
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

ACCELERATING SYMBOLIC SIMULATION

TO ANALYZE THE EFFECT

OF DELAYS IN TRAIN TIMETABLES

Niklas Kotowski

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Thomas Noll
Additional Advisor:
Rebecca Haehn Aachen, 30.09.2021

Abstract

Railway traffic is a substantial part of public transport and its safe execution
and reliability is a significant factor in the timetable performance. To improve
reliability and quality of service, symbolic simulation is deployed to analyze the
propagation of train delays in railway systems. Inside of the timetable execution
trains are depicted by stochastic cases representing train instances. The precise
computation of train delay propagation leads to inevitable growth of the state
space slowing down the simulation to an impractical state.

This thesis aims at accelerating the procedure and improving the overall
algorithm scalability by applying different reduction techniques. The thesis be-
gins with theoretical foundations and a detailed illustration of the simulation
process. Then, the first reduction method in form of a set of rules is intro-
duced and implemented in a reduction framework. As the abstraction of train
instances comprises an extended potential of reducible instances not covered by
these reduction rules, an efficient SAT encoding extending the reduction rules
is defined and solved in form of a bounded model checking approach. Finally
the implementations are evaluated on a set of examples varying in size and com-
plexity. The experimental evaluation shows significant reductions of the number
of stored instances and correspondingly the runtime of symbolic simulation. On
large inputs the approach has a maximal runtime improvement of 99%.

This thesis took a huge step in the direction of efficient execution of the
approach on large railway timetables allowing even the computation of input
examples previously not terminating in a period of hours.

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

Niklas Kotowski
Aachen, den 30. September 2021

Acknowledgements
I would like to thank Prof. Dr. Erika Ábrahám for the opportunity to work on this
research topic and the helpful thoughts and discussions. Furthermore, I want to thank
Rebecca Haehn for the constant support and the many meetings. Additionally I want
to thank my family and especially Jana for always supporting me.

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Railway System . 11
2.2 Scenarios . 13
2.3 Timetable Execution . 15

3 Iterative Reduction 21
3.1 Reduction Rules . 23
3.2 Implementation . 28
3.3 Proof of Correctness . 35

4 Bounded Model Checking Approach 43
4.1 SAT Encoding . 44
4.2 BMC . 56

5 Experimental Results 59
5.1 Contextual Setup . 59
5.2 Evaluation . 60

6 Conclusion 69
6.1 Summary . 69
6.2 Future Work . 70

Bibliography 71

Chapter 1

Introduction

In today’s railway systems the importance of punctual train schedules is of substantial
relevance. Public transportation and their performance have a significant effect on
the global system they are part of e.g. punctual arrival at work. A complete rebuild
and improvement of the infrastructure is exceeding realistic boundaries. Therefore,
the focus is set on enhancing the current analysis tools in order to develop robust
timetables. The idea of analyzing train delay propagation has shown to have promising
potential to further increase efficiency and reliability of train timetables, as shown in
[HÁN21] and [JNRSfTL06].

Railway timetables are mainly influenced by uncertain events that cannot be ac-
curately predicted. Those events are frequently malfunctions of the underlying infra-
structure, extreme weather conditions or external factors of diverse unplanned events.
To examine the impact of disruptive factors on the remaining timetable, we decided
to model those with primary delay distributions.

We simulate the railway timetable symbolically under special consideration of the
primary delay values to analyze the impact of those on the complete schedule. The
symbolic simulation models railway systems for a given time interval with the help
of an exact representation in a macroscopic abstraction of the railway infrastructure.
The merely reduced representation allows an exact simulation of the schedule while
keeping track of all possible scenarios. As a short explanation, scenarios are abstract
instances inside of the simulation to represent participating trains in certain proba-
bilistic situations. In the further realization of timetables, the delayed trains can cause
interferences with the remaining trains and induce additional delays. The symbolic
simulation aims at identifying problematic trains initiating a non-negligible amount
of additional delays while maintaining an exact representation of the possible train
behavior. During the execution, the scenarios have to be split to model the exact
conduct at conflicting infrastructure elements, shortly speaking stations or rails not
allowing additional trains to enter due to capacity constraints. This together with
the correct computation of train instances in varying stochastic cases increments the
number of instances significantly. The large growth of the state space impairs the scal-
ability and performance of the approach and prevents an exact analysis of realistic
input data.

The goal of this thesis is to analyze possible acceleration techniques and reduction
methods to slow down the explosive growth of the state space. Therefore, we explore
reduction techniques to merge existing instances and improve the algorithm’s running

10 Introduction

time.
In Chapter 2, we introduce required definitions for the complete understanding

of the symbolic simulation, the definition of train instances in form of scenarios and
the exact procedure of simulating train timetables. This part follows a Section 3.0.1
defining the theoretical foundation of scenario reductions. This consists of formalized
requirements for various reduction methods and corresponding illustrative examples.
Moreover, in Section 3.2 the implementation part is described to full extent, pre-
senting the differences between various reduction techniques and their theoretical
reduction power. The chapter is then concluded by a correctness proof, verifying
that the presented reduction framework is sound and complete. In Chapter 4 the
defined reduction rules are modeled in a SAT encoding and applied in a bounded
model checking approach to compute a more strategic reduction order. To evaluate
the acceleration techniques and performance improvements, Chapter 5 presents an
extensive experimental analysis of varying railway systems. Finally, in Chapter 6 the
results are summarized and put into a realistic context, together with prospects of
potential enhancements in an abstract about future work.

Chapter 2

Preliminaries

In the following chapter, the theoretical foundation for modeling and symbolically sim-
ulation railway systems is defined. Therefore, we begin by defining the railway system
by representing the infrastructure with a directed graph and introduce a timetable
to store all relevant information about participating trains. Afterwards, the symbolic
train instances are defined as scenarios including definitions of probability theory to
ensure the overall correctness of the approach. Finally in the last part of the chapter
the symbolic simulation procedure is depicted. Note here that the illustrated symbolic
simulation has been initially defined in [HÁN21].

2.1 Railway System
In today’s railway systems, the demand for reliable train schedules is of significant
importance. The objective is to reduce train delays and optimize the use of given
resources. Optimizing timetables and minimizing delays can have a significant effect
on the quality of service. In the following approach, the focus lies on analyzing the
propagation of delays in a railway system.

To examine this, we analyze how trains that start their schedule with a delay
affect other trains in the system. In the following, we denote this event as primary
delay. To study this, we deploy a symbolic simulation. Typically, railway systems are
represented microscopically, here we relax this level of detail and define a macroscopic
representation. Consequently, various physical details of the railway system are omit-
ted. We choose to reduce the precision, as a microscopic representation would slow
down the simulation process to an impractical state. With the chosen representation,
defined in Definition 2.1.1, small railway networks can be simulated efficiently. How-
ever, on large instances with an increased time horizon the current implementation is
not able to efficiently simulate the system.

The idea of this thesis is to improve the scalability of the algorithm by investigating
and implementing optimizations. The expected result is that with the help of a
reduction even large networks can be efficiently simulated.
Definition 2.1.1 (Graph). The railway infrastructure is represented by a directed
graph G = (V,E, c) with c : V ∪ E → N, which consists of a set of vertices V and
edges E. The nodes v ∈ V represent train stations and the edges e ∈ E for E ⊂
{(v, u) ∈ V × V |v 6= u} depict the connections between those. Additionally, c assigns
each infrastructure element x ∈ V ∪ E a capacity value c(x) ∈ N.

12 Preliminaries

The capacity function restricts the simultaneous existence of train instances at
an element x. For edges e ∈ E the capacity models the number of parallel tracks
available. While at stations v ∈ V the value represents the number of existing halting
points. Note here, that we simplify the representation of the railway structure by
omitting additional physical parts, e.g. switches, et cetera. Despite this simplifica-
tion, we assume that the abstraction is sufficiently accurate to fit the purpose of the
simulation. Moreover, we introduce an example to illustrate the infrastructure graph.

Example 2.1.1.

G = (V,E, c), ∀x ∈ V ∪ E. c(x) = 1 with
V = {v0, v1, v2, v3} and E = {(v0, v1), (v2, v1), (v1, v3)}

v0 v1

v2

v3

To define the schedules of participating trains we introduce timed paths.

Definition 2.1.2 (Timed path).
Let π = (v1, a1, d1), ..., (vn, an, dn) be a timed path consisting of a set of triplets:

• vertices v1, ..., vn ∈ V such that (vi, vi+1) ∈ E for i = [1, ..., n− 1].
• loop free ∀i, j ∈ [1, ..., n] with i 6= j. vi 6= vj.
• an arrival ai ∈ R and departure time di ∈ R for each vertex vi.

In addition to the definition of the railway infrastructure with G and a trains
schedule with timed paths πi, we define the complete timetable T .

Definition 2.1.3 (Timetable).
Timetable T := {(type1, π1), ..., (typen, πn)} for T = [Tmin, Tmax]:

• typei for i ∈ [1, ..., n] specifies the physical train type.

• a timed path πi for i ∈ [1, ..., n] specifies for each train i its timed schedule.

The train’s type is important for the actual simulation as it affects the trains
stopping times and more importantly its priority. Examples for physical train types
are e.g. ICE, IC, and RE.
The example is extended with a timetable:

Example 2.1.2. T = {(ICE, π1), (D,π2), (RE, π3)} for T = [0, 10]

π1 = (v0, 0, 0), (v1, 0, 2), (v3, 3, 5

π2 = (v2, 4, 4), (v1, 5, 6), (v3, 7, 8)

π3 = (v0, 7, 7), (v1, 8, 9), (v3, 9, 9)

In the following, we will describe additional definitions and assumptions relevant
for the symbolic simulation. During the simulation trains are represented by a the-
oretical abstraction. In order to define this, we present two principles of probability
theory, following [FG13].

Scenarios 13

2.2 Scenarios

Definition 2.2.1 (Probability space). Let the triplet (Ω,F ,P) be a probability space.
Then Ω is a non-empty set called sample space containing all possible outcomes of
the corresponding random phenomenon. F is the set of events, such that events are
arbitrary subsets of Ω. P : F → [0, 1] is the probability function assigning each event
ω ∈ F a real-valued probability.

As in the simulation context the sample space is always finite, the set of events
can be defined as the power set of Ω. In order to denote an event, we introduce the
notion of a random variable.

Definition 2.2.2 (Random variable). Let p be a random variable in the probability
space (Ω,F ,P), then Ω represents all values p can possibly take. In extension F is
the power set of Ω. The function P defines the probability of p taking a value ω ∈ F .
The following conditions have to hold for P:

P(p = ω) > 0 (1)∑
x∈Ω

P(p = x) = 1 (2)

Given these fundamentals of probability theory, we can introduce the notion of
primary delay.

Definition 2.2.3 (Primary delay). Let pi for i = [1, ..., n] be random variables in
the probability space (Ω,F ,P), such that they represent the primary delay of a train
i at its starting station. We define the sample space Ω of pi as the finite set D(pi) :=
{n ∈ N | P(pi = n) 6= 0} further denoted as support set of pi. Every variable pi has a
discrete probability distribution P : F → [0, 1], that expresses the probability of train
i to become a given number of time units delayed, without the cause being another
train.

We refer to the set of all random variables as P := {pi | i ∈ [1, ..., n]}, where n is
the number of trains in the railway system. We assume that all of these variables are
statistically independent since they represent primary delay. Here and subsequently,
initial delay is considered as a synonym for primary delay. We extend the example
introduced above by an initial delay set D.

Example 2.2.1.

D(pi) = {0, 1, 2, 3} for i ∈ [1, 2, 3]

P(pi = 0) = 0.5

P(pi = 1) = 0.2

P(pi = 2) = 0.2

P(pi = 3) = 0.1

Remark 2.2.1. Moreover delays can be caused in case a scheduled train cannot enter
an infrastructure element due to capacity constraints. This delay is further denoted
as secondary delay. Additional primary delays induced during a train ride are ignored
for now.

14 Preliminaries

Given the definition of primary delay, we require a formal structure to restrict
the initial delay values of a train. Therefore, we introduce the definition of random
inclusion.

Definition 2.2.4 (Random inclusion). A random inclusion c for pi ∈ P has the form
pi �D for some D ⊆ D(pi), D 6= ∅.

With the help of random inclusions we can now restrict the initial delay of trains.

Example 2.2.2.

c1 : {p1 � {0}} - train1 starts its schedule without delay.
c2 : {p2 � {0, 1}} - train2 starts without delay or with one time unit delayed.

Given the theoretical foundation restricting initial delay sets, we introduce a formal-
ization for to define stochastic cases for trains. Inside of the simulation, trains are
represented by scenarios, which consist of random inclusions in which each train’s
random variable is restricted at most once. The definition is taken from [HÁN21].

Definition 2.2.5 (Scenario). A scenario S is a set that contains exactly one random
inclusion for each random variable. Let S be the set of all scenarios. For S ∈ S and
(pi �D) ∈ S we define S(pi) = D, and set P(S) =

∏
c∈S P(c). We call a scenario S

complete iff |S(pi)| = 1 for each pi ∈ P . We say that S ∈ S refines S′ ∈ S (written
S � S′) iff S(pi) ⊆ S′(pi) for all pi ∈ P ; we also say that S′ contains S. We call S
and S′ compatible iff S(pi) ∩ S′(pi) 6= ∅ for all pi ∈ P . For two compatible scenarios
S and S′ we define S4S′ as the scenario {p� (S(pi)∩S′(pi)) | p ∈ P}. Likewise two
scenarios S and S′ are incompatible, iff ∃pi ∈ P. S(pi) 6= S′(pi), denoted by S|iS′.

A non-complete scenario includes a number of complete scenarios as sub-scenarios.
As the random inclusions for non-complete scenarios do not have to fix values, but
only restrict them.

Remark 2.2.2. In the following, a scenario refers to a non-complete scenario, while
complete ones are explicitly denoted as such.

Scenarios denote in which stochastic case a train exists at x ∈ V ∪ E during t.
Inside of the simulation we formalize this as train instances.

Definition 2.2.6. Train instance
A train instance is a triplet (i, S, tep) at x ∈ V ∪ E:

• i ∈ [1, ..., n] is the train id.
• S is a scenario, describing the stochastic case in which the train exists.
• tep ∈ R is the earliest possible departure time.

Example 2.2.3.

(1, S1, 2) at v2 with S1 : {p1 � {0}, p2 � {0}, p3 � {2}}

Train1 is during t = 2 at vertex v2, if train one and two are punctual, while train
three is delayed with two time units.

(2, S2, 4.5) at v3 with S2 : {p1 � {1}, p2 � {1}, p3 � {1}}

Train 2 is during t = 4.5 at vertex v3, if train one, two and three start their train ride
one time unit delayed.

Timetable Execution 15

Definition 2.2.7 (Set of scenarios). Let S := {S1, ..., Sm} for m ∈ N be the set of
all scenarios. Adding an index i to the notation Si restricts the set to contain only
scenarios for the train with id i.

2.2.1 Invariant

To get correct results, we have to formalize a certain invariant that has to hold during
symbolic simulation. Therefore, we ensure that in case a train is part of the current
schedule, it has to exist in form of scenarios summing up to a probability of one. The
invariant is defined as the computed sum of probabilities, such that for each currently
participating train holds: ∑

S∈Si

P(S) = 1± ε, (2.1)

where ε is an infinitesimal number covering rounding errors occurring due to the usage
of doubles in the implementation. We assume this invariant to hold throughout the
simulation and additionally we implemented that Equation 2.1 has to be satisfied
at each time step during the simulation to ensure that the later presented reduction
techniques do not violate correctness of the approach.

2.3 Timetable Execution

This section briefly introduces a timetable execution and corresponding properties of
further interest. The execution of a timetable gives insights regarding trains poten-
tially causing other trains to be further delayed and infrastructure elements at which
many trains have to halt due to capacity conflicts. These important results can then
further be used to adapt the timetable accordingly, thus decreasing secondary delays
and improving the efficiency of the railway system.

The timetable is executed according to the contained schedules in form of timed
paths and starts with an initially defined set of primary delays. During the simula-
tion, secondary delays can occur due to conflicts at infrastructure elements. Those
postponements cannot be prevented and have to be stored correctly to capture all
possible stochastic cases that are induced by them. Additionally, all trains drive as
early as they can, which means that in case the element they want to move to has
a free capacity slot and the earliest possible departure time (epdt) is smaller than
the current time step, the train moves to its next vertex. In case more than one
train wants to enter an element and the capacity restricts the operation, a priority
order has to be introduced. In the implementation, simplified priority handling is
defined. Moreover, in the execution of a timetable delays are shortened by rerouting
and applying certain optimizations. In this simulation halting times are reduced and
delayed trains are sped up, rerouting is not applied.

2.3.1 Symbolic simulation

The exact computation of delay propagation inside of a railway system is highly de-
manding. Therefore, continuous analysis of all complete scenarios is not practical.
Nevertheless, a symbolic simulation considering non-complete scenarios and a refined
subset of time steps is applicable. Due to the timetable and corresponding strict train

16 Preliminaries

schedules, only a limited subset of time points is of relevance, as time steps without
train movement do not produce new insights. This is explained by the introduced
abstraction that we only model a simplified position of trains being at an infrastruc-
ture element neglecting where it is exactly. To cover up all relevant time points, the
implementation keeps track of upcoming time steps at which a train movement is
scheduled. The exact computation is explained below in more detail, the symbolic
simulation is further depicted in [HÁN21].

In the initialization process, all trains enter the system with a previously defined
set of primary delays. Thus a train starting its schedule is inserted into the simula-
tion as a set of train instances. Consequently, it is possible to analyze what impact a
delayed starting time has on its schedule and more importantly on the other partici-
pants.

Additionally, while executing the timetable, the movement of a train is mainly
influenced by the occupations of the next stations in the system. Blocked infrastruc-
ture elements induce secondary delays and impact the whole timetable reliability. To
correctly compute train instances that cannot directly enter the next vertex a split
of instances is deployed. The split method divides scenarios into parts representing a
probabilistic case in which the movement is possible and one in which the train has
to halt at the current infrastructure element. Note that the symbolic simulation and
especially the initial set of primary delays is a simplified abstraction. Nevertheless is
the symbolic simulation an efficient and precise approach to gather realistic results
on train delay propagation and eventually the identification of problematic trains.

Initialization

The symbolic simulation initializes a wide set of global variables required to correctly
store information during the execution. In the following, those are shortly listed and
explained as they are of significant importance for the understanding of the simulation
and the later explained reduction methods.

The input given to the simulation is an infrastructure graph G = (V,E, c), a
timetable T , a time period [Tmin, Tmax], a measure for a safety distance δ ∈ R given
in time units and a set of random variables P := {pi| for i ∈ [1, ..., n]}. Then, the
initialization process begins by connecting all vertices to a new source vertex vs with
c(vs) = ∞ and ∀v ∈ V. c((vs, v)) = ∞. This ensures that the simulation can model
that a train is not able to start on schedule on its initial vertex in case it is already
fully occupied. Moreover, for each vertex v ∈ V an edge connecting it to a target
vertex vt with c(vt) =∞ and ∀v ∈ V. c((v, vt)) =∞ is included. Thus a train, which
completed its schedule can move to a position without a capacity limit to not block
any of the remaining train instances.

First, the procedure computes for each infrastructure element x ∈ V ∪E the set of
scenarios req[x] that head to the current infrastructure element x as the next position
in their timed path. Consequently, during the execution train instances occupy an
infrastructure element by halting or driving on it and they block it by having left it
and not having exceeded the safety distance δ. In addition analogous to the request
set, for each element in the network sets of scenarios occ[x], block[x] occupying or
blocking the element are defined. As a measure for intuitive handling of the split
method, a data structure cap[x] stores for each element the number of train instances
blocking and occupying it together with the corresponding scenarios. This map is
required to correctly schedule trains in conflict situations, where conflicts occur in

Timetable Execution 17

Algorithm 1 Simulation Algorithm

1: procedure Simulate(G, T , P)
2: for each t ∈ times do
3: for each x ∈ V ∪ E do
4: req[x]← CompReq(t, x);
5: occ[x]← CompOcc(t, x);
6: for each r ∈ req[x] do
7: Update(t, x, r);

case a train cannot enter its next routing point. Finally, the set of time steps at
which the simulation updates is declared as times ⊂ {t | t ∈ T} and initially contains
all initial time points for all participating trains i ∈ [1, ..., n].

2.3.2 Simulate

The simulate function controls the complete procedure of the symbolic simulation.
In Algorithm 1, the functionality is depicted and in the following we will explain the
implementation stepwise.

The initialization has already been explained, thus we proceed with the main
method. The Simulate(G, T , P) method is called with the infrastructure graph G,
the timetable T and the set of variables P . The simulation begins with entering the
first loop in line 2, taking out the smallest time step and the first vertex v ∈ G in
line 3. Note here, that the implementation processes all vertices before working on the
edges, as this enables trains to directly drive through a station. Then, the algorithm
computes the set of requests req[x] and occupiers for x at the given time step t.

Next, in line 6 of Algorithm 1 we loop over the set of requesting instances req[x] and
call Update(t, x, r) with the current time step t, the current infrastructure element x
and the requesting instance r. Shortly speaking, the update method tries to move the
requesting instance to the current infrastructure element x, however due to capacity
constraints it can occur that the train instance cannot move to x. In such cases, we
split the train instance, therefore we divide the contained scenario if possible in a
stochastic case in which the train can move and in one case in which it has to halt at
the previous element stored in pre[x].

The Simulate function runs until Tmax is reached. After the execution symbolic
simulation has obtained all relevant information about the timetable with the initially
defined probabilistic distribution for primary delays. This includes data about arrival
times and induced secondary delays. Owing to the design of the simulation, the set of
scenarios is growing during the execution. However, at no point inside the analysis,
the set of scenarios is reduced or merged, thus leading to significant growth of the
state space. This is one cause why the simulation is slowing down throughout the
computation. Correspondingly, in larger railway systems and especially in simulations
over an extended period, an efficient execution is no longer feasible. This restricts
the current application to small inputs and an imprecise discretization of probabilistic
distributions modeling the primary delay to not overload the computation. To tackle
this issue and improve the scalability of the simulation, we introduce a reduction
approach in Chapter 3.

18 Preliminaries

Algorithm 2 Attempts to Update Trains Position
1: procedure Update(t ∈ times, x ∈ V ∪ E, r = (i, S, tep) ∈ [1, n]× S × T)
2: S ← ∅;
3: if (|occupy[x] ∪ block[x] ∪ request[x]| < c(x)) then S ← {S};
4: S ← Available(x, r);
5: for each S ∈ S do
6: occ[pre(x)]← occ[pre(x)] \ (i, S, tep); . remove instance from predecessor
7: occ[x]← occ[x] ∪ (i, S, t+ t′); . add instance to x
8: block[pre(x)]← block[pre(x)] ∪ (i, S, t+ δ); . update blocking instances
9: times← times ∪ t+ t′; . update times

10: S ′′ ← Difference(S,S); . compute remaining instances
11: for each S ∈ S ′′ do
12: occ[pre(x)]← occ[pre(x)] ∪ (i, S, tep); . instances that could not move

2.3.3 Occupation

The function CompReq(t, x) collects all predecessor elements for the given infras-
tructure element x. Then we check, if the epdt tep of their train instances is below
the given time step t. All train instances fulfilling this are inserted into req[x] to
update the given set of requesting instances.
After updating the set of requests req[x], we have to compute occupying and blocking
train instances for the current infrastructure element x . Therefore, we execute the
CompOcc function to correctly collect the blocking and occupying train instances.

The method CompOcc(t, x) computes the current set of blocking train instances
by including all new blocking trains and removing all previously blocking instances
that have exceeded the safety distance δ. Then, it collects all train instances which
are currently moving through or halting at x and stores all computed instances in
occ[x].

2.3.4 Update

In the following we further explain Update(t, x, r), which is illustrated in Algorithm 2.
The update method begins with the definition of an empty scenario set S, which is
required to store the scenarios that are scheduled to move to x. Thus, we first check
if the requested instance can move to the current infrastructure element x by com-
paring the number of currently blocking, occupying and requesting instances with the
capacity of x (line 3). In case the train instance can realize the requested movement
no further splitting is needed and S is updated to solely contain S. However, if the
capacity is not sufficient for the set of instances, we call Available(x, r). As a short
note, the function does compute a set of scenarios S in which the train of the given
request r can be moved to x. The exact procedure is explained below and depicted
in Algorithm 3.

After gathering the set of scenarios S defining the stochastic cases in which the
requesting instance can be moved to x, we loop over each scenario that is contained
in the computed set S ∈ S(line 5). Next, we remove the occupying instances of
the predecessor element occ[pre(x)] by removing the requested instance r. Then, the
occupying instances of the current element x are updated to include the scheduled
instance r with the constructed scenario S. The epdt of the instance is set to tep =

Timetable Execution 19

Algorithm 3 Computes Scenarios in which Request can be scheduled.
1: procedure Available(x ∈ V ∪ E, r ⊆ {(i, S, t)|i ∈ [1,n]})
2: S ′ ← ∅; capt ← ∅;
3: for each (S′, u) ∈ cap[x] do
4: if (u ≥ c(x) ∨ S incompatible with S′) then
5: capt ← capt ∪ (S′, u);
6: Continue;
7: S ′ ← S ′ ∪ {S′4S};
8: if (S′ � S) then . decide if the scenario is included in S
9: capt ← capt ∪ (S′, u+ 1) . capacity usage is incremented

10: else . or if a separation is required
11: capt ← capt ∪ (S4S′, u+ 1); . update cap
12: capt ← capt ∪Sd∈Difference(S, S’) (Sd, u);
13: cap[x]← capt;
14: return S ′;

t+t′, where t′ computes the time the instance has to stay at the current element. Note
here, that we omit additional details of the exact computation of tep as they are not
of significant importance for the thesis, interested readers are referred to [HÁN21].
In line 8 the blocking states for the predecessor are updated to contain the instances
that are moved to x. Finally, the set of time steps is updated to contain the newly
computed tep. In case the request could not be scheduled conflict-free (line 3), the
set of scenarios in which the request can be scheduled does not contain all scenarios
of the requesting instance. Therefore, we have to compute the difference of S and
S to determine the set of scenarios that have to halt at the predecessor of x. To
compute the stochastic cases in which the train instance cannot move to x we call
Difference(S, S) constructing the set of scenarios, which are contained in S but not
in any of the instances of S. The resulting scenarios are then added to the occupying
states of the predecessor (line 12). Those instances will attempt to move to x in the
next iteration phase. To this extent, the next call is invoked for the next request.

For completeness we extend the functionality by explaining the procedure of the
Available(t, x) method. The availability function is required to evaluate if and in
which stochastic scenarios a given request r can be successfully executed. The whole
procedure is depicted in Algorithm 3.

2.3.5 Available
The Available(x, r) function returns a set of scenarios in which the requesting train
instance can be moved to the current element x. We begin by defining an empty
set of scenarios S ′ to store all scenarios in which the request r can be conflict-free
scheduled and a temporary set . To determine this set, in line 3 we loop through
the set cap[x] which contains all scenarios currently occupying or blocking x together
with the number of elements (S′, u) with u ∈ N. Next in line 4 we check if the
number of instances u is greater or equal to the capacity of x or if the corresponding
scenario S′ is incompatible with S. Then if the condition is satisfied the scenario
is not suited to be scheduled in S′, thus we include (S′, u) in capt and continue
with the next element in cap[x]. In the other case, that the capacity is sufficient
and the scenario S′ is compatible with S, S4S′ is stored in S ′. Moreover, in the

20 Preliminaries

lines 8-12 a case distinction is implemented to update capt correctly depending on
the refinement relation between S and S′. Afterwards, cap[x] is modified to equal
capt, which stores the correctly updated capacity usage for each included scenario.
The resulting scenario set S is returned and further used in Update(t, x, r).

Chapter 3

Iterative Reduction
The symbolic simulation presented in the previous chapter propagates in each relevant
time step the position of train instances in the railway system. During this procedure,
conflicts occur hindering train instances to move to the next infrastructure element.
To correctly handle this, the stochastic cases depicted in the scenarios are split to de-
fine states in which the train has to halt and those in which the instance can move to
the next scheduled infrastructure element. Additionally, every time a train is inserted
into the system, the simulation includes multiple train instances to cover the initial
delay set. In the ongoing execution, those newly included or split instances induce ad-
ditional conflicts, which increase the number of instances even further. This prevents
an evaluation of larger railway systems with realistic initial delay distributions, as the
number of train instances is growing at fast pace. As the growth of the state space is
not tackled, the simulation slows down during its execution and is impractical to be
applied on a larger scale.

As the current simulation does store scenarios that can be compressed without
losing information, we introduce the theory for various reduction methods. In the
following, we will set up notation and terminology to develop the theory behind the
reduction approach. First, tuples of scenarios are separated into reducible and non-
reducible ones. Second, the reduction rules are formalized and further illustrated in
examples.

As a general notation for the following declarations, we denote S, S′ as scenarios
and S,S ′ as sets of scenarios. Besides, we introduce a notion to define the set of
all random variables pi for a given scenario S that are part of nontrivial inclusions.
Note here, that trivial random inclusion are those not restricting the value space,
formalized as S(pi) (D(pi). The set of variables is formalized as:

P := {pi | pi ∈ {p1, ..., pn} with pi � S(pi) ∧ S(pi) (D(pi)}. (3.1)

Additionally, we define that all random variables pi with i ∈ [1, ..., n] used for upcom-
ing examples have equal support sets of size four: D(pi) = {0, 1, 2, 3}

3.0.1 Requirements
Reductions cannot be applied to all scenario tuples, certain requirements have to be
met to ensure the correct merging procedure not altering any information contained
in the scenarios. Therefore, we begin by defining scenario pairs not suitable for a
reduction. Important to note here is that a scenario pair cannot be reduced, if the
following conditions are not satisfied ensuring that only scenarios can be reduced

22 Iterative Reduction

which are treated equally by the simulation. A scenario is always contained in a
train instance with additional parameters regarding the train id i ∈ [1, ...,m] and the
earliest possible departure time tep ∈ T . The train instances (i, S, tep) and (j, S′, t′ep)
have to represent the same train and the epdt has to be equal or below the current
time step t as only if those requirements are fulfilled we can merge the instances
without modifying the train schedule defined in T .

(i == j) ∧ ((tep ≤ t ∧ t′ep ≤ t) ∨ (t == t′)) (3.2)

In the following, we assume that the underlying train instances for given scenario
tuples fulfill these requirements. The below-stated requirements try to measure the
similarity of the given scenarios, simply speaking the first reduction approach is only
able to merge scenarios which are nearly identical. Therefore, we initially have to sort
out pairs, in which a more complex procedure is required. This does not mean that
those scenarios cannot be reduced, rather the reduction rule is not capable of doing
it. However, in the process of this chapter, the solving capacity of the techniques is
increased to cover the complete reduction potential. This structure is mainly owed
to the chosen research direction and it allowed us to step-wise analyze the impact of
an increased complexity on the running time. We begin by defining three conditions
that decide, if a scenario tuple is suitable to be reduced.

Scenario size First, the scenarios have to be of equal size in order to be reducible.
The cardinality of variables is sufficient to measure this, as we ensured in the definition
of P (Equation 3.1), that the set contains solely variables which are part of non-trivial
inclusions.

|P | = |P ′| (3.3)

Example 3.0.1.

S = {p1 / {0}, p2 / {0}}
S′ = {p2 / {1}}

The first scenario S restricts the initial delay set for p1 and p2. However, S′ restricts
it only for p2, thus they cannot be reduced.

S = {p1 / {0}, p2 / {0}}
S′ = {p2 / {1}, p3 / {2}}

In this case the scenarios would satisfy the first condition.

Variables The second condition states that the set of restricted variables has to be
equal. Note here, that this condition implies the first one, accordingly, it is theoreti-
cally sufficient. Nevertheless, as Equation 3.3 can be verified more efficiently, we state
it as a separate requirement. Inside of the implementation, we also make use of the
above-stated condition to reject non-suited pairs faster.

P = P ′

Reduction Rules 23

Example 3.0.2. We use the example from before and evaluate if it satisfies the second
condition.

S = {p1 / {0}, p2 / {0}}
S′ = {p2 / {1}, p3 / {2}}

The first scenario restricts the initial delay set of p1 and p2, while S2 restricts the
space for p2 and p3. Hence, the scenarios are too dissimilar to be merged trivially.

S = {p1 / {0}, p2 / {0}}
S′ = {p1 / {1}, p2 / {2}}

The modified example does fulfill the first and second requirement.

Random inclusions The last premise for the reduction rule states, that the sce-
narios only differ in exactly one random inclusion. Therefore, we introduce a set C 6=
covering the set of distinct random inclusions for a scenario tuple (S, S′). In the below
equation we denote by ci, c′i i ∈ [1, ..., n] the random inclusion for pi ∈ [1, ..., n] and
we require ∀pi ∈ P. pi = p′i.

C 6= := {(ci, c′i)|ci 6= c′i for ci ∈ S and c′i ∈ S′}

|C 6=| = 1

The scenarios have to differ in exactly on random inclusion in order to be reducible.

Example 3.0.3. Next, the modified example is checked to fulfill the final condition.

S = {p1 / {0}, p2 / {0}}
S′ = {p1 / {1}, p2 / {2}}

However, here S, S′ differ in more than one random inclusion, thus S, S′ cannot be
reduced.

S = {p1 / {0}, p2 / {0}}
S′ = {p1 / {1}, p2 / {0}}

The example is modified another time and is now suitable to be reduced.

3.1 Reduction Rules
The main idea of the reduction approach is to collect all scenarios matching Equa-
tion 3.2 at certain time steps in the simulation and try to reduce those. Given a set
of scenarios S the reduction procedure returns a potentially modified and optimally
reduced set of scenarios S ′ without loosing any information.

In the remainder of this section we assume all scenario pairs to be of equal size
|P | = |P ′|, that constraint the same variables P = P ′, differ in exactly one inclusion
|C6=| = 1 and are non-empty.

We begin by defining the reduction rule for suitable scenario tuples fulfilling all
required conditions.

24 Iterative Reduction

The condition for two scenarios S, S′ to be reducible written as S 'R S′ can be
formalized as:

S 'R S′, iff
∃p ∈ P. S(p) ∩ S′(p) = ∅∧
∀p′ ∈ P \ {p}. S(p′) = S′(p′).

(3.4)

As all trivial inclusions are identical we omit them. The reduction result is further
denoted by Ŝ and formalized by:

S̃ := (S \ {p / S(p)})4{p / S(p) ∪ S′(p)} (3.5)

Let S, S′ ∈ S and S 'R S′, then S ′ := (S \ {S, S′}) ∪ {Ŝ}, where Ŝ is the merged
scenario. The intuitive idea of the reduction rule is, that the given scenarios are nearly
equal and only differ for one random inclusion and can thus be compressed into one
scenario without losing any precision. The intersection between the differing inclusion
pair has to be empty as in the other case some complete scenario would be contained
twice. As this would be a violation of the earlier defined invariant (in Equation 2.1),
such a case cannot occur.

S(p) ∩ S′(p) = ∅ (3.6)

The reduction rule then computes the union between S(p) and S′(p) to define the
resulting random inclusion covering the information contained in both scenarios.

c̃ : p / S(p) ∪ S′(p)

Example 3.1.1. Below we depict two examples, illustrating the reduction procedure
on different scenario tuples. In the second example, the reduction leads to the construc-
tion of a trivial inclusion for variable p1, which is removed in the resulting scenario.

S1 : {p1 / {0}, p2 / {0, 1}}, S2 : {p1 / {1}, p2 / {0, 1}} ⇒ S′ : {p1 / {0, 1}, p2 / {0, 1}}
S1 : {p1 / {0, 1}, p2 / {1}}, S2 : {p1 / {2, 3}, p2 / {1}} ⇒ S′ : {p2 / {1}}

3.1.1 Relaxed reduction

As in the current approach possible reduction opportunities are missed out, we extend
the rules by a more involved reduction technique. We further denote this second rule
as relaxed reduction, as it relaxes the strict requirements depicted in Definition 3.4.
First, we define an example, that is not reducible at the current state.

Example 3.1.2.

S1 : {p1 / {0, 1}, p2 / {0}}
S2 : {p1 / {0}, p2 / {1}}
S3 : {p1 / {1}, p2 / {2}}

S1 contains a scenario suitable to be reduced with S2, however, as we only consider
scenarios with exactly one differing inclusion the tuple is not considered.

Reduction Rules 25

In order to consider these additional scenario tuples the approach is extend by the
rule presented below. For the given example an application of the relaxed reduction
enables another basic reduction and thus a strict instance decrease, the example will
be completed after formalizing the method. For the relaxed reduction we have to lift
the stated conditions. The number of differing random inclusions is fixed to exactly
two with the condition that the set of one inclusion is contained in the other.

|C 6=| = 2

Additionally, the number of variables |P | does not have to be identical anymore.
However, it has to differ at most by one as we consider only one trivial inclusion in
the reduction process. The contained random variables are also allowed to differ in
exact one position as the random variable of a trivial inclusion is not contained in P .

|P ′| − 1 ≤ |P | ≤ |P ′|+ 1 (3.7)

The exact requirements for the relaxed reduction are formalized as follows:

S 'RR S′, iff
∃p ∈ P. S(p) 6= S′(p) ∧ S(p) ∩ S′(p) = ∅ ∧
∃p′ ∈ P. p 6= p′ ∧ (S(p′) (S′(p′) ∨ S′(p′) (S(p′)) ∧
∀p̂ ∈ P \ {p, p′}. S(p̂) = S′(p̂)∧
∀p /∈ P. S(p) = D(p).

(3.8)

This includes the condition that exactly two constraints are unequal, while in one case
the included values are completely distinct and in the other case, one value set has to
be a strict subset of the other. Important to note here is that the relaxed reduction
does not remove a scenario, but rather modifies the given ones and thus eventually
enables another application of the basic reduction rule. Consequently, the approach
only works with the subsequent application of the reduction rule (Equation 3.5) by
possibly extending the set of reducible scenario pairs.

In Equation 3.8 we defined the requirements for the relaxed reduction, further we
define the scenarios resulting from the application of the method. Let (S, S′) be a tuple
of scenarios satisfying S 'RR S′, and let p ∈ P with S(p) 6= S′(p)∧ S(p)∩ S′(p) = ∅.
Then, we assume w.l.o.g. that p′ ∈ P with p 6= p′ ∧ (S(p′) (S′(p′)). The resulting
scenarios are denoted by S̃ and S̃′ and formalized as:

S̃ = (S \ {p / S(p)})4{p / S(p) ∪ S′(p)}, S̃′ = S′4{p′ � S′(p′) \ S(p′)} (3.9)

The relaxed reduction rule removes the contained scenario required for the reduction
out of S′ and applies the reduction step to that scenario and S. Note that the
application of the reduction rule is identical to Equation 3.5.

Example 3.1.3.

S1 : {p1 / {0, 1}, p2 / {0}}
S2 : {p1 / {0}, p2 / {1}}
S3 : {p1 / {1}, p2 / {2}}

26 Iterative Reduction

At this point the basic reduction rule is not applicable, however S1 and S2 satisfy Equa-
tion 3.8. Thus, we apply Equation 3.9.

S̃1 : {p1 / {1}, p2 / {0}}
S̃2 : {p1 / {0}, p2 / {0, 1}}
S3 : {p1 / {1}, p2 / {2}}

S̃1 and S̃2 are the result of the relaxed reduction and in combination with S3 another
basic reduction step is applicable.

S̃1 : {p1 / {1}, p2 / {0, 2}}
S̃2 : {p1 / {0}, p2 / {0, 1}}

This is the final reduction result, as no rule is applicable for the given pair. Notice
here, that the number of scenarios could be reduced by exactly one, which would not
have been possible without the relaxed reduction.

In a practical application of the algorithm, this extended reduction rule showed
to have a significant effect on the number of applied reductions, while improving the
overall performance. As the relaxed reduction is not directly reducing the set of sce-
narios rather shifting the contained information, it is only applied in case the basic
reduction is not applicable, further details on this are presented in Section 3.2.

3.1.2 Split
A non-complete scenario contains multiple complete scenarios. Thus, in various sce-
narios are sub-scenarios stored that are not directly accessible with the presented
reduction methods. The basic reduction method can only be applied to a scenario
tuple if the strict requirements are satisfied. However, the relaxed reduction extends
the space of applicable pairs by allowing to make use of a sub-scenario contained in
one of the scenarios. In the following subsection, a split approach is defined allow-
ing to exploit all information stored in a set of scenarios. The intuitive idea of the
split is that non-complete scenarios can be divided recursively into their complete
sub-scenarios.

The requirement for a scenario to be split is that the scenario is non-complete
containing at least two complete scenarios. Thus a scenario is suitable to be split,
in case one of the random inclusion includes at least two elements. Note here, that
this is also satisfied for all scenarios, which do not restrict all variables. The split
technique is bound directly to a random variable p, which is not fixed in S. This can
be formalized as:

S can be split, iff p ∈ P. |S(p)| > 1

We assume w.l.o.g. that |S(p)| > 1, then the result of the split operation can be
described by:

S, S′ with
∀p′ ∈ P \ {p}. S′′(p′) = S′(p′) = S(p′) ∧ S′(p) ⊂ S(p) ∧
S′′(p) ⊂ S(p) ∧S′(p) ∪ (S′′(p)) = S(p) ∧ S′(p) ∩ S′′(p) = ∅.

(3.10)

Reduction Rules 27

Note here, that the split operation alone does not reduce any instance, it even incre-
ments the number of scenarios. However, in combination with the reduction rule, the
split operation does allow the approach to compute the optimal reduction result.

The optimal result is here defined as the minimal number of instances and likewise
the maximal amount of applied reductions. This does not necessarily mean that
computing the optimal result corresponds to having the smallest running time. The
idea of this thesis is to find the level of reduction, which leads to the maximally reduced
running time. The trade-off between required reduction time and saved time in the
simulation is further analyzed and adjusted to correctly fit the research interest. This
question is further analyzed in Chapter 4 and depicted in the experimental evaluation
in Chapter 5.

Additionally, it is important to mention that the result of the relaxed reduction can
be reconstructed by split and reduction rules. The relaxed reduction is a compressed
application of split and the direct reduction of one of the resulting split instances.
Nevertheless the relaxed reduction is defined as a single rule as it has shown to improve
the performance of the symbolic simulation significantly as opposed to the split rule.
Moreover, the split operation requires a more complex and strategic application to
lead to a reduced result. Therefore, the split operation is only invoked in the bounded
model checking approach in Chapter 4. A satisfiability solver evaluates if a split leads
to a possible reduction of the input set and thus applies it only if it is beneficial.

To depict the limits of the reduction and relaxed reduction, we add an example
that can only be reduced with the help of multiple splits. For this example we have
to extend the support to D(pi) := {0, 1, 2, 3, 4} for i ∈ [1, 2, 3].

Example 3.1.4.

S1 : {p1 � {3}, p2 � {2, 3}, p3 � {2, 3}}
S2 : {p1 � {0}, p2 � {0, 2, 3}, p3 � {0, 2, 3}}
S3 : {p1 � {1}, p2 � {0}, p3 � {2, 3}}
S4 : {p1 � {2}, p2 � {0}, p3 � {0}}
S5 : {p1 � {4}, p2 � {2, 3}, p3 � {0}}

At this point, neither the reduction rule nor the relaxed reduction is applicable. How-
ever, we can split S2 in S′2 and S6.

S1 : {p1 � {3}, p2 � {2, 3}, p3 � {2, 3}}
S′2 : {p1 � {0}, p2 � {0, 2, 3}, p3 � {2, 3}}
S3 : {p1 � {1}, p2 � {0}, p3 � {2, 3}}
S4 : {p1 � {2}, p2 � {0}, p3 � {0}}
S5 : {p1 � {4}, p2 � {2, 3}, p3 � {0}}
S6 : {p1 � {0}, p2 � {0, 2, 3}, p3 � {0}}

28 Iterative Reduction

In the next step, we split S′2 another time in S′′2 and S7.

S1 : {p1 � {3}, p2 � {2, 3}, p3 � {2, 3}}
S′′2 : {p1 � {0}, p2 � {0}, p3 � {2, 3}}
S3 : {p1 � {1}, p2 � {0}, p3 � {2, 3}}
S4 : {p1 � {2}, p2 � {0}, p3 � {0}}
S5 : {p1 � {4}, p2 � {2, 3}, p3 � {0}}
S6 : {p1 � {0}, p2 � {0, 2, 3}, p3 � {0}}
S7 : {p1 � {0}, p2 � {2, 3}, p3 � {2, 3}}

After extending the set of scenarios by two splits, two reductions are applied. We
reduce S1 with S7 and S′′2 with S3.

S1 : {p1 � {0, 3}, p2 � {2, 3}, p3 � {2, 3}}
S′′2 : {p1 � {0, 1}, p2 � {0}, p3 � {2, 3}}
S4 : {p1 � {2}, p2 � {0}, p3 � {0}}
S5 : {p1 � {4}, p2 � {2, 3}, p3 � {0}}
S6 : {p1 � {0}, p2 � {0, 2, 3}, p3 � {0}}

Then we proceed by splitting S6 in S′6 and S8.

S1 : {p1 � {0, 3}, p2 � {2, 3}, p3 � {2, 3}}
S′′2 : {p1 � {0, 1}, p2 � {0}, p3 � {2, 3}}
S4 : {p1 � {2}, p2 � {0}, p3 � {0}}
S5 : {p1 � {4}, p2 � {2, 3}, p3 � {0}}
S′6 : {p1 � {0}, p2 � {2, 3}, p3 � {0}}
S8 : {p1 � {0}, p2 � {0}, p3 � {0}}

Finally, we reduce S4 with S8 and S5 with S′6. Then in the overall process the set of
scenarios has been reduced to four instances.

S1 : {p1 � {0, 3}, p2 � {2, 3}, p3 � {2, 3}}
S′′2 : {p1 � {0, 1}, p2 � {0}, p3 � {2, 3}}
S′4 : {p1 � {0, 2}, p2 � {0}, p3 � {0}}
S′5 : {p1 � {0, 4}, p2 � {2, 3}, p3 � {0}}

Without introducing the split operation, exactly those combinations cannot be reduced.
The efficiency and direct improvements are further analyzed in Chapter 5.

3.2 Implementation
In the previous chapter, theoretical reduction rules have been defined including a basic
and a relaxed reduction rule. In this chapter, the implementation and corresponding
inclusion into the symbolic simulation are outlined. The reduction is split into two
different modes that can be evaluated separately.

First, a reduction approach in form of a priority queue with two reduction rules
is specified. Second, the reduction problem is solved with Bounded Model Checking

Implementation 29

(BMC) to use the complete reduction potential. The intuitive idea of the acceleration
process is to apply the reduction at a heuristically adjusted set of time steps, slowing
down the growth of the state space.

Requirements

As defined in the preliminaries chapter, the symbolic simulation abstracts trains in
form of scenarios. Those scenarios are stored in triplets (i, S, tep), with i ∈ [1, ..., n], a
scenario S and the epdt tep ∈ T and are in each time step bound to an infrastructure
element x ∈ V ∪ E.

The reduction approach is not allowed to interfere with or influence the outcome
of the symbolic simulation. Therefore, the implementation has to exactly define sets
of instances suitable to be reduced.

The first requirement is, that the scenarios have to be at the same infrastructure
element x. In addition, tep has to be identical or smaller than the current time step
t for all scenarios that are reduced. Identical earliest possible departure times are
trivially allowed, time values smaller than the current time step are also suitable as
they are both allowed to leave the element. Then, of course, they have to represent
the same participating train i. In case these properties are fulfilled, the corresponding
scenarios can be given to the reduction method.

Application

The reduction method is invoked at two points inside the execution, first it is executed
at every rth time step in Simulate(S, G, T). Therefore, we define a subset of time
steps at which the method is executed as timesr ⊆ times. To match and satisfy
the stated requirements, the algorithm loops over all infrastructure elements and
filters suitable subsets of scenarios, which are then given to the currently deployed
reduction technique, the exact procedure is depicted in ReduceElement(t, x).

Algorithm 4 Reduction Application
1: procedure Simulate(S, G, T)
2: for each t ∈ times do
3: for each x ∈ V ∪ E do
4: if (t ∈ timesr) then ReduceElement(t, x); . Reduce instances at x
5: req[x]← CompReq(t, x);
6: occ[x]← CompOcc(t, x);
7: for each r ∈ req[x] do
8: Update(t, x, r);

The Reduction(S, H) method is further explained in the next section. However, it
is important to clarify, that even if the reduction techniques are different the interface
with the remaining implementation is identical. In addition the reduction is applied
after each execution of Available(x, r), as especially in an analysis of the effectiveness
of reductions, this additional application was found to be of significant importance.
The Reduction(S) call is inserted in between line 4 and 5 of Update(t, x, r).

30 Iterative Reduction

Algorithm 5 Filter and Apply Reduction

1: procedure ReduceElement(t, x)
2: S ← ∅;
3: for each i ∈ [1, ..., n] do
4: for (i, S, t′) ∈ occ[x] with (t′ ≤ t) do . Loop over all trains
5: occ[x]← occ[x] \ (i, S, t′); . Collect suitable train instances
6: S ← S ∪ {S};
7: S ← Reduction(S); . Reduce scenario set
8: for each S ∈ S do
9: occ[x]← occ[x] ∪ (i, S, t); . Update occupiers

Reduction approach

In the first implementation of a reduction approach, the reduction possibilities are
implemented as rules. The algorithm works in two parts, initially, scenario tuples are
collected that are either reducible or relaxed reducible. The corresponding information
is stored in a custom data structure qentry containing a priority value and a tuple of
scenarios (S, S′). Then, for Algorithm 5 to be loop-free, it has to keep track of

Data structure: Queue entry
1: priority ∈ Q, heuristic value to decide about the reduction order
2: pair, stores reducible scenario tuples with (S 'R S′ ∨ S 'RR S′)

scenario tuples used in a relaxed reduction. This has to be done, as the result of the
relaxed reduction can be reapplied in a consecutive application of the rule directly
undoing the last change. In order to prevent this, we store the participating scenarios
in H and reset H as soon as a basic reduction is applied as the set of scenarios has
possibly changed. We decided to not track the changed scenario tuples and thus
only reset those entries of H, but rather reset the complete set as we evaluated the
additional effort to be not efficient. This ensures that the execution is loop-free as we
do not consider scenario tuples included in H in Line 2 of Algorithm 9. Therefore,
we specify two global variables. The set H storing scenario tuples recently used in a
relaxed reduction and the set S, which is the current set of given scenarios further
defined in Algorithm 6.

3.2.1 Reduction algorithm

Initialization

We begin by defining the initialization of the reduction procedure. The initialization
is required to compute heuristic values to determine priority values for scenario tuples.
The deployed heuristic favors small values and order scenario tuples dependent of their
size and the variable over which is reduced. Hereby we prioritize large scenarios and
small variable indices, where the scenario size is weighted higher. For the initialize
function we introduce the sets vars and sizes.

The set vars := {pi | for S ∈ S. with S(pi) 6= D(pi)} stores all variables that
are part of non-trivial inclusions for all scenarios in the given set S. Additionally,
sizes := {|S| | for S ∈ S.} contains the sizes of given scenarios. We define the two

Implementation 31

Algorithm 6 Variables

1: H := {(S, S′) | (S, S′) ∈ S2}, set of scenario tuples that have been part of a
relaxed reduction since the last basic reduction.

2: S := {S | (i, S, tep) with tep ≤ t}, set of scenarios at the current x ∈ V ∪ E and
time step t ∈ timesr for train i.

3: q := {(prio, (S, S′)) | prio ∈ Q ∧ (S 'R S′ ∨ S 'RR S′)}.

Algorithm 7 Reduction algorithm

1: procedure Reduction(S, H)
2: if (|S| == 1) then return S; . Termination criterion
3: Initialize(S);
4: q ← UpdateQueue(S, H); . Inserts suitable scenario tuples
5: if (|q| > 0) then
6: (S, S′)← q[0].pair;
7: S ← ApplyReduction((S, S′), H); . Applies reduction step recursively
8: return S;

sets vars, sizes to contain only distinct elements and be sorted in an ascending order.
We introduce an example set of scenarios to illustrate the initialization procedure.

Example 3.2.1.

S0 : {p1 � 2}, S1 : {p1 � 0, p2 � 2},
S2 : {p1 � 1, p3 � 0}, S3 : {p1 � 1, p2 � 1, p3 � 1}

The procedure further depicted in Algorithm 8 begins in line 2 with defining two
maps wv : vars → Q, ws : sizes → Q, which assign each variable and each scenario
size a heuristic value. Furthermore, the preprocessing collects all distinct variables
and scenario sizes to compute separate priority values (Lines 3-6).

vars = {p1, p2, p3}, sizes = {1, 2, 3}

Definition 3.2.1 (Heuristic values). The heuristic values are used to balance the vari-
able selection order. The first deployed function primarily selects reduction pairs with
the largest scenario size and only considers the reduced variable if the first criterion
is not deciding.

xs = 0.8

xv = min(0.1,
xs
|vars|

)

In line 7 the heuristic values xv, xs ∈ Q deciding over the priority of variable id
and scenario size are computed. The implemented heuristic ensures that the algo-
rithm always prioritizes the scenario size before considering the variable index. The
constructed sets are then further used to define the mappings wv and ws. In the lines
8-9 and 10-11, the priority maps are defined. The maps are required to map each
variable and scenario size to its computed priority.

32 Iterative Reduction

Algorithm 8 Initialization of Heuristic.
1: procedure Initialize(S)
2: map<int, double> ws, wv ← {};
3: for each S ∈ S do . Compute size and variable set
4: for each {p� S(p)} ∈ S do . Loop through all random inclusions
5: vars← vars ∪ {p};
6: sizes← sizes ∪ |S|;
7: xv ← 0.8, xs ← min(0.1, xv

|vars|);
8: for i ∈ [1, ..., |sizes|] do . Define a priority value for each size
9: ws.Insert(sizes[i], xs·i

|sizes|);

10: for i ∈ [1, ..., |vars|] do . Define a priority value for each variable
11: wv.Insert(vars[i], xv·i

|vars|);

Definition 3.2.2 (Weight maps).

wv(i) =
xv · j
|vars|

, where i ∈ vars and j ∈ 0, ..., |vars| with vars(j) = i

ws(i) =
xs · j
|sizes|

, where i ∈ sizes and j ∈ 0, ..., |sizes| with sizes(j) = i

For the above introduced example, the resulting maps are:

ws :=

1 7→ 0.266

2 7→ 0.532

3 7→ 0.798

, wv :=

1 7→ 0.033

2 7→ 0.066

3 7→ 0.099

(3.11)

The example illustrates the core functionality of the deployed heuristic (Algorithm 8).
We decided to use this heuristic to reduce the set of scenarios with a constant order.
Additionally based on practical tests during the implementation, the by this computed
order defines a reduction order superior to applying reductions without a defined
order. Therefore, the heuristic is solely based on practical tests merging same sized
scenarios before decreasing the size of a reduced scenario.

Algorithm 9 Update the Priority Queue

1: procedure UpdateQueue(S, H)
2: for each (S, S′) ∈ S2 with S 6= S′ ∧ (S, S′) /∈ H do
3: if (S 'R S′ or S 'RR S′) then
4: qe.pair ← (S, S′)
5: qe.prio← Prio(S, S′) . Compute priority value based on heuristic
6: q.Insert(qe)

7: return pq

The next step of Algorithm 7 is to update the queue q with suitable scenario
tuples. This procedure is realized with the function UpdateQueue(S,H) further
illustrated in Algorithm 9.

Implementation 33

Update Queue

The data structure qentry has two attributes. A priority value prio ∈ Q, and a scenario
pair (S, S′) ∈ S2. The computation of the priority value considers some characteristics
of the reduction pair to ensure a consistent execution order.

To ensure that merging steps are applied such that we keep the largest set of suit-
able scenarios, the presented reduction rules are prioritized individually. Besides the
weighting of scenario size and merged variable id, the heuristic additionally includes
characteristics of the applied rule and the merging result. Therefore, we introduce
an additional function h(S, S′), that can take four different values depending on the
given reduction instance. The function h orders the possible reduction cases, such
that we always merge the information, while not reducing the size of the resulting
scenario.
Therefore, we define four cases:

h(S, S′) :=

1, for a reduction with a restrictive merging
2, for a reduction in which a restriction is completely removed
3, for a relaxed reduction with a restrictive merging
4, for a relaxed reduction in which a restriction is completely removed

Note here that the step size between the cases is exactly one, this ensures that h is the
first deciding factor determining the reduction order before considering variable and
scenario size, as the summed mapping values in Equation 3.11 are strictly lower than
0.9. To illustrate the reduction cases we extend the formalization by an example, we
use the same support set as earlier D(p) = {0, 1, 2, 3} with p ∈ {p1, p2}

Example 3.2.2.

h(S, S′) = 1, with S : {p1 � {0}, p2 � {1}}, S′ : {p1 � {1}, p2 � {1}}
S′′ = {p1 � {0, 1}, p2 � {1}}

h(S, S′) = 2, with S : {p1 � {0, 3}, p2 � {1}}, S′ : {p1 � {1, 2}, p2 � {1}}
S′′ = {p2 � {1}}

h(S, S′) = 3, with S : {p1 � {0, 1}, p2 � {0}}, S′ : {p1 � {0}, p2 � {1}}

S̃ = {p1 � {1}, p2 � {0}}, S̃′ : {p1 � {0}p2 � {1}}

h(S, S′) = 4, with S : {p1 � {0, 1}, p2 � {0, 2}}, S′ : {p1 � {0}, p2 � {1, 3}}

S̃ = {p1 � {1}, p2 � {0}}, S̃′ : {p1 � {0}}

Given those preliminary parts, we introduce the complete heuristic.

Definition 3.2.3 (Heuristic). Given a scenario pair (S, S′) and a variable p over
which we reduce then Prio(S, S′) ∈ Q computes the resulting priority value.
Prio(S, S′) = h(S, S′) + wv(p) + ws(|S|), for S, S′ with S 'R S′ ∨ S 'RR S′.

After completing the definition of the heuristic, we begin by introducing Update-
Queue(S, H). The function is called with the set of scenarios S and the set of scenario

34 Iterative Reduction

Algorithm 10 Reduction Operation

1: procedure ApplyReduction((S, S′), H)
2: S ← S \ {S, S′}
3: if (S 'R S′) then
4: H ← ∅ . Reset set H
5: Ŝ ← (S \ {p / S(p)})4{p / S(p) ∪ S′(p)} . Apply reduction rule
6: S ← S ∪ {Ŝ}
7: else if (S 'RR S′) then . Tuple is relaxed reducible
8: H ← H ∪ (S, S′) . Add pair to H
9: if S(p′) (S′(p′) then . Case distinction

10: S̃ ← (S \ {p / S(p)})4{p / S(p) ∪ S′(p)}
11: S̃′ ← S′4{p′ � S′(p′) \ S(p′)}
12: else if S′(p′) (S(p′) then
13: S̃′ ← (S′ \ {p / S′(p)})4{p / S′(p) ∪ S(p)}
14: S̃ ← S4{p′ � S(p′) \ S′(p′)}
15: S ← S ∪ {S̃, S̃′}
16: return Reduction(S, H)

tuples H that have been recently part of a relaxed reduction. Then in line 3, we loop
trough all scenario tuples with differing elements which are not included in H. For
each tuple we check in line 3, if the tuple is reducible or relaxed reducible. In case
one of the conditions is met, we introduce a new queue entry qe and set the pair and
priority parameter in lines 4-6. After processing all suitable tuples, we return the
priority queue q.

In the consecutive step in Algorithm 7, we check if the given queue q does contain
at least one element. In case the priority queue is empty, the algorithm has not found
a new scenario tuple that is reducible thus the algorithm returns the current set of
scenarios and terminates. Otherwise, the q is sorted in an ascending order, and the
first queue entry is taken out. Then ApplyReduction((S, S′), H) is called with the
in the queue entry contained scenario tuple (S, S′) and the current set H (line 7).

Apply Reduction

In the following section we will explain the method ApplyReduction((S, S′), H),
which is further depicted in Algorithm 10. The function begins by removing the
given scenario tuple out of the set of scenarios S. Next, in line 2 it is evaluated if
the given tuple is reducible. In case the basic reduction rule can be applied, we reset
H and compute the reduction result in line 5. The computed scenario is then added
to S and we recursively call Reduction(S, H) in line 16. In the other case, that
the scenario tuple is not suited to be reduced with the basic reduction rule, it has to
be relaxed reducible. Then the execution jumps to line 8 and includes the current
scenario tuple in H.

Next in line 9 we compute the direction of the required containment for the relaxed
reduction. Therefore, we check if the support set for the p′ of S is contained in the
support set for S′. Note here, that we only illustrate the first case, as the other
direction is analogous. Then in lines 10-11 the resulting scenarios S̃ and S̃′ are
computed as defined in Equation 3.9. Finally, the two newly constructed scenarios
S̃ and S̃′ are added to the set of scenarios S. Likewise to the first case, we then

Proof of Correctness 35

enter the recursion and repeat the procedure until either the set of scenarios contains
only one element (line 2 of Algorithm 7) or the priority queue is empty (line 5 of
Algorithm 7). The resulting scenario set S is then returned to ReduceElement(t, x)
and in lines 8-9 of Algorithm 5 the current set of occupiers is updated according to
the reduced scenario set.

3.3 Proof of Correctness
To deploy the reduction framework in the symbolic simulation, while ensuring the
correct execution of the timetable, we have to prove correctness of it. The main
invariant of the simulation is that at each time point all participating trains exist
with an exact probability of one. Therefore, it has to be ensured that the application
of the reduction only compresses the representation of scenarios and it does not alter
the information stored in them. In addition to the theoretical proof, we implemented
several checks to verify that certain sufficient conditions are always satisfied.

In the following, we assume that during the simulation and before applying the
first reduction step, the properties we want to prove are initially satisfied. The main
idea of the approach is that given a set of scenarios S, the method returns a possibly
reduced set S ′.

In order to proof correctness of the approach, we shortly recap the definition of
compatible scenarios. Two scenarios S and S′ are compatible in case their included
values intersect for all variables in P , formally defined as:

S and S′ are compatible↔ ∀p ∈ P. S(p) ∩ S′(p) 6= ∅ (3.12)

Incompatibility can thus be expressed as:

S and S′ are incompatible↔ ∃p ∈ P. S(p) ∩ S′(p) = ∅ (3.13)

Additionally as the proof concept is based on the definition of complete scenarios we
include and formalize the definition. A complete scenario has a random inclusion for
each variable in the variable set of the simulation and each one is a singleton.

Then, we formalize that a complete scenario s is contained in a given scenario S
as:

s J S ⇔ s ⊆ {p� s(p)| p ∈ P. |s(p)| = 1 ∧ s(p) ⊆ S(p)}

We extend this notation to define the containment of a complete scenario s in a set
of scenarios S.

s J S ⇔ s J Si, for some Si ∈ S

We have to prove the below-stated properties to show the correctness of the approach.
The first property states that neither a complete scenario is lost during the execution
nor a new one is constructed.

Property 3.3.1. In case a complete scenario is part of the given scenario set before
the reduction, it has to be part of it afterwards and each complete scenario contained
in the reduction result has to be in the input set.

s J S ↔ s J S ′

36 Iterative Reduction

Proof. The reduction rule is applied iteratively, therefore if the property holds for
one step, it also holds for the entire reduction process, thus it suffices to prove one
iteration step. We begin with a short recap of the reduction result, formally specified
in Equation 3.5. In addition, it has to be noted, that the reduction operations for the
normal and relaxed reduction are implemented exactly as specified in Equation 3.5
and in Equation 3.9 and can be found in Algorithm 10. Therefore, we directly
use the definitions of Chapter 3 to ensure the correctness of the basic reduction rule
(Equation 3.5). The result of the basic reduction rule on a given set S := Ṡ∪{S}∪{S′}
with S 'R S′, can be formalized as:

S ′ := Ṡ ∪ {S̃}, where all scenarios in Ṡ stay unchanged.

S̃ := (S \ {p / S(p)})4{p / S(p) ∪ S′(p)}

As Ṡ is not modified, the set of included complete scenarios is unchanged. Therefore,
we consider only those, which are part of the reduction process and omit Ṡ.

We begin by proving (⇒) and then add (⇐) to show that the equivalence holds:

(⇒) Assume s J S :

s J S ⇒ s J {S} ∪ {S′} ∪ Ṡ
⇒ s J S4{p� S(p)} ∨ s J S′4{p� S′(p)} ∨ Ṡ

(I.) s J S4{p� S(p)} ⇒ s J S \ {p� S(p)}4{p� S(p) ∪ S′(p)}
as ({p� S(p)} � {p� S(p) ∪ S′(p)}),

⇒ s J S̃ ⇒ s J S ′

(II.) s J S′4{p� S′(p)} ⇒ s J S \ {p� S(p)}4{p� S(p) ∪ S′(p)}
as ({p� S′(p)} � {p� S(p) ∪ S′(p)}),

⇒ s J S̃ ⇒ s J S ′

(III.) s J Ṡ ⇒ s J S

(⇐) Assume s J S ′ :

s J S ′ ⇒ s J S \ {p� S(p)}4{p� S(p) ∪ S′(p)} ∨ s J Ṡ
as (S(p) ⊆ (S(p) ∪ S′(p)) ∧ S′(p) ⊆ (S(p) ∪ S′(p))),

⇒ s J S ∪ S′ ⇒ s J S

The trivial inclusion of s J Ṡ in S has been omitted in the proof of the second
direction.

Property 3.3.2. Before and after the execution of the reduction each complete sce-
nario is contained at most once. We formalize this as a pairwise incompatibility over
all tuples in S, respectively S ′.

∀(S, S′) ∈ S2. (S 6= S′ → S and S′ are incompatible)∧

∀(S, S′) ∈ S ′2. (S 6= S′ → S and S′ are incompatible)

Proof. As this property is one invariant of the symbolic simulation we can surely
assume that the premise does hold before the reduction is applied. Therefore, we
proof that the conclusion always follows.

Proof of Correctness 37

Assume that the result of the reduction S ′ does contain a scenario pair, which is
compatible. By definition of the structure of S ′, we have an unchanged set of scenarios
Ṡ and the reduction result S̃. As Ṡ is not modified, all elements are still pairwise
incompatible. The only violation possibility is that some scenario Ṡ ∈ Ṡ becomes
compatible with S̃. In the following p′ denotes the reduced random variable.

∃Ṡ ∈ Ṡ. ∀p ∈ P. Ṡ(p) ∩ S̃(p) 6= ∅ ⇒ ∃Ṡ ∈ Ṡ,∀p ∈ P \ {p′}. Ṡ(p) ∩ S(p) 6= ∅ ∧
Ṡ(p) ∩ S′(p) 6= ∅ ∧
Ṡ(p′) ∩ {S(p′) ∪ S′(p′)} 6= ∅

⇒ ∃Ṡ ∈ Ṡ,∀p ∈ P. Ṡ(p) ∩ S(p) 6= ∅ ∨
∀p ∈ P. Ṡ(p) ∪ S′(p) 6= ∅

⇒ Ṡ and S or Ṡ and S′ are compatible.

Given that each complete scenario is exactly represented by one scenario in the initial
set and the assumption that this does not hold for the reduction result, we were able
to derive a contradiction. Therefore we have proven, that the stated premise induces
that the resulting scenario set represents each complete scenario at most once.

Relaxed reduction

Similarly, we prove the correctness of the relaxed reduction. As this proof is more
involved, we have to clarify the containment of complete scenarios. The notation we
choose denotes any complete scenario contained in a scenario. For the first proof,
this did not need to be considered any further as the inclusion sets are completely
disjoint. However, the relaxed reduction requires this sort of containment. For the
notation of complete scenario, this means, that given an inclusion with at least two
elements, we have at minimum two complete scenarios induced by it. This property
will be required to prove the correctness of the technique. As before, we have to prove
the properties 3.3.1 and 3.3.2, where it is sufficient to prove the properties for one
iteration step as the reduction is incremental.

W.l.o.g we assume, for p holds S(p) 6= S′(p) ∧ S(p) ∩ S′(p) = ∅ and for p′ with
p′ 6= p it holds, that S(p′) (S′(p′). Then, for all p̂ ∈ P \ {p, p′}. S(p̂) = S′(p̂).

We begin proving that each complete scenario s contained in S ∪ S′ has to be
contained in S̃ ∪ S̃′. Formally defined as:

s J S ∪ S′ ⇒ s J S̃ ∪ S̃′ (3.14)

Proof. The idea of the proof is to show that all complete scenarios contained in S∪S′
are also included in the resulting scenarios S̃∪S̃′. Note here that it is sufficient to prove
this condition for all variables part of the transformation, thus neglecting all random
variables p̂, which stay unchanged during the reduction process. In the following, we
shortly recap the transformation step of the relaxed reduction to correctly specify S̃
and S̃′ as:

S̃ = (S \ {p / S(p)})4{p / S(p) ∪ S′(p)},
S̃′ = S′4{p′ � S′(p′) \ S(p′)}

further details can be found in Equation 3.8 and Equation 3.9. As the definition
of complete scenarios states that for a complete scenario all random variables are

38 Iterative Reduction

fixed to one value, it is sufficient to prove that the support set values of p and p′:
S(p), S′(p) and S(p′), S′(p′) are contained in S̃(p) ∪ S̃′(p) and S̃(p′) ∪ S̃′(p′) thus the
reduction result can construct the same set of complete scenarios as included in the
input scenarios set.
We begin by proving the first direction (⇒) of the equivalence in (3.3.1):

(⇒) Assume s J S ∪ S′, then
s J S ∪ S′ ⇒ s J S4{p� S(p)}4{p′ � S(p′)}∨ (3.15)

s J S′4{p� S′(p)}4{p′ � S′(p′)}

We split the proof of disjunction 3.15 to separately verify the required containment.
The first case is trivially verified, as the complete scenarios s contained in

S4{p� S(p)}4{p′ � S(p′)}

are completely covered by scenario S̃.

(I.) s J S ⇒ s J (S4{p� S(p)}4{p′ � S(p′)})
(def. S̃ = S \ {p� S(p)}4{p� S(p) ∪ S′(p)})

as ((S(p) ⊆ (S(p) ∪ S′(p)) ∧ S(p′) = S(p′)),

⇒ s J S̃ ⇒ s J S̃ ∪ S̃′

In the following we prove the second part of 3.15

(II.) s J S′ ⇒ s J (S′4{p� S′(p)}4{p′ � S′(p′)})

To correctly prove that all complete scenarios contained in S′ are included in the
resulting scenarios S̃, S̃′, we have to show that S′(p) and S′(p′) are covered by S̃, S̃′.
We begin with showing that S′(p) is contained in S̃ and S̃′ :

as (S′(p) ⊆ (S(p) ∪ S′(p)) ∧ S′(p) = S′(p))

⇒ S′(p) ⊆ S̃ ∧ S′(p) ⊆ S̃′(p)

The second containment holds as S′ is unchanged for p due to the construction of
S̃′ := S′4{p′ � S′(p′) \ S(p′)}. Next, we have to prove that S′(p′) is covered by
S̃ and S̃′. Other variables p̂ ∈ P \ {p, p′} can be neglected in this proof as they stay
unchanged during the reduction.

as (S(p′) ⊆ S′(p′))⇒ S′(p′) = (S′(p′) \ S(p′)) ∪ S(p′))

S̃(p′) ∪ S̃′(p′) = (S′(p′) \ S(p′)) ∪ S(p′))

⇒ S′(p′) ⊆ S̃(p′) ∪ S̃′(p′)

thus the support set of p′ in S′ is covered by S̃ and S̃′. As the support sets for
complete scenarios are fixed to size and the required containment of the support sets
has been shown we have proven that all complete scenarios that have been in the
relaxed reduction input are included afterwards.

Likewise, we prove the second direction (⇐) of Equation 3.14, that every complete
scenario included after applying the relaxed reduction had to be in there initially. To

Proof of Correctness 39

prove this, we show that all complete scenarios contained in S̃ and S̃′ have been
contained in the input tuple S, S′.

(⇐) Assume s J S̃ ∪ S̃′

s J S̃ ∪ S̃′ ⇒ s J (S \ {p� S(p)})4{p� S(p) ∪ S′(p)} ∨
s J S′4{p′ � S′(p′) \ S(p′)}

(I.) s J (S \ {p� S(p)})4{p� S(p) ∪ S′(p)}

At this point it is sufficient to show the required containment:

as (S(p) = S(p) ∧ S(p′) (S′(p′) (assumption))

⇒ s J S ∪ S′

(II.) s J S′4{p′ � S′(p′) \ S(p)}
as ({p′ � S′(p′) \ S(p)}) � {p′ � S′(p′)})

⇒ s J S ∪ S′

In the final section of the proof, we verify that the relaxed reduction does not
violate the invariant that each complete scenario is at each time step included at
most once in the set of scenarios.

Proof. Let’s assume, the given set of scenarios S is pairwise incompatible. Then as
we are able to apply a relaxed reduction, the input set consists out of a scenario tuple
involved in the reduction (S, S′) and all remaining scenarios Ṡ.

∀(Ṡ, Ṡ′) ∈ Ṡ2. Ṡ|iṠ′ ∧ ∀Ṡ ∈ Ṡ.Ṡ|iS ∧ Ṡ|iS′ ∧ S|iS′

The reduction method in line 15 of Algorithm 5 constructs a new set S ′ := Ṡ ∪ {S̃}∪
{S̃′}. As Ṡ is unchanged, all elements are still pairwise incompatible. Additionally,
S̃′ is refined to include a smaller set of values, thus it still has to be incompatible
with any scenario in Ṡ. Then, what is left is to prove that S̃ is incompatible with S̃′
and any scenario in Ṡ. The given reduction result S̃, S̃′ is incompatible, which can be
trivially verified by the structure of the modified scenarios.

S(p) ∩ (S′(p′) \ S(p′)) = ∅

The last possible violation of the invariant can occur if S̃ is compatible with an
element in Ṡ. Thus, we have to prove that S̃ is pairwise incompatible with the set
of unchanged scenarios. In order to prove this, we assume after applying the relaxed
reduction, a scenario Ṡ′ ∈ Ṡ exists, which is compatible with S̃. This would imply
that a complete scenario is included twice, which is a violation of the simulations
invariant.

Assume ∃Ṡ′ ∈ Ṡ, with ∀p̂ ∈ P. Ṡ′(p̂) ∩ S̃(p̂) 6= ∅, according to the reduction rule
(3.9), then in particular Ṡ′(p) ∩ (S(p) ∪ S′(p)) 6= ∅ has to hold. Given that and
S(p) ∩ S′(p) = ∅ (3.8), we have to make a case distinction:

40 Iterative Reduction

1. Either scenario S is intersecting with Ṡ′ over p:

S(p) ∩ Ṡ′(p) 6= ∅ (3.16)

Then due to the assumption ∀p̂ ∈ P. Ṡ′(p̂) ∩ S̃(p̂) 6= ∅, this has to hold for all vari-
ables p̂ ∈ P including p′ in S that stay unchanged in the reduction process. Together
with Equation 3.16 we can conclude that Ṡ′ had to be compatible with S already
before applying the relaxed reduction, which contradicts our assumption.

2. Or scenario S′ intersects with Ṡ′:

S′(p) ∩ Ṡ′(p) 6= ∅ : (3.17)

Arguing analogous to in the first case, Equation 3.17 together with assumption
∀p̂ ∈ P. Ṡ′(p̂) ∩ S̃(p̂) 6= ∅ implies that Ṡ′, S′ would already have been compatible.
As in the first case we were able to derive a contradiction assuming the invariant is
violated.

Therefore have proven that in case the given input set is pairwise incompatible,
the relaxed reduction does not alter this. Thus, we have proven that both properties
do hold also for the relaxed reduction.

Split operation

In the final section of the proof, the presented split operation is verified to not violate
any of the stated properties. Even though the presented approach does not invoke
the split operation it is implemented in the bounded model checking approach and
thus has to be proven. Nevertheless, as the operation is rather intuitive the proof
is short. The complete definition of the split operation is depicted in Equation 3.10.
For the proof, we shortly recap the induced transformation. Given a scenario S with
a random inclusion containing at least two values for a random variable p, then the
scenario can be split into two sub-scenarios with two disjoint inclusions for p covering
the complete inclusion of S.

Proof. We begin by proving property 3.3.1, stating that each complete scenario con-
tained in S before the split has to be contained in the resulting scenarios S′∪S′′ after
the split operation.

s J S ⇔ s J S′ ∪ S′′

Assume that s J S holds. Due to the definition of the split operation, the random
inclusions of the output scenarios S′ and S′′ are identical for all variables p′ ∈ P \{p}.
As the definition of complete scenarios states that each random variable has to be
fixed to one value, this has to hold also for p. Therefore, we only have to prove
that all fixed valuations that can be constructed with S(p) can be reproduced by
S′(p) ∪ S′′(p). As this holds trivially due to S(p) = S′(p) ∪ S′′(p), the first part of
the proof is completed. To complete the proof, we have to extend it by showing the
other direction. Therefore, we begin with s J S′ ∪ S′′ and derive the conclusion that
all complete scenarios have to be included in S. The reasoning is analogous to the
first direction.

Next, we have to prove that the split operation does not violate the second property
(3.3.2), stating that after applying the operation no complete scenario is contained
twice.

Proof of Correctness 41

Proof. Let’s assume that the result of the split operation S′, S′′ contains a complete
scenario twice. Then, there has to be a scenario tuple that is compatible. Assume S′
or S′′ is compatible with an scenario Ṡ in the set of scenarios not part of the split
operation Ṡ. In the following w.l.o.g we assume S′ to be compatible with Ṡ. Then,
∀p ∈ P. S′(p) ∩ Ṡ(p) 6= ∅, however S′(p) � S(p) ⇒ S(p) ∩ Ṡ 6= ∅. This would imply
that the initial set of scenarios already violates the invariant, which contradicts our
premise. Next assume that the split result S′, S′′ is compatible, then S′(p)∩S′′(p) 6= ∅.
However, per definition of the split operation S′(p) ∩ S′′(p) = ∅.

Thus, as we were able to derive in both cases a contradiction assuming the split
result violates the property, the premise has to hold.

Termination

Note here, that the split operation is omitted in the following proof, as it is not part
of the incremental reduction approach. Further, details on the termination of the
split operation are given in Chapter 4. To prove completeness, we have to ensure
that the approach terminates on each input instance. As the algorithm is based on
recursion, we define an order relation between different input instances. The relation
considers the size of the given set S, which is decremented each time a reduction is
applied and the set of already applied relaxed reductions H. However, in case only
a relaxed reduction is executed the cardinality of the set is not lowered, rather the
set of tuples considered for a relaxed reduction is restricted further. This is due to H
storing already applied tuple combinations, since the last basic reduction application.

Definition 3.3.1. Order relation Let S, H � S ′, H ′, iff |S| < |S ′|∨|S| = |S ′|∧|H| >
|H ′|, where H respectively is the set of scenario pairs already applied in an earlier
relaxed reduction.

Proof. To prove termination we step-wise analyze the procedure. In each Reduc-
tion(S, H) call, the heuristic values for the current set of scenarios are computed.
Inside of Initialize(S), we loop over the set of scenarios to collect all required in-
formation. Thus, as the input set is always finite, the execution of the initialize pro-
cedure runs in a limited time. Then, the algorithm executes UpdateQueue(S, H).
The purpose of Algorithm 9 is the addition of all suitable scenario tuples to a global
priority queue. Note here, that those are scenario tuples that are either reducible
or relaxed reducible. As depicted in the pseudo code in line 3, the algorithm runs
over all scenario tuples and appends all pairs fulfilling 3.4 or 3.8. The termination
of this procedure is trivial, as there exist only limited scenario tuples for the given
input set S. The application of the reduction and corresponding recursion found in
Algorithm 7 is more complex and requires a deeper analysis.

To prove the termination of the recursion, the stopping conditions of the algorithm
have to be analyzed. The first halting point is met in case the given scenario set is a
singleton (line 2 of Algorithm 7). Note here, that in the implementation this can only
occur inside of the recursion stack as the reduction method is not invoked for single
scenarios.

Intuitively, the algorithm also terminates in case the priority queue is empty and
no tuples were found to be reducible (5 of Algorithm 7). When the approach is
limited to the application of the basic reduction rule, this is a sufficient termination
criterion. As the reduction cannot be undone with the given methods, there are
only finitely many reduction steps possible. However, in case the relaxed reduction

42 Iterative Reduction

is allowed the execution gets more complicated. This is mainly because the result
of the relaxed reduction is suitable to be used in another relaxed reduction. As the
resulting scenarios are again fulfilling Equation 3.8 another addition into q has to be
prevented. To restrict this redundant behavior we introduce the set H storing all
scenario tuples that were recently part of a relaxed reduction. The set H is reset
as soon as the algorithm applies a normal reduction, as in this case participating
scenarios are modified and can thus be part of not yet tried relaxed reductions. This
strategy could be enhanced by only removing scenario tuples if one of the two elements
is modified. However, we decided to not increase the complexity of the algorithm
further, as the rather small input examples rarely produce such cases. In future work,
this could, however, be further improved. In all other cases the priority queue is
not empty (line 2) and the set of scenarios is greater than one (line 5). Then, the
next reduction step is applied. To cover the whole functionality of the technique,
we separate the proof in a part for the normal (Equation 3.5) and relaxed reduction
(Equation 3.9).

We further prove that according to Definition 3.3.1 each recursive call results in
a strictly smaller instance. In line 7 of Algorithm 7 the reduction method is given
the currently prioritized pair (S, S′). Let S 'R S′ hold, then the reduction method
reduces the size of the given scenario set S by exactly one. The resulting set S ′ is
then given to a recursive execution of the reduction method. As the cardinality of S
is reduced S ′ � S holds.

Otherwise, if S 'RR S′ holds, a relaxed reduction is applied, which does not
remove a scenario rather modifying the existing ones. In line 8 of Algorithm 5 the
used combination is then added to H to ensure that the applied change is not undone
in the successive application. Inside of UpdateQueue(S, H) the possible reduction
pairs are verified to not be in H. Hence, by appending elements to H the set of tuples
not suitable for a reduction is decreasing up to the point where no further operation
is applicable. In addition, according to Definition 3.3.1 the expansion of H leads to
a strictly smaller execution instance. In case no new pair can be queued the current
set of scenarios is returned and the recursive stack is resolved. Consequently, each
possible operation constructs a strictly smaller instance according to Definition 3.3.1.
And as the set of scenarios and the number of possible scenario tuples are finite, the
algorithm terminates in finite time.

Chapter 4

Bounded Model Checking
Approach

In the previous chapter, we illustrated an approach to reduce scenarios. The basic
reduction technique together with the relaxed version showed promising results in
accelerating the symbolic simulation while increasing scalability by decreasing the set
of states. Nevertheless, the reduction approach could not be extended to exploit the
complete reduction potential without introducing complex loop prevention, optimized
heuristics and a backtracking algorithm. Therefore, we decided to implement another
approach to evaluate the achieved acceleration of a reduction method making use of
the complete reduction potential. We choose to transform the reduction methods into
a SAT encoding. The SAT encoding is consecutively solved with a bounded model
checking approach (BMC) using satisfiability checking (SAT) [CBRZ01].

The idea of bounded model checking is to construct a boolean formula that is true
if and only if the underlying transition system can execute a finite sequence with a
fixed number of steps leading to a predefined goal state. In case the transition system
does not have such a sequence in the allowed iteration depth, normally one would
increment the number of allowed steps and reapply the approach. However, as this
can lead to a running time increase contradicting this thesis purpose, we evaluate
different techniques to handle this, further explained in Section 4.2. After defining
the boolean formula it is given to a satisfiability solver, which returns either SAT with
a satisfying assignment or UNSAT. In the context of this thesis, we decided to use
the Minisat implementation, as it provides an intuitive C++ interface.

Important to note here is, that the satisfiability solving method is not complete,
as the used hardware has boundaries that could be reached dependent on the formula
size. This has to be kept in mind with special regard to the allowed unfolding steps
for the transition system.

In order to correctly generate the input formula, we formalize the transition system
as:

JMKK := I0 ∧
K−1∧
k=0

T (k, k + 1) ∧ goalK ,

where I0 is the initial state encoding, K ∈ N is the iteration depth, T (k, k + 1)
encodes possible transitions between iterations and goalK defines the goal state. In

44 Bounded Model Checking Approach

the following chapter, the SAT encoding for the reduction operation is depicted and
the corresponding transition system is constructed.

4.1 SAT Encoding

The encoding of reduction methods is not enough to correctly depict the procedure.
Thus, we define an interface between simulation and reduction operation. As before,
in the basic reduction approach, the method’s input is a set of scenarios matching
strict requirements. The given data structure has to be transformed into a boolean
formula and is correspondingly encoded in I0.

Consequently to encode the initial state, the given scenario set is transformed
into a boolean clause set. The used variables are divided into different sets of states
depending on the current iteration step of the bounded model checking. Therefore,
we introduce an index k ∈ [0, ...,K] denoting the current state, beginning with k = 0
and ending with a fixed bound K. Additionally, the variables are indexed according
to the scenario i ∈ [1, ..., n] with n = |{S1, ..., Sn}|, the random variable v ∈ [1, ...,m]
with m = |P | and the domain value d ∈ D(pv).
The semantics are defined as follows:

ak,i,v,d =

{
1, if d ∈ Si(pv) in step k
0, else

For the initial state I0, we add unary clauses with the corresponding variables
a0,i,v,d to encode the given scenarios. The function φ(i,v,d) is required to define the
initial state.

φ(i,v,d) =

{
a0,i,v,d, if d ∈ Si(pv)

¬a0,i,v,d, else

I0 :=

n∧
i=1

m∧
v=1

∧
d∈D(pv)

φ(i,v,d)

Example 4.1.1.

D(pi) = {0,1} for i ∈ [0, 1]

S1 : {p1 � {0,1}, p2 � {1}}
S2 : {p1 � {0,1}, p2 � {0}}

I0 = a0,1,1,0 ∧ a0,1,1,1 ∧ ¬a0,1,2,0 ∧ a0,1,2,1∧
a0,2,1,0 ∧ a0,2,1,1 ∧ a0,2,2,0 ∧ ¬a0,2,2,1

Further, we need an encoding to state that scenario tuples are reducible in a
specific iteration state k. Scenario indices are denoted by i, j ∈ [1, ..., n] with i < j
to avoid symmetric cases. We introduce a set of boolean variables to define that a
scenario pair (i, j) is reducible over a certain variable v. To define this condition, we
include additional variables eqk,i,j,v,d stating that valuations for a scenario pair (i, j),

SAT Encoding 45

a variable v and an initial delay d are equivalent. This can then be further used to
describe the exact reduction requirement.

equiv(k, i, j, v, d) :(¬eqk,i,j,v,d ∨ ¬ak,i,v,d ∨ ak,j,v,d)∧
(¬eqk,i,j,v,d ∨ ak,i,v,d ∨ ¬ak,j,v,d)∧
(eqk,i,j,v,d ∨ ¬ak,i,v,d ∨ ¬ak,j,v,d)∧
(eqk,i,j,v,d ∨ ak,i,v,d ∨ ak,j,v,d)

The boolean encoding of the reduction rule states that the random inclusions for all
variables v′ except for one variable v have to be identical. This can be formalized by
encoding that for all variables except one, the set of equivalence defining variables is
satisfied. To encode this, we introduce a set variables rk,i,j,v for each iteration state
k, a scenario tuple (i, j) and the variable v.

Owing to the global invariant of the algorithm, that no complete scenario is con-
tained twice, the random inclusion for the excluded variable has to be disjoint. Thus,
the formula below is only true for reducible scenario tuples, where pv is part of the
differing random inclusion.

reducible(k, i, j, v) :
∧

v′∈[1,m]
v′ 6=v

∧
d∈D(pv′)

(eqk,i,j,v′,d ∨ ¬rk,i,j,v)∧

∨
v′∈[1,m]
v′ 6=v

∨
d∈D(pv′)

(¬eqk,i,j,v′,d) ∨ rk,i,j,v

We introduce additional variables to denote that a certain pair (i, j) of scenarios is
reduced in step k rk,i,j .

reduce(k, i, j) : (¬rk,i,j ∨
m∨

v=1

rk,i,j,v) (4.1)

The variable rk,i,j represents the possibility of applying a reduction to a specific pair
and in case it is satisfied one variable in i and j has to be suitable for a reduction. This
is ensured by the disjunction over all possible variables in Equation 4.1. Moreover,
to determine for each scenario if it is reduced in the current iteration step a variable
rk,i solely depending on iteration state k and scenario index i is introduced.

reduce(k, i) : (¬rk,i ∨
i−1∨
j=0

rk,j,i

n∨
j=i+1

rk,i,j) ∧
i−1∧
j=0

(¬rk,j,i ∨ rk,i) ∧
n∧

j=i+1

(¬rk,i,j ∨ rk,i)

As we want to ensure that each scenario i is reduced only once in each iteration step,
we begin by defining the set of reduction variables Rk,i for the current step k. Then,
we introduce an at most one constraint using the Bimander encoding [NM15], ensuring
that no scenario is reduced twice. The set of reduction variables for a scenario i is
defined as:

Rk,i := {rk,i,j | ∀j. i < j with i, j ∈ [1, ..., n]} ∪ {rk,j,i| ∀j. j < i with i, j ∈ [1, ..., n]}

In the following we shortly depict the encoding of the at most once constraint, for
further details we refer to [NM15].

46 Bounded Model Checking Approach

Given the set of variables x1, ..., xn ∈ Rk,i, we separate those in m disjoint groups
G1, ..., Gm of size k with 1 ≤ m ≤ n, such that k =

⌈
n
m

⌉
. By extending the indexing

to xi,h, we state that xi,h is the hth element of group i.
Then, we encode that for each group at most one variable can be true. This is

realized by applying the pairwise encoding to all groups G1, ..., Gm. The encoding
technique often referred to as naive encoding is an intuitive strategy to ensure that
at most one variable is assigned to true. The idea is to encode that in all possible
combinations no two variables are satisfied at the same time. This is realized by
encoding a set of clauses consisting of all negated variable tuples inGi, as this encoding
is rather trivial we abbreviate the construction by At-most-onepw. As this is only
applied to the defined subsets of fixed size, the rather simple encoding suits as an
efficient method.

m∧
i=1

(At-most-onepw(Gi))) (4.2)

Additionally, we introduce a constraint pair between each variable xi,h ∈ Gi of a group
and a set of new variables further denoted as commander variables B1, ..., Bdlog2me.
The commander variables are represented by:

σ(i, j) :=

{
Bj , if bit j of the binary string i− 1 is 1.
¬Bj , else

m∧
i=1

k∧
h=1

dlog2me∧
j=1

¬xi,h ∨ σ(i,j) (4.3)

Together Equation 4.2 and Equation 4.3 define, that at most one of the variables in
Rk,i is true, ensuring that each scenario is reduced at most once in each iteration step.
We introduce the notation At-most-one(Rk,i) to abbreviate the described encoding.

In the following, we allow multiple reductions while reducing each scenario at
most once in each step. We introduce a transition relation T (k,k + 1) consisting of
all required constraints for transition step k to k + 1.

T (k, k + 1) :=

n−1∧
i=1

n∧
j=i+1

m∧
v=1

reducible(k, i, j, v) ∧
n−1∧
i=1

n∧
j=i+1

reduce(k, i, j)∧

n∧
i=1

reduce(k, i) ∧
n−1∧
i=1

n∧
j=i+1

m∧
v=1

∧
d∈D(pv)

equiv(k, i, j, v, d) ∧
n−1∧
i=1

n∧
j=i+1

(¬rk,i,j∨

(
∧

v∈[1,m]

∧
d∈D(pv)

(ak+1,i,v,d ↔ (ak,i,v,d ∨ ak,j,v,d)) ∧ ¬ak+1,j,v,d))∧

n∧
i=1

(rk,i ∨
∧

v∈[1,m]

∧
d∈D(pv)

ak+1,i,v,d ↔ ak,i,v,d) ∧At-most-one(Rk,i)

≡ (transformation to CNF)

SAT Encoding 47

T (k, k + 1) :=

n−1∧
i=1

n∧
j=i+1

m∧
v=1

reducible(k, i, j, v) ∧
n−1∧
i=1

n∧
j=i+1

reduce(k, i, j)∧

n∧
i=1

reduce(k, i) ∧
n−1∧
i=1

n∧
j=i+1

∧
v∈[1,m]

∧
d∈D(pv)

(¬ak+1,i,v,d ∨ ak,i,v,d ∨ ak,j,v,d ∨ ¬rk,i,j)∧
(ak+1,i,v,d ∨ ¬ak,i,v,d ∨ ¬rk,i,j)∧
(ak+1,i,v,d ∨ ¬ak,j,v,d ∨ ¬rk,i,j)∧
(¬ak+1,j,v,d ∨ ¬rk,i,j)∧
n∧

i=1

∧
v∈[1,m]

∧
d∈D(pv)

((rk,i ∨ ¬ak+1,i,v,d ∨ ak,i,v,d)∧

(rk,i ∨ ak+1,i,v,d ∨ ¬ak,i,v,d)) ∧At-most-one(Rk,i)

As we want to quantify a certain state of interest, which is the optimal amount of
applied reductions, we include a cardinality constraint demanding empty scenarios.
In the context of this thesis, the optimal amount of applied reductions is the sequence
with the best trade-off between reduction result and required time. Empty scenarios
are the direct result of applied reductions. For the following equation we assume
that we have a set of variables E and ¬E denotes the set in which all variables of
E are negated. Additionally, we assume that E has exactly n elements. Then, this
equivalence holds:

At-most-(n-c)(E) ≡ At-least-(c)(¬E).

To define the goal state we introduce variables representing non-empty scenarios,
such that we can make use of the equivalence by encoding an at most n-c non-empty
scenarios clause set to model at least c empty scenarios. To detect empty scenarios
we include for each state k and each scenario i a variable ek,i, which is true iff the
first variable (ak,i,1,d) is satisfied for at least one element of its support set.

ek,i ↔
∨

d∈D(p1)

ak,i,1,d

≡ (transformation to CNF)

empty(k, i) := (
∨

d∈D(p1)

¬ak,i,1,d ∨ ¬ek,i) ∧
∧

d∈D(p1)

(ek,i ∨ ¬ak,i,1,d)

The introduced variables ek,i are true, if in step k in scenario i at least one element is
inside of the random inclusion for p1. The set of empty scenario variables in iteration
depth k is defined as Ek := {ek,i| for i ∈ [1, ..., n]}.

The final step of the encoding is the quantification of empty scenarios, thus we
include a constraint stating that there have to be at least c empty scenarios in state
K.

The encoding of at least c empty scenarios is realized with an encoding defining
at most n-c non-empty scenarios.

48 Bounded Model Checking Approach

The at-most n-c constraint is denoted by At-most-n-c(x1, ..., xn) for xi ∈ EK,i and
realized with the help of a sequential counter encoding (SQenc). Note here, that we
have to introduce an additional encoding as the Sequential encoding ([NM15]) showed
to be more efficient for at-most-k constraints with k > 1. The SQenc is described
further in the following section, for more specific information on the complexity and
a corresponding evaluation of the encoding, we refer to [Sin05].

The basic idea of the encoding is a sequential counter that is incremented for each
satisfied variable and violated in case more than c′ = n-c variables are assigned true.
The encoding requires a set of variables s1, ..., sn in which the variables represent
the partial sum of satisfied variables up to i:

∑i
j=1 xj in unary representation. The

notation is extended to si,j to represent the jth bit of partial sum i.
In the first partial sum s1 the first bit is set to x1 and all other bits are trivially

null:

(¬x1 ∨ s1,1) (4.4)
∧ (¬s1,j) for 1 < j ≤ c′ (4.5)

In case xi is set to true, the first bit of si has to be set to true, independent of the
previous entries.

∧ (¬xi ∨ si,1) for 1 < i ≤ n (4.6)

Then to ensure the correct counting, partial sums have to be carried over between
successive sums, with special consideration of overflow bits.

∧ (¬si−1,1 ∨ si,1) for 1 < i ≤ n (4.7)
∧ (¬xi ∨ ¬si−1,j−1 ∨ si,j) for 1 < i ≤ n (4.8)

∧ (¬si−1,j ∨ si,j) for 1 < j ≤ c′ (4.9)

Finally, the encoding specifies that the c′th bit of the partial sum si is never set to
one together with a satisfied xi, as this would indicate that more than c′ variables are
true. In those cases the encoding is unsatisfiable.

∧ (¬xi ∨ ¬si−1,c′) for 1 < i ≤ n (4.10)

Given all encoding details we can specify the transition system M for the bounded
model checking approach.

JMKK := I0 ∧
K−1∧
k=0

T (k, k + 1) ∧
n∧

i=1

empty(K, i) ∧ At-most-(n-c)(Ek), (4.11)

where K ∈ N is the iteration depth.

JMKK is then unfolded up to K and given to a SAT Solver.

Split-Operation

We introduce a new set of variables spk,i,j,v to denote that a scenario i is split and
the sub-scenarios are stored in i and j. The condition for a scenario to be split is
extended to a certain variable v.

SAT Encoding 49

For a better understanding the logical requirements for the split operation and
the corresponding CNF formulas are listed down below:

First, we specify the requirements for a scenario to be split. As we have to store
the split result in a distinct scenario, the scenario with index j has to be empty.
Additionally, the random inclusion of v in i has to have a cardinality of at least two.
The random inclusion for v in i is defined as: Dk,i,v := {ak,i,v,d| for d ∈ D(v)}∧

d∈D(v)

¬ak,i,1,d ∧ at-least-two(Dk,i,v)

The encoding of at-least-two encodes all possible |Dk,i|−1 sized clauses of variables in
Dk,i,v and conjuncts those. This results in |Dk,i| clauses and ensures that by assigning
one variable all but one clause are satisfied, thus requiring at least two satisfied
variables. Given a scenario pair fulfilling the above condition, the split operation
can be applied. As we require a general encoding without restricting possible split
applications, we formalize the operation step by step. The first condition for the split
result is that both scenarios i, j are non-empty afterwards.

(
∨

d∈D(v)

ak+1,i,1,d) ∧

(
∨

d∈D(v)

ak+1,j,1,d)

The split operation cannot modify the contained complete scenarios, thus everything
which was part of i in k has to be covered by i and j in k + 1.∧

d∈D(v)

ak,i,v,d ↔ (ak+1,i,v,d ∨ ak+1,j,v,d)

Then, to ensure that no scenario is part of i and j a constraint specifies, that at least
one of both has to be false.for the split variable v.∧

d∈D(v)

¬ak+1,i,v,d ∨ ¬ak+1,j,v,d

Finally, we have to ensure that for all other variables unequal to v, the resulting
scenarios stay unchanged.∧

v′∈[1,m]
v′ 6=v

∧
d∈D(v′)

(ak+1,j,v′,d ↔ ak+1,i,v′,d)∧

∧
v′∈[1,m]
v′ 6=v

∧
d∈D(v′)

(ak+1,i,v′,d ↔ ak+1,i,v′,d)∧

The required conditions have to be connected to the split variable. Therefore, we
define an implication from spk,i,j,v to all split clauses. For completeness we formalize

50 Bounded Model Checking Approach

the split-encoding below:

split(k, i, j, v) :=spk,i,j,v →
∧

d∈D(v)

(¬ak,i,j,1,v ∧ at-least-two(Dk,i,v)) ∧

(
∨

d∈D(v)

ak+1,i,1,d) ∧ (
∨

d∈D(v)

ak+1,j,1,d) ∧

∧
d∈D(v)

ak,i,v,d ↔ (ak+1,i,v,d ∨ ak+1,j,v,d)∧

∧
d∈D(v)

(¬ak+1,i,v,d ∨ ¬ak+1,j,v,d) ∧

∧
v′∈[1,m]
v′ 6=v

∧
d∈D(v′)

(ak+1,j,v′,d ↔ ak+1,i,v′,d)∧

∧
v′∈[1,m]
v′ 6=v

∧
d∈D(v′)

(ak+1,i,v′,d ↔ ak+1,i,v′,d)

Additionally to the defined constraints, we add a number of clauses to ensure the
correctness with the remaining part of the SAT encoding. Therefore, we begin by
adding variables for each scenario to denote that the scenario is split in state k. The
variables are denoted by spk,i and are assigned true in case i is part of a split.

split(k, i) := (spk,i ↔ (

i−1∨
j=1

∨
v∈[1,m]

spk,j,i,v ∨
n∨

j=i+1

∨
v∈[1,m]

spk,i,j,v))

In every iteration step k a scenario can be either split or reduced, not both.

At-most-onea(k) :=

n∧
i=1

(¬rk,i ∨ ¬spk,i) (4.12)

The violet part of the transition has to be adjusted, as a scenario assignment only
stays unchanged in case no reduction and no split is performed.

n∧
i=1

(rk,i ∨ spk,i ∨
∧

v∈[1,m]

∧
d∈D(pv)

ak+1,i,v,d ↔ ak,i,v,d)

Finally, analog to the reduction, it has to be ensured that no scenario is part of
more than one split. Correspondingly, we add an at-most-one constraint using the
Bimander encoding [NM15]. The used variable set is defined as:

SPk,i :={spk,i,j,v| ∀j ∈ [1, ..., n], v ∈ [1, ...,m]. with i < j} ∪
{spk,i,j,v| ∀j ∈ [1, ..., n], v ∈ [1, ...,m]. with j < i}

The at-most-one encoding is abbreviated by:

At-most-one(SPk,i)

Before formalizing the transition system JM ′KK including the split operation, we have
to determine a sequence of empty scenarios that have to be included to store the split

SAT Encoding 51

scenarios. As a general rule, we add dn2 e empty scenario in the first state k = 0 to
restrict the split possibilities and improve the solving speed. Correspondingly, the
at least c empty condition is incremented to hold for at least c + dn2 e, as the empty
scenarios do not count in the reduction process.

While implementing and evaluating the SAT encoding, we realized that the split
operation expanded the search space by a significant factor, hence we define a set of
enhancements to rule out redundant parts of the solution space.

The first improvement is an additional constraint to rule out that a reduction is
undone by applying a consecutive split and analogous a split should not be undone
by a reduction. This is encoded by the following clauses.

Impr(k) :=

n−1∧
i=1

n∧
j=i+1

∧
v∈[1,m]

(¬rk,i,j,v ∨ ¬spk+1,i,j,v) ∧ (¬rk,i,j,v ∨ ¬spk+1,j,i,v)∧

(4.13)

(¬spk,i,j,v ∨ ¬rk+1,i,j,v) ∧ (¬rk+1,i,j,v ∨ ¬spk+1,j,i,v)

Moreover, we introduce a new variable τk for k ∈ [1, ...,K], which is set to true in
case no further reduction is applicable and no split is applied. Formally, τk is defined
as:

(τk ∨
n−1∨
i=1

n∨
j=i+1

m∨
v=1

rk,i,j,v ∨
n−1∨
i=1

n∨
j=i+1

m∨
v=1

spk,i,j,v)∧ (4.14)

(

n−1∧
i=1

n∧
j=i+1

m∧
v=1

¬τk ∨ ¬rk,i,j,v) ∧ (

n−1∧
i=1

n∧
j=i+1

m∧
v=1

¬τk ∨ ¬spk,i,j,v)¸

This alone is not sufficient to improve the solving speed, hence we conjunct τk with all
remaining parts of the encoding. The conjunction is trivial and no further explained.
Thus in case no further reduction is possible in step k τk has to be satisfied and the
remaining boolean clause set is trivially propagated to be satisfiable. Additionally,
we have to include a constraint that ensures if τk is set to true, it has to be satisfied
for all following iteration steps: ∀k′ ∈ [k + 1, ...,K]. τk′ = true.

K∧
k=1

¬τk−1 ∨ τk (4.15)

As the current goal state of the bounded model checking is specified to hold at the
last iteration step, we have to include a case distinction to correctly evaluate the
assignment with respect to τk. Therefore, we adjust the condition to hold in the last
iteration step in case all τk are assigned false. Otherwise, the constraint for at least c
empty scenarios has to hold in the first iteration in which τk holds. These adjustments
are encoded by:

At-most*-c(Ek) :=

K−1∧
k=2

((¬τk−1 ∧ τk)→ At-most-c(Ek) ∧ (¬τK → At-most-c(Ek)))

(4.16)

52 Bounded Model Checking Approach

The complete improvement encoding is denoted by Stop(k) and is a conjunction of
the separately depicted formulas, note here that it additionally modifies the remaining
encoding as described above.

Stop(k) := (4.14) ∧ (4.15)

Note here, that 4.16 is not included in this definition as it replaces the At-most-c(Ek)
condition in the transition system (4.11). The updated transition relation T (k, k+ 1)
can then be encoded by:

T (k, k + 1) :=

n−1∧
i=1

n∧
j=i+1

m∧
v=1

reducible(k, i, j, v) ∧
n−1∧
i=1

n∧
j=i+1

reduce(k, i, j)∧

n∧
i=1

reduce(k, i) ∧
n∧

i=1

n∧
j∈[1,n]
j 6=i

m∧
v=1

split(k, i, j, v) ∧
n∧

i=1

split(k, i)

n−1∧
i=1

n∧
j=i+1

(¬rk,i,j ∨ (
∧

v∈[1,m]

∧
d∈D(pv)

(ak+1,i,v,d ↔ (ak,i,v,d ∨ ak,j,v,d))∧

¬ak+1,j,v,d)) ∧
n∧

i=1

(rk,i ∨ spk,i ∨
∧

v∈[1,m]

∧
d∈D(pv)

ak+1,i,v,d ↔ ak,i,v,d)∧

At-most-one(Rk,i) ∧At-most-one(SPk,i) ∧At-most-onea(k)∧
Impr(k) ∧ Stop(k)

Note here, that we could also merge the At-most-one conditions in one encoding,
however we decided to introduce an additional encoding At-most-onea to encode that
a scenario can only be part of exactly one rule application. This is reasoned by the
fact that At-most-onea includes at most three clauses for each scenario (defined in
Equation 4.12 and extended in Equation 4.25), whereas the Bimander encoding has a
complexity of n2

2m +ndlog2me− n
2 . A further investigation of a more efficient encoding

was out of scope and is listed as future work.

Relaxed reduction

As an additional reduction technique and to match the reduction framework, we
decided to transform the relaxed reduction into a SAT encoding. This enables the
direct comparison of the approaches to analyze the advantages and disadvantages
between them.

The relaxed reduction is encoded below, we separate the encoding in conditions
holding before and after the application. We introduce a set of variables to encode that
a pair of scenarios (i, j) ∈ [1, ..., n]2 with a tuple of random variables (v, v′) ∈ [1, ...,m]2

is relaxed reduced.

rrk,i,j,v,v′ for k ∈ [1, ...,K], i, j ∈ [1, ..., n] and v, v′ ∈ [1, ...,m]

Prerequisites As explained in detail in an earlier chapter, the relaxed reduction
can only be applied to tuples of scenarios inheriting a containment for the random
inclusions of v and two disjoint inclusions for v′. Therefore, we encode that variable

SAT Encoding 53

v′ models the containment of random inclusions, while the corresponding values for
v have to be disjoint, modeling the reduction opportunity. This encoding strategy is
rigid, however, it is required to correctly specify the corresponding transformations.
Note here, that resulting formulas are encoded separately to improve the readability
for the reader. However, in the implementation, the relaxed reduction is included as
a single implication.

The containment is directed, hence the set corresponding to the random inclusion
of pv′ in j includes the one in i. Therefore, the tuple (i, j) differs in comparison to
(j, i). The encoding is formalized as:

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

(¬rrk,i,j,v,v′ ∨
∨

d∈D(v′)

¬eqk,i,j,v′,d)∧ (4.17)

∧
d∈D(v′)

(¬rrk,i,j,v,v′ ∨ ¬ak,i,v′,d ∨ ak,j,v′,d) ∧ (
∨

d∈D(v′)

ak,i,v′,d)

The idea of the encoding is that in case the relaxed reduction is applicable, one of the
equivalences for containment variable v′ has to be violated. Hereby, we ensure that
the two inclusions for v′ are unequal. Furthermore, the second clause in 4.17 secures
that in case a value d is not in j, it cannot be in i. With the third clause we ensure
that i is not empty and thus a real containment is present.

Additionally, we specify the structure of the remaining variables v̇. For all variables
v̇ ∈ [1, ...,m] with v̇ ∈ V \ {v, v′}, the corresponding equivalence variables have to
hold. This ensures that the scenarios are identical neglecting v and v′.

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

∧
v̇∈[1,m]
v̇ 6=v,v′

∧
d∈D(v̇)

(¬rrk,i,j,v,v′ ∨ eqk,i,j,v̇,d) (4.18)

Note here, as the order of i and j is relevant for the relaxed reduction, the equivalence
variables eqk,i,j,v̇,d require a case distinction, which is left out to shrink the formula
size. In the implementation this distinction is considered.

The requirement that for v the random inclusions of i and j are disjoint is implied
by the global invariant that no complete scenario is contained twice. In the other case,
due to the restriction that for v′ a containment holds and for all others the random
inclusions are identical, a complete scenario would be included twice. Additionally,
the first and second part of the encoding imply that both input scenarios have to
be non-empty. Therefore, we shortly recap the definition of an empty scenario. A
scenario is either empty, then for all variables the possible delay values are set to false,
or for each variable at least one primary delay has to be included. Given the first two
clauses defined in 4.17, it is ensured that scenario i is not identical to j, while j has
to cover a larger set of values. Thus, considering the fact that j cannot be empty and
taking 4.18 into account, we can prove that all input scenarios with a size bigger than
two and fulfilling both conditions are non-empty. However for scenarios with exact
two variables the condition is not fulfilled, as 4.18 is only constructed for additional
variables. Therefore, we require an additional clause stating that at least one value
in the contained set is assigned to true, this is the additional clause in 4.17.

Transformation Furthermore, we define the transformation of the participating
scenarios in-between steps k and k+1. As the relaxed reduction makes use of the fact

54 Bounded Model Checking Approach

that a reducible partner is contained in either i or j, we have to apply the reduction
operation to one scenario and remove the used information out of the other. The
complete encoding for the relaxed reduction-induced transformation procedure is split
into four parts.

The first part is the reduction part, merging the information stored in two random
inclusions into one. The merged set is then stored in scenario i for the reduction
variable v.

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

∧
d∈D(v)

(¬ak+1,i,v,d ∨ ak,i,v,d ∨ ak,j,v,d ∨ ¬rrk,i,j,v,v′)∧ (4.19)

(ak+1,i,v,d ∨ ¬ak,i,v,d ∨ ¬rrk,i,j,v,v′) ∧ (ak+1,i,v,d ∨ ¬ak,j,v,d ∨ ¬rrk,i,j,v,v′)

(¬ak+1,i,v,d ∨ ak,i,v,d ∨ ak,j,v,d ∨ ¬rrk,i,j,v,v′)

The second part ensures that the complete scenario required for the reduction is
removed from scenario j.

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

∧
d∈D(v′)

(¬ak+1,j,v′,d ∨ ak,j,v′,d ∨ ¬rrk,i,j,v,v′)∧ (4.20)

(¬ak+1,j,v′,d ∨ ¬ak,i,v′,d ∨ ¬rrk,i,j,v,v′) ∧ (ak+1,j,v′,d ∨ ¬ak,j,v′,d ∨ ak,i,v′,d ∨ ¬rrk,i,j,v,v′)

The third part models that i stays unchanged for all variables not part of the reduction
process. Here, a clear distinction is made between i and j as scenario j has to stay
unchanged for all variables except those in the relaxation process.

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

∧
v̇∈[1,m]
v̇ 6=v;

∧
d∈D(v̇)

(¬ak+1,i,v̇,d ∨ ak,i,v̇,d ∨ ¬rrk,i,j,v,v′)∧ (4.21)

(ak+1,i,v̇,d ∨ ¬ak,i,v̇,d ∨ ¬rrk,i,j,v,v′)

Finally, the last part models that all variables except v′ stay unchanged for j.

n∧
i=1

∧
j∈[1,n]
j 6=i

∧
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

∧
v̇∈[1,m]
v̇ 6=v′

∧
d∈D(v̇)

(¬ak+1,j,v̇,d ∨ ak,j,v̇,d ∨ ¬rrk,i,j,v,v′)∧ (4.22)

(ak+1,j,v̇,d ∨ ¬ak,j,v̇,d ∨ ¬rrk,i,j,v,v′)

In addition, we have to ensure that in each iteration step at most on relaxed reduction
is applied on a single scenario i. Beforehand, we define the set of variables for which
at most one is allowed to be satisfied at the same state k.

RRk,i :={rrk,i,j,v,v′ , rrk,j,i,v,v′ | ∀j ∈ [1, ..., n], v, v′ ∈ [1, ...,m]. with v′ 6= v ∧ i 6= j}

Given this set, we introduce the at most one relaxed reduction constraint using as
above the Bimander encoding.

At-most-one(RRk,i) (4.23)

SAT Encoding 55

The complete encoding of the relaxed reduction is a large set of clause sets. For
completeness and to list the required modifications of the remaining encoding, we
formalize it in the following. The set of prerequisites and the transformation are
encoded as:

reductionrel(k) := (4.17) ∧ (4.18) ∧ (4.20) ∧ (4.19) ∧ (4.20) ∧ (4.21) ∧ (4.22) ∧ (4.23)

In case we include the relaxed reduction into the encoding, the remaining parts of the
clause set have to be adapted. Analogous to the split operation, we have to increase
our variable set by defining variables rrk,i denoting that scenario i is part of a relaxed
reduction in iteration step k.

n∧
i=1

(rrk,i ↔ (

i−1∨
j=1

∨
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

rrk,j,i,v,v′ ∨
n∨

j=i+1

∨
v∈[1,m]

∧
v′∈[1,m]
v′ 6=v

rrk,i,j,v,v′))

Additionally, we modify the constraint for unchanged scenarios in the transition step
(k, k + 1). Due to the design of the encoding, we can simply adjust the left side
of the disjunction by removing or including the corresponding reduction operations.
This ensures that a scenario stays only unchanged in case that it is not part of any
reduction operation.

n∧
i=1

((rk,i ∨ spk,i ∨ rrk,i) ∨
∧

v∈[1,m]

∧
d∈D(pv)

ak+1,i,v,d ↔ ak,i,v,d) (4.24)

As before, we have to ensure that a scenario can either be reduced, relaxed reduced
or split. In any transition only one of these operations for a single scenario i can be
executed. To dynamically define and adjust the encoding we included an at most one
constraint for the set of allowed reduction techniques, verifying that at most one of
these operations is applied to each scenario. We further denote this by At-most-onea,
where a is an abbreviation for action.

At-most-onea(k) :=

n∧
i=1

(¬rk,i ∨ ¬rrk,i) ∧ (¬rk,i ∨ ¬splitk,i) ∧ (¬rrk,i ∨ ¬splitk,i)

(4.25)

To modify an encoding to only contain a subset of those operations, we remove those
from 4.24 and 4.25. As a final note to this chapter, we introduce a set of operation
modes, which are further evaluated in Chapter 5. The modes increase in complexity
starting with the basic encoding only including the reduction rule, then we define
an encoding with reduction rule and relaxed reduction, one with reduction rule and
split operation and one containing all three techniques. The transition step is then

56 Bounded Model Checking Approach

formalized as:

T (k, k + 1) :=

n−1∧
i=1

n∧
j=i+1

m∧
v=1

reducible(k, i, j, v) ∧
n−1∧
i=1

n∧
j=i+1

reduce(k, i, j)∧

n∧
i=1

reduce(k, i) ∧
n∧

i=1

n∧
j∈[1,n]
j 6=i

m∧
v=1

split(k, i, j, v) ∧ reductionrel(k)∧

n−1∧
i=1

n∧
j=i+1

(¬rk,i,j ∨ (
∧

v∈[1,m]

∧
d∈D(pv)

(ak+1,i,v,d ↔ (ak,i,v,d ∨ ak,j,v,d))

∧ ¬ak+1,j,v,d)) ∧
n∧

i=1

((rk,i ∨ spk,i ∨ rrk,i)∨∧
v∈[1,m]

∧
d∈D(pv)

ak+1,i,v,d ↔ ak,i,v,d)∧

At-most-one(Rk,i) ∧At-most-one(SPk,i) ∧At-most-one(RRk,i)∧
Impr(k) ∧ Stop(k) ∧At-most-onea(k)

Finally, we define the complete transition system JM ′′KK , that is simply modifiable
by including or removing the named parts.

JM ′′KK := I0 ∧
K−1∧
k=0

T (k, k + 1) ∧
n∧

i=1

empty(K, i) ∧At-most*-c(Ek),

where K ∈ N is the iteration depth.

At-most*-c(Ek) is taken from Formula 4.16 and can be replaced by At-most-c(Ek) in
case we disable the improvement clauses (4.13). This is required to correctly specify
the iteration step k in which the reduction result is stored, which differs in case we
include τk.

4.2 BMC
As initially mentioned, the implemented BMC approach does not solely increment
the iteration depth K in case the current instance was unsatisfiable. Instead, the
deployed goal condition of c empty scenarios is considered as an additional measure
to adjust the solution space of the input instance. In the implementation, two main
functions are instantiated. On one hand, an approach, which attempts to find the
maximal reduction, and on the other hand a method trying to get the best trade-off
between reduced instances and running time improvement.

The clear distinction between the approaches has to be stated as this significantly
influences the running time of the SAT solver. This is mainly due to the growth of the
formula when allowing a higher step range K. The approach computing the minimal
output instance begins by determining the worst-case iteration depth required to
reduce n instances. If only applying the basic reduction rule, the value can be fixed
to n− 1. However, when the encoding is extended by the relaxed reduction and split
method additional steps have to be considered to cover all possible solutions. For the
sake of completeness, we shortly mention the required computation steps, although

BMC 57

SAT Solver

Encoding(c,K)

Scenarios S

(SAT, α)UNSAT

Return S ′

if(c < min((|S|/2), 3))

else Return S

[ATL(c)/ATL(c′)]

with c < c′

Figure 4.1: BMC procedure.

even an under approximated iteration depth leads to unsolvable instances. Note here,
that by unsolvable instances we denote instances not solvable with the given hardware
and time. As additionally, in the practical application instances requiring more than
two splits occurred only occasionally, a strongly under approximated iteration depth
is implemented here.

To compute the worst-case number of required iteration steps, we initially have to
determine the number of splits needed to construct the set of all complete scenarios
contained in the given scenario set. Thus, we have to multiply the cardinality of all
random inclusions for each scenario and the sum of the resulting numbers subtracting
the number of given scenarios. Next, knowing how often we have to split in the
worst case, the corresponding number of reduction operations has to be calculated.
To reduce the input instance the approach has to apply one more reduction than
applied splits. It has to be noted here, that multiple reductions can be executed
in each time step, the corresponding number of required iterations is thus lower.
Finally, the computed numbers can be summed to determine the required iteration
range K. Moreover, to allow the split operations, the encoding has to be extended
by equivalently many empty scenarios. The defined procedure is thus the complete
pre-processing for the bounded model checking approach, which reduces to a minimal
output. This approach, however, is not applicable as the instances become to large
to be solvable with the given setup.

The second approach also used in the experimental evaluation uses a heuristically
defined number of assumed maximal reductions for each input. The amount of for
an efficient execution required reductions is solely based on practical experiments.
Note here, that in future applications of the reduction method, this heuristic has
to be adapted based on the initial delay set D and the railway systems size. The
idea of the approach is to set K to the size of the input scenarios K := |S|, while
initially setting the final number of empty scenarios to one and restricting them to
the minimum of half of the input size and three c := min(|S|/2, 3). This constant
of three has been computed by evaluating the on average applied reductions. Then
during the execution, in case the input instance was unsolvable the number of required
empty scenarios is, if possible incremented. This loop is repeated until either an
unsatisfiable encoding is found or c cannot be increased without becoming greater
than min(|S|/2, 3). The procedure is additionally depicted in Figure 4.1.

Chapter 5

Experimental Results

5.1 Contextual Setup

In the following chapter, we analyze the performance and especially the improvement
induced by the work of this thesis. Due to the reduction of participating instances
during the execution we assume to see a significant impact on the runtime of the
symbolic simulation.

The reduction techniques are separated into various modes. The first algorithm
is solely the basic reduction rule, then the second algorithm is the joint application
of reduction and relaxed reduction. Furthermore, algorithms three, four, five, and six
are different BMC configurations. The third encodes only the basic case, while four
encodes also the relaxed reduction. Therefore, it will be interesting to analyze the
direct comparison between the approaches. Configuration five includes the reduction
rule and the split operation and method six contains all reduction techniques.

The infrastructure data is parsed from real world data for a railway system and
vary in the number of participating trains and the simulated time interval. Moreover,
the daytime of the schedule is modified in the example set, which highly influences the
density of scheduled trains. Next, to make the simulation more realistic, we vary the
set of initial delay values D and the corresponding probability distribution introduced
in the simulation. This is expected to have a substantial effect on the number of train
instances and correspondingly on the running time of symbolic simulation.

The compared parameters are the running time of the algorithm as decreasing
this is our main motivation, as well as the number of instances after and during
the simulation. The first property is a direct measure for the achieved acceleration.
Additionally, the number of instances gives insights about potential scalability im-
provements. To illustrate the results, we show some diagrams about the running time
improvement and some depicting the instance count during the execution, to further
evaluate the state space growth without and with reduction.

5.1.1 Heuristic Evaluation

As stated in Section 3.2, the deployed heuristic is based on practical results, thus we
introduce a short data set showing the its impact. The heuristic builds on the main
idea, that before applying the relaxed reduction first all possible applications of the
basic reduction rule are executed. Then further, the application order of reductions

60 Experimental Results

|trains| T (in minutes)

rush hour1 702 60
night1 140 60
night5 950 360
morning3 1152 180
noon2 762 120

Figure 5.1: Example Instances.

focuses on compressing information by first merging scenarios which do not decrease
in size afterwards and only if this is not possible other reduction steps are selected.
The idea of this is to prevent scenarios becoming unsuitable by a size decrease and
thus impeding further reductions. On the night1 example the final number of train
instances stayed unchanged at 163 instances, however when applying the second re-
duction mode on rush hour1 the instance count could be further decreased to 1086
showing a marginal improvement induced by the application order. On all other in-
stances the reduction result was equal or slightly improved in comparison to neglecting
the priority ordering considering scenario size and variable ids.

Note here, even though the heuristic enabled additional instance reductions it is
mainly based on an intuitive idea to optimally reduce instances and can vary depend-
ing on the input size and density of scheduled trains.

5.2 Evaluation

The approach is tested on various inputs, while the characteristics of the used exam-
ples are illustrated in Figure 5.1. The relevant parameters are participating trains,
time interval, and the number of infrastructure elements of the railway system those
are omitted in the table as they are identical for all examples with |V | = 2646 and
|E| = 5622. The examples are denoted as night1, night5, rush hour1, morning3 and
noon2. The railway systems and their corresponding timetables represent the train
network in the north of Germany. Note here, that the train count and time interval T
does not directly determine the complexity of an instance, as the number of conflicts
and the density of scheduled trains is not part of the listed parameters. However, it
is suited to give an indication for very small examples.

In the following we will evaluate the approaches on three different setups, varying
the support set of primary delays. Initially, the delay set is set to D1(pi) = {0, 1, 2}
and the probability distribution is defined as P1(pi = 0) = 0.2, P1(pi = 1) =
0.5, P1(pi = 2) = 0.3 ∀i ∈ [1, ..., n], where n depicts the number of participating
trains. Moreover, the reductions are applied at every 7th time step.

We divide the evaluation of the results into separate plots and a corresponding
table to represent the insights to the full extend. Figure 5.4 illustrates on the left
side the number of final instances on varying examples and for all different reduc-
tion techniques. The conducted example set varies in the density of scheduled trains,
correspondingly the percentage and number of reduced instances varies and reaches
a maximal reduction rate of 88% for the rush hour1 input. In the resulting plot of
example rush hour1 and in addition in Table 5.2 and 5.3 it can be seen that the
direct application of the reduction and the relaxed reduction are the most efficient

Evaluation 61

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

rush hour1 29.07 3.45 3.47 6.02 40.3 97.46 -
night1 0.49 0.40 0.40 0.39 0.41 0.41 0.41
night5 13.99 9.75 9.67 10.2 12.7 12.84 11.77
morning3 49.21 37.41 37.51 35.98 35.76 36.29 36.13
noon2 26.45 22.21 22.01 21.12 21.38 21.61 21.74

Figure 5.2: Running time for D1 and P1.

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

rush hour1 3749 1108 1089 1127 1120 1116 -
night1 277 163 163 163 163 163 163
night5 2185 1018 1018 1022 1018 1018 1018
morning3 2139 947 947 947 947 947 947
noon2 1453 665 665 665 665 665 665

Figure 5.3: Instance count for D1 and P1.

techniques. This can be seen in the reduced running time and the number of final
instances. However, the BMC approach showed to be only reducing the running time
of the simulation in the restricted setting only including the two basic rules. This is
illustrated by the violet line in Figure 5.4. The extension considering the split oper-
ation theoretically covers the complete reduction potential, however, as the for this
step required iteration depth prevents a terminating execution the current implemen-
tation cannot keep up with the direct reduction. This can additionally be seen in the
running time for rush hour1 with the extended SAT encoding illustrated in blue and
turquoise. Note here, that in Table 5.2, 5.3, 5.5 and 5.6 certain entries are denoted
by - as those instances did not terminate in a period of three hours. Not terminating
instances did only occur in the application of the BMC approach. Generally, the
gathered results showed the significant success of the reduction techniques and an
efficient application of the simulation procedure.

In order to additionally analyze how the reduction procedure performs on inputs of
an increased size and complexity, we modified the input delay set D2(pi) = {0, 1, 2, 3}
and the probability distribution is defined as P2(pi = 0) = 0.2, P2(pi = 1) =
0.5, P2(pi = 2) = 0.2, P2(pi = 3) = 0.1 ∀i ∈ [1, ..., n], where n depicts the number
of participating trains. Due to the additional delay value the simulation initializes
each train at its start element with an extra instance covering the new case. This
and the fact that additionally inserted instances induce a notable amount of conflicts
and thus splits, results in an increased state space. The remaining parts including
the examples stay unchanged for the second experimental setup. As can be seen
in Figure 5.7, the reduction approach is at least equally and in some cases even bet-
ter performing on the extended delay values. The instance count and running time
reduction is on average 44.4% and reaches with example rush hour1 a rate of 99%,
which can be seen in Table 5.5 and 5.6 . This significant reduction result is caused
by the high train density of the given railway timetable, which leads to an explosive
growth of train instances. The increased expansion of train instances slows down the
procedure to a final simulation time of nearly two hours. The reduction approach,

62 Experimental Results

Figure 5.4: Comparison for D1 and P1.

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

rush hour1 6861.71 44.47 42.99 588.69 - - -
night1 0.69 0.40 0.40 0.39 0.41 0.41 0.41
night5 28.47 14.22 13.4 17.65 54.01 171.46 -
morning3 90.31 63.02 63.11 63.28 63.11 63.46 63.21
noon2 51.9 38.22 37.58 52.02 38.39 40.55 40.13

Figure 5.5: Running time for D2 and P2.

however, decreases explosive growth by directly merging suitable elements and thus
improving the efficiency of the algorithm. When applying the reduction method, the
running time can be reduced to approximately 44 seconds.

The second analysis demonstrated the relevance and the success of the imple-
mented reduction techniques to even enable the simulation of railway systems pre-
viously not terminating in a period of hours. The direct and continuous merging
strategy supports the scalability of the algorithm and detects a sufficient amount
of instances that can be reduced. Finally, after evaluating the general impact of the
reduction techniques, the applied methods have to be compared. The overall best per-
forming implementation is the reduction framework including the relaxed and normal
reduction. Due to the extended reduction capability requiring an acceptable complex-
ity, further instances can be reduced leading to the optimal acceleration result. The
bounded model checking approach showed to improve the algorithms performance
for the basic encoding, while the SAT encoding including the split operation showed
to be not suitable for a practical application. This can be mainly explained by the
fact that a larger encoding leads to an increased variable and clause set harder to
solve in efficient time. Thus, the required solving times exceed the time saved by the
reduction. However, in a set of small examples, only the complex encoding was able
to compute the minimal output result. Therefore the implementation is theoretically
working correctly but for an accelerating effect, further enhancements are required.

In the final part of the chapter, we will directly analyze growth of the state space
by illustrating two plots depicting the number of instances during the execution. The

Evaluation 63

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

rush hour1 31029 2166 1933 2595 - - -
night1 412 222 222 222 222 222 222
night5 4039 1390 1376 1395 1374 1374 -
morning3 3099 1165 1165 1165 1165 1165 1165
noon2 2102 829 823 828 823 823 823

Figure 5.6: Instance count for D2 and P2.

Figure 5.7: Comparison for D2 and P2.

selected example for this analysis is rush hour1 as it showed the most significant run-
ning time and instance reduction. In addition to the unreduced simulation we include
the approach with the basic reduction rule and the approach with both reduction
techniques colored the same as before.

As we can see on the zoomed in plot on the left of Figure 5.8, the reduced appli-
cation starts at approximately 1800 instances and in the first time steps the count
decreases, whereas the unreduced simulation shows direct instance growth. Addition-
ally, at around time step 250, the relaxed rule enabled the reduction of additional
instances which is illustrated in the slight lower light green curve. This decrease is
propagated throughout the rest of the execution resulting in a lower final count for
the second approach and in a marginally improved runtime over the first reduction
approach. In the right plot depicted in 5.8 the significant impact of the reduction
method is shown. When applying the reduction method the number of instances
stays nearly constant over the whole iteration range only growing by around 300
instances, while during the additional application of the relaxed reduction only by
around 100 elements. For unreduced symbolic simulation, the red curve depicts an
exponential growth of train instances only slowing down at the final iteration steps, as
there for most of the trains the schedule is finished. This explosion of the state space
can be explained by rising conflicts and splits due to a growing number of instances,
which self induces additional splits. As, we implemented a direct reduction of the
by the split generated instances, we can directly prevent the large growth induced
by them, thus stopping the consequential conflict loop. Due to the implemented re-

64 Experimental Results

Figure 5.8: Instance growth (left image is zoomed in).

no r. r. r. + r.r.

noon2 (inst.) 5125 1286 1286
reduct. % 74.91% 74.91%
noon2 (runt.) 3440.82 125.90 125.2
reduct. % 96.3% 96.4%

Figure 5.9: Noon2 on D3.

duction methods instance growth can be decreased on those small examples, hence
accelerating symbolic simulation to further analyze the train delay propagation in
larger railway systems.

As the current example set only notes such significant reduction rates on the rush
hour1 input, we further modified the delay set to reproduce this result on another time
table. Therefore, we choose example noon2 with the delay set D3(pi) = {0, 5, 10}. The
evaluation results are illustrated in Figure 5.9 and show a significant running time
improvement of 96.4% percent. In contrast to extending the delay set, we made it
more realistic by increasing the time difference between delays. This lead to more
frequent accumulations at train stations increasing the number of computed splits
and thus train instances. As in the previous problematic instance, the reduction had
a substantial impact on the running time of the algorithm by merging suitable train
instances, showing a comparable running time reduction. We expect this running time
improvement for all inputs at a certain size, thus massively improving the scalability
of the algorithm.

5.2.1 Reduction Frequency
To complete the experimental evaluation, we introduce an experimental setup where
the impact of varying reductions frequencies is analyzed. As explained in Chapter 3
in Algorithm 4, the reduction is only applied at a certain subset timesr of time steps.
Therefore, we choose a set of reduction frequencies, to show the direct impact on the
instance evolution.

The evaluation is performed on the rush hour1 input with D1 as delay set, the

Evaluation 65

Figure 5.10: Reduction success rate and time percentage spend in reductions (r.).

Time steps 4th 10th 20th 50th

Running time 3.5s 3.5s 3.6s 3.8s

Figure 5.11: Running times for Figure 5.10.

frequencies are set to every 4th, 10th, 20th, 50th time step. Before pointing out the
findings of the experimental evaluation we present an analysis covering the reduction
success percentage and the percentage of time spend in the reduction method. The
reduction success rate has been computed by counting the times the reduction method
is applied and consequently the times in which the resulting set was strictly smaller.
The results are illustrated in 5.10. The shown results have been used to improve the
acceleration by enhancing the reduction frequency. On the subplot in the top row the
success rate of the applied reductions is depicted and the corresponding x-axis defines
the reduction frequency. As can be seen in the plot, the success rate is increasing when
lowering the reduction rate as in those cases the input sets are larger and thus include
additional reduction potential. Additionally the subplot in the bottom row shows that
the time spend in the reduction method is decreasing when reducing the reduction
frequency. This is the expected result as in case the frequency is lowered the absolute
execution of reductions shrinks, thus the percentage of time spend in it is going down.
To correctly evaluate the result, we have to evaluate the corresponding influence on
the running time of the algorithm, thus the results are depicted in Table 5.11. The
results further show, that the achieved reduction success rate does not mean that the
overall approach is working any better, hence even slowing down the simulation by
reducing a lower percentage of instances illustrated in 5.14.

Furthermore the instance count over the simulation period is illustrated in 5.14.
The example is evaluated with the first and second reduction mode (left, right of 5.14),
thus correspondingly the number of instances at the final time step varies in between
the pictures. The first interesting insight is that due to a higher frequency than that
(7th) in the above complete evaluation of the algorithms in Table 5.2, the final instance
count is lower. However, the number of final instances does not directly represent the
achieved acceleration. As can be seen in the section above an increased reduction
frequency corresponds directly to the percentage of time spent in the reduction.

66 Experimental Results

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

night5 12.99 9.82 9.71 9.84 13.02 18.04 23.38

Figure 5.12: Running time for night5 on D1 with frequency 4th.

no r. r. r., r.r. bmc(r.) bmc(r.,r.r) bmc(r.,s.) bmc(r,r.r.,s.)

night5 2185 1018 1018 1020 1016 1016 1015

Figure 5.13: Instance count for night5 on D1 with frequency 4th.

Additionally Figure 5.14 illustrates the difference between varying reduction rates,
which is mainly visualized by higher spikes in the state space induced by an increased
number of time steps until the next reduction operation. Correspondingly the lower
frequencies induce an increased instance count at the final time step. For the given
example set (night1, noon2, morning3, night5, rush hour1) the frequency of every
7th time step showed to result in the best trade-off between time spent in reduction
method and time saved by those. Important to note here, is that the frequency de-
pends on many factors and has been optimized in the context of this thesis to suite an
optimal result of the reduction framework. Despite that, especially when considering
the BMC approach a lower frequency showed to be more efficient as the time spend
in the solving process is comparably large and can thus be minimized. We shortly
illustrate this on night5 with D1 by applying the reduction at every 4th time step
in comparison to at every 7th as used above, the results are depicted in Table 5.12
and 5.13. The results show basically two important insights. First, the running time
when applying the extended SAT configurations doubled in comparison to the reduc-
tion at every 7th time step, whereas the running time of the basic reductions is nearly
the same. This shows that the impact of the frequency rate highly varies between
the different techniques. Furthermore, the example also demonstrates the increased
reduction potential of the BMC approach by reducing the number of final instances
by one additional train instance in the mode including all reduction operations. How-
ever, as already expected the time required to find this additional reduction instance
is not covering the time saved by it. Though the earlier mentioned optimal trade-off
suiting the thesis purpose is found in the reduction framework including the basic and
relaxed reduction rule.

Additionally, the heuristic is dependent on the structure and density of the railway
timetable, thus there is still research that can be further evaluated. An improvement
of an optimal reduction frequency could additionally boost the performance of the
implementation. Due to time constraints this has not been further investigated and
only optimized using the obtained analysis results. A further analysis is a possible
future work topic.

Note here that the reduction success rate was on average around 85%, which on
one side shows that the set of train instances contains a large set of reducible scenarios
and on the other one induces that the implemented methods have been a substantial
success in reducing instances.

In addition to the reduction frequency we evaluated the impact of modifying the
lines at which reductions are applied. As explained in Section 3.2 the reduction
method is called in Update(t, x, r) to reduce instances at each infrastructure element

Evaluation 67

Figure 5.14: Instance growth varying the reduction frequency.

Figure 5.15: Compare instance growths when varying reduction application.

x ∈ V ∪E and after a conflict in Available(x, r). In the following we modify this to
influence the corresponding impact. Therefore we selected four different modes, the
unreduced application illustrated in light blue, the application of the reduction solely
after a conflict in magenta, the reduction at every fourth time step in Update(t, x, r)
in green and the reduction framework applied in the update and available method.
The corresponding examples are depicted in Figure 5.15.

As expected, the sole application of the reduction method in Update(t, x, r) per-
formed significantly well, as the additional instances of unreduced scenarios not caught
by the execution in Available(x, r) are at the latest reduced when the next reduc-
tion time step is reached. As the reduction is called at every fourth time step, this
has no large impact. Moreover, the curve colored in magenta shows the reduction
application only considering instances constructed during a conflict. Therefore, it
cannot reduce instances never part of a conflict, however, the approach still reduced
the number of instances by 63%. Especially in the later time steps and as already

68 Experimental Results

seen in the large example above there is a time step at which the number of instances
explodes at around 900 and here we can see a significant difference between the light
blue and magenta curve as the reason for the growth is probably a station causing
a large number of splits. Due to the reduction after conflicts, the second approach
slows down growth of the state space and thus the final instance count. Consequently,
also the running time varies, the running time of the unreduced case was 34.2s, for
the application after conflicts 9.92s, for the reduction solely in Update(t, x, r) the
running time was 3.98s and the complete approach had a running time of 3.42s.

This and the difference between the green and red curve underlines the importance
of the additional application of the reduction method in Available(x, r) to further
improve the reduction potential.

Chapter 6

Conclusion

6.1 Summary

In the following we recap the insights of this thesis with a section about promising
future research topics. The work had a significant impact on the performance of the
algorithm and enables an analysis of more realistic inputs. Through the continuous
application of reduction techniques during the symbolic simulation, the number of
generated instances has been reduced substantially. This has lead to a decreased
growth of the simulations state space.

Throughout this thesis, the initially defined theory for reductions lead to intuitive
and rather complex implementations. This was extended to implementing reduction
methods covering the complete reduction potential. The reduction framework induced
fast and promising results while causing various issues with endless loops in the context
of undoing previous merging steps. The presented heuristics order the elements of the
priority queue with an advanced loop detection to efficiently apply the basic reduction
rule together with the relaxed reduction. The first reduction rule is extended by a
relaxed version accessing even more reducible scenario tuples. This allowed to boost
the performance of the algorithm by catching additional merging steps. However the
first approach did not exploit the complete potential of possible reductions, thus it is
extended by a more strategic approach.

The bounded model checking approach allows to effectively evaluate all possible
reduction combinations until determining the optimal result. To cover the complete
reduction potential the worst case number of required transaction steps has to be
computed, resulting in a high iteration depth for the transition system. The high
iteration depth produced larger instances which were hardly solvable and did slow
down the simulation instead of accelerating it. From the theoretical perspective the
method can compute the optimal reduction result. However, the extended variant
covering the complete potential showed to be not practical for most of the input
examples. Nevertheless, it gave us an important insight about the reduction efficiency.

The implemented framework does not always find the optimal reduction sequence,
still it finds enough reductions, resulting in final instances numbers sufficiently close
to the optimum. As the trade-off between finding those last additional reduction
instances is not covering the required time to find those, the complete coverage of the
reduction potential does not support the goal of this thesis. To detect the reduction
steps needed to compute the minimal output the algorithm requires more solving time

70 Conclusion

than for the easily found merging operations. Therefore, the reduction framework
with its effective and fast priority queue demonstrated to have to optimal trade-off
between reductions and required time for those.

Overall the thesis covers every aspect of a theoretical reduction idea, in the context
of merging suitable instances without losing any stochastic information.

As a general remark of the work, we state the significant reduction success, allowing
to solve input instances previously unsolvable in a period of hours, while slowing down
growth of the state space to improve the scalability of the simulation. However, there
exist still problematic instances, that are even hard to solve with the application of
the reduction technique. These are especially instances in which the delay values are
wider separated and increased, as thus instances generate many conflicts and have a
high growth rate even between single time steps. This corresponds to an increased
reduction application as after each conflict a direct reduction is applied, resulting in
an additional time duration spend in the defined procedure. The realistic occurrence
of such large input delay sets is not considered any further and has to be evaluated
in future work.

6.2 Future Work
In the process of this thesis various potentially promising approaches were mentioned
but not yet further researched. We shortly recap topics and ideas suitable for a
deeper investigation. Especially, during the analysis of implemented approaches, the
time spent in different parts of the algorithm (e.g. generation of the encoding, solving
of the encoding) has shown significant potential to be further enhanced. As currently
the generation of the SAT encoding occupies a large proportion of the reduction time
this could be further improved in future adoptions.

Furthermore, the encoding can be enhanced to reduce the number of required
clauses and variables by reformulating the used at-most and at-least constraints. As
the smallest encoding of the BMC approach only including the basic reduction rule
was able to compete with the reduction framework, we assume that additional changes
and improvements in the efficiency can lead to comparable results regarding running
times using the complete reduction potential by including all reduction techniques.

Moreover, a promising approach to improve the running time of the symbolic
simulation is to apply a CEGAR-based approximation technique. In the simulation
train instances are finely split into sub scenarios of negligible probability. Thus,
deploying a strict under or over-approximation could help to further reduce the set
of instances and hence improve the performance of the algorithm while losing an
acceptable subset of information. However, the approximation state has to be verified
to not violate a predefined threshold to ensure realistic results. The requirements for
this research field are implemented as the probabilities for scenarios are continuously
computed and verified to satisfy the global invariant.

Bibliography

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods
in System Design, 19:7–34, 01 2001.

[FG13] Bert Fristedt and Lawrence Gray. A Modern Approach to Probability
Theory. Probability and Its Applications. Birkhäuser Boston, 2013.

[HÁN21] Rebecca Haehn, Erika Ábrahám, and Nils Nießen. Symbolic simulation
of railway timetables under consideration of stochastic dependencies.
In Quantitative Evaluation of Systems, pages 257–275, Cham, 2021.
Springer International Publishing.

[JNRSfTL06] Yuan Jianxin, Infrastructure Netherlands Research School for Trans-
port, and Logistics. Stochastic Modelling of Train Delays and Delay
Propagation in Stations. TRAIL thesis series. Netherlands TRAIL Re-
search School, 2006.

[NM15] Van-Hau Nguyen and Son T. Mai. A new method to encode the at-
most-one constraint into SAT. In Proceedings of the Sixth International
Symposium on Information and Communication Technology, SoICT
2015, page 46–53, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinal-
ity constraints. In Peter van Beek, editor, Principles and Practice of
Constraint Programming - CP 2005, pages 827–831, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

	Introduction
	Preliminaries
	Railway System
	Scenarios
	Timetable Execution

	Iterative Reduction
	Reduction Rules
	Implementation
	Proof of Correctness

	Bounded Model Checking Approach
	SAT Encoding
	BMC

	Experimental Results
	Contextual Setup
	Evaluation

	Conclusion
	Summary
	Future Work

	Bibliography

