
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

EFFICIENT POLYHEDRAL STATE SET

REPRESENTATIONS FOR HYBRID SYSTEMS

REACHABILITY ANALYSIS

Phillip Tse

Examiners:
Prof. Dr. Erika Ábrahám
apl. Prof. Dr. Thomas Noll

Additional Advisor:
Dr. Stefan Schupp

Aachen, 29.4.2020

Abstract

We are surrounded by technical systems which affect our everyday life, some
those even with safety-critical responsibilities, for instance the controller of an
airbag in a car. For those safety-critical applications, guarantees are needed
that certain safety properties are met. By abstracting such systems into a
formal model, formal verification techniques can be used to prove the safety of
a system. Since the airbag controller of a car is also an example of a system
which exhibits both discrete and continuous behaviour, hybrid automata as a
modelling formalism which can reflect both types of behavior are often used.
Flowpipe-construction-based reachability analysis can be used to verify safety
properties of a hybrid automaton. In this approach, the set of reachable states of
the hybrid automaton is overapproximated by sets of geometric shapes (so-called
segments); if the intersection of all those shapes with the safety specification
is empty, then the system is deemed safe. There exist various representations
for segments, whose properties directly influence the speed and the precision
of the computation. Previous research has shown that the choice of a state set
representation is always a trade-off between precision and running time. To find
the right balance between speed and precision, we look at two recently introduced
state set representations: template polyhedra and support functions.
In this thesis, we implemented two different approaches to flowpipe-construction-
based reachability analysis with template polyhedra: One following the general
reachability algorithm for affine hybrid automata using geometric operations,
and a Taylor-approximation based approach originally introduced by Sankara-
narayanan et al. [SDI08b]. To increase speed and precision of the second method,
we implement a policy iteration technique from Sankaranarayanan et al. [SDI08a]
that iteratively increases the precision of system invariant conditions. Both ap-
proaches as well as the support functions are tested on selected benchmarks and
are compared against each other in terms of running time and precision. Our
results show that the first approach is in general faster until all optimizations
are used on the Taylor approximation based template polyhedra. Additionally
we could observe that template polyhedra and support functions were successful
on different sets of benchmarks with different structure and properties, exposing
a certain duality that needs to be researched further.

iv

Contents

1 Introduction 9

2 Preliminaries 13
2.1 Notation . 13
2.2 Hybrid Automata . 13
2.3 General Reachability Analysis . 16
2.4 Support Functions . 22

3 Template Polyhedra 25
3.1 Definition and Properties . 25
3.2 HyPro Template Polyhedra Implementation 28
3.3 Taylor Approximation-based Reachability 33
3.4 Location Invariant Strengthening . 40

4 Experimental Results 49
4.1 Experimental Setup . 49
4.2 Results for HyPro Template Polyhedra 52
4.3 Results for Taylor Template Polyhedra 55
4.4 Results for Support Functions with HTP 61
4.5 Further Optimization Results . 64

5 Conclusion 67

Bibliography 71

Appendix 75

A Benchmark results 75

vi Contents

Chapter 1

Introduction

Imagine a satellite needs to be launched from earth into space, and it is the task of
some engineers to verify whether the satellite actually reaches the stable distance
needed to orbit the earth during its launch. The satellite’s launch takes place in two
steps: Initially, the rocket containing the satellite will accelerate into the sky as long
as its tanks contain fuel. If the tanks are empty, the tanks and the rocket are dropped
and the satellite will accelerate, but not as fast as before, by itself until its fuel tanks
are also empty. After this two step launching process the satellite must have reached
the stable orbit distance or else it will fall back to the earth. Will the satellite reach
the stable orbit distance?
The satellite’s launch and many other processes we encounter every day are examples
of hybrid systems in everyday life, which are systems with both discrete and continuous
behaviour. In fact every hybrid system that has a finite number of discrete states (also
called locations) with internal continuous behaviour can be described or modelled as a
hybrid automaton. For instance the satellite’s launch from before can be modelled
in this fashion: It has two acceleration locations, one via the rocket fuel tank, one
through its own fuel tank. The transition between these two phases is a discrete one,
but within each of these phases the acceleration, velocity and height of the satellite
change continuously. Often hybrid systems require certain safety properties to be met,
especially in safety-critical systems like satellites, planes and trains. Formal verification
methods that operate on a model of the hybrid system can validate whether these
safety properties are satisfied throughout a whole process. The verification of safety
properties in hybrid systems that are modelled via hybrid automata can be executed
through a reachability analysis. As in general the exact computation of the reachable
state space is undecidable [ACH+95], one technique in reachability analysis is the
overapproximation of reachable sets as flowpipes consisting of several convex segments.
The segments are geometrically represented in different ways, be it boxes, polytopes
or especially important for this thesis, support functions and template polyhedra.
Each representation has advantages and disadvantages, which are ultimately a tradeoff
between numerical accuracy and computational effort. Since it is not possible to
achieve both optimally at the same time, it is desirable to find a representation with
the right balance between these two aspects.
This thesis strives to find this balance and for this purpose presents the usage of
template polyhedra as a representation for segments in reachability analysis. A tem-
plate polyhedron as defined in [SDI08b] is a conjunction of inequalities of the form

10 Chapter 1. Introduction

∧m
i=0 ei ≤ ci where every ei is a linear expression and ci ∈ (R ∪ {−∞,∞}). By fixing

the inequalities, which are also called template, while letting c mutable, a family of
convex polyhedra can be derived, which can be used to represent segments of different
shapes. As a consequence, operations such as intersection and union between template
polyhedra of the same family can be efficiently computed in linear time. Under usage
of the efficient operations, two flowpipe construction approaches are presented: The
first approach follows the standard approach via geometric operations to acquire the
flowpipe. The second approach from [SDI08b] uses multiple Taylor approximations
to derive new new segments. To further increase the speed and precision of the
second approach, we implemented location invariant strengthening [SDI08a] which is
a procedure that converges to a tighter bound on the invariants. Both approaches
as well as the support functions in conjunction with the template polyhedra and the
effects of location invariant strengthening are tested. Other optimizations like fixed
point detection are added to obtain an efficient variant of the template polyhedra
based reachability analysis.

Structure of the thesis. In order to properly understand all aspects of this
topic, a general introduction to hybrid systems analysis is given in Chapter 2, starting
with the concept of hybrid automata, which are used to model hybrid systems. With
hybrid automata in hand the general reachability procedure will be explained. In this
chapter we will also explore support functions as a possible state set representation,
their properties, strengths and weaknesses.
After the preliminaries are handled, Chapter 3 will explore template polyhedra more
in depth. Different theoretical aspects that occurred during the implementation of the
first approach are inspected. We will expand further on the Taylor approximation-
based method from Sankaranarayanan et al. [SDI08b] and explore its inner workings
for which we will need Lie derivatives, Taylor approximation and dual linear programs,
especially for the location invariant strengthening that we will also elucidate on in
this chapter.
The fourth chapter presents experimental results for each approach alongside with
benchmark results for the support functions coupled with template polyhedra. One
section will be dedicated to benchmark results using additional optimizations. The
fifth and last chapter concludes this thesis with a summary of our work and gives
ideas for future work on template polyhedra.

Related Work. First works on hybrid automata have been made by Alur et al.
in [ACH+95], where hybrid automata and their reachability analysis were introduced
and found to be undecidable in general. However for some restricted subclasses
reachability is decidable. Henzinger [HKPV98] extended this decidability result and
found initialized rectangular automata, a subclass of the hybrid automata, to be on
the border of decidability.
Since then the flowpipe-based overapproximation of nonlinear continuous behaviour
for affine hybrid automata evolved. Initially segments were computed using convex
polyhedra [HH94], but with time different state set representations emerged, for
instance zonotopes [Gir05], which are the Minkowski sum of several line segments, or
of special interest for this thesis, support functions [LGG09]. For the same purpose
template polyhedra were proposed. Before that, template polyhedra appeared in static
analysis of programs for the generation of invariants for instance in form of the octagon
domain of the difference bounds matrices [Min01].

11

Template polyhedra are still currently being researched on. Dang et al. proposed a
method for unbounded time verification that computes abstract semantics of affine
hybrid automata with use template polyhedra as state set representations that safely
overapproximate the actual semantics [DG11]. This method is based on the abstraction
of template polyhedra to have constraints

∧
i ei ≤ fi where ei is a linear expression and

fi is a bilinear function [CS11]. Another technique found by Bogomolov et al. follows
an counterexample-guided abstract refinement approach to modify the template using
spurious counterexamples [BFGH17]. Most related to our work would be the approach
of the tool SpaceEx [FLGD+11] that computes segments through a combination of
both support functions and template polyhedra, where the more fitting representation
is computed when needed.

12 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Notation

As this thesis relies on concepts borrowed from multiple mathematical disciplines, we
will first introduce a notation that holds throughout this thesis. Let N be the set of
natural numbers excluding zero and R the set of real numbers. R+ denotes the set of
positive real numbers excluding zero. Let d ∈ N be the dimension. Through lowercase
letters a,b,c,.. we denote vectors in Rd×1 = Rd until stated otherwise. Especially, let
x ∈ Rd be the vector of variables. Let i,j,k ∈ [0,d− 1] be indices for a vector c ∈ Rd
such that ci denotes the i-th entry in c going from top to bottom. By uppercase
letters A,B,C,... we denote matrices in Rm×n where m ∈ N is the number of rows and
n ∈ N is the number of columns. The number of rows for a matrix A is also notated
as |A| = n. If an index i,j,k is an index on a matrix A, i.e. Ai, then the i-th row of A
is meant, which is a vector in R1×n. Ai,j denotes the entry in the i-th row and the
j-th column.

2.2 Hybrid Automata

Before this thesis explains template polyhedra and their properties in detail, it is
important to have a clear understanding of the context in which they will be used.
This understanding built on the notion of hybrid systems.

Hybrid System. A hybrid system is a system whose variables exhibit continu-
ous as well as discrete behaviour [Bra05]. One popular example is the one of the
bouncing ball [CSM+15], which will be our running example in the following chapters:
In this scenario an elastic ball is dropped from a initial height h0. During its fall,
its height h continuously decreases with its current speed v, while the speed v itself
increases with the gravitational acceleration of the earth g = 9.81ms2 . When the ball
reaches the ground, it immediately discretely changes its state and bounces upwards,
continuously increasing its height h and decreasing its speed v until it reaches the
tipping point, from where it falls again according to the initial dynamics.
More advanced examples apart from the one described can be viewed as hybrid systems.
Such examples include for instance digital controllers or internet protocols. In order

14 Chapter 2. Preliminaries

to prove properties of hybrid systems, it is preferable to have a mathematical model
representing them since formal verification methods require a model in order to operate.

Hybrid Automata. For this purpose hybrid automata have been introduced [ACH+95].
Formally, a hybrid automaton can be defined as in [Ábr16]:

Definition 2.2.1. (Hybrid Automaton)
A hybrid automaton is a tuple H = (Loc,Var,Edge,Flow, Inv, Init) with

• Loc, a set of finitely many locations,

• Var, a set of finitely many variables. A valuation ν : V ar → R is a function
assigning each variable a real value. The set of all valuations is V .

• Edge, a set of finitely many transitions with Edge ⊆ Loc× Lab× 2V
2 × Loc.

• Flow, which is a function Flow : Loc→ (R+ → V) which maps time-invariant
functions to each location. A function f(t) is time-invariant when f(t) ∈
Flow(l)⇒ f(t+ t′) ∈ Flow(l) for all t′ ∈ R+.

• Inv, which is a function Inv : Loc→ V

• Init, a finite set of initial states. A state is a tuple (l,ν) ∈ Loc × V . With Σ
being the set of all states, it is Init ⊆ Σ.

Intuitively, a hybrid automaton is a finite state machine that has variables
x0,..,xd−1 ∈ Var with continuous dynamics named the flow, which are modelled
by time-invariant functions f(x0,...,xd−1) in each location. Usually the flow is denoted
by ordinary differential equations (ODEs) of the form ẋi = f(x0,...,xd−1) for each
variable xi ∈ Var . Only one location can be active at a time, during which the
variables change their values according to the flow in each time step. Each location
can also have logical constraints over the variables in Var called invariants Inv that
must be satisfied as long as the respective location is active. Through transitions
from the transition set Edge that are enabled if certain constraints, called the guards,
are satisfied, the hybrid automaton can switch from its current active location to a
different location from Loc, itself included. Taking a transition can potentially trigger
a reset, in which variables are set directly to a certain value. Both the guard and the
reset can be seen as subsets from the set of valuations V insomuch as only valuations
that satisfy the guard can be transformed to another valuation by the reset. Both the
locations as well as the transitions and the reset encapsulate the discrete behaviour of
a hybrid system, where in contrast the flow in each location models the continuous
nature of a hybrid system.
While the definition above defines the syntax of a hybrid automaton, it does not define
its semantics. The ideas of time evolution of the variable values according to the
flow, satisfying a guard to enable a transition and throughoutly fulfilling the current
location invariant can be encapsulated by the operational semantics:

Definition 2.2.2. (Operational Semantics of a hybrid automaton)
A hybrid automaton H = (Loc,Var,Lab,Edge,Flow, Inv, Init) acts according to follow-
ing rules:

• Discrete Rule:

2.2. Hybrid Automata 15

(l, a, µ, l′) ∈ Edge (ν, ν′) ∈ µ ν′ ∈ Inv(l′)

(l,ν)
a−−→ (l′,ν′)

• Time Rule:

f ∈ Flow(l) ∧ f(0) = ν ∧ f(t) = ν′ t ≥ 0 ∧ ∀0 ≤ t′ ≤ t : f(t′) ∈ Inv(l)

(l,ν)
t−−→ (l,ν′)

The discrete rule can be interpreted as if the transition from l to l′ exists and the
valuation change from v to v′ is a valid pair while v′ satisfies the invariant of l′, then
we can take the transition. The time rule states that assuming that f is an activity in
l and ν, ν′ mark the start- and end valuation according to f , then if at all points in
time t′ between 0 and t it must hold f(t′) ∈ Inv(l). We can define the reachability
of a state through the operational semantics: An execution step → is the taking of
a transition according to either rule. A run is a sequence of states σ0 → σ1 → ...
with σ0 = (l0, ν0) ∈ Init and v0 ∈ Inv(l0). A state is reachable if there exists a run
leading to this state. If a state σ′ is reachable from another state σ within finitely
many execution steps, we can write σ →∗ σ′.

Example 2.2.1. Assume we want to model the bouncing ball hybrid system mentioned
before. One possible hybrid automaton modelling this system could be

H = ({l},{x,v},{(l,τ,(G,R),l)},{Fx,Fv},{x ≥ 0},{x ∈ [10.2,10] ∧ v ∈ [0,0]})

where

• l is the only location,

• x,v are variables modelling the height of the ball and the velocity of the ball,

• G := (x = 0) ∧ (v ≤ 0) is the guard, which ensures that the transition is only
enabled when the ball touches the ground with negative velocity,

• R := (v := −c · v) is the reset, which changes the direction of the velocity on
impact and reduces it by a fixed constant factor c ∈ R≥0 because energy gets lost
during its contact with the floor,

• Fx : ẋ = v is the flow for the height x, which increases or decreases x continuously
with value v according to the laws of physics,

• Fv : v̇ = −g is the flow for the velocity v, which increases or decreases v the
velocity continuously by the gravitational acceleration of the earth g ≈ 9.81ms2

• x ≥ 0 is the invariant for l. With this we ensure that the height of the ball
cannot be negative.

• Initially, the ball is at a height of 10 to 10.2 units and is not moving.

A more intuitive graphical representation of H is the following automaton:

16 Chapter 2. Preliminaries

l
ẋ = v
v̇ = -g
x ≥ 0

x ∈ [10,10.2]∧
v = 0

x = 0 ∧ v ≤ 0
v := −c · v

Fig. 1: A hybrid automaton for the bouncing ball system.

Of particular importance for this thesis are the affine hybrid automata, which
function like general hybrid automata, but are restricted in the shape of the predicates,
flows and resets: Only linear inequations are allowed for predicates, all flows must
follow affine vector field and resets must be affine transformations. While the flow
for each variable can be defined as an linear ordinary differential equation (ODE),
we will define it equivalently as an affine vector field to simplify other topics later in
the thesis. Note that the trajectories still emit non-linear behaviour. The following
definitions follow [SDI08b]:

Definition 2.2.3. (Vector field)
A vector field D over Rd is a function D : Rd → Rd, x 7→ D(x) mapping a vector D(x)
to each point x ∈ Rd.

Definition 2.2.4. (Affine Vector Field)
Given differential equations ẋi = fi(x0,...,xd−1), the associated vector field D(x) =
(f0(x), ..., fd−1(x)) is affine iff every fi(x) is an affine function.

Definition 2.2.5. (Affine Hybrid Automaton)
A affine hybrid automaton or short AHA is a hybrid automaton H where

• All σ ∈ Init are defined by conjunctions of linear inequalities

• All invariants are defined by conjunctions of linear inequalities

• All guards are defined by conjunctions of linear inequalities

• All resets are affine transformations of the form x := Ax+ b for A ∈ Rd×d and
b ∈ Rd

• All flows are affine vector fields.

2.3 General Reachability Analysis
After defining hybrid automata we can proceed to dive into the formal verification
of properties using hybrid automata. For this, recall the bouncing ball model from
before: Would it ever be possible for the ball to reach a height that is greater than 10.2
units? The answer is no since the ball loses energy with each bounce and therefore
cannot reach a greater maximum height after a bounce. While this example question
is still solvable through intuition, its abstraction leads to a important question in
hybrid systems verification: Given a hybrid automaton H with the initial set Init ,
which states are reachable from Init under H? More importantly, additionally given a
set of bad states Bad ⊆ Σ, which can model unwanted properties in the system, is it
possible to avoid all states from Bad? If it is not possible, is it at least possible to

2.3. General Reachability Analysis 17

avoid the states from Bad at least for a fixed amount of time T? To answer these
questions, we will first define the problem according to [Ábr16]:

Definition 2.3.1. (Forward Reachability Problem)
Given a hybrid automaton H with initial set Init, the forward reachability problem is
the problem to compute the set of all states that are reachable from Init:

Reach(Init)+ = {σ′ ∈ Σ | ∃σ ∈ Init : σ →∗ σ′}

Definition 2.3.2. (Forward Reachability Analysis)
Given a hybrid automaton H with initial set Init and a set of bad states Bad ⊆ Σ,
the forward reachability analysis checks whether

Reach(Init)+ ∩Bad = ∅.

The general algorithm to compute Reach(Init)+ starts with Init and then checks
which states are reachable from all σ ∈ Init. As long as new states have been reached,
we can add these new states to Reach(Init)+ and can then check for each new state
which other states are reachable from there. If no more new states are found, the
computation is complete and the result can be returned. The algorithm is summarized
in Algorithm 1.

Input: Initial States Init ⊆ Σ
Output: Set of all reachable states Reach(Init)+

R := ∅
Rnew := Init
while Rnew 6= ∅ do
R := R ∪Rnew
Rnew := Reach(Rnew) \R

end while
return R

Algorithm 1: General Forward Reachability Algorithm.

Backward Reachability. As the name suggests, there is not only a forward
reachability problem, but also a backward reachability problem [ACH+95] which is
the problem to compute Reach(B)− = {σ′ ∈ Σ | ∃σ ∈ B : σ′ →∗ σ} for a given set
of states B ⊆ Σ. Given the set of bad states Bad , we can compute whether there
exists a run from some initial state to some state in Bad . If that is the case then a
counterexample has been found and the property modelled by the bad states holds.
In this thesis we will only consider forward reachability algorithms.

Decidability. In general, the forward reachability problem for general hybrid
automata is undecidable [ACH+95] since it is not possible to analytically compute
Reach(Rnew). However, for several subclasses of hybrid automata, for instance the
timed automata where all variables have slope one [AD94], or the initialized rectangular
automata [HKPV98], the forward reachability problem is decidable. We will study
the reachability analysis of affine hybrid automata for whom the forward reachability
problem is undecidable. Since the forward reachability analysis is undecidable for
this kind of hybrid automaton, we need to approximate all sets of reachable states.

18 Chapter 2. Preliminaries

An overapproximation is used if we want to prove that the reachable sets do not
intersect the bad states and therefore provide safety. An underapproximation is used
to guarantee that the system definitely has a run to a bad state. Since in hybrid
systems verification we mostly want to show that the modelled systems cannot reach
a given set of bad states, an overapproximation algorithm is used.

Flowpipe Construction. One class of these algorithms are the flowpipe con-
struction based algorithms, which divide the time bound T ∈ R into N ∈ N>0 time
steps δ = T

N such that we have time segments [0,δ],[δ,2δ],...,[(N −1)δ,T]. For each time
segment [(i−1)δ, iδ] we wish to compute the overapproximation of the reachable states
in this time interval. For an affine hybrid automaton, the flow of every variable xi is of
the form ẋi = f(x0,...,xd−1) where f(x0,...,xd−1) is an affine function by definition. In
Rd with an euclidean metric, which is the space the flow computation is located in, all
affine functions imply Lipschitz continuity [For84]. Lipschitz continuity implies that
a unique solution x(t,x0) to ẋi = f(x0,...,xd−1) can be found starting from an initial
value x0 after a certain time t [For84]. We use this to define the reachable states:

Definition 2.3.3. (Reachable States)
Let X0 ⊆ Σ be the initial states. The set of reachable states R[t,t′](X0) reachable from
X0 at time interval [t,t′] is defined as [Ábr16]:

R[t,t′](X0) = {xs ∈ Σ | ∃x0 ∈ X0. ∃t ≤ s ≤ t′. xs = x(s,x0)}

The reachable states are all valuations xs that are the reachable from x0 via the
flow in the time interval [t,t′]. The set of all reachable states within the time bound T is
therefore R[0,T](X0). We can overapproximate R[0,T](X0) by overapproximating each
actual segment R[(i−1)δ,iδ](X0) through a polyhedral overapproximation R̂[(i−1)δ,iδ].
The whole flowpipe approximation is then the union of all overapproximating segments:

R̂[0,T] =

N⋃
i=1

R̂[(i−1)δ,iδ]

The set of all reachable flowpipes form an overapproximative set of Reach(Init)+.
During the flowpipe construction the following definitions are needed:

Definition 2.3.4. (Convex Set)
A set S ⊆ Rd with d ∈ N is convex [BV04] if it holds

∀s,r ∈ S ∀λ ∈ [0,1] : λs+ (1− λ)r ∈ S.

A set is convex if the line segment between two points s and r in S is also completely
contained in S.

Definition 2.3.5. (Convex Hull)
The convex hull conv(S) is defined as [BV04]

conv(X) =

{
n∑
i=1

λixi
∣∣ n∑
i=1

λi = 1 ∧ λi ≥ 0 ∧ xi ∈ X

}
.

The convex hull is the smallest convex set that contains X.

2.3. General Reachability Analysis 19

x

y

X0

Xδ

(a)

x

y

(b)

x

y

R̂[0,δ]

(c)

Figure 2.1: (a) Initial set X0 and its transformed set Xδ = eAδX0. The red arrow is
not included nonlinear behaviour that needs to be included. (b) Xδ is bloated with
a small box B such that the convex hull of X0 and the bloated set contain the red
arrow. (c) The resulting overapproximating first segment R̂[0,δ].

Definition 2.3.6. (Minkowski Sum)
The Minkowski sum [Zie12] of two sets A ⊆ Rd and B ⊆ Rd is defined as

A⊕B = {a+ b | a ∈ A ∧ b ∈ B}.

This can be geometrically interpreted as the set that results from moving B along
the border of A.

First Segment Computation. To compute the first segment R̂[0,δ] given the
initial set X0 the following operations need to be done: At first, X0 is transformed
according to the flow. Since the flow of an affine hybrid automaton is an affine
vector field where every variable xi follows the linear ordinary differential equation
ẋi = f(x0,...,xd−1), we can approximate the linear ODE for the next valuation vector
x(t,xinit) via matrix exponentiation:

x(t,xinit) = eAδxinit =

∞∑
k=0

(Aδ)k

k!
xinit

Generalizing that to state sets yields:

Xδ = eAδX0

Geometrically, X0 is translated, scaled and rotated to Xδ according to the flow.
At this point, it could be possible to compute the convex hull of X0 and Xδ to get the
first segment. But doing so would exclude possible nonlinear trajectories arising from
the ODE. To include these trajectories, Xδ is bloated with a box B via the Minkowski
sum, just big enough for the convex hull of X0 and Xδ ⊕B to include all of them. The
detailed computation of the bloating box is described in [LG09]. The whole process
of computing the first segment is depicted in Figure 2.1. The overall first segment
covering all possible trajectories within time interval [0,δ] is:

R̂[0,δ] = conv(X0 ∪ (eAδX0 ⊕B))

Time Evolution. From the first segment R̂[0,δ] we can derive the next segment
R̂[δ,2δ] by applying matrix exponentiation on R̂[0,δ]. Since R̂[0,δ] is already including

20 Chapter 2. Preliminaries

x

y

Bad

States

Figure 2.2: Affine hybrid automaton reachability analysis. The first flowpipe intersects
the guard (yellow). The sets are aggregated (blue) and reset is applied (arrow). The
second flowpipe is computed from there. No segment intersects the bad states.

all possible trajectories, it is guaranteed that R̂[δ,2δ] remains overapproximative. This
process can be repeated as long as the current flowpipe does not intersect bad states,
invalidate the invariant or reach the time bound T .
Every segment that gets computed needs to be checked whether there exists a state in
it that satisfies the invariant via the set intersection operator. If that is the case the
computation can continue with the satisfying states, in the other case the flowpipe
construction of the current flowpipe can be terminated. After that, the segment is
intersected with the bad states to check validate safety. If the intersection is not empty
then bad states were hit and safety could not be verified, else the computation can
continue. Then the current segment needs to be intersected with the guards of all
outgoing transitions of the current location to see whether any of them are enabled. An
enabled guard induces that a transition in the affine hybrid automaton can be taken.
All states in the current segment that satisfy the guard are transformed according to
the reset and form the initial set of a new flowpipe where the flowpipe construction is
started anew. As every segment that intersects a guard would start a new flowpipe,
which in turn starts a new flowpipe for every segment that satisfies another guard,
an aggregation method can be used to reduce the exponential blowup of flowpipes
[Sch19]. Instead of creating a flowpipe for every segment that intersects a guard G,
all segments that satisfy G can be unified via the convex hull to one segment to only
create one flowpipe. Although aggregation introduces additional overapproximation
error, it can be used when computational speed is a priority [Sch19]. A whole overview
of the reachability analysis is depicted in figure 2.2.

State Set Representations. As depicted in the provided figures, states can be
described by convex geometric objects. For computational simplicity it is advantageous
to have one state set representation for all segments. A state set representation must
be able to carry out the following operations that are needed for the reachability

2.3. General Reachability Analysis 21

analysis:

• Affine transformation Ax+ b for resets and time evolution

• Minkowski Sum ⊕ for bloating

• Intersection ∩ for intersection invariants, bad states and guards

• Union ∪ for uniting X0 and Xδ to one set get the convex hull the union

• Check for emptiness to check whether the intersected sets are empty or not

• Membership of a segment in another segment for fixed point detection

Some representations of convex sets most include boxes and convex polytopes.

Definition 2.3.7. (Box)
Let [l,u] be an interval in R for a lower bound l and upper bound u such that l ≤ u.
Let I =

(
[l0,u0] . . . [ld−1,ud−1]

)
be a vector of intervals in Rd. A box B ⊆ Rd is defined

as [Sch19]:
B = {x ∈ Rd | ∀0 ≤ i ≤ d− 1. xi ∈ [li,ui]}

Assume we use boxes as state set representations. It is known that boxes have
efficient algorithms for every listed operation needed for the flowpipe construction,
which makes them a very efficient representation with regards to the running time
provided the operations maintain closure. Their downside lies in the overapproximation
error that appears due to the need of maintaining closure: A state set which is not a
box will be overapproximated by a box and will introduce a large overapproximation
error. This error can then be scaled up by the time evolution, as the transformed
error must again be overapproximated; the overapproximation error increases from
one segment to the next. This effect is known as the wrapping effect [LGG09]. On the
other side we have convex polytopes in halfspace representation:

Definition 2.3.8. (H-Polyhedron)
A closed halfspace in Rd given a normal vector a ∈ Rd and an offset b ∈ R is the
set H := {x ∈ Rd | aT · x ≤ b}. A H-Polyhedron P is an intersection of m closed
halfspaces Hi [Zie12]:

P :=

m⋂
i=0

Hi

If P is bounded, then it is called a H-polytope. P can be written as P = Ax ≤ b
with A ∈ Rm×d and b ∈ Rd where every row i in A and b corresponds to the normal
and the offset of Hi. H-polytopes are more precise in approximating a convex set than
the boxes as the halfspaces. The difference in approximation precision can be seen
in Figure 2.3. Additionally, H-polytopes are efficient at the operation intersection
as the intersection of two H-polytopes P and P ′ is the conjunction of the halfspace
constraints of both H-polytopes. But for other operations like the check for emptiness,
linear programs (short LPs) must be solved, which need polynomial time for instance
via interior point methods [DH12], though in practice the simplex method is often
times faster although it has a exponential worst case running time complexity [PS98].
The largest effect on the running time have the affine transformation, Minkowski sum

22 Chapter 2. Preliminaries

x

y

S

Figure 2.3: A convex set S and its overapproximation by a box (blue) and a H-polytope
(green).

and union operations: Computing these operations on H-polytopes needs exponential
time [Sch19]. Thus, the H-polytope is precise but slow. In general it holds that every
representation is a trade-off between speed and precision.

2.4 Support Functions
Support functions are an efficient state set representation first presented for hybrid
systems reachability analysis in [LGG09]. Support functions are structures that enable
efficient operations on convex sets by modifying support values in given directions
according to the operations. Each support value then corresponds to the support of a
supporting hyperplane of the underlying set. Analogous to the idea of H-polytopes,
which represent a set as the intersection of finitely many closed halfspaces, a convex
set can also be polyhedrally overapproximated by computing the support, or shorter
evaluating the set in finitely many directions. Figure 2.4 depicts the idea.

Definition 2.4.1. (Support Value)
The support value [LGG09] of a set S ⊆ Rd for a given direction l ∈ Rd is defined as

ρS(l) = max
x∈S

l · x

which is the support value of the supporting hyperplane lTx ≤ ρS(l) to S.

Proposition 2.4.1. A convex set S ⊆ Rd is uniquely determined by its support
functions in all directions:

S =
⋂
l∈Rd

{x ∈ Rd | l · x ≤ ρS(l)}

One of the most important properties of support functions are the rules for inferring
support functions from after the application of an operation using support functions
from before the operation. This is an important difference to the H-polytopes. These
rules establish an efficient way of symbolically executing all needed operations:

2.4. Support Functions 23

x

y

S

l0
l1

l2 l3

l4

ρS(l1) = max
x∈S

l1x

Figure 2.4: A convex set S is overapproximated by the intersection of five halfspaces
built from support halfspaces. Each direction l0,...,l4 corresponds to a supporting
hyperplane Hi : li · x = ρS(li).

Theorem 2.4.2. Let S,S′ ⊆ Rd be convex sets. Let M ∈ Rm×d be a matrix, l ∈ Rd
and l ∈ Rm be vectors of different dimensions and λ ∈ R+ be a positive scalar. It then
holds:

ρMS(l) = ρS(MT l)

ρMS+b(l) = ρS(MT l) + l · b
ρλS(l) = ρS(λl) = λρS(l)

ρconv(S∪S′)(l) = max(ρS(l),ρS′(l))

ρS⊕S′(l) = ρS(l) + ρS′(l)

ρS∩S′(l) ≤ min(ρS(l),ρS′(l))

All operations except the last one are exact equations. There is an exact equation
for ρS∩S′(l) according to [LGG09], but its equation is computationally expensive. The
denoted inequation on the other hand is a valid overapproximation of ρS∩S′(l) and is
fast to compute.
If we now for instance compute the support for ρMS⊕S′(l) = ρMS(l) + ρS′(l) =
ρS(MT l) + ρS′(l), one can observe that at the end ρMS⊕S′(l) is only dependent on
ρS(MT l) and ρS′(l), which lastly are maximization queries for S and S′ in some
direction l. Since this process can be repeated for every rule, one can depict a support
function as a tree. A node in this tree is either an operation or a state set; all leaves
must be state sets and all non-leaves must be operations. Each node points to the
nodes where it gets its support function arguments from. If a support function is
queried, the corresponding node is queried and that node queries its children, who
query their children and so forth. When the query reaches a leaf, it computes the
support value via a maximization in the given direction and returns this support value
to its parent. That parents aggregates all needed support values and then returns its
result to its parents until the queried node can return the requested support value. So
in order to get a support value, one must traverse the whole tree. The traversal is
pictured in Figure 2.5.

24 Chapter 2. Preliminaries

∪

X0⊕

A· B

X0

ρ((AX0⊕B)∪X0)(l)

ρ(AX0⊕B)(l)

ρAX0
(l)

ρX0(l)

Figure 2.5: Computation of the first segment using support functions. At each node
the support value on the left side of the arrow can be queried.

Example 2.4.1. We will explain the traversal using Figure 2.5 as an example. Figure
2.5 demonstrates the support function tree that is build for the computation of the first
segment.
Assuming we want to query the support value for the first segment ρ((AX0⊕B)∪X0)(l)
in direction l starting at the node ∪, we will conduct the traversal by descending
to all the leaves, computing a support value, and aggregating the values needed for
ρ((AX0⊕B)∪X0)(l).
Starting with ρ((AX0⊕B)∪X0)(l), we can instead compute max(ρ(AX0⊕B)(l),ρX0

(l)) for
which we need ρ(AX0⊕B)(l) and ρX0(l). We can obtain ρX0(l) by making a maximization
query for X0 in direction l, which can be a LP with cost function lTx.
For ρ(AX0⊕B)(l) we need to query the children of ⊕, which in turn query their children.
When ⊕ receives ρAX0

(l) and ρB(l) from its children both support values can be
aggregated by ρ(AX0⊕B)(l) = ρAX0

(l) + ρB(l).
This support value can then be returned to the parent node ∪ which can then return
the wanted support value.

Support functions are heavily reliant on the maximization capabilities of the
underlying representation S. If S is efficient at maximizing into any direction, then
all operations carried out on the support function benefit from that. The template
polyhedra presented in the next section are one such class.
The support functions suffer from one weakness: The running time for checking
emptiness of two intersecting non-empty support functions. This operation can be
executed by computing the support values ρA(li) of the first set A as well as ρB(−li)
of the second set B in octagonal directions {l0,...,lk} with k ∈ N. If ρA(li) ≤ −ρB(−li)
for at least one direction li then A intersects B and the intersection cannot be empty.
Checking emptiness with this algorithm requires 2k traversals for each support function
computed and is therefore costly.

Chapter 3

Template Polyhedra

This chapter discusses the main state set representation of this thesis, namely the
template polyhedra. First introduced to hybrid systems reachability analysis by Sankara-
narayanan et al. in [SDI08b] template polyhedra are closely related to H-polytopes, as
they can also be represented by the intersection of finitely many closed halfspaces. But
in contrast to H-polytopes the main idea of template polyhedra is to fix the constraint
matrix, such that only the offset vector can differ. This allows for several simplifications
of many binary operations, as only the offset vectors need to be compared, which can
be done in linear time in the number of constraints.
At first, we will formally define template polyhedra and explore their properties more
in detail. Afterwards, we will present an implementation made with the HyPro library,
a C++ library for flowpipe-based reachability analysis of affine hybrid automata
[SÁBMK17], and explain some optimizations made therein in Section 3.2. Section 3.3
looks at a different approach regarding the reachability analysis which was proposed
by Sankaranarayanan et al. in [SDI08b]. This approach relies on the concept of Lie
derivatives and Taylor approximation, which will be explained beforehand. Especially
the first segment computation and the time evolution will be unfolded. In the last
Section 3.4 techniques for optimizing the Sankaranarayanan reachability analysis are
presented, the most important one being the location invariant strengthening.

3.1 Definition and Properties

A linear expression e(x) over a variable vector x ∈ Rd is an expression of the form
e(x) =

∑d−1
i=0 aixi where a0,...,ad−1 ∈ R. We can then define:

Definition 3.1.1. (Template)
A template [SDI08b] is a set of linear expressions H = {h0(x),...,hm−1(x)} with m ∈ N
over a variable vector x ∈ Rd.

We represent a template by a matrix H in Rm×d such that the i-th row in H
corresponds to the coefficients of the i-th linear expression. The linear expression of
one row would be Hix = hi0x0 + hi1x1 + ...+ hidxd.

26 Chapter 3. Template Polyhedra

x

y

(a)

x

y

(b)

x

y

(c)

Figure 3.1: Template polyhedra for Example 3.1.1 (a) A bounded template polyhedron.
(b) A template polyhedron using the same template, but two constraints are redundant.
(c) An unbounded template polyhedron using the same template.

Definition 3.1.2. (Template Polyhedron)
A template polyhedron [SDI08b] over a fixed template H is a H-polyhedron of the form
Hx ≤ c, or short 〈H,c〉, for c ∈ (R ∪ {−∞,∞})d.

A templateH induces a family of template polyhedra that have the same constraints
H, but use different offset vectors c. Some constellations of coefficients can make
certain halfspaces redundant, while the introduction of −∞ and ∞ into the domain of
c adds possible unboundedness to the template polyhedra. Note that the right choice
of coefficients can also make a template polyhedron empty.

Example 3.1.1. Let us look at Figure 3.1. All three template polyhedra are from the
same family with the template:

H =


1 0
−1 0
0 1
0 −1
−1 1
1 −1

 . (a) 〈H,


3
0
3
0
1
1

〉, (b) 〈H,


2
0
2
0
2
2

〉, (c) 〈H,


0
∞
∞
−1
1
∞

〉

The middle template polyhedron (b) is an example of possibly redundant constraints.
Since the constraints are in the template, they still need to be considered for every
operation. The right template polyhedron (c) is unbounded as some of its offset values
are infinity.

Properties. If we use template polyhedra for overapproximating sets, then it
is algorithmically desirable to have a unique representation under a template H for
every possible set. This property is given by the smallest overapproximating template
polyhedron of a given set S and can be computed by determining the support value in
each template row direction Hi by the maximization query maxHix subject to x ∈ S.
If S is a convex polytope, then every maximization query can be solved by a linear
program (short LP).

3.1. Definition and Properties 27

x

y

〈H,c〉

〈H,d〉

(a) Union

x

y

〈H,c〉

〈H,d〉

(b) Intersection

x

y

〈H,c〉

(c) Overapproximation

Figure 3.2: Operations on template polyhedra from Figure 3.1. (a) The blue shape
denotes 〈H,c〉 ∪ 〈H,d〉 (b) The blue shape denotes 〈H,c〉 ∩ 〈H,d〉 (c) The blue shape
denotes the overapproximation of 〈H,c〉 with template H from Example 3.1.1. Note
the approximation error which are the white regions within the blue shape.

Lemma 3.1.1. (Uniqueness) Let αH(S) be the offset vector of the least overapproxi-
mating template polyhedron with template H for a closed set S. Then 〈H,αH(S)〉 is
unique for S.

αH(S) is then called canonical. A template polyhedron 〈H, c〉 where c = αH(S)
is also called canonical. The uniqueness of 〈H,αH(S)〉 also holds when H contains
redundant constraints, as they also have a least overapproximating support value in
their respective direction.
For the next properties, let us assume the vectors c,d,e,f ∈ (R ∪ {−∞,∞})d are
canonical. Let us define that c ≤ d ⇐⇒ ci ≤ di ∀i ∈ [0,d − 1] and analogously
c = d ⇐⇒ ci = di ∀i ∈ [0,d−1] as well as for all i ∈ [0,d−1] it holds coeffmax (c,d) = e
with ei = max(ci,di) and coeffmin(c,d) = f with fi = min(ci,di). Then the following
holds [SDI08b]:

Lemma 3.1.2. (Efficient Operations on canonical template polyhedra)

• Subset: 〈H, c〉 ⊆ 〈H, d〉 ⇐⇒ c ≤ d

• Equality: 〈H, c〉 = 〈H, d〉 ⇐⇒ c = d

• Union: 〈H, c〉 ∪ 〈H, d〉 = 〈H, coeffmax (c,d)〉

• Intersection: 〈H, c〉 ∩ 〈H, d〉 = 〈H, coeffmin(c,d)〉

• Support in direction l: If the maximization direction l ∈ Rd is a template
constraint in H at row i, then return ci, else make an LP call max lTx subject
to x ∈ 〈H,c〉.

Most of the operations can be performed in time linear in the number of template
rows. An exception to this is the maximization operation: If the maximization direction
is a template constraint, then we can directly return the corresponding offset value.
This is more efficient than a LP call, which can be solved in polynomialial time. Since H-
polytopes have to make an LP call in every case for this operation, template polyhedra
cannot be slower than H-polytopes regarding maximization. From this observation we

28 Chapter 3. Template Polyhedra

can deduce that the choice of the template is crucial for the computation speed during
the reachability analysis. This also holds for the precision: Since all efficiency of the
operations stems from both operands having the same template, a state set S that does
not conform to a given template H must be overapproximated by H, which, depending
on the template, can introduce a lot of approximation error. The overapproximation
of a set not represented by the template H itself can be accomplished as described
before, by solving the LP maxHix subject to x ∈ S for every row Hi. A depiction of
the operations can be viewed in Figure 3.2, the approximation error is visible there,
too.

3.2 HyPro Template Polyhedra Implementation

In this section we will focus on some observations made on template polyhedra and
their operations that occurred during their implementation in the C++ library HyPro
[SÁBMK17, Sch19]. Some operations need to be explored more in depth that have
not been further considered in the previous chapter; for instance, how can an affine
transformation be applied on some template polyhedron, an operation that is definitely
required for the reachability analysis? We are going to look over the operations of
checking emptiness, applying an affine transformation and intersection, we will explain
some optimizations implemented and how they work. Additionally, we will be covering
fixed point detection as an extra improvement.

Emptiness. Checking for emptiness is necessary for determining whether we
intersected certain states S with our current set X or not, as X ∩ S 6= ∅ ⇐⇒ X
intersects S. But checking for emptiness can also be used to shortcut other operations
since they do not have to be exerted when at least one operand is empty. For example,
X ∪ ∅ = X and X ∩ ∅ = ∅. Therefore, it makes sense to compute the emptiness of a
template polyhedron when it is demanded, and to cache the result. When emptiness is
checked again, the cached result can be returned. Since a template polyhedron 〈H,c〉
is empty when Hx ≤ c is infeasible, emptiness can be checked via an LP call. This
emptiness result can only change when the offset vector changes, in which case the
emptiness can be recomputed using an LP call.

Affine Transformation. The main problem with affine transformations x′ =
Ax+b for some matrix A ∈ Rdxd and b ∈ Rd on template polyhedra is that it is defined
for vertices x ∈ Rd. The naive approach for implementing affine transformation would
then be to first, assuming that the template polyhedron is bounded, treat the template
polyhedron as a H-polytope. As a second step, its vertices {v0,...,vk} with k ∈ N can
be enumerated and v′i = Avi + b can be applied. The resulting vertices {v′0,...,v′k} can
then be turned into intersecting halfspaces again, but the new halfspaces 〈G,d〉 do
not necessarily have the same normal vectors as the halfspaces in 〈H,c〉. Since we
want to enable the efficiency of operations between template polyhedra with the same
template, we overapproximate the transformed set 〈G,d〉 by the template directions
H. Only then the affine transformation is closed with respect to the representation
under the template H.
Both the vertex enumeration and the facet enumeration are costly operations [F+04]
and are to be avoided in general. The following proposed method accomplishes
to avoid both enumerations. It is based on the observation that one can directly

3.2. HyPro Template Polyhedra Implementation 29

overapproximate in the transformed directions H · A instead of transforming the
template polyhedron 〈H,c〉 and overapproximate in the directions H afterwards. The
support values of the overapproximation in direction HA are then shifted by the
value H · b to ultimately overapproximate the transformed set in directions H. This
approach is very similar to the affine transformation rule of the support functions.

Lemma 3.2.1. Let 〈H,c〉 be a template polyhedron in Rd. Let f : Rd → Rd, x 7→ Ax+b
be an affine transformation with A ∈ Rd×d and b ∈ Rd. Let αL(S) ∈ Rd be a vector
where every i-th entry has the value maxLix subject to x ∈ S for S ⊆ Rd and L ∈ Rn×d.
Then f applied on 〈H,c〉 is the template polyhedron 〈H,αHA(〈H,c〉) +H · b〉.

Proof. After the transformation we are overapproximating. The overapproximation
for each row Hi is obtained by computing the support value in direction HT

i and
thus is also obtainable by a support function. The support value of the transformed
template polyhedron in direction Hi would be

ρA〈H,c〉+b(H
T
i) = ρ〈H,c〉(A

THT
i) +HT

i b

= ρ〈H,c〉((HiA)T) +HT
i b

If we look at the support values for every template row i as a vector in Rm we have ρA〈H,c〉+b(H
T
0)

...
ρA〈H,c〉+b(H

T
m−1)

 =

 ρ〈H,c〉((H0A)T) +HT
0 b

...
ρ〈H,c〉((Hm−1A)T) +HT

m1
b


=

 max (H0A)Tx subj. to x ∈ 〈H,c〉
...

max (Hm−1A)Tx subj. to x ∈ 〈H,c〉

+

 HT
0 b
...

HT
m−1b


= αHA(〈H,c〉) +Hb

Since the vector of support values αHA(〈H,c〉) +Hb contains the support functions
of the transformed template polyhedron but overapproximated into the template
directions H, the transformed template polyhedron is 〈H,αHA(〈H,c〉) +Hb〉.

Note that the overapproximation in the affine transformation introduces approx-
imation error. This approximation error again gets overapproximated in the next
application of the affine transformation, thus the template polyhedra suffer from the
same wrapping effect as boxes using the presented algorithm for affine transformation.
A more sophisticated choice of the template can reduce the accumulated approximation
error.

Example 3.2.1. We will demonstrate an affine transformation based on Figure 3.3.
Assume we are given:

Ax+ b =

(√
2
2 −

√
2
2√

2
2

√
2
2

)(
x
y

)
+

(
3.5
2

)
and 〈H,c〉 =

〈
1 0
−1 0
0 1
0 −1

 ,


2
0
2
0


〉

The affine transformation Ax+b rotates a given point by 45 degrees in counter-clockwise
direction around the origin and then translates the rotated point by b. To carry out the

30 Chapter 3. Template Polyhedra

x

y

+Hb〈H,c〉

〈HA,αHA(〈H,c〉)〉 〈HA,c′〉

〈H, ctrans〉

Figure 3.3: Affine Tranformation. Applying an affine transformation on 〈H,c〉 results in
〈HA,c′〉, which does not have the same templates H. To equalize both templates, first
〈H,c〉 is overapproximated by the directions ofHA and this results in 〈HA,αHA(〈H,c〉)〉.
Then the transformed offset Hb is added to get 〈H,ctrans〉.

transformation according to the presented algorithm, the template directions need to be
transformed first:

HA =


1 0
−1 0
0 1
0 −1


(√

2
2 −

√
2
2√

2
2

√
2
2

)
=


√
2
2 −

√
2
2

−
√
2
2

√
2
2√

2
2

√
2
2

−
√
2
2 −

√
2
2


Note that the directions HA are the same template directions as the one of the set
we are trying to overapproximate. With the transformed directions HA we can now
perform an overapproximation of 〈H,c〉 in the directions HA. Exemplary we will
calculate the overapproximation with one direction.

max
(√

2
2 −

√
2
2

)(
x
y

)
subj. to

(
x
y

)
∈ 〈H,c〉 =

√
2

⇒ Halfspace is:
(√

2
2 −

√
2
2

)(x
y

)
≤
√

2

The optimal value is reached in point
(

2
0

)
. All other overapproximations are performed

in a similar fashion. The overall approximation of 〈H,c〉 is:

〈HA,αHA(〈H,c〉)〉 =


√
2
2 −

√
2
2

−
√
2
2

√
2
2√

2
2

√
2
2

−
√
2
2 −

√
2
2


(
x
y

)
≤


√

2√
2

2
√

2
0


Which can be seen in Figure 3.3 as the blue diamond shape enclosing 〈H,c〉. In the

3.2. HyPro Template Polyhedra Implementation 31

next step Hb needs to be computed:

Hb =


1 0
−1 0
0 1
0 −1

(3.5
2

)
=


3.5
−3.5

2
−2


which we can now use Hb to acquire the overapproximation of 〈HA,c′〉 called 〈H,ctrans〉:

〈H,ctrans〉 = 〈H,α〈H,c〉(HA) +Hb〉 =

〈
H,


√

2 + 3.5√
2− 3.5

2
√

2 + 2
−2


〉

which is the red overapproximation of 〈HA,c′〉 in Figure 3.3.

Intersection. The efficient intersection of two canonical template polyhedra 〈H,c〉,
〈G,d〉 as proposed only works if H = G. In reality, this is not always the case. If one
knows that each row in G is also a row in H, then, with a naive pairwise comparison
scheme, O(m2) comparisons are needed to find every row of G in H.
In the case that H ∈ Rm×d and G ∈ Rn×d are different, one possible algorithm to
compute the intersection would be to first overapproximate 〈G,d〉 with the template H
and then to intersect them. The overapproximation has a running time of O(m · LP),
while the intersection can run in O(m), since now both the overapproximation and
〈H,c〉 use the same template H. This procedure has an overall complexity of O(m·LP).
The implemented algorithm uses a combination of both algorithms: At first, we check
for each row Gi in G whether Gi is a row in H. If this is the case, then we can mark
Gi as found and resort to the efficient intersection and return the smaller offset value
ei = min{di,cj} of the halfspaces Gix ≤ di and Hjx ≤ cj where j ∈ [0,n − 1]. By
doing so, we save an optimization query. In the case that Gi does not equal any row in
H, we add Gix ≤ di as a new constraint to another template polyhedron 〈J,f〉, which
initially equals 〈H,c〉. If all rows in G were found then we can return the intersection
〈H,e′〉 where e′T =

(
e′0 . . . e′m−1

)
with e′i = ei if there was a row in G found for

this row and e′i = ci else. On the other hand, if not all rows have been found, then
〈J,f〉 will equal 〈H,c〉 extended with all constraints of G whose rows have not been
found. We can then solve a LP maxHix subj. to x ∈ 〈J,f〉 for each direction Hi that
is not equivalent to some row in G to obtain the respective offset. This last step is a
reduced overapproximation, where we do not optimize into the directions of H where
the offset value of the overapproximation is already known by the previous step.
This method needs O(m2) row comparisons in the ideal case that all rows of G are
already within H. In any other case, it needs O(m2 +m · LP). So although this algo-
rithm has a worse overall runtime complexity, under the right conditions it can be faster.

Example 3.2.2. Let us go through an example for the intersection. For this we will
compute the intersection of the template polyhedra displayed in Figure 3.4. It is:

〈H,c〉 =

〈


1 0
−1 0
0 1
0 −1
−1 1
1 −1

 ,


3
0
3
0
2
2


〉

and 〈G,d〉 =

〈1 0
0 1
1 1

 ,

 4
2.5
6

〉

32 Chapter 3. Template Polyhedra

x

y

〈H,c〉

〈G,d〉

Figure 3.4: Intersection of two template polyhedra 〈H,c〉 with 〈G,d〉. The intersection
of the blue halfspaces can carried out efficiently. Only for the red halfspace of 〈G,d〉
an LP needs to be called.

Through row-wise comparison from each row in G with each row in H we can infer
that G0 = H0 =

(
1 0

)
and G1 = H2 =

(
0 1

)
. For both rows, the intersection can be

computed efficiently by taking the smaller offset as both point into the same direction:
The result of the first pair is H0x ≤ 3 and of the second pair is H2x ≤ 2.5. Only for
G2 we cannot find a row in H that is equal. Thus we intersect by generating

〈J,f〉 =

〈


1 0
−1 0
0 1
0 −1
−1 1
1 −1
1 1


,



3
0
3
0
2
2
6


〉

and computing maxHix subj. to x ∈ 〈J,f〉 for every Hi that has no equal row in G,
since for the other rows we already know the value of the overapproximation, which
in this example would be H1, H3, H4, H5. This operation is a reduced version of the
overapproximation. Since none of these directions are cut off by G2x ≤ 6, the end
result would be 〈H,

(
3 0 2.5 0 2 2

)T 〉.
Fixed point Detection. Fixed point detection is a topic of high interest for the

reachability analysis of hybrid automata since the successful detection of a fixed point
can avoid the computation of whole flowpipes and therefore save valuable time. In
general, a fixed point has been found if our current segment 〈H,cn〉 is a subset of
some other previously computed segment 〈H,ck〉, so if ∃k ∈ N.〈H,cn〉 ⊆ 〈H, ck〉 for
k < n [ACH+95]. Checking this condition requires a check for the subset relation, or
differently expressed, containment of a template polyhedron within another template
polyhedra, which is an efficient operation that can be carried out in linear time for
template polyhedron as described in lemma 3.1.2.
A naive procedure would compare every newly computed segment to every previously
computed segment to check for a fixed point. This however is time-consuming. For
affine hybrid automata, it is enough to check for all previously computed initial sets

3.3. Taylor Approximation-based Reachability 33

of every flowpipe whether the current initial set is contained, as trajectories coming
from different non-intersecting initial sets cannot overlap. If these trajectories could
overlap, then at the intersection point of these trajectories nondeterminism would
prevail, violating the determinism of the affine flow. By using this trick, we can reduce
the number of subset checks needed from O(N2) to O(#init2) where #init ≤ N is
equal to the number of initial states at the end of the reachability computation and N
is the number of all computed segments of every flowpipe accumulated.

3.3 Taylor Approximation-based Reachability
Next we will inspect an alternate reachability analysis algorithm proposed by Sankara-
narayanan et al. in [SDI08b]. It integrates nicely into the framework of flowpipe-based
algorithms as it computes a first segment and applies time evolution to it, but does so
differently. Its advantage is that vertex enumeration is not needed during the whole
computation; these computations are replaced by multiple LP calls. The main idea
for both the first segment computation as well as the time evolution is the same: To
compute the first/next segment, approximate the trajectory of the linear function
induced by a template constraint for every template constraint via Taylor approxi-
mation and maximize its value within the time segment to ensure overapproximation.
As the trajectory of a template constraint is defined by the flow of the location, the
change of the template constraint needs to be computed, which can be done via
the Lie derivative. Both the Taylor approximation and the Lie derivative will be
explained before the first segment computation and the time evolution will be explained.

Lie Derivative. The Lie derivative is a powerful tool in analysis and general
relativity and is named after Sophus Lie, a norwegian mathematician. It is able capture
the change of a tensor field (i.e. functions and vector fields) on a differentiable manifold
(for instance Rd or some convex set therein) along another vector field [War13]. For
this thesis, we will only consider its abilities in the context of functions in Rd along
affine vector fields. It can be seen as the equivalent of the derivative but under the
influence of an underlying vector field. Intuitively, it denotes the change of a function
h while moving along a vector field D. As an informal example, imagine a boat on a
river with a scientist in the boat (or look at Figure 3.5). While the boat floats along
the stream of the river, the scientist looks checks the temperature of the air. The
change of the temperature under the influence of the river is exactly what the Lie
derivative describes. Hereby, the river represents the underlying vector field while the
temperature of the air represents the function that is under the influence of the river.

Definition 3.3.1. (Lie Derivative)
Let f0(x),...,fd−1(x) be differentiable functions in Rd. The Lie derivative of a continu-
ous and differentiable function h over a vector field D(x) = 〈f0(x),...,fd−1(x)〉 in Rd
is defined as [War13]:

LD(h) = ∇h ·D(x) =

d−1∑
i=0

∂h

∂xi
· fi(x)

Deriving the Lie derivative is out of the scope of this thesis, but one can interpret the
formal definition in this way: All points of the partial derivatives of h are transformed
according to the vector field D. We will use the Lie derivative to get the change of a
template row Hi along the flow given by the location.

34 Chapter 3. Template Polyhedra

x

h(x)

h(a) :

h(b) :

Figure 3.5: A scientist on a boat, who measures the temperature h at two different
points a,b while floating along the river. The change of h under influence of the river
is the Lie derivative.

Example 3.3.1. Let h(x,y) = 2x−4y+6 be a function and D(x,y) = 〈f0(x,y), f1(x,y)〉
= 〈2,1〉 be an affine vector field. Since D defines the differential equations ẋ =
f0(x,y) = 2 and ẏ = f1(x,y) = 1, D shifts x by two every time unit and y by one. The
Lie derivative is then:

LD(h(x,y)) =
∂h(x,y)

∂x
f0(x,y) +

∂h(x,y)

∂y
f1(x,y)

= 2 · 2− 4 · 1 = 0

We can see in the last line that the partial derivative in y-direction has not been
changed by D. ∂h(x,y)

∂x = 2 however has been displaced to ∂h(x,y)
∂x = 4 according to the

differential equation ẋ = 2.

Computing the Lie derivative reduces to the computation of d scalarproducts for
linear multivariate functions h(x0,...,xd−1) =

∑d−1
j=0 ajxj + c where aj ,c ∈ R. The

calculation of a partial derivative for linear multivariate functions simplifies to a linear
time coefficient search as all terms not containing xi vanish:

∂h(x0,...,xd−1)

∂xi
=

∂

(
d−1∑
j=0

ajxj + c

)
∂xi

= ai

To obtain the Lie derivative, multiply the partial derivative vector with the respective
vector field functions, resulting in d scalarproducts.

Taylor Approximation. The Taylor approximation, another useful tool from
the field of mathematical analysis, is used to approximate a differentiable function
of any shape by a polynomial in a region around a fixed development point [For84].
The quality of the approximation depends on the degree of the polynomial; the higher
the degree the better the approximation. This quality increase in approximation is
displayed in Figure 3.6. The Taylor approximation exactly describes the function
when the polynomial has an infinite degree. Note that the Taylor approximation of a
function can be under- as well as overapproximating.

Definition 3.3.2. (Taylor Approximation) Let h be a continuous and differentiable
function to at least the m+ 1-th degree. The Taylor approximation [For84] of h up to

3.3. Taylor Approximation-based Reachability 35

x

y

h(x)

T1(x; 0)

T2(x; 0)

T3(x; 0)

Figure 3.6: Taylor approximations of a function h(x). Taylor approximation h(x) at
development point x = 0 of the first order in blue, of second order in green and of
third order in red.

order m at development point a is defined as:

Tmh(x; a) = h(a) + h(1)(a)(x− a) + ...+
h(m)(a)

m!
(x− a)m +

h(m+1)(θ)

(m+ 1)!
(x− a)m+1

where θ ∈ [a,x+ a] is an unknown scalar and h(m)(x) is the m-th derivative of h. The
m+1-th term is known as the remainder.

First Segment. The goal of the first segment computation is the same as in
Section 2.3: Given an initial set X0 and the dynamics of a location L, compute an
overapproximation R̂[0,δ] of R[0,δ] that covers all reachable state within the time inter-
val [0,δ]. With our state set representations being the template polyhedra, the goal
refines to: Given an initial set 〈H,cinit〉, compute an overapproximation 〈H,c0〉 ofR[0,δ].
Let us introduce some notational remarks. For a template constraintHi = (hi,0 . . . hi,d−1)
the scalarproduct Hix(t) = (hi,0 . . . hi,d−1)T (x0 . . . xd−1) =

∑d−1
j=0 hi,jxj denotes a

multivariate function. Also, with H
(j)
i x(t) we denote the j-th order Lie derivative

of the function Hix(t), for example, for some vector field D, we have H(2)
i x(t) =

LD(LD(Hix(t))). The following derivation of the technique can be found in [SDI08b].
For this method we assume that 〈H,cinit〉 and 〈H,inv〉 are non-empty and bounded.
A method to use Taylor approximation-based reachability analysis with unbounded
invariants can be found in Section 3.4.
The key idea is to approximate the trajectory of each template constraint Hi via
Taylor approximation for the first time interval. Since the dynamics of the trajectory
are dependent on the flow of the location, the Lie derivative is used instead of the
standard derivative in every term of the Taylor approximation. The development point
is t = 0, as we have the most information in form of 〈H,cinit〉 at this point. The goal
is to get Hix(t). Therefore we want to approximate the trajectory of Hix(t) at t = 0.

36 Chapter 3. Template Polyhedra

If we take a look at the Taylor expansion

Hix(t) = Hix(0) +H
(1)
i x(0)(t− 0) + ...+

H
(m)
i x(0)

m!
(t− 0)m +

H
(m+1)
i x(θ)

(m+ 1)!
(t− 0)m+1

= Hix(0) +H
(1)
i x(0)t+ ...+

H
(m)
i x(0)

m!
tm +

H
(m+1)
i x(θ)

(m+ 1)!
tm+1

then every H(j)
i x(0) for j ∈ [1,m] is known, as it is just the j-th Lie derivative of

the i-th initial constraint. The problem that occurs is that the Taylor approximation
itself does not guarantee overapproximation, which is unhelpful; after all, we desire to
definitely overapproximate the trajectory. An example of an underapproximation is
demonstrated as the red graph in Figure 3.7. Hence, we seek to find an upper bound
to the Taylor approximation. To achieve this, we can view the Taylor approximation
as a function dependent on t, and every individual term therein can be maximized
within the bounds of x(0), which are given by the initial set 〈H,cinit〉. Therefore we
can define for all j ∈ [0,m]:

aij := max
H

(j)
i x

j!
subject to x ∈ 〈H,cinit〉

and it holds H
(j)
i x

j! ≤ aij . Another problem occurs when we consider the remainder

term H
(m+1)
i x(θ)

(m+1)! . Since it contains x(θ) with some unknown time value θ we cannot
bound it by 〈H,cinit〉 as at time point θ, the valuation x(θ) is not guaranteed to satisfy
〈H,cinit〉. If we do not find an upper bound, then the maximization could possibly be
unbounded. The remedy in this situation is the location invariant 〈H,inv〉: It bounds
all constraints and sets that we compute while we are in the current location. Using
the same technique as before, we can then define:

ai,m+1 := max
H

(m+1)
i x

(m+ 1)!
subject to x ∈ 〈H,inv〉

and it holds H
(m+1)
i x

(m+1)! ≤ ai,m+1. If we use both definitions combined we get:

Hix(t) = Hix(0) +H
(1)
i x(0)t+ ...+

H
(m)
i x(0)

m!
tm +

H
(m+1)
i x(θ)

(m+ 1)!
tm+1

≤ ai0 + ai1t+ ...+ aimt
m + ai,m+1t

m+1

:= pi(t)

pi(t) is a univariate polynomial only dependent on the time t and is an upper bound
to Hix(t) as well as its Taylor approximation, as it can be seen in Figure 3.7 as the
green plot. Considering that we want to bound pi(t) in time interval [0,δ] by a value,
which will be the new offset value, we can again search for the maximum value of
pi(t) within [0,δ] for it holds pi(t) ≤ max pi(t) subject to t ∈ [0,δ]. With pi(t) being
an univariate polynomial the point in time tmax where the maximum pi(tmax) can be
found, can be analytically acquired by computing the derivative p′i(t) and evaluating
pi(t) at all t = tr where tr is a root of p′i(t), t = 0 and t = δ. When tmax is found,
then pi(tmax) will be the new offset of the row Hi. This process is repeated for all

3.3. Taylor Approximation-based Reachability 37

t

Hix(t)

Hix(0)

δ

trajectory

TmHix(t; 0)

pi(t)

(a)

x

y

trajectories
pi(t)

〈H,c0〉

(b)

Figure 3.7: First Segment Computation. (a) In the plot of Hix(t) over time t,
TmHix(t; 0) underapproximates the actual trajectory Hix(t). pi(t) overapproximates
the trajectory. The blue arrows mark potential maximal points at t = 0, t = δ and the
root of p′i(t) in the interval [0,δ]. (b) In this x-y-plot one can see the same trajectory,
pi(t) and blue arrows. The big blue line marks the new halfspace Hix ≤ c0,i. The first
segment in orange 〈H,c0〉 emerges when this process is repeated for all template rows.

rows of the template H, see the right part of Figure 3.7.
To summarize, for every row m+ 1 LP calls are made to get an overapproximation
to the Taylor polynomial modelling the trajectory of the current row. For the
thereby assembled polynomial pi(t), the maximum can be found analytically, and that
maximum is the new offset.

Example 3.3.2. This example is based on the bouncing ball hybrid automaton from
Example 2.2.1. This hybrid automaton models the height h and the velocity v of a
ball that is dropped from some height between [10,10.2] and then falls down. If the
ball reaches the ground, it bounces back up. Let the time step size be δ = 0.1. The
automaton is depicted here:

l
ḣ = v

v̇ = -9.81
h ≥ 0

h ∈ [10,10.2]∧
v = 0

h = 0 ∧ v ≤ 0
v := −c · v

Let us assume our template is H is the same hexagonal template H from Example
3.1.1. Let us denote the variable vector by x =

(
h v

)T . The initial constraints

38 Chapter 3. Template Polyhedra

h ∈ [10,10.2] ∧ v = 0 and invariant h ≥ 0 expressed over H would be:

〈H,cinit〉 = Hx ≤ cinit =


1 0
−1 0
0 1
0 −1
−1 1
1 −1


(
h
v

)
≤


10.2
−10

0
0
−10
10.2

 and 〈H,inv〉 = 〈H,


∞
0
∞
∞
∞
∞

〉

Since we are in the only location l, we follow the flow defined by the vector field
D(h,v) = 〈v,−9.81〉. Let us compute the offset of the first segment for the first
template row H0x. To start the computation, we need the first Lie derivatives:

H0x =
(
1 0

)(h
v

)
= h

H
(1)
0 x = LD(H0x) =

∂H0x

∂h
v +

∂H0x

∂v
(−9.81) = 1 · v + 0 · (−9.81) = v

H
(2)
0 x = LD(H

(1)
0 x) =

∂H
(1)
0 x

∂h
v +

∂H
(1)
0 x

∂v
(−9.81) = 0 · v + 1 · (−9.81) = −9.81

H
(3)
0 x = LD(H

(2)
0 x) = 0

Interestingly, even if we would want to compute an approximation of higher order,
the Lie derivatives of any order higher than two vanish. This leads to the conclu-
sion that the approximation itself is exact. Now, following the algorithm, to get the
overapproximation pi(t) we need to compute the maximization queries a0j:

a00 = maxH0x subject to x ∈ 〈H,cinit〉
= maxh subject to x ∈ 〈H,cinit〉 //Reminder: h ∈ [10,10.2]

= 10.2

a01 = maxH
(1)
0 x subject to x ∈ 〈H,cinit〉

= max v subject to x ∈ 〈H,cinit〉 //Reminder: v = 0

= 0

a02 = max
H

(2)
0

2!
x subject to x ∈ 〈H,cinit〉

= max
−9.81

2
subject to x ∈ 〈H,cinit〉

= −4.905

This results in pi(t) = 10.2− 4.905t2. The derivative is p′i(t) = −9.81t. Since the root
of p′i(t) is at tmax = 0 which is in [0,0.1], the new offset is pi(tmax) = pi(0) = 10.2.
This makes sense, as figuratively speaking the ball in the model can only fall down
when starting from a height h ∈ [10,10.2]. So after one time step, the height of the ball
is bounded from above by 10.2.

Time Evolution. After the computation of the first segment, the goal is as
follows: Given a segment 〈H,ck〉 compute the next segment 〈H,ck+1〉 that covers the
trajectories in time segment [kδ, (k + 1)δ]. The idea is the similar to the first segment
computation: Taylor expansion is used to approximate the trajectory of every row

3.3. Taylor Approximation-based Reachability 39

Hi. This time, Hix(t) at some time point t is given and Hix(t+ δ), the row after one
time step, must be approximated. Therefore the development point t is chosen for the
Taylor expansion:

Hix(t+ δ) = Hix(t) + ...+
H

(m)
i x(t)

m!
(t+ δ − t)m +

H
(m+1)
i x(t+ θ)

(m+ 1)!
(t+ δ − t)m+1

= Hix(t) +H
(1)
i x(t)δ + ...+

H
(m)
i x(t)

m!
δm +

H
(m+1)
i x(t+ θ)

(m+ 1)!
δm+1

where θ ∈ [0,δ] is some unknown value. Every term is either dependent on x(t) or
x(t+ δ), thus we can exclude them and summarize the remaining terms:

Hix(t+ δ) =

(
Hi +H

(1)
i δ + ...+

H
(m)
i

m!
δm

)
· x(t) +

(
H

(m+1)
i

(m+ 1)!
δm+1

)
· x(t+ θ)

=: gTi x(t) + rTi x(t+ θ)

gi is the sum of the firstm Taylor expansion terms and can be geometrically interpreted
as the direction with the highest degree of approximation of the trajectory, while ri,
the m+ 1-th term, can be read as the direction that would additionally improve the
approximation, provided it is added at t+ θ. Both directions can be seen in Figure
3.8.
To find a suitable upper bound for Hix(t+ δ), we further inspect x(t) and x(t+ θ):
Considering that x(t) is the valuation at time t, we know that x(t) must lie in the current
segment 〈H,ck〉, so x(t) ∈ 〈H,ck〉. Furthermore, x(t+ θ) can lie outside 〈H,ck〉, since
at time point t+ θ, the valuation could have left 〈H,ck〉 due to the flow. The situation
is similar to the first segment computation, where x(θ) also needed to be bounded.
This was solved by bounding x(θ) by the location invariants; analogously, we can
apply the same solution here: Since the location invariants bound every valuation that
gets computed within the location, it must at least hold x(t+ θ) ∈ 〈H,inv〉. To ensure
overapproximation of the next segment, we can define the following maximization
queries:

gmax
i := max gTi x subject to x ∈ 〈H,ck〉
rmax
i := max rTi x subject to x ∈ 〈H,inv〉

Using these maximization queries we find an upper bound to Hix(t+ δ) since

Hix(t+ δ) = gTi x(t) + rTi x(t+ θ) ≤ gmax
i + rmax

i .

This bound is used as the new offset for Hi, see Figure 3.8. Overall, only the Lie
derivatives and the two maximization queries need to be computed for each template
row Hi to compute the next segment. Although this method works without vertex
enumeration it has one major disadvantage: For the reason that the remainder term
is bounded by the invariant, which can be a large overapproximation, this method can
be unprecise. This flaw can be limited by the technique that is explained in the next
Section 3.4, location invariant strengthening.

Example 3.3.3. To continue example 3.3.2, we compute the time evolution of the
first constraint H0x ≤ 10.2 and the goal is to find the upper bound of Hix(2δ). Recall

40 Chapter 3. Template Polyhedra

x

y

〈H,ck〉

〈H,inv〉

gi

ri

x

y

〈H,ck〉

〈H,inv〉

gmax
i + rmax

i

x

y

〈H,inv〉

〈H,ck+1〉

Figure 3.8: Time evolution. Left: Maximization directions gi and ri and their bounds
〈H,ck〉 and 〈H,inv〉. Middle: gmax

i + rmax
i is the new offset for the upper row. Right:

This process is repeated for every row to obtain 〈H,ck+1〉.

that δ = 0.1. Completing the first segment computation for all rows, we come to the
conclusion that the first segment 〈H,c1〉 consists of the constraints h ∈ [10,10.2] ∧ v =
−0.981. The first three Lie derivatives have already been calculated in 3.3.2 and can
now be summarized to get gi.

g0 = Hi +H
(1)
i δ +

H
(2)
i

2!
δ2

=

1
0
0

+

0
δ
0

+

 0
0

−4.905δ2

 =

 1
δ

−4.905δ2

 =

 1
0.1

−0.04905


The maximization into direction gi gives:

gmax
0 = max gT0 x subject to x ∈ 〈H,c1〉

= maxh+ 0.1v − 0.04905 subject to x ∈ 〈H,c1〉
= 10.2 + 0.1 · (−0.981)− 0.04905 = 10.05285

Since the Lie derivatives of order three and higher equal zero, we omit the remainder
term r0. Therefore, the offset of the next segment for row H0 is gmax

0 . This makes
sense, insomuch as the ball has fallen down only a little from height 10.2 to 10.05285
during 0.1 time units.

3.4 Location Invariant Strengthening

As seen in the previous section, both the first segment computation as well as the
time evolution for template polyhedra in the Taylor approximation-based reachability
algorithm depend on the location invariant 〈H,inv〉 for bounding the remainder term.
In both instances, a non-tight invariant leads to inprecision during the computation,
while a tight invariant can increase the precision. The proposed method of location
invariant strengthening (LIS) described in [SDI08a] accomplishes that: Based on the
idea of positive invariants, which are sets where on every point on their surface the
vector field points inside the set, a policy iteration technique is conducted to iteratively
acquire a strengthened invariant until it converges up to a fixed error tolerance. The

3.4. Location Invariant Strengthening 41

x

y

Invariant

Set

(a)

x

y

Invariant

Set

(b)

Figure 3.9: Location Invariant Strengthening Idea. (a) For positive invariance, at
every point on the surface of the invariant it is checked whether the vector field points
inside the invariant. The upper and left border are positive invariant, the right and
lower border are not. (b) Location invariant strengthening truncates positive invariant
borders iteratively to tighten the invariant constraints.

basic concept can be seen in Figure 3.9. Keep in mind that this method only works on
bounded invariants and initial sets and does not guarantee to converge to the tightest
possible invariant. At the end of the chapter however we present a method where LIS
is used to shrink estimated bounds in models with unbounded invariants.

Positive Invariant. The key property that is checked during location invariant
strengthening is positive invariance. Once a trajectory enters a positive invariant set, it
can never leave it as the vector field pushes it back into the set. As already mentioned,
if we look at a closed set S in a vector field, then S is positive invariant if at every
point on its surface, the vector field points inside S [Bla99]. We can check whether
the vector field D points inside a closed template polyhedron 〈H,c〉 by computing
the Lie derivative LD(Hix) for each row i and checking whether LD(Hix) > 0. If
LD(Hix) is greater than zero, then we know that on the hyperplane Hix = ci the
trajectory of Hix would follow the flow. As we want to check this property only on
the surface of 〈H,c〉 and not on the whole hyperplane, the check must at the same
time satisfy Hx ≤ c. We will define positive invariance in the context of all possible
closed invariants that are between the initial template polyhedron 〈H,cinit〉 and the
original location invariant 〈H,inv〉 as those are the strengthened invariants we are
interested in.

Definition 3.4.1. (Positive Invariant Set)
Let 〈H,cinit〉 be the initial set and 〈H,inv〉 the location invariant.
For cinit ≤ c ≤ inv the template polyhedron 〈H,c〉 is positive invariant [SDI08a] with
respect to 〈H,inv〉 if and only if

∀i ∈ [0,m− 1] : (ci = inv i) ∨ ((Hx ≤ c ∧Hix = ci) |= LD(Hix) > 0)

We can check positive invariance by solving the following linear program for each

42 Chapter 3. Template Polyhedra

row where di < invi,

maxLD(Hix) subj. to x ∈ 〈H,c〉 ∧Hix = ci

and then checking whether the solution is greater equal 0. The condition that needs
to be checked for positive invariance is hard to compute using template polyhedra
due to the equation Hix = ci. To ease this problem, Lagrangian relaxation has been
used by Sankaranarayanan et al. [SDI08a] to put more difficult constraints into the
objective function.

Definition 3.4.2. (Lagrangian Relaxation)
Let A ∈ Rm×d, B ∈ Rn×d and a ∈ Rm, b ∈ Rm, c,x ∈ Rd. Let

P : max cTx subject to Ax ≤ a ∧Bx = b

be a linear programming problem. Then

Prel : max cTx+ µT (Bx− b) subject to Ax ≤ a

with non-negative weights µ ∈ Rn+ is the Lagrangian relaxation of P .

The idea of the Lagrangian relaxation is to penalize the objective function if the
equations Bx = b get violated. The more they are violated, the higher the penalty.
In this case, we will move the equation Hix = ci into the objective function since
this equation prevents us from using template polyhedra effectively. Note that the
optimal solution to a relaxed maximization query Prel is an upper bound to the optimal
solution of the original problem P [BV04]. The consequences of relaxing the positive
invariance are the relaxed invariants:

Definition 3.4.3. (Relaxed Invariant)
Let 〈H,cinit〉 be the initial set and 〈H,inv〉 the location invariant.
For cinit ≤ c ≤ inv the template polyhedron 〈H,c〉 is a relaxed invariant [SDI08a] if
and only if

∀i ∈ [0,m− 1] if ci < invi then 〈H,c〉 |= LD(Hix− ci) + µ(Hix− ci) ≤ 0

where µ ∈ R+ is some arbitrary non-negative scaling factor.

Every relaxed invariant is a positive invariant [SDI08a]. To check relaxed invariance,
one can simply make the maximization query

Li : maxLD(Hix− ci) + µ(Hix− ci) subj. to x ∈ 〈H,c〉

and check whether the solution is smaller or equal to zero, which can be carried out
as a maximization call on the template polyhedron 〈H,c〉. Since we assume 〈H,c〉 to
be bounded, there is always a bounded optimum for Li.

Policy Iteration. The overall structure of LIS is based on the structure of policy
iteration, which is a technique not only used in reinforcement learning [Ber11], but
also in static analysis [GGTZ07]. Policy iteration works in two steps: In the first
step called policy evaluation, the current policies are examined and their optimality is
measured. In the second step called the policy improvement, we take the results from
the policy evaluation and derive new improved policies from them. This whole process

3.4. Location Invariant Strengthening 43

is repeated until the policies change no more, so a fixed point has been reached.
In the context of location invariant strengthening, our policies are the linear programs
that verify which rows are relaxed invariants. Starting with α(0) = inv , which is a
relaxed invariant by definition, in the policy evaluation we will get the verification
for each row i whether it is positive invariant. After having done that for all rows,
we construct another linear program which delivers us strengthened invariant offsets
α(j + 1) for which it holds α(j) ≥ α(j + 1) for j ∈ [0,N] for some N ∈ N. We continue
this process until α(j) = α(j + 1). Thus, a sequence α(0) > ... > α(N) = α(N + 1) of
improved invariant offsets is generated, until a fixed point has been reached.

Policy Evaluation. Assume we are computing the j + 1-th relaxed invariant and
are thus in the j-th iteration of the policy iteration. During the policy evaluation step
the goal is to obtain a verification, a certificate, that our current row i is a relaxed
invariant. This is achievable via the dual problem of the so called primal problem since
the optimal solution of the dual problem provides an upper bound to the optimal
solution of the primal problem if the primal problem is a maximization [BV04]. In the
dual problem, every constraint of Li is turned into a variable; every variable of Lj is
turned into a constraint and the direction of the objective function is inversed [BV04].

Definition 3.4.4. (Dual Linear Program) Let A ∈ Rm×d, b ∈ Rm and c,x ∈ Rd.
Let max cTx subject to Ax ≤ b be a linear program called the primal problem. Then
the dual problem is defined as

min bTλ subject to ATλ = c ∧ λ ≥ 0

for the dual variable vector λ ∈ Rm.

To simplify the notation, we omit the iteration index j from α(j) and just write α
instead. The primal problem Li for row i within the policy iteration scheme is:

Li : maxLD(Hix− αi) + µ(Hix− αi) subj. to x ∈ 〈H,α〉

where αi denotes the i-th entry in the vector α. The result of the Lie derivative
LD(Hix− αi) can be decomposed into a part containing variables H ′ix and a variable-
free offset hi ∈ R such that LD(Hix − αi) = H ′ix + hi. Additionally, µ(Hix −
αi) = µHix − µαi. H ′ix and µHix can be condensed into (H ′i + µHi)x. All these
transformations result in:

Li : max(H ′i + µHi)x− µαi + hi subject to Hx ≤ α

Applying the dual transformation on Li gives:

Di : minαTλ− µαi + hi subject to HTλ = (H ′i + µHi)
T ∧ λ ≥ 0

If the solution of Di ≤ 0, then the optimal value of Di certifies that the i-th row is
indeed relaxed and this row is called non-frozen. The optimal point is saved for policy
improvement. For a non-frozen row the offset can still be improved during policy
improvement. If the solution of Di > 0, then this row is termed a frozen row. The
offset of a frozen row must not change, since there is an invariant that refrains it from
changing. Therefore, the optimal point does not need to be saved for frozen rows;
instead the row index is stored in a set of frozen row indices F for policy improvement.
Both the row indices in the case of a frozen row as well as the optimal point in the

44 Chapter 3. Template Polyhedra

case of a non-frozen row are called vertex certificates. The vertex certificates are saved
into a data structure for the policy improvement step.

Policy Improvement. The key datastructure for policy improvement is the
invariant certificate. Essentially, it contains all vertex certificates of the non-frozen
rows. From it, constraints can be generated which must hold for the next strengthened
invariant. By minimizing under these constraints, we can obtain the biggest change to
the next invariant.

Definition 3.4.5. (Invariant certificate)
An invariant certificate [SDI08a] is a tuple π = (F,Λ) with F ⊆ {0,...,m − 1} and
Λ ∈ Rm×m+ such that it holds:

• (frozen row) If i ∈ F then the row Λi = 0 or

• (non-frozen row) if i ∈ [0,m− 1] \ F then HTΛi = (H ′i + µHi)
T ∧ Λi ≥ 0

The invariant certificate π = (F,Λ) is filled during the policy evaluation phase. It
validates for an invariant 〈H,α〉 which constraints are exhausted and which invariants
can be strengthened. All frozen rows i ∈ F induce that αi = inv i as frozen rows are
limited by invi, while for non-frozen rows it holds αTΛi − µαi + hi ≤ 0 (the objective
function of Di). Using invariant certificate π, we can derive constraints that must
hold during policy improvement:

Lπ : cinit ≤ y ≤ inv ∧
∧
i∈F

yi = invi ∧
∧

i∈[0,m−1]\F

ΛTi y − µyi + hi ≤ 0

where y ∈ Rd is the new invariant offset vector. To get the smallest offset vector, we
want to minimize each coefficient of y, with which we get to the linear program:

min

d−1∑
i=0

yi subject to Lπ

The result of this LP call is the improved invariant vector of the current iteration α(j).

Location Invariant Strengthening. The whole algorithm for LIS is summa-
rized in Algorithm 3.10. The complete procedure can be applied once before the start
of every flowpipe computation when the initial set after the reset is known. In every
iteration, the policy evaluation step solves m LPs (each to solve their respective Di),
then another LP call is made in the policy improvement step to solve Lπj

, so overall
m + 1 LP calls need to be made. Since the number of iterations is not fixed, the
running time potentially rises to O(k(m+ 1)LP) for k ∈ N. To definitely bound the
number of iterations, LIS is stopped after k′ ∈ N iterations in the implementation and
the best approximation α(k′) up to this point is returned.

Example 3.4.1. Let us reconsider the example of the bouncing ball from example
3.3.2 again. This time, we modify the invariants to be bounded by constraints far away
from the sets of reachable states: Let the invariants be h ∈ [0,15] ∧ v ∈ [−20,20]. The
automaton then looks like this:

3.4. Location Invariant Strengthening 45

Input: Initial set 〈H, cinit〉 Invariant 〈H, inv〉
Output: Strengthened invariant 〈H, invstr〉

α(0) := inv
repeat
πj := {}
for each template row i in H do
πj(i) := Solve Di

end for
Construct constraints Lπj

from πj
α(j) := α(j + 1)
α(j + 1) := min

∑
j yj subj. to Lπj

until α(j) = α(j + 1)
return 〈H,α(j + 1)〉

Figure 3.10: Location invariant strengthening algorithm.

l
ḣ = v

v̇ = -9.81
h ∈ [0,15]
v ∈ [−20,20]

h ∈ [10,10.2]∧
v = 0

h = 0 ∧ v ≤ 0
v := −c · v

Let the template H also be only the first four rows of H from the example 3.3.2 to
shorten this example. The constraints therefore represent a box. The initial constraints
and the invariants would then be

〈H,cinit〉 = Hx ≤ cinit =


1 0
−1 0
0 1
0 −1

(hv
)
≤


10.2
−10

0
0

 and 〈H,inv〉 = 〈H,


15
0
20
20

〉
Let us compute the strengthened invariants given the initial constraints h ∈

[10,10.2] ∧ v = 0. We know from example 3.3.2 that the ball cannot rise but only fall,
so we expect h to decrease (to zero) and also v to decrease as the speed decreases with
every time step. Thus, the only positive invariant rows are the constraints h ≤ 15 and
v ≤ 20; both constraints can be strengthened. −20 ≤ v cannot be strengthened because
v develops towards negative infinity and it is not known up to which value.
Let us start with the policy evaluation step. We need to calculate

D0 : minαTλ− µα0 + h0 subject to HTλ = (H ′0 + µH0)T ∧ λ ≥ 0

We choose µ = 3. H0 =
(
1 0

)
is known. The Lie derivative LD(Hox) = v is

known from Example 3.3.2. Hence, H ′0 =
(
0 1

)
and h0 = 0 as LD(H0x) did not

have an variable-free offset other than zero. In the first iteration αT = invT =

46 Chapter 3. Template Polyhedra

(
15 0 20 20

)
. These values simplify D0 to:

D0 : min


15
0
20
20


T 

λ0
λ1
λ2
λ3

− 45 subj. to
(

1 −1 0 0
0 0 1 −1

)
λ0
λ1
λ2
λ3

 =

(
3
1

)
∧ λ ≥ 0

The minimization result of D0 returns 20 with λTD0
=
(
3 0 1 0

)
. Since 20 > 0, the

0-th row is deemed a frozen row. Therefore, the value of this row will not be changed
in this iteration.
Solving Di for the other three rows it emerges that only the third row (with index two)
is relaxed with h2 = −9.81, λTD2

=
(
0 0 3 0

)
and the optimal value -9.81, so row

two is the only non-frozen row. This in return means only the upper bound v ≤ 20 will
be changed in this iteration. The invariant certificate after evaluating all four rows is
π = ({0,1,3},λD2

).
Now during policy improvement we can deduce following constraints from π:

Lπ :


10.2
−10

0
0

 ≤ y ≤


15
0
20
20

 ∧


0
0
3
0


T 

y0
y1
y2
y3

− µy2 + h2 ∧ y0 = 15 ∧ y1 = 0 ∧ y3 = 20

=


10.2
−10

0
0

 ≤ y ≤


15
0
20
20

 ∧ y0 = 15 ∧ y1 = 0 ∧ y3 = 20

As we can see, y2 is only bounded via 0 ≤ y2 ≤ 20. Consequently, in the minimization
min

∑d−1
i=0 yi subject to Lπ we can choose the lowest value within these bounds for y2,

so ultimately we get αT =
(
15 0 0 20

)
as the new invariant bounds. As expected,

the former constraint v ≤ 20 has been strengthened to v ≤ 0, but we have also seen
that not all constraints are immediately strengthened in the first iteration. Both the
policy evaluation as well as the policy improvement will be repeated until there are no
more changes in the invariant bounds.

Unboundedness. Strictly speaking the Taylor approximation-based method and
location invariant strengthening both only operate under the assumption of bounded
invariants. If the invariants were unbounded, then at multiple points the techniques
fail to provide useful information. For instance during the time evolution, if the maxi-
mization query of the remainder term rmax

i = max rTi x subj. to x ∈ 〈H,inv〉 =∞ due
to the unboundedness of 〈H,inv〉, then Hix(t) is bounded by gmax

i + rmax
i =∞, from

which we cannot generate a useful next segment.
In order to increase the range of models in which these techniques are usable, we
automatically artificially bound the invariants with numbers that are not reachable
within the time bound. Afterwards LIS can be used to strengthen the invariants to fit
the current flowpipe computation. Currently the estimation of the numbers is set to
a fixed bound 105 which is based on empiric knowledge about the benchmarks the
techniques were tested on. Using the same technique one can manually bound all
invariants in each location with a tighter bound depending on empiric knowledge. In
this case the Taylor approximation-based method can work without LIS. A procedure

3.4. Location Invariant Strengthening 47

to automate the choice of the lowest unreachable bound is left for future work and is
described in Chapter 5.
The policy iteration in LIS is known converge to saddle points [GSBS19]. Since the
initial estimated invariant bounds leave room for unwanted saddle points, we keep
track of the strengthened invariant with the smallest sum of coefficients csmallest

during the policy iteration. Through the policy iteration csmallest is guaranteed to
safely overapproximate the invariant region containing the flowpipe. By saving the
invariant with the smallest sum of coefficient we take the smallest overapproximating
strengthened invariant that occurred during the policy iteration. When the policy
iteration in the j-th iteration converges to an invariant c, which could be a unwanted
saddle point, we check whether

∑d−1
i=0 ci <

∑d−1
i=0 csmallest,i and if that is the case then

c is returned as the next strengthened invariant, else csmallest is returned.
Note that this method is not guaranteed to avoid all unwanted saddle points as
the choice of csmallest could lead into another unwanted saddle point and is based
on the assumption that LIS at one point generates a strengthened invariant that is
coefficient-wise smaller than offsets of the saddle point we desire to avoid. A method
that guarantees the evasion of all unwanted saddle points remains a topic of further
research.

Cycle Detection. In practice we found out that the policy iteration can get
stuck in a cycle as it revolves around different saddle points. These cycles often lead
to the maximum number of iterations being reached, which were implemented to
definitely bound the running time of LIS, which ultimately increased running time
unnecessarily. In order to counter this phenomenon, we implemented a cycle detection
where the strengthened invariant of the current iteration α(j) is compared with every
strengthened invariants of all iterations. If there exists k < j such that α(j) = α(k),
then we encountered a cycle and stop LIS, else we continue with the policy iteration.
Since the number of iterations is bounded by some number N ∈ N for bounding the
running time, the maximum amount of vector comparisons made by the cycle detection
is bounded by O(N2).

Numerical Corrections. While conducting experiments it became apparent
that some LP calls returned infeasibility, although Di and Lπ are guaranteed to be
feasible as 〈H,cinit〉 and 〈H,inv〉 are assumed to be non-empty and bounded. Further
investigation revealed that numerical issues led to confusion about the feasibility. For
instance, only if the solution of Di ≤ 0, then a row is deemed non-frozen, but a value
could be 1.414 · 10−16 instead, which is greater zero and therefore the row is deemed
frozen. For this reason, numerical corrections were introduced: If the i-th row is
deemed frozen but does not satisfy αi >= inv i, then this row is only deemed frozen by
numerical instabilities and the vertex certificate of this row is changed to the optimal
solution of Di. We refer to this correction as the inserting correction. On the other
hand if the i-th row is deemed non-frozen but does not satisfy αTΛi − µαi + hi ≤ 0,
then this row is falsely deemed non-frozen and the vertex certificate will be corrected
to the index of the row i. This correction is labelled removing correction. The impact
of these measures can be read in the next chapter under Section 4.5.

48 Chapter 3. Template Polyhedra

Chapter 4

Experimental Results

Previously, the theory of template polyhedra and their properties regarding the usage
as state set representations during reachability analysis has been presented. Two
different approaches have been proposed: The reachability analysis for affine hybrid
automata following the algorithm described in Chapter 2.3 and the one introduced by
Sankaranarayanan et al. in [SDI08b]. Both algorithms have been implemented in the
library HyPro [SÁBMK17] and tested with the tool HyDRA [SÁ18]. In this chapter,
we will refer to the template polyhedra using the HyPro state set representation
interface the HyPro template polyhedra (short HTP), while the template polyhedra
using the Taylor approximation-based reachability analysis Taylor template polyhedra
(short TTP). To assess and compare the quality of both methods, they have been
tested on several benchmarks and their results with special focus on running time
and precision have been tabularized. This chapter includes an explanation of the
experimental setup in the beginning and then continues to discuss the results in detail:
The results for the general approach and for the Sankaranarayanan method and how
they compare to each other are denoted in the Sections 4.2 and 4.3. In Section 4.4 the
combination of support functions and template polyhedra are evaluated against both
approaches. Afterwards, the benchmark results for location invariant strengthening
and the fixed point detection are presented in Section 4.5.

4.1 Experimental Setup

HyPro and HyDRA. As mentioned before, both approaches have been implemented
in the C++ library HyPro. HyPro offers the reachability analysis for affine hybrid
automata as described in Section 2.3 with different state set representations and
features a general interface for additionally implementing own state set representations
[SÁBMK17]. It uses GLPK as a backend LP solver [Mak00], but also offers the
possibility to integrate other LP solvers such as SMT-RAT [CKJ+15] in conjunction
with exact arithmetic. The tool HyDRA is based on HyPro and extends its usability
with several concepts, namely partial path refinement, parallelization and subspace
decomposition [SÁ18]. During all the experiments, neither partial path refinement
nor subspace decomposition were used. All computations are made with one thread,
GLPK as the LP solver and inexact arithmetic.

50 Chapter 4. Experimental Results

Template Shape. As the choice of the template is crucial for the speed and
precision of the template polyhedra, different compositions of the templates were
tested. It makes sense to test their abilities with the same constraints as every other
halfspace-based state set representation, so only with the initial constraints. Ad-
ditionally, since the intersection operation is most efficient when the constraints of
the invariants / guards / bad states are part of the template, we can also add these
constraints gradually, to test their involvement in the running times. After adding all
these constraints, it can still be possible that the template is rather unflexible and
introduces a lot of approximation error when the constraints form a box. For this
reason, also octagonal constraints have been tested.
Let 〈H,c〉 be the final template polyhedron. Let 〈Hinit, cinit〉 be the template poly-
hedron representing the given initial constraints, 〈Hinv, cinv〉 the invariants of the
current location l, 〈Hguard, cguard〉 the cumulated guards of all outgoing transitions
from l and 〈Hbad, cbad〉 the bad states. For two matrices A ∈ Rm×d and B ∈ Rn×d we
define A | B =

(
A B

)T . Overall the proposed test templates are:

• Only Init (OI): H = Hinit and c = cinit.

• Initial and Invariants (II): H = Hinit | Hinv and c = cinit | cinv.

• Initial, invariants and guards (IIG): H = Hinit | Hinv | Hguard and c = cinit |
cinv | cguard.

• Initial, invariants, guards and bad states (IIGB): H = Hinit | Hinv | Hguard |
Hbad and c = cinit | cinv | cguard | cbad.

• Octagon (OCT): All possible constraints where xi = ±1 and xj ∈ {−1,0,1} for
i 6= j and xk = 0 for xk 6= xi and xk 6= xj .

Benchmarks. Next the benchmarks used for the experiments will be presented.
All benchmarks were chosen for different challenges or because they have different
difficulty levels within their challenge. The benchmarks are tabularized in Figure 4.1.

Bouncing Ball [CSM+15]. The bouncing ball (BB) is the easiest of all benchmarks
as it is a two-dimensional system with one location and one transition. It has already
been used in multiple examples throughout this theses, for instance Example 2.2.1,
3.3.2, 3.3.3 and as a bounded version in Section 3.4.1. A more detailed description of
this system can be found at the beginning of Chapter 2.2. In this scenario, we assume
the bad states to be h ≥ 10.3. Since the bouncing ball benchmark is easy to solve, it
is expected that it can be verified with all settings.

Building [TNJ16, CVD02]. The building benchmark describes the Los Angeles
University Hospital which has multiple floors each having three degrees of freedom:
Displacement in x- and y-direction and rotation. The bad states are reached when
the displacement of in x-direction gets too high, so when x25 >= 0.0051. Overall, this
benchmark has 50 dimensions and is chosen not only for its high dimensionality, but
also for the high amount of precision needed to verify it. It is the benchmark with the
highest dimension, but it has no transitions and lacks an invariant, therefore it is a
purely continuous system.

4.1. Experimental Setup 51

Navigation [FI04]. The navigation benchmarks simulate point masses in the 2D
plane with several regions with different dynamics. Each benchmark instance is an
n×n-grid. Every cell in this grid is its own location in the hybrid automaton and has a
different flow dependent on the benchmark instance as well as invariants that mark the
boundaries of the cell. Additionally, one cell is determined to be the destination the
point masses should reach, aka the good states, and one cell is selected to be the bad
states. For both the desired and the bad cell there is no flow defined. Every change
from one cell to another is modelled via a transition. All instances are expected to
not reach the bad states. The navigation benchmarks model the x- and y-coordinate
as well as the velocities in x- and y- direction of the point mass and are therefore
always a four dimensional system. This benchmark set has been chosen for its high
branching factor as every cell in the grid has between two and four neighbouring cells
it can transition to. Of the three navigation instances chosen, navigation03 (NAV03)
is the easiest, while navigation04 (NAV04) visits more locations than navigation03
until it reaches the destination cell. navigation09 (NAV09) however increases the grid
size from 3× 3 to 4× 4.

Platoon [MMH+11]. In the platoon benchmark we have three autonomously driven
vehicles that drive behind each other. With every vehicle accelerating and decelerating
differently, the safety property that needs to be checked is whether it can come to
a collision within the platoon. For this reason, a minimum distance is defined that
needs to be kept between every vehicle. Different instances of the platoon benchmark
define different bounds on how much this minimum distance is allowed to be violated
before the distance between two vehicles is counted as a collision. Platoon42 leaves
more room for violation while Platoon30 has tighter bounds. The two locations of
each benchmark model two phases in communication between the vehicles; in one
location the vehicles can communicate about the distance to each other and adjust
their speed accordingly, while in the second location the communication fails for a
fixed amount of time, thus leading to uncoordinated de- and acceleration. The switch
in communication is modelled by transitions that are enabled every five time units or
higher. Although the benchmarks offer a high maximum number of jumps with 1000,
the benchmarks are only able to jumps at most five times within their time bound of
20. Both instances are expected to be safe. The platoon benchmark has been chosen
since it has a medium difficulty; precisionwise it needs less precision than the building
benchmark and is also less dimensional with twelve variables, but in return it offers
two locations and two transitions.

Space Rendezvous [CM17]. A space rendezvous (SR01) is known as the act of
a spacecraft, the chaser, to attach itself to an orbiting body, the target, in space.
In order to do that, the chaser first approaches the target which is modelled by a
location. If it is close enough, it attempts the rendezvous, this is the second location.
If during the approach or the rendezvous the chaser’s velocity is too high or it misses
the target, the rendezvous attempt failed, which are the bad states that need to be
avoided. The rendezvous can only be attempted once, therefore a maximum of two
jumps can be executed by this model, although it allows for infinitely many. This
benchmark has been chosen for its needed precision, its many different invariant and
bad state constraints and the high time bound of 300 time units.

52 Chapter 4. Experimental Results

Benchmark Dim Loc Trans Time Max Jumps

BouncingBall 2 1 1 3 5

Building 50 1 0 20 0

Navigation03 4 9 24 1 6

Navigation04 4 9 24 3 6

Navigation09 4 16 48 3 6

Platoon30 12 2 2 20 1000

Platoon42 12 2 2 20 1000

SpaceRendezvous 5 3 3 300 ∞

Figure 4.1: Benchmarks. The benchmarks and their dimension (Dim), their number
of locations (Loc), number of transitions (Trans), maximum time bound per flowpipe
(Time) and maximum number of jumps (Max Jumps) that can be taken.

Conditions. All experiments were conducted on a Intel core i7-7700HQ at 2.8 GHz
with 16 GB RAM. In the following three chapters, all benchmarks were tested with
all template types and the time step size δ ∈ {0.1,0.01, 0.001}. Timeout (TO) was set
to 5 minutes. If a benchmark could be verified as safe, then the corresponding time is
entered in the table. If a benchmarks could not be verified as safe, then the entry is (-1).

4.2 Results for HyPro Template Polyhedra

Results. The table with all verification results can be found in the appendix A.1.
The Table 4.2 is a summarized version of these results for HTP. Looking at Table
4.2 one can see that the building benchmark could not be verified with the template
shapes OI, II and IIG no matter which step size has been chosen, which is expected as
adding invariants, guards and bad states should do nothing as the building benchmark
does not have invariants or guards; the only bad state constraint it has is already in
the OI template shape. Only the with the OCT template shape at least timeouts have
been achieved with all step sizes. This is due to the OCT template shape generating
5000 template constraints which increases the solving time of each LP. Similarly,
navigation09, platoon30 and platoon42 were all not verifiable with all template shapes
and all time steps.
The bouncing ball benchmark could be verified with all shapes with time steps
δ = 0.01 and δ = 0.001. One can recognize that the running times do not differ much
between each shape with an exception of the OCT shape. This phenomenon can be
explained insofar as adding the invariants, guards or bad states does not change the
template shape after removing duplicate constraints in this benchmark. This means
all intersections could already be efficiently carried out using OI and should not get
faster using II, IIG or IIGB. So in theory all running times should be the same for
this benchmark. This phenomenon does not occur in general.
With δ = 0.01 and shape OI to IIGB the bouncing ball could not be verified. This is
due to the wrapping effect described in Section 2.3: Since adding all the constraints to

4.2. Results for HyPro Template Polyhedra 53

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI −1 0.28 1.37
II −1 0.28 1.37
IIG −1 0.29 1.37
IIGB −1 0.33 1.58
OCT 0.15 0.40 2.68

Building OI to IIGB −1 −1 −1
OCT −1 TO TO

navigation03

OI 1.55 11.56 87.78
II 1.53 11.52 88.79
IIG 1.54 11.46 107.58
IIGB 1.53 12.23 107.13
OCT 11.19 54.68 TO

navigation04

OI 1.77 6.88 76.22
II 1.78 6.86 75.75
IIG 2.05 7.28 61.40
IIGB 1.77 8.08 74.22
OCT 8.99 52.21 TO

navigation09 OI to IIGB −1 −1 −1
OCT −1 −1 TO

Platoon30 all shapes −1 −1 −1

Platoon42 all shapes −1 −1 −1

SpaceRendezvous OI to IIGB −1 −1 −1
OCT 13.24 129.19 TO

Figure 4.2: Running times in seconds for HyPro template polyhedra (HTP). The
meaning of the abbreviations of the template shapes can be found in Section 4.1,
timeouts are marked with “TO”, cases in which safety could not be proven are marked
with “-1”.

the bouncing ball still results in box shaped constraints, the flowpipe of the bouncing
ball has to be overapproximated with these box constraints. The overapproximation
error gets amplified with each new segment; in the end the boxes are so big that they
intersect the bad states. This happening is depicted in Figure 4.3.
It is apparent that the OCT shape definitely needs a higher running time in the
bouncing ball benchmark, up to a factor of two using δ = 0.001. The increase in
running time stems from the increased template size, which increased from |H| = 4 to
|H| = 8. Half of the directions are not important for the operations, but still need
to be carried along and thus become overhead. This template however affects the
precision positively: Even with δ = 0.1 the bouncing ball benchmark could be verified
since the octagon template can reduce the impact of the wrapping effect that was
apparent with the box constraints of the former shapes. This is also depicted in Figure
4.3.

Both navigation benchmarks behaved very similarly: Naturally, independent of the
template shape, the running time increases when the time step size is decreased and

54 Chapter 4. Experimental Results

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10 0 10 20

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10 0 10 20

 0

 2

 4

 6

 8

 10

 12

-30 -20 -10 0 10 20
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

Figure 4.3: Bouncing ball (BB) and navigation03 (nav03) benchmark. Upper Left:
BB with OI and δ = 0.1 Upper right: BB with OI and δ = 0.01 Middle Left: BB
with OCT and δ = 0.1 Middle right: nav03 with OI and δ = 0.1 Lower left: nav03
with IIGB and δ = 0.1. Lower right: nav03 with OCT and δ = 0.1 Red regions
mark bad states, green regions mark good states. The plots for nav03 were made with
only 3 jumps instead of 6 jumps.

4.3. Results for Taylor Template Polyhedra 55

more segments are computed as a result. Adding already contained constraints like
the invariant, guards and bad state constraints did not lead to an increase in precision
in navigation03 and navigation04, as effectively no new constraints were added to the
template.
Again, the OCT shape needs more running time as the template size is increased. This
affects the navigation benchmark insomuch as running time increases, for instance
sixfold for the navigation03 benchmark from 13.95 s to 86.78 s for δ = 0.1 and δ = 0.01.
At δ = 0.01 one can also see that the high computational time of the affine transforma-
tion starts to affect the running time more than the intersections. The running times
for II, IIG and IIGB are almost the same with this time step. Interestingly, although
the HTP accomplish to verify navigation03 and navigation04 in the most instances,
they are not able to verify navigation09 due to its inprecision even with OCT templates.
The space rendezvous benchmark on the other hand demonstrates that the increase in
precision when using the OCT template is non negligible, as only with the OCT shape
this benchmark could be verified. Although it is a benchmark where the addition of
invariants, guards and bad state constraints actually enriches the template by new
directions, their addition cannot increase the precision enough to verify this benchmark.

Conclusions. The time step size remains the biggest factor for the running times
and the precision of the flowpipe computations. The HTP can in theory reduce their
running times by adding invariants, guards and bad states. Using the octagon template
increases precision in exchange for higher running times, but the gain in precision is
not enough to enable the HTP to verify more precision-demanding benchmarks such as
platoon42 or building. Nevertheless, in comparison to the H-polytopes, whose running
times can be found in Appendix A, the HTP can verify more in half amount of time.

4.3 Results for Taylor Template Polyhedra
At first we will elucidate the effects of the Taylor approximation order needed for the
first segment computation and time evolution on the speed and precision of the Taylor
approximation-based template polyhedra (TTP). After that the benchmark results
are displayed.

Derivative Order. During the Sankaranarayanan reachability analysis, the Taylor
approximation needs to be computed to a fixed derivative order DO with the order of
the remainder being DO + 1. We evaluated the impact of the derivative order DO on
the benchmarks bouncing ball, navigation03 and navigation04 with IIGB shaped TTP
and δ = 0.1. The results can be seen in Table 4.4.

The first interesting result are the verification results for DO = 1: None of the
benchmarks could be verified. This is due to the chosen derivative order, which at
m = 1 only expands the Taylor approximation to the first term and the remainder:

Hix(t+ δ) = Hix(t) +H
(1)
i x(t+ θ)t

This equation approximates the trajectory with a straight line with slope H(1)
i x(t+ θ)

and intercept Hix(t) explaining the straightness of each segment, which is depicted in
Figure 4.5a for the case of navigation03.
We have seen from Example 3.3.2 that the Lie derivatives of the template rows of the

56 Chapter 4. Experimental Results

Benchmark DO = 1 DO = 2 DO = 3 DO = 5

BouncingBall -1 0.1397s 0.120062s 0.121698s

navigation03 -1 4.78299s 4.94942s 5.46941s

navigation04 -1 1.89089s 6.50195s 4.08465s

Benchmark DO = 7 DO = 10 DO = 20 DO = 30

BouncingBall 0.120132s 0.125093s 0.120814s 0.120895s

navigation03 4.91271s 6.14801s 5.16469s 5.45513s

navigation04 4.21513s 4.80615s 14.5389s 83.0349s

Figure 4.4: Derivative Order Results. All the tests have been conducted with IIGB
shape and δ = 0.1.

bouncing ball model vanish for every order greater two. Therefore, any derivative order
greater than two does not affect the computation in any way; in the implementation we
stop the computation of the Lie derivatives if a Lie derivative of zero is detected. This
phenomenon explains the continuously similar running times from DO = 3 onwards.
In contrast to the bouncing ball the benchmarks navigation03 and navigation04 do not
have Lie derivatives that vanish after a certain order. Here navigation04 is exemplary
for the general case: The more Lie derivatives need to be computed the larger the
running times become. A steady increase in running time can be observed from
DO = 5 to DO = 10. If increased excessively, the computation of the Lie derivatives
can take over a main portion of the computation time, here for instance at DO = 20
and DO = 30, where the running time suddenly increases by a factor of approximately
three in comparison from DO = 10 to DO = 20 and by a factor of 5.7 from DO = 20
to DO = 30. Incrementing the order does in fact increase precision, but the effect

decreases with increasing order. The reason is that every j-th coefficient H
(j)
i

j! δ
j of the

Taylor approximation in the time evolution is scaled down by δj , and if δ < 1 then
δj → 0 when j → DO for all j ≤ DO. This decrease in extra precision can be seen in
Figure 4.5.
The running time results for navigation03 do not increase in the same way the running
time results for navigation04 did. Navigation03 is a corner case insofar as its fixed
point revolves around the destination location where no flow is defined. In a location
where no flow influences the dynamics of the state sets, the Lie derivative is always zero,
and thus we can stop the computation of the Lie derivatives early, which expresses
itself in running times continuously below seven seconds even at DO = 20. This is not
the case with navigation04; it switches back and forth between two grid cells where
flow is defined if enough time has passed.
In summary increasing the derivative order increases precision, but less with each
order. At the same time it increases running times only slightly for orders below
ten. The computation of a Lie derivatives of order DO can be stopped when a Lie
derivative of order j < DO is zero, which additionally saves time. In our following
experiments we have chosen a derivative order of DO = 6 according to the results of
these experiments.

4.3. Results for Taylor Template Polyhedra 57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(d)

Figure 4.5: Derivative Order plots. All pictures are made with navigation03 with
IIGB, δ = 0.1 and 3 instead of 6 jumps. (a) DO = 1 (b) DO = 3 (c) DO = 6 (d)
DO = 10

58 Chapter 4. Experimental Results

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI −1 0.29s 1.49s
II −1 0.29s 1.49s
IIG −1 0.28s 1.74s
IIGB −1 0.28s 1.47s
OCT 0.12s 0.56s 3.45s

Building OI to IIGB −1 −1 −1
OCT TO TO TO

navigation03

OI 5.53s 34.30s TO
II 5.95s 34.29s TO
IIG 5.86s 41.11s TO
IIGB 5.79s 34.65s TO
OCT 73.95s TO TO

navigation04

OI 4.50s 28.10s 237.55 s
II 3.78s 23.06s 240.37 s
IIG 3.77s 27.89s 238.40 s
IIGB 3.74s 23.13s 237.50 s
OCT 44.46s TO TO

navigation09 OI to IIGB −1 −1 −1
OCT −1 −1 TO

Platoon30 OI too IGB −1 −1 −1
OCT −1 −1 TO

Platoon42 OI to IIGB −1 −1 −1
OCT −1 −1 TO

SpaceRendezvous OI to IIGB −1 −1 −1
OCT −1 TO TO

Figure 4.6: Benchmark results for Taylor approximation-based template polyhedra
(TTP). All tests were conducted with Taylor approximation order DO = 6. The full
table is visible in appendix A.

Benchmark Results. All tests were conducted with a Taylor approximation
order of DO = 6 and location invariant strengthening to counter unboundedness of the
invariants. Overall the TTP benchmark results in Table 4.6 look similar to the HTP
results. Just as the HTP, neither building, navigation09, platoon30 nor platoon42
could be verified, but in contrast to the former, more timeouts were reached. This
time space rendezvous could not be verified with any shape and any time step size.
The OCT shape lead to timeouts for instance in navigation09, platoon30, platoon42
and space rendezvous with δ = 0.001. There the reason behind the timeouts is the
increased precision and increased running times finer time steps bring with them. In
the case of the building benchmark with the OCT template shape, the same reason
as for the HTP, namely the strong increase in constraints and the consequently high
running times for each LP call is the reason why timeouts are observed.
For δ = 0.1 the bouncing ball benchmark could not be verified with the OI, II, IIG and
IIGB shape, but with the OCT shape since the octagon template increases precision.

4.3. Results for Taylor Template Polyhedra 59

The running times for the bouncing ball benchmark with HTP with the template
shapes OI, II, IIG and IIGB using the finest time step size δ = 0.001 are between
7% faster (with IIGB) to 27% slower (with OI) than the TTP using the same shape
with an average of being 9.5% slower, but since the differences in running time are
within an interval of 0.4 seconds, these comparisons could be influenced by external
disturbances. The same holds true for δ = 0.01.
Similar to the HTP, navigation03 and navigation04 could be verified with δ = 0.1
and δ = 0.01 with any shape except in the case of the OCT template at δ = 0.01.
For navigation03 and δ = 0.1 the TTP turn out to be on average about three times
(276%) slower than the HTP using the same shape. For the same benchmark and
δ = 0.01 they are on average slower by a factor of two (209%). This difference in
speed is also noticeable in the navigation04 benchmark: For δ = 0.1 the TTP are on
average 115% slower than the HTP using any shape except OCT, for δ = 0.01 235%
slower and for δ = 0.001 234% slower. This increase in running time stems from the
fact that more segments are computed in Sankaranarayanan method, for instance in
navigation03 with IIGB and δ = 0.1 the Sankaranarayanan method generates 1891277
segments, while the HTP generate only 592183 segments with the same parameters,
which are only 31% of the first amount of segments. Many of the segments additionally
generated are part of flowpipes leading to fixed points, which come from transitions
that were additionally enabled through overapproximation.
Another cause for the higher running times is that in the first segment computation the
roots of the univariate polynomial pi(t) need to be computed. There exists a variety
of sophisticated root finding or root approximation algorithms, whose inner workings
are beyond the scope of this thesis. During implementation, it became apparent that
the underlying root finding algorithm is costly as it takes about 20% of the running
time. Therefore it is sensible to find a procedure that can avoid the root computation
without abandoning the soundness of the approach. An idea of a possible approach is
sketched in Chapter 5.
The resulting plots are similar to the plots of the HTP, which can be seen in Figure
4.7, but visibly contain multiple flowpipes for instance in Figure 4.7d. In the same
picture one can see that the flowpipe in the middle square is more precise than in
Figure 4.7c. On the other hand there is an extra flowpipe in Figure 4.7b left of the
green region, which is not existent in Figure 4.7a.

Conclusions. The TTP combine multiple different techniques into one, which
one can tweak at several parameters to obtain the best possible result. Next to the
choice of the template, which is just as crucial for the TTP as it is for the HTP, the
derivative order plays an important role in the precision. In benchmarks where the
Lie derivative does not vanish at the j-th order with j < DO, it can increase precision
at a low running time addition. Albeit being slower than the HTP, with the usage of
location invariant strengthening both implementations compare similar in precision.
The TTP surpass the H-polytopes in running time and positive verifications.

60 Chapter 4. Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(d)

Figure 4.7: navigation03 (Nav03) and navigation04 (Nav04). All pictures done with
IIGB shape, δ = 0.1 and three jumps. (a) Nav03 HTP. (b) Nav03 TTP. (c) Nav04
HTP. (d) Nav04 TTP.

4.4. Results for Support Functions with HTP 61

4.4 Results for Support Functions with HTP

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI 0.12s 0.18s 0.99s
II 0.12s 0.18s 0.94s
IIG 0.12s 0.21s 1.07s
IIGB 0.12s 0.20s 1.08s
OCT 0.12s 0.18s 0.82s

Building

OI −1 −1 2.55s
II −1 −1 2.26s
IIG −1 −1 2.35s
IIGB −1 −1 2.07s
OCT −1 −1 2.05s

navigation03

OI 39.36 TO TO
II 36.29s TO TO
IIG 44.59s TO TO
IIGB 36.29s TO TO
OCT 36.27s TO TO

navigation04 all shapes −1 −1 TO

navigation09 all shapes −1 −1 −1

Platoon30

OI 4.60s 6.43s 22.62
II 4.60s 6.23s 21.97s
IIG 4.61s 6.24s 18.16s
IIGB 5.35s 6.84s 19.18s
OCT 5.17s 6.22s 21.89s

Platoon42

OI 5.50s 6.33s 20.22
II 4.59s 6.22s 18.40s
IIG 4.60s 6.23s 18.15s
IIGB 5.30s 7.33s 20.11s
OCT 4.58s 6.22s 18.13s

SpaceRendezvous

OI 0.88s 13.98s TO
II 0.90s 11.06s TO
IIG 0.85s 12.86s TO
IIGB 0.85s 12.29s TO
OCT 0.84s 12.76s TO

Figure 4.8: Benchmark Results for Support Functions with HTP.

Results. The results for support functions in conjunction with HTP as underlying
state set representation can be seen in Table 4.8. Most apparent are the successful veri-
fication results for bouncing ball, building (only with δ = 0.001), platoon30, platoon42
and space rendezvous (with δ = 0.1 and δ = 0.01). Just as apparent are the results for
navigation03, navigation04 and navigation09: While navigation04 and navigation09
could not be verified with any shape and any time step, navigation03 could be proven
as safe with δ = 0.1 and reached timeout for δ = 0.01 and δ = 0.001. Overall the

62 Chapter 4. Experimental Results

results are similarly structured as the results from support functions with H-polytopes
as underlying representations visible in Appendix A, which was to be expected since
template polyhedra behave like H-polyhedra with regards to maximization as both
solve LPs for this operation, but template polyhedra can avoid LP solver calls if the
maximization direction is a template direction.
The bouncing ball benchmark achieved similar running times with any shape within
one time step size and stands on the same level as the running times of the support
functions with H-polytopes. The small decrease in running time with the OCT tem-
plate could stem from the increased size of the template, which in turn increases the
chance that a maximization direction is equal to a template row leading to more cases
where the efficient maximization operation of the template polyhedra is activated.
The running times of the bouncing ball benchmark with any shape and δ = 0.001
using HTP alone are between 28% (with IIGB) and 46% (with OI) and on average
40% (without OCT) slower than support functions with the template polyhedra and
even 326% slower using OCT template. This phenomenon can be traced back to
several optimizations made for the support functions, one being for instance that
the underlying representation is converted into a box if the template constraints are
found out to resemble a box shape anyway, for whom computing the support into any
direction and not only the template directions can be done efficiently.
As already mentioned the building benchmark could be solved with δ = 0.001. An
insight gained from this result is that the precision of the support functions with
template polyhedra is enough to solve precision-demanding benchmarks such as the
building benchmark. With this in mind, it seems plausible that platoon42, its more
difficult version platoon30 and space rendezvous (only with δ = 0.1 and δ = 0.01) were
also verified. During computation, the support functions are not limited in precision
by the wrapping effect as the approximating halfspace normals are dynamically trans-
formed into different directions by the support function operation rules, in contrast to
the template polyhedra alone, whose halfspace directions are fixed.
The support function needs to make multiple time-consuming traversals to compute
set emptiness as discussed in Section 2.4. Since during each intersection with the
invariants, guards and bad states the emptiness of the result must be computed,
support functions have high running times for benchmarks where intersections and
emptiness need to be computed often, here for instance navigation03, navigation04
and navigation09. This explains the running times for δ = 0.1 and the timeouts for
the finer time steps. The plots can be seen in Figure 4.9. The overapproximation error
on these plots is large and is increased with every jump. Although the reason for this
remains to be investigated, the intersection with the guards and the following reset
could play a role.

Conclusions. Support functions with template polyhedra can verify more bench-
marks than HTP and TTP. Even precision-demanding benchmarks can be verified with
them. As the support functions are not as efficient with intersections and emptiness
as the template polyhedra, the benchmarks that are verified by the support functions
tend to branch less and therefore need to calculate less segments for whom intersection
and emptiness need to be computed. The template polyhedra in return thrive at
benchmarks with high amounts of intersections.

4.4. Results for Support Functions with HTP 63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(d)

Figure 4.9: Support function benchmark results. All plots done with δ = 0.1, IIGB
shape and 3 instead of 6 jumps. (a) nav03 with HTP (b) nav03 support functions
with HTP (c) nav04 with HTP (d) nav04 support functions with HTP

64 Chapter 4. Experimental Results

4.5 Further Optimization Results
In our previous tests we tested the HTP and TTP on various benchmarks and tabular-
ized their running times. To further increase the efficiency of the template polyhedra,
the fixed point detection tests (short FIX) described at the end of Section 3.4 were also
tested in conjunction with LIS. At last, the effects of the numerical corrections and the
cycle detection (both abbreviated with NC) from Section 3.4 in LIS are checked. The
benchmarks used in this test series are the navigation instances one to eight, where
every instance has a time bound of three and a maximum number of jumps of six.
The navigation benchmarks were chosen for their high amount of fixed points. This
time six different combinations are tested: Each of the two template shapes IIGB and
OCT are tested standalone, with the fixed point detection in addition and lastly with
a combination of the fixed point detection and the numerical corrections. Each of
these strategies are tested with δ = 0.1 and δ = 0.01.

Results. Since the table of benchmark results has too many entries, we decided
to display it as Appendix A. The fixed point detection procedure reduces the running
time of every benchmark without the fixed point detection independent of the template
shape by a significant amount. In some instances, for example for navigation02 with
OCT shape and δ = 0.01, it reduced the running time so much that the test was not
interrupted and terminated by the timeout. This large decrease in running time stems
from the fact that the navigation benchmarks all have fixed points that are reached
within the time bound. These fixed points are detected and the flowpipe computation
can be avoided. The plots consequently show less segments, which can be seen in
Figure 4.10. As fixed point detection does not increase precision, only benchmarks
that could be verified without fixed point detection can be verified with fixed point
detection.
The effect of the numerical corrections and the cycle detection depend on the bench-
marks and the template shapes. In navigation01 to navigation04 using IIGB, fixed
point detection with numerical corrections and cycle detection reduced running times
by an average of 8% using δ = 0.1 and 16% using δ = 0.01 in comparison to IIGB
with only fixed point detection. In navigation07 with IIGB it even increased running
times slightly. With the OCT shapes we can see a similar effect: The running times
using OCT+FIX+NC are decreased with either time step in the first four navigation
instances but are increased in the latter three instances apart from navigation07 with
δ = 0.1 where it decreased.
The cycle detection and the numerical corrections shrink the number of iterations
needed until a fixed point is found, which explains the running time reduction in the
first four benchmarks. The numerical corrections however cannot avoid all cases where
solving the LP for the next strengthened invariant returns infeasibility. The cause of
this phenomenon and the running time increase in the latter benchmarks has not been
found and remains to be investigated. The effects on precision from the usage of the
fixed point detection and the numerical corrections are depicted in Figure 4.10.

Conclusions. While the fixed point detection greatly reduces running time in
benchmarks with fixed points by avoiding subsets of already computed flowpipes, the
cycle detection and the numerical corrections can influence the running times positively
in smaller benchmarks.

4.5. Further Optimization Results 65

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

(d)

Figure 4.10: Navigation03 and navigation04. All pictures made with DO = 6, δ = 0.1
and three jumps. (a) nav03 TTP (b) nav03 TTP with fixed point detection and
numerical corrections (c) nav04 TTP (d) nav04 TTP with fixed point detection and
numerical corrections. Notice that the counterparts with fixed point detection are
cleaned from inner flowpipes.

66 Chapter 4. Experimental Results

Chapter 5

Conclusion

Summary. Over the course of this thesis we gave an overview on formal verification
of hybrid systems via flowpipe construction and took a deeper look at two state set
representations: Template polyhedra and support functions. With respect to their
usage in the reachability analysis of affine hybrid automata, we studied their properties
with special focus on the efficient operations of both representations. For template
polyhedra two approaches regarding efficient flowpipe-construction-based reachability
analysis were presented and implemented: A version following the general flowpipe con-
struction through the provided interface from HyPro and a Taylor approximation-based
method proposed by Sankaranarayanan et al. that calculates the first segment and the
time evolution through overapproximating the Taylor approximation of the trajectory
of each template row. Both approaches were evaluated on several benchmarks, some
of which require frequent intersection operations with differences in running times; the
HyPro implementation of the template polyhedra was consistently faster and could
only be matched by the Taylor approximation-based template polyhedra when fixed
point detection, cycle detection and numerical corrections were added.
The content of the templates strongly effects the running times and precision of
the template polyhedra during reachability analysis. Different template shapes, for
example only the initial constraints, all constraints that are known within all loca-
tions or octagonal constraints also yielded different results: In general, having all
constraints, namely the invariants, guards of outgoing transitions and possible bad
state constraints in the template led to faster verification results whereas the octagonal
templates increase precision. Similar tests conducted on support functions in com-
bination with the template polyhedra suggest that template polyhedra and support
functions complement each other with respect to the efficiency of certain operations,
i.e. intersection since the benchmarks that were solved by the support functions with
great precision in a short amount of time are those that the template polyhedra could
not verify amongst others.
In addition to these benchmark tests, we experimented with several optimizations, the
biggest one of which is the location invariant strengthening. Its ability to tighten the
invariant bounds with respect to the initial set and the given invariants under consid-
eration of the local flow renders it especially useful in the Taylor approximation-based
method, where it increases the precision and speed of the computation as a consequence.
With this technique we developed a method to use the Taylor approximation-based
approach on unbounded invariants and refined it with cycle detection to identify cycles

68 Chapter 5. Conclusion

within the policy iteration and numerical corrections to avoid inconsistency within
the location invariant strengthening. In addition to location invariant strengthening,
fixed point detection has proven itself useful in reducing running times by avoiding
the recomputation of flowpipes that are a subset of already computed flowpipes. The
fixed point detection can be efficiently performed with template polyhedra, due to its
efficient subset operation. All these techniques combined result in an efficient state set
representation that has a lot of potential for further research.

Future Work. The future work on template polyhedra includes the following
topics:

Bounding Heuristics. One topic of further research includes location invariant
strengthening with unbounded invariants as in general this technique works purely on
bounded invariants. Although our method to artificially bound the feasible invariant
region with unattainable high numbers works, the current estimation of these bounds is
based on empiric experiences with the respective model. One possibility in solving this
could be to simulate at least one state beforehand and derive the smallest unreachable
bounds from the simulation, but an efficient procedure to automate the choice of these
bounds needs to be researched. An additional disadvantage of our current method is
its incompatibleness with unbounded time verification as in this scenario the valuations
of the variables are not bounded by the time bound.

Root Computation Optimization. As mentioned in Section 3.3 the computa-
tion of the roots of the polynomial pi(t) that overapproximates the trajectory in the
Sankaranarayanan method is costly and should therefore be avoided if possible. Since
pi(t) is an univariate polynomial of degree DO of whom we seek the roots between
the interval [0,δ] an interval-based method like interval constraint propagation could
be used to determine whether a root lies in [0,δ] and within what boundaries it lies
[Dav87]. Whether this approach is faster than the analytical root computation remains
to be researched.

Template Refinement. Most crucial is the choice of the template when working
with template polyhedra since this decision affects speed and precision of the tem-
plate polyhedra greatly. More experiments with different template shapes and their
combination need to be conducted. Sankaranarayanan et al. for instance suggested
the inclusion of the Lie derivatives of every row or the eigenvalues of the template
[SDI08b]. Another idea deals with dynamic modification of the template during the
flowpipe computation: In a counterexample-guided refinement approach spurious
counterexamples could be used to modify the template such that the counterexample
cannot be reached anymore as done in [BFGH17].

Duality. Our experiments show that template polyhedra and support functions
supplement each other. While template polyhedra are particularly beneficial for the
running times of benchmarks with many intersections, support functions in contrast
are more successful in all other benchmarks. A state set representation that can exploit
the properties of both depending on the currently requested operation needed could
increase efficiency even more. This idea has been fleshed out in [FLGD+11].

69

Regular polytopes. One idea that came to mind during experiments with the
octagonal template was the idea of using a different representation as the underlying
representation of the support functions; a representation that can compute the support
quickly into any direction. This idea led to regular polytopes, which are a polytopes
of dimension d whose facets are regular in d− 1. This definition recursively defines
regularity until d = 2, where a polygon (a polytope in dimension two) is regular
if all its interior angles and edge lengths are the same. In a regular polygon every
maximization direction is guaranteed to lie in one of the cones that are defined by two
neighbouring facet normals. These two neighbouring facet normals and their respective
halfspaces are enough to uniquely determine their intersection point or rather the
point which gives the optimal solution to the underlying maximization problem in
the maximization direction. This means that if one can find out in which cone the
maximization direction lies in, then the optimal point can be inferred by solving a
linear program over only two constraints. We claim that the question remaining,
namely how to calculate in which cone the maximization direction l lies in, can be
solved by finding the two facet normals n, n′ that are the "closest" to the maximization
direction: By computing the normalized scalar products (l

||l||)
T ni

||ni|| for all normals
ni in the set of all facet normals and then selecting the two normals n,n′ where the
scalarproduct is maximized, the two halfspaces determining the optimal point for l
can be found. Our claim went even further: We conjectured that in any dimension
d, if we have a regular polytope P =

⋂m−1
i=0 nix ≤ ci in Rd with normalized normals

ni from N = {n0,...,nm} and a normalized direction l, then the d normals with the
highest value of lTn make up the cone where l lies in. Thus, only the d halfspaces
defined by these normals are needed for finding the optimal value. A formal proof of
this claim is still required and subject of ongoing research.
If used in conjunction with the support functions, the regular polytopes could store
their extreme points once computed. This enables a fast lookup procedure where
only m dot products have to be computed for maximizing into a given direction.
Additionally, since as an underlying representation the actual regular polytope would
not be modified in any way, regularity is preserved for each flowpipe computation
once established. If used alone, we predict that reestablishing regularity for each
segment will be a computational burden that may be solved using template polyhedral
techniques such as the overapproximation that have been studied in this thesis.

70 Chapter 5. Conclusion

Bibliography

[Ábr16] E. Ábrahám. Modelling and analysis of hybrid systems, 2016. Lecture
Notes RWTH Aachen.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3 – 34,
1995. Citeseer.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994. Elsevier.

[Ber11] Dimitri P Bertsekas. Dynamic programming and optimal control 3rd
edition, volume ii. Belmont, MA: Athena Scientific, 2011.

[BFGH17] Sergiy Bogomolov, Goran Frehse, Mirco Giacobbe, and Thomas A Hen-
zinger. Counterexample-guided refinement of template polyhedra. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 589–606. Springer, 2017.

[Bla99] Franco Blanchini. Set invariance in control. Automatica, 35(11):1747–
1767, 1999. Elsevier.

[Bra05] Michael S Branicky. Introduction to hybrid systems. In Handbook of
networked and embedded control systems, pages 91–116. Springer, 2005.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT : an Open Source C++ Toolbox for Strategic
and Parallel SMT Solving. In Theory and Applications of Satisfiability
Testing : SAT 2015, volume 9340 of Lecture Notes in Computer Science,
pages 360–368. International Conference on Theory and Applications of
Satisfiability Testing, Austin, Tex. (USA), 24 Sep 2015 - 27 Sep 2015,
Springer International Publishing, Sep 2015.

[CM17] Nicole Chan and Sayan Mitra. Verifying safety of an autonomous space-
craft rendezvous mission. arXiv preprint arXiv:1703.06930, 2017.

[CS11] Michael A Colón and Sriram Sankaranarayanan. Generalizing the tem-
plate polyhedral domain. In European Symposium on Programming,
pages 176–195. Springer, 2011.

72 Bibliography

[CSM+15] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám, Goran
Frehse, and Stefan Kowalewski. A benchmark suite for hybrid systems
reachability analysis. In NASA Formal Methods, pages 408–414, Cham,
2015. Springer.

[CVD02] Younes Chahlaoui and Paul Van Dooren. A collection of benchmark
examples for model reduction of linear time invariant dynamical systems.
2002. Niconet.

[Dav87] Ernest Davis. Constraint propagation with interval labels. Artificial
intelligence, 32(3):281–331, 1987. Elsevier.

[DG11] Thao Dang and Thomas Martin Gawlitza. Template-based unbounded
time verification of affine hybrid automata. In Asian Symposium on
Programming Languages and Systems, pages 34–49. Springer, 2011.

[DH12] Dirk Den Hertog. Interior point approach to linear, quadratic and convex
programming: algorithms and complexity, volume 277. Springer Science
& Business Media, 2012.

[F+04] Komei Fukuda et al. Frequently asked questions in polyhedral computa-
tion. ETH, Zurich, Switzerland, 2004. https://www.cs.mcgill.ca/ fuku-
da/soft/polyfaq/polyfaq.html.

[FI04] Ansgar Fehnker and Franjo Ivančić. Benchmarks for hybrid systems
verification. In Hybrid Systems: Computation and Control, pages 326–
341. Springer, 2004.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang,
and Oded Maler. Spaceex: Scalable verification of hybrid systems. In
Computer Aided Verification, pages 379–395. Springer, 2011.

[For84] Otto Forster. Analysis 2 Differentialrechnung im Rn. Gewöhnliche
Differentialgleichungen, Vieweg Braunschweig, 1984.

[GGTZ07] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static
analysis by policy iteration on relational domains. In European symposium
on programming, pages 237–252. Springer, 2007.

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zonotopes.
In International Workshop on Hybrid Systems: Computation and Control,
pages 291–305. Springer, 2005.

[GSBS19] Jessica Gronski, Mohamed-Amin Ben Sassi, Stephen Becker, and Sri-
ram Sankaranarayanan. Template polyhedra and bilinear optimization.
Formal Methods in System Design, 54(1):27–63, 2019. Springer.

[HH94] Thomas A Henzinger and Pei-Hsin Ho. Hytech: The cornell hybrid
technology tool. In International Hybrid Systems Workshop, pages 265–
293. Springer, 1994.

[HKPV98] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of computer and
system sciences, 57(1):94–124, 1998. Elsevier.

Bibliography 73

[LG09] Colas Le Guernic. Reachability analysis of hybrid systems with linear
continuous dynamics. PhD thesis, 2009.

[LGG09] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In Computer Aided Verification, pages
540–554. Springer, 2009.

[Mak00] Andrew Makhorin. The gnu linear programming kit (glpk), 2000.

[Min01] Antoine Miné. A new numerical abstract domain based on difference-
bound matrices. In Symposium on Program as Data Objects, pages
155–172. Springer, 2001.

[MMH+11] Ibtissem Ben Makhlouf, Jan P Maschuw, Paul Hänsch, Hilal Diab, Stefan
Kowalewski, and Dirk Abel. Safety verification of a cooperative vehi-
cle platoon with uncertain inputs using zonotopes. IFAC Proceedings
Volumes, 44(1):9769 – 9774, 2011. 18th IFAC World Congress, Elsevier.

[PS98] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial opti-
mization: algorithms and complexity. Courier Corporation, 1998.

[SÁ18] Stefan Schupp and Erika Ábrahám. The HyDRA Tool : A Playground
for the Development of Hybrid Systems Reachability Analysis Methods.
In Proceedings of the PhD Symposium at iFM18 on Formal Methods:
Algorithms, Tools and Applications (PhD-iFM18), volume 483 of Research
report. Oslo University, Sep 2018.

[SÁBMK17] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. HyPro : A C++ Library of State Set Representations for
Hybrid Systems Reachability Analysis. In NASA formal methods : 9th
international symposium, volume 10227 of Lecture Notes in Computer
Science, pages 288–294. NASA Formal Methods (NFM) Symposium,
Moffett Field, CA (USA), 16 May 2017 - 18 May 2017, Springer, May
2017.

[Sch19] Stefan Schupp. State set representations and their usage in the reachability
analysis of hybrid systems. Dissertation, RWTH Aachen University, 2019.

[SDI08a] Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić. A policy iter-
ation technique for time elapse over template polyhedra. In International
Workshop on Hybrid Systems: Computation and Control, pages 654–657.
Springer, 2008.

[SDI08b] Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić. Symbolic
model checking of hybrid systems using template polyhedra. In Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 188–202. Springer, 2008.

[TNJ16] Hoang-Dung Tran, Luan Viet Nguyen, and Taylor T Johnson. Large-
scale linear systems from order-reduction (benchmark proposal). In
3rd Applied Verification for Continuous and Hybrid Systems Workshop
(ARCH), Vienna, Austria, 2016.

74 Bibliography

[War13] Frank W Warner. Foundations of differentiable manifolds and Lie groups,
volume 94. Springer Science & Business Media, 2013.

[Zie12] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science
& Business Media, 2012.

Appendix A

Benchmark results

HyPro H-Polytope Benchmark Results:

Benchmark δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall 0.15s 0.47s 3.78s
Building TO TO TO
Navigation03 TO TO TO
Navigation04 TO TO TO
Navigation09 TO TO TO
Platoon30 TO TO TO
Platoon42 TO TO TO
SpaceRendezvous TO TO TO

HyPro Support Functions with H-Polytopes Benchmark Results:

Benchmark δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall 0.12s 0.22s 1.06s
Building −1 −1 2.69s
Navigation03 32.80s 295.41 s TO
Navigation04 −1 −1 TO
Navigation09 −1 −1 TO
Platoon42 5.75s 7.66s 21.61s
Platoon30 5.70s 6.34s 18.30s
SpaceRendezvous 1.12s 20.00s TO

HyPro Template Polyhedra Benchmark Results:

76 Appendix A. Benchmark results

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI −1 0.28s 1.37s
II −1 0.28s 1.37s
IIG −1 0.29s 1.37s
IIGB −1 0.33s 1.58s
OCT 0.15s 0.40s 2.68s

Building

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 TO TO

navigation03

OI 1.55s 11.56s 87.78s
II 1.53s 11.52s 88.79s
IIG 1.54s 11.46s 107.58 s
IIGB 1.53s 12.23s 107.13 s
OCT 11.19s 54.68s TO

navigation04

OI 1.77s 6.88s 76.22s
II 1.78s 6.86s 75.75s
IIG 2.05s 7.28s 61.40s
IIGB 1.77s 8.08s 74.22s
OCT 8.99s 52.21s TO

navigation09

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 TO

Platoon30

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 −1

Platoon42

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 −1

SpaceRendezvous

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT 13.24s 129.19 s TO

Figure A.1: Benchmark results for HyPro template polyhedra. The meaning of the
abbreviations of the template shapes can be found in section 4.1.

77

Sankaranarayanan Template Polyhedra Benchmark Results:

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI −1 0.29s 1.49s
II −1 0.29s 1.49s
IIG −1 0.28s 1.74s
IIGB −1 0.28s 1.47s
OCT 0.12s 0.56s 3.45s

Building

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT TO TO TO

navigation03

OI 5.53s 34.30s TO
II 5.95s 34.29s TO
IIG 5.86s 41.11s TO
IIGB 5.79s 34.65s TO
OCT 73.95s TO TO

navigation04

OI 4.50s 28.10s 237.55 s
II 3.78s 23.06s 240.37 s
IIG 3.77s 27.89s 238.40 s
IIGB 3.74s 23.13s 237.50 s
OCT 44.46s TO TO

navigation09

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 TO

Platoon30

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 TO

Platoon42

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 −1 TO

SpaceRendezvous

OI −1 −1 −1
II −1 −1 −1
IIG −1 −1 −1
IIGB −1 −1 −1
OCT −1 TO TO

78 Appendix A. Benchmark results

Support Function and Template Polyhedra Benchmark Results:

Benchmark Template Shape δ = 0.1 δ = 0.01 δ = 0.001

BouncingBall

OI 0.12s 0.18s 0.99s
II 0.12s 0.18s 0.94s
IIG 0.12s 0.21s 1.07s
IIGB 0.12s 0.20s 1.08s
OCT 0.12s 0.18s 0.82s

Building

OI −1 −1 2.55s
II −1 −1 2.26s
IIG −1 −1 2.35s
IIGB −1 −1 2.07s
OCT −1 −1 2.05s

Navigation03

OI 39.36TO) TO TO
II 36.29s TO TO
IIG 44.59s TO TO
IIGB 36.29s TO TO
OCT 36.27s TO TO

Navigation04

OI −1 −1 TO
II −1 −1 TO
IIG −1 −1 TO
IIGB −1 −1 TO
OCT −1 −1 TO

Navigation09

OI −1 −1 −1
II −1 −1 TO
IIG −1 −1 TO
IIGB −1 −1 TO
OCT −1 −1 TO

Platoon30

OI 4.60s 6.43s 22.62
II 4.60s 6.23s 21.97s
IIG 4.61s 6.24s 18.16s
IIGB 5.35s 6.84s 19.18s
OCT 5.17s 6.22s 21.89s

Platoon42

OI 5.50s 6.33s 20.22
II 4.59s 6.22s 18.40s
IIG 4.60s 6.23s 18.15s
IIGB 5.30s 7.33s 20.11s
OCT 4.58s 6.22s 18.13s

SpaceRendezvous

OI 0.88s 13.98s TO
II 0.90s 11.06s TO
IIG 0.85s 12.86s TO
IIGB 0.85s 12.29s TO
OCT 0.84s 12.76s TO

Further Optimization Results

79

Benchmark Template Shape δ = 0.1 δ = 0.01

navigation01

IIGB 6.24s 38.77s
IIGB + FIX 1.19s 6.49s
IIGB + FIX + NC 1.05s 5.66s
OCT 110.44 s TO
OCT + FIX 42.93s 217.02 s
OCT + FIX + NC 36.13s 194.20 s

navigation02

IIGB 9.48s 63.08s
IIGB + FIX 1.72s 16.79s
IIGB + FIX + NC 1.61s 13.34s
OCT 125.93 s TO
OCT + FIX 63.26s TO
OCT + FIX + NC 46.83s TO

navigation03

IIGB 5.79s 34.65s
IIGB + FIX 1.61s 10.95s
IIGB + FIX + NC 1.61s 10.82s
OCT 73.95s TO
OCT + FIX 47.70s 244.34 s
OCT + FIX + NC 41.89s 239.50 s

navigation04

IIGB 3.74s 23.13s
IIGB + FIX 2.10s 11.52s
IIGB + FIX + NC 1.85s 9.41s
OCT 44.46s TO
OCT + FIX 44.93s 171.30 s
OCT + FIX + NC 34.24s 162.69 s

navigation05

IIGB −1 −1
IIGB + FIX −1 −1
IIGB + FIX + NC −1 −1
OCT −1 −1
OCT + FIX −1 −1
OCT + FIX + NC −1 −1

navigation06

IIGB −1 40.20s
IIGB + FIX −1 17.56s
IIGB + FIX + NC −1 21.09s
OCT −1 TO
OCT + FIX −1 221.96 s
OCT + FIX + NC −1 225.84 s

navigation07

IIGB 17.34s 87.52s
IIGB + FIX 4.47s 26.89s
IIGB + FIX + NC 4.89s 27.01s
OCT 194.86 s TO
OCT + FIX 110.42 s TO
OCT + FIX + NC 98.90s TO

navigation08

IIGB −1 89.47s
IIGB + FIX −1 30.82s
IIGB + FIX + NC −1 30.61s
OCT −1 TO
OCT + FIX −1 TO
OCT + FIX + NC −1 TO

	Introduction
	Preliminaries
	Notation
	Hybrid Automata
	General Reachability Analysis
	Support Functions

	Template Polyhedra
	Definition and Properties
	HyPro Template Polyhedra Implementation
	Taylor Approximation-based Reachability
	Location Invariant Strengthening

	Experimental Results
	Experimental Setup
	Results for HyPro Template Polyhedra
	Results for Taylor Template Polyhedra
	Results for Support Functions with HTP
	Further Optimization Results

	Conclusion
	Bibliography
	Appendix
	Benchmark results

