of Hybrid
hybr I d Systems
Informatik 2

The present work was submitted to the LUFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

BUILDING AN E-LEARNING WEB APP WITH
AUTOMATED EXERCISE GENERATION

Rui Miguel Oliveira Sobrinho

Communicated by
Prof. Dr. Erika Abraham

Examiners:]
Prof. Dr. Erika Abraham
Prof. Dr.-Ing. Ulrik Schroeder

Additional Advisor:

Jozsef Kovacs
Aachen, 6.11.2023

Abstract

This paper presents the development of an e-learning web application, using
React, with a focus on automated exercise generation. Our tool encourages
users to learn concepts and enhance analytical thinking related to satisfiability
checking.

To amplify user engagement and motivation, the website incorporates gamifi-
cation elements including a leaderboard to foster competition. For a personalised
learning experience, there will be an opportunity to try previously wrongly an-
swered questions again. Selected exercises offer different levels of hints. The
users may choose to solve the exercises with a time limitation and whether they
want to do singular tasks or a set of tasks. This creates exam-like conditions
and encourages users to think critically and efficiently solve the exercises like
they would need to in an exam. The implementation of this e-learning web
application, shall provide a platform for users to acquire knowledge and develop
skills in satisfiability checking.

iv

Contents

13 Implementation|
3.1 Preprocessing|

11
11
14

17
17
17
20
21

23
23
23

25

vi

Contents

Chapter 1

Introduction

In the field of theoretical computer science, the satisfiability problem aims to solve
the issue of whether a given formula in propositional logic has a model that satis-
fies a given formula [ANP23|. Explicitly this means, that the problem attempts to
find out if the propositions of the formula can be substituted with certain truth val-
ues so that the whole formula evaluates to true. While this problem is decidable, it
falls within the NP-complete class. In other words, it belongs to a set of problems,
whose solutions can be verified in polynomial time, by a deterministic Turing machine.

Throughout the years, this branch of computer science gained a lot of popularity.
It has seen the development of various methods and the creation of new algorithms
to address the satisfiability problem. Moreover, the scope of this problem has ex-
panded beyond propositional logic; it now encompasses formulas in first-order logic.
Furthermore, problems from other branches of computer science can be translated
logically to a satisfiability problem and thus be solved using the methods that are
available. One such branch is model checking, where a finite state model is checked
for the correctness of its behaviour [VWMI5]. This is of relevance for both hardware
and software systems. The main benefit of model checking over other verification
approaches like simulation based verification is its exhaustiveness, as it checks ev-
ery state and transition of the system. This gives it, and therefore also satisfiability
checking, great demand in multiple industries. Other relevant fields for satisfiability
checking are planning [NPM™14| and scheduling [BCSVT14].

The chair of Hybrid Systems of the RWTH which offers the course on Satisfiability
Checking, takes a lot of factors into consideration while offering this subject. Thus
they try to make it interactive and request active participation. In order to support
the students, annotated slides, lecture recordings and bonus tests are also offered. So
the students have a myriad of materials available to help them study on top of the
lectures they can attend every week during the semester.

1.1 Motivation

Those bonus tests are the focus point of this thesis. We try to build a web application
which provides the aforementioned tests. It is intended that the application presents

10 Introduction

the tests in a user-friendly manner, enabling users to solve them effectively. After
completion, it displays whether the given answer is correct, partially correct, or com-
pletely incorrect. Additionally specific tasks get the ability to show different kinds of
hints to help the users. Features are added in order to motivate continued learning
and practice. One such feature is an optional timer, which the user can activate to
restrict the time available to do the exercise. This simulates exam-like conditions and
the user can practise to solve the exercises under time pressure.

The goal of this application is to help the students by facilitating their learning pos-
sibilities and engage more into the subject of satisfiability checking. It shall motivate
students to learn as well as enable and simplify learning possibilities for satisfiability
checking. The large number of exercises available, aligned with the course supplied at
RWTH, yields the possibility of learning a variety of different algorithms connected to
the subject. The tasks that had hints added give an extra possibility to try to solve
them in case a user gets stuck on that specific exercise. An added functionality where
users are able to try previously wrongly answered questions helps them to further
deepen their knowledge. As the display of hints is generalised, other tests can have
hints added later in order to expand the offer of tasks with additional help.

1.2 Related Work

Most papers found about automated exercise generation for satisfiability checking
were written here at RWTH for example [Fil, [EE22], which cover exercise gener-
ation for specific topics like interval constraint propagation or real root isolation.
A whole website with automated exercise generation with context to satisfiability
checking was implemented by Prof. Dr. rer. nat. Johannes Waldmann at the HTWK
Leipzig [Wall4]. Furthermore Prof. Kovécs from the Vienna University of Technol-
ogy (TU Wien) worked on automatically generating exercise sheets for online exams
for their course "automated deduction", which also covers aspects of SAT/SMT solv-
ing [HKR21]. While both works generate exercises relating to satisfiability checking,
[HKR21] does not handle automatic evaluation. On the other hand the exercises from
[Wall4] is able to grade solutions semantically.

Chapter 2

Preliminaries

2.1 DPLL and CDCL

DPLL and CDCL are 2 algorithms used in satisfiability checking. DPLL stands for
Davies-Putnam-Logemann-Loveland. The algorithm uses propositional logic formu-
las that have to be in conjunctive normal form (CNF) for the DPLL algorithm to be
used. [Sin07]

A propositional logic formula is a syntactically well-formed formula which does not
contain existential (3) or universal (V) quantifiers. It is composed of a finite number
of clauses. Those clauses themselves are a finite set of atomic propositions which are
boolean variables (a, b, ¢, ...). A single such variable is called a literal. A literal can
also be in a negated form (—a). The negated form represents the complement, or the
opposite, of its non-negated form. These literals can be used with logical operators,
such as and (A), or (V), not (—) and implies (—). The propositions can be substi-
tuted with truth values so that the whole formula evaluates to either true (1) or false
(0). The act of giving every variable a truth value is called an assignment.

A formula that can be evaluated to true is also called satisfiable, while one that cannot
be, one that always evaluates to false no matter the assignment, is called unsatisfi-
able. A tautology is a formula that no matter the assignment, always evaluates to true.

A formula in CNF is a conjunction of clauses (Cy A Co A ... A Cy,) which themselves
are a disjunction of literals (a1 Vas V... Va,). So only A, V and — are present in such
a formula and have the following shape, with Y;; being literals:

n m
/\n:l Vj:l Yij‘
A clause can be in one of 4 states:

e it can be satisfied, if at least one literal in the clause is true,

e it can be unsatisfied, if all literals in the clause are false,

it can be unit, if all literals but one are false,

e it is unresolved in every other case.

10

11

12 Preliminaries

The DPLL-algorithm uses Boolean Constraint Propagation (BCP)[Tin02] [ANP23]
to check if the formula contains a unit clause. If such a unit clause is found a truth
value is propagated, as there is only one value that fits in order to satisfy the for-
mula. The truth value of that literal in question is stored and every clause containing
the literal of the unit clause is deleted as it automatically is satisfiable. This way,
the algorithm simplifies the starting formula so that it determines faster if the whole
formula is satisfiable or not. Every clause containing the negated literal (so simply
a literal that is assigned false in this case) also removes the corresponding literal in
order to simplify the formula. If no more BCP can be done the algorithm looks if
it contains an empty clause. This occurs if by only applying BCP a clause gets all
its literals removed, so all its literals assigned to false. Then the algorithm returns
unsatisfiable. If on the contrary, there are no more unresolved clauses left, a satisfying
assignment has been found and the algorithm returns that the formula can be satisfied.

If neither is the case the algorithm hasn’t concluded yet, there are clauses that are
unresolved so it chooses a literal and assigns a truth value to it. This isn’t a final
decision yet, as the algorithm may backtrack and try the other truth value if it doesn’t
find a satisfying assignment for the whole formula. After deciding on a value for the
chosen literal it checks whether it can apply BCP. The application of BCP and choos-
ing itself a truth value (instead of being forced to attribute one) is continued until the
algorithm comes to a conclusion of the taken path. Such a conclusion is either finding
a satisfiable assignment and returning satisfiability or detecting a conflict. In the
latter case it backtracks to the last time a decision was made, and chooses the other
option and explores the path from there. If at some point a satisfiable assignment
is found, it ends and returns that the formula can be satisfied. Otherwise, if every
possible path results in unsatisfiability, that becomes the end result as no possible
assignment can satisfy the formula.

A conflict happens, when a clause implies that a certain literal has to be set to a
certain value but that same literal already has a different assignment; either by BCP
or decision. In regard to such a conflict, the clause can’t be satisfied and thus the
whole formula can’t be satisfied. If possible, it backtracks to the last time a value was
given by decision (and not implication) and it chooses the other truth value and starts
anew from there. The algorithm finishes by either finding a satisfiable assignment, or
finding out that no such assignment exists and therefore the formula is unsatisfiable.
The above mentioned process is formalised in pseudo code:

bool DPLL(CNF formula ¢){

while (¢ contains unit clause (literal 1)){
assign true to I
delete clauses containing I
delete - from all other clauses

}

if (¢ is empty) return true

if (¢ contains empty clause) return false

choose literal 1 in ¢ and assign a truth value
return DPLL(pU{l}) or DPLL(pU{-l})

DPLL and CDCL 13

FEzxzample. Let’s look at how the algorithm works in the following example:

(@aVb) A (=) A(cVd) A bV —cVd)

The second clause is a unit clause, so we are forced to assign false to b in order
to satisfy —b. This causes propagation to continue and assign true to a, otherwise the
first clause can’t be satisfied. Following that, the 2 remaining clauses are practically
the same, as b can be ignored in the fourth clause and thus we have (¢ V d) twice.
The algorithm would see it as such, as it doesn’t consider b to be in the last clause
anymore after deleting it. As no propagation is possible here, one literal is chosen,
for example ¢ and a truth value gets assigned to it. Now all clauses are satisfied and
we know that the starting formula is satisfiable.

As we don’t have a full assignment yet, because d didn’t receive a truth value, it can
be assigned any of the possible 2 values.

Nowadays almost anytime when DPLL is used, it is extended with CDCL which
stands for Conflict-Driven Clause Learning [Oh16l, [AK16]. The main difference be-
tween CDCL and DPLL is that CDCL’s back jumping does not have to be chono-
logical. As an example, let’s say we have variables x1, xo, ..., x, that are all assigned
to true. The algorithm backtracks the chain of implications and applies resolution
in order to get a reason for the conflict. There it obtains a so-called conflict clause
which is added to the clause set. Resolution is used to find the unsatisfiable core of
the unsatisfiable formula. Resolution is done in the following way: we have clauses
(a,aq,...,a,) and (—a,by, ..., by). Through Binary Resolution, both clauses are com-
bined and the literals a and —a cancel out. The new clause we get is the combined
rest of both clauses, so (a1, ..., @n, b1, ..., bm).

e (a,a, .. an) ¢y i (ma, by, .y by)

¢ (A1 ey Qny b1y ey i)

The new clause is called the resolvent of the clauses ¢; and ¢3. It can be shown
that resolution is a purely logical outcome: if a in ¢; is true, then at least one of the
literals from by to b,, has to be true in order to satisfy co. Coincidentally: if a is false,
then —a from cy is true and ¢, is satisfied, so at least one literal from a; to a, has to
be true to satisfy c;. Conclusively, at least one of a; or b; has to be true in order to
satisfy the clauses, which is shown by the common clause Cj.

Let it be in this case that the algorithm learned the clause (—xs5, —x19, ~x15) after
ending up in a conflict. This shows us that at least one of these variables should have
been assigned false. If in this example, the value of these 3 variables was decided
instead of propagated (assuming it was done in chronological order according to their
numbers), this brings the possibility forward to not just go back to where 15 was
decided but already to z1g9 or even x5. At x1g, it can then be decided in a way that
the clause becomes unit and therefore propagation can take place in order to solve
the conflict and maybe find a satisfying assignment.

14 Preliminaries

2.2 Virtual substitution and generating test candi-
dates

The virtual substitution method constructs a finite set 7' C R of test candidates with
31,3 = 313001 Vyep [t/ /0], for real algebraic (rational and non zero)
formula 3x;...3z,¢ with n > 0 and ¢ quantifier-free |[CA11, [Ko§16]. Here [A//B]
stands for virtually substituting A for B. Additionally T contains representative points
from sign-invariant regions. To compute those regions, we need to determine the real
roots of univariate polynomials. This can be done by making use of solution equations
up to a polynomial degree of 4.

A general polynomial has the form of az? + bx + ¢ € Z[x] and the roots are as follows:

e If the polynomial is constant in x, so if a = 0 A b =0 A ¢ = 0, all real numbers
are zero,

e If the polynomial is linear in x, so if a = 0 A b # 0,§p = —7 is the real root,
If the polynomial is quadratic in x, there are 2 solutions:

o If a # 0 Ab% — dac > 0 then & = =btvb—dac W is the first solution and real zero
of the polynomial and

o if a # 0AD? —4dac > 0, then & = =b=vb —dac 3”;‘4‘“ is the second root of the quadratic
polynomial.

Multivariate polynomials are polynomials with multiple variables. They are also
able to be solved in the same way as they can be seen as univariate polynomials with
polynomial coefficients. So we get the same solution equations but parameterised in
value of variables in the coefficients.

As an example:

The polynomial 322yz? — 5zy3x + 22y — 7 € Z|2,y,7]

can be seen as: 3z2yx? — 5zy3x + 22y — 7 € Z[z,y,a][z] with the coefficients:
a=32%y,b=>5zy%c= 22y -7

We are looking for the roots of the polynomial, so where the polynomial is zero.
In the same sense, we can compare the polynomials to zero and try to find out if it
satisfies a given constraint (=, <,>,<,>,#) and in case of unsatisfiability, give an
explanation as to why. For a polynomial to change the sign of its solution, it has to
"pass through" zero. So if we know the roots of the polynomial, we can detect the
regions where the solutions of the polynomial have a specific sign.

As mentioned before, the polynomial can be constant or have no real zeroes. In
that case, the sign does not change and we can use any possible real number to find
out what the sign is for that (in)equation in the whole R (or rather domain, if the
domain is not R).

In cases where the polynomial is not constant, we have real zeros and we can find
the solution intervals. Those zeros mark the endpoints of the intervals where the sign
does not change. The zeroes are included in the solution interval in the cases where

Virtual substitution and generating test candidates 15

the constraints are inclusive to zero (<, >) and excluded in the other case (<, >). In
the case where we handle an equation instead of an inequation (=), the solutions are
the roots of the polynomial and not an interval.

We can also have multiple polynomial constraints in which case we construct a pos-
sible common solution interval. In general, we can represent each candidate solution
interval by its left-most point. If the interval is closed, that leftmost point is the
endpoint of that interval whereas if the interval is open, then we take the leftmost
point plus a very small (infinitesimal) value €, so that the resulting element is in the
solution interval.

FEzxzample. Let’s look at the following example and how to solve it.

Besides (—o0), which of the following expressions are generated as test candidates to
eliminate x from:
(y—2>0AN4dz+4=0A4x —4y <0)?

The first constraint doesn’t contain x, so we do not have to look at that one. The
second one does. As it is a natural common equation, it is simple to find out that the
solution is -1. Thus we have our first possible test candidate. The third expression also
contains x, so we’ll have another possible test candidate. After ordinary arithmetic,
we can simplify the inequation to « < y. As we have < and not <, we cannot simply
use y as a test candidate and have to add an infinitesimal value to it. So the second
and last possible test candidate for this example is y + €.

16

Preliminaries

Chapter 3

Implementation

3.1 Preprocessing

The architecture of the web project can be divided into three main components: a
frontend, a backend and a database. The tests to be solved by the users are automat-
ically generated by different python programs. Each of those programs is responsible
for a specific test and generates an XML file, where a chosen number of instances
(mostly 300 or 500) of that test are generated. As these exercise generators were
already provided, a simple python script was written to convert the XML files into
JSON files. This adaptation proved essential to streamline development, as JSON
can be readily parsed by a standard JavaScript function, whereas XML necessitates
the use of an additional parsing tool.

Another detail to facilitate the implementation is the naming of the files. It fol-
lows a certain structure, namely "moodleX.json", where X is a number. This allows
to differentiate the tasks accordingly and save the tests the users do.

3.2 Frontend

For the frontend of this website React (also known as React.js) was used [reaa, reabl.
React is a JavaScript library with the main objective of building single page applica-
tions by using individual pieces called components. It is maintained by Meta, formerly
known as Facebook. In addition to that, Node.js is used with the npm package man-
ager [nodbl modal npmb| mprma.

Upon initiating the web page users are prompted to either log in, or if not yet regis-
tered, navigate to the sign up page to create an account. The need for user accounts is
necessary to facilitate the feature allowing users to reattempt previously failed tests.
Furthermore, it allows to save the data necessary to have a leaderboard.

The sign up page makes use of formik and yup [forl yup]. Formik serves as a tool for
constructing forms within the React framework, and here, it is utilised to create the
sign-up form. On the other hand, Yup is a schema builder which is used for value
parsing and validation during runtime. Consequently it ensures that the user inputs

18 Implementation

a valid email address, username and password. The data is sent to the backend which
then saves it to the database.

The login page requires users to provide an email address and password to then
check with the database if the user exists and the correct password was used to log
him in. Authorisation and authentication is handled in the backend. Figure [3.I]shows
the login and sign up page of the website.

Within the home component, several dropdown buttons are available for the dif-
ferent tests. This is done to not have dozens of buttons that show each specific test
individually. The tests can be grouped to any arbitrary criteria, for example accord-
ing to the chapters in the lecture. In this instance, the tests have been grouped in
batches of ten as this seemed to be a good balance between the number of buttons
and the number of elements in the dropdown menu on the page at the time.

Figure [3.2] displays the relations between the different components of the website
in a use case diagram. A user can select a test from the given selection after logging
in. After answering the test, the server checks for correctness. In case of an incorrect
choice, the correct answer is shown. If the user wants to do another test, the website
chooses a new random question of the same type.

Email:

D

Password:

Username:

[(Ex. John123..) |
Email:

LOGIN ‘Vaur email. |
Password:

‘Vaur Password.. |

|

No account yet?

SIGN UP!

The Login Page. The Register Page.

Figure 3.1: The login and register pages of the website. A user can log in with their
email address and password. The username is used to portray the user on to all
other users of the website.

3.2.1 Types of tests

The main types of tests that are used in this website are multiple choice tests, tests
where the users have to input an answer and what we call matching test. In the
matching tests the users have a block with 5 statements. Additionally, they have
another 5 statements in a dropdown where each one only matches with one from the
aforementioned block. So they have to find the matching pairs and get them all 5
correct in order to answer the question completely correctly. In cases where some are
matched right but not all, it is shown that the given answer is partially correct.

Frontend 19

It was tried to have 2 different blocks with the respective 5 statements where the
user would have to match in accordance to the number of the statements on the
blocks. So for example that the first one of the first block matches with the third one
of the second block. Unfortunately while trying to set this up, the statements were
always shown in the same sequence. So the first ones always matched, the second
ones of both blocks etc.

When it was tried to mix up the order, the matching connection got mixed up too,
so even though for example the first one of block one should match the fourth one
of block two, the matching connection then got mingled that the first one of block
one matched for example the second one of block two. Which would be false but
shown as correct. Therefore it was settled to show the second block of statements
as a dropdown button for every statement, as this still satisfies the way the test can
be done and the criteria of having the order of the answers mixed while keeping the
correct connection intact is met.

For each type of task a distinct react component was created which is reused every
time that kind of task is accessed by the user. This way the layout stays consistent
across the different tests and it reduces overhead as there are only 3 components for
the dozens of different tests instead of one component for each one.

As mentioned before, the tests are in a file named moodleX.json and several instances
of those tests are within one file. Each instance has slight differences. So they are
of the same difficulty and type but they don’t have exactly the same arguments in
each question. To load the correct test we read the test number from the url which is
sent when the user selects the task he wants to do. After loading the correct test, the
data is parsed so that the program can read it in a way that is usable. We use the
function Math.random , which gives us a number between 0 and 1, and multiply it by
the number of test instances that are available in the file. That number is rounded
down with the function Math.floor to get a whole number. That way, each user gets
a different randomised question from the ones available and can work out for himself
how to solve it. Then the question (with the corresponding answers in case of the
matching tests or multiple choice tests) is set and displayed to the user.

The whole process which was explained above can be observed in the code snipped
below:

useEffect (() => {
const dataPath = ‘../Jjsondata/moodle${testId}.json?;

fetch (dataPath)
.then ((response) => response.text())
.then((text) => {

return JSON.parse (text); // Parse the response text as JSON
})
.then ((data) => {

const randomIndex = Math.floor (Math.random/()

* data.quiz.question.length);

setQuestion(data.quiz.question[randomIndex]) ;

20 Implementation

})
.catch((error) => setError (error.message));
}, [testId]);

A button is also added for the user to get a new question of the same test subject
he is already working on. Thus he does not need to leave the exercise page if he wants
to continue to deepen his knowledge of a specific exercise type and topic. Figure[3.3
shows an example of how a test page is displayed to the user. It is shown how the
page looks like before answering and how it is shown after a user submits an answer.
This example demonstrates the appearance of a multiple choice test. The other test
types are shown in the appendix.

Another functionality that was added is a button that starts a Timer. That way,
the user can try to solve the exercises under time pressure and thus simulate exam
conditions, where one does not have infinite time to solve the different questions. As
a result, a user can learn to not only solve the exercises without pressure but also
solve them efficiently as every second counts. If the timer runs out, the test is auto-
matically submitted as to not lose possible already selected answers. The choice to
use this timer is up to the user seeing that he may not want to be under time pressure
especially if he is doing an exercise for the first time.

3.2.2 Hints

Hints were implemented in the test where the users have to identify suitable test
candidates to eliminate = from specific (in)equations in virtual substitution. The test
generator was modified in such a way, that hints are generated at the same time with
the questions. So every test question has its corresponding hints when the test file is
created.

The first hint is a static text message that briefly explains what the user has to
do in case he doesn’t know. The second hint does the first step in simplifying the
different (in)equations presented to the user. The third hint shows the finalised sim-
plification where solely x is on the one side of the (in)equations. The last hint shows
which are the resulting test candidates, as the users may still struggle to remember
when an infinitesimal has to be accounted for the solution to be a valid test candidate.

On the test page components, a Hint button is implemented to display the hints
to the user if he should need assistance. The user can toggle between the different
hints as he sees fit to try to better understand the assignment.

3.3 Backend

For the backend we also use Node.js to implement the functionality of the backend.
Together with Node.js, we use Express.js, which is a Node.js library [exp]. It is a
convenient web application framework which is helpful for backend purposes. It has
an abundance of features which ease the backend development and allow for simple
and quick creation of APIs. API stands for application programming interface and in
essence it is a way for different computer programs, or parts of a program (i.e. here

Database 21

Login
extension point
Register

==include=» %
I,........' <<gxlendss»
: s====={ Multiple Choice Test
H
User i
‘_i <=gxiends>»
[
H
1

h 4

Show right answer
H

| <<extends»»
H

<<gxtends»»

=<includes» Check test answer
extension point

Wrong answer given

. e
AN

Website

Figure 3.2: A use case diagram of the different components of the website.

backend and frontend of a web page) to communicate with each other. In order to do
this, the database is hosted by the server in the backend. A "users" component holds
the API functions that allow communication from the frontend with the database
through the backend. So when the user tries to sign up in the frontend, the backend
writes the user data into the database. To assure safety the password isn’t saved as
plaintext. The Node.js library berypt is used to hash the password to ensure security

Ibez.

To provide a secure and efficient way to handle user authentication and authori-
sation, JSON Web Token (JWT) is used [jwt]. It offers a plethora of qualities that
make it a good choice for this task. JWTs allow for stateless authentication, meaning
the server does not need to store session information on the server side. This reduces
the load on the server and makes it easier to scale the application. Furthermore
JWTs are compact and self-contained, they can be efficiently transmitted over the
network. JWTs can also have expiration times, which adds an extra layer of security.
This ensures that even if a token is intercepted, it will only be valid for a limited time.

3.4 Database

The Database is written in PostgreSQL[pos]. The database consists of 2 tables, a
"users" table and a table called "answered questions". In the users table, the name,
email address and the hashed password is saved alongside a user id that every user
gets attributed.

22 Implementation

In the answered questions table every answered question of the user is saved along-
side the email address to know to whom the answered questions are to be attributed.
The questions themselves are saved by memorising the test id of the test that was
taken and the specific question in the test file that the user got displayed. To know
if it was answered correctly a boolean "answeredCorrect" is also saved. Thus if it is
set to false, it is easily identifiable and can be retrieved so the user can try it again
if he chooses to attempt his previously incorrectly answered questions. The correctly
answered questions can be summed up to place the user on a leaderboard.

HOME HINT

SUBMIT

HOME HINT

SUBMIT GET ANOTHER QUESTION

Incorrect.

Correct answers:

Figure 3.3: Top: An example for a test page, in this case for a multiple choice test.
The question is shown in a coloured block. Below it, the user has to give the answer.
If implemented, the user can let the website give him a hint when he has difficulties
with the question. After an answer is logged in, the user can confirm his selection
by clicking on the submit button.

Bottom: The same test, after the user has clicked on submit. If the answer is wrong,

the right answer will be shown below his selection. If the user clicks on Get Another
Question, a new question of the current category is selected randomly and loaded.

Chapter 4

Conclusion

4.1 Summary

In this thesis, we have developed a web application to provide users with exercises
related to satisfiability checking in theoretical computer science. The application of-
fers various types of exercises, including multiple choice questions, text-input-based
questions, and matching tasks.

The web application is designed to engage students in the subject of satisfiability
checking by providing them with a user-friendly interface to solve exercises effectively.
It offers features like randomised questions, hints for selected exercises, a timer, and
the ability to reattempt previously answered questions.

The backend of the application is implemented using Node.js and Express.js, allowing
for secure user authentication and authorization using JSON Web Tokens (JWT). The
data is stored in a PostgreSQL database, which includes user information, answered
questions, and exercise details.

4.2 Future work

This application can be expanded upon in numerous ways. The most apparent way
would be to add hints to the other exercise types. Furthermore, a functionality which
suggests to the user which tests to practise could be added. Criteria that could be
taken into account in implementing that, could be when a certain test was last done
or how often a specific exercise was answered incorrectly. Another idea would be to
add gamification elements, i.e. a progress bar. This would incite the users to try
every different exercise type and would cause them to deepen their knowledge. These
are just some ideas in which way this work can be broadened and improved but these
are in no way limits on what can be done with this application.

24

Conclusion

Bibliography

[AK16]

[ANP23]

[ber]

[BCSV14]
[CA11]
[EE22
exp]

|Fil]

[for]

[HKR21]

[iwt]
[Kos16]

[noda

Erika Abraham and Gereon Kremer. Satisfiability checking: Theory and
applications. In Software Engineering and Formal Methods: 14th Inter-
national Conference, SEFM 2016, Held as Part of STAF 2016, Vienna,
Austria, July 4-8, 2016, Proceedings 14, pages 9-23. Springer, 2016.

Erika Abraham, Jasper Nalbach, and Valentin Promies. Automated ex-
ercise generation for satisfiability checking. In Formal Methods Teaching
Workshop, pages 1-16. Springer, 2023.

Official bcrypt website. https://www.npmjs.com/package/
bcryptl. Accessed: 2023-11-01.

Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. A system for
generation and visualization of resource-constrained projects. In CCIA,
pages 237-246, 2014.

Florian Corzilius and Erika Abraham. Virtual substitution for smt-solving.
In International Symposium on Fundamentals of Computation Theory,
pages 360-371. Springer, 2011.

Greda Eshiba-Emir. Automated exercise generation. 2022.

Official express website. https://expressijs.com/. Accessed: 2023-
11-01.

Antoniu-Paul Filip. Automated exercise generation for satisfiability mod-
ulo real algebra.

Official formik website. https://www.npmjs.com/package/
formikl Accessed: 2023-11-01.

Petra Hozzova, Laura Kovacs, and Jakob Rath. Automated generation
of exam sheets for automated deduction. In International Conference on
Intelligent Computer Mathematics, pages 185-196. Springer, 2021.

Official json web token website. https://jwt.io/l Accessed: 2023-11-
01.

Marek Kosta. New concepts for real quantifier elimination by virtual
substitution. 2016.

Node.js github repository. https://github.com/nodejs. Accessed:
2023-11-01.

https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/bcrypt
https://expressjs.com/
https://www.npmjs.com/package/formik
https://www.npmjs.com/package/formik
https://jwt.io/
https://github.com/nodejs

26

Bibliography

[nodb]

[npma)

[npmb]

[NPM™14]

[Oh16]

[pos|

[reaal

[reab]

[Sin07]

[Tin02]

[VWM15]

[Wall4]

[yup]

Official node.js website. |https://nodejs.org/en. Accessed: 2023-
11-01.

npm github repository. https://github.com/npm. Accessed: 2023-
11-01.

Official npm.js website. https://www.npmjs.com/. Accessed: 2023-
11-01.

Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and
Lydia E. Kavraki. Smt-based synthesis of integrated task and motion plans
from plan outlines. In 2014 IEEFE International Conference on Robotics
and Automation (ICRA), pages 655-662, 2014.

Chanseok Oh. Improving SAT solvers by exploiting empirical character-
istics of CDCL. PhD thesis, New York University, 2016.

Official postgresql website. |https://www.postgresqgl.org/. Ac-
cessed: 2023-11-01.

React documentation. https://react.dev/. Accessed: 2023-10-27.

React github repository. https://github.com/facebook/reactl
Accessed: 2023-11-01.

Carsten Sinz. Visualizing sat instances and runs of the dpll algorithm.
Journal of Automated Reasoning, 39:219-243, 2007.

Cesare Tinelli. A dpll-based calculus for ground satisfiability modulo the-
ories. In FEuropean Workshop on Logics in Artificial Intelligence, pages
308-319. Springer, 2002.

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfia-
bility solvers and their applications in model checking. Proceedings of the
IEFEE, 103(11):2021-2035, 2015.

Johannes Waldmann. Automated exercises for constraint programming.
In WLP/WFLP, pages 66-80, 2014.

Official yup website. https://www.npmjs.com/package/yup. Ac-
cessed: 2023-11-01.

https://nodejs.org/en
https://github.com/npm
https://www.npmjs.com/
https://www.postgresql.org/
https://react.dev/
https://github.com/facebook/react
https://www.npmjs.com/package/yup

Bibliography 27

Appendix

Prototype Website Homepage

OPEN TESTS 1 OPEN TESTS 2 OPEN TESTS 3 OPEN TESTS 4 ATTEMPT FAILED QUESTIONS

Figure 1: The main page of the website. Here, tests can be selected. It also offers a
button to redo previously failed tests.

Email:

U

Password:

LOGIN

|

No account yet?

SIGN UP!

Figure 2: The login page of the website.

28 Bibliography

Username:

[(Ex. John123..) |
Email:

[vour email...]
Password:

Your Password... |

Figure 3: The register page of the website. Aside from the email and password that
are used for the login, each user can also decide a username.

HOME HINT

SUBMIT

Figure 4: An example for a test with a text field as input. The user must give the
answer as plain text according to the directions given in the task description.

HOME HINT

suBMIT

Figure 5: An example for a matching test. For each field shown, the user must select
the appropriate answer from a list of possibilities.

Bibliography 29

HOME HINT

SUBMIT

Figure 6: An example for a multiple choice test. The user has to select all right
choices. It can be zero, requiring no selection.

HOME HINT

SUBMIT GET ANOTHER QUESTION

Incorrect.

Correct answers:

Figure 7: An example for a test — in this case multiple choice — showing the right
answers if the answer of the user was wrong.

	Introduction
	Motivation
	Related Work

	Preliminaries
	DPLL and CDCL
	Virtual substitution and generating test candidates

	Implementation
	Preprocessing
	Frontend
	Backend
	Database

	Conclusion
	Summary
	Future work

	Bibliography

