
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

A HEURISTICAL LOCAL SEARCH APPROACH

FOR SOLVING SATISFIABILITY OF

POLYNOMIAL FORMULAS

Jan Mattis Lipka

Communicated by
Prof. Dr. Erika Ábrahám

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Valentin Promies Aachen, 08.05.2024

Abstract
Local search (LS) is an incomplete approach to solve satisfiability of formulas

by iteratively changing the variable assignments slightly to obtain a solution to
a particular problem. In this thesis, we discuss a local search approach in the
theory of Quantifier-Free Non-Linear Real Arithmetic, i.e. Boolean combinations
of multivariate polynomial constraints. The core concept of this algorithm is
based on the fact that univariate polynomials only have finitely many roots, thus
the domain can be split into finitely many sign-invariant regions for a certain
variable. The algorithm then utilizes real root isolation to perform jumps between
sign-invariant regions for a single polynomial based a heuristic score. Following
the ideas introduced by Li et al. in 2023 [LXZ23], we implement a local search
procedure and expand it to overcome shortcomings of the initial approach. The
implemented approach is then tested on a multitude of problem instances with
the focus being set on local search as a stand-alone solver on SMT-LIB and
self-generated instances, as well as local search in a DPLL(T) setting and the
effects different internal parameters have on the effectiveness of local search. We
also combine local search with SMT-RAT’s default solving strategy. Benchmarks
show that the implemented local search is not competitive in instances similar to
SMT-LIB as a stand-alone solver, but offers drastic improvements in satisfying
high degree polynomial formulas. It is also shown that local search does not
thrive in a DPLL(T) setting on SMT-LIB and similar instances and is highly
dependent on internal parameters. The combined approach, however, improves
the current best solving strategy in SMT-RAT for SMT-LIB and generated
instances.

iv

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Evaluation . 10

3 Local Search 13
3.1 Initial Local Search Approach . 13
3.2 Setup . 14
3.3 Operations . 16
3.4 Heuristic . 22

4 Algorithm 25
4.1 Improvements . 25
4.2 Settings . 27
4.3 Pseudo-Code Implementation . 28

5 Benchmarks 31
5.1 SMT-LIB-Benchmarks . 32
5.2 Generated Benchmarks . 35
5.3 Incremental Local Search . 39
5.4 Combined Solver . 41
5.5 Settings . 43

6 Conclusion 47
6.1 Benchmarks . 47
6.2 Discussion . 48
6.3 Summary . 49

Bibliography 51

6 Contents

Chapter 1

Introduction

Solving formulas with multivariate polynomial constraints is one of the more prominent
tasks of modern SMT-Solving. In this thesis, we attempt to solve Satisfiability Modulo
the Theory of Quantifier-Free Non-Linear Real Arithmetic, or QFNRA, via means of
a new approach, the so called Local Search (LS), as introduced by Li et al. [LXZ23].
QFNRA was shown to be decidable by Tarski in 1951 [Tar51], yet the only practical
algorithmic way is Collin’s Cylindrical Algebraic Decomposition (CAD) [Col74] and its
extensions. By definition, it divides the infinite search space into finitely many regions
with certain properties. In its original form, the answer can only be determined at
the very end after constructing each region and evaluating sample points from the
regions. While CAD is a complete solving procedure for QFNRA, its main drawback
is its doubly exponential runtime complexity.

Hence, a number of incomplete procedures have been developed, such as Subtropical
Satisfiability by Fontaine et al. [FOSV17] or Interval Constraint Propagation by Ben-
hamou & Older [BO97]. These procedures cannot show satisfiability or unsatisfiability
of all possible QFNRA problems, hence the term incomplete. The aforementioned
local search approach, being the main focus of this thesis, also falls under the category
of incomplete solving procedures. To use local search for solving problem instances in
the theory of QFNRA, it is necessary to keep an assignment for all variables contained
in a given problem instance throughout the searching procedure. This assignment
is then iteratively altered throughout the execution of local search. Each iteration
tries to find a new assignment similar to the current assignment which is, however,
heuristically closer to satisfying the given formula. These iterations will continue until
a termination condition is met. For this, two core concepts are of importance. Firstly,
a set of rules is to be defined which sets guidance as to how the assignment is changed
per iteration. These rules yield different classes of operations, such that per iteration
one operation out of any class is performed. Secondly, a heuristic function is necessary
to determine the effectiveness of each possible operation to rate them and select the
best operation for the current assignment value according to the heuristic.

This bachelor thesis aims to answer the question whether local search can be
viable for solving QFNRA problem instances, while also expanding the SMT-solver
SMT-RAT [CKJ+15] currently being developed by the Theory of Hybrid Systems
group at RWTH Aachen University, with its own local search procedure. To achieve
answering the research question of this thesis, a local search procedure based on Li et
al. was implemented as a module in SMT-RAT and adapted to work in the solver’s

8 Introduction

environment, as well as expanded upon to overcome disadvantages of the initial idea.
In addition, the implementation was then benchmarked on a multitude of problem
instances for various versions such as a stand-alone solver, in an DPLL(T) strategy,
using different internal settings or as a combined solver using SMT-RAT’s default
strategy. For references, all benchmark sets were also tested on SMT-RAT’s default
solving strategy. The problem instances for the benchmarks consist of the current set
of satisfiable QFNRA problem instances from SMT-LIB [BFT16], as well as multiple
sets of self-generated instances with different properties.

In the following, the necessary notation for QFNRA and local search will be
introduced in Chapter 2. In Chapter 3 the initial algorithm will be presented, as well
as the theory behind local search, in particular what the operations are, how and
why they work, as well as what the used heuristic is. Following the theory, the initial
algorithm will be improved in Chapter 4. Chapter 4 also shows the pseudo-code of the
implemented procedure in addition to the various different sets of internal settings.
The algorithm is then implemented to be benchmarked and analysed in Chapter 5.
Finally, the benchmark results are summarized and discussed in Chapter 6 to form a
final conclusion.

Chapter 2

Preliminaries

2.1 Notation
Let a finite variable vector x̄ = x̄REAL ◦ x̄BOOL = (xr,1,..., xr,mREAL , xb,1..., xb,mBOOL) be
given as the concatenation of the two vectors x̄REAL = (xr,1,..., xr,mREAL) and x̄BOOL =
(xr,1,..., xr,mBOOL) containing mREAL real-valued variables and mBOOL Boolean-valued
variables respectively. In addition, let n = mREAL +mBOOL such that x̄ can be written
as x̄ = (x1, ..., xn) in use-cases that do not rely on the different types of variables.
Furthermore, we allow the notation to use any finite variable vector x̄ similarly to a set if
necessary. In particular, writing x̄ in cases that require a set translates to {xi | xi ∈ x̄}
in which xi ∈ x̄ denotes the element xi in the vector x̄. Furthermore, x̄ ⊆ x̄′ is defined
for a second finite variable vector x̄′ such that x̄ ⊆ x̄′ holds if and only if the vector x̄′

contains every variable xi ∈ x̄, i.e. x̄ ⊆ x̄′ ⇔ {xi | xi ∈ x̄} ⊆ {x′
i | x′

i ∈ x̄′}. Hence, x̄′

might also contain variables not in x̄. Intuitively, x̄′ is a finite extension of x̄ with new
variables. Lastly, writing a finite variable vector x̄ can then be used as a domain in
function definitions to map each variable xi ∈ x̄ to an element in the function’s range.
For the set of rational numbers Q, let Q [x̄REAL] be the polynomial ring consisting of
variables xr,i ∈ x̄REAL and coefficients qj ∈ Q. In addition, let B [x̄BOOL] be the set of
Boolean variables xb,i ∈ x̄BOOL and their respective negations ¬xb,i. For a polynomial
p (x̄) ∈ Q [x̄REAL], let VAR (p) be the set of contained variables.

Definition 2.1.1 (Polynomial Formulas). A polynomial formula Fpol in conjunctive
normal form (CNF) has the form

Fpol =
∧

Pi∈Λ

∨
pij∈Pi

pij Bij 0,

in which Λ = {P1, ..., Pm} denotes a finite set of finite, non-empty subsets Pi ⊂
Q [x̄REAL] and Bij∈ {<,=, >} indicates the relation between the polynomial pij and 0.

Additionally, pij Bij 0 will be referred to as an atomic polynomial formula and∨
pij∈Pi

pij Bij 0 as a clause.

Definition 2.1.2 (Real Assignment). Let Fpol be a polynomial formula with real
variables x̄REAL. Then, the mapping α : x̄REAL → R is a real assignment.

10 Preliminaries

A real assignment αREAL for a polynomial formula Fpol assigns each variable xr,i in
Fpol an element ai ∈ R. The assignment αREAL can also be written as an assignment
vector αREAL (x̄REAL) = (a1, ..., amREAL).

In SMT-Solving, not every formula input F is already in CNF. Because the proposed
local search procedure should also work on those instances, a conversion to CNF is
necessary for the heuristic to work properly. For this, Tseitin’s encoding [Tse83] is
used, which transforms F into an equi-satisfiable formula F ′ in CNF. This, however,
introduces Boolean variables to the generated formula. Thus, altered definitions for
formulas and assignments are necessary and will be used throughout the thesis.

Definition 2.1.3 (Formula). Let Λ = {L1, ..., Lm} be a finite set of finite literal sets
Li such that each literal lij is defined as

lij ::= pij Bij 0 | bi (2.1)

for pij ∈ Q [x̄REAL] a polynomial, Bij ∈ {<,=, >} a relation and bi ∈ B [x̄BOOL] a
Boolean variable or its negation. Then, a formula F in CNF for the variable vector x̄
has the form

F =
∧

Li∈Λ

∨
lij∈Li

lij . (2.2)

It is easy to see that a formula has the same general structure as a polynomial
formula, but it also includes Boolean variables as literals. Because of these introduced
Boolean variables, the alteration of an assignment must now also include a mapping of
Boolean variables. This Boolean assignment is defined similarly to the real assignment.

Definition 2.1.4 (Boolean Assignment). Let x̄ be a Boolean variable vector. Then,
α : x̄BOOL → {true, false} is a Boolean assignment.

A Boolean assignment αBOOL assigns each variable xb,i in x̄ an element ai ∈
{true, false}. The assignment αBOOL can also be written as an assignment vector
αBOOL (x̄BOOL) = (a1, ..., amBOOL). Thus, an assignment α for a formula F containing
real and Boolean variables adds upon a real assignment αREAL by also providing
Boolean values for the Boolean variables that are contained in F using the mapping
αBOOL : x̄BOOL → {true, false}.

Definition 2.1.5 (Assignment). Let F be a formula with variable vector x̄ =
x̄REAL ◦ x̄BOOL, αREAL (x̄REAL) the real assignment and αBOOL (x̄BOOL) the Boolean
assignment for the variables. Then, the mapping α : x̄ → R ∪ {true, false} is an
assignment using either αREAL (x̄REAL) or αBOOL (x̄BOOL) for each variable based on
their type.

In addition to Definition 2.1.5, α can also be written as an assignment vector
α (x̄) = (a1, ..., an), or even more precisely as α (x̄) = (ar,1,..., ar,mREAL , ab,1,..., ab,mBOOL)
denoting the different variable types. If the underlying variable vector x̄ is intuitively
clear or not changing, the assignment will be referred to solely as α.

2.2 Evaluation
To evaluate a formula F as introduced in Definition 2.1.3 with variable vector x̄, an
assignment α (x̄′) is required for x̄ ⊆ x̄′. Using x̄′, it is ensured that each variable

Evaluation 11

x ∈ x̄ has a well-defined assignment value ai. By substituting xi for ai in every atomic
formula and evaluating them under standard arithmetic, each atomic formula is either
true or false. Then, the formula F is easily evaluated using the standard semantics of
∧ and ∨ to yield either true or false for the whole formula F .

Definition 2.2.1 (Satisfying/Falsifying Assignment). An assignment α is a
satisfying assignment for a formula F if and only if F evaluated at α is true. It can
be written as α |= F . If an assignment α for a formula F yields false, it is called a
falsifying assignment, denoted as α 6|= F .

Definition 2.2.2 (Satisfiable/Unsatisfiable Formula). A formula F is satisfiable
if and only if a satisfying assignment α exists for F . If every assignment α mapping
exactly the variables xi ∈ x̄ used in the formula F is a falsifying assignment, then F
is unsatisfiable.

12 Preliminaries

Chapter 3

Local Search

Local search (LS) in the theory of QFNRA is based on the simple idea of iteratively
altering an assignment α using operations such that the new assignment α′ is near
the previous assignment while the input formula evaluated at the new assignment α′

is closer to satisfaction according to a heuristic.
In the following chapter, all necessary concepts for LS in QFNRA will be described.

This includes the initial local search idea, the search space, the different kinds of
operations and how they work, as well as the heuristic. The core concept, operations
to change the assignment from Definitions 3.3.1, 3.3.3 and 3.3.4, as well as the initial
heuristic are based on the ideas proposed by Li et al. [LXZ23].

3.1 Initial Local Search Approach
First, we describe the initial outline of local search. It can be broken down into 4 main
steps that are executed along the order of appearance or based on guidance presented
in the steps. It is noteworthy that, as local search is an incomplete approach, it does
need a termination condition such that it does not run indefinitely in cases where it is
impossible for local search to find a solution. Hence, local search is a timed solver that
only will try to solve the problem for a given amount of time. For the understanding of
local search, it is necessary to briefly introduce operations. An operation changes the
current assignment to a different assignment. They are classified into single operations
changing only the assignment for a single variable, and multi operations changing the
assignment for multiple variables at once for a given direction vector. These operations
will be properly defined in the following Section 3.3.

Definition 3.1.1 (Local Search Outline [LXZ23]). Given an input formula F , the
initial approach tries to solve F after initializing every real variable with 1 and every
Boolean variable with true as follows:

1. Check termination condition:
Formula is satisfied by assignment, return sat
Allotted time has run out, return unknown

2. Generate all single cell jump operations and rate them heuristically. If no
operation op with h(op) > 0 exists, go to (3). Else, update assignment and go to
(1).

14 Local Search

3. Update clause weights using PAWS.

4. Generate direction vectors, then generate all multi cell jump operations based
on those direction vectors and rate them heuristically. If no operation op with
h(op) > 0 exists, return unknown. Else, update assignment and go to (1).

The approach stays very simple and it is thus easy to see that is attempts solving
polynomial formulas by iteratively satisfying false constraints until either the formula is
satisfied or the time limit is met. Hence, it always terminates. Its simplicity, however,
also causes some drawbacks and leaves space for improvements which will be addressed
in Chapter 4.

3.2 Setup
In this section, we will introduce all the necessary concepts and ideas to be able to
define the operations in Section 3.3 out of which to build the local search. The search
space for any as previously defined problem instance F is

S = {(sr,1, ..., sr,mREAL , sb,1, ..., sb,mBOOL) | sr,1,..., sr,mREAL ∈ R ∧
sb,1, ..., sb,mBOOL ∈ {true, false}}.

(3.1)

Intuitively, any assignment vector α yields a point (a1, ..., an) ∈ S for which real
variables are mapped to ai ∈ R and Boolean variables are mapped to ai ∈ {true, false}.
It is now important to find points, i.e. assignment vectors, that have the potential to
provide a different truth value for F evaluated at the given point. Because the search
space is infinitely large, we want to partition S into regions, i.e. cells, with certain
properties such that only a single point α out of any cell would need to be checked to
decide whether all or no points α′ from a given cell are satisfying assignments.

Definition 3.2.1 (Cell). Let F be a formula with variable vector x̄ = x̄REAL ◦ x̄BOOL.
Then, a cell is a connected region R in S such that

∀ a = (ar,1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) ∈ R,

b = (br,1, ..., br,mREAL , bb,1, ..., bb,mBOOL) ∈ R,

p (x̄REAL) ∈ F :

sgn (p (ar,1, ..., ar,mREAL)) = sgn (p (br,1, ..., br,mREAL)) ∧
(ab,1, ..., ab,mBOOL) = (bb,1, ..., bb,mBOOL)

(3.2)

Following this definition, a cell C for a formula F can also be seen as a region in S
such that no literal lij ∈ F will change its truth value evaluated at any point in C.
Because of this, a formula F only has to be evaluated at a single point from C to cover
the whole cell C. It is noteworthy that a cell does not have to be of maximum size,
i.e. it does not have to be non-expandable. Furthermore, it is also important to show
that the whole search space S can be partitioned into finitely many cells. Otherwise,
there would be a dense part of S that we could not easily cover with a single sample
point, but only infinitely many.

Theorem 3.2.1 (Finite Cell Covering). Let F be a formula. Then, the search
space S can be partitioned into finitely many cells.

Setup 15

Proof. By the theory of CAD, RmREAL can be divided into finitely many sign-invariant
regions C = {C1, ..., Ck}. But each point a = (ar,1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) ∈ S
also contains mBOOL many Boolean variables. Hence, adding true or false for each
Boolean variable yields the cells C ′ = C×{true, false}mBOOL such that |C ′| = k·2mBOOL ∈
N. Thus, S can be partitioned into finitely many cells.

Theorem 3.2.1 yields the fact that for any satisfiable formula F , there exists a cell
C such that any point r ∈ C is a satisfying assignment for F . A local search approach
that switches between cells might switch to a satisfying cell, thus finding a solution.
The way of switching cells used in our local search approach is based on satisfying
a currently falsified constraint. By doing so, the sign condition in Definition 3.2.1 is
violated, thus changing to a new cell. For this simple cell-switching, sample points are
necessary at which to test a given currently falsified polynomial for satisfaction. We
will start by finding sample points for univariate polynomials via means of real root
isolation.

Definition 3.2.2 (Root Isolating Intervals [LXZ23]). Let p(x) ∈ Q [x] be a
univariate polynomial with s real roots. Then, I = {(a1, b1) , ..., (as, bs)} are the root
isolating intervals of p such that

∀i ∈ {1, ..., s} : ai, bi ∈ Q ∧ ai < bi ∧ (ai, bi) contains exactly one real root of p
∀i ∈ {1, ..., s− 1} : bi < ai+1

(3.3)

It is easy to see that every root rk of a univariate polynomial p(x) ∈ Q [x] is
contained in exactly one interval (ak, bk) ∈ I from its root isolating intervals I.
Because of the open bounds, rk cannot be located at an exact bound ak or bk but
must be strictly between the bounds. Figure 3.1 depicts such intervals graphically.
Out of these root isolating intervals, we can construct a set of sample points which
might satisfy the current falsified constraint.

Definition 3.2.3 (Sample Points). Let I = (a1, b1) , ..., (as, bs) be the root isolating
intervals for a univariate polynomial p(x) ∈ Q [x]. Then, the set of sample points is
defined as

SP = {a1, bs} ∪
s−1⋃
i=1

{
bi,

bi + ai+1

2
, ai+1

}
. (3.4)

Each point spi ∈ SP is a sample point for p(x). If p evaluated at spi yields a
positive value, spi is a positive sample point. If p evaluated at spi yields a negative
value, spi is a negative sample point. It is noteworthy that the set of sample points is
an over-approximation, i.e. it contains more points than necessary to have a single
sample point for each sign-invariant region that is not a root. Having more sample
points, however, will yield more potential points to satisfy the currently falsified
constraint and thus also potential different heuristic scores. Figure 3.2 shows the
positive and negative sample points for the example polynomial introduced in Figure
3.1. Note that a univariate polynomial might not have a single root, thus it might not
produce any sample point.

16 Local Search

x

p(x)

Figure 3.1: Root isolating intervals for
a univariate polynomial p(x) containing
3 real roots.

x

p(x)

Figure 3.2: Positive (gray) and negative
(black) sample points for a univariate poly-
nomial p(x).

3.3 Operations
The sample points introduced in Definition 3.2.3 can now be used to create operations
op that change the assignment α to a different assignment corresponding to a point in
a different cell. This new assignment might have a different truth value for the formula
F by changing at least the truth value for one literal lij . These operations will satisfy
a given polynomial constraint falsified under α using the relation B ∈ {< , = , >}
or a false Boolean literal by adjusting one or multiple variables accordingly, thus
moving the current assignment to a different cell. In the following, two different types,
single- and multi- cell-jump operations, based on the number of variables the operation
changes will be introduced.

Definition 3.3.1 (Operation: Coordinate Axis Cell Jump [LXZ23]). Let F
be a formula with variable vector x̄ = x̄REAL ◦ x̄BOOL, current assignment α, l =
(p (x̄REAL) B 0) a polynomial constraint in F so that α 6� l for B ∈ {<,>} and
xr,i ∈ VAR (p). Let pi (xr,i) be the polynomial p after substituting aj ∈ α for xr,j for
every variable xr,j 6= xr,i, xr,j ∈ VAR (p) and l′ = (pi (xr,i) B 0) be the corresponding
univariate constraint. Lastly, let SPi be the set of sample points for pi (xr,i). Then,
cjump (xr,i, l) is the coordinate axis cell jump operation which assigns xr,i the sample
point spi ∈ SPi closest to ai ∈ α satisfying l′.

The operation is constructed for a polynomial constraint currently falsified under
an assignment α and a real variable contained in the constraint. It aims to change
the variable’s assignment to a rational value such that the constraint is satisfied if
the variable is assigned its new value and every other variable keeps its assignment
value. The operation substitutes every real variable xr,j 6= xr,i for its value aj in
the current assignment in the polynomial constraint, thus making the constraint’s
polynomial univariate for which the sample point set is then constructed. Then,
the closest positive or negative sample point to ai is taken from the set of sample
points depending on the type of the relation to 0. Intuitively, one can think of this
operation cjump(xr,i, l) as searching for a point ai along xr,i’s coordinate axis in
RmREAL that satisfies the constraint posed by the literal l. It is noteworthy that if no
sample point exists that satisfies the corresponding univariate constraint l′, we say
that the operation cjump(xr,i, l) does not exist. Lastly, as only the variable xr,i is
being changed in the coordinate axis cell jump operation cjump(xr,i, l), it is classified

Operations 17

x

y

1 2 3 4 5

1

2

3

α α′

Figure 3.3: Completed cjump(x, l)
and attempted cjump(y, l) for
l =

(
(x− 4)2 + (y − 2)2 − 1 < 0

)
under assignment α = (1,2) using
sample points from Figure 3.4.

x

px (x)

2 3 4 5 6

−1

0

1

2

Figure 3.4: Sample points for
l =

(
(x− 4)2 + (y − 2)2 − 1 < 0

)
under as-

signment α = (1,2) evaluated for x by sub-
stituting y = 2 into l yielding constraint
x2 − 8x+ 15 < 0.

as a single-cjump-operation.

Example 3.3.1 (Coordinate Axis Cell Jump). Consider the two dimensional
polynomial constraint l =

(
(x− 4)2 + (y − 2)2 − 1 < 0

)
currently falsified under as-

signment α = (x→ 1, y → 2). Figure 3.3 shows the search intuition for cjump(x, l)
(green) and cjump(y, l) (red) along the coordinate axes for the variables x and y, as
well as the constraint’s solution space and all potential new assignments. It also shows
the successful jump cjump(x, l) that creates the new assignment α′ =

(
x→ 7

2 , y → 2
)
,

while cjump(y, l) is not successful. Figure 3.4 shows the univariate polynomial
px (x) = x2 − 8x + 15 which was obtained after substituting the assignment value
y = 2 into the original polynomial, as well as the set of sample points

{
5
2 ,

7
2 , 4,

9
2 ,

11
2

}
for x on px (x) out of which 7

2 is chosen as it is the nearest satisfying sample point to
x’s previous assignment.

It is now left to show that the coordinate axis cell jump operation functions as
intended, i.e. if and only if a single variable xr,i that is contained in a false polynomial
literal l can be adjusted under the current assignment α such that l becomes satisfied,
a coordinate axis cell jump operation will be found that produces an assignment which
also satisfies l.

Theorem 3.3.1 (Existence of Coordinate Axis Cell Jump [LXZ23]). Given a
false polynomial constraint l = (p(x̄REAL) B 0) under an assignment α = (a1, ..., an)
for B ∈ {< , >} and a real variable xr,i ∈ x̄REAL, there exists a cjump(xr,i, l) operation
if and only if the set

L = {α′ = (ar,1, ...,ar,i−1, θ, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) | θ ∈ R ∧ α′ � l}
(3.5)

is non-empty.

Proof. ⇒ Assume that a cjump(xr,i, l) operation exists. Per Definition 3.3,
this operation only changes the assignment α for the variable xr,i. As the oper-
ation exists per assumption, the sample point sp ∈ Q that xr,i is being mapped
to must also exist. Using Definition 3.2.3 for sample points, the correctly chosen

18 Local Search

sample point sp will satisfy the polynomial constraint l after every other variable
has been substituted for its own assignment value. Hence, the new assignment
α′ = (ar,1, ...,ar,i−1, sp, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) with xr,i’s mapping to sp
will also satisfy l. Because this new assignment exists and satisfies l, it is contained in
the set L, thus making L non-empty.
⇐ Assume that L is non-empty. This means that there exists a value θ ∈ R such
that the new assignment (ar,1, ...,ar,i−1, θ, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) satisfies
the constraint l. After substituting every variable’s assignment value for xj 6= xr,i, the
polynomial p from the constraint l becomes the univariate polynomial pi (xr,i) in the
constraint l′ = (pi (xr,i) B 0). The following cases for the number of roots of pi (xr,i)
exist.
(1) pi (xr,i) has no root. In this case, no value for xr,i will satisfy l, because l is per
definition a false polynomial constraint and there exists no value for xr,i such that
pi (xr,i) will change its sign. However, this case cannot occur because the lack of
existence for such a value for xr,i also yields that L is empty.
(2) pi (xr,i) has k roots rk. This creates the sign-invariant regions (−∞, r1), [r1, r1],
(r1, r2), [r2, r2], ..., and (rk,∞). Because of the constraint’s relation of < or >, θ
cannot be located in any region that is a point interval. θ must be in an open interval
region Rj with a root rj on at least one interval endpoint, i.e. (−∞, r1), (ra, ra+1)
or (rk,∞). Due to the Definition 3.2.2 of root isolating intervals, there must exist a
root isolating interval I = (il, ir) that covers the root rj . Because the root isolating
intervals are not point intervals, there must be an overlap between I and the root’s
region interval Rj . Because I cannot cover multiple roots, it cannot extend to a
region that is adjacent to Rj . Hence, either il or ir is also in Rj and thus either il
or ir also satisfies l′. Due to the Definition 3.2.3 of sample points, il and ir are both
sample points that will be considered when creating cjump(xr,i, l). Thus, every root
yields one sample point that cjump(xr,i, l) could jump to. Assigning xr,i the closest
satisfying sample point to ar,i completes the operation.

Recall that Boolean literals were introduced by converting a polynomial formula
F into an equi-satisfiable formula F ′ in CNF using Tseitin’s encoding in Chapter 2.
The next operation is an addition to the ideas introduced by Li et al. to also cover
Boolean variables in the formulas. It aims to change the Boolean assignment of a
Boolean variable to satisfy the given constraint.

Definition 3.3.2 (Operation: Boolean Cell Jump). Let F be a formula,
α = (ar,1,..., ar,mREAL , ab,1, ..., ab,mBOOL) an assignment and l = xb,i (or its negation
l = ¬xb,i) a falsified Boolean literal under α. Then, the Boolean cell jump operation
cjump(xb,i, l) yields the new assignment
α′ = (ar,1,..., ar,mREAL , ab,1, ..., ab,i−1,¬ab,i, ab,i+1, ..., ab,mBOOL).

As only the variable xb,i is being changed, the operation cjump(xb,i, l) is also
classified as a single cell-jump operation. It is trivial to see that this operation always
exists and changes the truth value for the literal from false to true.

Following two single cell jump operations, we will now introduce a multi cell jump
operation. This operation aims to satisfy a given falsified constraint l under α by
changing multiple variables along a given direction vector d̄ to find a satisfying new
assignment α′ for l.

Definition 3.3.3 (Operation: Fixed Line Cell Jump [LXZ23]). Let F be a formula
with variable vector x̄ = x̄REAL ◦ x̄BOOL, current assignment α, l = (p (x̄REAL) B 0) a

Operations 19

polynomial constraint in F so that α 6� l for B ∈ {<,>}. Let d̄ = (dr,1, ..., dr,mREAL) ∈
QmREAL be a direction vector and t 6∈ VAR (p) a new real variable. Let pt (t) be the
univariate polynomial obtained by substituting xr,i = ar,i + dr,i · t ∀ xr,i ∈ VAR (p) in
p (x̄REAL) and l′ = (pt (t) B 0) be the corresponding univariate constraint. Lastly, let
SPt be the set of sample points for pt (t). Then, cjump

(
d̄, l

)
is the fixed line cell jump

operation which assigns t the sample point spt ∈ SPt closest to 0 satisfying l′ yielding
α′ = (ar,1 + dr,1 · spt, ..., ar,mREAL + dr,mREAL · spt, ab,1, ..., ab,mBOOL).

This operation introduces the auxiliary variable t, then substitutes each real
variable xr,i in l with its corresponding line equation starting at α dependent on t,
i.e. xr,i = ar,i + dr,i · t. The resulting univariate polynomial pt (t) in the constraint
l′ = (pt (t) B 0) with the same relation as l can now be checked for positive or negative
sample points depending on the type of relation in the constraint l. Then, the closest
sample point spt for t to 0 is chosen that satisfies the constraint l′. Re-substituting the
values according to x′

r,i = ar,i+dr,i ·spt yields the new assignment α′. It is noteworthy
that such a satisfying sample point spt must not always exist, i.e. if the variables
cannot be adjusted in d̄’s indicated direction to satisfy l′. In this case, we say that
cjump(dir, l) does not exist for such a direction. Intuitively, it is checked whether the
line intersecting the assignment α with slope d̄ hits the solution space for the given
falsified literal l. It is also easy to see that the coordinate axis cell jump operation is
just a special case of the fixed line cell jump operation in which the direction vector
only contains a single non-zero entry thus marking the coordinate axis that is being
searched. Due to the direction vector d̄, this operation might find satisfying new
assignments which were not found using a single cell jump operation. In particular, it
might satisfy a falsified constraint l which cannot be satisfied using a single cell jump
operation because no coordinate axis intersects l’s solution space.

Because the operation cjump
(
d̄, l

)
can change more than a single variable dependent

on the direction vector d̄, it is classified as a multi cell-jump operation.

Example 3.3.2 (Fixed Line Cell Jump). Consider the two dimensional polynomial
constraint l =

(
(x− 4)2 + (y − 2)2 − 1 < 0

)
introduced in Example 3.3.1 and direction

vector d̄ = (3, 1). l is falsified under the assignment α = (x → 1, y → 1). Figure
3.5 shows a successful fixed line cell jump operation cjump

(
d̄, l

)
(green) and the

search intuition for two failed fixed line cell jump operations (red) along direction
vectors that do not intersect l’s solution space. Figure 3.5 also shows l’s solution
space and all potential new assignments along direction d̄. Substituting x = 1 + 3t
and y = 1 + t into l yields the univariate constraint l′ =

(
10t2 − 20t+ 9 < 0

)
with

roots
{
1−

√
10
10 , 1 +

√
10
10

}
and sample points

{
3
5 ,

4
5 , 1,

6
5 ,

7
5

}
. The univariate polynomial

pt (t) and sample points are depicted in Figure 3.6. The operation chooses the sample
point 4

5 , re-substituting yields x′ = 3 + 2
5 and y′ = 1 + 4

5 and thus the new assignment
α′ = (3.4, 1.8).

It is now left to show that the fixed line cell jump operation functions as intended,
i.e. if and only if a direction d̄ exists such that the assignment α can be altered in
this direction for a falsified polynomial literal l under α, then the fixed line cell jump
operation cjump

(
d̄, l

)
will be found that produces a satisfying assignment α′ for l.

Theorem 3.3.2 (Existence of Fixed Line Cell Jump [LXZ23]). Given a false
polynomial constraint l = (p (x̄REAL) B 0) under assignment α = (a1, ..., an) for
B ∈ {<,>}, a direction vector d̄ ∈ QmREAL and a new real variable t 6∈ VAR (p), there

20 Local Search

x

y

1 2 3 4 5

1

2

3

α

α′

Figure 3.5: Completed cjump(dir, l) for
l =

(
(x− 4)2 + (y − 2)2 − 1 < 0

)
under

assignment α = (1,1) and d̄ = (3, 1)
using sample points from Figure 3.6.

t

pt(t)

0.5 1 1.5

−1

0

1

2

Figure 3.6: Sample points for
l′ =

(
10t2 − 20t+ 9 < 0

)
under assignment

α = (1,1) evaluated for t after substituting
x and y into l.

exists a cjump
(
d̄, l

)
operation if and only if the set

L = {α′ = (ar,1 + dr,1 · θ, ..., ar,mREAL + dr,mREAL · θ, ab,1,..., ab,mBOOL) | θ ∈ R ∧ α′ � l}
(3.6)

is non-empty.

Proof. ⇒ Assume that cjump
(
d̄, l

)
exists. Per Definition 3.3.3, this operation

changes the assignment α = (ar,1,..., ar,mREAL , ab,1, ..., ab,mBOOL) to
α′ = (ar,1 + dr,1 · spt,..., ar,mREAL + dr,mREAL · spt, ab,1, ..., ab,mBOOL) for an existing sam-
ple point spt ∈ Q. Because the operation exists, spt must have satisfied the substituted
constraint l′. By re-substituting, the new assignment α′ now also satisfies l. Hence,
the set L is non-empty as it must contain the assignment for θ = spt.
⇐ Assume that L is non-empty. This means that there exists a θ ∈ R such that the
new assignment α′ = (ar,1 + dr,1 · θ, ..., ar,mREAL + dr,mREAL · θ, ab,1,..., ab,mBOOL) satis-
fies the constraint l. The set L contains all assignments on the line α+ d̄ ·θ that satisfy
l. Hence, every variable xr,i can be substituted for xr,i = αr,i + dr,i · θ creating the
univariate polynomial pθ (θ). Next, the existence of satisfying sample points for θ under
pθ (θ) is analogous to the corresponding part in Proof 3.3 for coordinate axis cell jumps.
Out of the satisfying sample points, the one closest to 0 is chosen as spθ. Lastly, re-
substituting for the original variables xr,i yields the new assignment α′ that must also
satisfy l. Hence, α′ = (ar,1 + dr,1 · spθ, ..., ar,mREAL + dr,mREAL · spθ, ab,1,..., ab,mBOOL) is
a solution that will be found by cjump

(
d̄, l

)
.

It is noteworthy that the given operations cannot handle equality constraints.
Hence, a fourth operation is introduced that handles the cases of equality in the
input formula. This operation, however, is not be able to solve equality constraints
arbitrarily, but only for linear variables in the constraint. For equality, the operation
requires a root to satisfy the constraint, but irrational roots are harder to compute with
than rational ones. Hence, we want the assignment α to be rational such that isolating
a linear variable will yield a rational root. By keeping α rational, this will speed up
the local search by minimizing the computational overhead caused by irrational roots.
While an assignment α by definition can include real values for their variables, by

Operations 21

x

y

1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

α α′

Figure 3.7: Completed cjump(x, l) for l =
(
x− y2 = 0

)
under assignment

α = (1,2).

starting at a rational assignment and only altering this assignment using the described
operations, by Proposition 3.3.3 the assignment will stay rational.

Proposition 3.3.3 (Rational Assignment). Let F be a formula with real variables
x̄REAL and α = (ar,1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) an assignment such that ∀xr,i ∈
x̄REAL : ar,i ∈ Q. Finally, let op be any operation described in Definition 3.3.1, 3.3.2
or 3.3.3. Then, for the new assignment α′ the property ∀xr,i ∈ x̄REAL : a′r,i ∈ Q holds.

Using Proposition 3.3.3, we can now define the equality cell jump operation to
solve an equality constraint using a linearly occurring variable.

Definition 3.3.4 (Operation: Equality Cell Jump [LXZ23]). Let F be a formula
with real variable vector x̄REAL, current assignment α and l = (p (x̄REAL) = 0) a
polynomial constraint in F so that α 6� l. Let xr,i ∈ VAR (p) be an only linearly
occurring variable in p such that xr,i = pxr,i

is the constraint l solved for xr,i. Let q
be the value obtained by substituting aj ∈ α for xr,j ∀ xr,j ∈ VAR (p) in pxr,i . Then,
cjump(xr,i, l) is the equality cell jump operation which assigns q to xr,i.

The operation works by first deciding whether the given variable xr,i is linear in the
constraint l. If it is, then l will be solved for the variable xr,i. By now substituting every
other assignment value aj for j 6= i, a rational value q for xr,i is found that provides
the new solution for l as α′ = (ar,1, ..., ar,i−1, q, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL).
Intuitively, the operation cjump(xr,i, l) searches along the linear variable xr,i’s co-
ordinate axis to fix a value such that the constraint is satisfied. Such a value must
always exist. It is very similar to the normal coordinate axis cell jump, the important
difference being the linearity of xr,i and the type of constraint being an equality.

As the equality cell jump operation cjump(xr,i, l) only changes a single variable,
it is also classified as a single cell jump operation.

Example 3.3.3. Consider the two dimensional polynomial constraint l =
(
x− y2 = 0

)
falsified under assignment α = (x 7→ 1, y 7→ 2) as shown in Figure 3.7. The only linear
variable in l is x, thus only cjump(x, l) exists. Solving l for x yields x = y2 for which
substituting y = 2 results in x = 4. Hence, the new assignment is α′ = (x 7→ 4, y 7→ 2).

22 Local Search

It is now left to show that the equality cell jump operation works as intended, i.e.
if and only if the assignment value for a linear variable xr,i can be adjusted to satisfy
a given constraint l, the equality cell jump operation exists and will be found.

Theorem 3.3.4 (Existence of Equality Cell Jump). Given a false equality
constraint l = (p (x̄REAL)) under assignment α = (ar,1, ..., ar,mREAL , ab,1, ..., ab,mBOOL)
and an only linearly occurring real variables xr,i ∈ V AR (p), there exists a cjump(xr,i, l)
operation if and only if the set
S = {α′ = (ar,1, ..., ar,i−1, θ, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) | θ ∈ R ∧ α′ � l} is
non-empty.

Proof. ⇒ Assume that cjump(xr,i, l) exists. Per definition, this operation only
changes the assignment value for ar,i. Because the operation exists, there exists a
value ri that xr,i can be changed to such that l is satisfied. Thus, the new assignment
α′ = (ar,1, ..., ar,i−1, ri, ar,i+1, ..., ar,mREAL , ab,1, ..., ab,mBOOL) is contained in S.
⇐ Assume that S is non empty. This means that there exists a value θ such that
the new assignment satisfies l. Because xr,i is only contained linearly in l, solving for
xr,i can only yield a single solution. Because all the other assignment values stay the
same, this value θ is found by substituting the assignment values, except for xr,i, thus
creating the cjump(xr,i, l) operation.

It is noteworthy that the introduced equality cell jump operation can only solve
a certain class of equality constraints, namely constraints in which a variable occurs
linearly. But there might exist equality constraints in which no variable only occurs
linearly while still having rational equality solutions. Consider the simple literal
l =

(
x2 − y2 = 0

)
. This is trivially true for any x and y such that |x| = |y|, however

starting from a falsifying assignment, the equality cell jump operation could not find
a solution. Hence, this operation is not suitable for general equality constraints, yet it
is an easy way to cover a range of equality constraints.

Furthermore, it is important to note that if neither a single nor a multi cell-jump
operation is found for a constraint l and a set of direction vectors, it does not mean
that the constraint cannot be satisfied - only that no single variable can be adjusted
and under the considered directions no multiple variables can be changed to satisfy
l. Recall that Figure 3.5 shows two multi cell-jumps with direction vectors that do
not intersect the solution space. If only the two red direction vectors were considered,
then neither a single, nor a multi operation would have found a solution for l.

3.4 Heuristic
Given all types of operations, it is now left to rank the individual existing operations
created from the variables and literals from the input formula F , as well as the direction
vectors, to choose the best operation that brings F the closest to satisfaction. This
ranking has to be done heuristically as in the LS setting, there is no way to determine
which operation is the definitive best one.

Definition 3.4.1 (Heuristic Function). Let F be a formula, α an assignment and
OP the set of all existing operations for F under α. Then, a heuristic function is a
mapping h : OP → Q such that

h (op) > 0⇔ op is suitable to be used
h (op) ≤ 0⇔ op is unsuitable to be used

(3.7)

Heuristic 23

rates each operation.

In the following, the deployed heuristic will be described. Note that the heuristic
itself is easily exchangeable as it must only obey the requirements set by Definition 3.4.1.
The heuristic used in local search is based on a literal level that is then being projected
upwards through the formula. In the original approach by Li et al., the literals were
not weighted. However, we can use the formula itself to extract information about
the importance of certain literals. Hence, we use Jeroslow-Wang literal weights to
introduce a static component to the heuristic that yields an exponentially higher weight
to literals in shorter clauses, as well as a liner weight to the number of occurrences of
the literals.

Definition 3.4.2 (Jeroslow-Wang Literal Weights [JW90] [HV95]). Let F be a
formula, l a literal in F and Cl the set of clauses c ∈ F containing l. Then,

J (l) =
∑

c ∈ Cl

2−|c|

is the Jeroslow-Wang literal weight for l.

Using the literal weights from Definition 3.4.2, a heuristic score for each literal l
under the assignment α can be defined as the distance to truth.

Definition 3.4.3 (Distance to Truth [LXZ23]). Let l be a literal with literal weight
J (l), α an assignment and pp ∈ Q>0 and boffset ∈ Q>0 two positive parameters. Then,

dtt (l, α) = J (l) ·

0 if α is a solution to l
(|p (a1, ..., an)|+ pp) else if l is polynomial
(boffset + pp) otherwise/Boolean

is the distance to truth ddt(l, α).

The aforementioned distance to truth from Definition 3.4.3 is thus an altered
version of the polynomial-only idea introduced in [LXZ23] that also handles the case
of Boolean literals and utilizes literal weights. Intuitively, the distance to truth is 0 if
the current assignment satisfies the literal, otherwise it is a positive non-zero value
that depicts how far away the current assignment is from a satisfying assignment, as
well as how important the literal is based on the literal weights. The smaller a value
is, the heuristically closer this assignment is to satisfying the literal. The parameter
pp ∈ Q>0 assures that ddt(l, α) can only be 0 if and only if α � l while boffset is used
as an adjustment for the Boolean case for which an absolute polynomial value cannot
exist.

The literal heuristic scores from Definition 3.4.3 can now be lifted to the clause
level such that a clause is satisfied under an assignment if and only if the heuristic
score for this clause is 0. Again, the smaller a heuristic score for a clause is, the
heuristically closer the current assignment is to satisfying the clause.

Definition 3.4.4 (Distance to Satisfaction [LXZ23]). Let c ∈ F be a clause in a
formula F and α an assignment. Then,

dts (c, α) = min
l∈c
{dtt (l, α)}

is the distance to satisfaction dts(c, α).

24 Local Search

Similarly to the literals, we want to put emphasis on certain clauses. Recall that
local search works in iterations that always change the assignment. Hence, we want
to capture which clauses are harder to satisfy, i.e. which clauses stay unsatisfied for
multiple iterations. For this, clause weights following the PAWS scheme [TPBFJ04]
are used in which clause weights are changed in update iterations.

Definition 3.4.5 (Clause Weights). Let c be a clause in formula F . Then, w(c) ∈ Q
is the clause weight for c.

The clause weights are initialized with the value 1 for each clause. Then, they can
be updated as described in Definition 3.4.6.

Definition 3.4.6 (Clause Weight Updates PAWS [TPBFJ04], [CS13], [LXZ23]).
Let sp ∈ (0,1) be a smoothing probability, α an assignment, c ∈ F a clause and wi(c)
the clause weight in update iteration i. Then,

wi+1(c) =

wi(c)− 1 with probability sp if α � c ∧ wi(c) > 1

wi(c) + 1 with probability 1− sp if α 6� c

wi(c) otherwise
(3.8)

is the new clause weight for c.

The clause weights according to the PAWS scheme pose a dynamic setting for
the decision heuristic used in local search. Due to the probability sp, local search
might behave differently for the same formula instance F in multiple runs. Finally,
the combination of clause weights and distance to satisfaction yield the final heuristic
described in Definition 3.4.7.

Definition 3.4.7 (Local Search Heuristic [LXZ23]). Let op be an operation, α the
current assignment and α′ the assignment after performing op. Then,

h (op) =
∑
c∈F

(dts (c, α)− dts (c, α′)) · w (c)

is the heuristic score an operation.

It is easy to see that the introduced heuristic in Definition 3.4.7 obeys the require-
ments set in the Definition 3.4.1 for a heuristic function. In conclusion, the heuristic
tries to incorporate solving the formula by using the distances to truth and satisfaction,
the importance of selected clauses by using dynamic clause weights and the importance
of clause lengths and number of literal occurrences by employing literal weights.

Chapter 4

Algorithm

This chapter covers the algorithm briefly introduced in Section 3.1 in more detail, in
particular Chapter 4 shows what improvements were made to the initial idea, which
internal parameters exist for local search and which sets of internal settings were
used for them. Finally, this chapter also covers how to implement local search in
pseudo-code.

4.1 Improvements
Starting from the initial approach as presented in Section 3.1, the following improve-
ments are made to the procedure which is then presented in Algorithm 1. In addition,
the improvements can be disabled based on internal settings such that the local search
can be used for various applications such as a stand-alone solver, in an incremental
DPLL(T) architecture or as a combined solving strategy.

Restarts By the definition of the operations, the assignment α is only changed the
minimal amount in order to satisfy a given false literal. Intuitively, the local search
stays in fact local. Hence, returning unknown in step (4) from Definition 3.1.1 after
neither a single, nor a multi cell jump operation was found, is a drawback, as there
can still be solutions as previously stated. Thus, an improvement over the initial
design is that, instead of returning unknown, the search will be restarted at a different
assignment, where the new assignments follow the pattern: In the first restart, each
real variable is assigned the closest integer value to either its upper or lower bound
that satisfies the bound, if such a polynomial constraint exists in the input formula,
i.e. if a constraint a · x < bupper or a · x > blower (a ∈ Q \ {0} , b ∈ Q) exists. We do
not perform any processing to determine bounds that are not explicitly stated. In
the second to sixth restart, each real variable is assigned a random value in {−1, 1},
and in all subsequent restarts i, each real variable is assigned a random value in
[−50 · (i− 6), 50 · (i− 6)]. In particular, in the first subsequent restart (i = 7), we
obtain values in [−50, 50]. In the second subsequent restart (i = 8), we obtain values
in [−100, 100]. Intuitively, we widen the range in which assignment values are chosen
for each subsequent restart. In every restart, all Boolean values are initialized with
the default Boolean value which is set to true.

Using restarts, this ensures that the whole allotted time is actually being used for
searching instead of prematurely returning. It also allows for finding solutions that

26 Algorithm

would be impossible to find in the current state the solver is in. Intuitively, this means
that the current assignment corresponds to a point in the search space that is too far
away from a solution space for the formula such that a local operation will never reach
the solution space. This improvement has already been made by the initial authors of
the procedure [LXZ23].

Cycling Assignments Due to the nature of searching algorithms in combination
with changing weights, and thus a changing heuristic, it might happen that the
solver enters a loop or a long stretch alternating between cells and different points
in their respective cells. In order to prevent this, a forbidding strategy is employed.
This means that for any variable xi that has been changed, k following iterations
of operations cannot change the same variable xi in the opposite direction. Using
a forbidding map has also been introduced by the authors of the initial approach.
In addition to this, however, is the new functionality of disabling the forbidding
strategy after a set amount of restarts forbidding k. The reasoning behind this is
that after forbidding k restarts, there have been a number of iterations in which
no suitable operation was found that is obeying the forbidding strategy. Restarting
forbidding k times has not yielded any satisfactory results either, so maximizing the
amount of available operations has priority as the restarts have shown not to benefit
the search. Furthermore, it seems useful to distinguish between Boolean and real cell
jump operations such that they can be forbidden for a different amount of iterations.

Literal Weights The initial approach of the heuristic only contains clause weights.
It is, however, also important to factor in clause length. Due to the nature of CNF,
every clause needs to be satisfied. However, in shorter clauses, fewer literals are
available to be satisfied. Hence, instead of relying on the heuristic in general to satisfy
short clauses, Jeroslow-Wang literal weights [JW90] are used to give exponentially
higher weight to literals in shorter clauses which makes them more desirable to solve
using a dedicated operation.

Selection of Literals As an improvement proposed in the article [LXZ23], the
process of selecting literals to satisfy is also of importance to a fast algorithm. While
generating all cell jump operations for every false literal as shown in the initial ap-
proach yields the best operation from a given assignment, it might induce a lot of
computational overhead. Namely, solving a false literal in an already satisfied clause
is a valid operation, but it is very unlikely that the heuristic will score this operation
higher than an operation that satisfies a falsified literal in a currently falsified clause,
thus satisfying the clause. As an improvement, only falsified literals which are currently
contained in falsified clauses are considered when generating the cell jump operations.
Only if there exists no operation that the heuristic deems suitable, the falsified literals
in currently satisfied clauses are also considered.

Update of Clause Weights Due to the nature of the introduced local search
procedure, the clause weights will only be updated if there exists no single cell jump
operation. This, however, can lead to example runs in which the clause weights are
almost never updated, while certain clauses remain falsified throughout the search
as there is no added incentive to solve those certain clauses directly. Hence, as an

Settings 27

addition to the proposed initial approach, the clause weights will be updated every
clause k ∈ N iterations regardless of how many single cell jump operations exist.

Saving Clause Weights With more importance set to clause weights as described
in the previous paragraph, after a restart it might seem useful to not reset the clause
weights as well. This is to keep information about clauses that are hard to satisfy or
to keep satisfied such that the search from a new assignment does not need to re-learn
the importance of selected clauses.

Rational Roots Based on the introduced operations, if a polynomial constraint
is an equality constraint without any linear variable, local search in its pure form
would not be able to satisfy the constraint, even if a rational root were to exist for a
variable contained in the constraint. Hence, if the tool used for root isolation yields a
rational root r for an equality constraint, r is then also used as a normal sample point
to satisfy the constraint.

Incrementality To extend local search past a stand-alone solver, it can be updated
to be used in a DPLL(T) environment. In short, the original formula is transformed
into a Boolean skeleton for which a satisfying Boolean assignment is determined using
a SAT solver. Then, this Boolean assignment is lifted to the theory domain to check if
the corresponding literals in the original formula are consistent, i.e. if the conjunction
of literals expected to be satisfied as denoted by the Boolean assignment can be
satisfied in the theory. If it cannot be satisfied, the Boolean assignment is altered
slightly to a different satisfying Boolean assignment which then results in a slightly
different conjunction of literals to satisfy in the theory. For local search to be used this
way, as local search is run with slightly changing conjunctions of literals (i.e. clauses),
the assignment, as well as the current clause weights are kept so that they only need
to be updated for new clauses, literals and variables such that the search only needs
to incrementally satisfy a new constraint starting at the current assignment.

4.2 Settings
With local search and its improvements being dependent on multiple parameters, the
used settings for local search in general should be discussed. These settings are a result
of an initial guess which is then refined through multiple benchmarks as described in
Section 5.5. Multiple sets of settings are shown in Figure 4.1 for different use cases.
Settings1 is the initial set of values, Settings2 are the refined settings for local search as
a stand-alone solver. SettingsIncr. are the incremental settings derived from Settings2
for local search to be used in an incremental solving strategy. These are also tested in
the benchmarking Chapter 5.

In the settings, sp denotes the smoothing probability used for updating clause
weights as shown in Definition 3.4.6, clause reset is a Boolean deciding whether
clause weights should be reset if a restart occurred, pp and b offset are integer values
used for the heuristic in Definition 3.4.3, dir num denotes the number of direction
vectors generated to check for multi cell jump operations, forbidding disable is a
Boolean deciding if the forbidding strategy should be disabled after forbidding k
restarts, forbidding real and forbidding bool are integer values indicating for
how many iterations a real or Boolean valued variable is not to be updated according

28 Algorithm

Settings Member Settings1 Settings2 SettingsIncr.
sp 0.003 0.05 0.05
clause reset true true false
clause updates true true true
clause k 20 20 20
forbidding disable false true true
forbidding k 10 3 3
forbidding real 10 3 3
forbidding bool 10 3 3
pp 1 5 5
b offset 3 8 8
dir num 12 8 8
duration 30000 30000 500

Table 4.1: Local search settings used in benchmarking Chapter 5.

to the forbidding strategy, clause updates is a Boolean setting to use additional
clause updates, clause k is the interval in which additional clause updates are done
and lastly duration is the allotted time for local search in milliseconds.

While not being a drawback nor a setting, it is also important how the direction
vectors are generated. The direction vectors are calculated uniformly randomly such
that for each entry di of a direction vector d̄ the property di ∈ [−100, 100] holds.
These vectors are calculated once per iteration and are then used for all multi cell
jump operations in this single iteration.

4.3 Pseudo-Code Implementation
Finally, utilizing the mentioned improvements and settings yields Algorithm 1. It shows
the general pseudo-code of the main solving function, where f is the formula to solve,
α is the assignment, cW and lW are the clause weights respectively literal weights
used by the heuristic, and forbiddingMap is the map containing values forbidding
certain changes based on the forbidding strategy. Due to simplicity and readability,
the checking whether an improvement is disabled is portrayed by “based on settings”.
Furthermore, Procedure 1 and Procedure 2 are two auxiliary functions to generate
cell jump operations respectively update the necessary variables.

It is easy to see how the procedure in Algorithm 1 follows the guidelines set by
the initial approach, yet the only improvements that are easy visible are the restart
after not finding any operations, as well as the distinction between generating cell
jump operations using only literals in currently falsified clauses, or literals in only
satisfied clauses and the added updates of clause weights. The forbidding strategy is
only visible in the updates of the forbidding map, as well as an input parameter for
the generation of operations, while the literal weights solely occur as a parameter.

Pseudo-Code Implementation 29

Algorithm 1 Local Search Procedure in SMT-RAT
1: f, α, cW, lW, forbiddingMap, remaining time← initResources
2: while remaining time > 0 do
3: if α � f then
4: return sat, α
5: end if
6: if iteration is multiple of clause k based on settings then
7: cW← update clause weights using PAWS scheme
8: end if
9: dirs← ∅

10: for typeJump ∈ [single,multi] do
11: for typeClause ∈ [falsified, satisfied] do
12: if typeJump == multi ∧ typeClause == falsified then
13: dirs← generate direction vectors
14: cW← update clause weights using PAWS scheme
15: end if
16: ops, hops ← getOperations (typeJump, typeClause, dirs, cW, lW)
17: if ops 6= ∅ then
18: α, forbiddingMap← update (ops, hops, forbiddingMap)
19: goto while loop start
20: end if
21: end for
22: end for
23: α← restart search assignment
24: forbiddingMap← disable based on settings
25: cW← reset clause weights based on settings
26: end while
27: return unknown

Procedure 1 Construction of Operations
1: procedure getOperations(typeJump, typeClause, dirs, cW, lW)
2: ops← generate all typeJump cell jump operations
3: for literals in typeClause clauses using dirs if necessary
4: hops ← heuristically score each operation op ∈ ops using cW and lW
5: ops← delete op with hops[op] < 0
6: return ops, hops
7: end procedure

Procedure 2 Update Assignment and Forbidding Map Based on Given Operations
1: procedure update(ops, hops, forbiddingMap)
2: op← operation op ∈ ops with highest heuristic score hops [op]
3: not blocked by forbiddingMap
4: α← update model based on op
5: forbiddingMap← update forbiddingMap based on op
6: return α, forbiddingMap
7: end procedure

30 Algorithm

Chapter 5

Benchmarks

The local search procedure introduced in Chapter 4 is implemented as a module in
SMT-RAT, the SMT-Solver developed by the Theory of Hybrid Systems group at
RWTH Aachen University. Simulations were performed with computing resources
granted by RWTH Aachen University under project thes1685. For this, LuFG Theory
of Hybrid System’s own benchmarking tool BENCHMAX1 is used.

The benchmark set is divided into two main subsets. The first subset consists of
all QFNRA problem instances from SMT-LIB [BFT16] with status SAT, while the
second subset only contains self-generated problem instances with unknown status. It
is important to recall that local search can only prove satisfiability of formulas, but
not unsatisfiability. Hence, only benchmarking the satisfiable instances is important
in order not to waste computing time for instances known not to be solvable using
local search. To achieve benchmark results, all input instances are subject to be solved
with the implemented LS approach, as well as with SMT-RAT’s default strategy - a
strategy containing preprocessing, subtropical solving and MCSAT introduced by de
Moura and Jovanovic [dMJ13] as shown in Figure 5.1, or with an incremental approach
containing preprocessing, an incremental SAT solver, an optional local search module
and covering and CAD modules as depicted in Figure 5.2. The covering module
follows the approach presented by Ábrahám et al. [ADEK21]. Lastly, we will refer to
SMT-RAT’s default strategy as Default, and to the implemented local search approach
as Local Search or Incremental Local Search.

In the following, the two benchmark sets will be analysed independently for Local
Search. In addition, Local Search will be used as a solver in an incremental DPLL(T)
strategy and as a combined solver with Default. Lastly, Local Search benchmarks with
different settings will be shown indicating the effects of different parameter values.
All benchmarks were run with a memory limit of 4GB at a cut-off time of 30s using
Settings2 for Local Search introduced in Table 4.1 or SettingsIncr. for Incremental Local
Search. As per settings Settings2, Local Search is run for 30s, and any solving attempt
slightly above this threshold is still deemed a valid answer. Only if the execution time
of any solving strategy for any instance greatly exceeds 30s, it is seen as a timeout for
which 45s are set as the runtime.

1https://ths-rwth.github.io/smtrat/dd/d0f/benchmax.html

https://ths-rwth.github.io/smtrat/dd/d0f/benchmax.html

32 Benchmarks

Default-Strategy:
FPPMODULE

STROPMODULE
MCSATMODULE

Figure 5.1: Default strategy in SMT-RAT.

Incremental-Strategy:
FPPMODULE

SATMODULE
LSMODULE [optional]

COVERINGMODULE
CADMODULE

Figure 5.2: Incremental strategy in SMT-
RAT with optional Local Search.

In addition to intuitive plots, performance profiles as introduced in the article
[DM02] are also used to give a general overview of a solver’s performance and their
comparison to different solvers as the set of solvers S. In short, the ratio rp,s of a
solver’s s runtime tp,s to the best runtime for each instance p ∈ P for the problem set
P is calculated as

rp,s =
tp,s

min {tp,s | s ∈ S}
.

Note that if a solver s ∈ S cannot solve an instance p ∈ P, the ratio rp,s is set to
a parameter rM ∈ N which is sufficiently large. Then, the performance profile ρs(τ)
depicted in Figures 5.5, 5.9, 5.16 and 5.21 for a solver s ∈ S dependent on τ ∈ N is
calculated as

ρp(τ) =
1

|P|
· |{p ∈ P | rp,s ≤ τ}| ,

such that ρs(τ) indicates the percentage of instances with a ratio within a factor τ of
the best ratio. For example, the value at τ = 1 shows which solver performs the best
on all instances as the solver with the highest performance profile ρs(1) has the highest
percentage of instances solved within a ratio of 1, i.e. has the highest percentage of
instances with the best ratio. All other values for τ indicate how close a solver is at
solving instances within a given factor. Note that for τ → ∞, all solvers will reach
the same performance profile value, i.e. only a small range for τ is relevant dependent
on what is deemed competitive.

5.1 SMT-LIB-Benchmarks

The SMT-LIB benchmark set contains a multitude of different problem instances
varying in complexity and ease of solvability. In this section, the SMT-LIB instances
are solved by the default strategy as shown in Figure 5.1 and Local Search to determine
the effectiveness of Local Search. Recall that Local Search can only show satisfiability
of polynomial formulas, hence all shown benchmark results only contain the known
satisfiable instances from SMT-LIB.

SMT-LIB-Benchmarks 33

Total = 5248 LS30s Default30s
SAT 1798 4883
UNKNOWN 3403 0
Timeout 47 273
Memout 0 92

Table 5.1: SMT-LIB benchmark
results. Larger numbers marked.

Average [s] / [MB] LS30s Default30s
Time: Overall 20.01 3.30

-Solved 0.20 0.27
-Solved by both 0.17 0.08

Memory Overall 13.9 94.3
-Solved 6.0 15.7
-Solved by both 6.0 8.0

Table 5.2: SMT-LIB runtime and memory
averages. Smaller numbers marked.

Table 5.1 shows a general overview of the results from Local Search and Default on
the SMT-LIB instances. It is easy to see that Local Search performs underwhelmingly
with only 1798 solved instances compared to Default’s 4883, which corresponds to
36.8%. Noteworthy are also the timeout cases. These happen for instances in which
calculating the heuristic is especially slow, thus creating timeouts while testing a
potential operation near the time limit. Considering the average runtimes depicted in
Table 5.2, Local Search does not offer any improvement over Default. While the average
for solved instances is smaller for Local Search, as Local Search solves significantly
less instances, this cannot be seen as an improvement. Furthermore, on all instances
and instances solved by both strategies, Local Search takes considerably more time.

Figure 5.3 depicts all runtimes of Local Search and Default graphically showing
the runtime for each instance by both solvers. It is easy to see that the majority of
problem instances are solved within a very short amount of time by Local Search
and Default respectively, yet a trend in favour of the default strategy is also shown
indicating that Default performs much better on multiple instances. On the right,
there exists a large column showing the instances Default can solve, but not Local
Search. Furthermore, the column also shows that for these instances, Default has
various different solving times. Overall, the general performance measured on runtime
is shown in the performance profile depicted in Figure 5.5 with Local Search barely
reaching the 30% mark with more than a factor of 10 within the best solver’s times.
It also shows that Local Search is the better solving strategy in only approximately
15% of instances.

Only in the peak memory comparison shown in Figure 5.4 and 5.2 Local Search
performs consistently better than the default strategy. Local Search has a smaller peak
memory usage in 99.9% of instances and utilizes on average only 14.7% of Default’s
average. In fact, for some instances, the default strategy uses more than two orders of
magnitude more memory. It is important to note, however, that for instances that are
solved by both solving strategies, the difference between peak memory consumption is
a lot closer. In contrast to Default using a lot more memory than Local Search, there
are also a few instances in which Local Search and Default have approximately the
same peak memory usage, yet Default can solve them while Local Search cannot.

Lastly, not comparing Local Search to Default but for the interest of the reader,
Figure 5.6 shows the relation of used single cell jumps and multi cell jumps in the Local
Search for solved and unsolved instances. It is easy to see that the Local Search prefers
single cell jumps in almost all instances and thus, the focus for further improvements
should be set to single cell jumps. It is also shown that Local Search can only solve
problems if it uses relatively few cell jump operations. This indicates that the selection
heuristic might select cell jumps that are not too beneficial for the whole search or

34 Benchmarks

that a satisfying assignment needs a larger number of changes made to the initial
assignment.

Despite Local Search’s lack of solved instances, there are 17 instances that Local
Search can solve, but not Default. These instances are particularly interesting as they
offer an actual improvement over Default. For these, Local Search has an average
runtime of 3.4s and utilizes 6.2MB of memory. A closer look at those instances yields
that they are mostly meti-tarski atan and sin problems for which distinguishing
characteristics could not be found. However, the other instances have a relatively
high average variable degree. Logically, Local Search only has to isolate roots of
polynomials, but not perform extensive work with them. Thus, in the following
Section 5.2, instances with high polynomial degree will be analysed. Still, Local Search
does perform very poorly on SMT-LIB instances and is not a viable stand-alone solver
for instances similar to those covered by SMT-LIB.

Figure 5.3: Scatter plot comparing run
times between Local Search and Default
for SMT-LIB instances.

Figure 5.4: Scatter plot comparing
peak memory consumption between Local
Search and Default for SMT-LIB instances
distinguished by the solvers’ answers.

Figure 5.5: Performance profile for SMT-
LIB instances regarding runtime compar-
ing Local Search and Default.

Figure 5.6: Scatter plot showing the num-
ber of cell jumps used by Local Search for
solved (blue) and unsolved (red) instances.

Generated Benchmarks 35

5.2 Generated Benchmarks
The generation of problem instances with high polynomial degree follows the generation
described in the article [LXZ23]. In short, a random instance is generated obeying the
following rules in which rand(a, b) denotes a uniformly distributed random integer in
[a, b]. Firstly, base conditions for the construction of a single instance are defined.

1. Generate vn = rand(30, 40) variables

2. Define number of polynomials polnum = rand(60, 80)

3. Define number of clauses clnum = rand(40, 60)

Then, the instance is constructed as follows.

1. Generate polnum polynomials such that each polynomial pi (i ∈ {1, ..., polnum})
is independently constructed as follows

(a) Define number of variables in polynomial ni = rand(10, 20) to be taken
randomly from vn

(b) Define degree of the polynomial di = rand(20, 30)
(c) Define number of monomials in the polynomial mi = rand(20, 30)
(d) Generate mi monomials Mj such that the first monomial M1 has degree di

and all other monomials have a degree less or equal to di.
(e) Construct polynomial pi as pi =

∑mi

j=1 cj ·Mj + c0 for coefficients cj =

rand(− 1000, 1000) ∀ j ∈ {1,...,,mi}

2. Generate clnum clauses independently as follows:

(a) Define number of literals in clause litnum = rand(3, 5)
(b) Take litnum polynomials pi with a randomly added relation <, > or = each.

If equality is chosen, then check if at least one variable is contained solely
linearly in pi. If this is not the case, substitute the relation with < or >.

This procedure generates instances with high polynomial degree, yet also an easy
Boolean abstraction. Intuitively, the hard part about solving those instances is finding
points that make selected literals satisfied, not the selection of literals to satisfy. It is
important to note that the degrees of the variables in the polynomials are relatively
evenly distributed and are not biased towards certain variables, i.e. no variable in
any monomial should have a significantly higher degree than the other variables.
Furthermore, these instances are not checked to be satisfiable beforehand, hence there
is no selection process of satisfiable instances in contrast to the SMT-LIB benchmark
Section 5.1. This is because other solvers struggle with these instances, but using
Local Search to pre-select satisfiable instances would skew the benchmark results in
favour of Local Search.

A general overview of the benchmark results can be found in Figure 5.3 showing
the behaviour of Local Search in 30 seconds, as well as Default in 120 seconds for
generated instances. Figure 5.7 shows the runtime of Local Search for the generated
instances. It is easy to see that the Local Search outperforms Default massively. In
fact, Default cannot solve a single instance with four times the allotted time because
it exceeds the memory limit of 4GB for every instance. Even without a memory limit,

36 Benchmarks

Total = 500 LS30s Default120s
SAT 393 0
UNKNOWN 107 0
Timeout 0 0
Memout 0 500

Table 5.3: Generated instances bench-
mark results. Larger numbers marked.

Average [s] / [MB] LS30s Default120s
Time: Overall 16.50 120.00

-Solved 12.90 -
-Solved by both - -

Memory Overall 7.6 4183.8
-Solved 7.6 -
-Solved by both - -

Table 5.4: Runtime and memory averages
for generated instances. Smaller numbers
marked.

Figure 5.7: Cumulative plot for gener-
ated instances depicting the number of
instances solved after a certain time.

Figure 5.8: Local search peak memory us-
age for generated instances sorted by mem-
ory consumption.

every solving attempt by Default times out. Hence, Default is in no way competitive
to Local Search in terms of these generated instances and is easily beaten by the Local
Search. The runtimes depicted in Figure 5.7 show that even Local Search can run
into timing problems when evaluating those generated instances. Even while Local
Search was able to solve a great amount of instances, these instances are still hard to
solve for it and can require almost all of the allotted time or even more resulting in a
timeout. Local Search is, however, not limited by its memory consumption in contrast
to Default, as shown in Figure 5.8.

Mainly because of the results shown in Figure 5.3, a fine comparison between the
Local Search and the currently employed default strategy is not possible. Hence, a new
set of generated instances is set up such that the instances are easier to solve. The
changes that were made include limiting the number of clauses from [40, 60] to [20, 40],
decreasing the polynomial degree from [20, 30] to [2, 6] and reducing the number of
monomials from [20, 30] to [3, 5]. Because these instances are easier to solve, the
benchmarks were now run with a time limit of 30s for both Local Search, as well as
Default.

A general overview of the results for the easier generated instances can be found in
Table 5.5. It is easily noticeable that Default now solves a lot more instances, namely
290, and does not reach its memory limit. Local Search, however, also extends its
effectiveness to solve these instances to the full benchmark set. Figure 5.10 depicts

Generated Benchmarks 37

the absolute runtime comparison between Local Search and Default for all instances,
Figure 5.6 shows average runtimes and peak memory usage for Local Search and
Default. Excluding timeouts for Default, most of the runtime values are slightly
skewed in favour of Default. In fact, Default was faster in about 71% of instances
solved by both solvers. However, due to large runtime differences for same instances in
favour of Local Search, for instances that Local Search and Default could both solve,
the average time is smaller for Local Search. Still, the majority of solved instances are
solved within 5s by both Local Search and Default.

Total = 500 LS30s Default30s
SAT 500 290
UNKNOWN 0 0
Timeout 0 210
Memout 0 0

Table 5.5: Benchmark results for gener-
ated easier instances. Larger numbers
marked.

Average [s] / [MB] LS30s Default30s
Time: Overall 1.42 20.04

-Solved 1.42 1.96
-Solved by both 1.54 1.96

Memory Overall 6.4 18.6
-Solved 6.4 12.6
-Solved by both 6.4 12.6

Table 5.6: Runtime and memory averages for
generated easier instances. Smaller numbers
marked.

The mentioned Figures 5.10 and 5.12 also show the dependency on the sum of
polynomial degrees. It is easy to see that this factor is important to both Default and
Local Search. The higher degree an instance contains, the larger the peak memory
consumption. The same trend is also shown for the run times. The higher the sum of
polynomial degrees, the longer the runtimes.

The performance profile depicted in Figure 5.9 in regards to runtime show that
Local Search quickly dominates Default and that around 75% of instances can be solved
by Local Search in at most twice the time of the best time for each instance. It also
shows that Default is not able to get close to the Local Search as only approximately
50% of instances are solved within 14 times the best solver’s time and that Local
Search is the better solver in approximately 60% of instances.

Furthermore, Local Search uses considerably less memory than Default as shown in
Table 5.6, Figure 5.11 and Figure 5.12. On average, Local Search uses approximately
52.6% of Default’s memory for the same instance. However, the smallest memory usage
percentage is 22.9% while the highest is 71.0%. It is also noteworthy that the Local
Search scales easily with harder generated instances. Recall that Figure 5.8 shows the
memory usage for the harder generated instances which averages to approximately 7.6
MB per instance. The easier generated instances average to 6.4 MB for Local Search.
This is only an increase of nearly 18%, while Default spikes from an average of 18.6
MB to more than 4 GB resulting in a memory abort.
It is also noteworthy that in no instance, Local Search had a higher peak memory
usage than Default. Furthermore, the memory consumption of Local Search stays
relatively consistent, while the memory consumption of Default spikes more than an
order of magnitude making it less predictable. In addition to this, as shown in Figure
5.11, there exists a split between instances only Local Search can solve and instances
both solvers are able to solve. The instances only Local Search can solve yield a higher
peak memory usage for Default in comparison to instances both solver can solve.
In the end, it is concluded that Local Search still outperforms Default on easier

38 Benchmarks

generated instances, however not as drastically as for the harder generated instances.
It is easy to see that a main advantage of Local Search is the handling of high degree
polynomials with a great amount of monomials where the Boolean abstraction of
formulas is not that complex. Furthermore, the scalability of Local Search is shown
indicating that it might also solve problem instances with even higher degree than the
introduced hard instances.

Figure 5.9: Performance profile for gen-
erated easier instances regarding runtime
comparing Local Search and Default.

Figure 5.10: Scatter plot runtime compari-
son for generated easier instances between
Local Search and Default for all instances
dependent on sum of constraint degree.

Figure 5.11: Scatter plot peak memory
usage comparison for generated easier in-
stances between Local Search and Default
for all instances.

Figure 5.12: Scatter plot peak memory
usage comparison for generated easier in-
stances between Local Search and Default
for all instances dependent on sum of con-
straint degree.

Incremental Local Search 39

5.3 Incremental Local Search
A theoretical benefit of the local search approach is that it can find solutions to hard
problems relatively fast and easily by chance instead of requiring extensive work before
useful information is found. Furthermore, Local Search is easily adaptable to be used
incrementally as shown in Section 4.1. Hence, Local Search’s effectiveness used in an
incremental approach is to be tested on the SMT-LIB instances. For this, we compare
Local Search in a DPLL(T) approach with a pure DPLL(T) approach not containing
Local Search. The used strategies for this are shown in Figure 5.2 and will be referred
to as Incremental Local Search (Incr. LS) and Incremental (Incr.) respectively.

Table 5.7 shows general information about Local Search used in a DPLL(T) strategy
for SMT-LIB instances. Note that Incremental Local Search performs slightly worse
with 110 solved instances less and more timeouts. In addition to this, Incremental
Local Search also takes more time to solve an instance in general. As shown in
Table 5.8, the average time to solve an instance for Incremental Local Search is more
than three times greater than the average time to solve an instance for Incremental.
Considering instances solved by both strategies even yields an average more than four
times greater.

Figure 5.13 depicts this graphically showing the run times for Incremental Local
Search and Incremental in relation to each other. Noteworthy is that the approach
including Local Search was able to solve easy instances consistently in less time than
Incremental. This is shown in the left of Figure 5.13. However, once the Local Search
part of Incremental Local Search is not able to find a solution easily, Incremental
is advantageous as it does not have the added drawback of running Local Search
without it finding a solution. This behaviour can be seen in the middle part of Figure
5.13 in which columns with a spacing of the Local Search’s maximum run time are
depicted indicating that the Local Search part was not able to find a solution, but
Incremental could. Lastly, to the far right is a column which depicts that there are
multiple instances the Incremental could solve within various time frames, but not
Incremental Local Search. Still, there are 9 instances that were only solved by the
Local Search part in Incremental Local Search, but not by Incremental.

Figure 5.16 shows the overall performance profile based on the run times of
Incremental and Incremental Local Search. Most importantly, it is shown that the
Incremental Local Search is the better solving strategy in only around 22% of instances.
In contrast to the previously shown performance profiles, the worse solver performs
better within the same range of factors τ , i.e. it shows that the difference of solved
instances is a lot smaller and that also the runtime differences for these instances
is not too drastic. This is also shown in Figure 5.15 showing the number of solved
instances per time.

In contrast to the results from Sections 5.1 and 5.2, Incremental Local Search
does not have a large advantage in regards to memory consumption as shown in
Figure 5.14, which plots the peak memory consumption for both solving strategies
per instance. Both solving strategies utilize around the same peak memory. It is
noteworthy, however, that there are multiple outliers for both Incremental Local Search
and Incremental which skew the average in favour of Incremental Local Search. In
fact, Incremental Local Search used less memory in only 36.0% of all instances.

In the end, using Local Search in an incremental strategy has not shown to be
beneficial over a pure incremental strategy, although the result differences between
the used strategies is not as drastic as in the previous sections.

40 Benchmarks

Total = 5248 Incr. LS30s Incr.30s
SAT 4678 4788
UNKNOWN 5 7
Timeout 422 313
Memout 143 140

Table 5.7: Benchmark results for SMT-
LIB instances using a DPLL(T) ap-
proach. Larger numbers marked.

Average [s] / [MB] Incr. LS30s Incr.30s
Time: Overall 5.35 3.51

-Solved 0.72 0.20
-Solved by both 0.70 0.16

Memory Overall 15.9 16.1
-Solved 8.3 13.2
-Solved by both 8.2 8.3

Table 5.8: Runtime and memory averages
for SMT-LIB instances using a DPLL(T) ap-
proach. Smaller numbers marked.

Figure 5.13: Scatter runtime comparison
for SMT-LIB instances on a DPLL(T) ap-
proach.

Figure 5.14: Scatter memory comparison
for SMT-LIB instances on a DPLL(T) ap-
proach.

Figure 5.15: Cumulative plot for SMT-
LIB instances depicting the number of in-
stances solved after a certain time for a
DPLL(T) approach.

Figure 5.16: Performance profile for a
DPLL(T) approach regarding runtimes for
SMT-LIB instances.

Combined Solver 41

5.4 Combined Solver

As shown in Section 5.1 and Section 5.3, there are a few instances from SMT-LIB that
Local Search can solve, but neither Default, nor Incremental can. Section 5.1 also
shows that Local Search is not a viable solver for instances similar to those covered
by SMT-LIB. However, combining Local Search and Default to a combined strategy,
referred to as Combined, might yield results beating each individual solving strategy.
We create different instances of this combined strategy in which we use Local Search
for a different time t ∈ [2s, 5s, 10s, 15s] and Default for the remaining (30− t)s, referred
to as Combinedt or Combt. It is noteworthy that the following results are constructed
out of Local Search’s and Default’s individual 30s runs on the SMT-LIB and easier
generated benchmark sets.

Total = 5248 Default30s Comb2s Comb5s Comb10s Comb15s
SAT 4883 4888 4889 4887 4881

– Default 4883 3122 3108 3096 3087
– LS 0 1766 1781 1791 1794

UNKNOWN 0 0 0 0 0
Timeout 273 268 267 269 275
Memout 92 92 92 92 92

Table 5.9: Benchmark results for SMT-LIB instances using Default and Combined
with various times for Local Search. Larger numbers marked.

Total = 500 Default30s Comb2s Comb5s Comb10s Comb15s
SAT 290 473 499 499 500

– Default 290 51 16 5 0
– LS 0 422 483 494 500

UNKNOWN 0 0 0 0 0
Timeout 210 27 1 1 0
Memout 0 0 0 0 0

Table 5.10: Benchmark results for easier generated instances using Default and
Combined with various times for Local Search. Larger numbers marked.

Table 5.9 shows a general overview over the results from the SMT-LIB benchmark
set. It is noteworthy that all combined solving strategies except Comb15s solve more
instances than Default. For SMT-LIB, Comb5s solves the most instances with a total
improvement of 6 instances. Table 5.10 shows the corresponding results for the easier
generated instances. It is easy to see that for those instances, every combined solving
strategy outperforms Default. In fact, Comb15s solves all instances and is thus on
the same performance level as Local Search. However, Combined using 5s and 10s
respectively only solve a single instance less. Based on total numbers, Comb5s is the
strongest Combined approach beating Default on both SMT-LIB and easier generated
instances.

42 Benchmarks

Average [s] / [MB] Def.30s Comb5s
Time: Overall 3.30 6.26

-Solved 0.27 3.41
-Solved by both 0.23 3.42

Memory Overall 94.3 93.5
-Solved 15.6 14.9
-Solved by both 15.6 15.0

Table 5.11: Runtime and memory aver-
ages for SMT-LIB instances using De-
fault and Combined with 5s for Local
Search. Smaller numbers marked.

Average [s] / [MB] Def.30s Comb5s
Time: Overall 20.04 1.43

-Solved 1.96 1.35
-Solved by both 1.96 1.47

Memory Overall 18.6 6.6
-Solved 12.6 6.6
-Solved by both 12.6 6.8

Table 5.12: Runtime and memory averages
for easier generated instances using Default
and Combined with 5s for Local Search.
Smaller numbers marked.

Table 5.11 shows the average runtimes and peak memory consumption for Default
and Comb5s on SMT-LIB instances. Default consistently has a smaller average runtime,
even averaging approximately half of Comb5s’s average’s runtime. In particular, on
instances solved by both solving strategies, Default’s average time is only 6.7% of
Comb5s’s corresponding average runtime. Only in peak memory consumption is
Comb5s slightly advantageous to Default in regards to averages for SMT-LIB instances.
Considering the runtime and memory averages from Table 5.12 for the easier generated
instances yields that Comb5s beats Default in every category.

Figure 5.17: Scatter runtime comparison
for SMT-LIB instances using Default and
Combined with 5s for Local Search.

Figure 5.18: Scatter runtime comparison
for easier generated instances instances us-
ing Default and Combined with 5s for Lo-
cal Search.

Lastly, Figure 5.17 and Figure 5.18 depict the runtime comparison on an instance
basis for Comb5s and Default. They also show whether the Local Search part, the
Default part, or neither part solved an instance. In SMT-LIB instances, the runtimes
in the Local Search part are skewed in favour of Default while remaining small.
Furthermore, the curved line on the right depicts the instances solved by the Default
part in Combined for which many were solved in a short amount of time once the
Default part was consulted. Lastly, the instance that Combined could solve, but not
Default itself, are depicted at the very top.

It is easy to see that Comb5s solves a lot more instances in the easier generated
benchmark set as shown in Figure 5.18. These instances are again shown at the very

Settings 43

top. It is also noteworthy that a few instances are solved by the Default part depicted
on the right.

Overall, the results show that Comb5s offers an improvement over Default in both
SMT-LIB and generated instances by slightly increasing the amount of solved instances
for SMT-LIB and greatly increasing the number of solved generated instances. Only
the worse runtimes for Comb5s are disadvantageous.

5.5 Settings
With Local Search being dependent on a multitude of parameters, it is also important
to see how different settings affect Local Search’s ability to solve formulas. Recall that
Table 4.1 shows different sets of settings for the parameters. Settings1 is the initial
set of parameter values based on the values presented in the article [LXZ23]. In this
section, Local Search with its initial settings (LS1) will be compared to Local Search
with improved settings (LS2), depicted in Figure 4.1 as Settings2, to show why the
improvements were made and how they improve Local Search’s performance.

Total: 5248 LS1,30s LS2,30s
SAT 1699 1798
UNKNOWN 3499 3403
Timeout 50 47
Memout 0 0

Table 5.13: Benchmark results for SMT-
LIB instances using using Local Search
with Settings1 and Settings2. Larger
numbers marked.

Average [s] / [MB] LS1,30s LS2,30s
Time: Overall 20.58 20.01

-Solved 0.20 0.20
-Solved by both 0.13 0.10

Memory Overall 13.88 13.87
-Solved 5.98 5.98
-Solved by both 5.98 5.97

Table 5.14: Runtime and memory averages
for SMT-LIB instances using Local Search
with Settings1 and Settings2. Smaller num-
bers marked.

Figure 5.13 shows a general overview of the benchmark results. The improved
settings can solve 99 more instances and thus offer an overall improvement without
creating too much additional memory overhead. It is noteworthy that these are just
the absolute values. LS1 can solve 31 instances that LS2 cannot, while LS2 can solve
130 instances LS1 is not able to solve. In addition, LS2 needs less time to solve an
instance on average for instances solved by both sets of settings as shown in Figure
5.14. But for instances that are solved by Local Search with either settings, there is no
distinguishable time difference. It is noteworthy, however, that the run times for both
sets of settings vary strongly on an instance basis, without skewing in favour of one set
of settings not considering unsolved instances. This behaviour is shown in Figure 5.19.
Most of the instances are still solved within a second. In terms of memory, no set of
settings shows a distinct advantage over the other. For most instances, both solvers
tend to use the same amount of memory, there are only a few instances in which set of
settings outperforms the other. These instances also use very little memory, as shown
in Figure 5.20. Hence, the new improved set of settings can solve more instances in
the same amount of time without requiring more memory making Local Search with
Settings2 the better overall solver as shown in the performance plot depicted in Figure
5.21. It also shows that the improved set of settings is better in approximately 25% of
all instances, while the initial settings were advantageous in only 11%.

44 Benchmarks

Figure 5.19: Runtime scatter plot for Local
Search on SMT-LIB instances using Local
Search with Settings1 and Settings2.

Figure 5.20: Memory scatter plot for Local
Search on SMT-LIB instances using Local
Search with Settings1 and Settings2.

Figure 5.21: Performance profile for Local Search with Settings1 and Settings2 regard-
ing runtimes for SMT-LIB instances.

After considering the results from Table 5.15 for the initial set of settings LS1, it is
clear that a lot of operations were forbidden by the forbidding strategy thus creating a
lot of forced restarts. Because of this, the parameters for the forbidding strategy were
changed in order to forbid fewer operations. The forbidding strategy is to be disabled
after a few iterations while it forbids operations for fewer iterations still. In addition to
this, through changes made to SP, PP and B OFFSET, a finer distinction of suitable
operations was to be expected. Together, this led to a drastic decrease in forbidden
operations, but also to a decrease in forced restarts for both general solved instances
and instances solved by both sets of settings. However, the needed iterations and single
operations actually increased slightly in instances that were generally solved. This is
acceptable though because a lot of instances were solved in addition to the initial set
of settings. Compared to instances that were solved by both sets of settings, however,
the needed iterations and single operations were decreased. Furthermore, more multi
operations were found to solve instances that could not be solved previously, but they
do not benefit Local Search in instances previously solved already. In addition to this,
Boolean operations have not shown to be beneficial or influential.

These improved settings were then altered to be used in a incremental setting by

Settings 45

adjusting the time based on the mean solving time for solvable instances and disabling
clause weights resets such that Local Search can keep information learnt from previous
solving attempts to be used in the next incremental call for a similar formula.

Average [1] LS1,30s LS2,30s
Iterations 23145.2 42161.4

-Solved 31.5 35.8
-Solved by both 21.7 12.8

Forbidden Operations 72434.8 40.2
-Solved 65.8 3.2
-Solved by both 42.8 2.3

Forced Restarts 12040.3 11304.8
-Solved 10.9 9.1
-Solved by both 7.4 2.8

Single Operations 11081.6 30705.0
-Solved 19.3 24.9
-Solved by both 13.1 8.7

Multi Operations 12.8 151.1
-Solved 0.3 0.8
-Solved by both 0.3 0.3

Boolean Operations 3.6 6.7
-Solved 0.4 0.4
-Solved by both 0.2 0.3

Table 5.15: Averages for SMT-LIB instances using Local Search with Settings1 and
Settings2 for Local Search specific statistics. Smaller numbers marked.

46 Benchmarks

Chapter 6

Conclusion

Local search following the ideas proposed in the article [LXZ23] is a heuristical
approach for solving quantifier-free non-linear real arithmetic problems. While the
search space for these kind of problems is infinite, through the means of Tarski’s decision
procedure [Tar51] or Cylindrical Algebraic Decomposition [Col74], it is possible to
decide each problem using only finitely many sample points from the infinite domain.
However, constructing these points is computationally expensive. Hence, the local
search approach uses a heuristic to jump from one sample point to another such that
the new point satisfies at least one previous falsified literal without the need to do
lots of hard computations. For this, cell jump operations are introduced to alter the
assignment to either change a single variable, or multiple variables at once. Local
Search was then tested on various instances from SMT-LIB, as well as self-generated
instances with different properties, to determine its effectiveness.

6.1 Benchmarks
Following the results from Sections 5.1, 5.2, 5.4 and 5.3, it is easy to see that Local
Search does not offer any benefit in SMT-LIB instances as a stand-alone solver. Local
Search only solves a fraction of all tested instances and just over a third of instances
solved by Default. Furthermore, it does not offer any runtime improvements for the
solved instances over Default. Only in peak memory usage Local Search outperforms
the default strategy, yet solving instances is much more important than using less
memory in most applications.

Using Local Search in an incremental strategy for SMT-LIB instances has also
shown to be not beneficial, yet the differences to the pure incremental strategy are a
lot smaller. Local Search is favoured for small and easy instances in the incremental
approach, yet once it cannot find a solution, it adds a lot of computational overhead
increasing the average run times. In addition, Local Search does not have an advantage
in memory consumption either.

Only in the generated instances Local Search performs very well as a stand-alone
solver in contrast to Default. For the harder instances, Local Search is able to solve
78.6% of all instances within 30s while Default is not able to solve a single instance.
This is because it exceeds the memory limit of 4GB. Even without a memory limit, the
default strategy is still not able to solve any instance within 120s. After reducing the
polynomial complexity of these instances, Default is able to solve 57.6% of all instances

48 Conclusion

while Local Search solves every instance. Furthermore, Local Search has a smaller
average runtime and uses less memory. Hence, Local Search outperforms Default by a
large amount making Default not viable for any of the generated instances.

In addition to this, testing Local Search on a different set of settings has shown
to produce different results for SMT-LIB instances. While not changing the memory
usage of Local Search, the absolute amount of solved instances could be increased.
Local Search with improved settings is able to solve 4.3% more instances posing a
great improvement without altering the core idea of the local search approach.

Lastly, a combined approach of Local Search and Default has yielded a strategy that
outperforms Default on both SMT-LIB and easier generated instances. Combined5s
solves 6 more instances in SMT-LIB and 209 more instances for the easier generated
benchmark set. Only the runtimes for the combined approach favour Default.

6.2 Discussion

Local Search’s simplicity is also its drawback. It only needs to isolate roots of
polynomials, but it does not need to perform extensive work with the roots. It
does not calculate resultants as an example, nor does it have the ability to calculate
infeasible subsets. It does not generate lemmas or propagates implicit information.
Local Search is a lightweight, incomplete procedure which can be run for a short
amount of time to potentially find a solution to a hard problem.

Because Local Search does not need to store much additional information besides the
current assignment, its peak memory usage stays considerably smaller than Default’s
and does not change over time based on information learnt. Hence, it also easily scales
with larger instances. In addition to this, because Local Search does not perform
extensive work as previously mentioned, it does not run into problems with high
degree polynomials as soon as the default strategy. Combined with an easy Boolean
abstraction as in the generated instances, Local Search reaches its peak performance
as a stand-alone solver. Compared to SMT-LIB instances which are relatively small in
polynomial degree, but have a hard Boolean abstraction, Local Search cannot use its
advantage to do easier work because of the smaller polynomial degree, but will also
have to restart multiple times because it might run into assignments from which it
cannot find a solution using the defined operations and heuristic because of the hard
Boolean abstraction. Furthermore, Local Search cannot learn from these restarts or
assignments like Default can. Not being able to use previous learnt information about
infeasible subsets, and in addition not learning from restarts, is a huge factor for Local
Search in a incremental strategy. It is shown that Incremental Local Search does not
perform as bad a Local Search in SMT-LIB, but it most importantly it does not offer
any improvement.

Lastly, most SMT-LIB and easier generated instances are solved within a short
amount of time for Local Search. As shown, it even solves instances unsolvable by
Default. Combining Local Search and Default yields promising results as Local Search
is only used for a short amount of time to cover many of its solvable instances, while
the remaining instances, which are mostly unsolvable for Local Search, are handled by
Default. Hence, this combined solver performs better than Default.

Summary 49

6.3 Summary
Stand-alone Local Search is a solving strategy that has only been shown to be very
effective for high degree polynomial formulas with easy Boolean abstraction. While
Local Search is able to solve a third of SMT-LIB instances, it is not deemed useful
for solving those as there are better and faster solvers and strategies for it. Local
Search, however, clearly outperforms every other used solving strategy on the generated
instances. Thus, for higher degree formulas, Local Search is the strategy to use, as
long as the Boolean abstraction stays relatively simple.

It is easy to see that Local Search as a stand-alone solver is not a do-it-all solver,
but highly specific for the use case of high degree polynomials. Hence, a possible
user should first determine if Local Search is a solver that might perform well on
the respective problem instance, i.e. if the problem instance has characteristically
many high degree polynomials such that Local Search can use its advantage over other
solvers. Only then Local Search is to be used to its fullest extend.

However, Local Search can be successfully used in a combined strategy with Default
to outperform the standard default strategy. It improves the amount of solved instances
within 30s for both SMT-LIB and easier generated instances. Hence, for any problem
instance the combined approach offers a greater chance of solving the instance.

Further work on Local Search could consist of finding a better heuristic to ensure
that the best operation is taken such that fewer restarts happen, as well as adapting
Local Search to be able to use equalities more efficiently especially in polynomials that
do not have a single linear variable. In addition to this, it might seem seem useful to
enforce bounds or single literal clauses pro-actively instead of just using them once in
a restart or in general incorporate information learnt along the execution.

50 Conclusion

Bibliography

[ADEK21] Erika Ábrahám, James H. Davenport, Matthew England, and Gereon
Kremer. Deciding the consistency of non-linear real arithmetic constraints
with a conflict driven search using cylindrical algebraic coverings. Journal
of Logical and Algebraic Methods in Programming, 119:100633, February
2021.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BO97] Frédéric Benhamou and William J. Older. Applying interval arithmetic to
real, integer, and boolean constraints. The Journal of Logic Programming,
32(1):1–24, 1997.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. Smt-rat: An open source c++ toolbox for strategic and
parallel smt solving. In Marijn Heule and Sean Weaver, editors, Theory
and Applications of Satisfiability Testing – SAT 2015, pages 360–368,
Cham, 2015. Springer International Publishing.

[Col74] George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition–preliminary report. SIGSAM Bull., 8(3):8090,
aug 1974.

[CS13] Shaowei Cai and Kaile Su. Local search for boolean satisfiability with
configuration checking and subscore. Artificial Intelligence, 204:75–98,
2013.

[DM02] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimiza-
tion software with performance profiles. Mathematical Programming,
91(2):201–213, Jan 2002.

[dMJ13] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiabil-
ity calculus. In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni,
editors, Verification, Model Checking, and Abstract Interpretation, pages
1–12, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[FOSV17] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan Tung Vu.
Subtropical satisfiability. In Clare Dixon and Marcelo Finger, editors,
Frontiers of Combining Systems, pages 189–206, Cham, 2017. Springer
International Publishing.

52 Bibliography

[HV95] J. N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of
Automated Reasoning, 15(3):359–383, Oct 1995.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability
problems. Annals of Mathematics and Artificial Intelligence, 1(1):167–187,
Sep 1990.

[LXZ23] Haokun Li, Bican Xia, and Tianqi Zhao. Local search for solving satisfia-
bility of polynomial formulas. In Constantin Enea and Akash Lal, editors,
Computer Aided Verification, pages 87–109, Cham, 2023. Springer Nature
Switzerland.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

[TPBFJ04] John Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira Jr.
Additive versus multiplicative clause weighting for sat. In AAAI, volume 4,
pages 191–196, 2004.

[Tse83] Grigori S Tseitin. On the complexity of derivation in propositional calculus.
Automation of reasoning: 2: Classical papers on computational logic
1967–1970, pages 466–483, 1983.

	Introduction
	Preliminaries
	Notation
	Evaluation

	Local Search
	Initial Local Search Approach
	Setup
	Operations
	Heuristic

	Algorithm
	Improvements
	Settings
	Pseudo-Code Implementation

	Benchmarks
	SMT-LIB-Benchmarks
	Generated Benchmarks
	Incremental Local Search
	Combined Solver
	Settings

	Conclusion
	Benchmarks
	Discussion
	Summary

	Bibliography

