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Abstract

Hybrid automata are a formalism for modeling systems with discrete and
continuous behavior. To check the safety of a hybrid system with non-linear
behavior, we calculate its set of reachable states. This thesis considers hy-
brid automata with urgent transitions, which require immediate action when
the transition is enabled. More precisely, we extend the HyPro library to be
able to analyze the reachability of urgent automata. Analyzing hybrid sys-
tems with non-linear behavior is not straightforward. One possibility is through
over-approximative �owpipe construction based on reachability analysis. Over-
approximation ensures that all possible states the system can reach are included
in the �owpipe and provide a robust safety check. Over-approximative calcula-
tions are useful for safety veri�cation. Another method that is extremely use-
ful for analyzing hybrid systems is under-approximative �owpipe computations.
The main goal of this thesis is to develop and present a method for computing
the �owpipes of a hybrid automaton with urgency, by over-approximating the
set minus operation, which is essential for urgent jumps. A critical aspect of this
process is the computation of the convex set minus of two polytopes. The set
minus operator is essential for the �owpipe construction method. The algorithm
proposed in this thesis is designed to handle the complexity of urgent automata
and ensures precise over-approximation of reachable states. We validate our
approach through a series of experiments and present results that demonstrate
the e�ectiveness and functionality of our method. This thesis contributes to the
�eld of hybrid automata by providing methods for analyzing urgent automata
and ensuring the safety of these systems.
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Chapter 1

Introduction

Hybrid automata are a powerful tool used for modeling systems that have both dis-
crete and continuous behavior. They accurately represent many real-world systems
which such behavior. One example of such a system is a bouncing ball, where the ball's
motion is continuous but the bounce with the ground is a discrete event. Another ex-
ample is a thermostat, which continuously monitors the temperature but switches the
heating or cooling system. This switch is a discrete change in the system's behavior.
Hybrid automata are also used in more complex systems such as automotive control
systems, aerospace navigation systems, medical equipment, robotics, and many oth-
ers [3]. Such complex systems, require safety and good performance. It is essential
to ensure, that the system does not reach bad or unsafe states, which could lead to
harmful outcomes for people or the environment.
In the context of hybrid automata, ensuring system safety involves analyzing the
reachable state sets of an automaton over time. One of the techniques to do so, is
through �owpipe construction. This technique uses geometric state set representation
to represent all possible states the system can reach as time evolves. Flowpipes
are crucial for visualizing and verifying the state space of a system, allowing one to
determine whether a system might enter an unsafe set of states. The key challenge
is to ensure that the constructed �owpipe accurately includes all potential behaviors
of the system. Safety analysis typically focuses on over-approximating the reachable
states to guarantee that all possible behaviors are captured. Over-approximation
ensures that if the �owpipe does not intersect with an unsafe set of states, then the
actual system is safe. Conversely, under-approximation, which captures only a subset
of possible behaviors, can be useful for identifying speci�c safe behaviors. However,
under-approximation is not suitable for safety veri�cation, as it may miss unsafe state
sets because it does not include all possible behaviors of the system.
In many real-world applications, certain transitions must occur immediately when
speci�c conditions are met. An example for that, is a vehicle that has to brake in
certain positions. When the vehicle reaches these positions, it must brake for a sec-
ond and then continues moving. These types of transitions are known as urgent.
Traditional hybrid automata models do not consider such urgency, potentially lead-
ing to inaccuracies in the safety analysis. In this thesis, we introduce the concept of
urgent hybrid automata, which extends traditional hybrid automata to include ur-
gent transitions. In urgent hybrid automata, urgent transitions are prioritized over
other transitions, ensuring that they are executed immediately when their conditions
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are met. This allows for more accurate modeling of systems that require immedi-
ate responses to certain events. For example, in an emergency braking system of a
car, a transition from normal driving to emergency braking must occur immediately
upon detecting an obstacle at a close distance. Traditional models might delay this
transition, failing to capture the urgency required for accurate safety analysis.
To analyze the reachability analysis of urgent hybrid automata, we need to modify the
�owpipe construction process to handle immediate transitions e�ectively. A critical
mathematical operation in this analysis is the convex set minus operation of two
convex sets.
The main goal of this thesis is to create an algorithm to compute the convex set
minus of two polytopes. In our approach, we focus on the set minus operator using
over-approximation. However, we also present a method for the set minus operator
using under-approximation, to identify speci�c safe trajectories.
The thesis begins with a chapter of related work 2 that provides an overview of existing
methodologies for analyzing hybrid automata, with a focus on urgent transitions and
reachability analysis. We then introduce in Chapter 3 the necessary mathematical
background and preliminaries. In Chapter 4, we mention some background context
about the HyPro library that is used and extended in this thesis. In Chapter 5, we
introduce the concept of a convex set minus operator of two convex sets. Afterward,
we present three di�erent example scenarios and how the result of the convex set minus
operator is in each case. Before introducing the pseudocode, we provide additional
de�nitions and lemmas to prove the correctness of the algorithm. Then we present in
detail the implemented code and analyze the runtime complexity of the algorithm. In
Section 5.2, a method for under-approximating the �owpipes is presented. We discuss
the motivation behind the under-approximation and continue with an example. At
the end of that section, we show the algorithm that is implemented in the library.
Lastly, in Chapter 6, the experimental results are presented. These results have been
created and used to show the correctness and e�ciency of the proposed algorithm.
Three di�erent cases of the over-approximation algorithm are illustrated. We show
the di�erence on the �owpipes when the jumps are urgent with the usage of the
implemented algorithm. We continue with a section for the results of the under-
approximation algorithm. The last part of this chapter is about the comparison of
runtime between the introduced algorithm with another algorithm that is going to
be presented in Chapter 2 and is already implemented in the HyPro library. For the
comparison, we use two di�erent models and we present the runtime results in a table
and plots. Lastly, in Chapter 7, we summarize this thesis and discuss potential future
work.



Chapter 2

Related Work

In the �eld of hybrid automata analysis, various methodologies have been developed
to deal with the challenges of urgency and reachability. This section reviews rele-
vant literature, focusing on methodologies that align with the goals of this thesis.
Speci�cally, developing polytope set operations is important in proving the accuracy
and e�ciency of hybrid automata veri�cation. With polytopes, the reachable states
of a hybrid automaton at a given time are represented. In order to incorporate ur-
gency into the reachability analysis, the set minus operation is essential. In [9], the
authors concentrate their e�orts on advancing the �eld of formal veri�cation, specif-
ically with a focus on Linear Hybrid Automata (LHA). In their work, they address
the limited capacity to handle convex invariants and urgency conditions de�ned by
single constraints. These limitations become apparent when LHAs are employed to
model urgent transitions in deterministic languages like Matlab-Simuling [2], Model-
ica [10], and Ptolemy [14], where all transitions are urgent. The paper [9] proposes
an algorithm designed to overcome these challenges, enabling successor computation
with non-convex invariants and closed, linear urgency conditions. In [7], the author
presents an alternative strategy for addressing non-convex invariants. The algorithm
requires transforming the automaton by splitting locations to model non-convex in-
variants. In paper [9], the approach aims to address these limitations more directly
and avoid building a new automaton. Hybrid systems with urgency are also explored
in [11]. In this paper, the idea is to create an automaton equivalent to the original
but without the urgent transitions. To achieve this, each location with an outgoing
urgent transition is replaced by multiple new locations. The invariants of these new
locations are extended by the inverted halfspaces of the guard. This approach ensures
that time can only progress while the interior of the guard is not entered.

In [5], the focus lies on extending the �owpipe construction to accommodate the ur-
gency to ensure safety veri�cation for urgent hybrid automata. This approach aligns
closely with the objectives of this thesis, which also aims to develop a set minus oper-
ator for analyzing urgent hybrid automata. While this thesis uses over-approximation
and under-approximation to compute the set minus operator, the work in [5] focuses
on computing the exact set minus of two polytopes. The setMinus-Polytopes algo-
rithm proposed in [8] and used in [5] is the result of this research. We refer to the exact
set minus operation as setMinus-Polytopes in this thesis. This method processes two
H-Polytopes as input, which represent the state sets of hybrid automata, and com-
putes their set di�erence. The core idea behind the setMinus-Polytopes algorithm is
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to iteratively explore the feasible region of a resulting H-Polytope by systematically
reversing one constraint of the guard polytope at each iteration. After each constraint
reversal, the function uses linear programming techniques to evaluate the feasibility
of the solution space. The feasible solutions in each iteration are stored in a vector
that contains the resulting polytopes. An important aspect of this algorithm, which
can also a�ect the size of the result, is the order in which the constraints are inverted.
A signi�cant disadvantage of this approach is that after a single set minus step, the
resulting vector includes multiple polytopes. In subsequent set minus operations, this
can lead to an exponential increase in the number of polytopes, potentially resulting
in reachability tree explosion, regarding the number of branches.
Rather than computing the exact set minus of two polytopes, this thesis aims to com-
pute a single polytope, which is an over-approximation or under-approximation of two
polytopes using the set minus operation. This mitigates the risk of reachability tree
explosion and simpli�es the computation process. However, the setMinus-Polytopes
algorithm is more accurate than the over-approximation and under-approximation
algorithms developed in this thesis.



Chapter 3

Preliminaries

This chapter begins with the fundamentals and provides the necessary de�nitions to
establish a solid foundation for the rest of the thesis. We will start by introducing the
basic concepts, including mathematical de�nitions and theoretical frameworks. Addi-
tionally, we will use examples to clarify the concepts, ensuring a better understanding
of the key de�nitions.

3.1 Hybrid Systems

We begin by introducing hybrid automata, which are used to model hybrid systems.
Hybrid automata describe the states of a hybrid system using variables and locations.
These systems form the foundation of this thesis.

De�nition 3.1.1 (Hybrid systems). Hybrid systems are dynamic systems that
exhibit both continuous and discrete behavior. Dynamical behavior describes a
continuous change of state over time, whereas discrete behavior describes instan-
taneous state changes.

Hybrid systems illustrate various examples such as a bouncing ball, a thermostat, a
car, a computer, or a robot. For instance, consider the bouncing ball. As the ball
travels through the air, the position and velocity of the ball change continuously due
to gravity. However, when the ball hits the ground, it undergoes a discrete change in
velocity due to its impact on the ground.
In order to describe and model hybrid systems, we use hybrid automata. We de�ne
hybrid automata as follows:

De�nition 3.1.2 (Hybrid automaton). Hybrid automaton is a formal model for
hybrid systems which is described as a tuple H = (Loc, V ar, Lab,Edge,Act, Inv,
L0), where:

� Loc is a �nite set of locations,
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� V ar is a �nite set of variables,

� Lab is a �nite set of labels,

� Edge ⊆ Loc× Lab× 2(V
2) × Loc is a �nite set of edges,

� Act is a function that maps a set of activities f : R+ → V to each location;
the activity sets are time-invariant. Time invariant means that f ∈ Act(l)
implies (f + t) ∈ Act(l), where (f + t)(t′) = f(t+ t′) for all t′ ∈ R+,

� Inv is a function that maps an invariant Inv(I) ⊆ V to each location
I ∈ Loc,

� L0 ⊆ Loc is the set of the initial states of the automaton

with valuations v : V ar → R, V is the set of valuations. Valuation refers to the
assignment of values to variables within a system.

Figure 3.1 models the bouncing ball example as a hybrid automaton. The variables
used to describe the hybrid automaton are V ar = {pos,vel}. The variable pos de-
scribes the position of the ball and vel the velocity. In the beginning, the ball is above
the ground in position pos and it starts falling with a certain velocity. The derivatives
˙pos and ˙vel describe how the position and velocity change over time. While the ball

is falling, the velocity decreases with the gravity constant g. When the ball hits the
ground, it bounces back up with the same velocity as before, but in the opposite
direction. The velocity is scaled down by a constant c, which can be selected from the
interval [0,1]. This happens in order to model the loss of energy due to the inelastic
nature of real-world collisions. When the ball bounces, it does not retail all its initial
energy [1].

l0

˙pos = vel
˙vel = −g

pos ≥ 0

pos ≥ 0

vel > 0

pos = 0 ∧ vel < 0

vel := −c · vel

Figure 3.1: A hybrid automaton for the bouncing ball.

This thesis focuses on automata with urgent transitions. Urgency means that the
transitions must be executed immediately upon the occurrence of a condition. With
this consideration, we broaden the de�nition of hybrid automata to include urgent
transitions. We de�ne urgent automata as follows:
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De�nition 3.1.3 (Urgent automaton). An urgent hybrid automaton is a tuple
H = (Loc, V ar, Lab,Edge,Act, Inv, L0, Urg) such that:

� Urg ⊆ Edge is a set of urgent transitions.

� (Loc, V ar, Lab,Edge,Act, Inv, L0) is a hybrid automaton.

3.2 State Set Representations

Building upon our exploration of hybrid systems and automata in the previous sec-
tion, we now shift our focus to the geometric representation of the states within
these systems. The state-set representation forms a critical aspect of modeling and
analyzing hybrid systems. One way of modeling a state set is using polytopes.

De�nition 3.2.1 (Polyhedron). A polyhedron is a geometric space formed by
faces, edges, and vertices. A polyhedron in Rd is the solution set to a �nite
number of linear inequalities, for d ∈ N≥0.

A polyhedron is considered bounded if it is contained within some �nite region of
space, meaning it does not extend in�nitely in any direction. When a polyhedron
is bounded, it is called a polytope.

We de�ne Ud
P as the set of all convex polyhedra in Rd.

Due to polyhedra's structural characteristics, they demonstrate the properties of con-
vexity. Any two points inside a polyhedron can be connected by a straight line, where
each point on that line lies within the polyhedron.

De�nition 3.2.2 (Convex sets). A set S ⊆ Rd for d ∈ N≥0 is convex if for every
pair of points x, y ∈ S and λ ∈ [0, 1], it holds:

λ · x+ (1− λ) · y ∈ S

De�nition 3.2.3 (Convex hull). The convex hull of a set of points S ⊆ Rn is
the smallest convex set that contains S.

To be able to represent polyhedra e�ectively and utilize them in the context of hybrid
systems, we introduce two primary representations: the H-Representation and the V-
Representation. These representations enable algorithmic manipulation of polyhedra
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by facilitating operations such as intersection, union, and projection. Also, they
often lead to more e�cient computations and optimized performance in geometric set
operations.

De�nition 3.2.4 (Halfspace Representation). The H-Representation describes
a polytope as the intersection of halfspaces de�ned by linear inequalities. Let P
be a polytope. The H-Representation of P is given by:

P = {x ∈ Rd|Ax ≤ b}

where A ∈ Rm×d and b ∈ Rm, for some m ∈ N and d ∈ N.
We call (A,b) an H-Polyhedron, or if the polyhedron is bounded, an H-polytope.
For a set of pointsX ⊆ Rd, we de�ne H-P(X) as a convex H-Polytope constructed
by transforming X into a set of linear inequalities.
We de�ne Ud

PH
as the set of all H-Polyhedra in Rd.

De�nition 3.2.5 (Vertex Representation). Let X ⊆ Rd be a set of points for
some dimension d ∈ N.
The V-Representation is used to describe a polytope as a convex hull of a set of
points.
We de�ne the following notations:

� V-P(X) as a convex V-Polytope constructed from a set of points X.

� Ud
PV

as the set of all convex V-Polytopes in Rd.

The runtime for converting between the two representations depends on several fac-
tors, including the dimensionality of the polytopes and the number of vertices, or
constraints. In general, the process can be computationally intensive, especially for
high-dimensional polytopes. It is mentioned in [1], that the translations between H-
and the V-Representations of polytopes can be exponential in the d dimensional state
space.

To visualize the di�erent representation types, Figure 3.2 provides an example of a
bounded polytope. The solution space is highlighted in blue.

The H-Representation of the state space is:

P = {x1 + x2 ≥ 3, 2x1 − x2 ≤ 5,−x1 + 2x2 ≤ 3}

and the V-Representation is:

P = {
(
1

2

)
,

( 8
3
1
3

)
,

( 13
3
11
3

)
}
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≤
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−x1
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2x2
≤ 3

Figure 3.2: Example of a polytope.

State set representations such as H- and V-Representations allow us to represent the
valuation set of the variables as polytopes. In order to analyze and describe polytopes
in more detail, we introduce the concept of faces. Faces are the building blocks of
polytopes and provide a way to describe their structure.

De�nition 3.2.6 (Faces). A face of a convex polytope P ⊆ Rd for some d ∈ N
is de�ned as the intersection of P with any halfspace such that the boundary of
this halfspace does not intersect the interior of P . For this thesis, we use the
following terms [17]:

� Vertices (0-dimensional faces): The 0-dimensional faces of P include all
"corner" points of P .

� Edges (1-dimensional faces): The 1-dimensional faces of P consist of all
edges connecting the 0-dimensional faces of P .

In this thesis, we assume that the term 1-dimensional faces(P ) is bidirectional, mean-
ing for all u,v ∈ 0-dimensional faces(P ):

(u,v) ∈ 1-dimensional faces(P ) and (v,u) ∈ 1-dimensional faces(P )

In Figure 3.2.6, we visualize an example of a polytope with 5 vertices and 8 edges.
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Figure 3.3: Example of polytope faces (vertices, edges) in R3.

Given a polytope, which represents the state set on a location, one interesting question
arises. Namely, whether a single instance (denoted as a point p ∈ Rd) is a member of
the polytope or not. For that, we use a membership function [1], which is de�ned as
follows:

De�nition 3.2.7 (Member). Let P ⊆ Rd be a polytope with d ∈ N≥0 and
p ∈ Rd a point. We call p a member of P i�:

P is an H-Polytope (A,b):

p member P ⇔ A · p ≤ b

P is a V-Polytope with P = {v1,...,vk}:

p member P ⇔ ∃λ1,..., λk ∈ [0,1] ⊆ R :

k∑
i=1

λi = 1 ∧ p =

k∑
i=1

λi · vi

3.3 Reachability Analysis

Reachability analysis shows if the hybrid system is safe or not. This analysis pro-
vides information about all the states a system can reach within a �nite time. An
important aspect of reachability analysis involves constructing a �owpipe by piecing
together �owpipe segments. Flowpipe segments are used in order to avoid a strong
over-approximation of the trajectory of the system. Another reason for using �owpipe
segments is that the systems are often non-linear and complex. By using �owpipe
segments, the over-approximation of the trajectory is more accurate. Instead of ana-
lyzing the entire �owpipe as a single entity, we divide it into smaller segments. Each
of these segments captures the system's behavior over a time interval. This results in
a more accurate over-approximation of the �owpipe with much less error.
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De�nition 3.3.1 (Flowpipe). Let T be a time point, the �owpipe is the over-
approximation of the set of states that the system can reach in a �xed time
interval [0,T ] from a set of initial states.

Reachability analysis of hybrid automata refers to the ability to determine the set
of states a system can reach from a set of initial states to a �nite time point. The
reachability analysis in hybrid systems aims to discover the set of possible states
the system can enter over time, taking into account both continuous and discrete
behaviors.
In Figure 3.4, an example is presented to illustrate the reachability analysis of the
hybrid automaton from Figure 3.1. The plot illustrates the continuous states the
model reaches as time evolves. The boxes in the �gure indicate the various states
that the model is in at a speci�c time. In addition, the red box signi�es the bad
states, which are initially given. The x-axis describes the velocity of the ball, and
the y-axis shows the position of the ball. The reachability analysis helps to identify
whether the system can enter any of these bad states given its initial conditions.

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

Figure 3.4: Reachable states of the bouncing ball example.

Algorithm 1 shows the �owpipe-construction-based reachability analysis, which is
presented in [1]. The idea of Algorithm 1 is to start with (an) initial state set(s) and
iteratively compute successors of these states by alternating between �ow and jump
successor computations. R contains the reachable state sets and Rnew the state sets
to be processed. The algorithm repeatedly selects unprocessed state sets from Rnew

and computes the �owpipe for each set using the computeFlowPipe method. This
returns a set R′ covering all states reachable within a given time horizon. If a jump
depth is not reached, the jump successors of R′ using the computeJumpSucc method
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are computed. The algorithm then adds the new states to R and continues until a
�xed point is reached or the jump depth is reached. The algorithm returns the set of
reachable states R.

Algorithm 1 Forward reachability analysis
Input: Initial set Init
Output: Set R of reachable states

1: R := Init
2: Rnew := Init
3: while Rnew ̸= ∅ do
4: Let stateSet ∈ Rnew

5: Rnew := Rnew \ {stateSet}
6: R′ := computeF lowPipe(stateset)
7: if !jumpDepthReached() then
8: Rnew := Rnew ∪ computeJumpSucc(R′)
9: end if

10: R := R ∪Rnew

11: end while

12: return R

An over-approximation is a method to over-approximate the reachable sets that a sys-
tem can reach over time. The over-approximation provides a superset of the reachable
states of a system. By over-approximating, is often more conservative than the exact
representation, meaning that it may include states that are not reachable by the sys-
tem. However, it is useful as it ensures that the behavior of the system is safe and
avoids potential errors in the analysis.

De�nition 3.3.2 (Over-Approximation). Given a reachable set S(t,I0), where
t ∈ R+ is the time and I0 ⊆ Rd is the initial set of states for some d ∈ N, the
over-approximation set S(t,I0) is de�ned as [16]:

S(t,I0) ⊆ S(t,I0)

In Figure 3.5a the reachable states of a hybrid system from the initial state set I0 in t
time steps are shown. Figure 3.5b visualizes the di�erence to an over-approximation
of that set, which is a superset of the reachable states. The over-approximation set
S(t,I0) is the red area together with the blue reachable set S(t,I0).
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(a) Reachable set S(t,I0). (b) Over-approximation set S(t,I0).

Figure 3.5: Concept of over-approximation.

By using over-approximation in reachability analysis, there can be instances where
a system is incorrectly assessed as capable of reaching bad states. In the case of
Figure 3.6a, the reachable set S(t,I0) reaches bad states. In Figure 3.6b on the other
side, the over-approximation set S reaches the bad states, while the actual system
is still safe. If the over-approximation does not include any bad states, then it is
certain that the original reachable state set is also safe. For this reason, the over-
approximative calculations are an optimal approach to safety veri�cation.

(a) Reachable set S(t,I0) reaches bad
states (red box).

(b) Over-approximation set S(t,I0) reaches
bad states (red box).

Figure 3.6: Over-approximation reaching bad states.

In contrast to over-approximation, where we estimate a larger set that includes all
possible reachable states and some extra ones, under-approximation focuses on a
smaller set. This smaller set only includes states, where we are sure that they can be
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reached.

De�nition 3.3.3 (Under-Approximation). Given a reachable set S(t,I0), where
t ∈ R+ is the time and I0 ⊆ Rd for some d ∈ N is the initial set of states, the
under-approximation set S(t,I0) is de�ned as a non-empty set [16]:

S(t,I0) ⊆ S(t,I0)

Considering the example from before in Figure 3.5a, an under-approximation (red
area) of the reachable state set (blue area) is shown in Figure 3.7a. The set S(t,I0) con-
tains fewer states than the original reachable set S(t,I0), but the under-approximation
ensures that these states are reachable. In case the under-approximation set reaches
a bad state, then it is certain that the original reachable state set also can reach a
bad state, as shown in Figure 3.7b.

(a) Under-approximation set S(t,I ′0). (b) Under-approximation set S(t,I ′0)
reaches bad states (red box).

Figure 3.7: Concept of under-approximation.
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HyPro Library

HyPro is a C++ library that was introduced in 2017 and is continuously being im-
proved and extended [12]. It provides utility tools for reachability analysis of hybrid
automata, including those based on �owpipe construction. Additionally, HyPro sup-
ports a variety of automaton types, such as rectangular automata, and o�ers methods
for calculating reachable states even in the absence of �owpipe construction. This
�exibility allows it to handle di�erent modeling approaches and analysis needs in hy-
brid systems. It presents a variety of commonly employed state set representations
such as Boxes [13], H-Polytopes, and V-Polytopes, all uni�ed under a shared inter-
face. HyPro not only o�ers a variety of state set representations but also provides
a diverse range of algorithms for reachability analysis across di�erent subclasses of
hybrid automata. Ongoing developments have led to enhancements in existing reach-
ability analysis methods, resulting in improved e�ciency and scalability. Regardless
of the speci�c approach employed, all reachability analysis methods within HyPro
conduct bounded reachability analysis. This includes incorporating upper bounds
on the number of jumps taken and prede�ned time horizons for the successor state
calculations. While other libraries like Ariadne [4] or SpaceEx [6] o�er similar func-
tionalities, HyPro stands out due to its foundation in C++ and its comprehensive suite
of state set representations, along with additional methods for conversion and visual-
ization. As an open-source library available on GitHub 1, HyPro fosters collaboration
and community-driven development, making it a valuable resource for advancing the
state-of-the-art in hybrid automata analysis.

In this thesis, we extend the HyPro library to enable the application of the set mi-
nus operator on two polytopes using over and under-approximation. This involves
expanding the functionality of both the V- and H-Polytope classes, to support this
new operator. Our new implementation is integrated into the urgent reachability
analysis of hybrid automata within the HyPro library. To validate the e�ectiveness
of our new algorithms, we create a series of examples that demonstrate their correct
functionality. These examples are designed to serve as a practical illustration of how
the set minus operator can be applied within the extended HyPro framework. More-
over, to provide a thorough evaluation and comparison, we develop larger and more
complex models. These models are used to highlight the di�erences o�ered by our
new algorithm compared to the existing setMinus-Polytopes algorithm [8]. Through

1https://github.com/hypro/hypro

https://github.com/hypro/hypro
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these comparisons, we aim to highlight the improvements and potential uses of our
extended features in hybrid automata reachability analysis.



Chapter 5

Computation of Set Minus

Operator

In this chapter, we present the computation of the set minus operation of two convex
polytopes. Computing the set minus operator using an over-approximation has the
advantage of reducing the complexity of the computation, ensuring a single convex
result. The focus of this thesis lies mainly on the over-approximation. Section 5.1
begins with the motivation behind the computation of the set minus operator. Sub-
sequently, we present examples that illustrate the concept of the set minus operator.
Three-dimensional examples are used to simplify the visualization of the concept for
higher dimensions. We employ three di�erent cases that show di�erent outcomes. We
formulate some additional de�nitions in order to use them during the next subsections,
where we prove the correctness and the quality of the algorithm. In Section 5.1.4,
we present the algorithm of the over-approximation as a pseudocode, bridging theory
with practical application. In the following Section 5.1.5, we provide the runtime
estimation of the implemented algorithm in O notation. In the last Section 5.2, we
explore the idea of under-approximative computations. We provide an example of the
concept and an idea of the algorithm that computes an under-approximation of the
convex set minus operator.

5.1 Over-approximation

5.1.1 Motivation

A fundamental task in analyzing a hybrid automaton is to compute the set of reachable
state sets that can be reached within a �nite time horizon. This can be done by
constructing a �owpipe as seen in Figure 3.4. Flowpipes are useful because they
handle the complexity of computing reachable states in a hybrid automaton. Direct
calculations of the exact reachable set are often di�cult due to the non-linear dynamics
of the system and the high dimensionality of the state space. The �owpipe is used to
represent the set of states that a system can reach over time starting from an initial
state. It breaks down the problem into smaller, more manageable segments, each
representing the state space evolution over a �nite time interval. This makes it possible
to systematically approximate and analyze the behavior of the system. We calculate
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the �owpipe segments which are over-approximations of the actual reachable states. If
the intersection with the bad states is empty, we can conclude that the system is safe.
In the context of this thesis, the focus lies on the case where the guards are urgent.
This means that when a guard is enabled, it must be taken. Having urgent transitions
in the hybrid automaton leads to a di�erent �owpipe computation in comparison to
the �owpipe of a hybrid automaton without urgent transitions.

In Figure 5.1, the black box represents the intersection of the current �owpipe segment
with a guard. The arrow interprets the di�erent urgent jumps. To compute the next
�owpipe segment, the white box under the black is required. In order to calculate
this, we need to compute the set minus operator of the polytope P without the subset
of the polytope that satis�es the guard G.

Figure 5.1: Flowpipe with urgent transitions.

In the following, we show visually how the concept of the computation of over-
approximating set minus operator of two polytopes works. We present three di�erent
cases. The green polytope represents the polytope P and the red one represents the
polytope G.

In the �rst example, shown in Figure 5.2a, both polytopes P and G do not contain
any 0-dimensional faces that are member of the other polytope. However, there exists
a shared state set of points that are member of both P and G. In Figure 5.2b, the
volume set minus P without G is shown. Since the result of the volume set minus is
not a single convex polytope, we need to compute the convex hull of it. The result
is shown in Figure 5.2c, which is equal to the initial polytope P . As a result, the
smallest resulting single convex polytope for this example can not be smaller than P .
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(a) Containing the initial
Polytopes P and G.

(b) Volume set minus
P without G from Fig-
ure 5.2a.

(c) Convex hull of the
volume set minus P
without G from Fig-
ure 5.2b.

Figure 5.2: Example 1: Visualization of a convex set minus operator given two poly-
topes P and G.

The second example, visualized in Figure 5.3a, presents the case where P has two
0-dimensional faces that are member of G. In Figure 5.3b the shared volume of P
and G polytope is removed. As shown in Figure 5.3c, the remaining part is convex.
As such, for this case where P has 0-dimensional faces in G, the convex set minus
operator computes a polytope, which is a subset of P .

(a) Containing the initial
Polytopes P and G.

(b) Volume set minus P
and G from Figure 5.3a.

(c) Convex hull of the
volume set minus P
without G from Fig-
ure 5.3b.

Figure 5.3: Example 2: Visualization of a convex set minus operator given two poly-
topes P and G.

The third example, seen in Figure 5.4a, presents the case where G has 0-dimensional
faces in P and vice versa. In Figure 5.4b, the volume set minus P without G is
presented. It is visible that the volume set minus polytope is not convex. This is
due to the fact, that G also contains 0-dimensional faces, that are in P . By over-
approximating, Figure 5.4c shows the convex hull of the volume set minus polytope.
This example shows the smallest single convex polytope, that can be computed from
P without G.
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(a) Containing the initial
Polytopes P and G.

(b) Volume set-minus P
without G from Fig-
ure 5.4a.

(c) Convex hull of the
volume set-minus P
without G from Fig-
ure 5.4b.

Figure 5.4: Example 3: Visualization of a convex set minus operator given two poly-
topes P and G.

As described in Section 3, the reachability of an automaton is analyzed by construct-
ing �owpipe segments. This allows us to explore whether the automaton reaches
bad states or not. In this thesis, we focus on the development of an algorithm that
computes the over-approximation set minus operators of two polytopes P and G. P
represents the current �owpipe segment and G represents the guard of a transition.
In Figure 5.5, we present an overview of the developed over-approximation algorithm
of this thesis. The left side shows the process for the representation type V-Polytope
and the right side shows the process for the representation type H-Polytope. Both
functions use the main function called setMinusCrossing(P,G). This function receives
as input a V-Polytope P and a polytope G. The resulting polytope of the function
is in V-Representation. Given, that the reachability analysis can also be computed
using H-Representation, we use conversions in combination with the function setMi-
nusCrossing(P,G). First, the input polytope P is converted to V-Representation. This
assumes, that P is bounded, as the V-Representation can only model bounded poly-
topes. After converting P , the setMinusCrossing can be used. The resulting polytope
is then converted back to H-Representation.
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setMinusCrossing(P,G)
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conversion
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V-Result
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setMinusCrossing(P,G)

V-P

H-Result
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Figure 5.5: Overview of the setMinusCrossing algorithm for H- and V-Representation.

5.1.2 De�nitions and Lemmas

We introduce de�nitions and lemmas that are necessary for proving the correctness of
the algorithm. We start with basic de�nitions that are required for the computation
of the set minus operator.

As seen in Figure 5.5, the setMinusCrossing(P,G) function computes a polytope using
V-Representation. V-Polytopes are described by a set of points. However, not all
points are required to de�ne a V-Polytope. The points required for de�ning a V-
Polytope are called extreme points:

De�nition 5.1.1 (Extreme Points). Let P ∈ Ud
PV

be a V-Polytope for some
d ∈ N. We call the set of 0-dimensional faces of P the set of extreme points of P .

In Figure 5.6, two V-Polytopes P (green) and G (red) are shown. The extreme points
of P are extremePoints(P) = {p1, p3,p5,p6,p7, p8} and the extreme points of G are
extremePoints(G) = {g1, g2, g3,g4}. The points p2 and p4 are not extreme points of
P , as they lie on the convex hull and thus they can be reconstructed from the other
points.
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Figure 5.6: Example of extreme points of two V-Polytopes P and G.

We split the set of extreme points of a polytope into two groups, namely the pure
and shared points. We de�ne the pure points as:

De�nition 5.1.2 (Pure Points). Let P,G ∈ Ud
P be two polytopes for some d ∈ N.

We de�ne the set of pure points of P as:

pure(P,G) = {p ∈ extremePoints(P ) | p not member G} (5.1)

A point is member of a polytope when the conditions of De�nition 3.2.7 are satis�ed.
The shared points are de�ned as follows:

De�nition 5.1.3 (Shared Points). Let P,G ∈ Ud
P be two polytopes for some

d ∈ N. The set of shared points of P is de�ned as:

shared(P,G) = {p ∈ extremePoints(P ) | p member G} (5.2)

For the polytope P from Figure 5.6, the pure points are pure(P,G) = {p1,p5,p6,p8}.
In the same Figure 5.6, the shared points of polytope P are shared(P,G) = {p3, p7}
and for G the shared points are shared(G,P ) = {}.

To be able to �nd the minimum volume of the set minus operator and be as optimal as
possible, the solution might include additional points not present in extremePoints(P )
and extremePoints(G). We call the additional points crossing points in this thesis.
The crossing points are part of the convex hull and thus over-approximate the result.
To calculate them, we require a pair of points (u,u′). We begin by de�ning the set of
connected points.
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De�nition 5.1.4 (Connected Points). Let P ∈ Ud
PV

be a V-Polytope, G ∈ Ud
P

be a polytope for some d ∈ N and v ∈ extremePoints(P ) be an extreme point of
P .
We de�ne the set of connected points connected as:

connected(v,P,G) = {v | vmemberG} ∪X

where:

X =
⋃

(v,v′)∈1-dimensional faces(P )

connected(v′,P,G)

The set of connected points of a point v consists of a group of points, that are in
G and share an edge (1-dimensional face) in P . This means, that for each pair of
points from the connected set, there exists a sequence of edges connecting them. We
calculate the set by recursively using the de�nition of connected on the neighboring
points.

Additionally to the de�nition of connected points, we require a set of border vertices:

De�nition 5.1.5 (Border Vertices). Let P ∈ Ud
PV

be a V-Polytope and G ∈ Ud
P

be a polytope for some d ∈ N. We de�ne the set of border vertices for an extreme
point v ∈ extremePoints(P ) as:

BV(v,P,G) = {p | (p,v) ∈ 1-dimensional faces(P) ∧ p not member G} (5.3)

To understand the concept de�ned from the de�nition of connected points and border
vertices, we consider again the example from Figure 5.6. In Figure 5.6 the set of con-
nected points of the point p2 is connected(p2,P,G) = {p2,p3,p4}. Analogously, for the
points p3 and p4. For the point p7, the set of connected points is connected(p7,P,G) =
{p7}. Given the point p2, the border vertices are: BV(p2,P,G) = {p1} and for p7 the
border vertices are BV(p7,P,G) = {p6,p8}.
As described, the connected points and the border vertices allow us to calculate the
set of crossing points.

De�nition 5.1.6 (Crossing Points). Let P ∈ Ud
PV

be a V-Polytope, G ∈ Ud
P be

a polytope for some d ∈ N and v ∈ extremePoints(P ) be an extreme point of P .
We de�ne the set of crossing points CPv for v as:
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CPv(P,G) = {p | ∧ u′ ∈ connected(v,P,G)

∧ u ∈ BV(u′,P,G)

∧ ∃λ ∈ [0,1] ⊆ R : p = u+ λ · (u′ − u)

∧ ∄λ′ ∈ [0,1] ⊆ R : λ′ < λ ∧ p = u+ λ′ · (u′ − u)

∧ pmemberG} (5.4)

Located on an edge (u,u′) for two points u,u′ of a polytope P , a crossing point is
calculated in Rd. While u is not part of a polytope G, u′ belongs to the set of
connected points within G. The crossing point on the edge is the closest possible
point to u while still being a member of G.
Figure 5.7 extends Figure 5.6 by containing the additional crossing points cp1,cp2,cp3
and cp4. These points are members of both P and G. As seen, the point cp1 lies
on the edge (p1,p2) of P , where p2 is a connected point and p1 is the corresponding
border vertex.
In the same way, the crossing points cp2, cp3 and cp4 are calculated.

Figure 5.7: Example of crossing points of two V-Polytopes P and G.

The crossing points can be grouped with their corresponding connected points. This
group represents a cuto� that will be removed from a polytope P to reduce the volume
of the shared area. The mathematical de�nition of the cuto� is as follows:

De�nition 5.1.7 (Cuto�s). Let P ∈ Ud
PV

be a V-Polytope, G ∈ Ud
P be a poly-

tope for some d ∈ N and v ∈ shared(P,G) be a shared point of P and G.
We de�ne cutoffv of v as a V-Polytope which consists of the following points:

cutoffv(P,G) = V-P(CPv(P,G) ∪ connected(v,P,G))

We de�ne the set of all cutoffs as:

cutoffs(P,G) = {cutoffv(P,G) | v ∈ shared(P,G)} (5.5)
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For a shared point v from two polytopes P and G, its corresponding cuto� is described
as a V-Polytope. The set cuto�s contains all cuto�s from two given polytopes P and
G.
In Figure 5.8, there are two cuto� polytopes present. One cuto� polytope is cutoff1

= V-P({cp1,p2,p3,p4,cp3}) and the other one is cutoff2 = V-P({cp2,p7,cp4}). The set
containing all the cuto� polytopes is cuto�s = {cutoff1 , cutoff2}.
Highlighted in green is the volume of the cuto�s polytopes cutoff1 and cutoff2.

 

Figure 5.8: Example of two V-Polytopes P and G with their corresponding cuto�s.

Next, we introduce some de�nitions of operators. Given two polytopes, there is a
need to compare them and apply operations on them. We start by introducing an
operator that validates whether one polytope is fully included in the other.

De�nition 5.1.8 (Polytope Inclusion). Let A,B ∈ Ud
P be two polytopes for some

d ∈ N.
We say that A is included in B if and only if:

∀x∈Rd xmemberA → xmemberB (5.6)

We denote this as A ≤ B.

In De�nition 5.1.8, we do not use ⊆ on purpose since we compare the volume of
two polytopes and not the set of extreme points that de�ne the polytopes in V-
Representation.
Instead of focusing only on convex polytopes, we aim to describe the combination of
two polytopes, which do not necessarily have to be convex. To combine them, we use
the following de�nition:
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De�nition 5.1.9 (Combined Polytopes). Let A,B ∈ Ud
P be two polytopes for

some d ∈ N.
We de�ne the operator "∪" as the volume addition of two polytopes with:

A ∪B = {x ∈ Rd | xmemberA ∨ xmemberB} (5.7)

The operator "∪" allows us to combine two polytopes and de�ne all points that are in
either one of the polytopes. It is worth mentioning that the operator "∪" can not be
used in general to combine the extreme points of two polytopes, as the result would
not be the exact volume of the polytopes.
To validate the convex set minus to be a correct over-approximation, we require a
ground truth, which must be included in the over-approximation. The ground truth
for the set minus of two polytopes A and B corresponds to the volume set minus
de�ned as follows:

De�nition 5.1.10 (Volume Set Minus). Let P ∈ Ud
PV

be a V-Polytope and
G ∈ Ud

P be a polytope for some d ∈ N.
We de�ne the volume set minus SM of P without G as:

SM(P,G) = {p ∈ Rd | pmemberP ∧ ¬(pmemberG)} (5.8)

With De�nition 5.1.10, we can describe speci�cally which state set must be part of
the convex set minus over-approximation.
In Figure 5.9, the red area indicates the volume set minus of the polytope P without
G. The volume set minus consists of all points that are only member of P and not
member of G.

 

no__

Figure 5.9: Red area shows the volume set minus of P without G.

After formulating the relation ≤, the operator "∪", and the volume set minus SM,
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we now present the mathematical de�nition of our convex set minus as an over-
approximation:

De�nition 5.1.11 (Convex Set Minus). Let P ∈ Ud
PV

be a V-Polytope and
G ∈ Ud

P be a polyhedron for some d ∈ N.
We de�ne the convex set minus SM of P without G as a V-Polytope:

SM(P,G) = V-P

pure(P,G) ∪
⋃

v∈shared(P,G)

CPv(P,G)

 (5.9)

The convex set minus as an over-approximation consists of the set of pure points with
crossing points.
In Figure 5.10, the blue area highlights the convex set minus of P without G. We
can see, that the blue area includes all points from the volume set minus, shown in
Figure 5.9.

 

I

Figure 5.10: Blue area shows the convex set minus of P without G.

In order to show that SM is a valid over-approximation of the set minus operator,
we require a lemma that combines the SM with a cuto� polytope. In simple words,
we show that the original polytope P can be reconstructed by combining SM with
all cuto� polytopes.

Lemma 5.1.12 (Combination of Polytopes). Let P ∈ Ud
PV

be a V-Polytope,
G ∈ Ud

P be a polytope for some d ∈ N and let cutoffv(P,G) be the cuto� of a
shared point v of P and G.
The following holds:

SM(P,G) ∪ cutoffv(P,G) = V-P(X) (5.10)
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where:

X = pure(P,G) ∪
⋃

v∈shared(P,G)

CPv(P,G) ∪ connected(v,P,G)

Proof: From the De�nitions 5.1.11 and 5.1.7 it holds:

cutoffv(P,G) ⊇ CPv(P,G) ⊆ SM(P,G) (5.11)

Given a shared point v of P and G, each crossing point of v is constructed from two
points u,u′ ∈ Rd with u ∈ SM(P,G) and u′ ∈ cutoffv(P,G). We know that each
crossing point lies on the edge (u,u′) ∈ 1-dimensional faces of P and that P is convex.
With Equation 5.11, where it holds that the crossing points are part of the cuto�s
and SM , we can conclude that the combination of SM and cutoffv will result in the
convex polytope:

V-P

pure(P,G) ∪
⋃

v∈shared(P,G)

CPv(P,G) ∪ connected(v,P,G)



Lemma 5.1.13 (Cuto�s are part of polytope G). Let P ∈ Ud
PV

be a V-
Polyhedron, G ∈ Ud

P be a polyhedron for some d ∈ N and let v ∈ shared(P,G) be
a shared point of P and G.
The following holds:

cutoffv(P,G) ≤ G (5.12)

Proof: From De�nition 5.1.7 it holds that a cuto� consists of the connected points
connected(v,P,G) and the crossing points CPv(P,G) given a shared point v of P and
G. From De�nition 5.1.4 it holds that the connected points are part of G. Similar
to the connected points, the crossing points are part of G as well. Since all points of
cutoffv(P,G) are part of G, it follows that cutoffv(P,G) ≤ G.

Lemma 5.1.14 (Construction of P from SM(P,G) and cuto�s). Let P ∈ Ud
PV

be a V-Polytope and G ∈ Ud
P be a polyhedron for some d ∈ N.

The following holds:

SM(P,G) ∪
⋃

v∈shared(P,G)

cutoffv(P,G) = P (5.13)

Proof:

SM(P,G) ∪
⋃

v∈shared(P,G) cutoffv(P,G) ≤ P
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Given that P is convex we show that for all extreme points of SM(P,G) and for each
polytope in cutoffs(P,G) it holds that they are inside P . For SM(P,G) which consists
of the pure points and the crossing points, it holds that the pure points are member
of P , given De�nition 5.1.2. The crossing points are member of P as well since they
are constructed from two points u,u′ ∈ Rd with u,u′ ∈ extremePoints(P ). Given
that each crossing point lies on the edge (u,u′), P is convex, and that u and u′ are
extreme points of P means that the crossing points are also member of P . The cuto�
polytopes are constructed from the connected points and the crossing points. The
connected points are extreme points of P , since they lie on the 1-dimensional faces of
P . We showed above that the crossing points are part of P . This means that each
cuto� must be within P as well. As a result, the combined polytope SM(P,G) and
the cuto�s are part of P .

Next, we show the opposite direction of the inequality:

SM(P,G) ∪
⋃

v∈shared(P,G) cutoffv(P,G) ≥ P

We show that all extreme points of P are part of the volume addition of SM(P,G)
and the cuto�s. For that, we combine the polytope SM(P,G) and the cuto�s by using
Lemma 5.1.12:

SM(P,G) ∪
⋃

v∈shared(P,G)

cutoffv(P,G) = V-P(X) (5.14)

where:

X = pure(P,G) ∪
⋃

v∈shared(P,G)

CPv(P,G) ∪
⋃

v∈shared(P,G)

connected(v,P,G)

As seen in Equation 5.14, the combined polytope consists of the pure points of P , the
crossing points and the connected points of each cuto�. We know that all extreme
points of P are either pure points or shared points. The pure points are part of
the combined polytope, given Equation 5.14. From De�nition 5.1.4, we know that
the connected points are constructed from the shared points. As such, the combined
polytope contains all extreme points of P and is therefore greater or equal to P .
We showed:

SM(P,G) ∪
⋃

v∈shared(P,G)

cutoffv(P,G) ≤ P

SM(P,G) ∪
⋃

v∈shared(P,G)

cutoffv(P,G) ≥ P

As such, it follows:

SM(P,G) ∪
⋃

v∈shared(P,G)

cutoffv(P,G) = P

5.1.3 Proof of Optimality

In this section, we present two proofs for the convex set minus over-approximation. We
begin with the proof of correctness, which means that the convex set minus contains
the set minus volume of the polytopes P without G.
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SM(P,G) ≤ SM(P,G) (5.15)

The proof uses Lemmas 5.1.13 and 5.1.14.
Proof by contradiction: If the convex set minus does not contain the set minus volume
of the polytopes P without G, then there exists a point p that is member of SM(P,G)
but not in SM(P,G). From Lemma 5.1.14 we know that SM(P,G) combined with the
cuto�s is equal to P . We know that SM(P,G) ≤ P . Since p is a member of SM(P,G)
it means that p must be a member of P . If the point p is not in SM(P,G), then it
must be in one cuto� polytope. From Lemma 5.1.13 we know that the cuto�s are
part of G. This means that the point p is a member of G. This is a contradiction
since the point p is in SM(P,G) and thus cannot be in G.

The second proof shows that the result of the convex set minus SM(P,G) contains the
smallest convex set that includes the volume set minus SM(P,G).
Proof by contradiction: If SM(P,G) is not minimal, then there exists a convex poly-
tope SM

′
(P,G) which contains SM(P,G) and for which it holds:

∃p ∈ extremePoints(SM(P,G)) : ¬(pmember SM
′
(P,G)) (5.16)

Equation 5.16 states that there exists an extreme point p of SM(P,G) that is not part
of SM

′
(P,G). The extreme points of SM(P,G) consist of the pure points of P and the

crossing points. The pure points from SM must be part of SM
′
(P,G), since the pure

points are members of P without G and it holds SM(P,G) ≤ SM
′
(P,G). The crossing

points of SM are constructed from two points u,u′ ∈ Rd with u′ ∈ connected(v,P,G)
and u ∈ BV(u′,P,G) for any shared point v. The crossing points are constructed by
locating the closest point to u and is still a member of G. As such, the crossing points
are part of SM

′
(P,G) as well since there is no closer point to u that is a member of G.

Given that all extreme points of SM are part of SM
′
, means that there cannot exist

an extreme point p that is not part of SM
′
(P,G). Therefore, SM(P,G) is minimal.

5.1.4 Algorithm

In this section, the pseudocode for the convex set minus operator of two polytopes
as an over-approximation is presented. Firstly, we start with the main algorithm and
subsequently, we present helper functions that are used by the main algorithm. While
the above-mentioned proof and the main algorithm rely on points and thus on the V-
Representation, via conversion, the algorithm is also possible to handle H-Polytopes.
Algorithm 2 shows the pseudocode of the main algorithm. In the �rst line, we compute
the extreme points of a polytope P . After obtaining the extreme points, we compute
the 1-dimensional faces of P with the help of the function getConvexEdges. The
1-dimensional faces are stored in the variable edgesP. In the next line, we determine
the extreme points of P that are in G and store them in PnG. We do that by using
the requirements of membership mentioned in De�nition 3.2.7. We iterate over the
points of PnG and for each of them we compute their corresponding border vertices
that are in P . After calculating the border vertices, we iterate over them to derive
the crossing points. After calculating the crossing points, the algorithm returns a
V-Polytope consisting of the pure points of P together with the crossing points that
were computed.
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Algorithm 2 SetMinusCrossing(P,G)
Input: V-Polytope P , Polytope G
Output: V-Polytope(P \G)

1: extremePoints = getExtremePoints(P ) ▷ Algo. 5
2: edgesP = getConvexEdges(extremePoints) ▷ Algo. 6
3: PnG = {v ∈ extremePoints | v member G}
4: for v ∈ PnG do

5: BVs = getBorderVertices(v,edgesP, PnG) ▷ Algo. 7
6: for Point v′ ∈ BVs do
7: if G is V-Polytope then
8: CPs = CPs ∪ crossingPointsV(v,v′,P,G) ▷ Algo. 3
9: else

10: CPs = CPs ∪ crossingPointsH(v,v′,P,G) ▷ Algo. 4
11: end if

12: end for

13: end for

14: return (P \ PnG) ∪ CPs

For the derivation of the crossing points, we di�erentiate between two cases. These
cases are shown in Algorithm 3 and Algorithm 4. The �rst case is when G is bounded
and in V-Representation. To �nd the crossing points, we use linear programming to
�nd a λ′ that satis�es the membership requirement in G, and that is also part of a
crossing edge v′+λ′ ·(v−v′). Considering that the point v′ is the border vertex of the
point v, we try to �nd the closest point to v′, in order to be as optimal as possible.
To achieve that, we minimize λ′ to �nd the closest crossing point to v′.

Algorithm 3 crossingPointsV
Input: Point v, Point v′, V-Polytope P , V-Polytope G
Output: CP

1: Points w1, · · · , wn = G.getVertices()
2: // Calculate the closest point that intersects with a facet via LP solver:

min
λ1,...,λn,λ′∈[0,1]⊆R

λ′

s.t.
n∑

i=1

λi = 1

n∑
i=1

λi · wi︸ ︷︷ ︸
Member 3.2.7

= v′ + λ′ · (v − v′)︸ ︷︷ ︸
Crossing Edge

3: CP = {v′ + λ′ · (v − v′)}
4: return CP

In the case where G is in H-Representation, we use the constraints of G to �nd the
crossing point. For this case, we store the constraints that de�ne G in the form
of pairs, where ai indicates a vector of coe�cients of each constraint and b is the
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scalar. Again, we use linear programming to �nd the minimum λ′ that satis�es all
the constraints.

Algorithm 4 crossingPointsH
Input: Point v, Point v′,V-Polytope P , H-Polytope G
Output: CP

1: Constraints (a1,b1), · · · , (am,bm) = G.getConstraints()
2: // Calculate the closest point that ful�lls all constraints:

min
λ′∈[0,1]⊆R

λ′

s.t. ∀1≤i≤m ai ·
(
v′ + λ′ · (v − v′)

)
︸ ︷︷ ︸

Point

≤ bi

3: CP = {v′ + λ′ · (v − v′)}
4: return CP

What remains unclear until now, is how we compute the extreme points and the 1-
dimensional faces of a polytope. Algorithm 5 visualizes as pseudocode the calculation
of the extreme points from a given V-Polytope P . In the beginning, we store all the
unique points of P . The algorithm then iterates over all unique points of P . Using
linear programming, the algorithm evaluates whether or not the current point can be
reconstructed from a combination of all the other points. If this is the case, then there
exists a solution and thus the point is not an extreme point of P . If the other points
can not reconstruct the current point, then a solution does not exist when solving
the linear programming and thus the point is an extreme point of P . The algorithm
inserts all extreme points into the variable ExtremePoints and returns it.

Algorithm 5 getExtremePoints
Input: V-Polytope P = {p1, · · · , pn}
Output: extremePoints(P )

1: extremePoints = ∅
2: uniquePoints = P .getUniquePoints() // {p1, . . . , pm}
3: for Point pi ∈ uniquePoints do

min
λ1,...,λm∈[0,1]⊆R

0

s.t.
m∑
k ̸=i

λk · pk = pi ∧
m∑
k ̸=i

λk = 1

4: if ∄λ1, . . . , λm then

5: extremePoints = extremePoints ∪ {pi}
6: end if

7: end for

8: return extremePoints

Algorithm 6 visualizes a method for obtaining the 1-dimensional faces of a polytope
P . Given the extreme points of P , the algorithm iterates over all pairs of points of
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P . For each pair, linear programming is used. If a point on the edge between the
two selected points can be reconstructed from all other points of P , then the pair
representing an edge is not part of the 1-dimensional faces.

Algorithm 6 getConvexEdges
Input: extremePoints(P ) = {p1, · · · , pn}
Output: Convex edges of P

1: convexEdges = ∅
2: for Point pi ∈ extremePoints(P ) do
3: for Point pj ∈ extremePoints(P ) do
4: if pi ̸= pj then

min
λ1,...,λn∈[0,1]⊆R

0

s.t.
n∑

k ̸=i,j

λk · pk = λi · pi + λj · pj

n∑
k ̸=i,j

λk = 1 ∧ λi + λj = 1

5: if ∄λ1, . . . , λn then

6: convexEdges = convexEdges ∪ {(pi,pj)}
7: end if

8: end if

9: end for

10: end for

11: return convexEdges

The computation of the border vertices is shown in Algorithm 7. The algorithm
receives as an input a point v, a set of 1-dimensional faces, and the set PnG. The
algorithm iterates over all edges. For each edge, the algorithm checks if v is part of
it and if their direct neighbor is not in the set PnG. If that is the case, then the
neighboring point is inserted in the set BV . In the end, the algorithm returns a set
that contains the border vertices of the given point v.

Algorithm 7 getBorderVertices
Input: Point v, edgesP = [e1,...,en],PnG = {v1,...,vk}
Output: Border vertices of v

1: BVs = ∅
2: for (p,p′) ∈ edgesP do

3: if v = p ∧ p′ /∈ PnG then

4: BVs = BVs ∪ {p′}
5: end if

6: if v = p′ ∧ p /∈ PnG then

7: BVs = BVs ∪ {p}
8: end if

9: end for

10: return BVs
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The reachability analysis in HyPro uses a representation type, which de�nes the input
and output of the analysis. This means that the inputs and the result are calculated
and represented in a single representation type.

The two Algorithms 8 and 9 integrate these two cases. Algorithm 8 handles the case
where the input and output are in V-Representation. The algorithm calls Algorithm 2
and returns the result.

Algorithm 8 setMinusCrossingV
Input: V-Polytope P , V-Polytope G
Output: V-Polytope(P \G)

1: return setMinusCrossing(P,G)

Algorithm 9 receives as input two H-Polytopes and returns the H-Polytope that is the
result of the convex set minus operation. The algorithm requires that the polytope
P is bounded. First, we convert the polytope P to V-Polytope. After that, we call
Algorithm 2, which receives a V-Polytope P and an H-Polytope G as input. After
calculating the result, Algorithm 9 converts the resulting V-Polytope to H-Polytope
and returns it.

Algorithm 9 setMinusCrossingH
Input: H-Polytope P , H-Polytope G
Output: H-Polytope(P \G)

1: PV = toVPolytope(P )
2: resV = PV.setMinusCrossing(G)
3: resH = toHPolytope(polytope)
4: return resH

5.1.5 Runtime

The runtime of an algorithm is a critical factor in determining its e�ciency and practi-
cality. In this section, we analyze the theoretical runtime of our proposed Algorithm 2
and evaluate its performance. First, we calculate the runtime of the helper functions
and then conclude with the runtime of the main algorithm.

In Tables 5.11 and 5.12, we de�ne variables with a short description that we use to
estimate the runtime of the algorithms.

Symbol Description
k dimension = x0, · · · , xk

n1 number of points in P
n2 number of extreme points in P
m number of points in G
s number of extreme points of P in G

Figure 5.11: Table for the description of the variables used to estimate the runtime.
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LP Runtime Estimation = O(i1 · v · c)
Symbol Description

i1 number of iterations to �nd the best solution
using LP

i2 number of iterations to �nd any solution
using LP

v number of variables
c number of constraints

Figure 5.12: Table for the description of the variables used to estimate LP runtime.

First, we will analyze the runtime of Algorithm 5. This function is responsible for
computing the extreme points of a V-Polytope. To �nd the extreme points, �rst, we
have to calculate the unique points of the V-Polytope. While there might exist fast
methods, the pairwise comparison of each point has a runtime of n2

1. In the worst
case, each point in the V-Polytope is a unique point. As a result, we consider this
worst-case scenario, where the number of unique points is equal to the number of
points in the V-Polytope. We then use linear programming for each unique point.
It is known, that the runtime of LP, for example using simplex, has time complexity
O(i1 ·v ·c). Since we have n points and for each point, we need to use LP, the runtime
of Algorithm 5 is calculated as follows:

getExtremePointsRuntime = OgetEP (n
2
1 + n1 · i2 · v · c︸ ︷︷ ︸

LP

)

⇒ OgetEP (n
2
1 + n1 · i2 · n1 · 2)

⇒ OgetEP (n
2
1 + n2

1 · i2)
⇒ OgetEP (n

2
1 · i2)

The next function that we analyze is the runtime of Algorithm 6. This function is
responsible for computing the convex edges of a V-Polytope. In this function, we have
two nested loops that iterate over all extreme points of P . For each pair of points, we
use linear programming to �nd the convex edges. The runtime of the Algorithm 6 is
calculated as follows:

getConvexEdgesRuntime = OgetCE(n2 · n2 · i2 · v · c︸ ︷︷ ︸
LP

)

⇒ OgetCE(n
2
2 · i2 · n1 · 3)

⇒ OgetCE(n
2
2 · n1 · i2)

The runtime of the helper functions getExtremePoints and getConvexEdges are cal-
culated above. In the next step, we analyze the runtime of the membership function.
This function is responsible for checking if a point is a member of a polytope. In
our case, in the polytope G. This is done again with linear programming, thus the
runtime of the membership function is:
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membershipRuntime = OmemberG(i2 · v · c︸ ︷︷ ︸
LP

)

⇒ OmemberG(i2 ·m · 2)
⇒ OmemberG(i2 ·m)

The next step is to compute the runtime of the border vertices of a point. We consider
the worst case, where each point in the set PnG has two border vertices. The runtime
of the Algorithm 7 is calculated as follows:

getBorderVerticesRuntime = OgetBV (2 · s)
⇒ OgetBV (s)

In Algorithm 2, we have to calculate the crossing points. We have two cases, one where
G is in V-Representation and the other where it is in H-Representation. In general,
the runtime of calculating the crossing points with G in V-Representation is higher
than with G in H-Representation. This is because in V-Representation, calculating
whether a point is in G is computationally more expensive than in H-Representation.
The runtime of the crossing points from lines 8-11 from Algorithm 2 is calculated as
follows:

getCrossingPointsRuntime = OgetCP (i1 · v · c︸ ︷︷ ︸
LP

)

⇒ OgetCP (i1 · (m+ 1) · 2)
⇒ OgetCP (i1 · (m+ 1))

⇒ OgetCP (i1 ·m+ i1)

⇒ OgetCP (i1 ·m)

After calculating the runtime of all the helper functions, we can now calculate the
runtime of the main algorithm. The runtime of the Algorithm 2 is calculated as
follows:
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Runtime 2 = OgetEP +OgetCE + n2 · OmemberG

+ s · OgetBV + s · OgetBV · OgetCP

⇒ O(n2
1 · i2) +O(n2

2 · n1 · i2) + n2 · O(i2 ·m)

+ s · O(s) + s · O(s) · O(i1 ·m)

⇒ O(n2
1 · i2) +O(n2

2 · n1 · i2) +O(n2 · i2 ·m)

+O(s2) +O(s2 · i1 ·m) | s ≤ n1, n2 ≤ n1

⇒ O(n2
1 · i2) +O(n2

1 · n1 · i2) +O(n1 · i2 ·m)

+O(n2
1) +O(n2

1 · i1 ·m)

⇒ O(n2
1 · i2) +O(n3

1 · i2) +O(n1 · i2 ·m)

+O(n2
1) +O(n2

1 · i1 ·m)

⇒ O(n3
1 · i2) +O(n1 · i2 ·m) +O(n2

1 · i1 ·m) (5.17)

Assumption:

� i1 = �nd best solution ∈ O(n3) for input size n

� i2 = �nd any solution ∈ O(n2) for input size n

Runtime 2 = O(n3
1 · i2︸ ︷︷ ︸

getCE

) +O(n1 · i2 ·m︸ ︷︷ ︸
memberG

) +O(n2
1 · i1 ·m︸ ︷︷ ︸
getCP

) using (5.17)

⇒ O(n3
1 · n2

1) +O(n1 ·m2 ·m) +O(n2
1 ·m3 ·m) (5.18)

⇒ O(n5
1) +O(n1 ·m3) +O(n2

1 ·m4)

⇒ O(n5
1) +O(n2

1 ·m4) (5.19)

We know that LP in the worst case can take an exponential amount of time to solve.
However, in practice, the LP method is very e�cient and can solve most problems in
polynomial time. We assume that for i2, which is �nding any solution with LP, the
runtime is in O(n2). For i1, which is �nding the best solution with LP, we assume a
runtime in O(n3). In Equation 5.18, we replace the variables with the assumptions.
We replace i1 and i2 with the variables n1 andm depending on the input size of the LP
method. The runtime of Algorithm 2 is shown in Equation 5.19. Given the runtime
and that n1 is the number of points in the V-Polytope P and m is the number of
points in the polytope G, we can conclude that the runtime of Algorithm 2 increases
with n5

1 depending on P and with n2
1 ·m4 depending on G.
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5.2 Under-approximation

5.2.1 Motivation

Under-approximation in hybrid systems reachability analysis simpli�es complex prob-
lems. This is because it focuses on a bounded subset of reachable states, thus avoiding
the high complexity of exact or over-approximated reachability. Under-approximation
aids scalability, making it feasible to analyze more complex systems by reducing the
computational burden. Finding a bad state using the under-approximation, guaran-
tees that the actual system can also reach them. It allows researchers to concentrate
on speci�c, critical behaviors without the need to exhaustively analyze the entire state
space. Examples of under-approximation are shown in De�nition 3.3.3.

5.2.2 Example

In this section, we present an example to visualize how the under-approximation of
the set minus operator works. We consider two H-Polytopes P and G in the 2D space.
The example in Figure 5.13 shows two initial polytopes P and G in H-Representation.
P consists of four constraints and G consists of three constraints.

P

G

Figure 5.13: Initial polytopes P and G in the 2D space.

The idea is to convert each time one constraint of the polytope G and add it to the
polytope P . Figure 5.14a shows a resulting polytope that is constructed with the
constraints of the P and the inverted constraint h1 of G. Analogously, the solution in
Figure 5.14b is the resulting polytope that is created with the constraints of P and the
inverted constraint h2 of G. The example has three under-approximation solutions.
However, we show only two, since the third solution results in an empty polytope.
This happens when we invert the constraint h3 of G. The aim of the set minus
under-approximation is to return a single polytope. We choose the polytope with the
largest volume. This is done, due to the fact that we analyze reachability and we
want the biggest under-approximation. In this case, the polytope from Figure 5.14a
is returned.
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P

G

(a) Resulting polytope (yellow) of the set mi-
nus operator with an under-approximation
after inverting constraint h1.

P

G

(b) Resulting polytope (yellow) of the set mi-
nus operator with an under-approximation
after inverting constraint h2.

Figure 5.14: Possible under-approximation solutions.

5.2.3 Algorithm

In the following part of this chapter, we will introduce a simple pseudocode to compute
the under-approximation of the set minus operator of two H-Polytopes.
Algorithm 10 visualizes as pseudocode the set minus under-approximation. The al-
gorithm receives as input two H-Polytopes and returns an H-Polytope, which is an
under-approximation of the set minus operation. We start by inverting a constraint
of G and add it to a new polytope P ′. The polytope P ′ contains the constraints of the
original P and the current constraint from G that is inverted. We store the halfspaces
of P ′ in the vectorPolytopes vector. This process is repeated for all constraints of G.
After that, we iterate over the vector of polytopes that contain all possible solutions
and compare the size of each polytope. We return the polytope with the largest size
as the set minus under-approximation result.

Algorithm 10 setMinusUnder
Input: H-Polytope P , H-Polytope G
Output: H-Polytope(P \G)

1: vectorPolytopes = []
2: for constraint h ∈ G do

3: invertedConstraint = h.invertConstraint()
4: P ′ = P ∪ invertedConstraint
5: vectorPolytopes.push_back(P ′)
6: end for

7: biggestPolytope = ∅
8: biggestVolume = 0
9: for polytope P ′ ∈ vectorPolytopes do

10: currentVolume = P ′.getEstimatedVolume()
11: if currentVolume > biggestVolume then
12: biggestPolytope = P ′

13: biggestVolume = currentVolume
14: end if

15: end for

16: return biggestPolytope
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What is left to show is how the size of a polytope can be evaluated. This thesis intro-
duces a heuristic, which estimates the volume of a polytope. Algorithm 11 visualizes
a pseudocode for estimating the volume of a polytope. The algorithm �rst calculates
the minimum and maximum values for each dimension of the polytope. For that, we
use linear programming to �nd the minimum and maximum values. After calculating
the minimum and maximum values, the algorithm calculates an estimation box by
multiplying the di�erence between the minimum and maximum values of each dimen-
sion. The algorithm then uses the Monte Carlo method to estimate the volume of the
polytope [15]. It generates several random points in the estimation box and checks
how many of them are inside the resulting polytope. The volume is then estimated
by multiplying the size of the estimation box with the ratio of the number of points
inside the polytope and the total number of points generated.

Algorithm 11 getEstimatedVolume
Input: H-Polytope P = (a1,b1), · · · , (an,bn)
Output: double volume

1: dimBounds = []
2: k = P .getDimension()
3: for int i = 0; i< k; i++ do

4: // Calculate min and max value of each dimension

min
x0,··· ,xk

xi s.t. ∀1≤i≤n ai ·

x0

...
xk

 ≤ bi

max
x′
0,··· ,x′

k

x′
i s.t. ∀1≤i≤n ai ·

x′
0
...
x′
k

 ≤ bi

5: dimBounds.push_back((xi, x
′
i))

6: end for

7: estimationBox =
∏k

i=0(dimBounds[i].max−dimBounds[i].min)
8:

9: numberSamples = 1000
10: // Use Monte Carlo method to estimate the volume
11: numberPointsInside = useMonteCarlo(P , numberSamples, dimBounds)
12: volume = estimationBox ·numberPointsInside

numberSamples
13: return volume

A visualization of the volume estimation is seen in Figure 5.15. We show the esti-
mation box (blue) of the polytope from Figure 5.14a. As shown in the �gure, the
di�erence of the maximum and minimum values regarding the �rst dimension equals
10. Similar to the second dimension the di�erence of the maximum and minimum
value equals 8. These values are used to create the blue box. By multiplying the
di�erence of the dimensions, we get the size of the estimation box, which is an over-
approximation of the resulting polytope. The Monte Carlo method is used to estimate
the volume of the actual polytope. The method generates several random points in
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the estimation box and checks how many of them are inside the polytope.

P

G

Figure 5.15: Monte Carlo method from Figure 5.14b.

Let 400 points be generated by the Monte Carlo method and let 300 of them be inside
the yellow polytope. To estimate the volume of the polytope we multiply the volume
of the box with the ratio of the number of points inside the polytope and the total
number of points generated. In this case, the estimated volume of the polytope is:

volume = 10 · 8 · (300
400

) = 60

This process is repeated for all polytopes that are created in Algorithm 10. The
polytope with the largest estimated volume is returned as the result of the under-
approximation set minus operator.
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Chapter 6

Results

In this chapter, we present the results of the proposed algorithms. We present in
Section 6.1 three di�erent automata and plot their �owpipes. We show two cases, one
without urgent and one with urgent transitions. This shows the correct function of
the over-approximation algorithm. In Section 6.2, we show the results of the under-
approximation algorithm. We illustrate a plot that shows the under-approximated
convex set minus result. In the last Section 6.3, we compare the runtime of the pro-
posed over-approximating algorithm with the already existing setMinus-Polytopes 2
algorithm.

6.1 Over-approximation Results

We begin by presenting three examples that were used to showcase the applicability
of the above-presented algorithm. For all three examples, we introduce the hybrid
automaton that is used. After that, we show the constructed �owpipes once without
the jump being urgent and once with the jump being urgent. The blue segments in
the �owpipes are the P segments as they evolve over time. The red boxes indicate
the guard of the transition.

6.1.1 First Example

In Figure 6.1, we see the hybrid automaton that is used for the �rst example. It con-
sists of two locations l0 and l1 with a jump between them, and it is a two-dimensional
system with variables x and y. The initial value of the variable x is 0 and y is within
the interval [1,2]. In location l0, both variables evolve at the same rate, while in
location l1 they do not evolve at all. The transition from l0 to l1 is enabled when
x ∈ [1,1.5] and y ∈ [2.5,3].

l0

ẋ = 1

ẏ = 1

x ∈ [0, 0]

y ∈ [1, 2]

l1

ẋ = 0

ẏ = 0

x ∈ [1, 1.5]

y ∈ [2.5, 3]

Figure 6.1: Example 1: Hybrid automaton.
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Figure 6.2a shows the result of Algorithm 2 when the transition of the location l0 is
not marked as urgent. The reachable states evolve normally without the need for the
computation of set minus operator since the jump is not forced to be taken. We see
in both �gures, Figure 6.2a and Figure 6.2b that the guard is the box, which is the
cross product of the intervals x ∈ [1,1.5] and y ∈ [2.5,3]. In Figure 6.2b, we show the
result of the algorithm when the transition of the location l0 is marked as urgent. The
reachable states are computed with the set minus operator since the jump is forced
to be taken. In this scenario, we do not see a di�erence from Figure 6.2a. This is
because the convex set minus of each polytope P that intersects with the guard is
again the polytope P itself. As presented in Figure 5.2, the over-approximation can
result in the initial polytope P .

(a) Example 1: Without urgent transition. (b) Example 1: With urgent transition.

Figure 6.2: Flowpipes of the �rst example.

6.1.2 Second Example

In Figure 6.3, the hybrid automaton that is used for the second example is shown.
Again, the same two variables with the same initial values are used. In location l0
the variable x evolves at a rate of 1, whereas the variable y evolves at a rate of 0. In
location l1 both variables evolve at a rate of 0. The transition from l0 to l1 is enabled
when x ∈ [2,2.5] and y ∈ [1,1.5].

l0

ẋ = 1

ẏ = 0

x ∈ [0, 0]

y ∈ [1, 2]

l1

ẋ = 0

ẏ = 0

x ∈ [2, 2.5]

y ∈ [1, 1.5]

Figure 6.3: Example 2: Hybrid automaton.

In Figure 6.4a, we show the reachability analysis with time horizon 3 without ur-
gent jumps. In Figure 6.4b, we see the di�erence that occurs when we mark the
transition from location l0 to l1 as urgent. Using the introduced set minus crossing
algorithm, we can see that the reachable states are computed di�erently. The guard
is within the bounds x ∈ [2,2.5] and y ∈ [1,1.5]. After computing the set minus
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of the �rst polytope that intersects with the guard, we get the resulting polytope
which is shown in x ∈ [2, 2.1] and y ∈ [1,2]. The crossing points of that polytope are
(2,1), (2,2), (2.1,2), (2.1, 1.5) and thus the result. For the following segments, we see
that the result is di�erent from the �rst intersecting segment. This is because the
crossing points for the next segment are (2.1,1.5),(2.1,2),(2.2,2),(2.2,1.5).

(a) Example 2: Without urgent transition. (b) Example 2: With urgent transition.

Figure 6.4: Flowpipes of the second example.

6.1.3 Third Example

For the last example, we use the hybrid automaton shown in Figure 6.5. We have the
same two variables with the same initial values and evolve rates. The transition from
l0 to l1 is enabled when −x+ y ≤ −2.5.

l0

ẋ = 1

ẏ = 0

x ∈ [0, 0]

y ∈ [1, 2]

l1

ẋ = 0

ẏ = 0

−x+ y ≤ −2.5

Figure 6.5: Example 3: Hybrid automaton.

This scenario di�erentiates from the other two since the guard is unbounded. For this
case, we use Algorithm 9 where both initial polytopes are in H-Representation. In
the �rst two scenarios, the representation type is in V-Representation.

In Figures 6.6a and 6.6b, the guard represents the inequality −x + y ≤ −2.5. In
Figure 6.4a, where the urgent transition is not enabled, we see no di�erence in the
reachable states. On the other hand, in Figure 6.4b, we see that as soon as the
unbounded guard is enabled, the reachable states are computed with the set minus
operator and thus, we get a di�erent result. Each intersection with the P polytope
and the guard results in a smaller polytope.
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(a) Example 3: Without urgent transition. (b) Example 3: With urgent transition.

Figure 6.6: Flowpipes of the third example.

6.2 Under-approximation Results

In Figures 6.7a and 6.7b, we show the results of the under-approximation algorithm.
We use the same example that was mentioned in the previous Section 5.2.2. Fig-
ure 6.7a shows the polytope P (green) and the guard G (red) in 2D space. The poly-
topes are in H-Representation. The result after applying the under-approximation
algorithm is shown with the blue polytope in Figure 6.7b. This is the expected result
since the blue polytope is the largest in terms of volume.

(a) Initial polytope P (green) and G (red)
in the 2D space.

(b) Blue polytope indicates the result of
the under-approximation.

Figure 6.7: Under-approximation of the polytope P without the guard G.

6.3 Runtime Comparison Results

For this section, additional experimental models have been used to compare the run-
time of the proposed algorithm with over-approximation with the already existing
setMinus-Polytopes algorithm.
In this context, we examine the runtime di�erences between the setMinus-Polytopes
algorithm 2 and the algorithm proposed in this thesis. The goal is to highlight their
respective capabilities and limitations in terms of runtime. For the runtime compari-
son, we use the same models for both of the algorithms and measure the average time
it takes to compute the reachable states. One limitation of the setMinus-Polytopes
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algorithm is that it only works with polytopes in H-Representation. For this reason,
we use H-Representation for the comparison of the two algorithms. In the models,
we use the benchmark parameters shown in Table 6.1.

Model #V ar #Loc #Edge #Urg Time horizon Jump depth
vehicle_urgent 4 2 7 6 20 ∞
moving_guard 2 10 9 9 20 [1,7]

Table 6.1: Parameters of the models used for the runtime comparison.

6.3.1 First Model

The �rst model that we used for benchmarking is an automaton proposed in [5].
The model is implemented as vehicle_urgent.model in the HyPro library. The vari-
ables x and y represent the position of the vehicle. The variable vx shows the velocity
of the vehicle in the x direction. The vehicle starts at position x = 0 and y ∈ [0, 5].
As shown in Figure 6.8, there exist several urgent transitions represented by dashed
lines. These transitions are enabled when the vehicle reaches certain positions. The
vehicle is forced to brake for one second at these positions. After that, the vehicle is
allowed to accelerate again.

driving

ẋ = vx

x ≤ 15

x = 0

y ∈ [0, 5]

vx = 1

t = 0

braking

ẋ = vx

ṫ = 1

x ≤ 15

t ≤ 1

x ∈ [2,3] ∧ y ≥ 1

x ∈ [5,8] ∧ y ∈ [3,4]

x ∈ [11,12] ∧ y ≤ 2

x ∈ [6,7] ∧ y ∈ [2,3]

x ∈ [10,12] ∧ y ≥ 4

x ∈ [12,13] ∧ y ≥ 2

t ≥ 1

t := 0

Figure 6.8: Vehicle model.

In Table 6.2 we see the runtime results of the two algorithms. We compute the
reachability of the model for 40 iterations and measure the average runtime for the
vehicle_urgent model. We measure the time in milliseconds and it is shown, that the
setMinusCrossing algorithm is slightly slower than the setMinus-Polytopes algorithm.
A possible reason for that is that the setMinus-Polytopes algorithm is optimized for
the case where both polytopes are in H-Representation. The proposed algorithm
as mentioned in Section 5.1.4, uses the setMinusCrossingH, when dealing with H-
Polytopes. This function converts the polytope P into V-Representation. Due to this
conversion, the runtime of the algorithm increases.
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Model vehicle_urgent
Algorithm setMinus-Polytopes setMinusCrossing

Average runtime in ms 273.09 311.67

Table 6.2: Runtime comparison of setMinus-Polytopes and setMinusCrossing with 40
iterations for the vehicle model.

6.3.2 Second Model

The setMinus-Polytopes algorithm has a signi�cant drawback due to its generation
of numerous intermediate results during the set minus computation. Each setMinus-
Polytopes operation results in a potentially huge set of polytopes, and applying the
set minus operation multiple times can lead to exponential growth in the number
of resulting polytopes, which can be computationally expensive. To highlight this
weakness, we propose a model with multiple locations and guards that intersect with
the polytopes. This simulates a scenario where the setMinus-Polytopes algorithm has
to compute the set minus of a large number of polytopes. The model consists of 10
locations and two variables x,y. Initially, the variables are set to x = 1 and y ∈ [1,20].
While this model is a hand-made example, it simulates hybrid automata with a high
number of guards. For simplicity reasons, we visualize in Figure 6.9 an example with
three locations. The idea is to have a chain of locations, each connected by urgent
jumps with an increasing bound as the model progresses. The �rst transition consists
of the guard 2 ≤ x and 2 ≤ y. After taking the jump, the new location only consists
of a transition with the guard 4 ≤ x and 4 ≤ y. This pattern continues until the last
location, where the guard is 18 ≤ x and 18 ≤ y. By introducing new constraints, the
setMinus-Polytopes algorithm has to compute new polytopes and insert them into
the set of possible states. This results in an exponential growth of the number of
polytopes that the algorithm has to compute.

l0

ẋ = 1

ẏ = 0

x ∈ [1, 1]

y ∈ [1, 20]

l1

ẋ = 1

ẏ = 0

. . .

l9

ẋ = 1

ẏ = 0

2 ≤ x

2 ≤ y

x := x+ 1

y := y

4 ≤ x

4 ≤ y

x := x+ 1

y := y

18 ≤ x

18 ≤ y

x := x+ 1

y := y

Figure 6.9: Model with a chain of locations.

In the following Figures 6.10a and 6.10b, we present the runtime results of the two
algorithms. We show that as the number of jump depth increases, the runtime of the
setMinus-Polytopes algorithm increases exponentially. The model from Figure 6.9 is
used for this comparison. For a �xed jump depth, we used 5 iterations to evaluate
the average runtime of the two algorithms. In addition, we set the time horizon to 20
and the time step to 1

7 for both algorithms. The y-axis shows the runtime in seconds
and the x-axis shows the number of jumps that the algorithms used. The data points
represent the average runtime of the 5 iterations of each algorithm respectfully. We
see that the setMinus-Polytopes algorithm increases exponentially with the number
of jumps. While the plot does not show whether the setMinusCrossing algorithm
has a linear or exponential growth, we can see that the runtime is signi�cantly lower
than the setMinus-Polytopes algorithm. Additionally, we could not compute the
setMinusCrossing algorithm for a jump depth of greater than 3. This is due to current
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library issues that need to be resolved in the future. Currently, an intermediate
result of the �owpipe computation is intersected with the guard. After intersecting,
a computed H-Polytope is checked for redundant constraints. This check is done
by using an optimizer, which under certain values of the constraints fails to �nd a
solution. This problem, however, is unrelated to the proposed algorithm itself.
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Figure 6.10: Runtime comparison of setMinus-Polytopes and setMinusCrossing with
5 iterations for the model from Figure 6.9 with time horizon = 20 and time step = 1

7 .

Previous results, shown in Figures 6.11a and 6.11b, are obtained by slightly changing
the parameters of the model from Figure 6.9. While these results are currently not
reproducible due to the mentioned library issues, they show that the runtime of the
setMinusCrossing algorithm can be signi�cantly lower than the setMinus-Polytopes
algorithm.
All in all, the runtime comparison shows that the setMinusCrossing algorithm is a
viable alternative to the setMinus-Polytopes algorithm.
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Figure 6.11: Runtime comparison of setMinus-Polytopes and setMinusCrossing with
5 iterations for the model from Figure 6.9 with slightly di�erent parameters.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we extend the concept of hybrid automata by incorporating urgent
transitions to analyze the reachability of urgent hybrid automata. Our primary ob-
jective was to enhance the HyPro library to handle urgency and to develop a robust
algorithm capable of computing the set minus operator between two polytopes as an
over-approximation.
To introduce the topic, we began with foundational examples and concepts, laying
the groundwork for our subsequent developments. We present in Section 5.1 our
algorithm, which computes an over-approximation of the set minus operator between
two polytopes. This algorithm uses linear programming techniques to identify crossing
points. We focus on two primary representations of state sets: the V-Representation
and the H-Representation. Our algorithm is able to handle the set minus operation
for both of these representations, as we demonstrate through detailed overviews and
pseudocode illustrations.
In Section 5.1.3, we prove the correctness and e�ciency of our algorithm through a
series of lemmas.
Following this, we introduce in Section 5.2 a pseudocode for computing the set mi-
nus operation as an under-approximation between two polytopes. We present an
illustrative example and a comprehensive explanation of its functionality.
In Section 6, we provided a series of examples and models to validate the correct-
ness of the algorithms developed. For the over-approximation, three distinct exam-
ples are discussed, demonstrating the expected outcomes. Similarly, for the under-
approximation, a single example is presented, con�rming the accuracy of our ap-
proach.
Lastly, in Section 5.1.5, we compare the runtime performance of our proposed algo-
rithm against the pre-existing setMinus-Polytopes algorithm in HyPro. Our �ndings
indicate that, in the �rst example, our algorithm exhibits slightly slower performance
due to the conversion of representations. However, in the second model, we high-
lighted a signi�cant drawback of the setMinus-Polytopes algorithm: its ine�ciency
when dealing with many guards which can lead to reachability tree explosion. The
setMinus-Polytopes algorithm, designed for polytopes in H-Representation, generates
numerous intermediate results during the set minus computation. Each constraint
conversion results in a set of polytopes, and applying the set minus operation to
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each can lead to exponential growth in the number of resulting polytopes, which is
computationally expensive.
In contrast, the algorithm proposed in this thesis can handle both polytopes in V-
Representation and cases where the guard is in H-Representation. A key advantage
of our algorithm is that it only produces one resulting polytope. This approach
not only enhances computational e�ciency but also simpli�es the process of com-
puting the set minus operation. Consequently, in scenarios involving many guards,
our algorithm demonstrated superior performance, being much faster and more e�-
cient. Important to note is, that our algorithm is an over-approximation whereas the
setMinus-Polytopes algorithm computes an exact result.
In summary, this thesis contributes an algorithm for the over-approximation and
under-approximation of the set minus operator between polytopes in the context of
urgent hybrid automata. The developed methods not only extend the capabilities of
the HyPro library but also o�er signi�cant improvements in computational e�ciency
in speci�c scenarios.

7.2 Future work

Due to time limitations, some improvements and extensions could be pursued in
future work. These enhancements can further optimize the algorithm and extend the
capabilities of the HyPro library for more complex representations and urgent hybrid
automata.
Firstly, an important area for improvement is the runtime e�ciency of our algo-
rithm. As mentioned earlier, our algorithm can be slightly slower than the setMinus-
Polytopes algorithm due to the conversion between polytope representations. We
attempted to address this by introducing a new variable in the H-Polytope class to
store the extreme points of the corresponding V-Polytope. These extreme points are
created from all constraints of the H-Polytope. This approach aims to eliminate the
initial conversion from H to V-Polytope, thus saving computational time. However,
our tests indicated that this modi�cation did not result in signi�cant speed improve-
ments, suggesting that further optimization is necessary, in order to be faster than
setMinus-Polytopes algorithm. Exploring alternative implementations of the set mi-
nus operator for H-Representation that do not require conversion between polytope
representations could lead to faster and more e�cient algorithms. Developing an algo-
rithm for the set minus operator to handle polytopes directly in their representations,
without conversions, would avoid additional computational overhead.
Another promising direction is the integration of the set minus operator as an under-
approximation within the urgent reachability analysis of HyPro. Although the pri-
mary focus of this thesis was on developing and validating the over-approximation
algorithm, incorporating the under-approximation could provide a more comprehen-
sive tool for reachability analysis in urgent hybrid automata. This step remains to be
proved and tested.
Furthermore, future work could also include the development of an under-approximation
algorithm for the set minus operation in the V-Representation. This would expand
the utility of the developed methods and provide additional �exibility in handling
di�erent polytope representations within the urgent hybrid automata framework.
During the experimental phase, it was shown that the function getExtremePoints
takes the most time during the set minus calculation. Given that, it would be bene�-
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cial to investigate ways to optimize this function to improve the overall performance
of the algorithm. This could involve exploring alternative methods for computing
extreme points or implementing more e�cient algorithms for this purpose.
By addressing these areas, future research can build upon the foundation laid by this
thesis to create more robust and e�cient tools for analyzing urgent hybrid automata.
These advancements will not only enhance the performance of reachability analysis
but also broaden the scope of applications and improve the overall e�ectiveness of the
HyPro library.
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