary etc.), the variables are listed in variable lists at the end, which are prefixed with
the type that the variables in that list should have. However, to express that a variable
can hold any real number (that it is “continuous”), they mustn’t be appearing in any
of those lists. In fact, this is the only way to create continuous variables.

B.2. Solar Tower Representation

B.2.1. SolarTowerSite

Provides access to all information about the plant that could be relevant during op-
timization. These include instances of all classes explained in the remainder of this
section.

B.2.2. ReceiverModel

Provides the receiver model, i.e. the image that is used for Qtarget and Qmax.

B.2.3. BeamEnergyProvider

Provides methods to determine the image that is casted by an individual heliostat.
This class is abstract. It is implemented by HflcalBeamEnergyProvider, which

provides the HFLCAL-based method for flux approximation that was presented in
Section 2.3. Other implementations could be added for other types of providers.

B.2.4. Receiver

Represents the receiver and contains information about its dimensions and resolution.
Also provides aimpoints and measure points, which are provided as ReceiverSur-

facePointCollection instances. These structures can directly be iterated, but also
provide methods to count the total number of points and convert 2D indices to real-
world positions.

37

B.2.5. Evaluator

Represents a model. Provides the ability to evaluate a solution and to generate a MIP
for an instance.

This class is abstract, it is implemented once for each of the two models.
This superclass also supervises the use of the optimization structures introduced in

the Sections 4.3.1 and 4.3.2.

B.3. Solver Interface

B.3.1. JsonCommandProcessor

Processes the JSON commands. These commands can come in via TCP, in which
case this class is called from the CommandServer class, or from the program itself, via
AimingStrategyMain.cpp.

B.3.2. GroupingAlgorithm

Represents a function that partitions a set of heliostats into groups.
This class is abstract. It is e.g. implemented by KMeansGroupingAlgorithm, which

groups heliostats via a k-Means algorithm, and DoNothingGroupingAlgorithm, which
simply returns the same heliostats again.

B.3.3. SolvingAlgorithm

Represents a method to generate an optimized assignment of heliostats to aimpoints.
This class is abstract. It is implemented by GeneticAlgorithm and GeneticIt-

erativeAlgorithm, where the latter is a variant of the former that allows different
parameter sets to be executed one after another.

Note that there is no ILP solver; no direct ILP interface was integrated to avoid
introducing further dependencies. To solve via ILP, generate an LP file and feed it to
the solver of your choice.

B.3.4. SimpleSolution

Represents an assignment of heliostats to aimpoints.
Note that this class only supports an n : 1 mapping; it allows assigning each heliostat

group to one aimpoint only, hence the name.

B.4. Utility classes

These classes were introduced to minimize the external dependencies that the program
requires.

38

B.4.1. Array2D

This class represents a simple way of accessing two-dimensional data. It’s especially
useful when working with receiver models.

B.4.2. Vector2<T>

This class represents a classical euclidean vector and provides common operations
such as vector addition, vector scaling, length calculation, JSON deserialization and
conversions.

39

C. Nomenclature

C.1. Symbols used throughout the document

Symbol Domain Description

H - The set of heliostats.

h H Used to refer to a single heliostat.

A - The set of aim points.

a A Used to refer to a single aimpoint.

M - The set of measure points.

m M Used to refer to a single measure point.

Q H × A×M → R+ A function determining the power that a heliostat
h contributes to a measure point m when targeting
an aimpoint a.

Qlocal RM
+ The local power measured in each measure point on

the receiver surface.

Qtotal R+ The total power arriving at the receiver surface.

Qmax
total R+ The maximum power that could arrive at the re-

ceiver surface.

s [0, 1] The spillage losses, i.e. the ratio of radiation that
misses the receiver. A value of 0 means that no light
misses the receiver, a value of 1 means that no light
hits the receiver.

lerp D ×D × [0, 1]→ D Linearly interpolates between two values. D can
be any vector space, e.g. R or RM . If the third
parameter is 0, only the first value contributes to the
result, if it is 1, only the second value contributes.

C.2. Symbols used in the context of the image generation
algorithm

Symbol Domain Description

normalize R3 → {−→x ∈ R3 : |−→x | = 1} Normalizes a vector, i.e. converts a vector
to another vector with the same direction
and length of 1.

P R+ The total power reflected by a heliostat.

40

Symbol Domain Description

φ [−π
2
, π

2
] The angle between the normal of the re-

ceiver surface and the direction of the in-
coming light.

−→n {−→n ∈ R3 : |−→n | = 1} The normal of the heliostat surface.
−→
t {−→t ∈ R3 : |−→t | = 1} The direction of the tower, as seen from the

heliostat. (To be exact: the direction of the
aim point.)

−→s {−→s ∈ R3 : |−→s | = 1} The direction of the sun.

Praw R+ The power reflected by a heliostat if the
sun was exactly behind the tower, i. e. if
its effective surface area was equal to its
actual surface area.

C.3. Symbols used in the context of the Ideal Flux Map Model

Symbol Domain Description

Qtarget RM
+ The ideal amount of power for each point on the surface.

ε RM The difference between the ideal and the actual amount of power
on each point on the surface.

εtotal R+ A measure of the deviation of the actual and ideal power distri-
bution.

k RM
+ Weighting factors for the calculation of εtotal for each individual

point on the surface.

wε [0, 1] A weighting factor that weighs the 1- and ∞-norm. If it is
zero, only the 1-norm contributes to εtotal. If it is one, only the
∞-norm contributes to it.

ws [0, 1] A weighting factor for the contribution of s and εtotal to the
objective. 0 means that only εtotal is optimized for, 1 means
that only s is optimized for.

41

C.4. Symbols used in the context of the Maximum Flux Map
Model

Symbol Domain Description

r [0, 1] The ratio of light that hits the receiver. This is simply the
inverse of the spillage losses (r = 1 − s), so a value of 0 means
that no light hits the receiver and a value of 1 means that no
light misses the receiver.

Qmax RM
+ The maximum power that should arrive at each point of the

receiver surface.

Q0 Rm
+ The value for Qmax if r = 0.

Q1 Rm
+ The value for Qmax if r = 1.

Qbase RM
+ A distribution that is used for example calculations.

f0 R+ A pre-factor for the distribution to get to Q1.

f1 R+ A pre-factor for the distribution to get to Q2.

42

References

[1] T. Ashley, E. Carrizosa, and E. Fernández-Cara. Optimisation of aiming strategies
in solar power tower plants. Energy, 137:285–291, 2017. doi: 10.1016/j.energy.
2017.06.163.

[2] G. Augsburger. Thermo-economic optimisation of large solar tower power plants.
PhD thesis, STI, Lausanne, 2013.

[3] B. Belhomme, R. Pitz-Paal, and P. Schwarzbözl. Optimization of heliostat aim
point selection for central receiver systems based on the ant colony optimization
metaheuristic. Journal of solar energy engineering, 136(1):011005, 2014.

[4] S. M. Besarati, D. Y. Goswami, and E. K. Stefanakos. Optimal heliostat aiming
strategy for uniform distribution of heat flux on the receiver of a solar power
tower plant. Energy Conversion and Management, 84:234–243, 2014. doi: 10.
1016/j.enconman.2014.04.030. URL http://www.sciencedirect.com/science/

article/pii/S0196890414003343.

[5] F. J. Collado. One-point fitting of the flux density produced by a heliostat. Solar
energy, 84(4):673–684, 2010.

[6] R. Flesch. Optimization of heliostat field - receiver interaction. Workshop,
July 2017. URL http://www.solar.rwth-aachen.de/publications/workshop/

Presentation_Flesch.pdf.

[7] F. J. Garćıa-Mart́ın, M. Berenguel, A. Valverde, and E. F. Camacho. Heuristic
knowledge-based heliostat field control for the optimization of the temperature
distribution in a volumetric receiver. Solar Energy, 66(5):355–369, August 1999.
doi: 10.1016/S0038-092X(99)00024-9.

[8] V. Grigoriev and C. Corsi. Unified algorithm of cone optics to compute solar flux
on central receiver. In AIP Conference Proceedings, volume 1850, page 030021.
AIP Publishing, 2017.

[9] A. Grobler. Aiming strategies for small central receiver systems. Master’s thesis,
Stellenbosch: Stellenbosch University, 2015. URL http://scholar.sun.ac.za/

bitstream/handle/10019.1/97051/grobler_aiming_2015.pdf?sequence=1.

[10] A. Grobler and P. Gauché. A review of aiming strategies for central receivers. In
Second Southern African Solar Energy Conference, 2014.

[11] B. D. Kelly. Advanced Thermal Storage for Central Receivers with Supercritical
Coolants. Abengoa Solar Inc., Jun 2010. doi: 10.2172/981926. URL http:

//www.osti.gov/scitech/servlets/purl/981926.

[12] W. A. Landman and P. Gauché. Analysis of canting strategies using the hflcal
model. Proceedings of SASEC, pages 1–7, 2014.

43

http://www.sciencedirect.com/science/article/pii/S0196890414003343
http://www.sciencedirect.com/science/article/pii/S0196890414003343
http://www.solar.rwth-aachen.de/publications/workshop/Presentation_Flesch.pdf
http://www.solar.rwth-aachen.de/publications/workshop/Presentation_Flesch.pdf
http://scholar.sun.ac.za/bitstream/handle/10019.1/97051/grobler_aiming_2015.pdf?sequence=1
http://scholar.sun.ac.za/bitstream/handle/10019.1/97051/grobler_aiming_2015.pdf?sequence=1
http://www.osti.gov/scitech/servlets/purl/981926
http://www.osti.gov/scitech/servlets/purl/981926

[13] W. A. Landman, A. Grobler, P. Gauché, and F. Dinter. Incidence angle effects
on circular gaussian flux density distributions for heliostat imaging. Solar Energy,
126:156–167, 2016.

[14] A. Salomé, F. Chhel, G. Flamant, A. Ferrière, and F. Thiery. Control of the flux
distribution on a solar tower receiver using an optimized aiming point strategy:
Application to themis solar tower. Solar Energy, 94:352–366, 2013. doi: 10.1016/j.
solener.2013.02.025. URL http://www.sciencedirect.com/science/article/

pii/S0038092X1300090X.

[15] P. Schwarzbözl, R. Pitz-Paal, and M. Schmitz. Visual HFLCAL - a software tool
for layout and optimisation of heliostat fields. In SolarPACES 2009, September
2009. URL http://elib.dlr.de/60308/.

44

http://www.sciencedirect.com/science/article/pii/S0038092X1300090X
http://www.sciencedirect.com/science/article/pii/S0038092X1300090X
http://elib.dlr.de/60308/

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Related Work
	Structure of this Work

	Optical Model
	General Setup
	Notation
	Image Generation Algorithm

	Optimization Problem
	Notation
	Ideal Flux Map Model
	Maximum Flux Map Model
	Summarized Problem Description

	Solving
	MIP
	Grouping
	Genetic Algorithm
	Caching the Image
	The Local Flux Tree

	Test Cases
	General
	MIP
	Grouping
	Genetic Algorithm

	Conclusion and Outlook
	Interface Documentation
	Project Layout
	Building and Running
	JSON Interface

	Code Documentation
	ILP Framework
	Remarks Related to the LP File Format

	Solar Tower Representation
	SolarTowerSite
	ReceiverModel
	BeamEnergyProvider
	Receiver
	Evaluator

	Solver Interface
	JsonCommandProcessor
	GroupingAlgorithm
	SolvingAlgorithm
	SimpleSolution

	Utility classes
	Array2D
	Vector2<T>

	Nomenclature
	Symbols used throughout the document
	Symbols used in the context of the image generation algorithm
	Symbols used in the context of the Ideal Flux Map Model
	Symbols used in the context of the Maximum Flux Map Model

	References

