
Diese Arbeit wurde vorgelegt am LuFG Theorie hybrider Systeme

BACHELORARBEIT

HEURISTICAL VARIABLE ORDERING

IN THE

CYLINDRICAL ALGEBRAIC DECOMPOSITION

Kristian Covic

Prüfer:
Prof. Dr. Erika Ábrahám
Prof. Thomas Noll

Zusätzlicher Berater:
Jasper Nalbach Aachen, 16.01.2023

Abstract
Satisfiability Modulo Theories (SMT) solving using the Cylindrical Algebraic

Decomposition (CAD) method provides a complete method to decide satisfia-
bility in quantifier-free non-linear real arithmetic (QF_NRA) and is therefore
an active topic of research. The runtime of the CAD procedure is bounded
by a double exponential term in the number of variables, which has motivated
various optimization techniques to improve performance in practical problems.
The order of variables can have a significant impact on the runtime, which has
lead to various heuristics for finding a good variable ordering for a given input
problem. In this work, existing heuristics are presented and evaluated. Based on
the results, new variants of a chordality-based heuristic are proposed, which aim
to include more information on the polynomial set to arrive at a more optimal
variable ordering.

iv

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Definitions . 11
2.2 The CAD Procedure . 12
2.3 Chordal Graphs . 16
2.4 SMT Solving . 22
2.5 SMT-RAT . 24
2.6 CAD Implementation in SMT-RAT . 25
2.7 Simple Variable Ordering Heuristics for CAD 26
2.8 Chordality-based Ordering for CAD 27

3 Heuristics for Chordality-based Ordering Methods 33
3.1 Better Integration of Polynomial Properties 35
3.2 Choosing Better Vertices in Graph Algorithms 36
3.3 Extending the Graph Representation 37

4 Experiments 41

5 Evaluation 43
5.1 Conventions . 43
5.2 Caveats . 43
5.3 Overview . 44

6 Conclusion 51
6.1 Summary . 51
6.2 Future Work . 51

Bibliography 53

A Source Code Listings 57

B Experimental Data 59

vi Contents

Chapter 1

Introduction

SMT solving is been an active topic of research for a long time, as an efficient approach
to decide satisfiability for first-order logic over given theories. In this framework, a
solver for the Boolean Satisfiability Problem (SAT) is combined with a theory solver.
The SAT component only considers the logical structure of the formula, finding sets of
theory constraints that satify the full formula. When such a set is found, it is passed
to the theory solver to decide its satisfiability. Depending on the answer, the SMT
solver can conclude satisfiability for the full formula or continue to explore the boolean
search space. The choice of the theory module depends on the logic to solve. For
QF_NRA, the CAD algorithm can be employed, which is a complete procedure for
quantifier elimination in non-linear real arithmetic (NRA). While CAD is one of the
few complete methods for this task, its runtime is bounded by a double exponential
term. Thus, it is often infeasible to use as a standalone theory solver when quantifier
elimination is not needed. In a SMT solver, the CAD will only be computed on partial
problems, which can offer a better average-case performance in practical applications.

CAD receives a set of multivariate polynomial constraints as an input and per-
forms a two-step process to decide satisfiability: In the projection phase, a projection
operator is repeatedly applied to the polynomials, where each application eliminates
a variable of choice by projection, until all but one variables are eliminated. In
the second lifting phase, a set of n-dimensional sample points is substituted into the
n+1-dimensional polynomials from the projection phase. This yields univariate poly-
nomials, whose roots are used to generate new sample points. This phase is repeated
in reverse projection order to obtain a set of full-dimensional sample points, one for
each region that is sign-invariant w.r.t the input polynomials.

There are numerous optimizations that can be made in the CAD procedure, es-
pecially when it is utilized for satisfiability checking of constraint sets instead of full
quantifier elimination. In this case, a full CAD is not necessarily needed; instead,
sample points can be generated incrementally until a satisfying sample is found and
the procedure can be stopped. In this thesis, such an incremental CAD, which is
optimized for SMT solving, will be considered. In addition to these optimizations,
there are heuristic choices that also apply to general CAD. One of these choices is the
order in which variables are eliminated, which also dictates the order for the lifting
phase. Depending on the structure of the polynomial set, an optimal order can result
in projection sets that are smaller in size and degree than those a naive ordering
would produce, resulting in a faster CAD computation. This reduction in runtime

10 Introduction

can be significant in practice, which motivates ongoing research in variable ordering
heuristics for CAD.

In this thesis, we will evaluate a recently proposed heuristic based on chordal
graphs [LXZZ21] and compare its peformance to a simpler heuristic based on variable
degree in the context of an incremental CAD procedure optimized for SMT solving.
Furthermore, we will explore how the chordality-based heuristic can be modified to
incorporate additional information on the polynomials, which is not currently ac-
counted for in the method. The resulting heuristics will also be tested and compared
against the existing methods.

Chapter 2

Preliminaries

2.1 Definitions
We will use the symbols R for the real numbers, C for the complex numbers and N for
the natural numbers, assuming 0 ∈ N. For a set A, we define P(A) := {A′ | A′ ⊆ A}
as the power set of A.

We will use tuples to represent ordered sequences of elements, as in α = (a1, a2, ..., an).
Assuming α = (a1, ..., an), β = (b1,...,bn), we will define α ◦ β := (a1,...,an, b1,...,bn)
as the concatenation of two tuples. With A being a set and α being a sequence, we
define A \ α = {a ∈ A | a does not appear in α}. We define αn := α ◦ · · · ◦ α︸ ︷︷ ︸

n times

as the

n-fold concatenation of α with itself.
We will frequently use tuples in algorithms, where we apply the following syntax:

α ← (a1, ..., an) assigns the tuple of the values a1, ..., an to the variable α. The
expression (a1,...,an) ← β assumes that β is an expression that evaluates to a tuple
(b1,...,bn) with n elements, and is equivalent to the sequence of expressions a1 ←
b1; a2 ← b2; ...; an ← bn.

In the following section, we will introduce the CAD procedure, which works on
multivariate polynomials. Therefore, we will now introduce some necessary defini-
tions:

Definition 2.1.1 (Basic polynomial properties). Let p := cn ·xn+ cn−1 ·xn−1+ ...+
c1 · x+ c0 ∈ R[x] with cn 6= 0 be a polynomial over a ring R. We define:

• The coefficient set of p is defined as coeff(p) := {c0, ..., cn} \ {0}

• The leading coefficient of p is defined as lc(p) := cn

• The degree of p is defined as deg(p) := n

Definition 2.1.2 (Univariate interpretation). For a multivariate polynomial p ∈
R[x1,...,xn] over a ring R we define p[xi] ⊆ R[x1,...,xi−1, xi+1, xn][xi] as the interpre-
tation of p as a univariate polynomial in xi for 1 ≤ i ≤ n with coefficients from the
polynomial ring R[x1,...,xi−1, xi+1, xn].

Definition 2.1.3 (Multivariate polynomial properties). For a multivariate polyno-
mial p ∈ R[x1,...,xn] over a ring R we define:

12 Preliminaries

• The degree of p w.r.t xi as deg(p, xi) = deg(p[xi])

• The variable set of a polynomial var(p) := {xi | deg(p, xi) > 0, 1 ≤ i ≤ n}

Definition 2.1.4 (Total degree). The total degree of a monomial m =
∏n

i=1 x
ei
i ∈

R[x1, ..., xn] over a unique factorization domain R with ei ∈ N \ {0} is defined as
tdeg(m) =

∑n
i=1 ei

2.2 The CAD Procedure
The Cylindrical Algebraic Decomposition method was first proposed by Collins to
solve the problem of quantifier elimination for non-linear real arithmetic [Col75]. For
an input polynomial set P ⊆ R[x1,...,xn], the CAD procedure generates a decompo-
sition of Rn into finitely many cells, which are P -sign-invariant regions over Rn. To
obtain this decomposition, it goes through two phases:

In the Projection phase, a projection operator is applied iteratively to generate
polynomial sets in fewer variables, until we arrive at univariate polynomials. Formally,
a projection operator is a map of the type Proj : P(R[x1,...,xk+1])→ P(R[x1,...,xk]).
So, by applying the operator to our set of input polynomials Pn := P ⊆ R[x1,...,xn],
we receive a set Pn−1 ⊆ R[x1,...,xn−1]. Ultimately, we will arrive at a set of univariate
polynomials P1 ⊆ R[x1]. With these univariate polynomials, we transition to the
lifting phase. We take their real roots, and from them generate a set S1 of sample
points, which contains of the following:

• the roots of the univariate polynomials themselves

• one point between each pair of adjacent roots and

• a point below the lowest root and above the highest root, respectively.

Since P1 consists of univariate polynomials, it is easy to see that the sign-invariant
regions consist exactly of the roots, the open intervals between two adjacent roots,
and the open intervals between the outermost roots and∞ resp. −∞. Thus, we have
successfully chosen a sample point for each sign-invariant region of P1.

Now, the algorithm 1 can be performed iteratively, until we get a full-dimensional
set of sample points Sn.

As noted, it is easy to see that S1 contains sample points from all sign-invariant
regions of P1. However, the higher-dimensional generalization “Sk contains sample
points of all sign-invariant regions of Pk” is a lot harder to prove. Here, the com-
pleteness of the CAD depends on properties of the used projection operator. There
are various established projection operators for which the completeness of the CAD
procedure has been proven [Col75], [McC98], [Bro01]. Since we are not interested in
experiments with the projection operator, we will not go into more details about their
completeness.

In general, the runtime of CAD algorithms, even with modern optimizations,
is doubly exponential: For the classic sign-invariant CAD, Brown and Davenport
([BD07], Theorem 8) have proven that a complete CAD can contain at least 22

n cells
in the worst case, where n is the number of variables. They have also shown that
the variable ordering has a large influence on the runtime: For extreme cases, the
cell count for the same input problem can range from linear to doubly exponential
([BD07], Theorem 7). This shows that it can be very worthwhile to try to optimize

The CAD Procedure 13

Algorithm 1 Lift samples by one dimension
procedure Lifting(Sn)

Sn+1 ← ∅
R← ∅
for all sample points (a1, ..., an) ∈ Sn do

for all polynomials p ∈ Pn+1 do
p̃← p(a1,...,an) . p̃ is univariate in xn+1

R← R ∪ {an+1 | p̃(an+1) = 0} . Calculate real roots
end for
Sn+1 ← Sn+1 ∪ {(a1,...,an, an+1) | an+1 ∈ R} . Sample the roots
for all open intervals I between two adjacent roots from R do

choose an+1 ∈ I
add (a1,...,an, an+1) into Sn+1

end for
choose a<n+1 smaller than all roots and a>n+1 bigger than all roots in R
add (a1,...,an, a

<
n+1) and (a1,...,an, a

>
n+1) into Sn+1

end for
return Sn+1

end procedure

the variable ordering, even if we have to solve hard problems in our optimization
process.

2.2.1 Projection Operators
In this section, we will introduce McCallum’s projection operator. It utilizes a com-
bination of polynomial operations, which we will define in the following:

Definition 2.2.1 (Primitive part and content). Let p ∈ R[x] be a polynomial over
the unique factorization domain R.

• The content of p is defined as cont(p) = gcd(coeff(p))

• The primitive part of p is defined as prim p = p
cont(p)

We note that R is a unique factorization domain and for any unique factorization
domain R, the polynomial ring R[x] is a unique factorization domain as well. Thus,
the above definitions are valid for multivariate polynomials over the reals interpreted
as univariate polynomials with polynomial coefficients.

Definition 2.2.2 (Operations on polynomial sets). For a set P ⊆ R[x] of univariate
polynomials over a unique factorization domain R we define op(P) = {op(p) | p ∈ P}
for op ∈ {lc,prim, cont}, and op(P) =

⋃
p∈P op(P) for op ∈ {coeff}

For a set P ⊆ R[x1,...,xn] of multivariate polynomials over a ring R, we define
P [xi] = {p[xi] | p ∈ P} for xi with 1 ≤ i ≤ n. We define var(P) =

⋃
p∈P var(p).

Definition 2.2.3 (Sylvester matrix, resultant and discriminant). Let p :=
∑n

i=0 ai ·
xi ∈ R[x], q :=

∑m
i=0 bi · xi ∈ R[x] be polynomials with m := deg(p), n := deg(q) and

m + n ≥ 1 over a ring R. The associated Sylvester Matrix Sylp,q is a matrix over

14 Preliminaries

R(m+n)×(m+n). The rows of the matrix are defined as (αp
0,,...,α

p
n−1, α

q
0, ..., α

q
m−1),

where:

αp
i = (0)i ◦ (a0, ..., am) + (0)m−i+1

αq
i = (0)i ◦ (b0, ..., bn) + (0)n−i+1

Now, we can define

• The Resultant res(p,q) := |Sylp,q | ∈ R

• The Discriminant disc(p) := (−1)
n(n−1)

2
res(p,p′)
lc(p) ∈ R

Example 2.2.1. Let p =
∑4

i=0 aix
i, q =

∑3
i=0 bix

i. Then,

Sylp,q =

a4 a3 a2 a1 a0 0 0
0 a4 a3 a2 a1 a0 0
0 0 a4 a3 a2 a1 a0
b3 b2 b1 b0 0 0 0
0 b3 b2 b1 b0 0 0
0 0 b3 b2 b1 b0 0
0 0 0 b3 b2 b1 b0

Definition 2.2.4 (Finest square-free basis [Col75]). For a set A of polynomials, the
finest square-free basis of A, F(A) is defined as the set of all the irreducible factors
of the elements of A

Now, we are able to define the McCallum projection operator, which is used for
all projection operations unless noted otherwise:

Definition 2.2.5 (McCallum Projection operator [LXZZ21] [McC98]). For A ⊆
R[x1,...,xn], some 1 ≤ i ≤ n and B := F(prim(A[xi])), we define

Projmc(A, xi) = cont(A[xi])∪
⋃

f,g∈B,f 6=g

{res(f [xi], g[xi])}∪
⋃
f∈B

(coeff(f [xi])∪{disc(f [xi])})

When the variable for the projection is clear from the context, we will sometimes omit
the variable and just write Projmc(A)

This operator offers some improvements over the original projection operator given
by Collins when he first presented the CAD procedure in [Col75]. McCallum’s opera-
tor does allow for a better bound on the theoretical worst-case runtime [McC98] and,
in general, tends to perform better in practice in an SMT-solving context [VKÁ07].
However, the operator is incomplete: If used as a direct replacement for Collins’
operator, the resulting CAD might not contain a sample point for all sign-invariant
regions. If used in an NRA solver, it might falsely deduce UNSAT for a constraint set
that is indeed satisfiable, because the satisfying sample point was not generated using
the incomplete projection. To obtain a complete CAD using McCallum’s operator,
the input polynomials must be well-oriented ([McC98], definition on page 92). Most
polynomial sets are well-oriented, in particular all sets of polynomials with no more
than three variables. In practice, checks can be introduced into the lifting procedure
to detect whether the input polynomial set was, at some point, not well-oriented. In

The CAD Procedure 15

Table 2.1: The (m,d)-property of the projection sets [LXZZ21],[BDE+16]

variables Number Degree
n m d
n− 1 M 2d2

n− 2 M2 8d4

n− 3 M3 128d8

...
...

...
n− r M2r−1

22
r−1d2

r

...
...

...
1 M2n−1

m 22
n−1−nd2

n−1

this case, the procedure can be aborted and the caller of the CAD procedure can
decide how to deal with the situation (e.g. by invoking CAD with Collins’ operator).
However, having a non-well-oriented polynomial set is sufficiently rare, so in most
cases the additional effort of checking and possibly re-computing the CAD is out-
weighed by the performance gains of this operator (and derived ones) over complete
operators like Collins’.

2.2.2 Complexity Analysis
In this section, we will give a short overview of the complexity analysis for CAD that
was originally given in [BDE+16]. In [LXZZ21], an improved lower bound is obtained
with a slight adaptation of the method for CAD using the proposed ordering heuristic.

Definition 2.2.6 (Combined degree and (m,d)-property [BDE+16]). The combined
degree of a polynomial set A ∈ R[x1,...,xn] is defined as maxx∈var(A) deg(

∏
a∈A a, x),

the maximal degree w.r.t. any variable of the product of the polynomials. The set
A has the (m,d)-property if it can be partitioned into at most m pairwise disjoint
subsets, each with combined degree at most d

In their complexity analysis, Bradford et al. used the (m,d)-property as a measure
of the size of the projection polynomial sets. To perform this analysis, they proved
the following lemma for the McCallum projection operator: Let A ⊆ R[x1,...,xn] be
a polynomial set with the (m,d)-property. Then, the set Projmc(A) will have the
(M,2d2) property with M = b (m+1)2

2 c. With this relation, it is already visible that
the repeated application of the projection operator means that a “power tower” is
constructed in the terms for expressing the (m,d)-property, which can be written out
as a double exponential term in the general case. Table 2.1 shows the growth of the
terms in the (m,d)-property.

Now, these (m,d)-properties can be used to obtain an upper bound on the number
of CAD cells generated for an univariate polynomial set: A polynomial set with
the (m,d)-property has at most m polynomials, which, in turn, can have at most
d zeroes. Since the sample points for a single polynomial are constructed from the
zeroes themselves, points between the zeroes, and two points lower resp. higher than
all zeroes, we obtain an upper bound of 2md + 1. With this, the following upper
bound on the number of CAD cells can be deduced [LXZZ21]:

16 Preliminaries

Theorem 2.2.1 ([LXZZ21]). The number of CAD cells in Rn obtained by the Pro-
jection operator Projmc is O

(
(2d)2

n−1M2n−1−1m
)

with M = b (m+1)2

2 c.

We will accept this upper bound on the number of cells as a rough estimate for
the runtime of the CAD algorithm.

2.3 Chordal Graphs
The main work this thesis is based on uses graphs to track connections between
variables in polynomials. Based on these connections, a variable ordering is devised.
Formally, we encode these connections in an undirected graph

Definition 2.3.1 (Undirected Graph). An undirected graph is a pair G = (V,E) of
a finite set V of vertices and a set E ⊆ {{u, v} | u, v ∈ V, u 6= v} of edges.

Definition 2.3.2 (Path, Connected Graph). A sequence of at least two vertices
(v1, v2, ..., vn) is a path in an undirected graph (V,E) if there are edges {vi, vi+1} ∈ E
for 1 ≤ i < n.

Definition 2.3.3 (Connected components). For an undirected graph G = (V,E) we
define the set of connected components of the graph as a partition of V = V1∪̇...∪̇Vn

into disjunct subsets of V , where two vertices v1, v2 ∈ Vi are in the same connected
component if there is a path (v1, ..., v2) in G. A graph with a single connected compo-
nent is connected

Definition 2.3.4 (Adjacency and incidence). Let G = (V,E) be an undirected graph.
We say that v is adjacent to v′, if {v, v′} ∈ E. Accordingly, we can define the
adjacency or neighborhood of v as adj(v) := {v′ | {v, v′} ∈ E}. An edge e ∈ E is
incident to v, if v ∈ e. Accordingly, we define inc(v) = {e ∈ E | v ∈ e} as the set of
edges that is incident to v.

Now, we define some interesting sub-structures of a graph that are helpful for our
analysis:

Definition 2.3.5 (Clique, Simplical vertex). A clique C ⊆ V is a set of vertices that
is pairwise connected, so for every {v, v′} ⊆ V with v 6= v′, there is also {v, v′} ∈ E.
A vertex v ∈ V is simplical, if the set adj(v) of adjacent vertices forms a clique.

Definition 2.3.6 (Cycle). A cycle is a sequence (v1,...,vn) of vertices vi ∈ V, 1 ≤ i ≤
n so for every 1 ≤ i < n, {vi, vi+1} ∈ E, and {vn, v1} ∈ E.

Definition 2.3.7 (Chordal Graph). A graph is chordal, if every cycle (x1, x2, ..., xn)
of length greater than three has a chord, that is, there exists an edge {xi, xj} ∈ E
such that {i,j} /∈ {{k, k + 1} | k ∈ {1, ..., n = 1}} ∪ {{1, n}}.

2.3.1 Graphs for Variable Elimination
Research has been done on the use of graphs to model the elimination of variables
in mathematical procedures. In 1961, Parter proposed a heuristic for ordering the
variable in the Gaussian elimination procedure for linear systems of equations [Par61].
Much later in 2021, Li et al. [LXZZ21] present a variable ordering for CAD which
is roughly based on the same idea. Since this variable ordering will be our primary

Chordal Graphs 17

focus, we present some research that has been done in the field of variable elimination
procedures using chordal graphs.

Parter was concerned with the optimization of Gaussian elimination for linear
systems of equations of the form Ax = y, where A is an n×n matrix and x and y are
column vectors. It is well known that the elimination can be done easier if A is sparse,
however, sparseness is not a very rigorously defined property. The contribution of this
work was a deeper understanding of sparseness, which was reached by generating an
associated graph G(A) for a given matrix A:

The graph contains n vertices V := {1, 2, ..., n} for an n×n matrix, where {i,j} ∈
E ⇐⇒ ai,j 6= 0.

With this graph structure, it is possible to simulate the effect of Gaussian elimina-
tion on the matrix structure by eliminating vertices in the graph instead of variables
in the matrix. This process can be formalized using the elimination game ([Par61],
Theorem 1):

procedure Eliminate(G = (V,E), v ∈ V)
F ← ∅ . The set of fill edges
for all pairs {v1, v2} ⊆ adj(v) do

if {v, v′} /∈ E then
F ← F ∪ {{v1, v2}}
E ← E ∪ {{v1, v2}}

end if
end for
V ← V \ {v} . Remove the vertex
E ← E \ inc(v) . Clean up the edges
return G = (V,E), F

end procedure

This algorithm simulates the successive elimination of variables in the follow-
ing sense: When a variable xi is eliminated in the linear system A, the associated
graph G(A′) of the new matrix A′ is a subgraph of the graph returned by Elimi-
nate(G(A), xi).

In a sense, this theorem gives an “upper bound” on the set of non-zero matrix en-
tries after an elimination step by using graph theory. Now, this allows us to study the
sparseness of a matrix not only in its initial form, but through the whole elimination
process. For this, the elimination algorithm has to be applied successively, resulting
in the following algorithm:

Algorithm 2 Elimination-Game [Par61]
procedure Elimination-Game(G = (V,E), α) . α is a sequence of vertices

F ← ∅ . The set of fill edges
while V 6= ∅ do

v ← PopFront(α) . Removes the first element of α and returns it
(G,F ′)← Eliminate(G, v)
F ← F ∪ F ′

end while
return F

end procedure

18 Preliminaries

For the runtime of the elimination algorithm, it is ideal to keep the matrix as
sparse as possible (so fewer operations have to be calculated). Hence, the elimination
procedure should eliminate the variables in an order that introduces no fill-in in the
elimination game algorithm (and therefore, no additional fill-in in the matrix). Such
an ordering is also called a perfect elimination ordering. More rigorously, this can be
defined as follows:

Definition 2.3.8 (Perfect elimination ordering [LXZZ21]). Let G = (V,E) be an
undirected graph. An order of vertices, v1 < v2 < ... < vn with {v1, ..., vn} = V is a
perfect elimination order (peo), if for every vertex v ∈ V , the set

Xv := {v} ∪ {v′ | v′ > v, {v, v′} ∈ E}

forms a clique in G.

We will commonly define elimination orders using ordered sequences (v1, ..., vn),
in which case the order i < j ⇔ vi < vj is implied. Also, note that the definition in
[LXZZ21] writes v > v′ if v is eliminated before v′, while we write this case as v < v′.
This allows us to obtain a list with the vertices in the elimination order by sorting
the set V ascending by <, which is the convention used by most sorting algorithms in
the C++ standard library. It has been proven by Fulkerson [FG65] that the class of
graphs that have perfect elimination orderings is exactly the class of chordal graphs.

To optimize Gaussian elimination using this theory, we require an algorithm that
can find a perfect elimination ordering for a given graph. A very simple procedure
for this task is based on the successive removal of simplical vertices. A vertex v is
simplical if adj(v) forms a clique. Therefore, eliminating a vertex introduces no fill in
the elimination game iff the vertex is simplical. Now, we can define our procedure as
follows:

αpeo = ()
while there is a simplical vertex v in the Graph do

αpeo ← αpeo ◦ (v)
Remove v from V and adj(v) from E

end while
if V = ∅ then

return αpeo . The whole graph was eliminated with no fill, so we found a peo
else

abort . There are vertices still in the graph, but none is simplical, so any
elimination will introduce fill. Thus, the graph is non-chordal
end if

The correctness of the algorithm follows from two basic statements about chordal
graphs: First, any chordal graph has at least one simplical vertex (otherwise, there
would be no peo - choosing any vertex as the first would introduce fill). Furthermore,
any induced subgraph of a chordal graph is also chordal. To give a short proof for this
statement, we will assume G = (V,E) is a chordal graph, and we remove one vertex v
together with its incident edges. Now, remember that a graph is chordal iff any cycle
of length at least four has a chord. Thus, the only way to make the graph non-chordal
is by either adding a new cycle, or removing a chord. Since we do not add any edges,
no new cycle will be added. However, consider now that v is incident to a chord of a

Chordal Graphs 19

1 2

4 3

5

1

4 3

5

4 3

5

4 3 4

1 2

4 3

5

1 2

3

5

1 2

3

1 2 1

Figure 2.1: The elimination game played on a chordal graph. On the top row, we
use the peo 2 < 1 < 5 < 4 < 3. On the bottom row, the non-perfect ordering
4 < 5 < 3 < 2 < 1 is used, which introduces fill edges. In each step, the new fill edges
are dashed and colored red.

cycle. Per definition of a chord, v is part of the cycle. Thus, by removing v, the cycle
is broken. Therefore, the subgrapy induced by V \ {v} is chordal. Per induction, the
statement follows for all induced subgraphs.

While this algorithm is very simple, repeatedly checking for simplical vertices is
expensive. There are better algorithms for finding peos, like the Maximum Cardinality
Search (MCS) algorithm, first presented by Tarjan and Yannakakis [TY84]. The
algorithm runs in linear time O(|V |+ |E|).

Even if the graph is non-chordal, it could be ’nearly chordal’ in the sense that the
minimum set of fill edges required to make the graph chordal is very small. In this
case, adding the fill edges and then choosing a perfect elimination ordering can still
have an advantage compared to a completely naive ordering. Hence, we will introduce
some tools to deal with chordal completions of graphs:

Definition 2.3.9 (Chordal completion). Let G = (V,E) be a non-chordal graph.
F ⊆ {{v, v′} | v ∈ V } \ E is a set of fill edges that are not already present in the
graph. We call G′ = (V,E ∪ F) a chordal completion of G iff G′ is chordal.

We call G′ = (V,E ∪ F) a minimal chordal completion of G iff it is a chordal
completion of G and the graph G− = (V,E ∪F−) is not chordal for any F− (F , i.e.
if we take away any subset of the fill edges, the graph is no longer chordal.

We call G′ = (V,E ∪ F) a minimum chordal completion of G iff it is a chordal
completion of G and for all other chordal completions G′′ = (V,E′′) we have that
|E′| ≤ |E′′|.

The MCS-M algorithm (see algorithm 3) was first presented by Berry et al.
[BBHP04] to find minimal chordal completions. It is a simplification of another well-

20 Preliminaries

known algorithm for the same purpose (LEX-M). For an input graph G = (V,E), the
algorithm runs in O(|V | · |E|), so O(n3), where n is the number of vertices.

Algorithm 3 MCS-M [BBHP04]
procedure MCS-M(G = (V,E)) . G is non-chordal graph

F ← ∅ . The set of fill edges
α← () . The elimination ordering
for all vertices v ∈ V do

w(v)← 0 . Initialize the weight map w : V → N
end for
for i← n downto 1 do

Choose an vertex v ∈ V \ α of maximum weight w(v)
S ← ∅
for all unnumbered vertices u ∈ G do

if {u, v} ∈ E or there is a path (u, x1, x2, ...xk, v) through {x1,...,xk} ⊆
V \ α such that w(xi) < w(u) for 1 ≤ i ≤ k then

S ← S ∪ {u}
end if

end for
for all vertices u ∈ S do

w(u) = w(u) + 1
if {u,v} /∈ E then

F ← F ∪ {{u,v}}
end if

end for
α← (v) ◦ α . Prepend v to the elimination ordering

end for
return (α, F) . Returns the computed fill edges and the elimination order.

The chordal completion can be computed as G+ = (V,E ∪ F)
end procedure

The problem of finding a minimum chordal completion is NP-complete, so assum-
ing P 6= NP, the worst-case runtime of an algorithm for this task is exponential.

2.3.2 Elimination Trees
The elimination tree is an associated tree structure that can be defined for a peo,
which holds information about the relation of the vertices to be eliminated.

Definition 2.3.10 (Elimination Tree ([LXZZ21], Definition 5.3)). Let G = (V,E)
be a graph, with xn < xn−1 < ... < x1 being a perfect elimination order on that
graph. The elimination tree of G is a directed spanning tree T = (V,B) with the
following edge relation: For every xi with i 6= n, B contains a single edge (xi, xp),
where xp = min {x ∈ adj(xi) | x > xi}, which we will call the parent of xi. We define
the children child(xp) = {xl | (xl, xp) ∈ B} of a vertex accordingly. The height h(x)
of a vertex x is defined as 1 if the vertex is a leaf, and max {h(x′) | x′ ∈ child(x)}+1
Note that x1 has no outgoing edges, and is therefore the root of the elimination tree.

When working with the elimination tree, we will often consider the following
lemma:

Chordal Graphs 21

Lemma 2.3.1 ([LXZZ21], Lemma 5.4). Let T = (V,B) be the elimination tree of a
chordal graph G. If xs < xt and (xs, xt) ∈ B, then there is a path from xt to xs in T

Its contraposition is particularly interesting: If there is no path between two nodes
(i.e. they are on two different branches of the tree), then there is also no edge between
them in the original graph. This property of elimination trees was also recognized by
Jess and Kees [JK82], who used elimination trees for parallel L/U Decomposition of
linear systems (which is very similar to gaussian elimination). Hence, the same ideas
from [Par61] can be applied for single-threaded variants of the algorithm. To execute
multiple eliminations in parallel however, it is important to ensure that there are no
conflicts on shared memory: If one thread of the algorithm reads out a coefficient
in the matrix while it is being overwritten by another thread, the result will be
inconsistent. In the case of Jess and Kees, such a conflict would occur if and only
if two variables were eliminated that form an edge on the associated graph. Thus,
parallel elimination is possible if the algorithm takes care to never eliminate any two
variables at the same time that have an edge.

With these constraints, Jess and Kees wanted to optimize the runtime of the
algorithm, assuming no restrictions on the maximum number of parallel threads. To
do this, they also introduced the same concept of an elimination tree, which they used
in their work as a kind of generalization of perfect elimination orderings for parallel
elimination: In a single step, the decomposition algorithm would eliminate all leaves
of the elimination tree - since no two leaves can have a path between them, this is
always safe. With this strategy, the time until completion is given by the height of
the elimination tree. Hence, finding an elimination tree with minimum height for a
given graph helps to optimize the runtime of the algorithm. Later, we will introduce
a variable ordering heuristic for CAD that makes use of the elimination tree, so we
will now describe the algorithm by Jess and Kees, which is given in 4.
Since they were concerned with parallel optimization, they did not use the notion of a
perfect elimination ordering as it was introduced before. Instead, they assign a class
label to each vertex (which is denoted as γ(v)), which can be used to obtain an order
of vertex classes X1, X2, ..., Xk where Xi = {v | γ(v) = i}. These label classes give the
equivalent of a peo for parallel algorithms: Any elimination order v1 < v2 < ... < vn,
where v < v′ =⇒ γ(v) <= γ(v′), is a perfect elimination ordering. The algorithm
E-Tree works by first assigning such labels to the vertices, and then constructing an
elimination tree based on these labels. This elimination tree then conforms to for any
peo that can be derived from the label classes as described above.

Note that we make two minor modifications to the procedure: First, in the inner
loop, we discard all vertices with non-zero deficiency first before performing the elim-
ination procedure for one of the leftover vertices (which now has zero deficiency and
therefore allows elimination without fill-in). This modification allows us to record the
number of zero-deficiency vertices in each step as a number of ’choices’, which can
have an influence on the outcome of the final algorithm. As a second addition, the
algorithm determines a perfect elimination order that eliminates the vertices ordered
by their level in the elimination tree ascending (lower levels eliminated first).

Assuming the algorithm was ran on a connected, chordal graph, the generated
elimination tree conforms to the given definition and is of minimum height.

For non-chordal graphs, the result of the E-Tree procedure is undefined. There-
fore, Jess and Kess suggest to compute a minimal chordal completion before applying
the procedure. However, as shown by Pothen ([Pot88], Theorem 1), the problem of
finding the shortest elimination tree on a general (non-chordal) graph is NP-complete.

22 Preliminaries

Algorithm 4 E-Tree [JK82]
procedure E-Tree(G = (V, E))

(V̂ , Ê)← (V,E) . Working copy of the graph
i← 1 . The current level
α← () . A perfect elimination ordering
while V̂ 6= ∅ do

U ← V
while U 6= ∅ do

while there is a non-simplical v ∈ U do
U ← U \ {v}

end while
if U = ∅ then

break
end if
Choose v ∈ U . v is guaranteed to be simplical
γ(v)← i . γ(v) is the label of v
U ← U \ adj(v, Ê)
V̂ ← V̂ \ {v}
Ê ← Ê \ inc(v, Ê)
α← α ◦ (v) . Append v to the peo

end while
i← i+ 1

end while
B ← ∅ . T = (V,B) forms the E-Tree
for all v ∈ V do

l(v)← {γ(w) | w ∈ adj(v,E) ∧ γ(w) > γ(v)}
B ← B ∪ {(v, w) | w ∈ adj(v,E) ∧ γ(w) ∈ l(v) ∧ γ(w) is minimum})

end for
return (T = (V,E), α)

end procedure

Thus, assuming P 6= NP, the best possible general algorithm for finding the shortest
e-tree is of exponential complexity, which makes it infeasible to use in the optimiza-
tion of many problems, since the gains will be outweighed by the long runtime of the
E-Tree algorithm.

2.4 SMT Solving
In this thesis, we are concerned with the satisfiability problem for arbitrary logical
formulas that are constructed using NRA constraints as atoms. While it is possible
to solve such problems using only the CAD procedure, it would require us to com-
pute the CAD on all constraints of the formula and test the truth value of the full
formula for each sample point. This approach is not ideal, since it ignores the logical
structure of the formula: By analyzing the logical structure of the input problem,
we often discover that knowledge of a subset of the constraints is sufficient to prove
satisfiability. Therefore, we consider the combination of CAD with a Boolean SAT
solver to construct a less-lazy SMT solver. The following section describes the general

SMT Solving 23

structure of such a solver to the extent that is useful for later analysis. For a more
thorough explanation of SMT solving, the reader is referred to [Kre20].

In its core, the structure of an SMT solver can be described as follows: As a
first step, the Boolean abstraction of the input formula is built. In this Boolean
abstraction, we replace each arithmetic constraint (of the form p ∼ 0) with a unique
Boolean variable bp∼0 representing this constraint. Then, the Boolean abstraction
is submitted to the SAT solver, which will try to find a satisfying assignment for
the abstraction, ignoring the arithmetic parts completely. When the solver found a
satisfying assignment for the Boolean abstraction variables, it is necessary to check if it
is possible to find an assignment for the arithmetic variables, such that the truth values
of the constraints match the truth values of the corresponding abstraction variables
in the assignment found by the SAT solver. For this step, the CAD procedure can
be used. If it returns a satisfying arithmetic assignment, it is also satisfying for the
input formula, so the SMT solver can terminate with an answer of SAT. Otherwise,
the SAT solver has to mark the assignment as UNSAT and further explore the search
space to find a different assignment that might be consistent with the theory. If no
such assignment can be found after exploring the full Boolean search space, UNSAT
is returned.

2.4.1 CDCL-Style SAT Solving
To fully understand the inner workings of a modern SMT solver, it is helpful to look
into the details of CDCL-style SAT solving. While it is possible to consider the SAT
solver as a “black box”, solving performance on real-world problems can benefit from
a tighter integration between Boolean SAT and theory solving.

To keep track of the assignments that have been checked already, the SAT solver
uses a trail. This is essentially a stack of assignments to single variables with some
metadata. A typical solver might solve 2-tuples of the form (L,C), where L is a literal
of the form b or ¬b to indicate that b is assigned true resp. false. C can optionally
store a clause in the formula. This is used to indicate that, with the current trail, the
assignment L is a logical implication of C. Otherwise, C is empty and we call (L,2)
a decision. Now, the solver procedure can be described as the following loop:

1. Propagation: Check if there is any assignment that is a logical implication
of the current assignments in the trail and the formula. If such an implication
exists, store the assignment L together with the implying clause C to the trail.
For example, with ϕ = ¬a ∧ (b ∨ c) the literal ¬a must be true, so (¬a, (¬a)) is
stored.

(a) Backtracking: If there is a clause C in a formula that is falsified by the
current trail, a conflict occurred. In this case, the solver has to backtrack
by removing assignments from the trail in order to revert the decision that
led to the conflict. In addition, a process called Conflict Resolution is
employed to generate a Conflict Clause from C and the trail at the point
of conflict. This clause is then added to the formula, which prevents the
solver from taking the same wrong decision again. After this, we continue
with 1: Propagation

(b) Decision: If there are no more clauses that immediately imply the assign-
ment of another literal, the solver has to “guess” an assignment L, which
is called a decision. This decision is logged onto the trail as (L,2), and

24 Preliminaries

the solver goes back to 1: Propagation. If there are no more variables
for which a value can be decided, the Boolean formula is satisfied and the
solver returns SAT.

If we want to integrate such a solver with a theory solver for SMT solving, we
can make some modifications which, in practice, can improve the performance of
the solver. First, we can call the theory solver every time before making a decision,
instead of waiting until we find a full satisfying assignment. If the theory solver
discovers that the current assignment is already inconsistent with the theory, we have
saved ourselves from exploring a branch of the search space that contains no solutions
for our top-level problems anyways. While this behavior might lead to more theory
calls overall in the worst-case, preventing a decision in this way can avoid multiple,
even more expensive theory calls that would have been a consequence otherwise. If
the theory solver has the ability to return an infeasible subset of theory constraints,
this can be translated back to its Boolean representation and learned, similar to a
conflict clause.

However, there are also modifications on the theory side that can be beneficial
for working with a SAT solver: To solve a single SMT problem, the theory solver is
potentially called many times, as described above. However, these calls will usually
be strongly related to each other: When, after a theory call, the SAT solver is able to
propagate without conflict, the next theory call will be a superset of the constraints
passed previously. Therefore, it is beneficial if the theory solver can keep the pre-
vious state and only incorporate the additional constraints incrementally instead of
recomputing everything for every call. Similarly, when the SAT solver has to back-
track because of a conflict, the theory solver should be able to backtrack by removing
constraints from its internal state as well.

In the following sections, we will introduce the Satisfiability Modulo Theories -
Real Algebra Toolkit (SMT-RAT) framework, which contains a CDCL SAT solver
and a CAD implementation that has the features mentioned above.

2.5 SMT-RAT
SMT-RAT is a “Toolbox for strategic and parallel Satisfiability-Modulo-Theories solv-
ing” [smt22] developed by the Theory of Hybrid Systems Group, RWTH Aachen Uni-
versity. Its core part consists of modules that offer a standardized interface to solve
an SMT-related problem. Two important modules we will be working with are the
following:

• The SATModule, which solves the Boolean Satisfiability Problem SAT. It im-
plements a CDCL SAT solver as described in Section 2.4.1. This module is
utilized almost every time when working with SMT-RAT.

• The NewCADModule, which is able to solve QF_NRA constraints incrementally
using the CAD method. This work concentrates on implementing and evaluating
variable ordering heuristics in the context of this module.

An important concept in SMT-RAT is the composition of modules. A module can
take another set of modules as backends, which can be called to out-source partial
problems. With this composition principle, SMT-RAT can work as a complete SMT
solver: The SAT module will receive the input formulae, which consist of theory

CAD Implementation in SMT-RAT 25

constraints as atoms, combined with the usual Boolean logic operators. This module
will only consider a Boolean logic abstraction of the formula, passing the theory
atoms to a backend when they have to be checked for satisfiability. In the setting
of QF_NRA, these atoms will be polynomial constraints, which are passed to the
NewCADModule.

This way, the module structure forms a tree: At the root, the full input problem is
inserted, and partial problems are passed down the branches, until the leaves, which
are able to solve the problem they are designed for fully on their own. Solutions are
then passed back up the tree. This can go back and forth multiple times, until we
receive the ultimate answer from our root module. In SMT-RAT, a composition of
modules, with the aim of solving some problem, is called a strategy. This model allows
a user to craft a strategy from the single parts that SMT-RAT offers, which is suited
to the particular problem at hand. Listing A.2 on page 57 shows the C++ definition
of the strategy outlined above, constructing a simple SMT solver for QF_NRA using
a pure CAD backend. In addition to the composition of modules to a strategy, some
modules (including the aforementioned CADModule and SATModule) allow the spec-
ification of settings for the module itself, usually by the C++ template mechanism.
This high degree of customizability makes SMT-RAT a valuable tool for research in
SMT-solving: It is easy to take one of the pre-defined strategies as a baseline and
swap out just the part we are interested in for our research (here: the CAD variable
ordering, which is specified as a part of the CADSettings template parameter).

2.6 CAD Implementation in SMT-RAT

This section contains a brief overview of the NewCADModule of SMT-RAT, focusing
on the incrementality and backtracking aspects that are typically not found in other
CAD implementations. A more thorough explanation can be found in [KA20].

The NewCADModule of SMT-RAT is purpose-built for integration into an SMT
solver.

As explained in Section 2.4.1, the CAD procedure will be called multiple times,
possibly with only slight variations on the constraint set. Considering the doubly
exponential complexity of CAD, it would be wasteful to set up a new CAD for every
theory call. Instead, the SMT-RAT implementation has the ability to add constraints
to build a CAD incrementally, or to remove constraints to support backtracking.

Another possible optimization in a CAD implementation for SMT solving arises
from the observation that we do not need the full CAD. Instead, it is enough to find
one satisfying example, i.e. one sample point that satisfies all the constraints that
are currently considered. To take advantage of this, the CAD in SMT-RAT is able to
perform projection and lifting in a granular fashion and switch between these phases
multiple times. This allows the implementation to obtain satisfying samples more
quickly in practice.

For example, when called with a set of polynomial constraints, the CAD imple-
mentation is able to start with an empty projection and add a single polynomial at a
time to the projection set, performing a lifting after every polynomial added. Since we
are missing some polynomials, not all sign-invariant regions of the full set are covered,
but still enough that we might hit a correct region by chance.

26 Preliminaries

2.7 Simple Variable Ordering Heuristics for CAD
This thesis is focused on a variable ordering based on chordal graphs as proposed by
Li et al. [LXZZ21]. However, we will first introduce other variable ordering heuristics
that we will use for comparison. First, we will consider some simple heuristics that
are based on immediate properties of the polynomials. Hence, these heuristics are
very cheap in their application.

2.7.1 Triangular Ordering

This ordering heuristic was used in a CAD-constructing algorithm proposed by Chen
et al. [CMXY09]. The algorithm does not follow the usual structure of a projection
of lifting that was introduced before. Instead, their algorithm consists of three main
steps: First, a decomposition of Cn is computed. In a second step, this initial decom-
position is transformed to be cylindrical (though still over Cn). As a last step, this
composition is used to compute a CAD (in the same sense as defined in our introduc-
tion) in real space. Since this implementation of a CAD construction is quite different
from ours, it is difficult to argue how this heuristic can optimize the projection and
lifting process. This is the variable ordering heuristic which is currently implemented
in SMT-RAT. However, it is “not clear whether it is a particularly good heuristic
for a regular CAD Projection” [Kre20]. We will give a definition of the heuristic as
described by England et al. [EBDW14].

Definition 2.7.1 (Triangular ordering). Let P ⊆ R[x1,...,xn] \ {0} be a polynomial
set over the reals. Define furthermore t1, t2, t3 : {x1,...,xn} → N as follows:

t1(v) = max {deg(f, v) | f ∈ P}
t2(v) = max {tdeg(lc(f,v)) | f ∈ P and v ∈ var(f)}

t3(v) =
∑
f∈P

deg(f, v)

for all v ∈ {x1,...,xn} Then, we define the ordering over {x1,...,xn} as

xi > xj :⇐⇒ t1(xi) > t1(xj)

∨t1(xi) = t1(xj) ∧ t2(xi) > t2(xj)

∨t1(xi) = t1(xj) ∧ t2(xi) = t2(xj) ∧ t3(xi) > t3(xj)

for all i, j ∈ {1,...,n}.

2.7.2 Brown’s Ordering

In his tutorial notes about CAD [BR04], Brown gives a simple variable ordering
heuristic, similar to the “triangular” one given above. It is based on the idea of
eliminating variables with lesser occurrences first, i.e. those that “appear in few terms
and to low degree in the input polynomials”. We can define this order as follows:

Definition 2.7.2 (Brown’s Ordering). Let P ⊆ R[x1,...,xn] \ {0} be a polynomial set

Chordality-based Ordering for CAD 27

over the reals. Define furthermore b1, b2, b3 : {x1,...,xn} → N as follows:

t1(v) = max {deg(f, v) | f ∈ P}
t2(v) = max {tdeg(t) | t is a monomial of a polynomial in P, v ∈ var(t)}
t3(v) = | {t | t is a monomial of a polynomial in P, v ∈ var(t)} |

for all v ∈ {x1,...,xn}. Then, we define the ordering over {x1,...,xn} as

xi > xj :⇐⇒ b1(xi) > b1(xj)

∨b1(xi) = b1(xj) ∧ b2(xi) > b2(xj)

∨b1(xi) = b1(xj) ∧ b2(xi) = b2(xj) ∧ b3(xi) > b3(xj)

for all i, j ∈ {1,...,n}.

2.8 Chordality-based Ordering for CAD
In this section we present a variable ordering based on perfect elimination orderings,
which was first introduced in [LXZZ21].

The idea presented there is similar to the one in [Par61], where we construct a
graph from the input problem, and devise an elimination order of the variables in the
input problem from an elimination order in the graph. Essentially, the elimination of
variables in the graph with Elimination-Game serves as a very rough approximation
of the projection process. Therefore, we will first introduce our graph structure:

Definition 2.8.1 (The associated graph for a polynomial set ([LXZZ21], Def. 2.1)).
Let P ⊆ R[x1,...,xn] be a set of multivariate polynomials. The associated graph G(P)
is defined as G(P) = (V,E) with

V = var(P), E =
⋃
f∈P

{{xi, xj} | xi, xj ∈ var(f), xi 6= xj}

Thus, to form the associated graph for a polynomial set P , we add a vertex for
each variable. Then, for each polynomial, we connect all of its variables pairwise to
form a clique.

Ideally, the associated graph of a polynomial set is chordal, to allow us to compute
a perfect elimination order on it. However, this may not always be the case. Hence, if
the graph is not chordal, we still want to compute a good ordering on it with the same
heuristics as for chordal graph; for this reason, we will consider chordal completions.

As a convenient way of talking about chordal completions of associated graphs of
polynomial sets, we define the notion of a chordal structure according to [LXZZ21].

Definition 2.8.2 (Chordal structure of a polynomial set ([LXZZ21], Def. 2.5)). Let
P ⊆ R[x1,...,xn] be a set of multivariate polynomials. Then, a Graph G is a chordal
structure of P , if G is a chordal completion of G(P). If var(P) = ∅, any chordal
graph is regarded a chordal structure of F.

Li et al. have proven the following propositions regarding the preservation of the
chordal structure:

28 Preliminaries

• If G is a chordal structure of {f} ⊆ R[x1,...,xn−1][xn], then G is a chordal
structure of coeff(f) ∪ {cont(f),disc(f)}. ([LXZZ21], Prop. 3.1)

• If G is a chordal structure of {f, g} ⊆ R[x1,...,xn−1][xn] and G has a perfect
elimination ordering with xn < xi for i < n, then G is a chordal structure of
{res(f, g)}. ([LXZZ21], Prop. 3.2)

• If G is a chordal structure of A ⊆ R[x1,...,xn−1][xn], then G is a chordal structure
of A ∪ F(A). ([LXZZ21], Prop. 3.3)

From this, the following proposition follows immediately:

Proposition 2.8.1 ([LXZZ21], Proposition 4.1). Let A ⊆ R[x1,...,xn−1][xn]. Suppose
that a projection operator Proj(A) only consists of some coefficients, contents, resul-
tants and discriminants of the polynomials in A∪F(A) and G is a chordal structure
of A with a perfect elimination ordering such that xn < xi for i < n, then G is also
a chordal structure of the polynomial set Proj(A).

This proposition also applies to the operators F(Projbr) and Projmc we introduced
previously. By induction, it is possible to obtain the following:

Proposition 2.8.2 ([LXZZ21], Proposition 4.2). Let A ⊆ R[x1,...,xn]. Suppose the
graph G is a chordal structure of A and xn < ... < x1 is a perfect elimination or-
dering of G. If a projection operator Proj(S), with S the polynomial set on which it
operates, consists of some coefficients, contents, resultants, discriminants and some
subresultants of the polynomials in S∪F(S) and (Pn = A,Pn−1, ..., P1) is a projection
procedure of A obtained via the projection ordering xn < ... < x1, then G is a chordal
structure of any Pi for 1 ≤ i ≤ n

This theorem also implies the following:

Lemma 2.8.3. Let A ⊆ R[x1,...,xn]. Let G = (V,E) = G(A) be the associated graph
of A. Let F = Elimination-Game(G, xn < ... < x1) be the set of fill edges introduced
by the elimination game. Then, G′ = (V,E ∪ F) is a chordal structure of A and, by
Proposition 4.2, also a chordal structure of the sets (Pn = A,Pn−1, ..., P1) obtained by
the projection procedure using a projection operator as specified in proposition 2.8.2.

Proof. If we play the Elimination Game again on G′ using xn < ... < x1, no additional
fill-in is introduced, so G′ is chordal. Since G is a subgraph of G′, G′ is a chordal
structure of A and we obtain the proof by proposition 2.8.2.

This shows us that the elimination game, which was introduced to simulate the fill-in
for Gaussian elimination, can also give an “upper bound” for the fill edges introduced
by projection in the associated graph of a polynomial set. These fill edges correspond
to new polynomials, which “connect” two variables that did not previously appear
inside a polynomial. For example, consider the following polynomial sets:

P :=
{
x1 + x4, x2 + x4, x

2
3 + x2, x

3
3 + x1, x5 + x2, x5 + x1 + x2

}
(2.1)

Q :=
{
x1x2x3, x1 + x3 + x4, x1 + x4x5, x

2
1 + x5 + x3

2

}
(2.2)

In Figure 2.2 we can see a chordal structure for P and Q respectively. Additionally,
the displayed vertices together with the black edges only form the associated graphs

Chordality-based Ordering for CAD 29

x4

x2x5

x3 x1

x2 x3

x4 x5

x1

Figure 2.2: The associated graphs of P and Q

G(P) and G(Q). In the case of P , the associated graph is already a chordal structure
of the polynomial set. Therefore, we can determine a perfect elimination order (for
example, x4 < x5 < x3 < x1 < x2). For Q, the associated graph is non-chordal, so we
have to find a chordal completion together with a minimal elimination order. Here,
we could use x4 < x3 < x2 < x1 < x5, which would require only one fill edge (dashed,
in red) to be added to the graph.

It is possible that the associated graph is not connected. This poses a minor
problem for the procedure, as the elimination tree is only defined for connected graphs.
Li et al. do not give a suggestion for an ordering when the associated graph is
not connected, but there are different options: One that is easy to implement is
simply to treat the connected components of the graph individually. We can run a
minimal chordal completion to make all components chordal if necessary. Then, any
elimination order on the full graph which, reduced to a single component yields a
peo of that component, is a peo of the full graph. Given the nature of the projection
operators, we will never compute a resultant between two polynomials from different
components (no shared variable). Hence, the relative order of variables between
different components has no influence on the CAD runtime and does not need to be
optimized, but the individual per-component orders still matter. Another very simple
option is simply to detect whether the graph is connected and use a fallback ordering
otherwise.

In the general case, any finite undirected graph can be isomorphic to the associated
graph of a given polynomial set. Hence, we can not make any assumptions about our
graph that would allow us to use specialized algorithms with better runtime than
their naive counterparts, e.g. for finding the elimination tree of minimum height.

2.8.1 Impact of the Elimination Tree
Li et al. have proven that the elimination tree for a peo can be used to obtain a better
upper bound on the worst-case runtime for CAD (if variables are projected using the
peo) ([LXZZ21], Theorem 5.8, 5.9). If the CAD projection is performed according
to a peo, the same sets of projection polynomials can be obtained if the projection

30 Preliminaries

is performed “along the branches of the elimination tree”, which will be formalized
below. However, the latter procedure involves a smaller number of successive projec-
tion operations on the same set, which, among other things, contributes to the better
runtime bound.

Projection Along the Elimination Tree

Let P ⊆ R[x1,...,xn] be a polynomial set, G = (V,E) = G(P) its associated graph.
We assume that xn < xn−1 < ... < x1 is a perfect elimination order, and T = (V,B)
is a corresponding elimination tree.

Now, remember that the projection sets in a classical CAD projection are defined
as Pn = P, Pi = Projmc(Pi+1, xi+1) for 1 ≤ i < n. If we visualize the inputs and
outputs to all projection operations, we obtain a projection path that looks like a
straight line. Here is an example for the set P from section 2.8, with the peo x5 <
x4 < x3 < x2 < x1:

However, we can also define a new projection procedure, that is defined as follows:

Ap := {f ∈ P | min(var(f)) = xp} (2.3)

Tp := Ap ∪
⋃

{xl|(xl,xp)∈B}

Projmc(Tl, xl) (2.4)

These sets define a projection “along the elimination tree”: For leaves xl of the tree,
the corresponding projection set Tl := Al is simply a subset of the input polynomials
(such that for every polynomial, xl is the first-eliminated variable in it). For a non-
leaf node, the corresponding set can be computed by applying the projection operator
to the sets associated with its children, and then forming the union of the resulting
projection sets and Al. Thus, we now obtain a “projection tree”, that is shaped exactly
like the elimination tree. Again, here is the example for the set P from section 2.8:

As proven by Li et al., the following propositions hold for these sets ([LXZZ21],
Proposition 5.6): For 1 ≤ i ≤ n, we have

{f ∈ Ti | xi ∈ var(f)} = {f ∈ Pi | xi ∈ var(f)} (2.5)

{f ∈
⋃

1≤i≤n

Ti | var(f) 6= ∅} = {f ∈
⋃

1≤i≤n

Pi | var(f) 6= ∅} (2.6)

Chordality-based Ordering for CAD 31

This shows us that the elimination-tree-based projection procedure can produce the
same full set of projection polynomials as the original one. In particular, one could
use {f ∈ Ti | xi ∈ var(f)} instead of {f ∈ Pi | xi ∈ var(f)} to perform the lifting step
into the i-th dimension.

The projection along the elimination tree allows for a new complexity analysis,
which results in a lower bound on the runtime of CAD when a peo is used to order
the variables ([LXZZ21], Theorem 5.8 and 5.9). Since the projection sets are equal
up to constants (eq. (2.5)), the same runtime improvements carry over to the regular
CAD if the used order is a peo with a short elimination tree (relative to the number
of variables).

New complexity analysis [LXZZ21]

By analyzing the projection along the elimination tree, Li et al. were able to give a
better upper bound on the number of CAD cells using the method from Bradford et
al. [BDE+16] presented in Section 2.2.2.

It is key to observe that the doubly exponential complexity is introduced by the
n-fold successive application of the projection operator on the input polynomial set.
Because the projection operator has the potential to square the magnitude or the com-
bined degree in the worst-case, repeated application will result in a “power tower”
expression which can be expressed as a double exponential in n (the number of vari-
ables). Hence, by reducing the number of successive applications of the projection
operator, one is able to obtain a better lower bound. First, consider the following
lemma to estimate the size of the set Tp, which is the set of projection polynomials
as defined in equation 2.3:

Theorem 2.8.4 ([LXZZ21]). For a variable xp, if the set Ap has the (m,d)-property
and the set Tl also has this property for each xl ∈ child(xp), then Tp has the(
(| child(xp)|+ 1)M, 2d2

)
-property. When m > 1, the set Tp has the(

(| child(xp)|+ 1)m2, 2d2
)
-property.

Here, we can observe an interesting fact for our runtime: If we have a variable
xp with multiple children, then the m-value of the (m,d)-property will only increase
linearly with the number of children, and d does not increase at all (if the d-value for
all children can be bounded by d). If we would use a classic projection procedure, then
we would have successive projections for all of the child variables again, which would
lead to a double exponential growth for the m and d values. With the projection along
the elimination tree however, the maximum number of successive projections is given
by the height of the tree (which can be lower than the total number of variables). By
repeatedly applying the lemma to get an estimate for all Ti in the tree, it is possible
to obtain the following estimate:

Theorem 2.8.5 ([LXZZ21], Theorem 5.9). If the set Al has the (m,d)-property for
every xl, then the number of CAD cells in Rn is at most

∏n
i=1(2Ki + 1), where

Ki =

{
md, if xi is a leaf node
(2 (w + 1))

2hi−1
M2hi−1d2

h
i otherwise

, where w := max {| child(xl)| | 1 ≤ l ≤ n} is the maximum number of children of any
tree node and hi := h(xi) is the height of the node xi in the tree T .

32 Preliminaries

As a simplified form, we can write O
(
(2 (w + 1))

2h−1
M2h−1d2

h
)

, where h is the
height of the elimination tree. With this estimate, we should expect that the runtime
of CAD can be improved by choosing an ordering that minimizes the height of the
elimination tree.

Chapter 3

Heuristics for
Chordality-based Ordering
Methods

In this chapter, we present new ordering heuristics upon the idea of a chordality-based
ordering as presented in [LXZZ21]. First, we will describe an implementation of the
ordering from [LXZZ21] for the NewCADModule in SMT-RAT. Based on this imple-
mentation, a slight modification of the given algorithm using vertex choice heuristics
and a related method which utilizes a labelling for the associated graph are proposed,
both with the aim to introduce additional information about the polynomials into the
algorithm.

3.0.1 Implementation of the Ordering in SMT-RAT
Li et al. proposed and evaluated their heuristic in the context of an isolated CAD
algorithm. However, we are using CAD - in a slightly modified way - only as a single
component in an SMT solver. Hence, there are some additional considerations we have
to make for our implementation. In an SMT framework, the CAD solver is possibly
called multiple times with a slightly different problem set. The incremental CAD in
SMT-RAT exploits this by saving intermediate states of previous computations. If
we applied a new ordering for every call to our CAD solver, the stored projection
sets and sample points would be invalid and we have to compute a new CAD from
scratch. It is possible that the reduction in runtime, which could possibly be achieved
by choosing an ideal ordering for every run, is outweighed by the additional work for
recomputing compared to the incremental CAD. SMT-RAT currently recomputes the
ordering whenever a new variable is added or removed, since this requires the solver
to clear the data structures anyways.

Li et al. make the following suggestions for finding a variable ordering for cylin-
drical algebraic decomposition[LXZZ21]:

1. “[When the associated graph of the input polynomial set is chordal], it can be
better to compute the CAD via the perfect elimination orderings which result
in perfect elimination tree of the minimum height” [LXZZ21]

34 Heuristics for Chordality-based Ordering Methods

2. “[When the associated graph of the polynomial set is nonchordal], but still
nearly chordal (and also sparse), it could be better to use the variable orderings
that result in minimal chordal completions of the original system” [LXZZ21]

We implement these suggestions in section 3.0.1. The source code of the C++ im-
plementation used in SMT-RAT can be found at [(kr23], in src/smtrat-cad/
variableordering/chordal_vargraph_elimination_ordering.cpp. The
presented algorithms uses two subalgorithms that are not specified: isConnected
checks whether the graph is connected and returns a boolean value accordingly. In
the C++ implementation, we use the Boost Graph Library to implement this func-
tionality. VOFallback is a fall-back variable ordering that can be configured in the
settings of SMT-RAT.

procedure Chordal(P ⊆ R[x1,...,xn])
G← (V ← ∅, E ← ∅))
for all polynomials p ∈ P do

V ← V ∪ var(p)
for all pairs of different variables {x, y} ⊆ V do

E ← Ecup {x, y}
d(x, y)← max {d(x,y),deg(p,x)}
d(y, x)← max {d(y,x),deg(p,y)}

end for
end for . We have constructed G← G(P)
if not isConnected(G) then

return VOFallback(P)
end if
α, F ←MCS(G)
if F = ∅ then . G is chordal

(α,_)← E-Tree(G) . The returned tree is ignored, only the peo is stored
. α is a peo that generates a minimal elimination tree

return α
else

α, F ←MCS-M(G) . α is a minimal elimination order (meo)
G+ ← (V,E ∪ F)
(α,_)← E-Tree(G)
return α

end if
end procedure

A variable ordering in SMT-RAT is defined by a function, which takes a set P
of polynomials and computes a peo in the form of a variable sequence, which is a
permutation of the variable set var(P). The variable ordering function to use is
configured as part of the settings of the NewCADModule.

First, we construct the associated graph of the polynomial. Then, we check
whether the graph is connected, since the result of E-tree is only defined for con-
nected input graphs. If the graph is non-connected, an unspecified fall-back ordering
is used. In the C++ implementation, this is a template parameter which can be set to
any other available ordering in SMT-RAT, like the triangular ordering. If the graph is
connected, we check for chordality by running the MCS algorithm and then checking
whether the generated elimination order is perfect by calling Elimination-Game.

Better Integration of Polynomial Properties 35

If the graph is chordal, we call E-Tree(G) to obtain the elimination tree of
minimum height and a new peo which generates that elimination tree. This peo is
then returned by the algorithm.

If the graph is not chordal, we compute a minimal elimination ordering together
with the set of fill edges F using MCS-M. These fill edges are then added to the
graph (making it chordal), and E-Tree is called. The resulting fill edge count is a
simple indicator for how close the graph is to being chordal. If the fill-in is very large,
then other orderings that do not consider chordality might result in similar fill-in,
while being more optimal w.r.t some other criterion. In these cases, it may be more
sensible to choose another ordering over the chordality-based ordering. However, such
a case-distinction has not yet been implemented and tested in the algorithm. The
set of fill edges is then added to E to obtain the chordal graph G+. In the next
step, E-Tree(G) is called, which returns an elimination tree of minimum height for
G+, together with a peo on the filled graph that produces this tree. The elimination
tree itself is not needed and therefore not stored in the pseudocode. The returned
peo on the filled graph possibly has a shorter elimination tree than the original meo
returned by MCS-M (which is also a peo on the filled graph). Considering all chordal
completions of the input graph, it is possible that there is a peo with an even shorter
elimination tree than the one obtained by our procedure. However, as shown by
Pothen [Pot88], finding the elimination tree of minimum height among all peo for
all chordal completions of a graph is an NP-complete problem. For this reason, we
consider only a single minimal chordal completion to obtain an approximation to the
elimination tree of minimum height.

It is also possible to simplify the algorithm by only running MCS-M to detect
chordality (by absence of filledges) and compute a minimal fill immediately. However,
the O(|V | · |E|) complexity of MCS-M is slightly worse than MCS, which runs in
O(|V |+ |E|).

3.1 Better Integration of Polynomial Properties
The idea of modelling variable elimination using the elimination game in graphs was
first explored in [Par61] for systems of linear equations. To construct the associated
graph from a matrix A ∈ Rn×n, an edge xi, xj is added to the graph iff either aij or
aji is nonzero. Therefore, a pair of vertices xi, xj with i 6= j always corresponds to two
entries in the matrix. We lose information about the exact value of the coefficients,
but in most computer architectures, fixed-width numbers are used - so the runtime of a
single arithmetic operation is mostly independent from the value. In addition, Parter
indicates that the elimination game simulates the Gaussian elimination accurately - in
the sense that “almost always”, the associated graph of the matrix after an elimination
step is equal to the result of the elimination game applied to the associated graph of
the original matrix. To apply the same idea to systems of polynomial constraints, Li
et al. use a very similar definition for the associated graph: It is constructed as an
undirected, unlabelled graph using the set of variables as the vertex set, where two
variables are connected via an edge iff they appear together in a polynomial. However,
sets of polynomials have more structural complexity than systems of linear equations,
so we lose more information in the abstraction. First, we lose all information about
the degrees of the variables in the polynomials. In the lifting phase of the CAD, the
number of sample points that a single polynomial contributes when lifting a single

36 Heuristics for Chordality-based Ordering Methods

point is given by the number of zeroes, which is bounded by the degree. Therefore,
the degree has a major impact on the complexity of CAD, which is also shown in the
complexity analysis presented in section 2.2.2. This has been recognized in previous
research on variable ordering, so most heuristics prefer to eliminate variables that
appear to low degree in the polynomial set. This is visible in the triangular ordering
(see definition 2.7.1), which orders the variables based on their maximum degree in
the polynomial set, using other degree-based criteria for tie-breaking. The maximum-
degree criterion even ignores most other aspects of the variable, such as the number
of terms / polynomials it occurs in and the other variables it appears together with.

Furthermore, any set of variables can appear in an arbitrary number of polyno-
mials, which means that an edge in the associated graph for a polynomial set could
also represent an arbitrary number of polynomials. The number of adjacent vertices
can be weakly correlated to the number of terms the variable appears in, especially
if the average number of variables in a single term is small. In addition, a variable
appearing in a large number of different polynomials is more likely to be adjacent to
two vertices that are not connected, which would mean that it cannot be eliminated
without introducing fill. The size of the projection sets can have a large influence
on the runtime of the CAD, in particular the first sets: Through the calculation of
resultants in Projmc, the size of a polynomial set can grow quadratically through
projection. In the lifting phase, a single point is lifted with every polynomial of the
current level, thus the number of lifting points grows with the number of polynomials.

For these reasons, we will now propose methods to include this information into
chordality-based ordering heuristics, with the hope that this allows the solver to select
a better variable ordering.

3.2 Choosing Better Vertices in Graph Algorithms
In section 3.0.1 we introduced an implementation of the chordality-based heuristic
proposed by Li et al. for CAD. As we have seen, there are two subalgorithms that
are used to determine elimination orderings: E-Tree (algorithm 4), which is used
to determine a peo for chordal graphs, and MCS-M (algorithm 3), which is used to
determine an meo for non-chordal graphs. In both algorithms, there is a point where
a vertex is arbitrarily chosen from a set, these points are underlined in the listings.
At these points, we can utilize a secondary ordering on the variables to choose a
vertex whose variable is minimal w.r.t the ordering. This allows us to take additional
information about the variable into account, while still producing a meo or a minimal
elimination tree respectively. The orderings presented in section 2.7 are good choices
for secondary orderings, since they make their decisions mostly based on the degree
of the variables, which is completely lost in the associated graph.

For the evaluation, it can be interesting to know how much influcence the sec-
ondary ordering had during a given run. Therefore, we calculate a “degree of re-
ordering” as follows: First, a “choice ratio” is computed at every execution of the
underlined step as the number of vertices that can be chosen, divided by the to-
tal number of vertices that have not been eliminated already. For E-Tree, as
given in the pseudocode, the value is simply |U |

|V | . For MCS-M, the chosen vertex
has to fulfill the maximum-weight condition, so the choice ratio can be written as
|
{
v∈V \α|∀v′∈V \α.w(v)≥w(v′)

}
|V \α| . The degree of re-ordering is computed as the product of

the choice ratio of every iteration. If we make the simplifying assumption that the

Extending the Graph Representation 37

choice of a vertex does not influence the choice ratios in the following iterations, the
degree of re-ordering expresses the ratio of the possible elimination orderings that can
be achieved using the algorithm, divided by the total number of orderings, |V |!. Thus,
a value of 1 would represent the case that every possible ordering can be generated by
the graph, which (for both algorithms) is the case when the graph is a clique. While
it is wrong to assume that the choice of a vertex does not influence the following
choices, we still expect the degree of reordering to be a useful approximation of the
influence of the secondary ordering.

The C++ implementation of section 3.0.1 allows to specify a secondary ordering as
a template parameter, which is used as the secondary ordering for the aforementioned
graph algorithms. To realize the basic implementation as specified in [LXZZ21], a
pseudo-random variable ordering is used as the secondary.

3.3 Extending the Graph Representation
To obtain an even tighter integration of polynomial properties into a chordality-based
algorithm, the associated graph itself can be labelled. To find a peo on the resulting
graph, we can use the very simple peo-finding algorithm proposed in section 2.3, based
on the repeated removal of simplical vertices. In each step, a vertex can be chosen
that minimizes some property that is computed using the labels. For example, we
could label each edge with the number of polynomials contributing to it and choose
the vertex for which the sum of labels of incident edges is minimal.

However, the accurate representation of the elimination process in the labels poses
a challenge, since we want the labels after the vertex elimination to be accurate for
the polynomial set after the projection. This has some implications on our labelling
process: First, we might have to recompute labels during the elimination process to
match the projection polynomial set. Second, the labelling has to be precise enough
to contain all information that is needed to re-compute the labelling accurately.

For example, we could try to label the edges with the number of polynomials as
suggested above. This labelling cannot be recomputed accuratly, since we don’t know
whether two edges belong to the same or different polynomials. A possible way to
address this is a labelling with sets of identifiers, where each edge is labelled with
the set of polynomials that produce it. Now, we could compare the sets during elim-
ination, and possibly introduce new identifiers for the newly generated polynomials.
However, with this kind of labelling, we have to deal with the problem of possibly
quadratic growth during elimination, which would result in the same doubly expo-
nential bound for the worst-case runtime as the full CAD procedure. To avoid this
problem altogether, it is often easier to define the labels themselves as upper bounds
of some properties of the associated polynomials (here: size). This way, we can as-
sume the worst case for the elimination, to compute accurate upper bounds for the
new polynomials as labels.

In the following, we will present such a labelling system with the associated algo-
rithm based on the maximum degree of a variable. In order to analyze this labelling,
we first define δ(P, x, y) := max {deg(p, x) | {x, y} ∈ P} as a shorthand for the max-
imum degree of x among all polynomials in p that contain x and y. Given our
associated graph G(P) = (V,E), we will label both sides of every edge using a map-
ping d : V ×V → N. For a given edge {v, w} ∈ E, d(v,w) gives the label on the v-side
of the edge, while d(w,v) gives the label on the w-side. When {v,w} /∈ E, we define

38 Heuristics for Chordality-based Ordering Methods

d(v,w) = d(w,v) = 0. The core idea of the labelling can be described as follows: The
label d(v,w) in the associated graph G(P) should approximate δ(P, v, w).

In particular, we want to update the labels during elimination in order to keep the
approximation accurate for Projmc(P). To update the edge labels during elimination
of v, we consider each pair of vertices x, y ∈ adj(v) that are adjacent to v and update
the labels for {x, y} ∈ E as follows (Note: The edge is created per definition of
Elimination-Game):

d(x,y)← max {d(x,y), (d(v,x) + d(v,y)) · d(x, v)} (3.1)
d(y,x)← max {d(y,x), (d(v,x) + d(v,y)) · d(y, v)} (3.2)

With this update, we want to simulate the calculation of the resultants, which
have the most impact on the degree among all operations in Projmc: We assume that
there is p ∈ P with {v, x} ⊆ var(p) and q ∈ P with {v, y} ⊆ var(q). Through d(v, x)
and d(v,y), we obtain an approximation of the degree of v in p and q respectively.
The dimension k of the Sylvester matrix used in the resultant calculation is defined
as deg(p[x]) + deg(p[y]), so d(v,x) + d(v,y) is an upper bound for this dimension. In
the worst case, we can assume that x appears as xd(x,v) and y appears as yd(y,v) in
the coefficients of p[v] and q[v]. The resultant is computed as the determinant of the
sylvester matrix, which in turn is computed as the sum of products of k entries in the
matrix. In the worst case, such a summand can be of the form a ·

∏k
i=1 x

d(x,v)yd(y,v) =
xk·d(x,v)yk·d(y,v), where a is a term not containing x or y. By substituting k, we arrive
at the upper bound (d(v,x) + d(v,y)) · d(x, v) for the degree of x in the resultant and
(d(v,x) + d(v,y)) · d(y, v) for y in the resultant.

It should be noted that there is an edge case that was not considered in this
procedure for computing the upper bound: When p is a polynomial containing v
but neither x or y, and q is a polynomial containing {x, y} but not v, the sylvester
matrix (and thus the resultant) is still defined. In this case, it would take the form
of a diagonal matrix of dimension deg(p, v) with q on the diagonals, which means
that deg(r, x) ≤ deg(p, v) · deg(q, x) and deg(r, y) ≤ deg(p, v) · deg(q, y). The effect
of this resultant was only noticed after the evaluation with the new ordering was
already performed, so it is not taken into account for the update computation. For
this reason, the d(x,y) are not proper upper bounds, but only approximations.

Now that we have defined an accurate labelling based on the maximum degree,
we can use it in a chordality-based heuristic to greedily choose a vertex that results
in an optimal elimination in the current graph. The algorithm, which we refer to as
Greedy, Degree-minimal Chordal Completion (GDCC), is given in algorithm 5.

Similar to section 3.0.1, the algorithm starts by computing the associated graph.
While the graph is computed, the edge labels d(x,y) are computed using the input
polynomials.

Next, two weight maps wm and wd are initialized and then populated for all
vertices still in the graph. wm maps a vertex to the number of fill edges that would
be introduced by eliminating it. wd is a little more complicated: For a given variable v,
wd(v) is computed as the sum of the new values for d(x,y), d(y,x) after the elimination
for all pairs x 6= y of variables that are adjacent to v. This value acts as a rough
approximation to the sum of degrees of the polynomials added through Projmc. It
is, of course, not exact, especially since we are missing information on the number of
polynomials associated to an edge - but it should give us an approximation that is
close enough for heuristic purposes.

Extending the Graph Representation 39

After the values for wd and wm are computed, we select a minimal vertex w.r.t
<w. The operator <w is a comparison operator on the vertices using information
from w. Two variants of the operator are currently defined in the algorithm:

u <∗
md v :⇔ wm(u) < wm(v) ∨ (wm(u) = wm(v) ∧ wd(u) < wd(v)) (3.3)

u <∗
d v :⇔ wd(u) < wd(v) (3.4)

The variant <w
d only compares the wd-values in the graph. In contrast, <w

md or-
ders by the number of added fill-edges first, and then uses the degree-based ordering
as a tie-breaker. This ensures that if a simplical vertex exists, it is chosen for elimi-
nation. As described in section 2.3, the algorithm with using <w

md will always return
a peo if the input graph is chordal. Therefore, we will refer to this as the standard
implementation of GDCC. Since the restriction to simplical vertices might require a
suboptimal choice w.r.t our degree metric wd, we also implement <w

d to compare it
later in the evaluation.

When a vertex v was chosen, it is eliminated and appended to the variable ordering
α. Edge labels are recomputed using eq. (3.1). The steps of populating wd, wm,
choosing a minimal vertex w.r.t <w and eliminating this vertex are repeated until V
is empty. At this point, the ordering α is returned.

40 Heuristics for Chordality-based Ordering Methods

Algorithm 5 GDCC
procedure GDCC(P ⊆ Rn)

G← (V ← ∅, E ← ∅))
d : V × V → N← 0 . A two-sided edge label as described above.

. All possible values are initialized to zero
for all polynomials p ∈ P do

V ← V ∪ var(p)
for all pairs of different variables {x, y} ⊆ V do

E ← E ∪ {x, y}
d(x, y)← max {d(x,y),deg(p,x)}
d(y, x)← max {d(y,x),deg(p,y)}

end for
end for
α = ()
while V 6= ∅ do

wm : V → N← 0 . Initialize the weight maps in every iteration
wd : V → N← 0
for all v ∈ V do

for all pairs {x, y} ⊆ adj(v) do
if {x,y} /∈ E then

wm(v)← wm(v) + 1
end if
wd(v)← wd(v) + (d(v,x) + d(v,y)) · d(x, v)
wd(v)← wd(v) + (d(v,x) + d(v,y)) · d(y, v)

end for
end for
v ← min<w(V) . Find minimal vertex w.r.t <w

. The ordering is defined by the weight maps
α← α ◦ (v) . v is appended to the peo
for all pairs {x, y} ⊆ adj(v) do

d(x,y)← max {d(x,y), (d(v,x) + d(v,y)) · d(x, v)}
d(y,x)← max {d(y,x), (d(v,x) + d(v,y)) · d(y, v)}

end for
E ← E \ adj(v)
V ← V \ {v}

end while
return α

end procedure

Chapter 4

Experiments

The goal of this thesis is an evaluation of the presented variable ordering heuristics
in the context of SMT solving. To evaluate this, we will be comparing the following
variable ordering heuristics implemented in SMT-RAT:

• The Triangular Ordering, specified in smtrat::NewCADSettingsTriangular

• A pseudo-random ordering, which works by seeding a PRNG using properties of
the constraints, and then shuffling the variables using random numbers produced
by the PRNG. This is specified using smtrat::NewCADSettingsPseudorandom.

• The chordality-based ordering from section 3.0.1, specified using smtrat::
NewCADSettingsChordal

• The chordality-based ordering from section 3.0.1, with the elimination tree min-
imization step disabled, specified in NewCADSettingsChordalNoETree

• The chordality-based ordering from section 3.0.1, using the triangular ordering
to choose vertices as described in section 3.2. This ordering is specified using
smtrat::NewCADSettingsChordalTriangular

• The GDCC algorithm, as proposed in section 3.3, specified using
smtrat::NewCADSettingsDMFillChordal

• A variant of GDCC, which uses the operator <w
d instead of <w

md. It is not
guaranteed to compute a peo when one exists, because it only considers the
degree criterion. It is specified using smtrat::NewCADSettingsDMFill

For all orderings, the following common settings, implemented as smtrat::
NewCADBaseVariableOrderingSettings, are used for the NewCADModule:

• Use Projmc as the projection operator

• Apply full incrementality and allow for ordered backtracking, as described in
[KA20]

All settings listed above are implemented in the file src/smtrat-modules
/NewCADModule/NewCADSettings.h.in

42 Experiments

The NewCADModule configured this way is then used as a single theory backend to
the boolen SAT solver component of SMT-RAT. The settings for the NewCADModule
and the strategy are defined in A.1 and A.2 respectively.

To gain a deeper insight into the properties of the CAD execution and variable or-
dering, the code logs various information into a statistics module. For the chordality-
based ordering, this includes the number of edges, vertices, fill edges and the height
of the generated elimination tree. While only the chordality-based ordering (and, to
some extent, GDCC) use the graph structures to derive heuristic choices, it is possi-
ble to define the associated graph and the elimination tree for any ordering. As this
data can be useful for comparing heuristics, we introduced an analyzer that runs after
any ordering which is not derived from the chordal ordering to compute these val-
ues: First, it generates the associated graph of the input polynomial set identically to
the chordal ordering. Afterwards, Elimination-Game is called with the associated
graph and the derived ordering to compute the number of fill edges, which is stored
into the statistics module. Then, an elimination tree is generated for the given order-
ing, which is now a peo on the filled graph. Since no minimization of the elimination
tree height should be done and the order should not be changed, the tree is generated
using an algorithm based on definition 2.3.10 instead of using E-Tree. The height
of this elimination tree is then computed and stored into the statistics as well.

To test each individual strategy, the __CADSETTINGS__ placeholder in A.2 is re-
placed with a corresponding settings struct, inheriting from smtrat::NewCADBase
VariableOrderingSettings and specifying the variable ordering to be tested.
After replacing the placeholder value, the solver is built by running CMake with the
command line cmake -D CMAKE_BUILD_TYPE=RELWITHDEBINFO
-D SMTRAT_Strategy=CADVOTest -U LOGGING -D SMTRAT_DEVOPTION_
Statistics=ON ... This enables release-level compiler optimization while still
embedding debug info in the executable, specifies our test strategy, explicitly disables
logging and enables the builtin statistics collection. The solver is then built using the
target smtrat-shared.

The solver is built from commit 1c67006c8baf56b5f6dc344771db8f80bda5ffba
of the repo accessible at [(kr23]. The CArL library, which is a required depen-
dency and used for all polynomial operations in SMT-RAT, is built from commit
11297c86bdcf50aab93e7140029eb398f18cea96, using the default build op-
tions. The solver is compiled using gcc 11.3.0 on a Ubuntu 22.04 system.

To evaluate the impact of the variable orderings in an SMT-solving context, seven
variants of SMT-RAT, one for each of the listed variable orderings, were built as de-
scribed. Every variant of the solver was then executed on every problem of the full
QF_NRA problem set from [smt], commit 4a059777fb38d24e182f468bd5a6b15f93899be0.
For each problem, the solver was executed with a 2GB memory limit and a one
minute time limit using the SlurmBackend of benchmax, which is integrated into
SMT-RAT. Afterwards, the problems that were not answered (with SAT, UNSAT or
UNKNOWN) by all solvers were collected to run all solvers on them a second time, with
a two minute timeout. The benchmarks were executed on a cluster of computers
with 2x Intel Xeon Platinum 8160 Processors running at 2.1 GHz (Hyperthreading
disabled) and 192GB RAM.

Chapter 5

Evaluation

5.1 Conventions
In the experimental data, the solvers are named after the settings struct used to spec-
ify them, without the smtrat::NewCADSettings part. For example, the Chordal
ordering using Triangular ordering as a vertex choice heuristic, is named Chordal-
Triangular in the table. When necessary, the abbreviations Cho. for Chordal,
Tri. for Triangular and P.Rand. for Pseudorandom are used.

A result is counted as TIMEOUT resp MEMOUT when the solver exceeded its time
or memory limit and was forcefully stopped. SAT and UNSAT are returned when the
solver proved that the input problem was satisfiable resp. unsatisfiable. The solver
returns UNKNOWN when it cannot determine the result. When counting the number
of results, we will often use SOLVED for the sum of SAT and UNSAT results, and
ANSWERED for the sum of SAT, UNSAT and UNKNOWN results.

5.2 Caveats
In the case of the strategy used here, the NewCADModule will return UNKNOWN when
it detect that the CAD is incomplete (see 2.2.1). In this case, the SATModule can not
assume SAT or UNSAT for the set of constraints it passed to the NewCADModule. It
may try to explore different branches of the decision tree, which can possibly result in
a satisfying assignment (so the solver returns SAT). Otherwise, the solver is forced to
return UNKNOWN, since it cannot deduce unsatisfiability without knowing the answer
to the failed CAD call.

It is important to consider that the UNKNOWN answers will impact the accuracy
of our analysis: Since different variable orderings will result in different projection
polynomial sets, it is possible that for the same input problem, NewCADModule re-
turns a definite answer (or runs out of memory / time during the computation) for
one ordering, while another ordering results in a problematic polynomial that forces
the solver to return UNKNOWN. The NewCADModule can possibly detect incomplete-
ness before computing the majority of a rather large CAD problem, and the SAT
solver is able to prove satisfiability with an easier sub-problem, which would result
in a faster answer for that particular problem. However, the opposite can happen
as well, where the NewCADModule is unable to compute an easy CAD that would

44 Evaluation

immediately prove satisfiability for the whole problem, forcing the solver to explore
more of the boolean structure, possibly leading to harder CAD calls. Therefore, it
is hard to judge which variable ordering performs better when both return a large
number of UNKNOWN results.

This also implies that two solver variants which use different variable orderings
might can end up solving different CAD problems when invoked on the same input
problem - even with a fully deterministic SAT component, we can only guarantee that
the first call will be the same. For this reason, any analysis of individual CAD calls
must be done with caution when not limited to the first call for a problem, which
could not be meaningful.

We must also consider that SMT-RAT, in the tested configuration, is a less-lazy
SMT solver using incremental CAD. It will frequently call the theory solver to check
consistency of the constraint set that corresponds to the current assignment - not
only when a full assignment was found, but possibly at earlier points (e.g. before a
decision is made). Therefore, it is likely that many of the first CAD calls are small
subsets of the full constraint set, which can be easy compared to the later problems.
This is confirmed by the data in table B.2. First, we can observe that all of the listed
metrics for the difficulty of the polynomial set (the size, maximum degree, combined
degree) tend to increase with later CAD calls. This is the expected effect of less-lazy
SMT solving with the incremental addition of constraints. Furthermore, it is notable
that the average time for the CAD call actually tends to decrease: The first call takes
the largest amount of time, even though it is done on the “easiest” polynomial set
on average; meanwhile, successive calls can be completed a lot quicker. This is also
expected and can be explained by the incrementality features of the NewCADModule,
which avoid a re-computation of the full CAD if only a small number of constraints
was added. As a result, we can not reliably predict the performance of the full SMT
solver by analyzing invididual CAD calls.

5.3 Overview
Table B.1 shows the distribution of solver results with the different variable ordering
heuristics. Note that the Intersection and Union heuristics are virtual strate-
gies to simulate a solver that can solve the Intersection resp. Union of the solvable
problem sets for each solver, thereby approximating the optimal resp. least optimal
combination of the strategies. Their definition can be taken from algorithms 6 and 7.

Looking at these results, we can observe that the overall performance of Chordal
and its direct variations is rather poor, especially when compared with the Triangu-
lar strategy. At first, this result seems unexpected, in particular when we compare
our results with those obtained by Li et al. ([LXZZ21], Table 6): In one of their exper-
iments, they compared the chordal ordering against the variable ordering returned by
the Maple command SuggestVariableOrdering, which uses the Triangular or-
dering internally. On the three test problems, the chordal ordering always performed
better. All of these problems are specific instances of the polynomial set:

In1,n2 =
⋃

0≤i<n1,0≤j<n2

Ui,jRi,j+1 −Ri,jUi+1,j ,

Di,j+1Ri,j −Ri,j+1Di+1,j+1,
Di+1,j+1Li+1,j − Li+1,j+1Di,j+1,

Ui+1,jLi+1,j+1 − Li+1,jUi,j

Overview 45

In particular, the tested instances were I1,1, I2,1, I1,2. In this polynomial set,
every variable appears at most with degree 1 in every polynomial, that means, it
appears only once. In addition, most variables will appear in an equal number of
polynomials for the instances cited here. Because of this structure, the variables are
equal with respect to the first two criteria of the triangular ordering, and most are
equal with respect to the third. In contrast, due to the large number of variables
and the simple structure in the variable degrees, the associated graph can capture
the structure of the set well. However, the same can not be expected from the
polynomials in the QF_NRA benchmark set: First, we can observe that a large
number of problems (6129/12134) contain three or less real valued variables in total.
For these problems, the information captured by the associated graph is very small: In
particular, there are only four graphs with less than four vertices (up to isomorphism),
of which only two are connected: A single isolated vertex, two vertices connected by
an edge, three vertices connected in a line and a triangle consisting of three vertices.
All of these are chordal, and on all graphs except for the 3-vertex line, every ordering is
a perfect elimination ordering. For such problems, the information about the number
of variable occurences and their degree is more important, which is reflected by the
fact that the Triangular and DMFill orderings perform best on these problems.
When we consider problems with more variables, the picture starts to shift a bit:
On the problem subset with at least four variables, the chordality-based strategies
fare better overall. Not only is the Chordal strategy now noticeably better than
Pseudorandom, we can now see ChordalTriangular performs even better than
Triangular on these problems. However, it is also visible that the number of
UNKNOWN results is inversely correlated to the number of solved instances. If we
consider the number of answered problems, for which we count SAT, UNSAT and
UNKNOWN results, we can see that this number is very close for all solvers except
Pseudorandom and the virtual Intersection and Union, it is ranging from 2518
to 2524. If we assume that the solver would have terminated if the CAD was complete,
this would indicate that the impact of the variable ordering on the runtime is rather
small.

To analyze this effect, we consider the set of problems with more than n variables
for a varying n. In section 5.3, we plot the “relative improvement” of Union over
Intersection, calculated as the difference in solved instances divided by the number
of instances solved by Intersection, for 0 ≤ n ≤ 25.

46 Evaluation

We can notice that the relative influence of the variable ordering diminishes for
higher n. In fact, for n = 25, the number of solved instances by Intersection and
Union is equal (459 solved of 3208 total problems). In this case, all solvers manage
to solve the exact same set of problems, so none of the variable orderings can give a
different result than a pseudorandom order. This result is unexpected. As the total
number of possible variable orderings (n!) increases exponentially, we would expect
to see a growing impact with higher n, since there are simply more options for the
resulting CAD projection sets. However, when the number or degree of polynomials
is low in relation to the variable ordering, it is more likely that the polynomial set
is more “symmetric” with respect to the variables, in the sense that their number or
degree of occurrence is very similar. In addition, the effect that we see could also
be due to the structure of the SMT-LIB benchmark set - it might be that all of
the unsolved problems for n > 25 are significantly harder than all of the 495 solved
problems, possibly because they belong to different problem categories.

5.3.1 Comparing Chordal and Nonchordal Problems
For the chordality-based orderings, it is of particular interest to see whether the per-
formance is significantly different between chordal and non-chordal associated graphs.
This would suggest that a chordality test on the associated graph could be used as
a “meta-heuristic” to select the variable ordering strategy. To analyze this, we will
consider the first CAD call for every problem, and only focus on problems where that
call is made with at least four variables. The reason for the restriction to the first call
is two-fold: In addition to the inconsistencies between later calls introduced through
UNKNOWN answers, there was no problem for which SMT-RAT reset the CAD struc-
ture during solving. This means that in all cases, the variable ordering was determined
once at the start. Since we gather most of the CAD-related statistics, including the
variable count and the properties of the associated graph, only when the ordering is
executed, we do not have these statistics for any but the first CAD call of a problem.

In table B.5 we can see the answer distributions for the individual CAD call,
evaluated in a similar manner as in table B.1. While analyzing the tables, it must
be taken into consideration that the total problem count varies slightly between the
solvers. This happens when the first CAD run for the problems has not been started
when the solver terminates, and no statistics for the CAD run have been written. In
addition, the problems which result in disconnected associated graphs are not taken
into account here, since the Chordal ordering would not be executed and therefore
no attempt is made to find a peo. Since Chordal would fall back to using the
Triangular ordering anyways, this data has to be excluded. We note that in total,
7522 of 10214 graphs generated by the Chordal ordering were connected. This can
be split into 4133 of 5585 graphs with less than four vertices, and 3389 of 4629 graphs
with at least four vertices. These numbers are higher than expected, so we must
consider that a significant fraction of the Chordal and DMFill calls actually used
the Triangular strategy. One possible cause is again the less-lazy nature of the
SMT solver, which results in the first CAD call only containing a small subset of all
constraints in the problem.

For the chordal graphs, we can observe that the performance of the pure Chordal
strategy is similar to a pseudo-random ordering. However, we are also able to observe
that the ChordalTriangular strategy performs a little better than the Triangu-
lar strategy, which is consistent with our observations for the complete SMT solving

Overview 47

subset Cho. Cho.NoETree Cho.Tri. DMFill DMFillCho. P.Rand. Tri.

all 0.833 0.939 0.834 0.891 0.901 0.937 0.897
#vars ≤ 3 0.876 0.985 0.876 0.957 0.957 0.957 0.919
#vars > 3 0.750 0.849 0.751 0.761 0.791 0.896 0.853

Table 5.1: Average values of the elimination tree height

results. For the nonchordal graphs, the results are particularly interesting: First,
we can observe that the ration of UNKNOWN answers to SAT and UNSAT answers is
significantly higher for all solvers compared to the chordal graphs. We observe that
Triangular solves the most problems here, though we refrain from further analysis
of the CAD performance because of the high number of UNKNOWN results.

Even for strategies like Pseudorandom, which do not consider chordality in any
way, we note that the ratio of UNKNOWN results to the total problem count seems
highly correlated to the chordality of the graph: In total, Pseudorandom answers
1779 / 4518 (39%) of problems with UNKNOWN. For the chordal subset, it is only
186 / 1393 (13%) of problems while in the nonchordal subset, 1674 / 1859 (90%) of
problems are answered with UNKNOWN. This leads to the hypothesis that in general,
it is more likely for an incomplete CAD to occur if the associated graph of the input
polynomial set is nonchordal. It could be interesting to investigate this in more detail,
but our experiment setup does not yield any more meaningful results.

5.3.2 The Impact of the Elimination Tree

To evaluate the impact of the elimination tree height, we tested two variations on the
chordal ordering from section 3.0.1: Chordal, which tries to order the vertices to
achieve a minimum-height elimination tree, as proposed by Li et al., and Chordal-
NoETree that uses the same ordering strategy listed as section 3.0.1, with the only
difference being that the call to the E-Tree algorithm is skipped. Therefore, both
Chordal and ChordalNoETree will use a perfect elimination ordering when the
graph is chordal, but only one tries to optimize the e-tree height.

In section 5.3.2, some statistics on the relative height of the elimination tree (com-
puted as height of the tree divided by the vertex count) are listed. We can observe
that the Jess and Kees method employed in our implementation has the desired effect:
The Chordal ordering with the call to E-Tree manages to generate the shortest tree
on average among all solvers in both partitions of the problem set. In particular, the
height is significantly lower than for ChordalNoETree. When we compare these
average heights with the values from table B.4, we can not establish any significant
correlation. For example, we can observe that Chordal and ChordalNoETree
solve almost the same number of instances, even though the average tree height is dif-
ferent. In contrast, ChordalTriangular, which generates trees of almost identical
height, performs better than Chordal due to the vertex choice heuristic. Hence, we
conclude that the height of the elimination tree does not have a meaningful impact
on the performance of the NewCADModule on the problem set at hand.

48 Evaluation

5.3.3 Degree of Reordering
In order to assess the influence of the Triangular vertex choice heuristic in the
ChordalTriangular variable ordering, the degree of reordering, as defined in sec-
tion 3.2 was recorded and evaluated. The results are summarized in fig. 5.1

Figure 5.1: The histograms show the distribution of the degree of reordering, recorded
from Elimination-Tree (algorithm 4), for all problems from the benchmark set di-
vided into two subsets. The left histogram only shows the problems with less than
three variables, while the right histogram shows the problems with at least four vari-
ables. In the diagram title, the left number shows the total number of problems for
which the degree of reordering was recorded, while the number after the / shows the
total number of problems in that set. Since ChordalTriangular aborts on non-
connected graphs, these numbers are not equal.

For the problems with less than three variables, the choice ratio takes on only two
possible values of 1

3 and 1. These correspond to the expected ratios for a line graph
resp. a triangle: For the line graph, the algorithm is first allowed to choose one of the
ends of the line, so the choice ratio is 2

3 . In the next step, only two vertices remain,
but we are not allowed to choose the one which was adjacent to the just-eliminated
vertex, so there is only one of two options and the choice ratio is 1

2 . For the last
vertex, the choice ratio is 1, and multiplied together, we get 1

3 . For a triangle, we can
freely choose any vertex at first (1), but then both of the vertices that are left are
adjacent to the eliminated vertex. Thus, the algorithm has to move to the next level
of the elimination tree, and both vertices can be chosen again (1). When we consider
the problems with more than three variables, the average choice ratio shifts towards
lower values - in particular, there is now a large number of problems with a choice
ratio close to 0. This is also to be expected, as the denominator of the degree of
reordering grows very quickly with the number of variables. However, even with this
large vertex count, we can observe a relatively large number of problems with a degree
of reordering of one. This can be explained by the fact that the degree of reordering
in E-Tree is always one for a clique: Since every vertex is simplical, any of them can
be chosen for elimination. However, since it is also adjacent to all other vertices in the
graph, the next vertex has to be on the next level, which means that the choice is not
restricted to vertices not adjacent to the eliminated vertex. Since every polynomial
adds a clique of its variable set into the associated graph, it is expected that fully
connected graphs are rather common - one polynomial including all variables would

Overview 49

be sufficient.
The resulting effect is that in many cases, the algorithm tends to behave exactly

like Triangular. This can be confirmed when we filter the problems to contain only
those where the choice ratio in E-Tree is one. There are 3579 total problems with
that property. Of those, Triangular managed to solfe 3198, while ChordalTri-
angular could solve 3197. In comparison, the pure Chordal strategy could only
solve 2986 problems from this subset.

When the graph is not triangular, the MCS-M algorithm is executed before the
elimination tree is constructed. For this algorithm, the degree of reordering was
evaluated as well, but it turned out to be rather low in general: For the problems with
at least four vertices, we record a mean of 5.126 · 10−4 and a median of 1.664 · 10−49,
which means that half of the problems have an even lower degree of reordering. It is
unclear whether the choices in MCS-M tend to be more restricted in general, or the
vertex count distribution for non-chordal graphs simply tends towards larger values
than for chordal graphs. It is assumed that both aspects play a role here, but more
research can be done. In particular, other completion algorithms could be explored,
since a high degree of reordering, coupled with a good secondary ordering, might have
a higher impact than the minimality of the chordal completion.

5.3.4 Analyzing the Projection Polynomial Sets
To try to gain some insight into the projection polynomial sets that are generated
with our variable orderings, we collected various metrics of each projection level for
each CAD call. In table B.3, we list the average size, maximum degree and sum
of degrees of the projection polynomial sets for the first three projections. Overall,
the effects of the incremental CAD are very noticeable here: We can see that level
0 is the “largest” by all three metrics, and going to level 1, the projection sets get
significantly smaller in size and degree. For a regular CAD, we would expect the
opposite - in general, the degree and projection size can grow quadratically. When
we compare individual solvers, we can see some differences in behavior, but there are
few patterns that can be explained by the variable orderings. Therefore, we will not
perform further analysis on the properties of these polynomial sets.

50 Evaluation

Chapter 6

Conclusion

6.1 Summary
In this thesis, two previously presented variable orderings for CAD were introduced
and compared: The Triangular ordering [EBDW14], which is used in the Maple Reg-
ularChains library, and a new ordering based on chordal graphs, first presented by
Li et al. in [LXZZ21]. We have seen that the Triangular ordering chooses variables
primarily based on their degree in the input polynomials, while the Chordal ordering
uses an associated graph to analyze the connections of variables in the polynomial
set. We presented two approaches to incorporate degree information into the Chordal
ordering. For one approach, we used the Triangular ordering to make decisions at
those points where the Chordal ordering would allow multiple choices for a variable.
In a second approach, the associated graph structure was extended with edge labels,
giving a bound on the degree of a variable (vertex) in some polynomials (that are
represented by the edge). The new procedure greedily searches for a vertex in each
step that would minimize the increase in the edge values and updates the edge labels
when the vertex is eliminated. We have proven that the elimination procedure keeps
the edge labels accurate, in the sense that their values continue to be an upper bound
on the degree in the new polynomials that could be generated. To evaluate the pre-
sented orderings in an SMT-solving context, SMT-RAT was used to build variants of
a CAD-based SMT solver, which were then executed on the QF_NRA problem set
from SMT-LIB. In the evaluation we have seen that the combination of the Chordal
and Triangular orderings performs better than a pure implementation of either, which
suggests that the new ordering is successful in combining the different information
that is captured by the two orderings. The new GDCC ordering also manages to of-
fer better overall solving performance than the Chordal ordering in our experiments,
although it is still worse than the direct Chordal-Triangular combination. However,
a deeper analysis proved to be difficult, due to the incremental nature of the solver
and the incompleteness of Projmc.

6.2 Future Work
While the experiments performed here were useful for gathering an overall impression
on the performance of the orderings in an SMT context, the gathered data turned out

52 Conclusion

to be insufficient for various reasons. Due to the incremental CAD implementation
in SMT-RAT, it is difficult to see how the heuristics influence the performance of
individual CAD calls. To address this, further experimentation should be done - in
particular, it could be interesting to gather the CAD subproblems that are generated
during SMT solving and evaluate the CAD on these problems individually. With this
approach, one could guarantee that all heuristics are equally evaluated on all problems,
so the resulting data might be more meaningful. In the presented experiments, the
variable ordering was constructed once on the first call on the input constraints for
that call. However, due to the incremental nature, the following calls will introduce
additional constraints, which were not considered when the ordering was built. More
research could be done on the performance of the orderings for these subsequent calls,
to see whether a given ordering stays close to optimal when more constraints are
added. Should the performance under a given ordering become suboptimal at some
point, the CAD could be reset to allow for reordering of the variables. The condition
for the reset is another heuristic choice, on which research can be done. Alternatively,
the full constraint set could be considered in the ordering, with the hopes of finding
a good ordering for all CAD calls. Another aspect of incrementality implemented
into the NewCADModule is realized by the fine-grained projection and lifting phase,
which could be modified to implement new heuristics for polynomial choice during
the projection. It might be possible to couple a variable ordering heuristic with a
polynomial choice heuristic for incremental CAD - for example, the chordal ordering
could be paired with a projection heuristic that postpones projections which would
add fill edges in the associated graph if it is non-chordal.

The incompleteness of McCallum’s projection operator was another issue in the
evaluation, since the large number of UNKNOWN results leads to various inaccuracies
when comparing data. To address this issue directly, a similar experiment could be
performed using a complete projection operator. In the resulting dataset, a strong
correlation between chordality of the associated graph and the ratio of UNKNOWN
results to correct SAT/ UNSAT answers could be observed. This correlation could
be researched in more detail: If a causal link can be established between chordality
and the likelihood of an incomplete CAD using Projmc, a new heuristic based on this
effect could allow the solver to postpone a CAD computation if it is unlikely to result
in a definitive answer.

Furthermore, the new orderings could be explored in different contexts: For SAT
solving in QF_NRA, new techniques like Cylindrical Algebraic Coverings or the use
of CAD in an MCSAT framework are active topics of research that might also benefit
from better variable orderings. Also, when CAD is applied for quantifier elimination,
a full CAD has to be computed in general. In this case, the effect of the variable
ordering might be greater than in the SMT solving context, so it could be particularly
interesting to evaluate the new operators in this context.

In this thesis, a new labelling for the associated graph was proposed with the
GDCC algorithm. There are many possibilities for extending the idea of this algo-
rithm: The labelling could be changed, for example to include information about the
size of the polynomials associated with an edge. Correspondingly, different heuristics
for choosing a vertex might be explored.

Bibliography

[BBHP04] Berry, Anne ; Blair, Jean R. S. ; Heggernes, Pinar ; Peyton,
Barry W.: Maximum Cardinality Search for Computing Minimal Tri-
angulations of Graphs. In: Algorithmica 39 (2004), August, Nr. 4,
287–298. http://dx.doi.org/10.1007/s00453-004-1084-3. –
DOI 10.1007/s00453–004–1084–3. – ISSN 0178–4617, 1432–0541

[BD07] Brown, Christopher W. ; Davenport, James H.: The Complexity of
Quantifier Elimination and Cylindrical Algebraic Decomposition. In: Pro-
ceedings of the 2007 International Symposium on Symbolic and Algebraic
Computation - ISSAC ’07. Waterloo, Ontario, Canada : ACM Press,
2007. – ISBN 978–1–59593–743–8, 54

[BDE+16] Bradford, Russell ; Davenport, James H. ; England, Matthew ; Mc-
Callum, Scott ; Wilson, David: Truth Table Invariant Cylindrical Al-
gebraic Decomposition. In: Journal of Symbolic Computation 76 (2016),
September, 1–35. http://dx.doi.org/10.1016/j.jsc.2015.11.
002. – DOI 10.1016/j.jsc.2015.11.002. – ISSN 07477171

[BR04] Brown, Christopher W. ; Road, C H.: Cylindrical Algebraic Decompo-
sition - Tutorial Notes. (2004), Juli, S. 14

[Bro01] Brown, Christopher W.: Improved Projection for Cylindrical Algebraic
Decomposition. In: Journal of Symbolic Computation 32 (2001), Novem-
ber, Nr. 5, 447–465. http://dx.doi.org/10.1006/jsco.2001.
0463. – DOI 10.1006/jsco.2001.0463. – ISSN 07477171

[CMXY09] Chen, Changbo ; Maza, Marc M. ; Xia, Bican ; Yang, Lu: Comput-
ing Cylindrical Algebraic Decomposition via Triangular Decomposition.
http://arxiv.org/abs/0903.5221. Version: März 2009

[Col75] Collins, George E.: Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decompostion. Version: 1975. http://dx.doi.
org/10.1007/3-540-07407-4_17. In: Goos, G. (Hrsg.) ; Hartma-
nis, J. (Hrsg.) ; Brinch Hansen, P. (Hrsg.) ; Gries, D. (Hrsg.) ; Moler,
C. (Hrsg.) ; Seegmüller, G. (Hrsg.) ; Wirth, N. (Hrsg.) ; Brakhage,
H. (Hrsg.): Automata Theory and Formal Languages 2nd GI Conference
Kaiserslautern, May 20–23, 1975 Bd. 33. Berlin, Heidelberg : Springer
Berlin Heidelberg, 1975. – DOI 10.1007/3–540–07407–417.−−ISBN978−
−3−−540−−07407−−6978−−3−−540−−37923−−2, 134−−183

http://dx.doi.org/10.1007/s00453-004-1084-3
http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://dx.doi.org/10.1006/jsco.2001.0463
http://dx.doi.org/10.1006/jsco.2001.0463
http://arxiv.org/abs/0903.5221
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17

54 Bibliography

[EBDW14] England, Matthew ; Bradford, Russell ; Davenport, James H. ; Wilson, David:
Choosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decom-
position by Incremental Triangular Decomposition. In: Hong, Hoon (Hrsg.) ; Yap,
Chee (Hrsg.): Mathematical Software – ICMS 2014. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2014. – ISBN 978–3–662–44199–2, S. 450–457

[FG65] Fulkerson, Delbert ; Gross, Oliver: Incidence Matrices and Interval Graphs.
In: Pacific Journal of Mathematics 15 (1965), September, Nr. 3, 835–855. http:
//dx.doi.org/10.2140/pjm.1965.15.835. – DOI 10.2140/pjm.1965.15.835.
– ISSN 0030–8730, 0030–8730

[JK82] Jess ; Kees: A Data Structure for Parallel L/U Decomposition. In: IEEE Transac-
tions on Computers C-31 (1982), März, Nr. 3, 231–239. http://dx.doi.org/10.
1109/TC.1982.1675979. – DOI 10.1109/TC.1982.1675979. – ISSN 0018–9340

[KA20] Kremer, Gereon ; Abraham, Erika: Fully Incremental Cylindrical Alge-
braic Decomposition. In: Journal of Symbolic Computation 100 (2020), Septem-
ber, 11–37. http://dx.doi.org/10.1016/j.jsc.2019.07.018. – DOI
10.1016/j.jsc.2019.07.018. – ISSN 07477171

[(kr23] (krisi0903), Kristian C.: SMT-RAT - Satisfiability-Modulo-Theories Real Algebra
Toolbox. https://github.com/krisi0903/smtrat/. Version: Januar 2023

[Kre20] Kremer, Gereon: Cylindrical Algebraic Decomposition for Nonlinear Arithmetic
Problems. Aachen, RWTH Aachen University, Diss., 2020. http://dx.doi.org/
10.18154/RWTH-2020-05913. – DOI 10.18154/RWTH–2020–05913. – 1 Online–
Ressource (204 Seiten) : Illustrationen, Diagramme S.

[LXZZ21] Li, Haokun ; Xia, Bican ; Zhang, Huiying ; Zheng, Tao: Choosing the Variable
Ordering for Cylindrical Algebraic Decomposition via Exploiting Chordal Structure.
http://arxiv.org/abs/2102.00823. Version: Februar 2021

[McC98] McCallum, Scott: An Improved Projection Operation for Cylindrical Algebraic
Decomposition. In: Caviness, Bob F. (Hrsg.) ; Johnson, Jeremy R. (Hrsg.): Quan-
tifier Elimination and Cylindrical Algebraic Decomposition. Vienna : Springer Vienna,
1998. – ISBN 978–3–7091–9459–1, S. 242–268

[Par61] Parter, S.: The Use of Linear Graphs in Gauss Elimination. In: SIAM Review 3
(1961), April, Nr. 2, 119–130. http://dx.doi.org/10.1137/1003021. – DOI
10.1137/1003021. – ISSN 0036–1445, 1095–7200

[Pot88] Pothen, A.: The Complexity of Optimal Elimination Trees. Pennsylvania State
University, Department of Computer Science, 1988 (Technical Report). https://
books.google.de/books?id=PfyjtgAACAAJ

[smt] SMT-LIB The Satisfiability Modulo Theories Library. https://smtlib.cs.
uiowa.edu/benchmarks.shtml

[smt22] SMT-RAT - Satisfiability-Modulo-Theories Real Algebra Toolbox. Theory of Hybrid
Systems group @ RWTH Aachen University. https://github.com/ths-rwth/
smtrat. Version: November 2022

http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.1109/TC.1982.1675979
http://dx.doi.org/10.1109/TC.1982.1675979
http://dx.doi.org/10.1016/j.jsc.2019.07.018
https://github.com/krisi0903/smtrat/
http://dx.doi.org/10.18154/RWTH-2020-05913
http://dx.doi.org/10.18154/RWTH-2020-05913
http://arxiv.org/abs/2102.00823
http://dx.doi.org/10.1137/1003021
https://books.google.de/books?id=PfyjtgAACAAJ
https://books.google.de/books?id=PfyjtgAACAAJ
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://github.com/ths-rwth/smtrat
https://github.com/ths-rwth/smtrat

Bibliography 55

[TY84] Tarjan, Robert E. ; Yannakakis, Mihalis: Simple Linear-Time Algorithms to
Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Acyclic Hypergraphs. In: SIAM Journal on Computing 13 (1984), Nr. 3, 566–579.
http://dx.doi.org/10.1137/0213035. – DOI 10.1137/0213035

[VKÁ07] Viehmann, Tarik ; Kremer, Gereon ; Ábrahám, Erika: Comparing Different
Projection Operators in the Cylindrical Algebraic Decomposition for SMT Solving.
In: [2nd International Workshop on Satisfiability Checking and Symbolic Computa-
tion, SC2, 2017-07-29 - 2017-07-29, Kaiserslautern, Germany / Edited by Matthew
England, Vijay Ganesh] Bd. 1974. Aachen, Germany : RWTH Aachen, 2017-07-29,
2017-07 (CEUR Workshop Proceedings), 15 Seiten

http://dx.doi.org/10.1137/0213035

56 Bibliography

Appendix A

Source Code Listings

Listing A.1: Reference CAD Settings
1 // filename: src/smtrat-modules/NewCADModule/NewCADSettings.h.in
2 // Settings to test different variable orderings
3 //
4

5 // ... some code omitted ...
6

7 struct NewCADBaseVariableOrderingSettings : NewCADBaseSettings, cad::
IncrementalityFU, cad::SampleCompareLT, cad::ProjectionOrderDefault,
cad::ProjectionMcCallum {};

8

9 struct NewCADSettingsChordal: NewCADBaseVariableOrderingSettings {
10 static constexpr auto moduleName = "NewCADModule<NewCADChordal>";
11 static constexpr cad::variable_ordering::VariableOrdering

variableOrdering = &smtrat::cad::variable_ordering::
chordal_vargraph_elimination_ordering<smtrat::cad::variable_ordering
::ChordalOrderingSettingsBase>;

12 };
13

14 // ... some code omitted ...

Listing A.2: Reference SMT Strategy
1 // filename: src/smtrat-strategies/strategy/CADVOTest.h.template
2 #pragma once
3

4 #include <smtrat-solver/Manager.h>
5

6 #include <smtrat-modules/NewCADModule/NewCADModule.h>
7 #include <smtrat-modules/SATModule/SATModule.h>
8

9 namespace smtrat
10 {
11 class CADChordal: public Manager
12 {
13 public:
14 CADVOTest(): Manager() {
15 setStrategy({
16 addBackend<SATModule<SATSettings1>>({
17 addBackend<NewCADModule<__CADSETTINGS__>>()
18 })

58 Source Code Listings

19 });
20 }
21 };
22 } // namespace smtrat

Appendix B

Experimental Data

Algorithm 6 Intersection
procedure Intersection(P)

R← {Solver(P) | Solver ∈ S}
if MEMOUT ∈ R then

return MEMOUT
end if
if TIMEOUT ∈ R then

return TIMEOUT
end if
if UNKNOWN ∈ R then

return UNKNOWN
end if
if UNSAT ∈ R then

return UNSAT
end if
if SAT ∈ R then

return SAT
end if

end procedure

Algorithm 7 Union
procedure Union(P)

R← {Solver(P) | Solver ∈ S}
if SAT ∈ R then

return SAT
end if
if UNSAT ∈ R then

return UNSAT
end if
if UNKNOWN ∈ R then

return UNKNOWN
end if
if TIMEOUT ∈ R then

return TIMEOUT
end if
if MEMOUT ∈ R then

return MEMOUT
end if

end procedure

In the algorithms above, P is a set of problems, and S = {Chordal,ChordalTriangular
Pseudorandom,ChordalNoETree,DMFill,DMFillChordal,Triangular} is
the set of solvers

60 Experimental Data

solver SAT UNSAT UNKNOWN TIMEOUT MEMOUT SOLVED ANSWERED
Overall results
Intersection 3949 3377 647 3402 759 7326 7973
Chordal 4166 3517 506 3501 444 7683 8189
Pseudorandom 4161 3538 445 3600 390 7699 8144
ChordalNoETree 4216 3631 400 3449 438 7847 8247
ChordalTriangular 4274 3614 454 3358 434 7888 8342
DMFill 4271 3631 386 3394 452 7902 8288
DMFillChordal 4271 3631 390 3508 334 7902 8292
Triangular 4329 3648 358 3322 477 7977 8335
Union 4450 3780 228 3486 190 8230 8458
|vars| ≤ 3
Intersection 3293 1893 354 589 0 5186 5540
Chordal 3405 1971 295 458 0 5376 5671
Pseudorandom 3445 2019 201 464 0 5464 5665
ChordalTriangular 3490 2033 301 305 0 5523 5824
ChordalNoETree 3451 2082 192 404 0 5533 5725
DMFill 3507 2081 177 364 0 5588 5765
DMFillChordal 3509 2081 177 362 0 5590 5767
Triangular 3551 2085 197 296 0 5636 5833
Union 3634 2185 84 226 0 5819 5903
|vars| > 3
Intersection 656 1484 293 2813 759 2140 2433
Pseudorandom 716 1519 244 3136 390 2235 2479
Chordal 761 1546 211 3043 444 2307 2518
DMFillChordal 762 1550 213 3146 334 2312 2525
ChordalNoETree 765 1549 208 3045 438 2314 2522
DMFill 764 1550 209 3030 452 2314 2523
Triangular 778 1563 161 3026 477 2341 2502
ChordalTriangular 784 1581 153 3053 434 2365 2518
Union 816 1595 144 3260 190 2411 2555

Table B.1: Distribution of solver results on the full QF_NRA problem set by solver.
The table is split into three sub-tables: The first shows the distribution for the whole
problem set, while the lower two show the results for the subset with less than four
and at least four real arithmetic variables respectively

61

time combined deg. max. deg. sum of deg. size
cadrun

0 79.674 5.696 1.065 3.391 10.457
1 38.196 8.761 1.761 5.478 11.935
2 5.174 10.804 1.826 7.065 13.196
3 15.913 12.087 1.804 8.261 14.283
4 24.587 13.391 1.826 9.283 15.152
5 13.913 14.109 1.804 9.913 15.783
6 12.457 14.391 1.783 10.087 16.261
7 13.804 14.478 1.804 10.348 16.739
8 83.022 14.065 1.848 10.087 17.130
9 27.957 13.826 1.804 9.500 17.239

Table B.2: Average values for properties of the polynomial sets that were seen in the
i-th CAD call with the Pseudorandom ordering. In this table, all problems (46) in
the benchmark set that lead to at least 10 CAD calls before termination are taken
into account.

level Chor. Chor.NoETree Chor.Tri. DMFill DMFillChor. PRand. Tri.
Projection size
0 7.469 7.469 7.469 7.707 7.707 7.707 7.707
1 1.301 1.264 1.271 1.254 1.254 1.352 1.275
2 1.246 1.236 1.250 1.251 1.246 1.396 1.257
3 1.329 1.316 1.317 1.319 1.319 1.430 1.316
Maximum degree
0 2.004 1.946 1.871 1.896 1.896 2.106 1.658
1 1.308 1.274 1.277 1.280 1.280 1.360 1.094
2 1.205 1.254 1.146 1.219 1.217 1.355 1.138
3 1.193 1.120 1.085 1.183 1.183 1.240 1.119
Sum of degrees
0 3.378 3.254 3.275 3.055 3.055 3.742 3.475
1 2.026 1.927 2.013 1.943 1.943 2.300 2.245
2 2.018 2.333 1.908 2.180 2.179 2.635 2.662
3 2.183 2.356 1.967 2.461 2.461 2.473 2.460

Table B.3: Average values of properties of the polynomial sets. Level i refers to the
set after i projections, so level 0 refers to the input polynomial set. The average
is computed across all problems that were solved by all solvers with at least four
variables, to ensure that every table cell is computed with values from the same set
of problems. To keep the table small enough to fit on the page, some strategies were
abbreviated: Tri. is short for Triangular, Chor. is short for Chordal and
P.Rand. is short for Pseudorandom

62 Experimental Data

solver SAT UNSAT UNKNOWN SOLVED ANSWERED total
All
Chordal 4500 2039 2161 6539 8700 10152
Pseudorandom 4532 2077 2093 6609 8702 10099
ChordalTriangular 4575 2133 1960 6708 8668 10144
DMFillChordal 4574 2152 2196 6726 8922 10151
DMFill 4591 2153 1916 6744 8660 10039
ChordalNoETree 4623 2157 2025 6780 8805 10239
Triangular 4831 2175 1373 7006 8379 10117
#vars ≤ 3
Chordal 3447 1446 418 4893 5311 5580
ChordalTriangular 3505 1506 413 5011 5424 5581
Pseudorandom 3519 1505 289 5024 5313 5580
ChordalNoETree 3530 1568 288 5098 5386 5586
DMFillChordal 3558 1559 261 5117 5378 5577
DMFill 3558 1561 261 5119 5380 5578
Triangular 3600 1563 271 5163 5434 5582
#vars > 3
Pseudorandom 1013 572 1804 1585 3389 4519
DMFillChordal 1016 593 1935 1609 3544 4574
DMFill 1033 592 1655 1625 3280 4461
Chordal 1053 593 1743 1646 3389 4572
ChordalNoETree 1093 589 1737 1682 3419 4653
ChordalTriangular 1070 627 1547 1697 3244 4563
Triangular 1231 612 1102 1843 2945 4535

Table B.4: Distribution of results returned by the first CAD call across all problems
from the benchmark set, split by the number of variables

solver SAT UNSAT UNKNOWN SOLVED ANSWERED total
Chordal
Pseudorandom 644 399 187 1043 1230 1393
ChordalNoETree 644 406 188 1050 1238 1408
Chordal 643 408 186 1051 1237 1396
DMFill 649 407 177 1056 1233 1395
DMFillChordal 647 410 177 1057 1234 1394
Triangular 667 424 134 1091 1225 1393
ChordalTriangular 676 439 121 1115 1236 1394
Nonchordal
DMFillChordal 12 27 1693 39 1732 1865
ChordalTriangular 19 30 1383 49 1432 1861
DMFill 27 29 1416 56 1472 1750
Chordal 35 27 1516 62 1578 1844
Pseudorandom 47 25 1539 72 1611 1828
ChordalNoETree 74 25 1506 99 1605 1903
Triangular 189 30 925 219 1144 1829

Table B.5: Distribution of results returned by the first CAD call across all problems
from the benchmark set with at least three variables, split by chordality.

	Introduction
	Preliminaries
	Definitions
	The CAD Procedure
	Chordal Graphs
	SMT Solving
	SMT-RAT
	CAD Implementation in SMT-RAT
	Simple Variable Ordering Heuristics for CAD
	Chordality-based Ordering for CAD

	Heuristics for Chordality-based Ordering Methods
	Better Integration of Polynomial Properties
	Choosing Better Vertices in Graph Algorithms
	Extending the Graph Representation

	Experiments
	Evaluation
	Conventions
	Caveats
	Overview

	Conclusion
	Summary
	Future Work

	Bibliography
	Source Code Listings
	Experimental Data

