
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

SPEEDING UP SINGLE CELL CONSTRUCTION VIA

COMBINATORIAL OPTIMIZATION

Carsten Peter Perkampus

Communicated by
Prof. Dr. Erika Ábrahám

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Jasper Nalbach Aachen, April 29, 2024

Abstract

In Satisfiability Modulo Theories (SMT) solving, the problem of computing
a Cylindrical Algebraic Decomposition (CAD) is a crucial step in the process
of solving formulas in the theory of real closed fields. The complexity of CAD
computations grows doubly exponentially with the number of variables and the
degree of the polynomials involved. This exponential growth in complexity poses
a significant challenge for CAD-based SMT solvers, especially when dealing with
large systems of equations and inequalities and has led to the development of new
optimization techniques and algorithms like levelwise single cell construction. In
this algorithm we compute only parts of the CAD to generalize certain properties
of a set of polynomials that hold at a sample point to a connected set around
it. As a part of this algorithm we need to find a suitable representation for
generalizing orderings of real roots of some polynomials. This is a crucial step in
the algorithm and in this thesis we aim to investigate how we can optimize the
choice of the ordering using techniques from combinatorial optimization.

iv

Contents

1 Introduction 9
1.1 Research questions . 10
1.2 Thesis outline . 10

2 Preliminaries 11
2.1 Satisfiability modulo theories . 11
2.2 Cylindrical algebraic decomposition algorithm 12
2.3 Heuristics for indexed root orderings 18
2.4 Optimization problems and graph algorithms 20

3 Optimization model 25
3.1 Modelling the optimization problem 25
3.2 Correctness of the model . 30
3.3 Maintaining connectedness . 31
3.4 Integrating equational constraints . 31
3.5 Resultant cost metrics . 34

4 Evaluation 37
4.1 Result overview . 38
4.2 Performance profiling . 38
4.3 Total degree . 42
4.4 Number of cells . 42
4.5 Projection runtime profiling . 44

5 Conclusion 49
5.1 Future work . 49
5.2 Summary . 50

Bibliography 53

A Evaluation details 57
A.1 Version details . 57

vi Contents

Chapter 1

Introduction

In the field of computational mathematics and computer science, the problem of finding
solutions to formulas in the theory of Quantifier-Free Non-Linear Real Arithmetic
(QFNRA) is a widely researched problem. The theory of QFNRA is of great importance
because it allows us to reason about real-valued variables and their relationships using
polynomial constraints. QFNRA thus serves as a fundamental building block for
tackling complex real-world problems across various fields. At its core, QFNRA deals
with formulas consisting of polynomial inequalities and equalities over real-valued
variables without quantifiers. These formulas are used in many areas and applications
including robotics and control systems to symbolic computation and formal verification.
Solving these problems in a correct and time efficient manner is therefore of great
importance. However, solving such formulas poses significant computational challenges
due to the complex nature of non-linear relationships and the unbounded nature of
the real numbers.

In this context, Satisfiability Modulo Theories (SMT) solving, which encompasses
techniques for deciding the satisfiability of logical formulas over specific theories,
emerges as a powerful tool for addressing the problems of QFNRA. One of the key
techniques leveraged in the realm of QFNRA and SMT solving is Cylindrical Algebraic
Decomposition (CAD). CAD, pioneered by George E. Collins in the 1970s [Col76],
offers a systematic approach for quantifier elimination and for decomposing semi-
algebraic sets into simpler cylindrical cells, therefore enabling the search for solutions
to systems of polynomial equations and inequalities. Unfortunately, the complexity of
CAD computations grows doubly exponentially with the number of variables and the
degree of the polynomials involved. This exponential growth in complexity poses a
significant challenge for CAD-based SMT solvers, especially when dealing with large
systems of equations and inequalities.

Since its inception, CAD has been widely adopted and extended in the context of
SMT solving with the development of new optimization techniques and algorithms.
In more recent years, the levelwise single cell construction algorithm has emerged
as a powerful tool for reducing the complexity of computing CADs [NÁS+24]. The
authors note that the performance of their algorithm could potentially be improved in
a number of ways. One such way is to look at combinatorial optimization techniques to
reduce the impact of the combinatorial explosion that occurs when computing CADs.
In this thesis, we aim to investigate the optimization problem of finding the optimal
orderings of root functions of polynomials during levelwise single cell construction.

10 Introduction

1.1 Research questions
As part of this thesis, we aim to answer the following research questions:

RQ1: How can we accurately estimate the cost of computing a resultant?

To optimize orderings of root functions of polynomials for the cost of resultants, we
need to define and accurately estimate the cost of a resultant. This is a non-trivial
task, as it is not clear what the cost of a resultant should represent. As such this
question aims to define what the cost of a resultant should represent and how we can
calculate it. The question also asks how different cost metrics impact the complexity
and running time of the levelwise single cell construction algorithm.

RQ2: How can we optimize the ordering of root functions of polynomials
for the cost of resultants?

Based on the cost metrics from RQ1, we want to investigate how we can optimize
orderings of root functions for the cost of resultants. More generally, we want to know
what complexity class the problem of finding the optimal ordering belongs to and if
we can find an optimal indexed root ordering in polynomial time. By looking into this
question, we aim to find out if we can improve the performance of the levelwise single
cell construction algorithm by carefully selecting which resultants we will compute.

RQ3: How much time does it take to compute resultants in practice?

This question aims to investigate how much time it takes to compute resultants and
how this time is distributed over all the calculated resultants. Specifically, we want to
identify what parts of the algorithm are the most time-consuming.

RQ4: Can we also optimize orderings of root functions for the cost of
discriminants?

Since discriminants are also used in the computation of resultants and are generally
as expensive to compute as resultants, it is interesting to investigate if we can also
optimize orderings of root functions for the cost of discriminants.

1.2 Thesis outline
The remainder of this thesis is structured as follows: We will first introduce the
necessary background information in Chapter 2. In this chapter, we will first introduce
the necessary background information needed to understand the basics of SMT solving,
CAD, the levelwise single cell construction algorithm as well as more general concepts
like optimization problems and graphs. The main part of this thesis is Chapter 3,
where we will discuss the optimization problem of finding the optimal orderings of
root functions along with different cost metrics. In Chapter 4, we will present the
experimental results of our implementation of the discussed algorithms in SMT-RAT.
Here we will also discuss the impact of resultant and discriminant computation times
on the performance of the levelwise single cell construction algorithm more broadly.
Finally, we will conclude this thesis in Chapter 5 by summarizing our findings and
discussing possible future work.

Chapter 2

Preliminaries

We will start by introducing the theory of SMT solving and the theory of CADs. We
will then introduce the levelwise algorithm and discuss some heuristics that can be
used to improve the performance of the levelwise algorithm. Finally, we will introduce
some graph theory concepts that will be used in the following chapters.

2.1 Satisfiability modulo theories
Satisfiability Modulo Theories (SMT) describes a field of computer science that deals
with the decision problem of logical formulas. It essentially describes the task of
deciding whether a given formula is satisfiable or not and extends the field of Boolean
Satisfiability (SAT) by allowing formulas to contain variables of different types and
predicates that are not part of the Boolean logic. In SMT solving we are given a
formula in a specific theory, and we want to decide whether the formula is satisfiable or
not. There are many theories that are able to express different kinds of problems. In
this thesis we will focus on the theory of Quantifier-Free Non-Linear Real Arithmetic
(QFNRA), which is a theory that allows us to express formulas that contain real-valued
variables and polynomials.

We denote the set of natural numbers including 0 by N, the set of rational numbers
by Q, and the set of real numbers by R. Additionally, we denote the set of real
numbers greater than or equal to 0 by R≥0. For two integers i, j ∈ N with i < j, we
define [i..j] = {i, . . . , j} and [i] = [0..i] and for a vector r ∈ Ri, we use rj to denote
the j-th component of r and r[j] to denote the vector r1, . . . , rj .

Definition 2.1.1 (Polynomial). A polynomial p in the variables x1, . . . , xn is a finite
sum of terms of the form c · xe1

1 · · · · · xen
n where c ∈ Q and e1, . . . , en ∈ N. The set of

all polynomials in the variables x1, . . . , xn is denoted by Q[x1, . . . , xn].

For a vector r ∈ Rj with j ∈ [1..i] and a polynomial p ∈ Q[x1, . . . , xi] we write
p(r, xj+1, . . . , xi) to define the polynomial after substituting r1, . . . , rj for x1, . . . , xj

in p.

Definition 2.1.2 (Degree). For a polynomial p, we define the degree of p in the
variable x as degx(p) = k, where k is the largest exponent of x in p such that the
coefficient of xk is non-zero.

For the multivariate case we define the total degree of a polynomial as the largest
sum of exponents of the variables in the polynomial which has a non-zero coefficient.

12 Preliminaries

Definition 2.1.3 (QFNRA). Formulas in QFNRA consists of a set of polynomial
constraints that are combined with logical connectives. We define atomic formulas in
QFNRA as p ∼ 0 where p is a polynomial and ∼ ∈ {<,=}. More complex formulas
can be constructed by combining atomic formulas with logical connectives such as "¬"
and "∧". Other relations like "≤" and "≥" can be expressed using the relations "<"
and "=" and the logical connectives.

Definition 2.1.4 (Conjunctive Normal Form (CNF)). A formula is in CNF if it is a
conjunction of clauses where each clause is a disjunction of literals. Literals are either
a variable or the negation of a variable.

2.2 Cylindrical algebraic decomposition algorithm

In SMT solving, there are multiple ways to decide the satisfiability of a given formula
in the theory of QFNRA such as interval constraint propagation [TVKO17], virtual
substitution [Wei97], subtropical satisfiability [FOSV17] and CAD. Out of those
methods, CAD is the only practical algorithm that is complete for QFNRA, which is
why the CAD algorithm is still widely used in SMT solving. In our case, we will use
the CAD algorithm as part of the wider Model Constructing Satisfiability Calculus
(MCSAT) framework [dJ13] to solve formulas in the theory of QFNRA.

2.2.1 CAD basics

To describe the CAD algorithm, we first need to define some basic concepts:

Definition 2.2.1 (Level [NÁS+24]). Given the variables x1, . . . , xn under a fixed
variable ordering x1 ≺ · · · ≺ xn and a polynomial p ∈ Q[x1, . . . , xn], we define the
level of a polynomial p as level(p) = n.

Definition 2.2.2 (Sign). The sign of a number r ∈ R is defined as

sgn(r) =

1 if r > 0

0 if r = 0

−1 if r < 0

Definition 2.2.3 (Sign-invariance). A polynomial p ∈ Q[x1, . . . , xn] is sign-invariant
on a set R ⊆ Rn if sgn(p(r)) = sgn(p(r′)) for all r, r′ ∈ R. A set of polynomials P is
sign-invariant on R if all polynomials in P are sign-invariant on R.

Sign-invariance is an important property in the context of the CAD algorithm. If
we know that the set of all polynomials appearing in a formula is sign-invariant on a
cell, and we find that a sample point from the cell does not satisfy the formula, we
can be sure that the cell does not contain any solutions to the formula. Conversely, if
the sample point satisfies the formula, we can be sure that each element of the cell
satisfies the formula.

Definition 2.2.4 (Decomposition). A decomposition of Rn is a partition of the set into
a finite number of pairwise disjoint subsets C = {C1, . . . , Ck} such that

⋃
C∈C C = Rn.

Cylindrical algebraic decomposition algorithm 13

Definition 2.2.5 (Semi-algebraic decomposition). A decomposition of Rn is called
semi-algebraic if subset C ∈ C can be described by a finite number of polynomial
(in-)equalities. That is, each subset C can be defined as

C = {x ∈ Rn | p(x1, . . . , xn) = 0} or C = {x ∈ Rn | p(x1, . . . , xn) > 0}

for a polynomial p ∈ R[x1, . . . , xn] or a union or intersection of such sets.

Definition 2.2.6 (Cylindrical decomposition). A decomposition of Rn is called cylin-
drical if the set of projections of the cells onto the first n− 1 variables is a cylindrical
decomposition of Rn−1. This means that the decomposition is cylindrical if the projected
cells are still pairwise disjoint and cover Rn−1.

Definition 2.2.7 (CAD [Col76]). A CAD C is a set such that it is a semi-algebraic,
cylindrical and finite decomposition of Rn. The elements of this decomposition C ∈ C
are called cells.

The CAD for a set of polynomials P ⊂ Q[x1, . . . , xn] with n ≥ 1 is a CAD of Rn

whose cells are all P -sign-invariant.

The idea behind a CAD is to decompose the space of the variables into cells such
that each cell is P -sign-invariant. This allows us to decide satisfiability by testing a
single sample point from each cell.

Definition 2.2.8 (Delineability [Col76]). Let p ∈ Q[x1, . . . , xn] be a polynomial and
R ⊆ Rn−1 be a cell. The polynomial p is delineable on R if there exists finitely many
continuous functions θ1, . . . , θk : R 7→ R (for k ≥ 0) such that

• θ1 < · · · < θk,

• the set of real roots of the univariate polynomial p(r, xi+1) is {θ1(r), . . . , θk(r)}
for all r ∈ R; and

• there exist constants m1, . . . ,mk ∈ N>0 such that for all r ∈ R and all j ∈ [1..k],
the multiplicity of the root θj(r) of p(r, xi+1) is mj.

The functions θ1, . . . , θk are called the root functions of p on R. A set of polynomials
P is delineable on Rn if the product of every pair of polynomials in P is delineable on
R.

To guarantee sign-invariance of the polynomials in the formula, we need to ensure
that the polynomials do not change sign within a cell. As such, we need to ensure
that the input polynomials are delineable on the cells.

2.2.2 Projection operators
The CAD algorithm is split into two phases: the projection phase and the construction
phase, which is also known as the lifting phase. In the projection phase, we eliminate
variables from the given formula using the projection operator and in the construction
phase, we construct the cells of the CAD by lifting the cells to higher levels.

Definition 2.2.9 (Resultant). Given two polynomials p1, p2 ∈ Q[x1, . . . , xi], the
resultant of the two polynomials is a polynomial that vanishes at those points where
the two polynomials have a common root. We denote their resultant with respect to the
variable xi as resxi

(p1, p2) ∈ Q[x1, . . . , xi−1].

14 Preliminaries

We can use the resultant to identify "crossing-points" of two polynomials, which
will be useful during the projection phase.

Definition 2.2.10 (Discriminant). Given a polynomial p ∈ Q[x1, . . . , xi], the dis-
criminant of a polynomial is a polynomial that vanishes at those points where the
polynomial has a multiple root. We denote its discriminant with respect to xi as
discxi

(p) ∈ Q[x1, . . . , xi−1].

The discriminant is used to identify "turnarounds" in the graph of the polynomial.
Lastly, we use coefficients to identify divergence points of the polynomial. For

a polynomial p ∈ Q[x1, . . . , xi], the coefficients of the polynomial is denoted as
coeffxi(p) ∈ Q[x1, . . . , xi−1].

Definition 2.2.11 (Projection). A mapping proj : 2Q[x1,...,xn] → 2Q[x1,...,xn−1] is called
a CAD-Projection if any proj(P)-sign-invariant region R ⊆ Rn−1 is P -delineable.

In the CAD algorithm we use CAD-Projections to eliminate variables from the
given formula while also preserving the sign-invariance of the polynomials. Resul-
tants, discriminants and coefficients are essential tools for the definition of projection
operators.

Originally, the CAD algorithm used the projection operator from Collins [Col76]
but since then many other projection operators have been developed, including the
projection operator from McCallum.

Definition 2.2.12 (McCallum’s projection operator [McC98]). Given a set of polyno-
mials P ⊂ Q[x1, . . . , xn] and a variable ordering x1 < · · · < xn, the projection operator
from McCallum is defined as

projmc(P) =
⋃

p,q∈P,p̸=q
level(p)=level(q)=i

{resxi
(p, q)} ∪

⋃
p∈P,

level(p)=i

{discxi
(p), coeffxi

(p)} ∪
⋃
p∈P,

level(p)<i

{p}

The choice of projection operator is important because it affects the completeness
of the CAD algorithm, and it can have a significant impact on the complexity of
the algorithm since the projection operator is directly responsible for the number of
resultants and discriminants that need to be computed.

Even though the projection operator from McCallum is not complete, we will use
it in this thesis since the paper that describes the levelwise single cell construction
algorithm uses this projection operator. This projection operator is chosen primarily
because it is established and well-known in the field, is generally efficient and makes use
of equational constraints [McC99, EBD20], which can significantly help in reducing the
number of discriminants that need to be computed and therefore reduce the complexity
of the algorithm.

The McCallum projection operator works by guaranteeing that the projected
polynomials are order-invariant.

Definition 2.2.13 (Order [NÁS+24]). For a polynomial p ∈ Q[x1, . . . , xn] and a point
r ∈ Rn, the order of p at r is defined as

ordr(p) = min

({
k ∈ N

∣∣∣∣ some partial derivative of total order
k of p does not vanish at r

}
∪ {∞}

)
Definition 2.2.14 (Order-invariance [NÁS+24]). A polynomial p ∈ Q[x1, . . . , xn] is
order-invariant on a set R ⊆ Rn if ordr(p) = ordr′(p) for all r, r′ ∈ R.

Cylindrical algebraic decomposition algorithm 15

Since order-invariance is a stronger property than sign-invariance, we can also
maintain sign-invariance using the McCallum projection operator.

2.2.3 Equational constraints

Equational constraints can be used to reduce the projection size by reducing the
number of discriminants that need to be computed. In the section case where any
polynomial that is zero at the sample point is also zero in the entire cell we are
trying to compute. By including the resultant of the section defining polynomial with
another polynomial we can ensure that that polynomial is also sign-invariant. The
work in [EBD20] shows that equational constraints are a powerful tool when trying to
reduce the complexity of the algorithm. We will discuss how we can use equational
constraints in Section 3.4.

2.2.4 Single cell construction

The CAD algorithm usually calculates all cells at once and takes samples from each
cell to test each cell for satisfiability of the given formula. However, we often do not
need all cells to decide satisfiability. Since each cell guarantees sign-invariance of the
polynomials in the formula, we can decide satisfiability by testing a single sample point
from each cell. This also means we should try to construct as few cells as possible and
only construct cells that are necessary to decide satisfiability.

Instead of calculating all cells at once, we can alternatively guess a sample point
from any cell and test it for satisfiability. If the chosen sample point satisfies the
formula, we can stop the procedure and return sat. Otherwise, we can refine the
cell containing the sample point and repeat the procedure. We accomplish this by
calculating the boundary of the cell containing the sample point and taking this new
information about the cell into account when choosing the next sample point.

This procedure is called single cell construction. In this thesis we will concentrate
on the levelwise single cell construction algorithm as described in [NÁS+24]. There are
other single cell construction algorithms that work polynomial-by-polynomial [BK15]
instead of level-by-level, but we will not discuss them here.

For the levelwise single cell construction algorithm, we need to define some addi-
tional concepts that are required to describe the algorithm.

Definition 2.2.15 (Indexed root expressions [NÁS+24]). Let p ∈ Q[x1, . . . , xi+1] with
level(p) = i+1. For a given sample point s ∈ Ri we define the indexed root expression
rootxi+1 [p, j] : Ri 7→ R ∪ {undef} as the j-th real root of p in xi+1. The level of the
indexed root expression is i+ 1.

If p has less than j real roots, rootxi+1 [p, j] is undefined. For this thesis we will
assume that any given indexed root expression are always defined for the given sample
point. We will use the notation ξ to refer to the indexed root expression and ξ.p to
refer to the polynomial.

Definition 2.2.16 (Symbolic intervals [NÁS+24]). Symbolic intervals of level i are
tuples of either the form (sector, l, u) or (section, b). In the sector case, l and u are
indexed root expressions of level i that represent the lower and upper bounds of the
interval. If the sector is unbounded in the lower or upper direction, the corresponding
bounds are set to −∞ and +∞ respectively. For the section case, b is an indexed root
expression of level i that represents the barrier of the section.

16 Preliminaries

The indexed root expressions that represent the lower and upper bounds of a
sector are also called the sector-defining indexed root expressions. The corresponding
polynomials are called the sector-defining polynomials. Similarly, the indexed root
expressions that represent the barrier of a section are called the section-defining indexed
root expressions and the corresponding polynomials are called the section-defining
polynomial.

Symbolic intervals are used to represent the cells in the levelwise single cell
construction algorithm. Each cell is represented by a sequence of symbolic intervals
R = (I1, . . . , In), where each symbolic interval Ii bounds a variable xi. The goal of
single cell construction is thus to construct a sequence of symbolic intervals given a
set of polynomials and a sample point as input.

Whether a symbolic interval is a sector or a section depends on the following
condition: if there exists an indexed root expression ξ that lies on the sample point,
the symbolic interval is a section, otherwise it is a sector.

2.2.5 Levelwise single cell construction

Using the definitions of indexed root expressions and symbolic intervals, we can now
describe how we can construct a single cell instead of all cells at once. One simple
way to achieve this is to simply project all cells as previously described and instead of
lifting all cells at once, we only lift the cell containing the sample point. This is the
naive approach to single cell construction as seen in [NÁS+24] and is not very efficient.
It is still a good starting point to understand the levelwise single cell construction
algorithm. In order to improve the efficiency of the algorithm, we need to reduce the
size of the projection that we need to compute and to do this we need to carefully
choose which resultants and discriminants we need to compute.

Indexed root orderings and representations

To maintain the sign-invariance of the polynomials over the cell, we need to guarantee
that no polynomial crosses the cell’s boundary and in order to do this we calculate
the resultants of specific pairs of polynomials. When we calculate the resultants of the
polynomials, and we find a common crossing point of the two polynomials (i.e. a root
of the resultant), we can adjust the cell’s boundary to ensure that the polynomials
still remain delineable over the cell. One way to accomplish this is to calculate every
possible resultant or the resultants of the sector-defining polynomials with every other
polynomial. However, [NÁS+24] introduces the concept of indexed root orderings to
give us more control over which resultants we need to calculate.

Definition 2.2.17 (Indexed root ordering [NÁS+24]). Let i ∈ N, and Ξ be a set of
indexed root expressions of level i + 1. An indexed root ordering on Ξ is a relation
⪯ ⊆ Ξ× Ξ such that it’s reflexive and transitive closure ⪯t is a partial order on Ξ.
Indexed root orderings of this form are also called indexed root ordering of level i+ 1.

We define the domain of the indexed root ordering as the set of all indexed root
expressions that appear in the ordering, i.e. dom(⪯) = {ξ, ξ′ | (ξ, ξ′) ∈⪯}.

An indexed root ordering ⪯ of level i+1 matches a sample point s if and only if all
indexed root expressions in Ξ appear in the ordering and the indexed root expressions
are ordered according to the sample point, i.e. if ξ ⪯t ξ′ then ξ(s) ≤ ξ′(s).

Cylindrical algebraic decomposition algorithm 17

−1 0 1 2 3 4

−4

−2

0

2 p1

p2

p3

p4

s

x

y

Figure 2.1: Example of a set of polynomials along with a sample point s. When
computing the boundaries of the cell containing s we need to establish an ordering
over the root functions of the polynomials as indicated by the dashed line and the
marked roots of each polynomial on that line.

Definition 2.2.18 (Representation for Ξ [NÁS+24]). A representation for Ξ with the
sample point s is a tuple (I, E,⪯) where I is a symbolic interval of level i, ⪯ is an
indexed root ordering of level i on Ξ, E is a set of equational constraints containing
polynomials of level i. Representations must satisfy the following conditions:

• The symbolic interval I contains the sample point s,

• all indexed root expressions in Ξ are covered by the indexed root ordering ⪯ or
their defining polynomials are in the set of equational constraints E,

• E must be the empty set if the symbolic interval I describes a sector and

• ⪯ matches s[i−1].

It is important to note that when we add a polynomial to the equational constraints
E we can not use this polynomial to guarantee the sign-invariance of any other
polynomial, so if we include the polynomial ξ.p in the set of equational constraints,
we can not add any relation (ξ, ξ′) or (ξ′, ξ) in the indexed root ordering.

Example 2.2.1. Suppose we want to compute the cell that contains the sample point
s as shown in Figure 2.1. We must now compute the boundaries of the cell and for
this to happen we decide to eliminate the variable y. To eliminate the variable y,
we must compute the projection and in this case, we could compute the resultants
resy(p1, p2), resy(p1, p3), resy(p2, p3) and resy(p3, p4).

We should note that the choice of the resultants to compute is not unique For
example, we could have also chosen to compute the resultants resy(p2, p4) instead of
resy(p3, p4). When running the algorithm to compute the cell, we would have a choice
to make on which resultants to compute, and we can use this choice to optimize for
any criteria we want.

18 Preliminaries

Connectedness

In order to maintain order-invariance we need to also maintain connectedness in
the sector case. This is not necessary on the highest level, so we need to ensure
connectedness in every projection except the first one.

To guarantee connectedness we can simply add (I.l, I.u) to the indexed root
ordering. However, there are cases where there are multiple possible choices for the
sector-defining indexed root expressions. In [NÁS+24] this problem is solved by setting
the sector-defining polynomials to be the polynomials with the lowest degrees. We
will discuss this problem in Section 3.3.

The problem of choosing an optimal representation for a given set of indexed root
expressions is not trivial. In many cases, there are multiple possible representations,
but it is not clear which one is the best. However, the choice of indexed root ordering
can have a significant impact on various aspects of the algorithm. For one, the indexed
root ordering impacts the number of resultants that need to be computed and the
degree of the resultants, is important because the degree of the projection grows doubly
exponentially [BDE+16]. This in turn impacts the running time of the algorithm
because the complexity of computing the resultants grows quadratically with the
degree of the polynomials in the target variable [Duc00].

Additionally, the choice of indexed root ordering also impacts the size of the cells.
Smaller cells mean that the solver may additionally check the remaining parts of the
cell unnecessarily, thus wasting computation time constructing more cells as shown
in [NÁS+24].

2.3 Heuristics for indexed root orderings
To optimize the running time of the algorithm we need to choose an indexed root
ordering that minimizes the number of resultants and their degree while also minimizing
the size of the cells. One such way to do this is to use heuristics to choose the indexed
root ordering. The following definitions for heuristics are taken from [NÁS+24] and
provide a good reference point for the later work in this thesis.

To define the indexed root orderings we only need to consider the set of indexed root
expressions Ξ̃ that contains for each polynomial only the indexed root expression that
is closest to the sample point from below and above respectively [NÁS+24]. This is
because the levelwise single cell construction algorithm already guarantees delineability
of the polynomials over the cells and thus the root functions (see Definition 2.2.8) are
already ordered over the current cell. Similar to [NÁS+24] we will implicitly assume
that any set of indexed root expressions Ξ only contains the relevant indexed root
expressions except when explicitly stated otherwise.

Definition 2.3.1 (Biggest cell representation [NÁS+24]). Given a sample point
s and a set of indexed root expressions Ξ with we define the indexed root ordering
⪯biggest on Ξ as follows:

⪯biggest={(ξ, ξlo)|ξ ∈ Ξ̃ \ {ξlo} s.t. ξ(s) ≤ ξlo(s)}∪
{(ξup, ξ)|ξ ∈ Ξ̃ \ {ξup} s.t. ξup(s) ≤ ξ(s)}

where ξlo and ξup are indexed root expressions that are closest to s. The set of
equational constraints will be the empty set.

Heuristics for indexed root orderings 19

The idea behind the Biggest cell heuristic is to choose the weakest-viable
ordering such that the conditions of the indexed root ordering are still satisfied. This
should in general reduce the impact of the indexed root ordering on the size of the cells,
which should in turn maximize the size of the computed cells. As discussed earlier,
this is important because bigger cells can potentially reduce the number of cells that
have to be constructed by the algorithm and thus reduce the running time. However,
as shown in [NÁS+24], when applying the Biggest cell heuristic to benchmarks, the
Biggest cell on average calculates slightly more cells than the other heuristics. This
suggests that the Biggest cell heuristic does not always choose the ideal indexed
root ordering to achieve the maximum cell size.

Specifically for the section case, we can use the Equational constraint heuristic
instead of the Biggest cell heuristic. For the Equational constraint heuristic, we
simply apply the equational constraint rule to all polynomials in the set of polynomials
except for the section defining polynomial. It is very similar to the Biggest cell
representation in that it also requires the calculation of the same set of resultants as
the Biggest cell representation. The difference is that the equational constraint
representation is only applicable to the section case and can omit the calculation
of most discriminants. This means that the equational constraint representation is
strictly better than the biggest cell representation for the section case and should
always be used instead.

Definition 2.3.2 (Lowest degree barriers representation [NÁS+24]). Given a
sample point s and a set of indexed root expressions Ξ. For each ξ ∈ Ξ we define
barrier(ξ) ∈ Ξ to be an indexed root expression ξ′ such that the degree of ξ′.p is
minimal and ξ(s) ≤ ξ′(s) ≤ s or s ≤ ξ′ ≤ ξ respectively. We use this to define the
indexed root ordering ⪯barriers on Ξ as follows:

⪯barriers={(ξ, barrier(ξ)) | ξ ∈ Ξ \ {ξlo}, ξ(s) ≤ s}∪
{(barrier(ξ), ξ) | ξ ∈ Ξ \ {ξup}, s ≤ ξ(s)}

where ξlo and ξup are the indexed root expressions that are closest to s among all
indexed root expressions that are below and above s respectively. The set of equational
constraints will be the empty set.

The Lowest degree barriers heuristic minimizes the degree of the resultants by
choosing the indexed root ordering such that the resultants are of the lowest possible
degree in the target variable. This is achieved by choosing a barrier between each
indexed root expression and the sample point such that the degree of the resultant is
minimized and adding the relation to the indexed root ordering. It is important to
note that this heuristic does not guarantee overall lower degree resultants, but only
lower degree resultants in the target variable for the current level. When running
the Lowest degree barriers heuristic on benchmarks, the heuristic on average
produced higher degree resultants than the other heuristics [NÁS+24] despite aiming
to minimize the degree of the resultants.

Definition 2.3.3 (Chain representation [NÁS+24]). Given a sample point s and a
set of indexed root expressions Ξ = {ξ1, . . . , ξn}. We define the indexed root ordering
⪯chain on Ξ according to

⪯chain= {(ξj , ξj+1) | j ∈ [1..k − 1]}

The set of equational constraints will be the empty set.

20 Preliminaries

The Chain heuristic is a simple heuristic that chooses the indexed root ordering
such that the transitive and reflexive closure of the ordering is a total order on the
indexed root expressions.

Example 2.3.1. Figure 2.2 shows a set of indexed root expressions and the indexed
root ordering according to the Biggest cell, Chain, and Lowest degree barriers
heuristics.

The Lowest degree barriers heuristic chooses the ordering based on the degree
of the polynomials. For example, the polynomials p1 and p2 have a degree of 2 and 8
respectively in the target variable and thus the barrier of ξ6 is chosen to be ξ5. This
is repeated for all indexed root expressions until we get the ordering that is shown in
Figure 2.2c.

Notable is that the heurstics sometimes require us to compute resultants that are
not necessary. For example, the Chain heuristic requires us to compute the resultant
resy(p1, p3) due to the relation ξ6 ⪯ ξ5 even though we could replace this relation with
ξ6 ⪯ ξ4 and completely avoid the computation of this resultant.

2.4 Optimization problems and graph algorithms
Optimization problems are mathematical challenges that involve finding the best
solution from a set of possible solutions. In these problems, there is typically an
objective function that needs to be either maximized or minimized, subject to a
set of constraints. The objective function represents the quantity that should be
optimized, such as profit, cost, time, efficiency, etc. Generally, the objective function
is a mathematical function that takes the values of the decision variables as input
and returns a real number as output. In our case, we want to find the optimal
indexed root ordering that minimizes our objective function as described in Section 3.5.
Decision Variables are the variables that can be adjusted or controlled to achieve
the best outcome. The values of these variables influence the value of the objective
function. The limitations or restrictions on the decision variables are called constraints.
Constraints define the feasible region, the set of values the decision variables can
take to satisfy the problem requirements. A solution that satisfies all the constraints
is called a feasible solution. The optimal solution is the combination of values for
the decision variables that either maximize or minimize the objective function while
satisfying all the constraints. There may be one or more optimal solutions for a given
optimization problem.

Combinatorial optimization is a branch of optimization that deals with problems
where the solution space is discrete, and the goal is to find the best combination of
elements from this finite set. Unlike continuous optimization problems, where decision
variables can take any real value, combinatorial optimization involves selecting a subset
or arrangement of discrete items to optimize an objective function, subject to certain
constraints.

For our problem, we will model the problem as a graph problem. As such we will
need to introduce some basic concepts of graph theory first.

Definition 2.4.1 (Graphs). A graph G = (V,E) is a tuple of a set of vertices V and
a set of edges E ⊆ {{u, v} | u, v ∈ V }.

Graphs are a useful way to model problems that involve a set of objects and the
relations between them. They are commonly used to model optimization problems in

Optimization problems and graph algorithms 21

p3

ξ3

p2

ξ2

p1

ξ1

p2

ξ4

p1

ξ5

p3

ξ6

p4

ξ7

(a) Biggest Cell heuristic

p3

ξ3

p2

ξ2

p1

ξ1

p2

ξ4

p1

ξ5

p3

ξ6

p4

ξ7

(b) Chain heuristic

p3

ξ3

4

p2

ξ2

8

p1

ξ1

2

p2

ξ4

8

p1

ξ5

2

p3

ξ6

4

p4

ξ7

1

(c) Lowest Degree Bar-
riers heuristic

Figure 2.2: Example of the orderings of each heuristic when applied to the situation
from Example 2.2.1. Each indexed root expression is represented by a node and
the relations between the indexed root expressions are represented by edges. The
sample point is represented by the black dot and the label on each node shows the
polynomial that the indexed root expression is associated with. For the Lowest
degree barriers heuristic, the degree of the polynomials is denoted next to their
respective indexed root expressions.

22 Preliminaries

computer science. Examples include the traveling salesman problem, the minimum
spanning tree problem, the maximum flow problem, etc. In our case, we will use
graphs to create a model inspired by the minimum-weight edge cover problem and the
minimum-weight perfect matching problem.

Definition 2.4.2 (Minimum-weight edge cover). Given a graph G = (V,E), an edge
cover of G is a subset of edges E′ ⊆ E such that each vertex v ∈ V is incident to at
least one edge in E′.

Given a weight function w : E 7→ R≥0, we assign a weight to each edge in the
graph and define the weight of an edge cover as the sum of the weights of all edges in
the cover. An edge cover is called a minimum-weight edge cover if there is no other
edge cover with a lower weight.

The problem of finding the minimum-weight edge cover is a well-known combinato-
rial optimization problem and closely related to the minimum-weight perfect matching
problem.

Definition 2.4.3 (Minimum-weight perfect matching). Given a graph G = (V,E),
a perfect matching of G is a subset of edges E′ ⊆ E such that each vertex v ∈ V is
incident to exactly one edge in E′.

Given a weight function w : E 7→ R≥0, we assign a weight to each edge in the
graph and define the weight of a perfect matching as the sum of the weights of all edges
in the matching. A perfect matching is called a minimum-weight perfect matching if
there is no other perfect matching with a lower weight.

There is a simple reduction from the minimum-weight edge cover problem to the
minimum-weight perfect matching problem described by Schrijver [Sch02]: Given a
graph G = (V,E) and a weight function w : E 7→ R≥0 we create a disjoint copy of the
graph G = (V ,E). Let G′ = (V ′, E′) be the new graph obtained by combining the
two graphs G and G. For each pair of corresponding vertices v ∈ V and v ∈ V we
also add an edge {v, v} ∈ E′ to the graph. We set the weight of that edge to twice the
minimum weight of all edges that are incident to v in the original graph G. Given
this reduction we can then find a minimum-weight perfect matching M for the newly
created graph and recreate the minimum-weight edge cover from the original graph as
follows: Remove all edges M ∩ E and for each edge (v, v) ∈ M we will add an edge
with the minimum weight that is incident to v in the original graph G to the edge
cover. The resulting edge cover will be a minimum-weight edge cover for the original
graph G with half the total weight of the minimum-weight perfect matching.

Example 2.4.1. Let us consider the graph in Figure 2.3. The nodes v1, v2, and v3
are the nodes of the original graph G and the nodes v1, v2, and v3 are the nodes of the
disjoint copy G. The edges between the nodes and their corresponding nodes in the
disjoint copy are the edges that we added to the new graph G′.

Since the minimum weight of all edges incident to v1 is 3, we set the weight of
the edge {v1, v1} to 6. Similarly, we set the weight of the edge {v2, v2} to 6 and the
weight of the edge {v3, v3} to 10. After finding a minimum-weight perfect matching
for the graph we can then recreate the minimum-weight edge cover for the original
graph G: We remove the edges {v1, v1} and {v3, v3} from the set and add the edges
{v2, v3} to the edge cover because the edge {v3, v3} was part of the minimum-weight
perfect matching.

Optimization problems and graph algorithms 23

v1

v2

v3

v1

v2

v3

3

5

3

5

6

6

10

Figure 2.3: Constructed graph from the example. Dashed edges indicate that they are
not in the minimum-weight perfect matching.

The problem of finding a minimum-weight perfect matching is a well-researched
problem and there are algorithms that can solve it in polynomial time in general
graphs [CR99]. If needed, there are also approximation algorithms that can find a
minimum-weight perfect matching in polynomial time with a guaranteed approximation
factor [DPS18].

24 Preliminaries

Chapter 3

Optimization model

In this chapter, we will first introduce the optimization problem and present a model
to solve the optimization problem. Specifically, we will examine three different cases:

1. The unrestricted set Ξ of indexed root expressions. This variant is NP-hard, and
we will shortly describe why we will not consider it further.

2. The restricted set Ξ̃ of indexed root expressions where there are no intersections
between the indexed root expressions. This case can be solved in polynomial
time using the model we present.

3. The restricted set Ξ̃ where the indexed root expressions may intersect. For this
case, we not yet know if the problem is NP-hard or not. We will show how we
address this case in the optimization procedure and show some ways we explored
to solve the problem.

We will then go over some things to consider for the sector and section cases and
show how we address these in the optimization procedure. Finally, we will discuss a
variety of cost functions that can be used to determine the cost of a resultant.

3.1 Modelling the optimization problem

Let Ξ be a set of indexed root expressions and P ⊂ Q[x1, . . . , xn] along with a sample
point s. To define the optimization problem we need to define a graph G = (V,E)
along with a weight function w : E → R≥0. We define the set of vertices as follows:

V = {vξ | ∃ξ′ : ξ(s) < ξ′(s) ≤ s or s ≤ ξ′(s) < ξ(s)} ∪ {d, d′}

Note that we only consider indexed root expressions ξ ∈ Ξ in the model if there
exists another indexed root expression ξ′ that is between the sample point s and ξ. If
there is no such indexed root expression we do not need to consider the indexed root
expression in the model since that indexed root expression must be the sector-/section
defining indexed root expression and is therefore trivially covered by the reflexive and
transitive closure of the ordering. We also add two dummy vertices d and d′ to the set
of vertices to ensure that we can always construct a minimum-weight edge cover.

26 Optimization model

Based on the set of vertices we will define the set of edges E. To accomplish this
we will first define some auxiliary sets:

Ξp,q = {ξ ∈ Ξ | ξ.p ∈ {p, q}}
The set Ξp,q refers to indexed roots of the polynomials p and q. Additionally, we define
the sets Ξl

p,q and Ξu
p,q as follows:

Ξl
p,q = {ξ ∈ Ξp,q | ∃ξ′ ∈ Ξp,q \ {ξ} : ξ(s) < ξ′(s) ≤ s}

Ξu
p,q = {ξ ∈ Ξp,q | ∃ξ′ ∈ Ξp,q \ {ξ} : s ≤ ξ′(s) < ξ(s)}

The set Ξl
p,q refers to the outermost indexed roots of the polynomials p and q that

are below the sample point s. This set only contains an indexed root ξ if there exists
another indexed root ξ′ that is between itself and s. The set Ξu

p,q is defined similarly
and refers to the indexed roots that are above the sample point s. Using these two
sets we can then define the set of edges:

E ={{vξ, vξ′} | p, q ∈ P, p ̸= q, ξ ∈ Ξl
p,q, ξ

′ ∈ Ξu
p,q} ∪

{{vξ, d} | ξ ∈ Ξl
p,q,∄ξ′ ∈ Ξu

p,q} ∪
{{d, vξ} | ξ ∈ Ξu

p,q,∄ξ′ ∈ Ξl
p,q} ∪

{d, d′}
The definition of the edges is split into four subsets, where each subset has the following
meaning:

1. The first set of edges describes the resultants resxi(p, q) for two polynomials
p, q ∈ P with p ̸= q for which the indexed root expressions ξ ∈ Ξl

p,q and ξ′ ∈ Ξu
p,q

exist. This means that the resultant resxi
(p, q) can be used to cover the indexed

root expression ξ below the sample point and the indexed root expression ξ′

above the sample point.
It is important to note that due to the definition of Ξ̃ we know that each resultant
can cover at most two indexed root expressions, so we can always find a suitable
edge for each resultant.

2. In the case that there is no ξ′ ∈ Ξu
p,q we add an edge from ξ ∈ Ξl

p,q to the
dummy vertex d. This case indicates that the resultant resxi(p, q) only protects
the indexed root expression ξ below the sample point.

3. In the case that there is no ξ ∈ Ξl
p,q we add an edge from the dummy vertex d

to ξ′ ∈ Ξu
p,q. This case indicates that the resultant resxi

(p, q) only protects the
indexed root expression ξ′ above the sample point.

4. Since the dummy vertex d must also be covered by the edge cover we add an
edge from d to the other dummy vertex d′.

Lastly we need to define the weight function w : E → R≥0 that assigns a real
value to each edge in the graph. For this we will assume that we have a cost function
c : P ×P → R≥0 that assigns a cost to each pair of polynomials, which will correspond
to the cost of the resultant of both polynomials. We define the weight function as:

w(e) =

c(p, q) if e = {vξ, vξ′}, (p, q) ∈ argminp,q∈P {c(p, q) | ξ ∈ Ξl

p,q, ξ
′ ∈ Ξu

p,q}
c(p, q) if e = {vξ, d}, (p, q) ∈ argminp,q∈P {c(p, q) | ξ ∈ Ξl

p,q or ξ ∈ Ξu
p,q}

0 otherwise

Modelling the optimization problem 27

ξ1 ξ2

ξ5 ξ6

ξ7

d

d′

0 1 4 2

3

Figure 3.1: Example of model when applied to Example 2.2.1.

Since each edge in the graph corresponds to a resultant of two polynomials p, q ∈ P
we can simply use the cost function c to assign a weight to each edge. However, we
need to keep in mind that two resultants can potentially cover the same indexed root
expressions, and thus we will always pick the resultant with the lower cost. The only
exception is the edge {d, d′} since that edge is only needed to ensure correctness of the
model and is intended to be free of cost since it does not correspond to a resultant.

Note that we do not place any requirements on the cost function c other than
that the cost of a resultant should be non-negative. This is done to allow for the cost
function to be defined in any way that is suitable for the specific problem at hand.
For example, in the implementation we could use the cost function to assign a cost of
0 to resultants that have already been computed in the past. The cost function could
potentially be restricted to find a better model for the optimization problem in future
work.

Example 3.1.1. When applying the model to the indexed root expressions as seen in
Example 2.3.1 we get the graph as seen in Figure 3.1. In this example we only have to
consider the indexed root expressions ξ1, ξ2, ξ5, ξ6, ξ7 since the indexed root expressions
ξ3 and ξ4 are the only possible choice for the sector-defining indexed root expressions
and are therefore trivially covered by the reflexive and transitive closure of the ordering.
To construct the edges we have to consider the following resultants:

• resy(p1, p2) protects ξ1 and ξ5, and we will set the cost to 1.

• resy(p1, p3) protects ξ1 and ξ6, and we will set the cost to 4.

• resy(p2, p3) protects ξ2 and ξ6, and we will set the cost to 2.

• resy(p2, p4) protects ξ7, and we will set the cost to 3. For this indexed root expres-
sion we could consider multiple resultants, but we will assume that resy(p2, p4)
is the resultant with minimal cost.

For each of these resultants we will add an edge to the graph with the corresponding cost.
After solving the optimization problem we get the resultants resy(p1, p2), resy(p2, p3)
and resy(p2, p4) as the optimal solution. Using these resultants we can construct the
indexed root ordering as ⪯ = {(ξ7, ξ4), (ξ6, ξ4), (ξ5, ξ4), (ξ3, ξ2), (ξ2, ξ1)}.

Note that the sets do not consider pairs of indexed roots that intersect even though

28 Optimization model

we need to consider them in order to get an optimal ordering. To solve this we have
opted to simply try the different pairs of indexed roots in the implementation, i.e.
we construct the graph assuming the cases ξ(s) < ξ′(s) and ξ′(s) < ξ(s) respectively,
solve the minimum-weight edge cover and choose the one with the lower cost.

We have tried to find solutions by using a more sophisticated approach, but we
have not been able to find a solution that is both correct and efficient. The problem is
that when we consider intersecting indexed root expressions in the model we could
potentially get an ordering, where two or more intersecting indexed root expressions
are covered by the same resultant. One approach that we have tried is to first construct
a minimum-weight directed spanning tree of the intersecting indexed roots below and
above the sample point. Each edge would be interpreted as a resultant that could
potentially be included in the optimal solution. We would then include these resultants
in the reduction to the minimum-weight perfect matching as follows: Each resultant
would add two vertices to the graph and connect the indexed root expressions that are
covered by the resultant to the corresponding vertices. The idea behind this approach
is that the minimum-weight directed spanning tree will filter out resultants that would
not be included in the optimal solution anyway. Without these additional resultants
we could construct orderings without loops in the ordering, i.e. situations where
intersecting indexed root expressions cover each other circularly.

Unfortunately, this approach does not work in cases where two polynomials appear
in the same layer on one side of the sample point and in different layers on the other
side of the sample point since the minimum-weight directed spanning tree may filter
out resultants that are needed for the optimal solution.

Example 3.1.2. In this example we will consider the indexed root expressions and
sample point as seen in Figure 3.2a. The graph in Figure 3.2b shows how the described
approach would work on this instance. We first construct a minimum-weight directed
spanning tree of the indexed roots and then add the resultants of that tree to the graph as
shown in Figure 3.2a. Here the minimum-weight directed spanning tree is constructed
by adding the edges {ξ1, ξ4}, {ξ2, ξ4} and {ξ3, ξ4} to the graph. This means that the
resultants resxi(p1, p4), resxi(p2, p4) and resxi(p3, p4) must also be considered in the
optimization algorithm. For each resultant that we add additional vertices to the graph
and each indexed root expression that would be covered by the resultant is connected to
the corresponding vertices.

Unfortunately, the example is rather simple, and this approach does not work in
cases such as the one seen in Figure 3.3. Since the indexed root expressions of the
polynomials are not intersecting with the indexed root expression of polynomial p4
below the sample point, we do not get the same directed minimum-weight spanning tree
as above. Instead, we could, for example, get the resultants resxi

(p2, p1), resxi
(p2, p3)

and resxi(p1, p4) as the minimum-weight directed spanning tree. However, this would
also mean that we again have to many resultants in the graph, and we could once again
get a circular ordering if all resultants are included in the minimum-weight perfect
matching.

If we try each pair of indexed roots in the implementation we will get the correct
result, but the runtime of the algorithm will be exponential in the number of indexed
roots. In the evaluation (see Chapter 4) we will investigate how the naive approach
performs in practice. For the future, it would be interesting to investigate if the
problem has a polynomial time algorithm or if it is NP-hard.

Modelling the optimization problem 29

p1

ξ1

p2

ξ2

p3

ξ3

p4

ξ4

p1

ξ5

p2

ξ6

p3

ξ7

p4

ξ8

(a) Example instance with indexed root ex-
pressions. The dashed edges between in-
dexed root expressions show how the directed
minimum-weight spanning tree could be con-
structed. Here the directions of the edges
are omitted for simplicity.

ξ1 ξ2 ξ3 ξ4

ξ5 ξ6 ξ7 ξ8

p2,4p1,4 p3,4

p2,4p1,4 p3,4

(b) Example construction based on the in-
stance shown in Figure 3.2a. This graph
shows how the model would be modified
in the minimum-weight perfect matching.
Other parts of the reduction are omitted
because they are not required to show how
this approach works.

Figure 3.2: Example of an ideal case for the describe approach using minimum-weight
directed spanning tree.

p1 p2 p3 p4

p2p1 p3

p4

Figure 3.3: Example of a problematic set of indexed root expressions with multiple
intersections on either side.

30 Optimization model

Lastly, we want to highlight that this model only works for the restricted set Ξ̃ of
indexed root expressions. If we instead consider the unrestricted set Ξ of indexed root
expressions where each polynomial can appear multiple times above and below the
sample point, the problem becomes NP-hard. This is because our model assumes that
each resultant covers at most two different indexed root expressions, and we use this
assumption to construct the edges of the graph. However, in the unrestricted set Ξ a
resultant can cover any number of indexed root expressions. In this case we can prove
that the problem is NP-hard by reducing the SAT problem to this problem similar to
the reduction in Section 3.4.

As described in Section 2.3, we do not need to consider the unrestricted set Ξ
because delineability ensures that the restricted set Ξ̃ is sufficient to construct the
ordering. For this reason we will not consider the unrestricted set Ξ further in this
thesis and outline how this can be proven:

3.2 Correctness of the model

Given a set of indexed root expressions Ξ with respective polynomials P , a sample
point s and a solution to the corresponding minimum-weight edge cover instance
F ⊆ E, let R be the set of resultants that correspond to the edges in F . We now
create an indexed root ordering as defined in Definition 2.2.18 based on F :

⪯ = {(ξ, ξ′) | resx+1(p, q) ∈ R, ξ.p = p, ξ′.p = q, ξ(s) < ξ′(s) ≤ s} ∪
{(ξ′, ξ) | resx+1(p, q) ∈ R, ξ′.p = p, ξ.p = q, s ≤ ξ′(s) < ξ(s)}

To prove that this indexed root ordering is a valid solution we need to prove that it is
a valid indexed root ordering:

Proof. To prove that each indexed root is protected by the ordering, we will use
induction on the distance of the indexed root to the sample point s: Here we define the
distance of an indexed root ξ to the sample point s as the number of root functions or
intersections between itself and s. The base case are the indexed roots that are closest
to s. These indexed roots are the boundaries of the constructed cell and are therefore
trivially protected by the ordering. By the construction of the model, each vertex in
the graph is incident to at least one edge and as such, for each indexed root, there
exists a resultant resx+1(p, q) such that ξ.p = p or ξ.p = q. There must also exist
another indexed root ξ′ such that ξ′.p = p or ξ′.p = q. Depending on the ordering
ξ1(s) < · · · < ξn(s) of the indexed roots we have two cases:

• If ξ(s) < ξ′(s) ≤ s: Due to the induction hypothesis we know that ξ′ ⪯t I.l and
because of ξ ⪯ ξ′ we also know that ξ ⪯t I.l.

• If s ≤ ξ′(s) < ξ(s): Due to the induction hypothesis we know that I.u ⪯t ξ′ and
because of ξ′ ⪯ ξ we also know that I.u ⪯t ξ.

In both cases we have shown that ξ ⪯t I.l and I.u ⪯t ξ and therefore ξ is covered by
the ordering. This proof works similarly for the case where the given symbolic interval
is a section instead of a sector.

Maintaining connectedness 31

3.3 Maintaining connectedness

As described in Section 2.2.5, we sometimes need to ensure that the cells that are
computed are connected. We have to ensure this for the lower levels, i.e. for every
projection except the top most one. To ensure that the cells are connected, we will
use a simple heuristic:

After computing the indexed root ordering for the current level, we will check if
we need to maintain connectedness. If we do, we will first check if the model contains
a resultant that we can use for this purpose and if it does, we can simply add the
corresponding relation to the ordering. If we do not have a resultant that we can use,
we go through each possible resultant that we can use and select the one that has the
lowest cost. After selecting the resultant, we add the corresponding relation to the
ordering. This heuristic is not guaranteed to find the optimal solution, but it should
be able to find a solution that is good enough for most cases.

It is also possible to compute an optimal ordering that also guarantees connectedness
in polynomial time since there are O(P 2) possible resultants that we can use, and we
could simply try all of them and then apply the optimization algorithm to find the
optimal ordering. Since the optimization algorithm is solvable in polynomial time and
the number of possible resultants is polynomial with respect to the number of indexed
root expressions n we can also solve this problem in polynomial time. However, since
this would require us to solve the optimization problem multiple times, it would be
less efficient, and we will not use this approach in the implementation.

3.4 Integrating equational constraints

As discussed in Section 2.2.3, we can use equational constraints to further reduce the
complexity of CAD procedure. As such, we want to investigate how we can integrate
equational constraints into the optimization algorithm.

First, we want to show that the problem of finding the optimal indexed root
ordering and equational constraints is NP-complete. To accomplish this, we will reduce
the Satisfiability (SAT) problem to the Optimal-ordering-EC problem. We
define the SAT problem as follows:

Satisfiability (SAT)
Input: A Boolean formula in CNF over the set of variables X =

{x1, . . . , xn} with the set of clauses C = {c1, . . . , cm}.
Question: Is there an interpretation α : AP 7→ {0, 1} such that all clauses in

C are satisfied?

To reduce the SAT problem to the Optimal-ordering-EC problem, we need to
define the optimization problem as a decision problem:

Optimal-ordering-EC
Input: Set of indexed root expressions Ξ, set of polynomials P , sample

point s, cost functions cres : P × P 7→ R≥0 and cdisc : P 7→ R≥0,
cost limit k ∈ N.

Question: Is there an indexed root ordering and a set of equational constraints
that fulfill the constraints of Definition 2.2.18 such that the sum of
the costs of all resultants and discriminants is ≤ k?

Using these definitions we can now prove that Optimal-ordering-EC is NP-hard:

32 Optimization model

Proof. Given an instance of the SAT problem with a set of variables X = {x1, . . . , xn}
and a set of clauses C = {c1, . . . , cm} we will construct an instance of the Optimal-
ordering-EC problem. For each variable xi ∈ X we define the literal xi as the
negation of xi. First we will define the set of indexed root expressions:

Ξ = {ξuxi
, ξuxi

, ξlxi
, ξlxi

, ξxi
| xi ∈ X} ∪ {ξcj | cj ∈ C} ∪ {ξs}.

For each variable xi ∈ X we add the indexed root expressions ξuxi
, ξuxi

, ξlxi
, ξlxi

and
ξxi

. These indexed roots will be used to represent whether a variable will be assigned
the value 0 or 1. We also add an indexed root expression ξxi

for each variable xi to
represent the variable itself and to ensure that we pick either xi or xi. Furthermore,
we add an indexed root expression ξcj for each clause cj ∈ C to represent the clause
itself. The last indexed root expression ξs is used to represent the section defining
indexed root.

We also need to define the set of polynomials P and associate each indexed root
expression with a polynomial:

P = {pxi , pxi , qxi | xi ∈ X} ∪ {pcj | cj ∈ C} ∪ {ps}.

For each variable xi ∈ X we assign the polynomial pxi
to the indexed root expressions

ξuxi
, ξlxi

, and the polynomial pxi
to the indexed root expressions ξuxi

, ξlxi
. The polynomial

qxi
is assigned to the indexed root expression ξxi

.
The cost function cres : P × P → R≥0 is defined as follows:

cres(p, q) =

0 if p = pxi

and q = pcj and clause cj contains literal xi

0 if p = ps and either q = pxi
or q = pxi

+∞ otherwise

For each polynomial p we define the cost of the discriminant to be cdisc(p) = 1 the
cost limit will be set to k = n.

Example 3.4.1. Let φ = (x1 ∨ x2) ∧ (x1 ∨ x3) be an instance of SAT. Based on
this instance we can construct an instance of the Optimal-ordering-EC problem:
The graph in Figure 3.4 shows an example indexed root ordering along with the set of
equational constraints E. For each variable xi we have to add either pxi

or pxi
to the

set of equational constraints since otherwise we would have to add the costs of both
discriminant disc(pxi

) and disc(pxi
), which would exceed the cost limit. Whenever we

add the polynomial of a literal to E we also have to add the polynomial of the opposite
literal to the indexed root ordering because the ordering must also cover the indexed
root expressions ξxi

.

We will now show that the SAT instance is satisfiable if and only if the Optimal-
ordering-EC instance has a solution.

"⇒": Let α : AP 7→ {0, 1} be an interpretation that satisfies the SAT instance. Now
we will construct a solution to the Optimal-ordering-EC instance based on
the interpretation:

E = {pxi
| α(xi) = 0}.

Based on E we can define the partial order ⪯ as follows:

⪯= {(ξs, ξ) | ξ.p /∈ E} ∪ {(ξ, ξ′) | ξ.p /∈ E, ξ(s) ≤ ξ′(s)}

Integrating equational constraints 33

px1
px1

px1
px1

qx1

px2
px2

px2
px2

qx2

px3
px3

px3
px3

qx3

pc1 pc2

ps

Figure 3.4: Constructed graph based on the example. Each node represents an indexed
root expression and the label of each node is the associated polynomial. Relations
between indexed root expressions are indicated by directed edges between the nodes
while the nodes whose polynomials are in E are indicated by dashed outlines.

Due to the construction we know that for each variable xi we must have either
pxi

∈ E or pxi
∈ E while the literal that is not in E is protected by the ordering,

and we therefore know that we can also cover the indexed root expressions ξxi

with cost 0.

If the interpretation α satisfies the SAT instance then we also know that indexed
root expressions representing the clauses are also protected by the ordering. The
constructed solution is therefore valid and has a cost of at most n because we
need to add the cost of exactly three discriminants.

"⇐": Let (⪯, E) be a solution to the Optimal-ordering-EC instance. We will now
construct an interpretation α : AP 7→ {0, 1} for the SAT instance based on the
solution:

α(xi) =

{
1 if I.u ⪯ ξuxi

0 otherwise

Since the cost of the polynomial of the section defining indexed root expression
and the polynomial for each clause cj is +∞, we know that pcj /∈ E. Due to this
we know that for each indexed root expression ξcj there must exist an indexed
root expression ξlxi

such that ξlxi
⪯ xicj . We also know that ξs ⪯ ξlxi

since
otherwise the ordering would not be valid and that the literal xi must be in
the clause cj due to the definition of the cost function. This means that the
interpretation α satisfies all clauses in the SAT instance.

Each indexed root expressions ξxi
must also be covered by the ordering and

therefore there must exist an indexed root expression ξlxi
such that ξxi

⪯ ξlxi
.

34 Optimization model

This means that for each variable xi we must have either pxi
∈ E or pxi

since otherwise the cost of the discriminants would exceed the cost limit. The
assignment is therefore consistent and if the Optimal-ordering-EC instance
has a solution with a cost of at most n the SAT instance must also be satisfiable.

Since the reduction is polynomial and the SAT problem is NP-hard the Optimal-
ordering-EC problem is also NP-hard.

Since the Optimal-ordering-EC problem is NP-hard we will probably not be
able to find an optimal solution in polynomial time, and we will instead rely on a
heuristic to find a good set of equational constraints. Once we have found an optimal
indexed root ordering we will construct the set of equational constraints based on the
ordering:

E ={ξ.p | ξ ∈ dom(⪯), (ξs, ξ) ∈ ⪯ and ∄ξ′ ∈ dom(⪯) : (ξ, ξ′) ∈ ⪯} ∪
{ξ.p | ξ ∈ dom(⪯), (ξ, ξs) ∈ ⪯ and ∄ξ′ ∈ dom(⪯) : (ξ′, ξ) ∈ ⪯}.

This set of equational constraints will ensure that the ordering is valid and optimized
for the cost of resultants while still reducing the number of discriminants.

3.5 Resultant cost metrics
In this chapter we will discuss the different cost metrics that can be used to determine
the cost of a resultant. The cost of a resultant is an important factor in the optimization
problem since it determines the weight of the edges in the graph. The weight of the
edges is used to determine the optimal edge cover, which in turn determines the
optimal set of resultants to compute. The cost of a resultant can be determined by
different factors, such as the total degree of the resultant, the number of variables,
the number of monomials, the number of resultants, and the feature based cost. In
this chapter we will discuss these different cost metrics and how they can be used to
determine the cost of a resultant.

Total degree upper bound (Tdub)

As explained in Chapter 3, the total degree of a resultant is an important factor in the
running time of the CAD algorithm and as such it is a good metric to use for the cost
of a resultant. Since we do not know the exact total degree of the resultant we can
use an upper bound for the total degree as an approximation for the total degree of
the resultant. The total degree of a resultant is bounded by the product of the total
degrees of the input polynomials. This upper bound can be derived from Bézout’s
theorem.

Sum of total degree (Sotd)

As described in [DSS04], we define the cost of a resultant as follows: For both input
polynomials we calculate the total degree of each monomial and sum these total
degrees. The cost of the resultant is then the sum of these two numbers.

In the short term, this cost metric may not produce resultants with the lowest
total degree. However, since this cost metric looks at all monomials of the input
polynomials we hope that in the long term, it should hopefully produce resultants
with a lower average total degree.

Resultant cost metrics 35

Number of variables (Nv)

Setting the cost of the resultant to the number of variables in the resultant means
that we can potentially reduce the number of elimination steps in the CAD algorithm.
This could be beneficial since the runtime of the CAD algorithm is dominated by the
number of elimination steps.

The number of variables in the resultant can be determined by taking the size of
the union of the variables of the two input polynomials and subtracting one since we
are eliminating one variable.

Number of monomials (Nm)

The best upper bound for the number of monomials we found is presented in [Kal93]
and depends on the degrees of the input polynomials. Unfortunately, the number of
monomials in the resultant can quickly explode and as such the upper bound can
return vastly different results even for polynomials of similar degrees.

For this reason we instead decided to simply sum the number of monomials in
the input polynomials. This approach is simpler to compute and makes the cost of a
resultant more predictable and comparable.

Number of resultants (Nr)

By setting the cost of a resultant to 1 we can use the number of resultants as the cost
of a resultant. This could be beneficial since we can potentially reduce the number of
resultants that need to be computed.

Feature based (Fb)

In order to reduce the running time of the CAD algorithm, we can choose the variable
ordering for the projection and lifting phases [DSS04] and finding better variable
orderings is an active area of research. Some statistical analysis of this problem has
been done in [PdEC24] and presents some metrics that can be used to construct efficient
variable orderings. The metrics presented in [PdEC24] all use simple operations such
as the sum, average, or maximum of some set of polynomials.

In our case we will adapt one of these metrics to define the cost of a resultant.
Specifically, the set of polynomials S will be our input polynomials, and we will use
sum(max(vi(S))) as our cost, which is the sum of the maximum exponent of the
variable xi in the polynomials in S. There are many more possible combinations of
operations as shown in [PdEC24], but we will only use the above-mentioned metrics.

Variable depth (Vd)

Similar to minimizing the number of variables, we can also minimize the level of the
resultant of the input polynomials. Here the level of a polynomial is defined as the
maximum level of any variable in the polynomial.

Total degree exact (Tde)

For experimental purposes we will also use the exact total degree of the resultant by
simply calculating the resultant and taking the total degree of the resultant. This is
not a practical cost metric since it requires computing the resultant, but we will use

36 Optimization model

this metric to see what effect the exact total degree has on the number of cells and
size of the cells.

Chapter 4

Evaluation

As part of this thesis, we implemented the discussed algorithm variants and tested
them to evaluate their performance. Specifically, we implemented the algorithm to
compute the optimal indexed root ordering along with the different cost metrics as
discussed in Section 3.5. For this purpose, we implemented the algorithms in C++ as
part of the SMT-RAT solver [CKJ+15]. SMT-RAT is a state-of-the-art SMT solver
that focuses on real arithmetic. Most importantly, SMT-RAT already contains an
implementation of the levelwise algorithm for computing CADs. The solver is also
highly optimized and allows for easy integration of new algorithms. Each of the cost
metrics is represented by a separate strategy in the solver, which allows for easy
switching between the different cost metrics. Additionally, we will also evaluate the
performance of the Biggest Cell (BC) and Lowest Degree Barrier (LDB)
heuristics (see Definition 2.3.1 and Definition 2.3.2 respectively).

The benchmarks were run on the QF_NRA benchmark set from the SMT-LIB
benchmark library [BFN+24]. This benchmark set was created using the SMT-LIB
language for the purpose of having a standardized set of benchmarks to evaluate the
accuracy and performance of SMT solvers. As of the time of writing, the QF_NRA
benchmark set contains 12134 benchmarks that are taken from real-world problems
in other research areas. We therefore consider this benchmark set to be a good
representation of the problems that are typically solved using SMT solvers and have
decided to use it for our evaluation.

To evaluate the performance of the algorithms on the benchmarks, we ran the
SMT-RAT solver using the benchmax tool1 with a time limit of 1min and a memory
limit of 4GB on the RWTH High Performance Computing Cluster. Specifically, we
ran the solver on the CLAIX-2018 HPC segment, which consists of 1243 nodes with
2x Intel Xeon Platinum 8160 processors each2. Besides the total running time of
a benchmark, we measured different parts of the algorithm in microseconds since
milliseconds are not precise enough to measure some parts of the implementation.

We used the statically linked version of the SMT-RAT solver for the evaluation
with the build type set to RELEASE to ensure optimal performance. In the following
sections, we present the results of the evaluation and we will also discuss the bottlenecks
of the algorithm more broadly.

1https://ths-rwth.github.io/smtrat/dd/d0f/benchmax.html
2https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/

https://ths-rwth.github.io/smtrat/dd/d0f/benchmax.html
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/

38 Evaluation

sat unsat wrong timeout memout segfault solved

BC 5123 5006 0 1711 103 191 10129
LDB 5120 5005 0 1700 114 195 10125
FB 5121 5009 0 1684 103 217 10130
NM 5122 5006 0 1703 99 204 10128
NR 5119 5009 0 1693 103 210 10128
NV 5123 5009 0 1691 92 219 10132
SOTD 5119 5007 0 1724 91 193 10126
TDE 5123 5008 0 1708 108 187 10131
TDUB 5120 5009 0 1702 91 212 10129
VD 5119 5007 0 1703 112 193 10126

Table 4.1: Number of answers returned by each strategy. The number wrong denotes
instances where the strategy returned either sat or unsat while the correct answer
was the opposite. The number timouts, memouts and segfaults are instances where
the solver could not solve the benchmark due to a lack of time, memory or an error
during execution. The number solved shows the number of benchmarks where the
solver returned either sat or unsat.

4.1 Result overview

We first want to look at the results of the benchmarks and check if the algorithm is
able to solve the benchmarks correctly: From the results in Table 4.1, we can see that
the algorithm was able to solve the majority of the benchmarks within the time limit.
Out of those that were solved, the algorithm was able to solve all of them correctly.

We can see that all strategies have a high number of segfaults, timeouts and
memouts. When looking at the output of the solver, we can see that the segfaults are
caused by the solver running out of memory and are misreported as segfaults. The
number of timeouts and memouts is expected since some benchmarks are very hard to
solve and require more resources to solve. Similar tests (like the ones in [NÁS+24]) have
shown that these numbers are not unusual when testing on the QF_NRA benchmark
set.

Most importantly, the results show that the new strategies are generally not able to
solve more benchmarks than the original strategies. In some cases, the new strategies
solve a few more benchmarks than the original strategies while in other cases they
solve fewer benchmarks.

4.2 Performance profiling

Next, we want to look at the runtime of the benchmarks and see how the new strategies
compare to the originals: The results in Table 4.2 show that the new strategies are
generally slightly faster than the original strategies by some milliseconds and the
standard deviation is also slightly lower, which means that the new strategies are more
consistent in their runtime.

When looking at the scatter plot in Figure 4.1, we can see how the LDB and TDUB
strategies compare to each other in each instance. Most notably, we can see some
instances where the runtime was reported to be above 60 s. These are the instances

Performance profiling 39

runtime mean (s) runtime stddev (s) runtime median (s)

BC 0.7335 3.0750 0.0610
LDB 0.7257 3.0511 0.0600
FB 0.7035 2.8759 0.0600
NM 0.7041 2.8952 0.0610
NR 0.7040 2.8893 0.0610
NV 0.7059 2.9402 0.0590
SOTD 0.7090 2.9047 0.0600
TDE 0.7204 3.0104 0.0600
TDUB 0.7086 2.8886 0.0600
VD 0.7106 2.9229 0.0600

Table 4.2: Runtime statistics for each strategy. Only the instances that were solved
by each solver are considered.

0 10 20 30 40 50 60 70
LDB

0

10

20

30

40

50

60

70

TD
UB

Figure 4.1: Scatter plot comparing the total running time for the LDB and TDUB
strategies. All instances are considered in the plot.

40 Evaluation

9700 9800 9900 10000 10100 10200
number of solved instances

0

10

20

30

40

50

60

ru
nn

in
g

tim
e

(s
)

BC
LDB
FB
NM
NR
NV
SOTD
TDE
TDUB
VD

Figure 4.2: Performance profile showing the number of solved instances in relation to
their running time for each strategy.

where the respective strategy was not able to solve the benchmark within the time
limit and instead the solver timed out. This shows us that there are some instances
where the new strategies are able to solve an instance while the original strategies are
not able to solve the same instance and vice versa. When looking at these instances it
is difficult to find a reason why one strategy is able to solve the instance while the
other is not. This is because small differences in the explanation calls can lead to large
differences in the execution path later on. Since the optimization algorithm can not
effectively predict what will happen after the indexed root ordering is computed, it is
difficult to conclude why one strategy is better than the other.

If we look at the performance profile in Figure 4.2, we can again see that the new
strategies do not perform significantly better than the original strategies. The number
of solved instances compared to the running time is similar for all strategies.

We also want to look at the performance of the optimization algorithm itself and see
how much time is spent on finding the optimal indexed root ordering. Table 4.3 shows
that the runtime of the optimization algorithm is about the same for most strategies
at around 1.5ms. The outlier is the TDE strategy which can be explained by the fact
that the TDE strategy spends more time on computing the cost of each resultant.
When looking at the box plot in Figure 4.3, we can also see a more detailed view of
the runtime of the optimization algorithm for the TDUB strategy. It shows that there
are some outliers that require significantly more time to compute the optimal indexed
root ordering. There was an additional outlier in the TDUB strategy that took around
6 s which is not shown in the box plot for better readability. These outliers are caused
by intersecting indexed root expressions as explained in Section 3.1, and it shows that
the optimization algorithm is not perfect. However, since these outliers are very few
and far between, we can assume that the optimization algorithm is generally working
as intended.

Performance profiling 41

ordering runtime
mean (ms)

ordering runtime
median (ms)

FB 1.57 0.01
NM 1.52 0.01
NR 0.97 0.01
NV 1.52 0.01
SOTD 1.52 0.01
TDE 245.14 0.01
TDUB 1.43 0.01
VD 1.71 0.01

Table 4.3: Runtime statistics for the optimization algorithm.

0

50

100

150

200

250

300

Ti
m

e
(m

s)

Figure 4.3: Box plot showing the distribution of the runtime of the optimization
algorithm.

42 Evaluation

total degree mean total degree stddev

BC 2.67 5.43
LDB 2.68 5.54
FB 2.57 4.89
NM 2.56 4.79
NR 2.60 4.95
NV 2.49 4.07
SOTD 2.56 4.82
TDE 2.45 4.00
TDUB 2.56 4.88
VD 2.49 4.07

Table 4.4: Average total degree and standard deviation of all projections computed.
Only the instances that were solved by each solver are considered.

4.3 Total degree

Next, we want to further analyze the effects of the cost metrics. The results in
Table 4.4 show that the optimized strategies are generally able to slightly reduce
the total degree of the resultants. When comparing the average total degree of the
resultants, we can look at the TDE strategy to see how far we can expect to reduce
the total degree in an optimal case. The closest strategies to the TDE strategy are
the NV and VD strategies which both have a slightly higher average total degree. We
could possibly explain this by the fact that these strategies reduce the total number
of elimination steps in the projection phase and this in turn leads to fewer resultants
that are computed and thus a lower total degree.

4.4 Number of cells

Similar to [NÁS+24], we also want to look at the number cells that are computed
because the number of cells is a good indicator of the complexity of the problem. To
measure the number of cells, we will look at the number of explanation calls that are
made. Since the number of explanation calls is proportional to the number of cells, we
can use this as a proxy for the number of cells. Table 4.5 shows that the number
of cells that are computed is lower overall. When looking at the scatter plots for the
LDB strategy compared to the NV and VD strategies in Figure 4.5, we can see that
the number of cells stays mostly the same for the new strategies compared to the
original strategies except for a few outliers where the number of cells is lower for the
new strategies. One possible explanation for the lower number of cells is the lower
total degree of the polynomials. Since the number of roots of any polynomial depends
on the degree of the polynomial, the number of roots should be lowered for the newer
strategies. This also means that the cells that are computed are bigger because the
number of roots is lower and thus the number of cells is also lower.

Number of cells 43

100 101 102

LDB

100

101

102
TD

UB

Figure 4.4: Scatter plot of the average total degree for the LDB and TDUB strategies.

mean #cells per instance stddev #cells per instance

BC 21.05 112.25
LDB 21.05 112.25
FB 20.64 109.72
NM 20.59 109.85
NR 20.70 110.12
NV 20.58 109.22
SOTD 20.56 109.11
TDE 20.65 109.72
TDUB 20.58 109.21
VD 20.74 111.10

Table 4.5: Number of cells computed for each strategy. Only the instances that were
solved by each solver are considered.

44 Evaluation

0 500 1000 1500 2000 2500 3000
LDB

0

500

1000

1500

2000

2500

3000

NV

(a) Comparison of number of computed cells
between the strategies LDB and NV

0 500 1000 1500 2000 2500 3000
LDB

0

500

1000

1500

2000

2500

3000

VD

(b) Comparison of number of computed cells
between the strategies LDB and VD

Figure 4.5: Scatter plots showing the number of cells computed for the LDB strategy
compared to the NV and VD strategies respectively.

resultant mean
runtime (ms)

discriminant mean
runtime (ms)

is zero mean
runtime (ms)

real roots mean
runtime (ms)

factorization
runtime (ms)

BC 9.37 60.77 4.49 17.58 33.16
LDB 9.24 61.02 4.16 17.65 33.30
FB 7.11 60.70 4.51 17.04 30.29
NM 6.68 56.10 4.33 17.01 31.72
NR 6.96 60.68 4.48 17.38 30.35
NV 6.38 62.51 4.23 17.14 31.12
SOTD 7.08 58.43 4.79 17.84 30.89
TDE 7.13 60.87 4.48 20.91 31.19
TDUB 7.22 61.75 4.49 17.37 32.12
VD 7.12 61.81 4.32 17.31 30.85

Table 4.6: Amount of time spent on computing different parts of the projection. Only
the instances that were solved by each solver are considered.

4.5 Projection runtime profiling
As discussed earlier, we want to also investigate how much time it takes to compute
projections and how the time is distributed over all the calculated projections. Specifi-
cally, we want to know what causes the computation times of the projections to be
particularly high and if there are any patterns that we can identify. Alongside the
resultants and discriminants, we also want to consider

• factorization of polynomials,

• computation of the real roots of polynomials and

• the function which checks whether a polynomial is zero at a given point.

Table 4.6 shows that the mean computation times of the resultants for the new
strategies are generally lowered by approximately 2ms compared to the original
strategies. However, the average computation times of the resultants are already

Projection runtime profiling 45

mean
#resultant

mean
#discriminant

mean
#is zero

mean
#real roots

mean
#factorizations

BC 47.39 99.87 261.54 209.93 167.05
LDB 47.37 99.87 261.53 209.93 167.04
FB 46.62 98.42 257.92 206.95 164.41
NM 46.36 98.04 256.72 206.07 163.85
NR 46.67 98.77 258.33 207.51 164.79
NV 46.43 98.03 256.46 205.90 163.73
SOTD 46.28 97.83 255.87 205.49 163.47
TDE 46.60 98.45 257.28 206.64 164.38
TDUB 46.39 98.00 256.30 205.87 163.71
VD 46.81 98.98 258.80 207.98 165.19

Table 4.7: Number of times each part of the projection was computed. Only the
instances that were solved by each solver are considered.

resultant
#timeouts

discriminant
#timeouts

is_zero
#timeouts

real_roots
#timeouts

factorization
#timeouts

ordering
#timeouts

BC 29 472 3 18 107 0
LDB 28 474 3 18 110 0
FB 49 427 1 15 123 0
NM 47 441 3 24 104 0
NR 52 450 2 22 110 0
NV 52 449 0 23 86 0
SOTD 51 446 1 17 101 0
TDE 18 438 2 19 108 48
TDUB 45 448 4 21 108 0
VD 55 446 4 18 101 0

Table 4.8: Number of times the timer was interrupted, i.e. still running at the end of
execution.

rather low with and the difference between the original and new strategies is also very
small.

The results in Table 4.7 show that each part of the projection is computed fewer
times for the new strategies compared to the original strategies. This is probably
caused by the reduction in the number of cells that are computed as we saw in
Table 4.5. Furthermore, the results could be a possible explanation for the reduction
in computation times of the resultants that we saw in Table 4.6.

The table in Table 4.8 shows how often the timers were interrupted in total for
each strategy. While we can not conclude that any timeout was specifically caused by
the part of the projection that was being computed, we will still look at the results to
see if there are any patterns since more expensive parts of the projection should be
more likely to cause a timeout.

It shows that the number of interrupted timers actually increased during the
computation of the resultants for the new strategies. This is surprising because we saw
that the new strategies were able to reduce the computation times of the resultants.

46 Evaluation

0 2 4 6 8 10
runtime (s)

100

101

102

103

co
un

t
BC
LDB
FB
NM
NR
NV
SOTD
TDE
TDUB
VD

Figure 4.6: Number of resultants distributed over amount of time required to compute
the resultant.

The only exception is the TDE strategy which has significantly fewer interrupted
timers for the resultants. However, this can be explained by the fact that the TDE
strategy has many timeouts during the cost calculation instead.

Only for the discriminants, we see a clear pattern where the new strategies have
fewer interrupted timers. For the other parts of the projection, the number of
interrupted timers do not show a clear pattern. Most importantly, the results show that
the major bottleneck in the computation times of the projections are the discriminants
and factorization.

4.5.1 Resultants

Looking further into the computation times of the resultants and discriminants, we
want to know if long computation times are caused by a few resultants that take a long
time to compute or if the time is evenly distributed over many resultants. Looking
at the results in Figure 4.6, we can see that the majority of the resultants take only
a fraction of a second to compute. In a few instances, the solvers spent around 10
seconds on computing the resultants. While these instances are problematic because
they take up a large portion of the one-minute timeout limit, they are not the majority
of the instances. Together with the previous results, we can see that resultants are
not as problematic as previously thought.

4.5.2 Discriminants

For the discriminants, we can see a similar pattern in Figure 4.7 compared to the
resultants. However, discriminants generally take a lot longer to compute than
resultants as we already saw in Table 4.6, but the extreme values are a lot more

Projection runtime profiling 47

0 10 20 30 40
discriminant runtime (s)

100

101

102

103
co

un
t

BC
LDB
FB
NM
NR
NV
SOTD
TDE
TDUB
VD

Figure 4.7: Number of discriminants distributed over amount of time required to
compute the discriminant.

pronounced for the discriminants. Here we can see for some instances the solver spent
up to around 40 seconds on computing the discriminants, but these instances are also
very few and far between.

For the purpose of finding the cascading effect of the resultants and discriminants,
we also want to further investigate how much impact the resultants and discriminants
have on the computation times of other discriminants. Specifically, we want to know
how much time is spent on computing the discriminants of the resultants and the
discriminants of the discriminants. This is important because the complexity of the
CAD algorithm is exponential due to the fact that we have to compute resultants and
discriminants of polynomials that are themselves resultants and discriminants of other
polynomials, which causes the total degree of the resultants and discriminants to grow
exponentially [Col76]. When comparing the results from Table 4.9 to the results
from Table 4.6, we can see that a significant amount of time is spent on computing
the discriminants of the resultants and the discriminants of the discriminants. When
comparing the different strategies, we can see the optimized strategies are able to
slightly reduce the computation times of the discriminants of the resultants. For the
discriminants of discriminants, we do not see a clear pattern that shows that the new
strategies are better than the original strategies. The reduction in computation time
here could be a possible explanation for the reduction in timeouts that we saw in
Table 4.8.

The scatter plots in Figure 4.8 show a finer grained view for each instance in the
LDB and TDUB strategies. Unfortunately, we do not see a clear pattern that shows
that the new strategies are better than the original strategies in any of the scatter
plots.

48 Evaluation

disc of res
timer mean (ms)

disc of disc
timer mean (ms)

BC 19.33 23.95
LDB 18.07 23.83
FB 15.73 23.55
NM 13.90 23.15
NR 16.11 25.26
NV 17.39 25.14
SOTD 16.26 22.92
TDE 15.68 23.80
TDUB 15.91 23.56
VD 16.37 25.60

Table 4.9: Amount of time spent on computing discriminants of resultants and
discriminants of discriminants. Only the instances that were solved by each solver are
considered.

101 102 103 104 105 106 107

LDB

101

102

103

104

105

106

107

TD
UB

(a) Comparison of total time spent on comput-
ing discriminants of resultants for the LDB
and TDUB strategies

101 102 103 104 105 106 107

LDB

101

102

103

104

105

106

107

108

TD
UB

(b) Comparison of total time spent on com-
puting discriminants of discriminants for the
LDB and TDUB strategies

Figure 4.8: Scatter plots showing the total time spent on computing discriminants of
either resultants of other discriminants for the LDB strategy compared to the SOTD
strategy.

Chapter 5

Conclusion

At the beginning of this thesis, we introduced the problem of finding the optimal indexed
root ordering for the computation of cells in the levelwise single cell construction
algorithm. Now that we have presented the optimization problem and evaluated the
implementation, we can conclude on the results and discuss possible future work.

5.1 Future work

While the implementation of the optimization problem is already quite efficient, there
are still some areas where the model could be improved.

Model modifications

First, the model cannot yet handle the case where multiple indexed root expressions
intersect. We have shown that this case is more complex and have explored ways to
solve it, but we have not yet found a suitable solution. It would be interesting to
investigate if there is a way to integrate this case into the model or if this case makes
the problem NP-hard. Alternatively, we could investigate if there is a way to solve
this case in a heuristic way that is efficient and still returns good results.

In Section 3.3 we have shown the difficulties of addressing the connectedness of the
cell in the model. We presented a possible solution, but we have not yet been able to
find a solution that is efficient and guaranteed to yield optimal results. Future work
could investigate if there is a way to solve this problem in a more efficient way.

Cost functions

Another area that could be investigated further is the cost functions. We have shown
wide range of cost functions that could be used, but there are still many more that could
possibly be used. For example, we could try to accurately calculate the total degree of
the resultants and use that as a cost function by calculating only the monomial with
the highest total degree in the resultant. This could potentially allow us to reduce the
computation time of the TDE strategy while still maintaining the same quality of the
resultants.

The ideas from the feature based cost function could also be extended to include
more features as in [PdEC24]. We imagine that the features could be combined as a

50 Conclusion

sort of cost vector. This would require some work to adapt the optimization algorithm
to handle vectors, but it could potentially lead to better results.

Discriminants
In Chapter 4 we have shown that a major bottleneck in the computation of projections
is the computation of the discriminants. We already saw that optimizing for the cost
of resultants can reduce the time spent on computing discriminants since we have to
also compute discriminants for the resultants later in the projection, but discriminants
still take up a large portion of the computation time. As such it would be interesting
to investigate if there is a way to optimize the computation of discriminants in the
same way as we have optimized the computation of resultants. In the context of this
optimization problem, we can only optimize the computation of discriminants for the
section case by using equational constraints, and it would be interesting to investigate
if there are ways to reduce the impact of discriminants more broadly.

5.2 Summary
In this thesis we have presented an optimization problem for the computation of indexed
root orderings. We have shown that the problem can be solved using graph-based
optimization techniques and have presented a model for the optimization problem.
We have also investigated different cost functions for resultants and have shown that
the cost function can have a significant impact on the quality of the resultants. The
implementation of the optimization problem has been evaluated on a set of benchmarks,
and we have shown that the implementation is efficient and can be used to optimize
the computation of indexed root orderings. However, we also looked at current
bottlenecks in the levelwise single cell construction algorithm and have shown that the
computation of discriminants is a major bottleneck. During our evaluation we have
shown that the optimization algorithm is able to slightly reduce the computation times
of the resultants, the average total degree and the average number of computed cells.
However, we also found that the optimization algorithm does not help the levelwise
single cell construction algorithm to answer more queries within the timeout limit
and that the major bottlenecks in the computation times of the projections are the
discriminants and factorization. Lastly, we have presented some ideas for future work
that could be done to improve the model and the implementation of the optimization
problem.

Acknowledgements

A special thank you to my advisor, Jasper Nalbach, for their guidance and assistance
throughout the entire process. Your input has greatly contributed to the development
of my thesis. I want to express my sincere appreciation to Prof. Dr. Erika Ábrahám
for giving me the opportunity to work on my thesis at THS and Prof. Dr. Jürgen
Giesl for being the second examiner of my thesis.

Simulations were performed with computing resources granted by RWTH Aachen
University under project thes1647.

52 Conclusion

Bibliography

[BDE+16] Russell Bradford, James H. Davenport, Matthew England, Scott Mc-
Callum, and David Wilson. Truth table invariant cylindrical algebraic
decomposition. Journal of Symbolic Computation, 76:1–35, Septem-
ber 2016. https://www.sciencedirect.com/science/article/
pii/S0747717115001005.

[BFN+24] Clark Barrett, Pascal Fontaine, Aina Niemetz, Mathias Preiner, Hans-
Jörg Schurr, and Cesare Tinelli. SMT-LIB release 2023 (non-incremental
benchmarks). https://zenodo.org/records/10607722, February
2024.

[BK15] Christopher W. Brown and Marek Košta. Constructing a single cell
in cylindrical algebraic decomposition. Journal of Symbolic Computa-
tion, 70:14–48, September 2015. https://www.sciencedirect.com/
science/article/pii/S0747717114000923.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving. In Marijn Heule and Sean Weaver, editors,
Theory and Applications of Satisfiability Testing – SAT 2015, pages 360–
368, Cham, 2015. Springer International Publishing.

[Col76] George E. Collins. Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition: A synopsis. SIGSAM Bull., 10(1):10–
12, February 1976. https://dl.acm.org/doi/10.1145/1093390.
1093393.

[CR99] William Cook and André Rohe. Computing Minimum-Weight Perfect
Matchings. INFORMS Journal on Computing, 11(2):138–148, May
1999. https://pubsonline.informs.org/doi/10.1287/ijoc.
11.2.138.

[dJ13] Leonardo de Moura and Dejan Jovanović. A Model-Constructing Satisfiabil-
ity Calculus. In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni,
editors, Verification, Model Checking, and Abstract Interpretation, pages
1–12, Berlin, Heidelberg, 2013. Springer.

[DPS18] Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling Algorithms for Weighted
Matching in General Graphs. ACM Trans. Algorithms, 14(1):8:1–8:35,
January 2018. https://dl.acm.org/doi/10.1145/3155301.

https://www.sciencedirect.com/science/article/pii/S0747717115001005
https://www.sciencedirect.com/science/article/pii/S0747717115001005
https://zenodo.org/records/10607722
https://www.sciencedirect.com/science/article/pii/S0747717114000923
https://www.sciencedirect.com/science/article/pii/S0747717114000923
https://dl.acm.org/doi/10.1145/1093390.1093393
https://dl.acm.org/doi/10.1145/1093390.1093393
https://pubsonline.informs.org/doi/10.1287/ijoc.11.2.138
https://pubsonline.informs.org/doi/10.1287/ijoc.11.2.138
https://dl.acm.org/doi/10.1145/3155301

54 Bibliography

[DSS04] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient projection
orders for CAD. In Proceedings of the 2004 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’04, pages 111–118, New
York, NY, USA, July 2004. Association for Computing Machinery. https:
//doi.org/10.1145/1005285.1005303.

[Duc00] Lionel Ducos. Optimizations of the subresultant algorithm.
Journal of Pure and Applied Algebra, 145(2):149–163, January
2000. https://www.sciencedirect.com/science/article/
pii/S0022404998000814.

[EBD20] Matthew England, Russell Bradford, and James H. Davenport.
Cylindrical algebraic decomposition with equational constraints.
Journal of Symbolic Computation, 100:38–71, September 2020.
https://www.sciencedirect.com/science/article/pii/
S0747717119300859.

[FOSV17] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan Tung Vu.
Subtropical Satisfiability. In Clare Dixon and Marcelo Finger, editors,
Frontiers of Combining Systems, pages 189–206, Cham, 2017. Springer
International Publishing.

[Kal93] Michael Kalkbrener. An upper bound on the number of monomials in the
Sylvester resultant. In Proceedings of the 1993 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’93, pages 161–163, New
York, NY, USA, August 1993. Association for Computing Machinery.
https://dl.acm.org/doi/10.1145/164081.164116.

[McC98] Scott McCallum. An Improved Projection Operation for Cylindrical
Algebraic Decomposition. In Bob F. Caviness and Jeremy R. Johnson,
editors, Quantifier Elimination and Cylindrical Algebraic Decomposition,
pages 242–268, Vienna, 1998. Springer.

[McC99] Scott McCallum. On projection in CAD-based quantifier elimination
with equational constraint. In Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’99, pages
145–149, New York, NY, USA, July 1999. Association for Computing
Machinery. https://dl.acm.org/doi/10.1145/309831.309892.

[NÁS+24] Jasper Nalbach, Erika Ábrahám, Philippe Specht, Christopher W. Brown,
James H. Davenport, and Matthew England. Levelwise construction
of a single cylindrical algebraic cell. Journal of Symbolic Computa-
tion, 123:102288, July 2024. https://www.sciencedirect.com/
science/article/pii/S0747717123001025.

[PdEC24] Lynn Pickering, Tereso del Río Almajano, Matthew England, and
Kelly Cohen. Explainable AI Insights for Symbolic Computation: A
case study on selecting the variable ordering for cylindrical algebraic
decomposition. Journal of Symbolic Computation, 123:102276, July
2024. https://www.sciencedirect.com/science/article/
pii/S0747717123000901.

https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/1005285.1005303
https://www.sciencedirect.com/science/article/pii/S0022404998000814
https://www.sciencedirect.com/science/article/pii/S0022404998000814
https://www.sciencedirect.com/science/article/pii/S0747717119300859
https://www.sciencedirect.com/science/article/pii/S0747717119300859
https://dl.acm.org/doi/10.1145/164081.164116
https://dl.acm.org/doi/10.1145/309831.309892
https://www.sciencedirect.com/science/article/pii/S0747717123001025
https://www.sciencedirect.com/science/article/pii/S0747717123001025
https://www.sciencedirect.com/science/article/pii/S0747717123000901
https://www.sciencedirect.com/science/article/pii/S0747717123000901

Bibliography 55

[Sch02] Alexander Schrijver. Combinatorial Optimization. Springer Berlin,
Heidelberg, December 2002. https://link.springer.com/book/
9783540443896.

[TVKO17] Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa. raSAT:
An SMT solver for polynomial constraints. Form Methods Syst
Des, 51(3):462–499, December 2017. https://doi.org/10.1007/
s10703-017-0284-9.

[Wei97] V. Weispfenning. Quantifier Elimination for Real Algebra — the Quadratic
Case and Beyond. AAECC, 8(2):85–101, January 1997. https://doi.
org/10.1007/s002000050055.

https://link.springer.com/book/9783540443896
https://link.springer.com/book/9783540443896
https://doi.org/10.1007/s10703-017-0284-9
https://doi.org/10.1007/s10703-017-0284-9
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055

56 Bibliography

Appendix A

Evaluation details

A.1 Version details
We used the following software libraries for the evaluation:

Library Version
Boost 1.83.0
CArL 24.02
gmp 6.3.0
Eigen3 3.3.9

Table A.1: Versions of the libraries used for the evaluation.

All code was compiled using GCC version 13.0.0. Additionally, we used code from
the following repository for the implementation of the minimum cost perfect matching
algorithm1.

1https://github.com/dilsonpereira/Minimum-Cost-Perfect-Matching (commit
c916cc1)

https://github.com/dilsonpereira/Minimum-Cost-Perfect-Matching

	Introduction
	Research questions
	Thesis outline

	Preliminaries
	Satisfiability modulo theories
	Cylindrical algebraic decomposition algorithm
	Heuristics for indexed root orderings
	Optimization problems and graph algorithms

	Optimization model
	Modelling the optimization problem
	Correctness of the model
	Maintaining connectedness
	Integrating equational constraints
	Resultant cost metrics

	Evaluation
	Result overview
	Performance profiling
	Total degree
	Number of cells
	Projection runtime profiling

	Conclusion
	Future work
	Summary

	Bibliography
	Evaluation details
	Version details

