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Abstract

Hybrid systems are systems with continuous and discrete behaviour that we
encounter every day, e.g. in the form of modern cars and trams. Since their
safety is of great importance, we want to verify whether a system can reach
undesirable states. For their formal veri�cation, we will use algorithms which
perform various operations on state sets, hence e�cient and accurate state set
representations are needed. In this work, we introduce Sparse Polynomial Zono-

topes as a new representation. They are able to model nonconvex sets while still
allowing e�cient computations on them, making them a suitable option for
reachability analysis. Furthermore, they allow for a tighter enclosure and thus
more precise result compared to other commonly used convex set representa-
tions. Additionally, they are quite �exible, supporting the conversion to other
simpler representations and vice versa. We demonstrate their performance by
comparing their runtime on benchmarks as well as the tightness of the enclosure
with other state set representations. Overall, this work gives an overview of this
novel representation and its practicality in reachability analysis.

Keywords� Hybrid Systems, Formal Veri�cation, Reachability Analysis,
Flowpipe Construction, State Set Representations
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Notations

The following notations will be used in this work [KA21]. We use R to annotate the
set of real numbers and N for the set of natural numbers, both sets include the element
0.. As usual, we will denote matrices by uppercase letters and vectors by lowercase
letters (e.g. A ∈ Rn×m, v ∈ Rn), while sets will be represented by calligraphic letters
(e.g. H). The cardinality of a set is denoted by | · |. Given a vector v ∈ Rn, we
refer to its i-th entry with v(i), for a matrix A ∈ Rn×m, A(i,·) refers to the i-th row,
A(·,j) to the j-th column and A(i,j) to the j-th entry of the i-th row. Given a set
of indices H = {h1, . . . ,h|H|} with 1 ≤ hi ≤ m, ∀i ∈ {1, . . . , |H|}, we use A(·,H) for[
A(·,h1) · · · A(·,h|H|)

]
. Given two matrices A and B, we denote the concatenation

with [A B], appending B to the right of A, and

[
A
B

]
, appending B below A. We will

use 0(n,m) ∈ Rn×m and 1(n,m) ∈ Rn×m to denote the matrices containing only zeros
and ones respectively. In ∈ Rn×n represents the identity matrix of dimension n and[ ]

is the empty matrix. We de�ne the left-multiplication of a matrix M ∈ Rn×m with
a set S ⊂ Rn as M ⊗S = {Ms | s ∈ S}. The Minkowski addition of two sets S1 ⊂ Rn

and S2 ⊂ Rn is de�ned as S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. Additionally, the
Cartesian product of two sets S1 ∈ Rn and S2 ∈ Rm is S1 × S2 = {

[
s1 s2

]T | s1 ∈
S1, s2 ∈ S2}. Let I denote the set of all intervals [a,b] where a,b ∈ R, a ≤ b. A
n-dimensional interval is de�ned as In = I1 × · · · × In where In ∈ I.
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Chapter 1

Introduction

[SNA17, Sect. 1] In computer science, hybrid systems are systems which combine both
continuous and discrete behaviour. Examples are physical systems where a digital
controller is interacting with a dynamic environment, e.g. a controller regulating the
temperature of a room or a controller adjusting the brightness of a lamp according
to the sunlight, as well as modern cars and public transport where controllers are
integrated to perform various tasks in order for the machine to work properly. There
are also hybrid systems without digital controllers, a well known example being a ball
dropped from a certain height and bouncing o� the ground. Since there are hybrid
systems whose malfunctioning pose a major risk, such as a nuclear power plant whose
reactor core temperature is adjusted automatically or any system that is in direct
contact with people, their veri�cation for safety is of great interest. We often model
these systems with hybrid automata. Formal veri�cation is an approach to ensure that
a system meets its speci�ed requirements. In formal veri�cation, we try to check with
reachability analysis whether a system can reach a set of undesirable states. Multiple
methods for reachability analysis of hybrid automata have been developed, but we will
focus on �owpipe-construction-based approaches in this work. Given a set of initial
states, the analysis iteratively computes an overapproximation of the successor states
for a �xed time step. The reachable states are then overapproximated by a single
set on which we perform various operations such as the Minkowski addition or the
convex hull operation. Since we want to apply this method on real cases and it thus
should be practical for actual use, the computation time of the reachability analysis
is of great importance. Furthermore, we also want our result to be as accurate as
possible. Hence, we try to reduce the error by overapproximation and achieve a more
precise solution, thereby minimizing the chance of an incorrect result. Due to this, we
are in the need of an accurate state set representation on which should also be able
to perform operations e�ciently. In this work, we will introduce Sparse Polynomial
Zonotopes [KA21] as a new nonconvex representation, SPZs for short. We begin with
the formal de�nition of SPZs as well as various basic operations on them such as
the multiplication with a matrix, while also proving their computational e�ciency
being at most polynomial with respect to the dimension of the system. We then
demonstrate how �exible SPZs are by showing that we can convert them to other
commonly used representations, e.g. zonotopes [Gir05], and vice versa with mostly
e�cient time complexity. Afterwards, we elaborate on reachability analysis, de�ning
hybrid automata as a model of hybrid systems and going into detail how we can
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compute an overapproximation of the reachable states in a system through a �owpipe-
construction based approach. Following that, we present a way to obtain an even more
accurate result in the reachability analysis with SPZs by the splitting algorithm [SV22,
p. 501] with which we can reduce the overapproximation error through conversion to
zonotopes. After that, we make a comparison with the other state set representations,
showing how SPZs behave in terms of accuracy and e�ciency. Finally, we summarize
the results of our work and evaluate the practicality of Sparse Polynomial Zonotopes.

1.1 HyPro

[SNA17, Sec. 3] As previously mentioned, there are several other state set represen-
tations for reachability analysis. To aid their time-consuming implementation, the
open-source C++ library HyPro [SÁMK17] has been developed and published at
https://github.com/hypro/hypro. It includes a collection of representations which
have already been implemented such as zonotopes and convex polytopes [Zie12]. Be-
sides being able to perform various operations on them, conversions between these rep-
resentations are also supported. Furthermore, HyPro features a �owpipe-construction
based reachability analysis algorithm. Several operations are performed on the state
sets during the analysis, hence the requirement for the representations to support
these. As a result, almost all of the state set representations share a uni�ed interface,
allowing the user to use multiple representations in a single algorithm. The main task
of this work is the extension of HyPro by Sparse Polynomial Zonotopes as presented
in the following. Some operations used in the reachability analysis are not supported
by SPZs, therefore we need to be able to convert them to another representation
where we can perform them.

1.2 Related Work

Initially, polynomial zonotopes were proposed as a representation because of their
nonconvex property, being able to tightly enclose the reachable sets for nonlinear
systems in comparison to the convex representations used in most previous works
[Alt13].

Besides for reachability analysis of nonlinear hybrid systems, polynomial zono-
topes have also recently been used for the reachability of nonlinear systems with
uncertain parameters [LKB23]. This led to a more accurate result in comparison to
zonotopes. Additionally, in recent works, polynomial zonotopes have been used in
many other �elds such as the reachability analysis of neural network controlled sys-
tems [KSAB23], safe real-time motion planning and controlling [MHZ+23] and safe
reinforcement learning via action projection [KKW+23].

Furthermore, we can also use polynomial zonotopes for reachability with Koop-
man linearized models obtained from trajectory data when the model of the dynamic
system is not given [SV22, p. 490]. Since this approach leads to a nonlinear trans-
formation through which convex initial sets can become complex nonconvex sets, we
can use polynomial zonotopes in order to obtain a tighter enclosure.

Another known set representation are polytopes in vertex representation which are
closed under important operations such as the linear map, Minkowski sum, Cartesian
product, convex hull and intersection [GKKZ03], making them a good choice for

https://github.com/hypro/hypro
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reachability analysis. Without the removal of redundant points, computing the carte-
sian product and convex hull of V-polytopes is straightforward. Nevertheless, the
amount of vertices typically grows exponentially with respect to the dimension, hence
linear map and Minkowski sum have exponential time complexity, while computing
the intersection is NP-hard [Tiw08].

Zonotopes are a popular subclass of polytopes [Zie12], allowing an exact and
e�cient computation of the linear map, Minkowski sum and cartesian product. Thus,
they are well suited for the use in reachability analysis [Zie12, Gir05].

A special case of zonotopes are multi-dimensional intervals which allow for range
bounding by interval arithmetic when dealing with nonlinear functions [JKDW01]
and can certainly be used for reachability as well [ERNF11, RN11].
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Chapter 2

Preliminaries

2.1 Sparse Polynomial Zonotopes

De�nition 2.1.1. (Sparse Polynomial Zonotope [KA21, Def. 1])

Given a generator matrix of dependent generators G ∈ Rn×h, a generator matrix
of independent generators GI ∈ Rn×q, and an exponent matrix E ∈ Np×h, an SPZ is
de�ned as

SPZ =


h∑

i=1

 p∏
k=1

α
E(k,i)

k

G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣∣ αk,βj ∈ [−1,1]

 . (2.1)

For a compact notation, we introduce the shorthand SPZ = ⟨G,GI ,E⟩SPZ . The αk

scalars are called dependent factors because a change in their value can a�ect the
multiplication with multiple generators. Due to these factors, SPZs are nonconvex
in general. The scalars βj only a�ect multiplication with a single generator. We call

them independent factors. The term α
E(1,i)

1 · · · · · αE(p,i)
p · G(·,i) is referred to as a

monomial and α
E(1,i)

1 · · · · · αE(p,i)
p as the variable part of the monomial.

Note that we can transform any independent generator into a dependent one,
without changing the set, by simply moving it to the dependent generator matrix
and adding a new dependent factor whose exponent is 1 for that generator and 0 for
all others. We keep the independent generators for computational reasons, since our
computations on them are fast, though overapproximative, while computations on the
dependent generators are more expensive but exact. As we can see by the dimensions
of the generator matrices G and GI , h is the number of dependent generators, q is
the number of independent generators and n is the space dimension of which the
generators are members of. We can tell by the exponent matrix E that the number of
dependent factors is p while q also denotes the number of independent factors. The
order ρ of an SPZ is de�ned as ρ = h+q

n . To compute the computational complexity
for operations later on, we introduce

h = chn, p = cpn, q = cqn. (2.2)

The factors ch, cp, cq ∈ R≥0 are constants to signify that the given values are in the
order of the dimension. We justify this assumption by limiting the order ρ and keeping
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it below a desired value. When we index a matrix, all of its components are denoted
with the same index, e.g. pi, hi etc. belong to SPZi. The original paper [KA21]
also presented a way to keep track of the dependencies between dependent factors
from di�erent SPZs by introducing an identi�er vector id for each SPZ. This allows
the computation of a tighter result for the addition of two SPZs. Since it doesn't
introduce any useful information and it's not necessary for our work, we exclude it.

For better comprehension, we will introduce the following example:

Example 2.1.1. Let

SPZ =

〈[
2 −1 0 −1 1
−1 1 2 1 0

]
,

[
1
1

]
,

[
0 1 0 1 2
0 0 1 1 0

]〉
SPZ

. (2.3)

SPZ has �ve dependent generators, namely[
2
−1

]
,

[
−1
1

]
,

[
0
2

]
,

[
−1
1

]
,

[
1
0

]
,

but just one independent generator: [
1
1

]
.

Each of the columns of the exponent matrix refer to one of the dependent generators.
Since there are two rows, we can conclude that there are also only two dependent
factors, α1 and α2. Thus, (2.3) de�nes the set

SPZ =

{[
2
−1

]
+

[
−1
1

]
α1 +

[
0
2

]
α2 +

[
−1
1

]
α1α2 +

[
1
0

]
α2
1

+

[
1
1

]
β1

∣∣∣∣ α1,α2,β1 ∈ [−1, 1]}.

(2.4)

An SPZ is constructed generator by generator. This process is visuallized on �gure
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Figure 2.1: The SPZ in (2.3) is constructed generator by generator.

2.1, where (a) shows the set obtained by the �rst two dependent generators, sub�gures
(b) to (d) show the resulting sets by adding the remaining dependent generators one by
one (from left to right) and (e) adding the independent generator and thus illustrating
the �nal set.

2.2 Basic Operations on SPZs

The following section presents some basic operations on Sparse Polynomial Zonotopes
such as multiplication, addition and so on. It is crucial to be able to perform those
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operations to seamlessly integrate SPZs into our HyPro library since when using them
as a state set representation, our algorithms rely on them supporting said operations.
We will also see that most operations can be done easily and more importantly e�-
ciently, which is an essential criterion for comparison with other set representations.
Thus, all operations are implemented in HyPro as presented in this section.

Some of the following set operations may result in an SPZ with monomials sharing
an identical variable part. It means that the exponent matrix would have multiple
identical columns. Since this could be represented more e�ciently by aggregating the
corresponding dependent generators, we introduce the following operation.

Proposition 2.2.1. (Compact [KA21, Prop. 2])

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ , the operation compact returns a com-
pressed representation of the set SPZ:

compact(SPZ) = ⟨G,GI , E⟩SPZ (2.5)

with
E = uniqueColumns(E) ∈ Np×k

0

Hj = {i | E(l,j) = E(l,i)∀l ∈ {1, . . . ,p}},

G =

[∑
i∈H1

G(·,i) · · ·
∑
i∈Hk

G(·,i)

]
.

The operation uniqueColumns removes identical matrix columns until all columns
are unique.

Proof. Given an SPZ SPZ = ⟨G,GI , E⟩ such that E =
[
e e

]
, meaning the exponent

matrix consists of two identical columns e ∈ Np
0, the following holds:{(

p∏
k=1

α
e(k)

k

)
G(·,1)+

(
p∏

k=1

α
e(k)

k

)
G(·,2)

∣∣∣∣∣ αk ∈ [−1, 1]

}

=

{(
p∏

k=1

α
e(k)

k

)(
G(·,1) +G(·,2)

) ∣∣∣∣∣ αk ∈ [−1, 1]

}
.

Therefore, combining the generators for monomials with same variable part, thus
summing up the dependent generators with same exponents, does not change the set.
Hence, compact(SPZ) ≡ SPZ. Since the number of unique columns k of exponent
matrix E is less than or equal to the number of overall columns h, the new matrices
E and G are smaller or as big as the initial matrices E and G, thus resulting in a
compressed representation of SPZ.

Complexity: We can implement the operation uniqueColumns e�ciently by
�rst sorting the columns of matrix E with worst-case complexity O(ph log h) ([Knu98,
Chapter 5]) since k ≤ h and each column has p entries and then comparing neighboring
columns for equality, by which we end up with a complexity of O(ph log h). Similiarly,
for the construction of matrices Hj , we will also compare the columns of the sorted
matrix for equality, and since we have to compute H1 to Hk, we get a complexity of
O(hp), and since all other operations have at most quadratic complexity, the overall
computational complexity is O(ph log h), thus O(n2 log n) using (2.2).

We de�ne the left-multiplication with a matrix as follows:
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Proposition 2.2.2. (Multiplication [KA21, Prop. 8])

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ ⊂ Rn and a matrix M ∈ Rm×n, the left-
multiplication is de�ned as

M ⊗ SPZ = ⟨MG,MGI , E⟩SPZ . (2.6)

Proof. Inserting the de�nition of SPZs in (2.1) into the de�nition of the left-multiplication
of a matrix with a set in Section directly results in (2.6).

Complexity: We only have to consider the complexity of both matrix multi-
plications. Since G ∈ Rn×h and GI ∈ Rn×q, the computational complexity is
O(mnh) +O(mnq) = O(mn2) using (2.2).

Proposition 2.2.3. (Minkowski Addition [KA21, Prop. 9])

Given two SPZs, SPZ1 = ⟨G1, GI,1, E1⟩SPZ and SPZ2 = ⟨G2, GI,2, E2⟩SPZ ,
their Minkowski sum is de�ned as

SPZ1 ⊕ SPZ2 =

〈[
G1 G2

]
,
[
GI1 GI2

]
,

[
E1 0(p1,h2)

0(p2,h1) E2

]〉
SPZ

(2.7)

Proof. Inserting the de�nition of SPZs in (2.1) into the de�nition of the Minkowski
sum in Section directly results in (2.7).

Complexity: Since we only have to concatenate matrices for the construction of
the SPZ, its computational complexity is O(1).

The Minkowski addition of two SPZs requires the construction of a bigger exponent
matrix. This is not necessary if the dependent factors of both SPZs are exactly the
same, e.g. we want to compute the Minkowski sum of an SPZ with itself (or a multiple
of itself). In this case, we can de�ne the exact addition as:

Proposition 2.2.4. (Exact Addition [KA21, Prop. 10])

Given two SPZs, SPZ1 = ⟨G1, GI,1, E1⟩SPZ and SPZ2 = ⟨G2, GI,2, E2⟩SPZ with
identical dependent factors, the exact addition is de�ned as

SPZ1 ⊞ SPZ2 = ⟨
[
G1 G2

]
,
[
GI,1 GI,2

]
,
[
E1 E2

]
⟩SPZ (2.8)

Proof. Identical to the Minkowski addition in Prop. 2.2.3.

Complexity: Identical to the Minkowski addition in Prop. 2.2.3.
Before moving on to the SPZs, let us �rst de�ne the linear combination in general.

De�nition 2.2.1. (Linear combination [KA21, Def. 7])

Given two sets S1 ⊂ Rn and S2 ⊂ Rn, the linear combination of them is de�ned
as

comb(S1,S2) = {0.5(1 + λ)s1 + 0.5(1− λ)s2 | s1 ∈ S1, s2 ∈ S2, λ ∈ [−1,1]}. (2.9)

Note that in the case that S1 and S2 are both convex sets, their linear combination will
be the same as the known convex hull, which we will denote with conv(S1,S2). The
paper [KA21] presents the linear combination of SPZs with and without independent
generators.
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Proposition 2.2.5. (Linear combination without independent Generators [KA21,
Prop. 14])

Given two SPZs, SPZ1 = ⟨G1,
[ ]

, E1⟩SPZ and SPZ2 = ⟨G2,
[ ]

, E2⟩SPZ , their
linear combination is computed as

comb(SPZ1,SPZ2) = ⟨G,
[ ]

, E⟩SPZ

with

G = 0.5
[
G1 G1 G2 −G2

]
E =

 E1 E1 0(p1,h2) 0(p1,h2)

0(p2,h1) 0(p2,h1) E2 E2

0(1,h1) 1(1,h1) 0(1,h2) 1(1,h2)


(2.10)

Proof. Since according to 2.2.1 we will add an SPZ to the multiple of itself, we can
use the exact addition as presented in 2.2.4. Thus, we can write 2.2.1 as

comb(SPZ1,SPZ2) =

{0.5(SPZ1 ⊞ λ SPZ1)⊕ 0.5(SPZ2 ⊞ (−λ) SPZ2) | λ ∈ [−1, 1]}.

Now by introducing an additional dependent factor αp1+p2+1 ∈ [−1, 1], we can sub-
stitute λ and thus with the de�nition of the minkowski and exact addition, we get
the equations in 2.10. Since λ ∈ [−1, 1] and αp1+p2+1 ∈ [−1, 1], this substitution does
not change the set.

We demonstrate the enclosure by a simple example.

Example 2.2.1. Let

SPZ1 =

〈[
2 −1 0
−1 1 2

]
,
[ ]

,

[
0 1 0
0 0 1

]〉
SPZ

SPZ2 =

〈[
1 3 5
2 1 5

]
,
[ ]

,

[
1 0 0
0 1 0

]〉
SPZ

.

Computing G and E leads us to

G =

[
1 −0.5 0 1 −0.5 0 0.5 1.5 2.5 −0.5 −1.5 −2.5
−0.5 0.5 1 −0.5 0.5 1 1 0.5 2.5 −1 −0.5 −2.5

]

E =


0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 1 1 1


With both matrices, we can now construct the linear combination of SPZ1 and SPZ2

as shown in �gure 2.2.
For computational reasons, we will return an overapproximation of the linear

combination when SPZs with independent generators are given.

Proposition 2.2.6. (Linear combination with independent Generators [KA21, Prop.
15])
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Figure 2.2: Plotting of the linear combination of SPZ1 and SPZ2.

Given two SPZs, PZ1 = ⟨G1, GI,1, E1⟩PZ and PZ2 = ⟨G2, GI,2, E2⟩PZ , we over-
approximate their linear combination by

comb(PZ1,PZ2) ⊆ ⟨G,GI , E⟩PZ

with

⟨G,
[ ]

, E⟩PZ = comb(PZ1, PZ2)

⟨0(n,1), GI⟩Z ⊇ conv(⟨0(n,1), GI,1⟩Z ,0(n,1), GI,2⟩Z)
PZ1 = ⟨G1,

[ ]
, E1⟩PZ

PZ2 = ⟨G2,
[ ]

, E2⟩PZ .

(2.11)

Since zonotopes are not closed under the convex hull operation, we use the overap-
proximation of two zonotopes Z1 and Z2 as presented in [Alt10, Eq 2.2] such that

⟨0(n,1), GI⟩Z ⊇ conv(⟨0(n,1), GI,1⟩Z ,0(n,1), GI,2⟩Z)

with

GI =


[
Ĝ1 Gi,1(·,{q2+1,...,q1})

]
, q1 ≥ q2[

Ĝ1 Gi,1(·,{q2+1,...,q1})

]
, q1 ≥ q2

Ĝ1 =
1

2

[
GI,1(·,K2) +GI,2 GI,1(·,K2) −GI,2

]
Ĝ2 =

1

2

[
GI,2(·,K1) +GI,1 −GI,2(·,K1) +GI,1

]
where K1 = {1, . . . , q1} and K2 = {1, . . . , q2}. The operation comb(PZ1,PZ2) refers
to the convex hull as presentend in Prop. 2.2.5.

Proof. First, we see that given sets S1,S2,S3,S4 ⊂ Rn, we can derive by de�nition



Basic Operations on SPZs 19

that

comb(S1 ⊕ S2,S3 ⊕ S4)
={0.5(1 + λ)(s1 + s2) + 0.5(1− λ)(s3 + s4) | s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, s4 ∈ S4, λ ∈ [−1, 1]}
={0.5(1 + λ)s1 + 0.5(1− λ)s3︸ ︷︷ ︸

comb(S1,S3)

+0.5(1 + λ)s2 + 0.5(1− λ)s4︸ ︷︷ ︸
comb(S2,S4)

|

s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, s4 ∈ S4, λ ∈ [−1, 1]}
⊆{0.5(1 + λ)s1 + 0.5(1− λ)s3 | s1 ∈ S1, s3 ∈ S3, λ ∈ [−1, 1]} ⊕
{0.5(1 + λ)s2 + 0.5(1− λ)s4 | s2 ∈ S2, s4 ∈ S4, λ ∈ [−1, 1]}

= comb(S1,S3)⊕ comb(S2,S4).

By insertion into the de�nitions, we can see that given an SPZ SPZ = ⟨G,GI , E⟩SPZ ,
we are able to split it up into

SPZ = ⟨G,
[ ]

, E⟩SPZ ⊕ ⟨0(n,1), GI⟩Z .

We will denote the resulting SPZ and zonotope with SPZ and Z. Thus with
our previous result, we can compute the linear combination of two SPZs SPZ1 =
⟨G1, GI,1, E1⟩SPZ and SPZ2 = ⟨G2, GI,2, E2⟩SPZ with

comb(SPZ1,SPZ2)

= comb(SPZ1 ⊕Z1,SPZ2 ⊕Z2)

⊆ comb(SPZ1,SPZ2)⊕ conv(Z1,Z2).

Since we overapproximate the convex hull of the zonotopes, our result in 2.2.6 is also
an overapproximation of the linear combination of two SPZs.

We see that we can easily obtain the convex hull of two sparse polynomial zono-
topes using the linear combination:

conv(SPZ1,SPZ2) = comb(comb(SPZ1,SPZ1),comb(SPZ2,SPZ2))

Since some operations may increase the number of generators and thus the order
of an SPZ, it is necessary to reduce the order for the sake of the computational com-
plexity. Therefore, we propose the following operation based on the order reduction
of zonotopes [KSA17].

Proposition 2.2.7. (Reduce [KA21, Prop. 16])

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ and a desired order ρd ≥ 1+ 1
n , the operation

reduce returns an enclosure of SPZ with a smaller or equal order to ρd:

reduce(SPZ, ρd) =
〈[

cz G(·,K̂)

]
,
[
GI(·,Ĥ) Gz

]
,
[
0(p,1) E(·,K̂)

]〉
SPZ

with ⟨cZ , Gz⟩Z = reduce(Z,1)
Z = zono(⟨G(·,K), GI(·,H), E(·,K)⟩SPZ)

We de�ne
a := max(0,min(h+ q, ⌈h+ q − n(ρd − 1) + 1⌉)).
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For the reduction, we choose the smallest generators:

K =

{
∅ , if a = 0{
i | ∥G(·,i)∥2 ≤ ∥Ĝ(·,d(a))∥2

}
, otherwise

H =

{
∅ , if a = 0{

i | ∥GI(·,i)∥2 ≤ ∥Ĝ(·,d(a))∥2
}
, otherwise

K̂ = {1, . . . ,h}\K
Ĥ = {1, . . . ,q}\H

with ∥Ĝ(·,d(1))∥2 ≤ · · · ≤ ∥Ĝ(·,d(h+q))∥2,

where Ĝ =
[
G GI

]
and d ∈ Nh+q with d > 0 is a vector of indices where every entry

represents a longer generator than the previous one.

Proof. By the de�nition of a, it holds that |K̂|+|Ĥ|+n+1 ≤ ρdn for ρd ≥ 1+ 1
n . Since

zono and reduce are both overapproximative, it follows that reduce(SPZ, ρd) ⊇
SPZ and reduce(zono(·)) is overapproximative as well.

Complexity: It is necessary to sort the dependent generators for the vector d which
has a complexity of O(n(h+q))+O((h+q) log(h+q)) and thus O(n2) using equation
2.2. In the worst case, all dependent generators are reduced by which the conversion
to a zonotope has a complexity of O(ph) + O(nh), which is again O(n2) using 2.2.
Hence, we end up with the total computation complexity of O(n2) + O(reduce)
where O(reduce) denotes the complexity of the zonotope reduction.

2.3 Conversion from other Set Representations

While operations on Sparse Polynomial Zonotopes might be slower compared to other
set representations, they do allow for a tighter and more accurate representation.
Since it could be beni�cial to sacri�ce some time needed for computations for a more
accurate result, it is important to have the ability to convert simpler set represen-
tations to SPZs. In this section, we will show the conversion of other known set
representations to SPZs.

2.3.1 Zonotope and Interval

De�nition 2.3.1. (Zonotope [Gir05, Def. 1])

Given a center c ∈ Rn and a generator matrix G ∈ Rn×l, a Zonotope Z is a set
such that

Z =

{
c+

h∑
i=1

αiG(·,i)

∣∣∣∣∣ αi ∈ [−1,1]

}
. (2.12)

For a compact notation we introduce the shorthand Z = ⟨c,G⟩Z . To act as an
intermediate step, we introduce the conversion from an interval to a zonotope.

Proposition 2.3.1. (Conversion from Interval to Zonotope [Alt10, Prop. 2.1])
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Given an interval I = [l, u] ⊂ Rn, an equivalent zonotope Z = ⟨c,G⟩Z with
G = [g1 . . . gn] is given by

c =
1

2
(l + u), g

(j)
i =

{
1
2 (ui − li), if i = j

0, otherwise
(2.13)

where g
(j)
i denotes the j-th entry of the i-th generator.

Proof. By inserting c and G into the de�nition of a zonotope 2.12, we can see that
we obtain an equivalent zonotope.

Proposition 2.3.2. (Conversion Zonotope [KA21, Prop. 3])

Given a zonotope Z = ⟨c,G⟩Z , an equivalent SPZ is given by

Z =
〈[
c G

]
,
[ ]

,
[
0(l,1) Il

]〉
SPZ

As shown earlier, we can convert any interval to a zonotope, so the conversion to an
SPZ is straight-forward.

Proof. By inserting G =
[
c GZ

]
, GI =

[ ]
and E =

[
0(n,1) Il

]
into the de�nition

of an SPZ 2.1, we can see that we obtain an equivalent SPZ.

Complexity: Since this conversion only involves concatenations of matrices, the
computational complexity is O(1).

2.3.2 Polytope

De�nition 2.3.2. (V-Representation of a Polytope [KA19, Def. 1])

Given a set V = {v1, . . . ,vr}, vi ∈ R, the vertex representation of a Polytope P is
de�ned as

P =

{
r∑

i=1

βivi

∣∣∣∣∣ βi ≥ 0,

r∑
i=1

βi = 1

}
. (2.14)

For a compact notation of the vertex representation, we introduce the shorthand
P = ⟨[v1, . . . ,vr]⟩Pv .

Theorem 2.3.3. (Conversion Polytope [KA21, Theorem 1])

Every polytope in V-representation can be equivalently represented as an SPZ.

Proof. According to De�nition 2.3.2, we can represent every bounded polytope P =
⟨[v1, . . . ,vr]⟩Pv by the convex hull of its vertices. We can also easily represent every
vertex vi as an SPZ: vi = ⟨vi,

[ ]
, 0⟩SPZ . Because SPZs without independent genera-

tors are closed under the convex hull operation, we can iteratively compute the convex
hull of all vertices by which we obtain an SPZ equivalent to the polytope P.
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2.4 Enclosure by other Set Representations

As mentioned in the previous section, other set representations might be faster to
compute on which makes it desirable to be able to convert SPZs to previously shown
representations. Furthermore, some operations are not even supported by SPZs, mak-
ing those conversions a necessity. In this section, we will show the enclosing of SPZs
by the other previously shown set representations. To demonstrate the enclosure, we
will use the SPZ 2.3 as an example.

2.4.1 Zonotope

Proposition 2.4.1 (Enclosure by Zonotope [KA21], Prop. 5).

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ , an equivalent zonotope Z = ⟨c,G⟩Z is
given by

Z =

〈∑
i∈N

G(·,i) + 0.5
∑
i∈H

G(·,i),
[
0.5G(·,H) G(·,K) GI

]〉
Z

with

N = {i | E(j,i) = 0 ∀j ∈ {1, . . . , p}}

H =

i

∣∣∣∣∣∣
p∏

j=1

(1− (E(j,i) mod 2)) = 1

 \ N
K = {1, . . . ,h}\(H ∪N )

(2.15)

with x mod y, x,y ∈ R denoting the modulo operation.

Proof. Since by de�nition the independent generators of an SPZ are equivalent to
the generators of a zonotope, they can simply be taken into account by adding them
to the generator matrix of the zonotope. All dependent generators with dependent
factors where the exponents are all 0, thus forming the set N , represent a constant
o�set. They remain the same no matter the values of the factors. Thus, adding all
of them up into a single dependent generator doesn't change the set. Therefore, we
can represent this single generator exactly by using it as the center of the zonotope.
All other dependent generators have to be overapproximated. The set H is formed
by the indices of all dependent generators whose factors have only even exponents.
Thus, raising their factors to their powers will lead to a nonnegative value, so we can
enclose them tighter using

∀i ∈ H :

(
p∏

k=1

[−1,1]E(k,i)

)
G(·,i) = [0,1] ·G(·,i) = 0.5G(·,i) + [−1,1]0.5 G(·,i).

The remaining generators in K have to be overapproximated by the interval [-1,1].
By inserting (2.15) into the de�nition of a zonotope, we can see that we have exactly
represented or overapproximated the variable parts of all monomials, thus we obtain
an overapproximation of the initial set and therefore an enclosure of our SPZ.

Complexity: The complexity of constructing the set H is O(ph). The worst-case
for computing the zonotope is to have all exponents even, leading to the summation
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of all h dependent generators with n entries. Hence, we end up with the overall
complexity of O(ph) +O(nh), thus O(n2) using 2.2.

Example 2.4.1. As a reminder, our running example is 2.3.

We �rst compute our sets N ,H and K. Since only the �rst column of the exponent
matrix E has only zeros as entries, its index is the only element in N . Likewise, only
the �fth column of E has only even entries with at least one entry nonzero, thus the
�fth index is also the only element in H. All other indices of dependent factors are
therefore in K. Thus, we obtain

N = {1}
H = {5}
K = {2, 3, 4}.

(2.16)

Inserting all generators according to (2.15) results in the zonotope (visualized in �gure
2.3)

Z =

〈[
2
−1

]
+ 0.5

[
1
0

]
,

[
0.5

[
1
0

] [
−1 0 −1
1 2 1

] [
1
1

]]〉
Z

=

〈[
2.5
−1

]
,

[
0.5 −1 0 −1 1
0 1 2 1 1

]〉
Z

(2.17)

−3 −2 −1 0 1 2 3 4 5 6 7 8

−6

−4

−2

0

2

4

Figure 2.3: Enclosure of the SPZ in (2.3) by a zonotope

2.4.2 V-Polytope

Since it is necessary for the algorithm we use to convert SPZs to V-polytopes, we will
introduce another representation of a polytope:

De�nition 2.4.1. (Z-Representation of a Polytope [KA19, Def. 4])

Given a center c ∈ Rn and a generator matrix G ∈ Rn×h, the Z-representation of
a polytope P is de�ned as

P =

{
c+

h∑
i=1

(
mi∏
k=1

αε(i,k)

)
G(·,i)

∣∣∣∣∣ αε(i,k)
∈ [−1,1]

}
(2.18)
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with I = (e1, . . . ,eh),∀i ∈ {1, . . . ,h} : ei ∈ Nmi , ei ≤ p, and ∀i ∈ {1, . . . ,h}, ∀j,k :
j ̸= k ⇒ ei(j) ̸= ei(k). The tuple I is storing vectors of the indices of the factors, mi

is denoting the length of ei, p is referring to the total number of factors αI(i,k)
and

h denotes the number of generators. Because of the constraint ∀i ∈ {1, . . . ,h}∀j,k :
j ̸= k ⇒ ei(j) ̸= ei(k), no factor will appear more than once in the product, thus the
product will only consist of factors with exponent 0 or 1. Note that every bounded
polytope can be represented by the Z-representation (see [[KA19, Theorem 1]), but
not every Z-representation is a polytope (see [KA19, Def. 4]). For a compact notation,
we will introduce the shorthand P = ⟨c,G,I⟩Pz

.

Proposition 2.4.2. (Conversion of a polytope from Z-representation to V-representation
[KA19, Alg. 2])

We introduce the algorithm:

Algorithm 1 Conversion from Z-representation to V-representation

Require: Bounded polytope in Z-representation P = ⟨c,G,I⟩Z
Ensure: V-representation P = ⟨[v1, . . . ,vr]⟩P of the polytope
1: I ← [−1(p),1(p)]
2: {α̂(1), . . . , α̂(2p)} ← vertices(I)
3: K ← ∅
4: for j ← 1 to 2p do

5: v ← c+
∑h

i=1(
∏mi

k=1 α̂
(j)
I(i,k)

)G(·,i)
6: if v ̸∈ K then

7: K ← K ∪ v
8: end if

9: end for

10: [v1, . . . ,vr]← convexHull(K)
11: P ← ⟨[v1, . . . ,vr]⟩P

The operation vertices returns the 2p vertices of the p-dimensional hypercube
I = [−1(p,1),1(p,1)] ⊂ Rp, e.g. for p = 2,

vertices(I) =
{[
−1
−1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
1
1

]}
.

For the proof of algorithm 1, we have to show the following proposition:

Proposition 2.4.3. [KA19, Prop. 5]

Given a polytope P = ⟨c,G,I⟩Z in Z-representation, the polytope vertices are a
subset of

K =

{
c+

h∑
i=1

(
mi∏
k=1

α̂I(i,k)

)
G(·,i)

∣∣∣∣∣ α̂ = [α̂1, . . . ,α̂p]
T ∈ vertices(I)

}
.

Proof. We have to show that for every vertex v(j) of the polytope, there is a corre-
sponding vertex α̂(j) such that

v(j) = c+

h∑
i=1

(
mi∏
k=1

α̂
(j)
I(i,k)

)
G(·,i).
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In [AP01, Chapter 7.2] it is shown that for each vertex v(j) of a polytope P there
exists a vector dj ∈ Rn such that

v(j) = argmax
s∈P

dTJ s.

Combining both equations, we receive

v(j) = c+

h∑
i=1

(
mi∏
k=1

α∗
I(i,k)

)
G(·,i)

with [α∗
1, . . . ,α

∗
p]

T = argmax
[α1,...,αp]T∈I

dTj

(
c+

h∑
i=1

(
mi∏
k=1

αI(i,k)

)
G(·,i)

)
︸ ︷︷ ︸

f(α1,...,αp)

.

Thus, we must proof that the point α∗ = [α∗
1, . . . ,α

∗
p]

T where the maximum of the
function f(·) is reached within the domain [α1, . . . ,αp]

T ∈ I is one of the vertices of
the hypercube I. The function f(·) does not contain a polynomial exponent which is
greater than 1, hence it holds that its partial derivate with respect to the variable αi

does not depend on αi:

∀i ∈ {1, . . . ,p} : δf(α1, . . . ,αp)

δαi
= gi(α1, . . . ,αi−1,αi+1, . . . ,αp),

for some function gi. Therefore, f(·) reaches its extremum on the domain αi ∈ [−1, 1]
at either α∗

i = −1 or α∗
i = 1, and since this holds for all αi, the function f(·) reaches

its maximum within the domain [α1, . . . ,αp]
T ∈ I at the point α∗ = [α∗

1, . . . , α
∗
p]

T

with α∗
j ∈ {−1, 1}, j = 1, . . . ,p , which we can see is a vertex of the hypercube I.

Algorithm 1 is based on proposition 2.4.3. Inside of the for-loop from line 4 to
9, the potential polytope vertices are computed according to said proposition. If the
candidate is not already inside of the set K, it will be added in line 7. After all
iterations of the loop. the convex hull of all computed vertices is computed which
results in the desired V-representation of the given polytope.

Proposition 2.4.4. (Enclosure by Polytope [KA21, Prop. 6])

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ , an equivalent polytope P = ⟨[v1, . . . ,vr]⟩Pv

is given by applying algorithm 1 to the following SPZ:

SPZ = ⟨
[
cz G(·,K)

]
,
[
GI Gz

]
,
[
0(n,1)E(·,K)

]
⟩SPZ

with

H = {i | ∃j ∈ {1, . . . ,p} : E(j,i) > 1}
K = {1, . . . ,h}\ H

⟨cz, Gz⟩Z = zono(⟨G(·,H),
[ ]

, E(·,H)⟩SPZ)

(2.19)

Proof. Algorithm 1 returns a polytope in vertex representation given a polytope in
Z-representation. Since a Z-representation does not contain any exponents greater
than 1, we need to adjust our SPZ in order to be able to apply the algorithm on
it. Hence, we split SPZ into two parts. First one having only zeros or ones in the
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exponent matrix which we construct with K which contains all indices of generators
with entries less than or equal to one in the corresponding column of the exponent
matrix, resulting in ⟨G(·,K), GI , E(·,K)⟩SPZ . In order to remove exponents greater
than one for the remaining part, it is enclosed by a zonotope. Since this leads to
an overapproximation, combination of these two parts leads to the SPZ SPZ which
satis�es

SPZ ⊆ SPZ ⊆ ⟨[v1, . . . , vr]⟩Pv

Complexity: Computing the sets H and K has complexity O(ph), and computing
the enclosure by a zonotope has a complexity of O(n2) according to proposition 2.4.1.
Since the complexity of algorithm 1 according to [KA19] is O((2p)⌊n/2⌋+1+4p(p+n)).
Thus, using 2.2, the overall complexity is O(2n2

). zono denotes the conversion of an
SPZ to a zonotope.

For better understanding of the algorithm, we will demonstrate the enclosure by
a V-polytope on our example 2.3.

Example 2.4.2. We �rst need to compute our sets H and K. Since only the �fth
dependent generator has factors with an exponent greater than 1, its index is the only
element in H. Likewise, all other indices make up the set K. Thus, we get

H = {5}
K = {1,2,3,4}

With H, we can now compute the zonotope using Proposition 2.4.1, by which we end
up with the zonotope

Z =

〈[
0.5
0

]
,

[
0.5
0

]〉
Z
.

Now we can also construct our SPZ:

SPZ =

〈[
0.5 0.5 −1 0 −1
0 0 1 2 1

]
,

[
1 0.5
1 0

]
,

[
0 0 1 0 1
0 0 0 1 1

]〉
SPZ

=

{[
1
0

]
+

[
−1
1

]
α1 +

[
0
2

]
α2 +

[
−1
1

]
α1α2 +

[
1
1

]
β1 +

[
0.5
0

]
β2

∣∣∣∣ α1,α2,β1,β2 ∈ [−1, 1]
}

By using

[
1
0

]
as our center and renaming β1,β2 to α3,α4, we obtain our Z-representation

with

P =

〈[
1
0

]
,

[
−1 0 −1 1 0.5
1 2 1 1 0

]
, (
[
1
]
,
[
2
]
,

[
1
2

]
,
[
3
]
,
[
4
]
)

〉
.

Now we make use of algorithm 1. Since we have exactly 4 di�erent factors, thus p = 4,
we have to iterate through all of the 24 = 16 possible assignments and compute the
vectors. After all iterations, we end up with the set

Kalg =

{[
1
−4

]
,

[
2
−4

]
,

[
3
−2

]
,

[
4
−2

]
,

[
5
0

]
,

[
6
0

]
,

[
−1
2

]
,

[
0
2

]
,

[
1
4

]
,

[
2
4

]}
.

Finally, computing the convex hull of Kalg leads to the V-representation of our en-
closing polytope

P =

〈[
1
−4

]
,

[
2
−4

]
,

[
4
−2

]
,

[
6
0

]
,

[
−1
2

]
,

[
1
4

]
,

[
2
4

]〉
Pv

. The �gure 2.4 illustrates the enclosure.
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Figure 2.4: Enclosure of the SPZ in 2.3 by a polytope

2.4.3 Interval

We will treat the enclosure by an interval as a special case of a support function.

De�nition 2.4.2. (Support Function [GG08], Def. 1)

Given a compact convex set S ⊂ Rn and a direction d ∈ Rn, the support function
sS : Rn → R of S is de�ned as

sS(d) = max
x∈S

dTx. (2.20)

Since SPZs are nonconvex in general, their support functions return an overapproxi-
mation. In order to compute them, we introduce the range bounding operation. For
a function Rn → R and an interval I ⊂ Rn, the range bounding operation returns an
overapproximation of the exact bounds of f on I:

B(f(x), I) ⊇
[
min
x∈I

f(x),max
x∈I

f(x)

]
. (2.21)

Note that there are multiple methods of approximating the bounds. The tightness of
the support function solely depends on the chosen method.

Proposition 2.4.5. (Support Function for SPZs [KA21], Prop. 7)

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ and a direction d ∈ Rn, the support function

sSPZ(d) = u+

q∑
j=1

|gI(j)|

with

⟨g,gI ,E⟩PZ = dT ⊗ SPZ

[l, u] = B
(
w(α1, . . . , αp), [−1(n,1),1(n,1)]

)
w(α1, . . . , αp) =

h∑
i=1

(
p∏

k=1

α
E(k,i)

k

)
g(i)

(2.22)

returns an overapproximation. Now the enclosure by an interval is a special case where
we evaluate the support function for directions D = {In(·,1), . . . ,In(·,n),−In(·,1), . . . ,−
In(·,n)}.
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Proof. First, the SPZ is projected onto the direction d. Then, we divide the projec-
tion into two parts, one with dependent generators and one part with independent
generators:

dT ⊗ SPZ =

{
h∑

i=1

(
p∏

k=1

α
E(k,i)

k

)
g(i)

∣∣∣∣∣αk ∈ [−1, 1]

}
︸ ︷︷ ︸

dependent part

⊕


q∑

j=1

βjgI(j)

∣∣∣∣∣∣βj ∈ [−1,1]

︸ ︷︷ ︸
independent part

.

(2.23)
The bounds of the independent part can be calculated exactly with

q∑
j=1

βjgI(j)

∣∣∣∣∣∣βj ∈ [−1, 1]

 ≡
− q∑

j=1

|gI(j)|,
q∑

j=1

|gI(j)|

 . (2.24)

On the other hand, the interval [l, u] overapproximates the bounds of the dependent
part since the range bounding operation B returns an overapproxmation. Thus sSPZ
is an overapproximation of SPZ.

Complexity: Projecting the SPZ onto the direction d has a complexity of O(nh)+
O(nq) according to proposition 2.2.2. Thus, since all other operations have linear
complexity and with 2.2, the overall complexity is O(n2) +O(B).

Example 2.4.3. Again, we're using example 2.3. Since the dimension is 2, we have
to compute the bounds of our enclosing interval by the directions

D = {
[
1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]
}.

We will only go through the �rst direction since computation of the others is identical.
For our range bounding operation, we use interval arithmetic. First, we project our
SPZ onto the direction:

g = {2,−1, 0,−1, 1}
gI = {1}

Now we will compute the upper bound u using interval arithmetic:

[l, u] = 2− [−1, 1]− [−1, 1][−1, 1] + [−1, 1]2

= [1, 3]− [−1, 1] + [−1, 1]
= [0, 4] + [−1, 1]
= [−1, 5]

Thus, u = 5. Since gI = {1}, we obtain the result

sSPZ(

[
1
0

]
) = 5 + 1 = 6.

Likewise, the results of the other directions are

sSPZ(

[
0
1

]
) = 3, sSPZ(

[
−1
0

]
) = −2, sSPZ(

[
0
−1

]
) = −5.

Figure 2.5 illustrates the enclosing interval.
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Figure 2.5: Enclosure of the SPZ in 2.3 by an interval
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Chapter 3

Reachability Analysis

3.1 Hybrid Systems

[Sch19a, Sec. 3.1] Discrete systems are systems with a countable amount of discrete
states. We often consider those systems whose state changes we can assume as in-
stantaneous, e.g. a computer processing its instructions, which can often be modeled
as a series of discrete steps. Although we can already represent a substantial amount
of real-world situations with these, we need an even more expressive solution when we
want to analyze the in�uence of such systems on dynamic environments. In contrast
to these, the quantities of continuous systems, e.g. physical systems in general, evolve
continuously over time. In computer science, hybrid systems are systems which show
both discrete and continuous behavior, combining the continuous nature of a dynamic
system with the discreteness of digital systems. Besides naturally hybrid physical sys-
tems, e.g. a ball bouncing o� the ground, systems where a digital controller interacts
with a dynamic environment are also examples for hybrid systems. Since the safety
of such systems is often of interest, we want to verify whether they can reach undesir-
able states. Therefore, we try to model our system in order to analyze its reachability.
More speci�cally, given a initial set, we want to �nd out which states are reachable
and whether they violate any constraints. Thus, the reachability problem of a hybrid
system H is whether starting from an initial set of states Init it is possible to reach
another set of bad states Pbad.

3.2 Hybrid Automata

Hybrid automata [Hen00] are a popular choice when wanting to abstract from a
system with mixed discrete-continuous behavior. They allow us to represent the
discrete behavior of a digital controller by states as well as specifying the continuous
change of the quantities. Let's consider a bouncing ball example [Sch19a, Sec. 4.2].
The hybrid system corresponding to this example can be seen on �gure 3.1. We go
through every single component one by one. Note that c is a parameter which needs
to be set beforehand.

Hybrid automatons consist of locations or control nodes which represent the dis-
crete part of the system (in this case, we can see that the system consists of only a
single location (l)). On the very left, we can see a loose arrow pointing to the node,
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l
ẋ = v

v̇ = −9.81
x ≥ 0

x ∈ [10, 10.2]
v = 0 x = 0 ∧ v < 0

v′ = −c · v

Figure 3.1: Bouncing ball system as a hybrid automaton

indicating it is the starting state. Above the arrow, we see the predicates x ∈ [10, 10.2]
and v = 0, which describe the initial starting set and we can also see that we got the
variables x and v. Inside of the node we see l, which simply denotes the location's
name, and ẋ = v, v̇ = −9.81, which describe the so called �ow or dynamics of the
system with di�erential equations, and x ≥ 0, which represents an invariant for the
loation. While in this location l, our variables change according to the speci�ed �ows,
but at the same time the variable valuations must satisfy the invariants of the node.
If the invariant cannot be satis�ed by the current valuations of the state variables,
we have to leave the location. On the right we can see a loop of the node with the
predicates x = 0 ∧ v < 0. In general, an edge between two nodes describe a possible
jump from one location to another under the condition that the speci�ed guards, in
this case the previously mentioned predicates, are satis�ed by the current variable
valuation. If such a jump is taken, the variables can be updated by the resets, in this
case v′ = −c · v, where v′ denotes the value after the change.

The automaton represents a bouncing ball dropped from a height between 10 and
10.2 distance units with a starting velocity of 0 distance units per second. Now inside
of the node, we can see by v̇ that the �rst derivative of v is −9.81, which represents
the acceleration due to gravity on earth. Likewise ẋ, thus the �rst derivative of x,
denoting the vertical height of the ball, is v, thus the velocity at which the ball falls.
As long as the ball doesn't hit the ground, therefore x > 0, we stay inside of the node.
When x = 0, we can and have to take the jump since not only are the guards satis�ed,
but also to not violate the invariant x ≥ 0. Afterwards, the velocity will be reset with
a factor of −c, illustrating the upward movement of the ball with a dampening factor
of c. Formally, a hybrid automaton is de�ned as the following:

De�nition 3.2.1. (Hybrid Automata, [Jia23, Def. 2.1.1])

A d-dimensional hybrid automaton H is described by a tuple
(Loc, V ar, Con, Lab,Edge,Act, Inv, Init) where

� Loc is a �nite set of locations or control nodes,

� V ar = {x0, . . . , xd−1} is a �nite ordered set of real-valued variables where d− 1
denotes the dimensionality of the system,

� Con : Loc→ 2V ar assigns a set of controlled variables to each location,

� Lab is a �nite set of labels including the stutter label τ ∈ Lab,

� Edge ⊆ Loc×Lab×2V
2×Loc is a �nite set of edges (or transitions) including a

τ -transition (l, τ, Id, l) for each location l ∈ Loc with Id = {(v, v′) ∈ V 2
V ar | ∀x ∈

Con(l) : v′(x) = v(x)}, and where all edges with label τ are τ -transitions,



Hybrid Automata 33

� Act is a function assigning a set of activities or �ows f : R≥0 → V to each
location which are time-invariant meaning that f ∈ Act(l) implies (f + t) ∈
Act(l) where (f + t)(t′) = f(t+ t′) for all t′ ∈ R≥0,

� Inv is a function assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc,

� Init ⊆
∑

is a set of inital states,

with V denoting the set of all valuations v : V ar → R, and
∑

= Loc × V denoting
the state space of H.

De�nition 3.2.2. (Operational semantics of hybrid automata [Jia23, Def 2.1.2])

The operational semantics of a hybrid automaton H =
(Loc, V ar, Con, Lab,Edge,Act, Inv, Init) is given by two rules: one for discrete in-
stantaneous steps and one for continuous time steps.

� Discrete step semantics

(l, a, (v, v′), l′) ∈ Edge v′ ⊆ Inv(l′)

(l, v)→a (l′, v′) Rulediscrete

� Time step semantics

f ∈ Act(l) f(0) = v f(t) = v′ t ≥ 0 f([0,t] ⊆ Inv(l))

(l, v)→t (l, v′) Ruletime

An execution step→ =→a ∪ →t of H is either a discrete or a time step, and we give
its transitive closure by →∗. Let (l, a, µ, l′) ∈ Edge be a transition of an automaton,
then the transition relation µ ∈ V ×V de�nes that a discrete step can be taken if and
only if (v, v′) ∈ µ. The corresponding guard {v ∈ V | ∃v′ ∈ V : (v, v′) ∈ µ}, which
is often modeled by �rst-order logic formulas, enables a transition if it evaluates to
true.

Example 3.2.1. Using the example from above, we can now formally de�ne the
system described in �gure 3.1.

� Loc = {l}

� V ar = {x, v}

� Con(l) = {x, v}

� Lab = {τ}

� Edge = {(l, τ, {(vval, v′val) ∈ V 2 | vval(x) = 0 ∧ vval(v) < 0}, l)}

� Act(l) = {f : R≥0 → V | ∀t ∈ R≥0 : f(t)(v) = −9.81t, f(t)(x) = − 9.81
2 t2 + C}

with C ∈ [10, 10.2]

� Inv(l) = {vval ∈ V | vval(x) ≥ 0}

� Init = {(l,v) ∈ Σ | v(x) ∈ [10, 10.2]}

De�nition 3.2.3. (Path [Sch19a, Def. 3.3])
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A path π of a hybrid automaton H is a �nite or in�nite sequence

σ0 →τ0 σ1 →e1 σ2 →τ2 . . .

of states σi ∈ Σ for i ≥ 0, starting in a state σ0 = (l0, v0) with v0 ∈ Inv(l0), which
are connected through alternating time and discrete steps with τi ∈ R≥0, ei ∈ Edge.
If a path starts in an initial state of H and thus (l0, v0) ∈ Init, we will call the path
initial. A state σ is reachable in H if there is an initial path in H leading to it.

3.2.1 Classes of Hybrid Automata

Having de�ned hybrid automata, we can now take a look at several interesting sub-
classes [Sch19a, Sec. 3.2]. These subclasses restrict the predicates used to specify
�ows, invariants, guards and resets for the automata. We will shortly present some
of them, going from least to most expressive:

� Timed automata are a simple subclass of hybrid automata where all variables
x ∈ V ar are clocks measuring time. Thus, they all evolve continuously at a
constant rate, hence the �ow is restricted to the derivative ẋ = 1. Predicates
can only compare variables with constants c ∈ N and discrete jumps either don't
change the value of a variable or reset it to 0.

� Rectangular automata are a more expressive subclass, extending timed au-
tomata. They allow derivatives in the form of ẋ ∈ [a, b] for �ows and resets in
the form of x ∈ [a, b], a,b ∈ N for variables x ∈ V ar, therefore only allowing
rectangular sets.

� Linear hybrid automata I will still restrict �ows to rectangular sets, but they
allow predicates for invariants and guards in the form of linear expressions over
the variables, thus in the form of Ax ∼ b with ∼ ∈ {<,≤,=,≥, >}, while also
letting resets use a�ne transformation Ax+ b, with A ∈ Rd×d, b ∈ Rd.

� Linear hybrid automata II extend LHA I by also allowing linear expressions
over the variables for the �ows with which dynamics of systems with linear ODEs
can be speci�ed. We will put our focus on this subclass of hybrid automata in
this work.

3.3 Reachability Analysis for Hybrid Systems

As mentioned before, the safety of hybrid systems is of big interest. [Sch19a, Sec. 3.3]
We therefore try to compute the set of reachable states in our system and check for
a set of undesirable states Pbad. In reachability analysis, given a hybrid automaton
H, we want to verify whether starting from any of its initial states, the set of bad
states Pbad is reachable. Hence, we want to compute whether ReachH ∩ Pbad = ∅
with ReachH denoting the set of reachable states in H. While there are several other
methods of solving this problem, we will focus on forward reachability analysis, an
iterative method where starting from an initial set of states, we iteratively compute
the successor states until we either reach the set of bad states or �xed-point has been
found. The �gure 3.3 shows the scheme for a forward reachability analysis algorithm.

To avoid non-termination, we usually restrict the reachability analysis by setting
bounds for the time duration and limiting the number of jumps. Here, we will set a
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Algorithm 2 Forward reachability analysis algorithm [Sch19a, Alg. 1]

Input: Set of initial states I
Output: Set of reachable states R
R← I
Rnew ← R
while Rnew ̸= ∅ do

Rnew ← computeReach(Rnew)\R
R← R ∪Rnew

end while

return R

time horizon T as an upper limit on uninterrupted time evolution without any jumps.
In this work, we will take a closer look at �owpipe-construction-based methods, a spe-
ci�c kind of forward reachability analysis. In �owpipe construction, successor states
are computed by dividing the time horizon into smaller time steps δ. We will also re-
strict the number of discrete transitions with a jump depth J . For each step, starting
from a set of initial states, the set of trajectories, or the �owpipe, is overapproxi-
mated by a single state set, for which we usually use state set representations such as
intervals, zonotopes or polytopes.

3.4 Flowpipe Construction

In this section, we expand upon the �owpipe-construction-based reachability anal-
ysis [Jia23, Sec 2.1.2], [Sch19a, Sec. 3.4]. Given a Linear Hybrid Automata II H,
each location speci�es the dynamics of the system by a system of linear di�erential
equations

ẋ(t) = Ax(t) (3.1)

with x = (x0, . . . ,xd−1) ∈ V ar where A ∈ Rd×d is a coe�cient matrix denoting the
�ow at time t. In a non-autonomous system, we extend the dynamics by a time-
dependent function u(t), which is usually assumed to be from a bounded domain U .
This function u(t) describes the external inputs in�uencing the system, by which we
obtain dynamics in the form of

ẋ(t) = Ax(t) +Bu(t) (3.2)

with B ∈ Rd×d. The solutions of equation 3.1 are of the form

x(t) = etAx(0), (3.3)

which means that the state x(t) is reachable at time point t from the initial state x(0)
when following the �ow from A. We can see that etA depends on the time t and the
current location l for which the time successors need to be computed. Note that the
solution 3.3 can be directly extended to sets of variable valuations N such that

Nt = etAN0. (3.4)

Although it is possible to compute the set of reachable states for a precies time point
t with equation 3.4, we cannot compute the set of reachable states for a time interval.
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To solve this issue, several methods have been developed to overapproximate the
error α between an approximation Ω of the set of reachable states for the time interval
[0, δ] and the actual set of reachable states

R[0,δ] = {(l, v) | v = etAx0, t ∈ [0, δ], x0 ∈ N0}.

In [Gir05], an approach was presented by overapproximating the error α through
the approximation of the Hausdor�-distance between Ω′ = convHull(N0 ∩Nδ) and
R[0,δ].

De�nition 3.4.1. (Hausdor� Distance [Sch19a, Def. 3.6])

The Hausdor� distance between two sets A,B ⊆ Rd is de�ned as

dA,B = max

{
sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)

}
for some distance metric d(·).

Given an initial state x ∈ N0 and the state r = eδAx reached from x at time point
δ, their connecting line segment is{

sx(t) = x+
t

δ
(r − x) | t ∈ [0, δ]

}
.

By computing the union of all line segments for all initial states x ∈ N0, we obtain
the convex hull of the sets N0 and Nδ. It holds that the error between a line segment
and the actual trajectory ζx(t) = etAx is

∥ζx(t)− sx(t)∥ =
∥∥∥∥etAx− x− t

δ
(eδA − I)x

∥∥∥∥ .
As shown in [Gir05], this error can be approximated by using Taylor's theorem,

cutting o� the Taylor-expansion after degree two and overapproxmating the remain-
der, hence ∥∥∥∥etAx− x− t

δ
(eδA − I)x

∥∥∥∥ ≤ (eδ∥A∥ − 1− δ∥A∥) ∥x∥︸ ︷︷ ︸
α

.

Since α is an upper bound for the error, we can safely overapproximate R[0,δ] by
bloating the convex hull of the two sets N0 and Nδ with a ball Bα of radius α:

Ω0 = convHull(N0, Nδ)⊕ Bα
with ⊕ denoting the Minkowski sum, by which we obtain a uniform bloating of

the set. Having obtained the �rst �owpipe segment, it is now possible to compute the
following segments using the same step size δ. For autonomous linear hybrid systems,
we can obtain such a sequence of segments using

Ωi+1 = eδAΩI

for a location l with �ow matrix A, where each segment is a safe overapproximation
of the time interval [iδ, (i+1)δ]. For non-autonomous systems, a second bloating step
for each segment Ωi is required, see [LG09].
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By this, we are now able to compute the �owpipe segments Ωi, i = 0, . . . ,k − 1
for a �ow matrix A and a time horizon T using the �xed time step size δ = T

k and
starting from a de�ned set of initial states (l, N0)..

Since a locations invariant has to be satis�ed at all times and Ωi = (l, Ni) overap-
proximates the actual set of reachable states in the corresponding time interval, we
can stop computing further segments if Ni ∩ Inv(l) = ∅.

Likewise, for each outgoing transition e = (l,g,r,l′) ∈ Edge of the current location
l and for each �owpipe segment Ωi = (l, Ni), it must hold that N ′

i = Ni ∩ g ̸= ∅,
thus the jump can be taken if it can be taken by any state in the segment. For all
non-empty segments Ωi = (l, N ′

i) with N ′
i ̸= ∅, the reset function r is applied to

discretely update the variable valuations, by which we obtain

Ω′′
i = (l, N ′′

i ) = (l, r(N ′
i)).

We usually use an a�ne transformation for linear hybrid systems, thus N ′′
i =

A ·N ′
i + b for a matrix A and translation vector b.

Similiarly to before, we will also check whether N ′′
i satis�es the invariant from the

target location l′ by verifying N ′′′
i = N ′′

i ∩Inv(l′) ̸= ∅. We then go on with computing
the �owpipe segments in l′ for all non-empty Ω′′′

i = (l′, N ′′′).
The algorithm 3.4 demonstrates how to compute a �owpipe construction for reach-

ability analysis.

Algorithm 3 Bounded �owpipe-construction-based reachability analysis [Sch19a,
Alg. 2]

Input: Hybrid automaton

H = (Loc,V ar,Lab,F low,Inv,Edge,Init)

Output: An over-approximation of the reachable states in H
Q← Init
R← ∅
while Q ̸= ∅ do

Ω← computeFirstSegment(getElement(Q))
while not timeBoundReached() do

Ω← Ω ∩ Inv(l)
R← R ∪ Ω
if not jumpBoundReached() then

for (l,g,r,l′) ∈ Edge do
addElement(Q,r(Ω ∩ g) ∩ Inv(l′))

end for

Ω← letTimePass(Ω)
end if

end while

end while

return R

We realize that for the computation of the reachable states in the hybrid system, we
perform many operations on sets of states. Hence, we need an e�cient representation
for these while still not being too overapproximative, making SPZs a possible solution.
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3.5 Splitting Algorithm

During �owpipe construction, we often check whether our current state sets intersec-
tion with a halfspace is empty or not (for example the intersection with a guard or the
invariant of a given location). Since the operation for intersection checking between
an SPZ and a halfspace is not supported, we have to convert them to a di�erent set
representation in which this operation is supported. In our case, it is the zonotope
state set representation. Because the conversion leads to an overapproximation of the
SPZ, the result may also be incorrect in some cases. Thus, for a more precise outcome,
we need to have a tighter overapproximation. One way of doing this is to split the
SPZ into two smaller SPZs such that their union is equivalent to the inital one, and
then convert each of those to a zonotope. This was also implemented in HyPro and it
can be turned on and o� with a �ag. An example for such a splitting can be seen in
�gure 3.5, where the sub�gure 3.2a shows an SPZ where the intersection check with
the given half space would return a false value, while 3.2b shows the same SPZ using
the splitting algorithm, correctly not intersecting with the half space.

Proposition 3.5.1. (Split [SV22], p. 501, Prop. 1)

Given an SPZ SPZ = ⟨G,GI , E⟩SPZ and an index r ∈ {1, . . . , p} of one of the
dependent factors, two SPZs SPZ1,SPZ2 satisfying SPZ1∪SPZ2 = SPZ are given
by

SPZ1 =
〈
[Ĝ

(1)
1 . . . Ĝ

(1)
h ], GI , [Ê1 . . . Êh]

〉
SPZ

SPZ2 =
〈
[Ĝ

(2)
1 . . . Ĝ

(2)
h ], GI , [Ê1 . . . Êh]

〉
SPZ

with

Êi =

E({1,...,r−1},i) E({1,...,r−1},i) . . . E({1,...,r−1},i) E({1,...,r−1},i)
0 1 . . . E(r,i) − 1 E(r,i)

E({r+1,...,p},i) E({r+1,...,p},i) . . . E({r+1,...,p},i) E({r+1,...,p},i)


Ĝ

(k)
i =

[
b
(k)
i,0 ·G(·,i) . . . b

(k)
i,E(r,i)

·G(·,i)

]
b
(1)
i,j = 0.5E(r,i)

(
E(r,i)

j

)
b
(2)
i,j = −0.5E(r,i)(2(E(r,i) mod 2)− 1)

(
E(r,i)

j

)

Proof. The splitting is essentially done by substituting the dependent factor αr with
two new dependent factors αr,1 and αr,2.

{αr | αr ∈ [−1, 1]}
= {0.5(1 + αr,1)− 0.5(1 + αr,2) | αr,1, αr,2 ∈ [−1, 1]}
= {0.5(1 + αr,1) | αr,1 ∈ [−1, 1]} ∪ {−0.5(1 + αr,2) | αr,2 ∈ [−1, 1]}
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Now inserting this into the de�nition of SPZs leads to

SPZ =


h∑

i=1

 p∏
k=1

α
E(k,i)

k

G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣∣ αk,βj ∈ [−1,1]


=


h∑

i=1

 p∏
k=1,k ̸=r

α
E(k,i)

k

(
1 + αr,1

2
)E(r,i)G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣∣ αk,βj ,αr,1 ∈ [−1,1]

︸ ︷︷ ︸
SPZ1

∪


h∑

i=1

 p∏
k=1,k ̸=r

α
E(k,i)

k

(
1 + αr,2

−2
)E(r,i)G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣∣ αk,βj ,αr,2 ∈ [−1,1]

︸ ︷︷ ︸
SPZ2

Now with

(
1 + αr,1

2
)E(r,i) = b

(1)
i,0 + b

(1)
i,1αr,1 + · · ·+ b

(1)
i,E(r,i)

α
E(r,i)

r,1

(
1 + αr,2

−2
)E(r,i) = b

(2)
i,0 + b

(2)
i,1αr,2 + · · ·+ b

(2)
i,E(r,i)

α
E(r,i)

r,2

we obtain our equations from above.

Note that the splitting of an SPZ is not exact, meaning that the resulting SPZs
might overlap. One can reduce the amount of overlapping by their choice of which
dependent factor to split. To minimize this, we choose the index r which maximizes
the following heuristic:

max
r∈{1,...,p}

h∑
i=1,E(r,i)>1

(1− 0.5(E(r,i)))∥G(·,i)∥2
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(a) Conversion to zonotope without splitting
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(b) Conversion to zonotope with splitting

3.6 Experimental Results

In this section, we will present the experiments conducted in order to gather results
validating our analysis. We will use the �owpipe construction implemented in HyPro
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[Sch19a] to compute the reachability of multiple examples for hybrid systems. Fur-
thermore, we want to emphasize the performance of the newly presented state set
representation, thus we will compare SPZs to other widely used representations. Ad-
ditionally, we will also look at the performance of SPZs when the splitting algorithm
is applied, allowing us to determine whether the computational overhead is worth the
increased precision. The following benchmarks were used:

� [Sch19a] A thermostat model where the temperature of a room is kept between
17 and 23 degrees celsius. The heater is turned on and o� according to the
measured temperature, heating the room when it is turned on as given by the
di�erential equation, or letting it cool down. The automaton for this model can
be seen in �gure 3.3.

lon

ẋ = −0.5x+ 15

x ≤ 23

lo�

ẋ = −0.5x
x ≥ 17

x ∈ [20.0, 20.5]

x ≥ 22

x ≤ 18

Figure 3.3: Thermostat system

� A rod reactor system [SÁMK17],[ACH+95]. This system models a simple reac-
tor of a nuclear power plant where cooling rods and fuel rods are used to heat
water in order to power turbines. The cooling rods can be lowered in between
the fuel rods for the purpose of regulating the water temperature. The model
describes the reactor temperature in dependency of two di�erent cooling rods
that can be lowered individually while also having di�erent cooling properties
because they are made out of di�erent materials. Without any cooling rods,
the temperature rises with ẋ = 0.1x− 50. With the �rst rod lowered, it falls by
ẋ = 0.1x − 56 and with the second one, by ẋ = 0.1x − 60. Both cooling rods
cannot be lowered at the same time. While the controller is able to lower any
of the cooling rods as soon as the temperature exceeds 550 degrees celsius, after
using one of them, it cannot lower it again for 20 time units. If the temperature
reaches 550 degrees celsius but the controller is not able to lower any of the
cooling rods, it will lead to a shutdown. The automaton for this system can be
seen in �gure 3.4.

� The bouncing ball introduced in section 3.2 with a dampening factor of c = 0.75
for a step size of 0.01 and a total time of 3.

The constructed �owpipes for the bouncing ball model with di�erent state set repre-
sentations can be seen in �gures 3.5a and 3.5b.

The table 3.1 shows the runtime of di�erent state set representations on the pre-
viously mentioned models. The reachability was computed 100 times in order to
compensate for �uctuation in runtimes by calculating the average. The following re-
sults were carried out on an Intel Core i5-1135 with 8 GiB RAM. Note that when
testing SPZs with splitting enabled, a split depth of 1 was set.
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Figure 3.4: Rod reactor system

State Set Representation Thermostat Rod Reactor Bouncing Ball

Interval 0.94ms 17.15ms 3.91ms
Zonotope 7.92ms 149.47ms 23.81ms
SPZ 10.93ms 220.75ms 47.95ms
SPZ with Splitting 22.83ms 871.12ms 179.62ms

Table 3.1: Benchmark Results

The results show that while computations on intervals are still way faster, SPZs
are not that much slower compared to zonotopes. Additionally, we can see that
enabling the splitting algorithm makes the runtime of SPZs signi�cantly worse, with
a split depth of only 1. While the higher precision does sound good at �rst, it almost
never happens that splitting the SPZ detects a false halfspace intersection since the
zonotope enclosures are tight enough in most cases.

While the runtime on SPZs might not be better, they do lead to an improvement
in the sense of tightness and thus overapproximation error compared to the others.
For instance, �gures 3.5a and 3.5b show the �owpipe construction of the bouncing
ball model. It is apparent that the computation on intervals lead to a signi�cantly
bigger overapproximation error and thus a worse result compared to SPZs (note that
the plotting of the SPZs was done by converting them to zonotopes before plotting).
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(b) Flowpipe with SPZs

Figure 3.5: Flowpipe segments for the bouncing ball model



Chapter 4

Conclusion

4.1 Summary

In this work, we have taken a look at Sparse Polynomial Zonotopes as a new state set
representation for reachability analysis. We de�ned them formally and also presented
how to perform commonly used operations such as the Minkowski sum or convex hull
on them. Furthermore, we have also seen their �exibility, allowing us to convert them
to other common representations and vice versa seemlessly. Additionally, we have
also analyzed the time complexity of previously mentioned operations, discovering
that most of them can be computed e�ciently which makes them practical for real
use. After that, we introduced reachability analysis and what we need SPZs (and
other state set representations) for. We have shortly shown what hybrid systems are
and pointed out their characteristics. Then, we have seen that we are able to model
them using hybrid automata, de�ning and elaborating on them as they are the base
of further analysis. We explained the reachablity problem for hybrid systems and
how to solve it, going further into detail by looking at �owpipe-construction-based
methods. We described how we can compute an overapproximative solution to this
problem by constructing a �owpipe step-by-step. We realized that we can reduce the
overapproximation error for a SPZs caused by the conversion to zonotopes by the
splitting of the polynomial zonotope, allowing for an even more precise result at the
cost of computational e�ort. Lastly, we ran experiments on SPZs, analyzing how they
compare to other state set representations on various benchmarks.

We can conclude that Sparse Polynomial Zonotopes are very expressive, allowing
for a very precise and tight representation of sets. Since they support many basic
operations as well as allowing for the conversion to other commonly used representa-
tions and vice versa, with most operations having polynomial time complexity, they
are very practical and allow for real usage in practice. As we can see in the bench-
marks, their performance in reachability analysis have shown that they are still very
e�cient in comparison to other representations, e.g. their runtime not being much
slower compared to zonotopes. We can obtain an even more precise result by the us-
age of the splitting algorithm, although it does lead to a signi�cant worsening of the
runtime, making it rather impractical for use. Thus, in conclusion, Sparse Polynomial
Zonotopes are a very expressive and versatile alternative for reachability analysis, al-
though one has to judge whether the more precise result is worth the computational
overhead.
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4.2 Future work

In the current implementation of HyPro, SPZs are plotted by converting them to
zonotopes and then plotting the result. Since the conversion usually leads to an
overapproximation error, the resulting graphs are inaccurate. To improve this, one
could iteratively use the splitting algorithm as presented in section 3.5, getting a
tighter enclosure by splitting the SPZ multiple times. With n splits, we obtain 2n

smaller SPZs which we can then convert to zonotopes for plotting, leading to a more
accurate solution. The more splits are done, the smaller each SPZ is and thus the
better the resulting plot will be, although the time needed for computation grows
exponentially with respect to the amount of splits.

Furthermore, various other operations on Sparse Polynomial Zonotopes have been
presented in [Koc22] which are not implemented in HyPro yet. For instance, the work
shows that it's possible to compute the intersection of two SPZs as well as checking
whether an SPZ is contained in another one. Additionally, it is proven that we can
also check whether an interval is contained in an SPZ.

On top of that, another possible improvement could be the early stopping of the
splitting algorithm when using a splitting depth greater than 1. As of right now,
HyPro will perform a depth-�rst search, splitting the SPZ n times and checking for
the resulting 2n SPZs whether their enclosure by zonotopes satis�es a given half-space.
It is now clear that as soon as one of them does not satisfy the half-space, the result
would be false and the algorithm can be terminated. Implementing this behaviour
could be beni�cial for the computational complexity of said method.

Last but not least, one could also take a look at di�erent heuristics for the choice
of which dependent factor to split on which might a�ect and improve the amount of
overlapping of the resulting polynomial zonotopes.
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