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Abstract

Probabilistic hyperproperties are speciûcations that describe the form of the traces of
executions of probabilistic systems that compare multiple traces simultaneously and
with one another, and make statements concerning the probabilities of certain events
happening across these traces. In this thesis, we explore the expressive power of
three probabilistic hyperlogics – that is, logics that can formulate properties matching
this description – in relation to one another: HyperPCTL, HyperPCTL*, and PHL, on
(discrete-time) Markov Chains, and Markov Decision Processes. _e focus is primarily
on the relation of HyperPCTL and HyperPCTL* to PHL on Markov Chains.
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Chapter 1

Introduction

Discrete-Time Markov Chains (DTMCs) are mathematical objects, not dissimilar to
Kripke structures, or even some forms of automata, which can be used to model proba-
bilistic processes. Markov Decision Processes (MDPs) combine this concept with layers of
nondeterministic choice. _e formalism for resolving the choices lies within schedulers,
which, intuitively, replace each layer of choices with a probability distribution, while
also being allowed to reference past choices during the selection of the distribution
itself. Both DTMCs and MDPs have atomically labelled states.

_e trace of a path on a labelled transition system is the ordered collection of labels that
appear on it. A trace property is, hence, simply a speciûcation of how a trace should
look like. Alternatively, a trace property is some collection of acceptable traces.

We have well-established logics that can be used to express trace properties in labelled
transition systems, with a very important example in the context of this thesis being
computational tree logic (CTL) [CE82]. CTLmakes a strict distinction between state
and path formulae. _e former are those that specify either branching behaviour, or
make local assertions referencing labels, on certain states. _e latter express temporal
modalities along paths. _at is, they express how properties change along them – or,
in other words in which order they appear. CTL requires alternation of path and
state formulae in nesting, and CTL* [EH86] is an expansion of it that li�s this very
restriction.

PCTL, ûrst seen in [HJ89], and PCTL*, ûrst seen in [Azi+95], have been formulated to
make assertions involving probabilistic trace properties in DTMCs and MDPs. _ese
exchanged the quantiûers of their non-probabilistic counterparts for probabilistic
operators of the form P≤c(⋅) that can measure sets of paths fulûlling the speciûcations
laid out in their arguments, and compare these measures with constants (“≤ c” in the
example above).

Hyperproperties are properties that can compare multiple traces at once, and with
one another. For the probabilistic versions of these, the logics mentioned have been
reformed intoHyperPCTL [ÁB18] andHyperPCTL* [Wan+21], in the former by adding
quantiûcation over states, and in the latter by making probabilistic operators draw
explicit paths that can then be referenced in nested expressions. Both logics can also
compare measures to one another, that is, they are not limited to comparison with
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Introduction

constants, as was the case with PCTL and PCTL*. HyperPCTL has further seen an
extension to MDPs in [Ábr+20] by way of quantiûcation over schedulers.

A completely distinct approach at solving the same problem is found in PHL [HJ89],
which only has a formulation for MDPs, and deals with probabilistic properties com-
pletely separately from (non-probabilistic) hyperproperties. Essentially, it delegates
the former to measures of scheduler-marked LTL [Pnu77], and the latter to Hyper-
CTL* [Cla+14], with the extra step of binding path quantiûcation to schedulers. A
downscaled version of PHL for DTMCs will be proposed later on.

In contrast to the logics that laid their foundations, the relationship between Hyper-
PCTL, HyperPCTL*, and PHL in terms of expressive power on DTMCs, as well as the
one betweenHyperPCTL and PHL onMDPs, is currently largely unknown. _is thesis
aims to explore exactly this relationship. To this end, apart from proposing a down-
scaled version of PHL for DTMCs, all of the logics have been reformulated to use
consistent notation and comparable mathematical abstractions in their syntax and
semantics across the board. In particular, HyperPCTL* had to be changed relatively
drastically due to our perceived ambiguities in its formulation in [Wan+21]. _e rea-
soning behind this and the changes themselves, as well as a verbatim copy of the logic
is provided in Appendix A.

We mostly focus on HyperPCTL vs. PHL, and HyperPCTL* vs. PHL, on DTMCs due
to the following reasons.

– HyperPCTL* does not yet have a formulation for MDPs, and upscaling it is
non-trivial.

– _e relation between HyperPCTL and HyperPCTL* on DTMCs is explained
(albeit not exhaustively proven) in [Wan+21].

– Exploring the above in detail would not have ût the time frame for this thesis.

_e structure of the thesis as follows. Chapter 2 goes over the required measure-
theoretical background, lays out notational conventions, and deûnes themodels and the
logics concretely. Furthermore, it proposes a downscaled version of PHL for DTMCs.
In Chapter 3, deûnitions for relations (e.g. implication, subsumption, equivalence)
between formulae and fragments across all logics are provided, and inherent diòerences
between the logics, and how they work, are pointed out. Chapters 4 and 5 examine the
relation between HyperPCTL* and PHL, and HyperPCTL and PHL, respectively. _is
is done by embedding fragments of one into the other. In Chapter 6, we brie�y look
at what relations between HyperPCTL and HyperPCTL* can be extrapolated from the
results of previous chapters. Finally, Chapter 7 deals with the question of whether the
results of Chapter 5 scale upwards for MDPs. Chapter 8 reiterates on the results and
open questions of all chapters, and concludes the thesis.
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Chapter 2

Preliminaries

Let ℘(⋅) denote the powerset operator and ω the ûrst limit ordinal. For the purposes
of this thesis, we consider ω equivalent to the set of the ûnite ordinals, the natural
numbers (von-Neumann-construction). As such, the expressions n < ω and n ∈ ω are
to be interpreted the same. Furthermore, R denotes the set of the real numbers,Q the
set of rational numbers, and we set R∞ ∶= R ∪ {−∞,∞}.

Let A be an ordered set, and a, b ∈ A. We deûne the closed interval [a, b] in A as

[a, b]A ∶= {c ∈ A ∣ a ≤ c ≤ b}.

Similarly, we also deûne the open interval (a, b) in A by

(a, b)A ∶= {c ∈ A ∣ a < c < b}.

If the subscript A is omitted, it is assumed to be ω. As such [a, b] denotes the discrete
interval {a, a + 1, . . . , b − 1, b}. In any case, [a, b]A = ∅, if a > b, and (a, b)A = ∅, if
a ≥ b (in case A = ω, even a ≥ b − 1 suõces).

Let u be a sequence of length ∣u∣ ∶= n ≤ ω. _e expressions ui , and u(i), i < n, denote
the i-th member of u. Expressions of the form u ↦ v are used to represent the tuples
(u, v), where it contributes to readability (e.g. assignments).

Finally, let A, B,C be sets, u ∶= ((ai , bi))i<n ∈ (A×B)
n, n ≤ ω a sequence of tuples, and

v ∶= (ci)i<n ∈ Cn a sequence in C. u[v] denotes the sequence ((ai , ci))i<n that results
by replacing each second element of the tuples in u by the corresponding element of
v.
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Preliminaries

2.1 Probability Spaces

Before we start, it is essential to go over a few fundamental deûnitions regarding
probability and measure theory. _e basic building blocks we will need to use are
σ-algebras, which, intuitively, represent a formal expression of measurable events in the
form of collections of sets. Due to this connotation, the elements of a σ-algebra are o�en
called events. _e deûnitions that follow are adapted from Chapter 1 of [Bog07].

Deûnition 2.1 (σ-algebra). Let Ω ≠ ∅ be a space. A collection of sets A ⊂ ℘(Ω) is
called σ-algebra over Ω if the following conditions are met.

(i) Ω ∈ A.

(ii) A ∈ A ⇒ Ω ∖ A ∈ A. (stability under complements)

(iii) If I is a countable set of indices, and (Ai)i∈I ⊂ A a sequence of events in A, then
⋃i∈I Ai ∈ A. (σ-∪ stability)

4

_e tuple (Ω,A) of a space Ω and a σ-algebra A over Ω is called a sample space. _e
entire collection ℘(Ω) is in itself the largest σ-algebra over Ω, and the smallest possible
one is {Ω,∅}. Any other σ-algebra lies between these two.

It is o�en required to deûne measures on an arbitrary collection E of subsets of Ω.
To this end, the intersection of all expansions of E with other subsets of Ω that are σ-
algebras is taken. _e result is a unique σ-algebra that contains the entire collectionE.

Deûnition 2.2 (σ-algebra generated by a collection). Let Ω ≠ ∅ be a space, and E ⊂
℘(Ω) a collection of sets. _e smallest σ-algebra containing E is called the σ-algebra
generated by E and deûned by A(E) ∶= ⋂A∈FA, where F = {A ⊂ ℘(Ω) ∣ E ⊂
A ∧ A is σ-algebra over Ω}. 4

_e well-deûnedness and existence of A(E) from Deûnition 2.2 falls into the domain
of measure theory [Bog07, Prop. 1.2.6]. With these deûnitions, we can introduce the
notion of a probability measure.

Deûnition 2.3 (Probability measure). Let Ω ≠ ∅ be a space, A ⊂ ℘(Ω) a σ-algebra
over Ω, and µ ∶ A→ [0,∞]R∞ . µ is called a probability measure on (Ω,A), if

(i) µ(∅) = 0,

(ii) µ(Ω) = 1,i and,

(iii) if I is a countable set of indices, and (Ai)i∈I ⊂ A a sequence of pairwise disjunct
events in A, then µ (⋃i∈I Ai) = ∑i∈I µ(Ai). (σ-additivity)

iWithout this condition, µ is called simply ameasure.
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4

Putting everything together, we get

Deûnition 2.4 (Probability space). A probability space is a triple (Ω,A, µ) where

– Ω is a nonempty space,

– A ⊂ ℘(Ω) is a σ-algebra over Ω, and

– µ ∶ A→ [0,∞]R∞ is a probability measure on (Ω,A). 4

An adjacent term that we will need to use is the following.

Deûnition 2.5 (Probability distribution). Let A be a discrete set. A function p ∶ A→
[0, 1]R∞ is called a (discrete) probability distribution over A, if (A,℘(A), µp) is a proba-
bility space, where µp is themeasure induced by p and deûned by

µp(B) ∶= ∑
b∈B

p(b), for B ⊂ A
4

We can already put the preceding deûnitions to use and prove a useful relation that
connects the probability measure of a set with the one of its complement.

Lemma 2.6 (Dual events). Let (Ω,A, µ) be a probability space. _en

µ(Ω ∖ A) = 1 − µ(A), for all A ∈ A.

Proof. Let A ∈ A. By Deûnition 2.1(ii), Ω ∖ A ∈ A and we get

µ(Ω ∖ A) = µ(Ω ∖ A) + µ(A) − µ(A)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= (µ(Ω ∖ A) + µ(A)) − µ(A)

= µ((Ω ∖ A) ∪ A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(Ω∖A)∩A=∅

) − µ(A) (Def. 2.3(iii))

= µ(Ω) − µ(A)

= 1 − µ(A). (Def. 2.3(ii))

2.2 Models

In this section, we shall introduce the abstract mathematical models, upon the founda-
tion of which we will base the deûnitions of the logics later on.
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2.2.1 Markov Chains

Discrete-Time Markov Chains, or DTMCs, are mathematical objects that can be used
to model probabilistic processes. _ey are, intuitively, labelled transition systems, in
which the transitions themselves happen probabilistically.

Deûnition 2.7 (Markov Chain). A (discrete-time) Markov Chain (DTMC) is a tuple
D = (S , p,AP, l), where

– S is a countable, nonempty set of states,

– p ∶ S × S → [0, 1]R is a transition probability function, such that

∑
t∈S

p(s, t) = 1, for all s ∈ S ,

– AP is a set of atomic propositions, and

– l ∶ S → ℘(AP) is a labelling function. 4

We call a DTMC ûnite iò S is ûnite. Note that some deûnitions also include an initial
probability distribution of the form ι ∶ S → [0, 1], with∑s∈S ι(s) = 1, or may specify a
unique initial state sι . In the sequel, if either of these is being used, it will be explicitly
noted.

Deûnition 2.8 (n-ary parallel composition of Markov Chains). Let n < ω, and
Di = (Si , pi ,APi , li), for i < n, be a sequence of DTMCs. _e n-ary parallel com-
position over this sequence is deûned as the DTMC ⨉i<nDi = (S , p,AP, l), with

– S ∶= ⨉i<n Si ,

– p(s, t) ∶= ∏i<n p(si , ti),

– AP ∶= ⨉i<n APi , and

– l(s) ∶= (l1(s1), ..., ln(sn)),

with s, t ∈ S. 4

Note that l(s) ∈ ⨉1≤i≤n ℘(APi), instead of l(s) ∈ ℘(AP) = ℘(⨉1≤i≤n APi), which is
what one would expect a�er Deûnition 2.7. _is notational choice was made for purely
stylistic reasons, as it aids readability and allows us to easily deûne legible notation of
the form “l(s)(i)” to get the label of the i-th component of s.

Based on Deûnition 2.8, we call the n-ary parallel composition of a DTMC D with
itself the n-ary self-composition of D and denote it byDn.
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2.2.2 Markov Decision Processes

An “expansion” of the DTMC model can be found in Markov Decision Processes,
or MDPs for short. _ese add a layer of nondeterminism, represented by actions,
in-between state transitions.

Deûnition 2.9 (Markov Decision Process). AMarkov Decision Process is a tupleM =
(S ,Act, p,AP, l), where

– S is a ûnite, nonempty set of states,

– Act is a nonempty set of actions,

– p ∶ S × Act × S → [0, 1]R is a transition probability function, such that

– the partially applied function ps,α , deûned by ps,α(t) ∶= p(s, α, t), is either
a probability distribution over S, or identical to 0, for all (s, α) ∈ S × Act,
and

– for each s ∈ S there is at least one α ∈ Act such that ps,α /≡ 0.

– AP is a set of atomic propositions, and

– l ∶ S → ℘(AP) is a labelling function. 4

If ps,α /≡ 0, we call α ∈ Act enabled at s ∈ S, and denote with Act(s) the set of all such
actions. We will now look at a way to remove nondeterminism fromMDPs, namely
schedulersi. Intuitively, these replace each nondeterministic layer of actions with a
probability distribution over these actions. Since each choice made by a scheduler can
depend on its previous ones, the DTMC that results may be inûnite.

Similarly to DTMCs, MDPs might have an initial state sι , or an initial distribution
ι ∶ S → [0, 1] with ∑s∈S ι(s) = 1. If either of these is being used, it will be noted
explicitly.

Deûnition 2.10 (Scheduler). Given an MDP M = (S ,Act, p,AP, l), a scheduler for
M is a tuple σ = (Q , act,mode, init), where

– Q is a countable set of modes,

– act ∶ Q × S × Act → [0, 1]R is a function such that its partial application actq,s,
deûned by actq,s(α) ∶= act(q, s, α), is a probability distribution over Act(s), for
all (q, s) ∈ Q × S,

– mode ∶ Q × S → Q is amode transition function, and

– init ∶ S → Q is an initial mode function. 4
iIn some stochastics literature also referred to as policies.
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We denote the set of all schedulers for an MDPM as ΣM . An alternative – but still
equivalent – deûnition for a scheduler is found in [DFT20], in which it is formulated as
a function that assigns probability distributions over Act to histories, that is, sequences
of states and actions of the form s0α0...αn−1sn ∈ (S ⋅Act)∗S. Within Deûnition 2.10, the
entire history space of an MDP can be encoded into diòerent sequences of modes and
transitions in the mode space and transition function respectively, as it is countable.

As it was alluded to before, a pairM , σ induces a DTMC.

Deûnition 2.11. Let M = (S ,Act, p,AP, l) be an MDP, and σ ∈ ΣM . _e DTMC
induced byM with σ isM σ ∶= (Sσ , pσ ,AP, l σ), where

– Sσ ∶= Q × S,

– pσ((q, s), (r, t)) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

∑α∈Act(s) act(q, s, α) ⋅ p(s, α, t), if r = mode(q, s),
0, otherwise, and

– l σ(q, s) ∶= l(s),

with q, r ∈ Q and s, t ∈ S. 4

Deûnition 2.12 (n-ary parallel composition of Markov Decision Processes). Let n <
ω, andMi = (Si ,Acti , pi ,APi , li), for i < n, be a sequence of MDPs. _e n-ary parallel
composition over this sequence is deûned as the MDP ⨉i<nMi = (S ,Act, p,AP, l),
with

– S ∶= ⨉i<n Si ,

– Act ∶= ⨉i<n Acti ,

– p(s, α, t) ∶= ∏i<n pi(si , αi , ti),

– AP ∶= ⨉i<n APi , and

– l(s) = (l1(s1), ..., ln(sn)),

with s, t ∈ S, and α ∈ Act. 4

Again, we made the notational choice to have l(s) ∈ ⨉1≤i≤n ℘(APi) instead of l(s) ∈
℘(⨉1≤i≤n APi).

_e n-ary self -composition of an MDP M is denoted by Mn and deûned similarly
to the DTMC case. For a sequence of schedulers σ ∈ Σn

M ,M σ represents the DTMC
⨉i<nM σi , that is the parallel composition of theDTMCs induced by the pairsM , σi .
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2.2.3 Paths & Reachability

Let D = (S , p,AP, l) be a DTMC. A path π on D is an inûnite sequence of states
π = (si)i<ω ∈ Sω, such that p(si , si+1) > 0, for all i < ω. We denote the set of all paths
onD by PathsD. For a j < ω, the sequence π′ ∶= (s′i)i< j ∈ S

j is called a ûnite preûx of
π, written π′ ⊑ π, iò si = s′i , for all i < j. We deûne the length of π′ by ∣π′∣ ∶= j. Paths<ωD
represents the set of all ûnite preûxes of paths in PathsD. Similarly, PathsD(s) and
Paths<ωD (s) are deûned as the sets of paths and ûnite path preûxes, respectively, that
start at a ûxed s ∈ S. A state t ∈ S is reachable from s ∈ S iò there exists a π ∈ Paths<ωD (s)
that ends in t.

Now consider an MDPM = (S ,Act, p,AP, l). A path onM is an inûnite sequence of
states (si)i<ω ∈ Sω, this time with the condition that for all i < ω there exists an action
α ∈ Act with p(si , α, si+1) > 0. A consequence of this is, that, given σ ∈ ΣM , a path
on the induced DTMCM σ of the form ((qi , si))i<ω ∈ PathsM σ corresponds to the
path (si)i<ω on the original MDP that results by leaving out the modes qi . _e sets
PathsM , Paths<ωM , PathsM(⋅), and Paths

<ω
M (⋅), as well as the relation ⊑ share the same

semantics and deûnitions with their DTMC equivalents above.

For a DTMC or MDPN , and one of its states s, we deûne

– PostN(s) ∶= {t ∈ S ∣ ∃π ∈ PathsN(s) ∶ π(1) = t}, the set of all successors of s,
and

– Post∗N(s) ∶= {t ∈ S ∣ ∃π ∈ PathsN(s) ∶ ∃ j < ω ∶ π( j) = t}, the set of all states
reachable from s.

Furthermore, for π ∈ PathsN , we denote by π(i) the i-th element of π, and set π i ∶=
(π(i + j)) j<ω to denote the i-shi� of π, that is the path that results by discarding the

ûrst i elements of π. Let π(i) and π i be deûned the same for ûnite path fragments
π ∈ Paths<ωN , setting π(i) ∶= �, and π i ∶= � (undeûned) if i ≥ ∣π∣.

2.2.4 Measurability of Events in Markov Chains

An important detail to the logics that will be discussed later on is the well-deûnedness
of the interpretations of their probabilistic operators. To guarantee this, one needs to
establish a connection between paths on DTMCs and probability spaces. _is topic is
covered in [BK08].

Deûnition 2.13 (Cylinder set). Let D = (S , p,AP, l) be a Markov chain, and π ∈
Paths<ωD . _e cylinder set of π is CylD(π) ∶= {π

′ ∈ PathsD ∣ π ⊑ π′}. 4

Cylinder sets are generally a concept founded in measure theory, and used as a basis
to induce measures on inûnite-dimensional product spaces [Bog07]. _is is done by
collecting the cylinder sets of all ûnite-dimensional subspaces; a ûnite path fragment

15
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of length n can ultimately be viewed as an element of the space Sn, whereas a path is
one of the space Sω.

Deûnition 2.14 (σ-algebras of DTMCs). Given a pair (D, s) of a DTMCD, and one
of its states s, the σ-algebra associated with the pair, and denoted by A(D, s), is the
σ-algebra generated by the set {CylD(π) ∣ π ∈ Paths

<ω
D (s) }. 4

For a DTMC D = (S , p,AP, l), and s ∈ S there exists a unique probability measure
PrD,s on A(D, s), which yields the following probabilities for these cylinder sets:

PrD,s(CylD(s0...sn)) = [s = s0] ⋅∏
i<n

p(si , si+1), for s0, ..., sn ∈ S ,

where [s = s0] ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1, if s = s0,
0, otherwise.

Finally, sets of paths ofD starting at s can be measured as events on A(D, s) [BK08].
_e subscripts D and s in the probability measure and the cylinder set are usually
omitted, given they can be inferred from context.

2.3 Logics

Let L be a quantiûed logic. We use, for reasons of brevity and clearness, the subscripts
LDTMC to refer to the formulation of L for DTMCs and LMDP to refer the one for
MDPs, respectively, and where applicable.

Consider a formula φ ∈ L. We denote with var(φ) the set of all variables that appear
in φ. A variable v ∈ var(φ) is called free if at least one instance of it is not bound by
any quantiûer (∀, ∃). Let free(φ) denote the set of all free variables in φ.

Similarly, v is called bound, if at least one instance of it is bound by a quantiûer. φ is
called closed, or a sentence, if it has no free variables, and clean, if no two quantiûers
bind diòerent instances of the same v ∈ var(φ) and no variable appears both bound
and unbound in it.

Example 2.15. Consider the following ûrst-order logic formula over a signature with a
binary functional symbol f :

φ ∶= (∃x∃z∀y f x y = z) ∧ (∃y f x y = y)

φ expresses that there is one x such that f becomes constant in its second argument,
and that it also has a ûxed point in its second argument (for a free ûrst argument x).
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We have var(φ) = {x , y, z}. Out of these, x appears both bound and free, y is bound
(twice), and z is bound. An equivalent clean formula is given by

φ′ ∶= (∃v∃z∀y f v y = y) ∧ (∃w f xw = w),

and by binding the free instance of x, for example in ∃xφ, or ∀xφ′, we get a sentence.4

As it was the case for CTL mentioned in Chapter 1, some of the logics we will see
make clear distinctions between state formulae that make local assertions at states and
specify branching behaviour, and path formluae (or path subexpressions) that express
temporal modalities along paths. In some cases, this distinction is not present, and we
simply have top-level formulae and certain categories of subexpressions.

In the sequel, state (or otherwise top-level) formulae will be denoted by φ and ψ,
probabilistic formulae and expressions by ρ, path ones by ϑ and η, and in each case
also variants such as φ′, φi , etc. Lowercase hatted letters (ŝ, σ̂ , π̂, ...) shall further be
used for variables, normal letters (s, σ , π, ...) for concrete objects, and lowercase fraktur
(blackletter) letters (p, r, s, ...) for variable-to-object assignments. In each case, the
uppercase variants (Ŝ , Σ̂, Π̂, S , Σ, Π, ...) will be used for the corresponding sets, and an
overscore will be added (s, σ , π, ...) for sequences. To avoid ŝ, we use a tilde instead for
sequences of variables (s̃, σ̃ , π̃, ...).

In all of the logics, we will encounter the modal operators U (until) and ◯ (next).
Intuitively, for a path π and atomics a, b, π ⊧ a U b holds iò we can reach a b-state
on π while only crossing a-states, and π ⊧ ◯a iò the state right a�er the current one
is labelled a. Wherever the syntax allows it, we also implicitly deûne the following
syntactic sugar exemplarily for atomic propositions.

(i) Eventually operator: ♦a ∶= true U a.

(ii) Globally operator: �a ∶= ¬(true U ¬a).

(iii) Implies junctor: a → b ∶= ¬a ∨ b.

_e case for more complex formulae – again, where permitted by syntactical rules – is
similar.

To avoid writing excessively many nested parentheses, let the binding strength of
operations be as follows (strongest to weakest):

(i) Functional symbols: c, f , д, ...

(ii) Multiplication: ⋅

(iii) Addition: +

(iv) Comparisons: <, ≤, =, ...

(v) All unary operators: ¬,◯,♦,�, ...
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(vi) Until operator: U

(vii) And, or junctors: ∧,∨

(viii) Implies junctor: →

To break (some) ties, we assume right-associativity for all binary operations. _at is, for
example

a U b U c ≡ a U (b U c) , and a → b → c ≡ a → (b → c).

Unary operators and functions are resolved innermost-to-outermost. For instance, if f
is a binary and д a unary function, then, as a (very contrived) example, we have

¬♦� f дa¬b ≡ ¬
⎛

⎝
♦(�( f (дa)(¬b)))

⎞

⎠
.

2.3.1 HyperPCTL

_eversions of HyperPCTL that will be introduced in the following are based on [ÁB18]
and [Ábr+20], but have been slightly adjusted to use variable assignments instead of
syntactic replacements.

Markov Chains

Deûnition 2.16 (HyperPCTLDTMC Syntax). HyperPCTLDTMC formulae are built ac-
cording to the following grammar rules:

– (state formulae) φ ∶∶= ∀ŝ.φ ∣ ∃ŝ.φ ∣ φ ∧ φ ∣ ¬φ ∣ true ∣ aŝ ∣ ρ < ρ

– (probabilistic formulae) ρ ∶∶= P(ϑ) ∣ ρ + ρ ∣ ρ ⋅ ρ ∣ c

– (path formulae) ϑ ∶∶= ◯φ ∣ φ U φ ∣ φ U[k1 ,k2] φ

where k1, k2 < ω, c ∈ Q, and ŝ is a state variable from a countably inûnite supply of
state variables Ŝ. 4

In the following, we implicitly only consider closed formulae, and con�ate the term
HyperPCTLDTMC formula with closed, clean HyperPCTLDTMC state formula.

To assign state variables from Ŝ to concrete states from the state space S of a DTMC, we
will use sequences of the form s ∶= (ŝi ↦ si)i<n ∈ (Ŝ × S)n, for n < ω. s will be called a
state assignment and its length will be denoted by ∣s∣ ∶= n.
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We deûne s ○ (ŝ ↦ s) as the expansion of s by the assignment ŝ ↦ s ∈ Ŝ × S, that
is s ○ (ŝ ↦ s) = (ŝ0 ↦ s0, ..., ŝn−1 ↦ sn−1, ŝ ↦ s), and we denote by dom(s) and
im(s) the sequences (ŝi)i<n ∈ Ŝn and (si)i<n ∈ Sn, respectively. _e empty sequence is
represented by ε.

For ŝ ∈ Ŝ, we write, in function notation, s(ŝ), to recall the assignment of ŝ in s. Should
no such assignment exist, then we set s(ŝ) ∶= � (undeûned). Since we only deal with
clean formulae, each variable has at most one assignment in s, and s itself takes the
form of a partial function over Ŝ → S ∪ {�}, justifying the notation laid out above.

Deûnition 2.17 (HyperPCTLDTMC Semantics). Let D = (S , p,AP, l) be a DTMC,
φ,ψ state formulae, ρ, ρ′ probabilistic formulae, and ϑ a path formula ofHyperPCTLDTMC.
Also, let n < ω, s ∈ (Ŝ × S)n,Q ∈ {∀, ∃}, ⋆ ∈ {+, ⋅}, c ∈ Q, and a ∈ AP. We deûne

– D, s ⊧Qŝ.φ iò Qs ∈ S ∶ D, s ○ (ŝ ↦ s) ⊧ φ,

– D, s ⊧ φ ∧ ψ iò D, s ⊧ φ andD, s ⊧ ψ,

– D, s ⊧ ¬φ iò D, s ⊭ φ,

– D, s ⊧ true,

– D, s ⊧ aŝ iò a ∈ l(s(ŝ)),

– D, s ⊧ ρ < ρ′ iò JρKD,s < Jρ′KD,s,

– JP(ϑ)KD,s = Pr{π ∈ PathsDn(im(s)) ∣D, s, π ⊧ ϑ},

– Jρ ⋆ ρ′KD,s = JρKD,s ⋆ Jρ′KD,s, and

– JcKD,s = c.

Furthermore, let n ≥ 1, k1, k2 < ω, and π ∈ PathsDn . We deûne

– D, s, π ⊧ ◯φ iò D, s[π(1)] ⊧ φ,

– D, s, π ⊧ φ U ψ iò ∃ j < ω (D, s[π( j)] ⊧ ψ

∧ ∀i < j ∶D, s[π(i)] ⊧ φ), and

– D, s, π ⊧ φ U[k1 ,k2] ψ iò ∃ j ∈ [k1, k2] (D, s[π( j)] ⊧ ψ

∧ ∀i < j ∶D, s[π(i)] ⊧ φ),

where s[π(i)] denotes the state assignment that results by replacing im(s) with π(i).i

Lastly, if φ is a closed, clean HyperPCTLDTMC formula, letD ⊧ φ iòD, ε ⊧ φ . 4

We further allow standard syntactic sugar such as false ∶≡ ¬true, φ∨ψ ∶≡ ¬(¬φ∧¬ψ),
ρ1 = ρ2 ∶≡ ¬(ρ2 < ρ1) ∧ ¬(ρ1 < ρ2), ρ1 ≤ ρ2 ∶≡ (ρ1 = ρ2) ∨ (ρ1 < ρ2), and so on.

iim(s) and π(i) always have the same type and length, since both are states of Dn . _e general
deûnition of this notation in the context of sequences can be found on p. 9.
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Markov Decision Processes

Deûnition 2.18 (HyperPCTLMDP Syntax). HyperPCTLMDP formulae are built by the
following grammar rules:

– (quantiûed formulae) φ ∶∶= ∀σ̂ .φ ∣ ∃σ̂ .φ ∣ ∀ŝ(σ̂).φ ∣ ∃ŝ(σ̂).φ ∣ ψ

– (non-quantiûed formulae) ψ ∶∶= ψ ∧ ψ ∣ ¬ψ ∣ true ∣ aŝ ∣ ρ < ρ

– (probabilistic expressions) ρ ∶∶= P(ϑ) ∣ ρ + ρ ∣ ρ ⋅ ρ ∣ c

– (path expressions) ϑ ∶∶= ◯ψ ∣ ψ U ψ ∣ ψ U[k1 ,k2] ψ

where σ̂ is a scheduler variable from a countably inûnite supply of variables Σ̂, ŝ a state
variable from a countably inûnite supply of variables Ŝ, c ∈ Q, and k1, k2 < ω. 4

In the following, we only consider clean formulae, and refer to closed, cleanHyperPCTLMDP
state formulae as simply HyperPCTLMDP formulae.

LetM be an MDP. To assign schedulers from ΣM to the corresponding variables from
Σ̂, we will use sequences of the form r ∶= (σ̂i ↦ σi)i<n ∈ (Σ̂ × ΣM)

n, for n < ω. r will
be called a scheduler assignment. _e expressions r(σ̂), im(r), dom(r), as well as ∣r∣ are
deûned similarly to state assignments as seen on p. 18.

_is time, state variables will be assigned to schedulers by s, and the expressionM s ∶=

M im(s) will denote the DTMC induced byM with the tuple of schedulers im(s), as
deûned in 2.11. Concrete state variable instantiations will be tracked in a sequence of
states ofM s.

For a state variable ŝ such that s(ŝ) ≠ �, and r ∈ Ss, let ls(r)(ŝ) be the element of the
tuple ls(r) at the index i < ∣s∣, where i corresponds to the index in s in which ŝ appears,
i.e. dom(s)(i) = ŝ.

Deûnition 2.19 (HyperPCTLMDP Semantics). LetM = (S ,Act, p,AP, l) be an MDP,
φ a quantiûed formula, ψ,ψ′ non-quantiûed formulae, ρ, ρ′ probabilistic expressions, and
ϑ a path expression ofHyperPCTLMDP. Also, letm, n < ω, s ∈ (Ŝ×ΣM)

m, r ∈ (Σ̂×ΣM)
n,

Q ∈ {∀, ∃}, ⋆ ∈ {+, ⋅}, c ∈ Q, and a ∈ AP, as well as r be a state of the induced DTMC
M s. We deûne

– M , r, s, r ⊧Qσ̂ .φ iò Qσ ∈ ΣM ∶M , r ○ (σ̂ ↦ σ), s, r ⊧ φ,

– M , r, s, r ⊧Qŝ(σ̂).φ iò Qs ∈ S ∶M , r, s○(ŝ ↦ r(σ̂)), r○(initr(σ̂)(s), s) ⊧ φ,

– M , r, s, r ⊧ ψ iò M s, r ⊧ ψ,

– M s, r ⊧ ψ ∧ ψ′ iò M s, r ⊧ ψ andM s, r ⊧ ψ′,

– M s, r ⊧ ¬ψ iò M s, r ⊭ ψ,

– M s, r ⊧ true,
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– M s, r ⊧ aŝ iò a ∈ ls(r)(ŝ),

– M s, r ⊧ ρ < ρ′ iò JρKMs ,r < Jρ′KMs ,r ,

– JP(ϑ)KMs ,r = Pr{π ∈ PathsMs(r) ∣M s, π ⊧ ϑ}

– Jρ ⋆ ρ′KMs ,r = JρKMs ,r ⋆ Jρ′KMs ,r , and

– JcKMs ,r = c.

Furthermore, let n ≥ 1, k1, k2 < ω, and π ∈ PathsMs . We deûne

– M s, π ⊧ ◯ψ iò M s, π(1) ⊧ ψ,

– M s, π ⊧ ψ U ψ′ iò ∃ j < ω (M s, π( j) ⊧ ψ′

∧ ∀i < j ∶M s, π(i) ⊧ ψ), and

– M s, π ⊧ ψ U[k1 ,k2] ψ′ iò ∃ j ∈ [k1, k2] (M s, π( j) ⊧ ψ′

∧ ∀i < j ∶M s, π(i) ⊧ ψ).

Lastly, if φ is a closed, clean HyperPCTLMDP state formula, we deûne M ⊧ φ iò
M , ε, ε, ε ⊧ φ, where ε denotes the empty tuple. 4

2.3.2 HyperPCTL*

HyperPCTL* [Wan+21] has only been formulated for DTMCs. It is based on PCTL* and
extends it by including arithmetic operations directly between probabilistic expressions,
and arbitrary nesting thereof, as well as by allowing the indexing of atomics by paths,
which are drawn at the level of a probabilistic operator. HyperPCTL* does not feature
any explicit quantiûcation other than this drawing of paths.

Before we start with the syntax, we are going to deûne an auxiliary construct that will
be needed to allow the existence of well-deûned clean formulae, in which nested proba-
bilistic operators can reference paths that are drawn at the level of their parents. _is
is a stark deviation from the original version of HyperPCTL* presented in [Wan+21].
_e reasoning behind this is explained in Appendix A.

A path draw substitution rule over a set of variables Π̂, denoted by κ and variants, is
a tuple (π̂, π̂′), for some π̂, π̂′ ∈ Π̂. A sequence of rules κ is also called a ruleset. For
reasons that are going to become clear when we deûne the semantics, we write π̂ ← π̂′

instead of the tuple itself and read this as π̂ draws from π̂′. Also allowed is the half-rule
π̂ ← ε, or simply π̂. We denote the space of all path draw substitution rules over Π̂
by KΠ̂.

Deûnition 2.20 (HyperPCTL* Syntax). HyperPCTL* formulae are built according to
the following rules.

– (path formulae) φ ∶∶= φ ∧ φ ∣ ¬φ ∣ ϑ ∣ true ∣ aπ̂ ∣ ρ < ρ
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– (probabilistic expressions) ρ ∶∶= f ρ ∣ Pκ(φ)

– (path expressions) ϑ ∶∶= ◯φ ∣ φ U φ ∣ φ U≤k φ

where π̂ is a path variable from a countably inûnite supply of path variables Π̂, κ is
a ûnite sequence of path draw substitution rules from KΠ̂, a is an atomic proposition,
k < ω, ∣p∣ < ω, and f is an elementary function. 4

In the context of HyperPCTL*, an elementary function is either a polynomial, a rational,
trigonometric, or exponential function, or any ûnite composition thereof. Nullary
functions represent arbitrary constants.

Closedness, in this case, refers to all variable instances being inside the scope of a Pκ(⋅)

symbol and bound by a rule of κ (i.e. appearing in its le�-hand-side). _is includes the
right-hand-sides of rulesets of nested probabilistic operators, where ε is considered
axiomatically bound.

Cleanliness extends to path draw substitution rules as follows: If φ is cleam a Hyper-
PCTL* formula, then for each v ∈ var(φ) there is at most one rule κ in φ with v on its
le�-hand-side.

In the following, we implicitly only consider clean formulae. Furthermore, the gen-
eral term HyperPCTL* formulae shall refer only to closed, clean HyperPCTL* path
formulae.

_e variant of DTMCs that will be used here is the one with an explicit initial state,
which we shall denote by sι . To deûne the semantics of this logic, we will need to assign
path variables from Π̂ to paths from the path space PathsD of a given Markov chain
D. To this end, we shall use sequences of the form p ∶= (π̂i ↦ πi)i<n ∈ (Π̂ × PathsD)

n
,

n < ω. p will be called a path assignment, and the expressions im(p), dom(p), ∣p∣, and
p(π̂) be deûned as for state (p. 18) and scheduler (p. 20) assignments.

Furthermore, let pk, for k < ω, be the variable assignment that results by discarding
the ûrst k elements of the paths (i.e. by shi�ing the paths k places) in im(p), and, in a
slight abuse of notation, we set p(ε)(0) ∶= sι , where ε is the empty right-hand-side of a
path draw substitution rule. _is makes path variables that “draw from ε” start at sι .

Deûnition 2.21 (HyperPCTL* Semantics). LetD ∶= (S , sι , p,AP, l) be a DTMC with
unique initial state sι ∈ S, n,m < ω, φ, φ′ path formulae, ρ, ρ′, and ρ1, ..., ρn probabilistic
expressions, π̂, π̂1, ..., π̂n , π̂′1 , ..., π̂

′
n ∈ Π̂, p ∈ (Π̂ × PathsD)

m
, and a ∈ AP. We deûne

– D, p ⊧ φ ∧ φ′ iò D, p ⊧ φ andD, p ⊧ φ′,

– D, p ⊧ ¬φ iò D, p ⊭ φ,

– D, p ⊧ ◯φ iò D, p1 ⊧ φ,

– D, p ⊧ φ U φ′ iò ∃ j < ω (D, p j ⊧ φ′ ∧ ∀i < j ∶D, pi ⊧ φ),
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– D, p ⊧ φ U≤k φ′ iò ∃ j ≤ k (D, p j ⊧ φ′ ∧ ∀i < j ∶D, pi ⊧ φ),

– D, p ⊧ true,

– D, p ⊧ aπ̂ iò a ∈ l(p(π̂)(0)),

– D, p ⊧ ρ < ρ′ iò JρKD,p < Jρ′KD,p,

– J f ρ1...ρnKD,p = f Jρ1KD,p ... JρnKD,p, and

–
r
Pπ̂1←π̂′1 ,...,π̂n←π̂′n(φ)

z

D,p
= PrDn{((π1(k), ..., πn(k)))

k<ω
∣

∀i ∈ [1, n] πi ∈ PathsD(p(π̂′i)(0))

∧D, p ○ {π̂i ↦ πi ∣ i ∈ [1, n]} ⊧ φ}.

Lastly, if φ is a closed, clean HyperPCTL* path formula, we setD ⊧ φ iòD, ε ⊧ φ. 4

In the last item of the previous deûnition, path tuples (π1, ..., πn) are drawn fromD,
where the i-th component starts where the assignment of the right-hand-side of i-th
rule started. _en, for each k < ω, the k-th states of the paths are collected into new
tuples (π1(k), ..., πn(k)), which are themselves states ofDn. Finally all of these tuples
are ordered together into a path ofDn, and the probability space ofDn is used to take
the measure. In the following, we shall write Pr{(π1, ..., πn) ∣ ...} instead of the above
for ease of notation.

To reiterate on the role of rulesets: Pπ̂←π̂′(⋅) causes the assignment of the new variable
π̂ to start wherever the assignment of the old variable π̂′ started. Hence comes the
wording π̂ draws from π̂′ and the notation π̂ ← π̂′. _e old variable must be present in
the le�-hand-side of a parent probabilistic operator, or be ε, in which case the starting
point becomes the initial state sι .

2.3.3 PHL

Probabilistic Hyper Logic (PHL) was introduced for MDPs in [DFT20]. Its fragments
encompass probabilistic expressions over LTL formulae [Pnu77], in which atomics are
indexed by schedulers, as well as non-probabilistic path expressions in the form of
HyperCTL* [Cla+14], which are in turn indexed by paths. Later on, PHL will also be
downscaled to ût DTMCs.

_e original formulation from [DFT20] uses history-based schedulers, and hence it will
be slightly modiûed to ût Deûnitions 2.10 and 2.11. Furthermore, we will also deviate
from the original by using a unique initial state instead of an initial state distribution.
_is is done to keep the deûnitions in line with HyperPCTL and HyperPCTL*, and
it doesn’t restrict the expressiveness of the model. One can convert an MDP from
the latter to the former by introducing a unique state sι , and a unique action ι, and
assigning p(sι , ι, s) = ι(s), for all states s. An example of this is shown in Figure 1.
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s2ι
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s4ι
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p4

(a) MDP with initial probability distribution ι(s i) = p i , i ≤ 4.

s0
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s1
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s2
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s3
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s4

...

sιι, p0 ι, p4
ι, p1 ι, p3

ι, p2

(b) MDP with unique initial state sι , and p(sι , ι, s i) = p i , i ≤ 4.

Figure 1: Example of MDPs with initial probability distribution and unique initial state.

Markov Decision Processes

Deûnition 2.22 (PHLMDP Syntax). PHLMDP formulae are built by the following gram-
mar rules:

– (sched.-quant. formulae) φ ∶∶= ∃σ̂ .φ ∣ ∀σ̂ .φ ∣ φ ∧ φ ∣ ¬φ ∣ ϑ ∣ ρ < ρ

– (HyperCTL* formulae) ϑ ∶∶= aπ̂ ∣ true ∣ ϑ ∧ ϑ ∣ ¬ϑ ∣ ◯ϑ ∣ ϑ U ϑ ∣ ∀π̂(σ̂).ϑ

– (probabilistic expressions) ρ ∶∶= P(η) ∣ ρ + ρ ∣ c ⋅ ρ ∣ c

– (marked LTL formulae) η ∶∶= aσ̂ ∣ true ∣ η ∧ η ∣ ¬η ∣ ◯η ∣ η U η

where a is an atomic proposition, σ̂ a scheduler variable from a countably inûnite supply
of scheduler variables Σ̂, π̂ a path variable from a countably inûnite supply of path
variables Π̂, and c ∈ Q a constant. 4

In the sequel, we only consider closed, clean formulae and refer to closed, clean PHLMDP
scheduler-quantiûed formulae simply as PHLMDP formulae.

LetM = (S , sι ,Act, p,AP, l) be an MDP with unique initial state sι ∈ S. _is time, the
semantics will require a scheduler assignment of the form r ∈ (Σ̂ × ΣM)

n, and a path
assignment of the form p ∈ ((Σ̂× Π̂)×PathsM)

m, with n,m < ω. ∣p∣, ∣r∣, dom(⋅), im(⋅),
pk , and r(σ̂) for σ̂ ∈ Σ̂ are deûned as usual.
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Here, multiple path variables may reference the same scheduler variable. Hence, we
need a mechanism to recall path assignments both for path variables in general, as well
as for the most recent path variable that references a speciûc scheduler variable.

In essence, we want p(π̂) to recall the assignment of π̂ (as we assume clean formulae,
there will be at most one such assignment), and p(σ̂) to recall the assignment of the
last path variable associated with σ̂ .

As such, for σ̂ ∈ Σ̂, let p(σ̂) = im(p)(i), where

i = max{k < ∣p∣ ∣ ∃π̂ ∈ Π̂ ∶ dom(p)(k) = (σ̂ , π̂)},

and, for π̂ ∈ Π̂, let p(π̂) = im(p)( j), with j being theunique index such thatdom(p)( j) =
(σ̂ , π̂) for a σ̂ ∈ Σ̂. In either case p(σ̂) = � or p(π̂) = � if no such i or j exists. Con-
tinuing the abuse of notation seen in p. 22 for HyperPCTL*, we deûne p(⋅)(0) ∶= sι , if
p(⋅) = �.

Similarly to HyperPCTLMDP, we writeM
r forM im(r). Since the MDP has an initial

state, the induced DTMC also has one, speciûcally

srι ∶= ((initσ1(sι), sι), ..., (initσ∣r∣(sι), sι)),

where (σ1, ..., σ∣r∣) = im(r).

Deûnition 2.23 (PHLMDP Semantics). LetM = (S , sι ,Act, p,AP, l) be an MDP with
unique initial state sι ∈ S,Q ∈ {∃,∀}, φ, φ′ scheduler-quantiûed formulae, ρ, ρ′ proba-
bilistic expressions, ϑ , ϑ′ HyperCTL* formulae, η, η′ LTL formulae, σ̂ ∈ Σ̂, π̂ ∈ Π̂, a ∈ AP,
c ∈ Q, m, n < ω, r ∈ (Σ̂ × ΣM)

n, and p ∈ ((Σ̂ × Π̂) × PathsM)
m. We deûne

– M , r ⊧Qσ̂ .φ iò Qσ ∈ ΣM ∶M , r ○ (σ̂ ↦ σ) ⊧ φ,

– M , r ⊧ φ ∧ φ′ iò M , r ⊧ φ andM , r ⊧ φ′,

– M , r ⊧ ¬φ iò M , r ⊭ φ,

– M , r ⊧ ϑ iò M , r, ε ⊧ ϑ,

– M , r ⊧ ρ < ρ′ iò JρKM ,r < Jρ′KM ,r,

– M , r, p ⊧ aπ̂ iò a ∈ l(p(π̂)(0)),

– M , r, p ⊧ true,

– M , r, p ⊧ ϑ ∧ ϑ′ iò M , r, p ⊧ ϑ ∧ M , r, p ⊧ ϑ′,

– M , r, p ⊧ ¬ϑ iò M , r, p ⊭ ϑ,

– M , r, p ⊧ ◯ϑ iò M , r, p1 ⊧ ϑ,

– M , r, p ⊧ ϑ U ϑ′ iò ∃ j < ω (M , r, p j ⊧ ϑ′ ∧ ∀i < j ∶M , r, pi ⊧ ϑ) ,
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– M , r, p ⊧ ∀π̂(σ̂).ϑ iò ∀π ∈PathsMr(σ̂)(p(σ̂)(0))

M , r, p ○ ((σ̂ , π̂) ↦ π) ⊧ ϑ ,

– JP(η)KM ,r = Pr{π ∈ PathsMr(srι ) ∣M
r, π ⊧ η},

– Jρ + ρ′KM ,r = JρKM ,r + Jρ′KM ,r,

– Jc ⋅ ρKM ,r = JcKM ,r ⋅ JρKM ,r, and

– JcKM ,r = c.

For π ∈ PathsMr , let further

– M r, π ⊧ aσ̂ iò a ∈ l r(π(0))(σ̂),

– M r, π ⊧ true,

– M r, π ⊧ η ∧ η′ iò M r, π ⊧ η andM r, π ⊧ η′,

– M r, π ⊧ ¬η iò M r, π ⊭ η,

– M r, π ⊧ ◯η iò M r, π1 ⊧ η, and

– M r, π ⊧ η U η′ iò ∃ j < ω (M r, π j ⊧ η′ ∧ ∀i < j ∶M r, π i ⊧ η),

where l r(r)(σ̂) = l r(r)(i), with i = max{i < ∣r∣ ∣ dom(r)(i) = σ̂}, if this exists, or ∅
otherwise, and r ∈ Sr.

Finally, if φ is a closed, clean PHLMDP scheduler-quantiûed formula, we deûne that
D ⊧ φ iòD, ε ⊧ φ. 4

Markov Chains

Next up, PHLMDP will be downscaled for DTMCs. Since a DTMC is equivalent to
an MDP with ∣Act(s)∣ = 1 for all of its states s, we opt to carefully remove scheduler
expressions from the previous deûnitions, as scheduler quantiûcation collapses to the
trivial scheduler.

Deûnition 2.24 (PHLDTMC Syntax). PHLDTMC formulae are built by the following
grammar rules:

– (top-level formulae) φ ∶∶= φ ∧ φ ∣ ¬φ ∣ ϑ ∣ ρ < ρ

– (HyperCTL* formulae) ϑ ∶∶= aπ̂ ∣ true ∣ ϑ ∧ ϑ ∣ ¬ϑ ∣ ◯ϑ ∣ ϑ U ϑ ∣ ∀π̂.ϑ

– (probabilistic expressions) ρ ∶∶= P(η) ∣ ρ + ρ ∣ c ⋅ ρ ∣ c

– (LTL formulae) η ∶∶= a ∣ true ∣ η ∧ η ∣ ¬η ∣ ◯η ∣ η U η

where a is an atomic proposition, π̂ a path variable from a countably inûnite supply of
path variables Π̂, and c ∈ Q a constant. 4
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Logics

In the following, we implicitly only consider closed, clean formulae, and call closed,
clean PHLDTMC top-level formulae simply PHLDTMC formulae.

Deûnition 2.25 (PHLDTMC Semantics). Let D = (S , sι , p,AP, l) be a DTMC with
unique initial state sι ∈ S, φ, φ′ top-level formulae, ρ, ρ′ probabilistic expressions, ϑ , ϑ′

HyperCTL* formulae, η, η′ LTL formulae, π̂ ∈ Π̂, a ∈ AP, c ∈ Q, n < ω, p ∈ (Π̂ ×

PathsD)
n. We deûne

– D ⊧ φ ∧ φ′ iò D ⊧ φ andD ⊧ φ′,

– D ⊧ ¬φ iò D ⊭ φ,

– D ⊧ ϑ iò D, ε ⊧ ϑ,

– D ⊧ ρ < ρ′ iò JρKD < Jρ′KD,

– D, p ⊧ aπ̂ iò a ∈ l(p(π̂)(0)),

– D, p ⊧ true,

– D, p ⊧ ϑ ∧ ϑ′ iò D, p ⊧ ϑ ∧ D, p ⊧ ϑ′,

– D, p ⊧ ¬ϑ iò D, p ⊭ ϑ,

– D, p ⊧ ◯ϑ iò D, p1 ⊧ ϑ,

– D, p ⊧ ϑ U ϑ′ iò ∃ j < ω ∀i < j (D, pi ⊧ ϑ ∧ D, p j ⊧ ϑ′) ,

– D, p ⊧ ∀π̂.ϑ iò ∀π ∈ PathsD(last(p)(0)) D, p ○ (π̂ ↦ π) ⊧ ϑ ,

– JP(η)KD = Pr{π ∈ PathsD(sι) ∣D, π ⊧ η},

– Jρ + ρ′KD = JρKD + Jρ′KD,

– Jc ⋅ ρKD = JcKD ⋅ JρKD, and

– JcKD = c,

where last(p) is the last path that was added to p and last(p)(0) ∶= sι , if p = ε. For
π ∈ PathsD, let further

– D, π ⊧ a iò a ∈ l(π(0))

– D, π ⊧ true,

– D, π ⊧ η ∧ η′ iò D, π ⊧ η andD, π ⊧ η′,

– D, π ⊧ ¬η iò D, π ⊭ η,

– D, π ⊧ ◯η iò D, π1 ⊧ η, and

– D, π ⊧ η U η′ iò ∃ j < ω ∀i < j (D, π i ⊧ η ∧ D, π j ⊧ η′),

where π i, i < ω is the path that results by discarding the ûrst i elements of π. 4
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Preliminaries

_is is just one way to downscale PHL for DTMCs, in which a feature of the MDP
version is lost. Speciûcally, if we view a DTMCD = (S , sι , p,AP, l) as an MDP with
∣Act(s)∣ = 1, for all s ∈ S, we can still use the probabilistic part of PHLMDP to compare
probabilistic hyperproperties restricted to paths starting at sι , and with no speciûcations
concerning their branching behaviour later down the line.

For example, take

∃σ̂1.∃σ̂2.P(aσ̂1 U bσ̂2) > 0 ∈ PHLMDP,

which, when evaluated onD, asserts that there exist a pair of paths so that we reach
a b-state on the second while crossing a-states on the ûrst. In contrast to this, our
proposed downscaling only allows unmarked LTL in probabilistic expressions, and can
express, for example

P(a U b) > 0, and P(�a) > 0 ∧ P(♦b) > 0,

which both imply the original PHLMDP formula, but neither is equivalent to it.
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Chapter 3

Big Picture

In the sequel, we ûx a set AP of atomic propositions and consider all three logics over
this set. Furthermore, we always implicitly assume all formulae are closed and clean,
unless explicitly stated otherwise.

3.1 Bridging Semantics

Deûnition 3.1 (Semantic implication). LetL andL′ each be one ofHyperPCTLDTMC,
HyperPCTL*, and PHLDTMC, and φ ∈ L, ψ ∈ L

′. We say that φ implies ψ, written φ ⊧ ψ,
iò for all DTMCs D

D ⊧L φ ⇒ D ⊧L′ ψ.

If the above holds only for ûnite DTMCs, we write φ ⊧f ψ instead. 4

Deûnition 3.2 (Semantic equivalence). LetL andL′ each be one ofHyperPCTLDTMC,
HyperPCTL*, and PHLDTMC, and φ ∈ L, ψ ∈ L′. φ is called (semantically) equivalent to
ψ, written φ ≡ ψ, iò

φ ⊧ ψ and ψ ⊧ φ.

If φ ≡ ψ only on ûnite DTMCs, we write φ ≡f ψ instead. 4

Deûnition 3.3 (Subsumption). Let F and F ′ each be a fragment of either
HyperPCTLDTMC, HyperPCTL

*, or PHLDTMC. F
′ subsumes F , written F ≼ F ′, iò

to each φ ∈ F there exists a ψ ∈ F ′ such that φ ≡ ψ.

If both F ≼ F ′ and F ′ ≼ F , we simply write F ≅ F ′. 4

In many cases, one of the logics does not subsume another in the mathematical sense,
but a pair (D, φ) can be transformed by a polynomial-time algorithm to a pair (D′, φ′)
such thatD ⊧ φ iòD′ ⊧ φ′. _at is, the model-checking problem of one of the logics is
polynomially reducible to the one of the other. To cover these cases, as well as consider
ûnite DTMCs separately, we also deûne some watered-down forms of subsumption.
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Deûnition 3.4 (Weak subsumption). Let F and F ′ each be a fragment of either
HyperPCTLDTMC, HyperPCTL

*, or PHLDTMC. We deûne that

(i) F ′ weakly (algorithmically) subsumes F , denoted F ≼A F ′, if, on ûnite DTMCs,
the model-checking problem of F-sentences is Karp-reducible to the model-
checking problem of F ′-sentences.

If both F ≼A F ′ and F ′ ≼A F , we simply write F ≅A F ′.

(ii) F ′ weakly subsumes F on ûnite DTMCs, denotedF ≼f F ′, iò to each φ ∈ F there
exists a ψ ∈ F ′ such that φ ≡f ψ.

If both F ≼f F ′ and F ′ ≼f F , we simply write F ≅f F ′. 4

_erelations ofDeûnitions 3.1 to 3.4, are similarly deûned forMDPswithHyperPCTLMDP,
and PHLMDP. Note that in both cases ≼ ⇒ ≼f ⇒ ≼A.

3.2 Overview on DTMCs

In this section, we shall point out superûcial diòerences between the three logics that
are easy to see a priori.

As we have seen in Sections 2.3.1 to 2.3.3, HyperPCTLDTMC is the only one of the
three logics that does not require nor use an initial state in the DTMCs on which
its semantics operate, and the only one that can quantify over states arbitrarily. In
contrast to this, both HyperPCTL* and PHLDTMC can only quantify over paths drawn
starting at a unique initial state. _is simple diòerence alone is enough to conclude that
HyperPCTLDTMC is subsumed by neitherHyperPCTL* nor PHLDTMC, as the semantics
of the ûrst will also take unreachable states into consideration.

sι

{a}

s1

{a}

s2

{b}

Figure 2: DTMC with a uniquely labelled unreachable state s2.

_eorem 3.5. HyperPCTLDTMC ⋠ HyperPCTL
* and HyperPCTLDTMC ⋠ PHLDTMC.

30



Overview on DTMCs

Proof. Consider the DTMCD shown in Figure 2, and the HyperPCTLDTMC formula

φ ∶= ∃ŝ1.∃ŝ2. aŝ1 ∧ bŝ2 ,

which asserts that there exists one state marked a and one marked b. ObviouslyD ⊧ φ,
for example with the state assignment (ŝ1 ↦ sι , ŝ2 ↦ s2).

In both other logics, there is no possibility to discover this pair of states laid out by
Deûnitions 2.21 and 2.25, so any check for this, be it probabilistic or otherwise, will fail.
_is remains the case, no matter which state of that DTMC is chosen as initial.

On the same note, Wang et al. [Wan+21] argue, albeit without providing an explicit
proof, that HyperPCTLDTMC ≺A HyperPCTL*.

Both HyperPCTL* and PHLDTMC can express weaker formulae that imply the coun-
terexample φ given in the preceding theorem, for example

∃π̂1.∃π̂2. ♦aπ̂1 ∧♦bπ̂2 ∈ PHLDTMC, and
Pπ̂1 ,π̂2(♦aπ̂1 ∧♦bπ̂2) > 0 ∈ HyperPCTL*,

which both assert that states s1, s2 ∈ S can be found, such that a ∈ l(s1), b ∈ l(s2) and
both s1 and s2 are reachable from the initial state sι by a ûnite path fragment.
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Chapter 4

HyperPCTL* vs. PHL on DTMCs

In this chapter, we compare HyperPCTL* with PHLDTMC, and a focus is laid mostly on
embedding classes of formulae of the latter into the former. First, we will look at the
strictly probabilistic part of PHLDTMC, and it will be shown that this part is completely –
and strictly – subsumed byHyperPCTL*. Having done this, we will explore the fragment
of PHLDTMC that is comprised of non-probabilistic HyperCTL* formulae, and we will
identify parts of it that are also expressible in HyperPCTL*. At the very end, we will
use the identiûed transformations to ûnd equivalences between fragments of the two
logics.

In the sequel, we consider a ûxed set of atomic propositions AP. Furthermore, both of
the logics use DTMCs with an explicit initial state. We assume this state to be always
named sι .

4.1 Probabilistic Hyperproperties

As we have noted in Section 2.3.3 and Section 3.2, the probabilistic part of our proposed
downscaling of PHL to DTMCs can only takemeasures over pathsmodelling unmarked
LTL formulae — that is, it expresses probabilistic non-hyper properties. First up, we
will prove, based on this, that HyperPCTL* is not embeddable in PHLDTMC.

We proceed to ûx a constant c ∈ Q and take a look at HyperPCTL* formulae that
compare multiple diòerent paths at once, such as

φ ∶= Pπ̂1 ,π̂2(aπ̂1 U bπ̂2) > c.

_is formula draws pairs of paths starting at sι , and asserts that the probability of
continuously crossing a-labelled states on one path until reaching a b-state on the
other is larger than c. Recall that the semantics (2.21) advance all drawn paths at the
same time, so anything that happens on (the assignment of) π̂2 before reaching b on it
is unimportant. If there is a way to uniquely identify the initial state by atomics, for
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example if the initial state is uniquely labelled by an atomic proposition init, then this
is equivalent to the following HyperPCTLDTMC formula:

φ′ ∶= ∃ŝ1.∃ŝ2. initŝ1 ∧ initŝ2 ∧ P(aŝ1 U bŝ2) > c

Later, it will be shown that this argument is correct and generalises to an embedding
of a considerable fragment of HyperPCTL* into HyperPCTLDTMC. However, these
probabilistic comparisons are inherently incompatible with our proposed PHLDTMC,
which only allows unmarked LTL formulae inside its probabilistic operator. It can,
nevertheless, express stricter non-probabilistic variants, such as

ψ ∶= ∀π̂1.∀π̂2. aπ̂1 U bπ̂2 ,

with ψ ⊧ φ, φ′. We lay emphasis on the following: ψ′ ∶= P(a U b) > c ∈ PHLDTMC is
implied by neither φ, nor φ′. a U b models single paths that reach a b-state while only
crossing a-states, while the latter two formulae take the measure over pairs of possibly
diòerent paths in parallel, such that only a-states are crossed on the ûrst one until a
b-state is reached on the other one.

Example 4.1. Consider the DTMCD in Figure 3. We compute

JP(a U b)KPHLDTMC
D = Pr{π ∈ PathsD(sι) ∣ π ⊧ a U b}

= Pr{sιsω12}
= Pr (CylD(sιs12))

=
1
7
,

as well as

JPπ̂1 ,π̂2(aπ̂1 U bπ̂2)K
HyperPCTL*

D = Pr{(π1, π2) ∈ PathsD(sι)
2 ∣

D, (π̂1 ↦ π1, π̂2 ↦ π2) ⊧ aπ̂1 U bπ̂2}

= Pr{(sιs11sω21, sιs
ω
12), (sιs11s

ω
21, sιs13s

ω
23),

(sιsω12, sιs
ω
12), (sιs13s

ω
23, sιs

ω
12)}

=
3
7
⋅
3
7
+
3
7
⋅
1
7
+
1
7
⋅
1
7
+
3
7
⋅
1
7

=
16
49

.

Select c ∶= 1
7 . For this c,D ⊭ ψ

′ butD ⊧ φ, since c = 1
7 =

7
49 <

16
49 . 4

We will now collect and prove the preceding thoughts in the following segment. To
argue about LTL formulae in probabilistic expressions of PHLDTMC, we ûrst need more
auxiliary terms.
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sι

s12s11

s21

s13

s23

{a}

{a}

{c}

{b}

{b}

{a}

3/7 3/7
1/7

Figure 3: DTMC where b is reached at diòerent oòsets in “♦b”-paths.

Deûnition 4.2 (Trace). LetD be a DTMC with labelling function l , and π ∈ PathsD.
_e trace of π is deûned as the sequence of all labels that appear in π:

trace(π) ∶= (l(π(i)))
i<ω

A word over the trace trace(π) is an inûnite word that results by selecting exactly one
atomic proposition from each member of the sequence. 4

For example, from ({a}, {b, c}, {d}, {d}, ...), we can extract the words abdω and
acdω.

Deûnition 4.3 (Trace equivalence). Let π, π′ be paths of one or more DTMCs. π is
called trace-equivalent to π′, denoted π ∼tr π′, iò

trace(π) = trace(π′). 4

It can be shown [BK08] that the language of all words recognised by an LTL formula
is ω-regular and that trace-equivalence implies LTL-equivalence, i.e. that two trace-
equivalent paths can not be separated by an LTL formula.

_eorem 4.4. Let a, b ∈ AP, a ≠ b, and π̂1, π̂2 be path variables. PHLDTMC can not
express a probabilistic expression which evaluates equivalently to Pπ̂1 ,π̂2(aπ̂1 U bπ̂2) in
HyperPCTL*.
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Proof. We shall construct a counterexample. Consider a family of DTMCs (Dn)2≤n<ω,
where eachDn, 2 ≤ n < ω is deûned as shown in Figure 4. We have

{trace(π) ∣ π ∈ PathsDn(s)} = {a
ncω , an+1cω , an+1bω}.

Importantly, no single LTL formula can separate ancω from an+1cω for all n. As such,
we have the following possibilities for the evaluation of the PHLDTMC probabilistic
expression P(η), η ∈ LTL:

(i) η models only sιs11...sωn1. _en JP(η)KDn
= 1

n+1 .

(ii) η models a path sιs1 j ...sωn+1, j, j ∈ [2, n]. _en it models the paths of that form for
all j ∈ [2, n], since they are trace-equivalent and we compute JP(η)KDn

= n−1
n+1 .

(iii) η models both the paths laid out in (i) as well as those in (ii). In this case, we get
JP(η)KDn

= n
n+1 .

(iv) η models no paths inDn. _is resolves to JP(η)KDn
= 0.

(v) In each of the cases (i)-(iv), η additionally models sιs1...sωn+1. _is adds the factor
1

n+1 and results in the measures 2
n ,

n
n+1 , 1, and

1
n+1 , respectively.

In contrast to the preceding computations, the evaluation of theHyperPCTL* expression
yields

JP(aπ̂1 U bπ̂2)KDn ,ε = Pr{(π1, π2) ∣ (π1 = sιs1 j ...s
ω
n+1, j for some j ∈ [2, n]

∨ π1 = sιs1...sωn+1)

∧ π2 = sιs1...sωn+1}

= Pr(sιs1...sωn+1) ⋅
⎛

⎝
Pr(sιs1...sωn+1) + ∑

2≤ j≤n
Pr(sιs1 j ...sωn+1, j)

⎞

⎠

=
1

n + 1
⋅ (

n
n + 1

)

=
n

(n + 1)2
,

which diòers from all possibilities for the evaluation of P(η) in PHLDTMC by a noncon-
stant factor that depends on n. Hence there is noway to combinePHLDTMC probabilistic
expressions by constant multiplication or ûnite addition such that the resulting formula
evaluates to the above for all n.

_is result does not preclude ûnding equivalent formulae given knowledge of a speciûc
DTMC, or a family of DTMCs. For example, if one selects a constant n, and builds a
factor using this n to bridge the diòerence, a PHLDTMC probabilistic expression can be
constructed, which is equivalent to Pπ̂1 ,π̂2(aπ̂1 U bπ̂2) speciûcally on a single Dn.
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Dn ∶

sι

...

...

...

...

...

s12

s22

...

sn2

sn+1,2

s11

s21

...

sn1

s1n

s2n

...

snn

sn+1,n

s1

s2

...

sn

sn+1

{a}

{a}

{a}

{a}

{a}

{a}

{a}

{a}

{a}{a} {a}{c}

{c} {c} {b}

{a}

1/(n
+ 1)

1/(
n +

1) 1/(n
+ 1)

1/(n + 1)

Figure 4: A DTMC, which has n + 1 paths with equal measures, for n ≤ ω. _e traces
of the paths are (le�-to-right) ancω, an+1cω (n − 1 times), an+1bω.
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Example 4.5. Select a ûxed n ≥ 2, set

cDn ∶=
JPπ̂1 ,π̂2(aπ̂1 U bπ̂2)K

HyperPCTL*

Dn

JP(♦b)KPHLDTMC
Dn

=

n
(n+1)2

1
n+1

=
n

n + 1
,

and, with this, build the PHLDTMC expression

ρDn ∶= cDn ⋅ P(♦b) .

ρDn evaluates equivalently to Pπ̂1 ,π̂2(aπ̂1 U bπ̂2) on Dn. 4

_e preceding theorem leads us directly to

Corollary 4.6. HyperPCTL* ⋠ PHLDTMC.

Proof. Select a constant c ∈ (0, 1)Q and the formula

Pπ̂1 ,π̂2(aπ̂1 U bπ̂2) = c ∈ HyperPCTL
*

_e result follows directly from_eorem 4.4.

_ere exist more reasons why HyperPCTL* does not ût into PHLDTMC. For instance,
HyperPCTL* allows, among others, direct multiplication of probabilistic expressions,
and the usage of exponential functions, which cannot be represented exactly in a ûnite
form to be compatible with PHLDTMC.

4.2 On HyperCTL*-less PHL

Let PHLnoϑDTMC be the HyperCTL*-less fragment of PHLDTMC, i.e. the fragment that is
generated by striking out all ϑ rules in Deûnition 2.24. _e semantics of this fragment
are fully compatible with HyperPCTL*.

Essentially, all of the syntactic rules can be taken over verbatim, and the only change
we need to make is map P(η) to Pπ̂(ηπ̂), where ηπ̂ is identical to η, but has its atomics
marked by π̂. Nevertheless, we still want to produce clean formulae, so we need to
ensure that π̂ is fresh in its context. To achieve this, our transformation will include a
counter as a second argument. _e counter will be used to index variables and will be
incremented for every variable that we add.

_eorem 4.7. PHLnoϑDTMC ≺ HyperPCTL
*.
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Proof. We know that HyperPCTL* ⋠ PHLDTMC from Corollary 4.6, so equivalence is
ruled out. For the strict subsumption, we give the following transformation. Assume
without loss of generality that Π̂ = {π̂0, π̂1, ...}, let φ, φ′ bePHLnoϑDTMC top-level formulae,
ρ, ρ probabilistic expressions, c ∈ Q, η, η′ LTL formulae, a ∈ AP, i < ω, and set

T(φ) ∶= T(φ, 0), (1)
T(φ ∧ φ′, i) ∶= T(φ, i) ∧T(φ′, i + ∣var(T(φ, i))∣), (2)
T(¬φ, i) ∶= ¬T(φ, i), (3)
T(ρ < ρ′, i) ∶= T(ρ, i) < T(ρ′, i + ∣var(T(ρ, i))∣), (4)
T(c ⋅ ρ, i) ∶= T(c, i) ⋅T(ρ, i), (5)
T(ρ + ρ′, i) ∶= T(ρ, i) +T(ρ′, i + ∣var(T(ρ, i))∣), (6)
T(c, i) ∶= c, (7)
T(P(η), i) ∶= Pπ̂ i(T(η, i)) , (8)
T(◯η, i) ∶= ◯T(η, i), (9)
T(η U η′, i) ∶= T(η, i)U T(η′, i), (10)
T(¬η, i) ∶= ¬T(η, i), (11)
T(η ∧ η′, i) ∶= T(η, i) ∧T(η′, i), (12)
T(a, i) ∶= aπ̂ i , and (13)
T(true, i) ∶= true. (14)

– Rule 1 initialises a counter variable that is used to produce clean HyperPCTL*

formulae.

– Rules 2, 4, and 6 recurse on the lhs, and then on the rhs a�er incrementing its
counter by the number of variables that were used in the lhs.

– Rules 3, 5, 7, and 9 through 12 simply take over the syntactical elements of the
original formula and recurse on its subformula(e), keeping the counter the same.

– Rule 8 drops into a probabilistic expression, using the variable with the same
index as the current counter value.

– Rule 13 marks the original atomic proposition with the same index as the current
counter value.

– Rule 14 maps the truth constant to itself.

In PHLnoϑDTMC, atomic propositions only appear within a probabilistic expression, and
probabilistic expressions can’t be nested. Hence if rule 8 is used, it is never used again
recursively and all atomics that appeared in the original PHLDTMC subformula η are
mapped to themselves indexed by the variable selected by that instance of rule 8. _e
semantics of ∧,¬,U, and◯ (within probabilistic expressions) are the same across both
logics, and the syntactic rules of LTL are compatible with those of path expressions in
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HyperPCTL*. _us every probabilistic expression that is generated by rules 8 through
14 is a syntactically correct, closed HyperPCTL* probabilistic expression.

Since the top-level semantics of ∧,¬, <, ⋅, and + are the same, it only remains to show
that the resulting formula is indeed clean, and that probabilistic expressions and their
mappings evaluate equivalently. _e latter half is easy to see; to this end, let D =
(S , sι , p,AP, l) be an arbitrary DTMC. Since PHLDTMC does not allow nesting of P
operators, no recursive usage of rule 8 occurs, and we introduce no P-nesting in the
resulting formula. Furthermore, each path that is drawn, is drawn from sι . Let i < ω
and note that T(η, i) is exactly the same as η, but with its atomics marked with π̂i by
rule 13. We compute

JP(η)KPHLDTMC
D = Pr{π ∈ PathsD(sι) ∣D, π ⊧PHLDTMC

η}

= Pr{π ∈ PathsD(sι) ∣D, (π̂i ↦ π) ⊧HyperPCTL* T(η, i)}

=
q
Pπ̂ i(T(η, i))

yHyperPCTL*
D

= JT(P(η) , i)KHyperPCTL
*

D

Finally, to show that the formulae that are generated are clean, we only need to consider
the transformants of formulae of the form

φ ∧ ψ, or ρ ⋆ ρ′, for ⋆ ∈ {<,+}.

_is suõces, since the counter does not change a�er rule 8, and rules 2, 4 and 6 are
exactly the ones before rule 8, in which we recurse on both sides of the expression. We
ignore rule 5, since its le�-recursion cannot reach rule 8.

From rule 2, we get T(φ ∧ ψ, i) = T(φ, i) ∧T(ψ, i + ∣var(φ)∣). Let j be the index of a
variable in ψ. We have j ≥ i + ∣var(φ)∣. For a variable indexed by k in φ, we compute
i ≤ k < i + ∣var(φ)∣. In total, we get j ≥ i + ∣var(φ)∣ > k, so j > k.

Since j is the index of an arbitrary variable in ψ, and k the index of an arbitrary
variable in φ, the maximum index in φ is strictly less than the minimum index in ψ
and T(φ ∧ ψ, i) is clean.

_e same result also follows for ρ⋆ ρ′ in a similar fashion by applying rule 4, or rule 6.

Example 4.8. Consider the PHLnoϑDTMC formula

P(◯a U b) < P(c U a) ∧ ¬(0 < P(♦a)) .

_e most straightforward strategy to apply the transformation from above is le�most-
innermost and we can visualise that as seen in Figure 5.
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By putting the branches back together using the original junctors, we ûnally get

Pπ̂0(◯aπ̂0 U bπ̂0) < Pπ̂1(cπ̂1 U aπ̂1) ∧ ¬(0 < Pπ̂2(♦aπ̂2)) 4

T(P(◯a U b) < P(c U a) ∧ ¬(0 < P(♦a)))
(1)

T(P(◯a U b) < P(c U a) ∧ ¬(0 < P(♦a)) , 0)
(2)

T(P(◯a U b) < Pπ̂1(c U a) , 0)
(4)

T(P(◯a U b) , 0)
(8)

Pπ̂0(T(◯a U b, 0))
(10)

Pπ̂0(T(◯a, 0)U T(b, 0))
(9)

Pπ̂0(◯T(a, 0)U T(b, 0))
(13)

Pπ̂0(◯aπ̂0 U T(b, 0))
(13)

Pπ̂0(◯aπ̂0 U bπ̂0)

T(P(c U a) , 1)
(8)

Pπ̂1(T(c U a, 1))
(10)

Pπ̂1(T(c, 1)U T(a, 1))
(13)

Pπ̂1(cπ̂1 U T(a, 1))
(13)

Pπ̂1(cπ̂1 U aπ̂1)

T(¬ (0 < P(♦a)) , 2)
(3)

¬T(0 < P(♦a) , 2)
(4)

T(0, 2)
(7)

0

T(P(♦a) , 2)
(8)

Pπ̂2(T(♦a, 2))
(10,14)

Pπ̂2(♦T(a, 2))
(13)

Pπ̂2(♦aπ̂2)

Figure 5: Visualisation of the mapping from _eorem 4.7 applied to P(◯a U b) <
P(c U a) ∧¬(0 < P(♦a)). _e numbers on the right correspond to the rules
used in each step.

_e preceding result naturally raises the question of how much of the rest of PHLDTMC,
that is HyperCTL*, ûts into HyperPCTL*, which we will look into in the following.

4.3 Σ1 and Π1 HyperCTL* Sentences in PHL

In this segment we shall consider Σ1/Π1 sentences of the HyperCTL* fragment of PHL,
that is sentences of the form

∃π̂.η, or ∀π̂.η,

for a quantiûer-free η. _is was chosen as a starting point, since Σ1 and Π1 represent
the only possible formulae in HyperCTL* with only one quantiûer.

First up, we will show that some parts of the Σ1/Π1 fragments of HyperCTL* are re-
dundant in PHLDTMC, since they can also be expressed by its probabilistic expressions.
For this part, we can trivially extract a mapping to HyperPCTL* by translating it to
PHLnoϑDTMC and then applying_eorem 4.4. _is will be done by adapting a subset of
the results of [BK08, Ch. 10.2.2] to ût our case, since the reasoning is very similar.
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4.3.1 Redundant Rules

Let us start with an example. Consider ∀π̂.♦aπ̂ , which simply asserts that every path
has at least one a-labelled state. If this is the case, then

Pr{π ∣ π ⊧ ♦a} = 1,

since the measure above evaluates to the measure of Cyl(sι). Hence

∀π̂.♦aπ̂ ⊧ P(♦a) = 1.

Using the same reasoning, a can be replaced by any propositional logic (PL) expression ζ
over AP. In short, if we denote with ζπ̂ the formula ζ with all of its atomics marked
with π̂, this generalises to

∀π̂.♦ζπ̂ ⊧ P(♦ζ) = 1, for ζ ∈ PL.

However, the reverse direction does not hold. For example, in the DTMC of Figure 6,
we have a single “¬♦a”-path with measure zero, that is sωι , so the (dual) measure of ♦a
evaluates to one. Obviously, the absolute property ∀π̂.♦aπ̂ does not hold here.

sι

∅

s1

{a}

1/2

1/2

Figure 6: DTMC with Pr{π ⊧ ♦a} = 1, and a single “¬♦a”-path.

Lemma 4.9. Let ζ ∈ PL. _e following equivalences hold:

(i) P(◯ζ) = 1 ≡ ∀π̂.◯ζπ̂ .

(ii) P(◯ζ) > 0 ≡ ∃π̂.◯ζπ̂ .

Proof. We will only prove the base case ζ = a, for a ∈ AP. LetD = (S , sι , p,AP, l) be a
DTMC.
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(i) D ⊧ P(◯a) = 1 ⇐⇒ JP(◯a)KD = 1
⇐⇒ Pr{π ∈ PathsD(sι) ∣D, π ⊧ ◯a} = 1

⇐⇒ Pr{π ∈ PathsD(sι) ∣ a ∈ l(π(1))} = 1

⇐⇒ Pr⋃{CylD(sιs) ∣ s ∈ S ∧ a ∈ l(s)} = 1

⇐⇒ ∑
s∈S ∧ a∈l(s)

Pr (CylD(sιs)) = 1

⇐⇒ ∑
s∈S ∧ a∈l(s)

p(sι , s) = 1

⇐⇒ ∑
s∈S

p(sι , s) = 1

⇐⇒ ∀s ∈ PostD(sι) ∶ a ∈ l(s)

⇐⇒ ∀π ∈ PathsD(sι) ∶ a ∈ l(π(1))

⇐⇒ D ⊧ ∀π̂.◯aπ̂ .

(ii) D ⊧ P(◯a) > 0 ⇐⇒ JP(◯a)KD > 0
⇐⇒ Pr{π ∈ PathsD(sι) ∣D, π ⊧ ◯a} > 0

⇐⇒ Pr{π ∈ PathsD(sι) ∣ a ∈ l(π(1))} > 0

⇐⇒ Pr⋃{CylD(sιs) ∣ s ∈ S ∧ a ∈ l(s)} > 0

⇐⇒ ∃s ∈ S ∶ a ∈ l(s) ∧ Pr (CylD(sιs)) > 0

⇐⇒ ∃s ∈ PostD(s) ∶ a ∈ l(s)

⇐⇒ ∃π ∈ PathsD(sι) ∶ a ∈ l(π(1))

⇐⇒ D ⊧ ∃π̂.◯aπ̂ .

_is concludes the proof.

_e argument above relies entirely on

t ∈ PostD(s) ∧ a ∈ l(t) ⇒ CylD(st) ⊂ {π ∈ PathsD(s) ∣ π ⊧ ◯a},

i.e. if a path fragmentmodels◯a, then so do all paths that have this fragment as a preûx.
_is line of argumentation can also be expanded toU. _e sentence ∃π̂.aπ̂Ubπ̂ holds on
paths where b can be reached by a ûnite fragment while only crossing a-labelled states.
Hence, the cylinder set of this fragment is a subset of {π ∈ PathsD(s) ∣ π ⊧ a U b},
making the measure of the latter nonzero. Furthermore, we can also extract a special
case from ¬♦a ≡ �¬a.

Lemma 4.10. Let ζ , ζ′ ∈ PL. _e following equivalences hold.

(i) P(ζ U ζ′) > 0 ≡ ∃π̂. ζπ̂ U ζ′π̂ .

(ii) P(�ζ) = 1 ≡ ∀π̂.�ζπ̂ .

43



HyperPCTL* vs. PHL on DTMCs

Proof. Again, we only prove the base case for ζ = a and ζ′ = b, a, b ∈ AP. Let
D = (S , sι , p,AP, l) be a DTMC.

(i) D ⊧ P(a U b) > 0 ⇐⇒ JP(a U b)KD > 0
⇐⇒ Pr{π ∈ PathsD(sι) ∣D, π ⊧ a U b} > 0
⇐⇒ Pr{π ∈ PathsD(sι) ∣ ∃ j < ω ∀i < j ∶

a ∈ l(π(i)) ∧ b ∈ l(π( j))} > 0

⇐⇒ ∃ j < ω ∃sιs1...s j ∈ Paths<ωD (sι) ∶

b ∈ l(s j) ∧ ∀i < j ∶ a ∈ l(si)

∧ Pr (CylD(sι ...s j)) > 0

⇐⇒ ∃π ∈ PathsD(sι) ∃ j < ω ∀i < j ∶

a ∈ l(π(i)) ∧ b ∈ l(π( j))

⇐⇒ D ⊧ ∃π̂. aπ̂ U bπ̂ .

(ii) D ⊧ P(�a) = 1 ⇐⇒ JP(�a)KD = 1
⇐⇒ J1 − P(�a)KD = 0
2.6
⇐⇒ JP(¬�a)KD = 0
⇐⇒ JP(♦¬a)KD = 0

⇐⇒ ¬( JP(♦¬a)KD > 0)

⇐⇒ ¬(D ⊧ P(♦¬a) > 0)

⇐⇒ D ⊭ P(♦¬a) > 0
(i)
⇐⇒ D ⊭ ∃π̂.♦¬aπ̂
⇐⇒ D ⊧ ¬∃π̂.♦¬aπ̂
⇐⇒ D ⊧ ∀π̂.�aπ̂ .

_is concludes the proof.

_e argument of item (i) in the preceding lemma can be generalised for arbitrary
nesting of U operations. An exhaustive proof will be given in the next section for
the more general case, however the intuition behind it is as follows. First consider
right-nesting:

a U b U c

Any path π that models a U b U c has a trace that has a word with an initial segment of
the form anbmc, for n,m < ω. Whatever follows is irrelevant, hence every path in

Cyl(π(0)⋯π(n)⋯π(n +m)π(n +m + 1))

44



Σ1 and Π1 HyperCTL* Sentences in PHL

models it as well. _e cylinder set has a nonzero measure, whence follows the wanted
result. For le�-nesting, as in

(a U b)U c,

we would get the following situation. A path π models it iò it has an initial segment
with a trace with a word of the form, for example, anbmc, c, or similar, for n,m < ω.
_e same argument as for right-nesting applies, since it all comes down to the existence
of a ûnite preûx of the path that has the wanted trace.

Note, however, that we can not swap ∃ and ∀, or > 0 and = 1. _e reason behind this
is similar to the one presented in [BK08] for ∀♦a and ∃�b in the context of CTL vs.
PCTL. Here, explicitly transferring this result over is beyond the point, since we are
ultimately interested in embedding PHL inHyperPCTL*, and not PHL in itself; knowing
that a class of formulae of HyperCTL* is not expressible in the probabilistic part of
PHL does not preclude them from being expressible in HyperPCTL*.

In the same line of argumentation, one can show that◯ is compatible with U and� in
the above. First, note that◯ distributes with U:

◯(a U b) ≡ ◯a U◯b

With this, ∃π̂.◯(aπ̂ U bπ̂) ≡ P(◯(a U b)) > 0 follows exactly as in the preceding
theorem by replacing π(i) and π( j) with π(i + 1) and π( j + 1), respectively. _e case
for∀π̂.◯�aπ̂ follows, again, by duality. Similarly, one can show that ∃π̂.(◯aπ̂ Ubπ̂) ≡
P(◯a U b) > 0, ∃π̂.(aπ̂ U◯bπ̂) ≡ P(a U◯b) > 0, and so on.

Chaining all of the preceding using ∧, and ∨ is also possible. For ∧, take the path
fragment with the maximum length of those modelling the lhs and rhs, and for ∨ a
path fragment that models either formula.

In essence, the Σ1 fragment of HyperCTL*, where also no negation of U and◯ terms
is allowed (LTL+), in total denoted [Σ1|LTL+], and called the 1-existential LTL-positive
fragment of HyperCTL*, can be mapped to PHL probabilistic expressions, and via
_eorem 4.7 toHyperPCTL* formulae. An explicit grammar for this fragment is shown
in Figure 7. Note that negation of strictly propositional formulae inside U and◯ terms
is still allowed. Due to this, and◯¬a ≡ ¬◯a, it is implicitly allowed that◯ terms that
contain strictly propositional formulae also be negated.

(Σ1 formulae) φ ∶∶= ∃π̂.η

(LTL+ formulae) η ∶∶= η U η ∣ ◯η ∣ η ∧ η ∣ η ∨ η ∣ ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂

Figure 7: Grammar of [Σ1|LTL+]-HyperCTL*
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At last, we sum all of this up in

_eorem 4.11. [Σ1|LTL+]-HyperCTL* ≺ PHLnoϑDTMC ≺ HyperPCTL
*.

Proof. We give the following explicit transformation from [Σ1|LTL+]-HyperCTL* to
PHLnoϑDTMC. Let η, η

′ be LTL+ formulae, and ζ , ζ′ PL formulae, built as shown in the
grammar of Figure 7, a ∈ AP, and π̂ a path variable. Set

T(∃π̂.η) ∶= P(T(η)) > 0, (1)
T(η U η′) ∶= T(η)U T(η′), (2)
T(◯η) ∶= ◯T(η), (3)
T(η ∧ η′) ∶= T(η) ∧T(η′), (4)
T(η ∨ η′) ∶= T(η) ∨T(η′), (5)
T(ζ ∧ ζ′) ∶= T(ζ) ∧T(ζ′), (6)
T(¬ζ) ∶= ¬T(ζ), and (7)
T(aπ̂) ∶= a. (8)

Lemmata 4.9 and 4.10 allow us to map ∃π̂.ζ U ζ′ to P(T(ζ)U T(ζ′)) > 0, and ∃π̂.◯ζ
to P(◯T(ζ)) > 0, where T only strips the variable markings of ζ and ζ′. _e result
follows as a direct consequence of these, with the preceding argumentation concerning
nesting of U and◯ terms, and by chaining T4.7 of _eorem 4.7 with T, i.e. T4.7 ○T.

Let [Π1|¬LTL+]-HyperCTL* be the fragment that results by replacing the rule φ of
Figure 7 by

φ ∶∶= ∀π̂.¬η.

_is will be called the 1-universal negated LTL-positive fragment of HyperCTL*, i.e. the
fragment comprised of the formulae that have exactly one universal quantiûer followed
by a negated top-level LTL formula, which in itself has no negations in front of modal
operators. We can expand the previous theorem to map this fragment to PHLnoϑDTMC as
follows.

Corollary 4.12. [Π1|¬LTL+]-HyperCTL* ≺ PHLnoϑDTMC ≺ HyperPCTL
*.

Proof. Follows from_eorem 4.11 with ∀π̂.¬η ≡ ¬∃π̂.η, by introducing the extra rule

T(∀π̂.¬η) ∶= ¬T(∃π̂.η) (9)

to the transformation given in said theorem.

Note that this corollary also includes the special case for∀π̂.�ζπ̂ shown in Lemma4.10(ii),
and the one for ∀π̂.◯ζπ̂ , shown in Lemma 4.9(ii).
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As mentioned previously, based on [BK08], it is reasonable to surmise that ∃ generally
cannot be exchanged with ∀, and > 0 with = 1, in the preceding theorem and corollary.
_is also precludes us from systematically axiomatising HyperCTL* statements of the
form ∀π̂.♦η, ∃π̂.�η, and so on, in HyperPCTL*.

Conjecture 4.13. Let a ∈ AP. _e HyperCTL* sentences

∀π̂.♦aπ̂ , and
∃π̂.�aπ̂

are not axiomatisable in HyperPCTL*. 4

4.3.2 Nested LTL Negation

In the ûnal part of this section, we will brie�y make it plausible that the requirement
that LTL formulae – apart from the outermost one – be not negated, which we saw in
Section 4.3.1, cannot be li�ed.

_iswill be done by looking at examples of formulae inHyperCTL* with nested negation
of modal operators, which evaluate diòerently from their counterparts in HyperPCTL*

on certain DTMCs.

We consider the simplest case of nested-negated LTL formulae,

♦�a, or equivalently true U ¬(true U ¬a),

ûrst up with existential quantiûcation:

∃π̂.♦�aπ̂ ∈ HyperCTL*.

To discover the existence of such a path with a HyperPCTL* formula Pκ(φ) ∼ c, with
φ ∈ HyperPCTL*, c ∈ R, κ ∈ K∗

Π̂
, and ∼ ∈ {≤, <, =, ≠, >, ≥}, we must construct φ in such

a way that

Pr{π ∈ (PathsD(sι))
∣κ∣ ∣ D, κ[π] ⊧ φ} ∼ c ⇐⇒ D ⊧ ∃π̂.♦�aπ̂ ,

for all DTMCsD. However, we can construct families of DTMCs (Dr) which contain
one DTMC for each value r in the interval [0, 1]R, such that the measure of “♦�a”-
paths onDr is r, which indirectly shows that this equivalence isn’t constructible via
comparison to a constant. One such example is shown in Figure 8.
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sι

{a}

s1

∅

1/2

1/2

(a)D0 with Pr{π ⊧ ♦�a} = 0.

sι

{a}

(b)D1 with Pr{π ⊧ ♦�a} = 1.

sι

∅

s1

{a}

s2

∅

r

1 − r

(c)Dr with Pr{π ⊧ ♦�a} = r, r ∈ (0, 1) ⊂ R.

Figure 8: Family of DTMCs (Dr)r∈[0,1], where Pr{π ⊧ ♦�a} spans the entire real
interval [0, 1], while allDr model ∃π̂.♦�aπ̂ .

Lemma 4.14. _ere exists no constant c ∈ [0, 1]R such that

Pπ̂(♦�aπ̂) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL*

≡ ∃π̂.♦�aπ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

Proof. Consider the family (Dr)r∈(0,1)R of Figure 8. All Dr model the HyperCTL*

formula, which asserts that there exists one path π, such that an oòset π j, for some
j < ω, has a trace with the word aω. Speciûcally, onD0 andD1, this holds for the path
sωι and e.g. j = 0, and onDr , r ∈ (0, 1)R for the path sιsω1 and e.g. j = 1.

Nevertheless, the evaluation of the HyperPCTL* expression onDr yields

JPπ̂(♦�aπ̂)KDr
= r, for r ∈ [0, 1]R,

that is, the probability that a path models ♦�a spans the entire real interval [0, 1]R on
the family (Dr).

Using the same family, we can draw a conclusion for

∀π̂.♦�¬aπ̂ ∈ HyperCTL*.
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Speciûcally, while it implies

Pπ̂(♦�¬aπ̂) = 1 ∈ HyperPCTL*,

there is no HyperPCTL* formula which is equivalent to it, simply because there exists
no HyperPCTL* formula that can reliably detect ♦�¬a on all paths of a given DTMC.
_e family of Figure 8 attests this.

Lemma 4.15. _ere exists no constant c ∈ [0, 1]R such that

Pπ̂(♦�¬aπ̂) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL*

≡ ∀π̂.♦�¬aπ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

Proof. We compute

JPπ̂(♦�¬aπ̂)KDr
= 1 − r ∈ [0, 1], for r ∈ [0, 1]R,

while none of theDr model the universally-quantiûed HyperCTL* formula. A coun-
terexample onD0 andD1 is sωι , and one onDr , for r ∈ (0, 1)R, is sιsω1 .

Furthermore, using more (nested) quantiûers does not help, as it forces either new
quantiûcation over all paths starting as sι – which repeats the incompatibilities laid out
in Lemmata 4.14 and 4.15 – or quantiûcation over subtrees of a drawn path. _e latter
will be examined in-depth in the next section. However, for the purposes of the current
argument, let it simply be noted that nested quantiûcation in HyperPCTL* behaves
similarly to its counterpart in HyperCTL*, and it should be clear, that, for example

∃π̂1.♦�aπ̂1 ≢ ∃π̂1.♦∀π̂2.�aπ̂2 ,

sinceD0 (Figure 8a) models the le�, but not the right one. Replacing ∀ with ∃ in the
latter furthermore cannot lead to a ûtting solution; while it holds that

∃π̂1.♦�aπ̂1 ≡ ∃π̂1.♦∃π̂2.�aπ̂2 ,

mapping this to HyperPCTL* would require us to have a way to axiomatise ∃π̂.�aπ̂ in
HyperPCTL*, which is not the case.
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4.4 HyperCTL* Sentences in PHL with Multiple
Quantiûers

_e natural next step is to see if and how the results of the preceding section scale with
multiple quantiûers. However, we now have two cases to consider, based on whether
the formula in question is in Prenex Normal Form (pnf), that is whether it has the
form

Qn−1x̂n−1 Qn−2x̂n−2 ⋯Q1x̂1 Q0x̂ . η,

for a sequence of quantiûers (Qi)i<n ⊂ {∃,∀}, and a quantiûer-free η. We make a
distinction between

– formulae in pnf and ones that can be transformed to pnf, and

– formulae with nested quantiûcation that cannot be transformed to pnf.

_e need for this arises from the semantics of quantiûcation inHyperCTL*. Speciûcally,
quantiûers draw new paths from the start of the last drawn path. As such formulae in
pnf draw all their paths from the initial state, whereas ones not in pnf may quantify
over subtrees of paths.

In Section 4.3, we did not have to deal with this diòerence, since the only possible form
of (closed) HyperCTL* formulae with just one quantiûer is already pnf.

We introduce the following shorthand notation. ForQ ∈ {∀, ∃}, let

Qn x̃ stand for Qx̂0⋯Qx̂n−1.

4.4.1 Formulae in pnf

First up, we will brie�y outline that Σn/Πn with alternating quantiûers is incompatible
with HyperPCTL*. Σn/Πn formulae are deûned as having the form

Qn−1x̂n−1 Qn−2x̂n−2 ⋯Q1x̂1 Q0x̂ . η,

for a sequence of quantiûers (Qi)i<n ⊂ {∃,∀}, and a quantiûer-free η, where

– _e quantiûers are alternating: Qi+1 = {∀, ∃} ∖Qi , for all i < n − 1.

– For Σn: _e outermost quantiûer is existential: Qn−1 = ∃.

– For Πn: _e outermost quantiûer is universal: Qn−1 = ∀.

Lemma 4.16. Let 1 < n < ω. If Conjecture 4.13 holds, then neither the [Σn∣LTL+], nor
the [Πn∣LTL+] fragment of HyperCTL* is embeddable in HyperPCTL*.
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Proof. _e result follows by simple application of the well-known hierarchical inclusion
chains Σn ⊂ Πn+1, and Πn ⊂ Σn+1. To reach a contradiction, assume that the opposite
of the statement above is true, and consider

φ ∶= ∃π̂n−1. ∀π̂n−2. ⋯ ∃π̂1. ∀π̂0. (true U aπ̂0), and

φ′ ∶= ∀π̂n−1. ∃π̂n−2. ⋯ ∀π̂1. ∃π̂0.¬(true U ¬aπ̂0).

Note thatφ ≡ ∀π̂.♦aπ̂ , andφ′ ≡ ∃π̂.�aπ̂ . By hypothesis, there existψ,ψ′ ∈ HyperPCTL*,
with ψ ≡ φ, a ψ′ ≡ φ′, however then ψ ≡ ∀π̂.♦aπ̂ , and ψ′ ≡ ∃π̂.�aπ̂ . In both cases, a
contradiction to Conjecture 4.13!

_e result of the lemma does not prevent speciûc special cases of formulae with al-
ternating quantiûers from being embeddable in HyperPCTL*, however it precludes a
systematic transformation similar to the ones in the previous sections.

Here, we subsequently focus on pnf preûxed by ∃n and ∀n. To continue, we need to
introduce a new concept and use it to prove a key property of LTL+ that was only glossed
over in Section 4.3.1 — namely, when evaluating the semantics of LTL+, formulae, we
always can limit ourselves to ûnite path preûxes. For example, for a path π, we have

π ⊧ a U b ∈ LTL+ ⇐⇒ ∃ j < ω ∀i < j ∶ π i ⊧ a ∧ π j ⊧ b.

Unbounded expressions of the form “ j < ω” as above exclusively turn upwith existential
quantiûcation, i.e. we never get ∀i < ω . . . , or ∃ j < ω ∀k > j . . . , or anything similar
that would cause an index to range over an unbounded subset of ω.

_is very property allowed us to embed [Σ1∣LTL+]-HyperCTL* inHyperPCTL* – and its
Π1 counterpart by way of reduction to Σ1 via duality. Based hereupon, we introduce the
term non-divergent for properties that can not induce unbounded behaviour, similar to
the example above. In the case of DTMCs, we can formalise this using preûxes and
cylinder sets.

Deûnition 4.17 (Non-divergent properties). A trace property P is callednon-divergent,
iò for all DTMCsD and any path π ∈ PathsD, such thatD, π ⊧ P, we can ûnd a preûx
πpre ⊑ π, such thatD, π′ ⊧ P, for all π′ ∈ Cyl(πpre). 4

LetD be a DTMC. For a path preûx π, and a path expression η, we write CylD(π) ⊧ η
(the cylinder set of π models φ) as a shorthand for ∀π′ ∈ CylD(π) ∶D, π′ ⊧ φ.

We call the path assignment p total for the sequence π̃ ∈ Π̂n, n < ω, iò p(π̂i) ≠ �, for all
i < n, and denote the space of path assignments onD that are total for π̃ by taD(π̃).

For a tuple of path fragments u ∶= (π0, . . . , πn), and π̃ = (π̂0, . . . , π̂n−1) ∈ Π̂n, we set

PD(π̃, u) ∶= {p ∈ taD(π̃) ∣ ∀i < n ∶ p(π̂i) ∈ CylD(πi)},
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that is PD(π̃, u) is the set of assignments over π̃ to paths of the cylinder sets of the
fragments in u. Intuitively, this construct represents a translation of cylinder sets to sets
of path assignments, and will now be used to expand Deûnition 4.17 to hyperproperties
in

Deûnition 4.18 (Non-divergent hyperproperties). Let π̃ be a sequence of path vari-
ables, and H a hyperproperty referencing the variables of π̃. _e hyperproperty H is
called non-divergent, iò for any DTMC D, and path assignment p ∈ ⟨π̃ → PathsD⟩
withD, p ⊧ H, we can ûnd a sequence u of preûxes of the paths in im(p), such that
D, p ⊧ H, for all p ∈PD(π̃, u). 4

For a set of path assignments P, we write D,P ⊧ η, as a shorthand for ∀π ∈ P ∶

D, p ⊧ η. Based on these deûnitions, we can now prove the following intermediary
result connecting LTL+ and non-divergence.

Lemma 4.19. (Marked) LTL+ formulae specify non-divergent (hyper-)properties.

Proof. _e wanted result for marked LTL+ shall be shown via structural induction
over the form of LTL+ formulae. Let D ∶= (S , sι , p,AP, l) be a DTMC, and p a path
assignment. Furthermore, let n ∶= ∣p∣, and (π̂0, . . . , π̂n−1) ∶= dom(p).

Induction Start. Let ζ be a PL formula. We have p ⊧ ζ iò the tuple of the ûrst
states of all paths in pmodels ζ on its own, since modalities are not allowed in
PL. Hence

PD(dom(p), (p(π̂0)(0), . . . , p(π̂n−1)(0))) ⊧ ϑ .

Induction Hypothesis. Let η ∈ LTL+ be non-divergent, and 1 ≤ n ∶= ∣var(η)∣. _en
if, for a path assignment p ∈ taD(dom(p)), we have D, p ⊧ η, there exists by
deûnition an n-tuple of ûnite preûxes u = (π0, . . . , πn−1) of the paths in im(p),
such thatPD(dom(p), u) ⊧ η.

Induction Step. We have the following cases.

– ϑ ∶= η ∧ η′: pmodels ϑ iò it models both η and η′ separately. From this,
we extract via the hypothesis two tuples of preûxes of im(p)

ul = (πlpre,0, . . . , πlpre,n−1), and
ur = (πrpre,0, . . . , πrpre,n−1)

with

PD(dom(p), ul) ⊧ η, and

PD(dom(p), ur) ⊧ η′.
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We build a sequence of preûxes u as follows. For i < n, set

ui ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

πlpre,i , π̂i ∈ var(η) ∖ var(η′)
πrpre,i , π̂i ∈ var(η′) ∖ var(η)
argmaxπ∈{πlpre, i ,πrpre, i} ∣π∣, π̂i ∈ var(η) ∩ var(η′)

In essence, for each variable π̂ ∈ var(ϑ), we select the corresponding
member of the l-sequence, if π̂ only appears in η, and the corresponding
member of the r-sequence, if π̂ only appears in η′. If π̂ appears in both
formulae, we take the corresponding member with the maximum length
out of the two sequences.

With this sequence, we directly get

PD(dom(p), u) ⊧ ϑ .

– ϑ ∶= η ∨ η′: p models ϑ iò it models either of the formulae. _e result
follows similarly to the previous case, by selecting all the members of the
l-sequence, ifD, p ⊧ η, or all the members of the r-sequence, ifD, p ⊧ η′.

– ϑ ∶= ◯η: p models ϑ iò p1 models η. From the hypothesis, we extract a
sequence of preûxes u of the paths in im(p1) with

PD(dom(p), u) ⊧ η.

_e result follows immediately prepending p(π̂i)(0) to ui , for all i < ∣p∣.

– ϑ ∶= η U η′: We have, by deûnition

D, p ⊧ ϑ ⇐⇒ ∃ j < ω ∶ D, p j ⊧ η′ ∧ ∀i < j ∶D, pi ⊧ η.

Let j < ω be given. By hypothesis, we get tuples of preûxes

ul,i = (πlpre,i ,0, . . . , πlpre,i ,n−1), for each i < j, and
ur = (πrpre,0, . . . , πrpre,n−1)

of the paths in im(pi), i < j, and im(p j), respectively, with

PD(dom(p), ul,i) ⊧ η, for all i < j, and

PD(dom(p), ur) ⊧ η′.

Deûne for k < n and i < j

ξr(k) ∶= (p(π̂k)(0)) ⋯ (p(π̂k)( j − 1)) πrpre,k , and

ξl,i(k) ∶= (p(π̂k)(0)) ⋯ (p(π̂k)(i − 1)) πlpre,i ,k .

_e function ξr prepends the path fragments of ur with initial segments
starting at the corresponding initial state of im(p). Similarly, ξl,i does the
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same with the paths of the sequences ul,i , i < j. _is is done to bridge the
gap between the original assignment p and the shi�ed ones.

We set

Ξl(k) ∶= {ξl,i(k) ∣ i < j}, and

Ξ(k) ∶= Ξl(k) ∪ {ξr(k)}.

_e set Ξl(k) contains the k-th component of all updated l-sequences,
and Ξ(k) additionally the k-th component of the updated r-sequence.

Finally, we use these to construct the sequence u by

uk ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ξr(k) π̂k ∈ var(η′) ∖ var(η)
argmaxπ∈Ξl(k) ∣π∣, π̂k ∈ var(η) ∖ var(η′)
argmaxπ∈Ξ(k) ∣π∣, π̂k ∈ var(η) ∩ var(η′),

that is we select as the k-th element either the corresponding path of the
updated r-sequence, if the related variable only appears in η′, the longest
path out of the k-th members of all the updated l-sequences, if it only
appears in η, and the longest out of all of these if it appears in both formulae.

By construction, we have

PD(dom(p), u) ⊧ ϑ .

_e result for unmarked formulae follows as a special case from the above, by consider-
ing unmarked η ∈ LTL+ equivalent to ηπ̂ ∈ LTL+ marked with exactly one variable π̂,
and by using CylD(π) ⊧ η ⇐⇒ PD(π̂, π) ⊧ ηπ̂ .

We are now equipped to prove

_eorem 4.20. Let η(x̃) be an LTL+ formula with 1 < ∣x̃∣ =∶ n < ω free path indices.
_e following equivalence holds.

∃n π̃.η(π̃)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡ Pπ̃(η(π̃)) > 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL*

Proof. Let ψl be the lhs and ψr the rhs of the above.

â Trivial. If the measure of n-tuples of paths modelling η(π̃) is nonzero, then there
exists at least one tuple of paths that models η(π̃).

⊧ _e result follows similarly to Lemma 4.10. Let D ∶= (S , sι , p,AP, l) be a
DTMCwith initial state sι . Since LTL+ formulae specify non-divergent properties
(Lemma 4.19),D ⊧ ψL holds iò there exists an n-tuple of paths (π0, ..., πn−1) on
D, such that the cylinder set of a sequence of their preûxes

((π0(i))i<µ , ..., (πn−1(i))i<µ)
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models ψL, where µ ≥ 1 is the length of the individual paths. If µ = 1, then the
initial state models η(π̃) on its own, and the measure evaluates to 1. Otherwise,
if µ > 1, we get from

{π ∈ PathsD(sι)
n ∣D, π̃ ↦ π ⊧ η(π̃)} ⊃ {(π0, ..., πn−1)}

the following:

JPπ̃(φ(π̃))KD = Pr{π ∈ PathsD(sι)
n ∣D, π̃ ↦ π ⊧ η(π̃)}

≥ Pr{(π0, ..., πn−1)}

≥ Pr (Cyl((π0(i), ..., πn−1(i))i<µ)) (Lemma 4.19)

= ∏
m<n

Pr (Cyl((πm(i))i<µ))

≥ ∏
m<n
( min
0<i<µ

p(πm(i − 1), πm(i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
> 0, since πm is a path

)
µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
> 0, since µ <ω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
> 0 since n <ω

> 0.

_e measure is nonzero in every case, and hence ψl ⊧ ψr.

In the sequel, we call the class of HyperCTL* formulae that have the form ∃n π̃.η(π̃), for
η ∈ LTL+, the pnf-existential LTL-positive fragment of HyperCTL*, denoted [∃n∣LTL+],
and set

[∃∗∣LTL+]-HyperCTL* ∶= ⋃
n<ω
[∃n∣LTL+]-HyperCTL*.

Corollary 4.21. [∃∗∣LTL+]-HyperCTL* ≺ HyperPCTL*.

Proof. Direct application of _eorem 4.20.

4.4.2 Formulae with nested quantiûers

Lastly, it will be proven that [∃∗∣LTL+]-HyperCTL* expanded with nesting of further
[∃∗∣LTL+] formulae is still compatible with HyperPCTL*. _at, is we can replace LTL+

subexpressions in [∃∗∣LTL+]-HyperCTL* with nested [∃∗∣LTL+] formulae, and we can
repeat this arbitrarily, while preserving the embeddability of the formulae in Hyper-
PCTL*.
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In short, consider formulae φ(x) and ψ(y), with placeholders x and y, such that φ(η)
is [∃∗∣LTL+], and ψ(η) ∈ HyperPCTL* and equivalent to φ(η), for some η ∈ LTL+,
then

φ (∃n π̃.η′(π̃))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperCTL*

≡ ψ (Pπ̃←last(η′(π̃)) > 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL*

,

where last is the last quantiûed path variable in the context of the placeholder y – or ε
if no such variable exists – and π̃ ← last a shorthand for the ruleset

(π̂0 ← last, . . . , π̂∣π̃∣−1 ← last).

To subsequently formalise this, we ûrst need a grammar (Figure 9) for the fragment
of HyperCTL*, which admits this – and only this – form of nesting. _is fragment
will be called recursively existential path-positive, denoted [↓∃∗∣π+], where ↓ stands for
recursion. As before, we continue to allow negation exclusively in PL formulae. Note
that this is a generalisation of [Σ1∣LTL+], and [∃∗∣LTL+], and therefore contains all of
their formulae.

(↓∃∗ formulae) φ ∶∶= ∃π̂.φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ η

(π+ formulae) η ∶∶= φ U φ ∣ ◯φ ∣ ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂ ∣ true

Figure 9: Grammar of [↓∃∗∣π+]-HyperCTL*

Lemma 4.22. π+ expressions, built as shown in Figure 9 specify non-divergent hyper-
properties.

Proof. _e claim can be shown via structural induction over the form of π+ formulae,
similarly to Lemma 4.19.

As a last step before moving on to the embedding itself, we need the following auxiliary
term.

Deûnition 4.23 (Quantiûer nesting depth). Let φ be a HyperCTL* formula. We de-
note by nd(ϑ) the quantiûer nesting depth of ϑ, which is deûned recursively as follows.

nd(ϑ ⋆ ϑ′) = max{nd(ϑ), nd(ϑ′)}

nd(∼ ϑ) = nd(ϑ)
nd(Qn−1π̂n−1. ⋯Q0π̂0.ϑ) = 1 + nd(ϑ)
nd(aπ̂) = 0
nd(true) = 0
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for ⋆ ∈ {∧,U}, ∼ ∈ {¬,◯}, and (Qi)i<n ⊂ {∀, ∃} a sequence of quantiûers. In the 3rd
rule, we assume that we always select the greatest applicable n for the formula, that is,
we never split a sequence of quantiûers across two steps. 4

We can now prove

_eorem 4.24. [↓∃∗∣π+]-HyperCTL* ≺ HyperPCTL*.

Proof. We will give an explicit transformation. Let φ, φ′ be ↓∃∗ formulae, ζ be a PL
formula, built as seen in the grammar of Figure 9, and n < ω, and set

T(φ) ∶= T(φ, ε), (1)
T(∃n π̃.φ, τ) ∶= Pπ̃←τ(T(φ, last(π̃))) > 0, (2)
T(φ ∧ φ′, τ) ∶= T(φ, τ) ∧T(φ′, τ), (3)
T(φ ∨ φ′, τ) ∶= T(φ, τ) ∨T(φ′, τ), (4)
T(φ U φ′, τ) ∶= T(φ, τ)U T(φ′, τ), (5)
T(◯φ, τ) ∶= ◯T(φ, τ), and (6)
T(ζ , τ) ∶= ζ , (7)

where last(π̃) is the last element of π̃.

In short, the second argument of the transformation is used to keep track of the last
drawn path variable, all syntactic elements apart from ∃ are taken over, while ∃ itself is
mapped to a “> 0” assertion in rule 2, where it is also assumed that the largest applicable
n is taken – that is, we never split a sequence of quantiûers across multiple steps of the
transformation.

_e most important addition in relation to _eorems 4.11 and 4.20 is that we take over
the quantiûcation context in rule 2 and use it to nest quantiûed formulae.

We want to prove

D, ε ⊧ φ ⇐⇒ D, ε ⊧ T(φ, ε),

and start by noting that the semantics ofU,◯, ∧, and ∨, are the same across both logics.
As such, we will only focus on rule 2. When we reach an instance of rule 2 starting
from the above, and having collected a path assignment p from previous steps, we map

∃n π̃.φ to Pπ̃←τ(T(φ, last(π̃))) > 0,

where τ = last(p) is the last variable added to p, or ε if no such variable exists. As such,
the wanted equivalence from above ultimately reduces to

D, p ⊧ ∃n π̃.φ ⇐⇒ D, p ⊧ Pπ̃←τ(T(φ, last(π̃))) > 0.
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Since the starting formula is closed, we have p(π̂) ≠ �, for all π̂ ∈ free(∃n π̃.φ). We
continue via induction over the nesting depth of φ.

Induction Start. For nesting depth 0, φ is LTL+, and ∃n π̃.φ is [∃∗∣LTL+]. _e
equivalence can be proven similarly to _eorem 4.20, by drawing paths from
p(τ)(0), instead of the initial state.

Induction Hypothesis. Let 1 ≤ n < ω be given, such that, for all formulae (closed
or not) φ ∈ [↓∃∗∣π+]-HyperCTL* with nd(φ) = n,

D, p ⊧ φ ⇐⇒ D, p ⊧ T(φ, τ),

for all path assignments p, such that p(π̂) ≠ �, for all π̂ ∈ free(∃n π̃.φ), and
τ = last(p) is the last variable that was added to p, or ε if no such variable exists.

Induction Step. Let ∃n π̃.φ be an [↓∃∗∣π+] formula of depth n + 1. We get

D, p ⊧ ∃n π̃.φ ⇐⇒ ∃π ∈ PathsD(p(τ)(0))
n ∶

D, p ○ {π̂i ↦ πi ∣ i < n} ⊧ φ
IH
⇐⇒ ∃π ∈ PathsD(p(τ)(0))

n ∶

D, p ○ {π̂i ↦ πi ∣ i < n} ⊧ T(φ, π̂n−1)

⇐⇒ ∃π ∈ PathsD(p(τ)(0))
n ∶

D, p ○ {π̂i ↦ πi ∣ i < n} ⊧ T(φ, last(π̃))

⇐⇒ PrDn{π ∈ PathsD(p(τ)(0))
n ∶

D, p ○ {π̂i ↦ πi ∣ i < n}

⊧ T(φ, last(π̃))} > 0

⇐⇒ D, p ⊧ Pπ̃←τ(T(φ, last(π̃))) > 0

4.5 Equivalent Fragments

In this chapter, we have mainly seen transformations that embed parts of PHLDTMC
into HyperPCTL*. _ese transformations generate certain types of expressions in the
latter, and can be inverted on these very types of expressions.

_eorem 4.7 creates HyperPCTL* expressions with in which

– no P-nesting occurs, since PHLDTMC does not allow this at all,

– each probabilistic operator draws exactly one path starting from the initial state,
and
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– probability measures can be added to one another arbitrarily, but can only be
multiplied with rational constants.

Let the fragment of HyperPCTL* that is comprised of these expressions be called its
draw-1 simple shallow fragment, and be denoted by [P1∣ρs ∣LTLs]. _is fragment also
excludes the usage of functions such as exponential or polynomial ones inHyperPCTL*.
A grammar is given in Figure 10.

Here, shallow references that the content of P operators is reduced to singleton-marked
LTL, and simple that functions are disallowed – with the implicit allowance of multi-
variate polynomials inQ of degree 1, that is, exactly those that can be represented by
applying the rules c ⋅ ρ and ρ + ρ ûnitely many times.

(P1 formulae) φ ∶∶= φ ∧ φ ∣ ¬φ ∣ ρ < ρ

(ρs expressions) ρ ∶∶= c ∣ ρ + ρ ∣ c ⋅ ρ ∣ Pπ̂(η)

(LTL formulae) η ∶∶= aπ̂ ∣ true ∣ η ∧ η ∣ ¬η ∣ ◯η ∣ η U η

Figure 10: Grammar of [P1∣ρs ∣LTLs]-HyperPCTL*

_eorem 4.25. [P1∣ρs ∣LTLs]-HyperPCTL* ≅ PHLnoϑDTMC.

Proof. “≽” is the content of _eorem 4.7. “≼” follows by using the same reasoning and
inverting the steps of the transformation given in_eorem 4.7, speciûcally, simply by
removing all π̂-indices from the LTL formulae and π̂-rules from P operators.

_eorem 4.24 generates expressions with nesting, in which probability measures are
only asserted to be nonzero, the only path variable that may be referenced by rules is the
last one that was quantiûed over (last), and negation is only allowed in PL formulae. Let
this fragment be named recursively nonzero path-positive and be denoted by [↓P>0last∣π

+].
A grammar is given in Figure 11.

(↓P>0last formulae) φ ∶∶= Pπ̃←last(φ) > 0 ∣ φ ∧ φ ∣ φ ∨ φ ∣ η

(π+ formulae) η ∶∶= φ U φ ∣ ◯φ ∣ ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂ ∣ true

Figure 11: Grammar of [↓P>0last∣π
+]-HyperPCTL*

_eorem 4.26. [↓P>0last∣π
+]-HyperPCTL* ≅ [↓∃∗∣π+]-HyperCTL*.

Proof. “≽” is the content of _eorem 4.24. “≼” follows by inverting the rules of the
transformation given in it.
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4.6 Overview of Results

In this chapter, we ûrst showed that PHLDTMC cannot express multivariateHyperPCTL*

formulae in Section 4.1. _en, we embedded the probabilistic part of PHLDTMC in
HyperPCTL* in Section 4.2, and subsequently focussed on HyperCTL*, starting with
formulae with one quantiûer in Section 4.3, and building up to multiple quantiûers,
and quantiûer nesting in Section 4.4. Finally, in Section 4.5, we identiûed equiva-
lent fragments between the two logics by looking at the types of formulae that our
transformations generate, and inverting them on these formulae.

In total, we saw that we can embed into HyperPCTL*

– the entire probabilistic part of PHLDTMC: PHL
noϑ
DTMC (_eorem 4.7), and

– the recursively existential path-positive fragment of HyperCTL* [↓∃∗∣π+] (_eo-
rem 4.24).

By looking at the forms of the formulae the given transformations generate, we found
fragments of HyperPCTL* that we can embed in PHL:

– _e draw-1 simple shallow fragment [P1∣ρs ∣LTLs] (_eorem 4.25)

– _e recursively nonzero path-positive fragment [↓P>0last∣π
+] (_eorem 4.26)

Moreover, in the process of examiningHyperCTL*, we made it plausible in Section 4.3.2
that we cannot li� the path-positivemodiûer. _at is, we cannot allow nested LTL, and
subsequently nested path expressions, to be negated.

It still remains open, whether special cases of multivariate HyperPCTL* formulae are
expressible in PHLnoϑDTMC, and whether the equivalence

[↓P>0last∣π
+]-HyperPCTL* ≅ [↓∃∗∣π+]-HyperCTL*

of _eorem 4.26 represents the largest fragment equivalence between HyperPCTL*

and HyperCTL* (excluding special cases). Speciûcally, we only saw that the most
generic case of formulae with alternating quantiûers of HyperCTL* is not embeddable
in HyperPCTL* in Section 4.4, basing this on Conjecture 4.13. Furthermore, we only
examined the probabilistic and non-probabilistic parts of PHLDTMC in isolation from
one another. It may be the case, that, when combined, they can express more parts of
HyperPCTL* than just the fragments mentioned above.

Future work on this examination could further include proving (or disproving) the con-
jecture, and ûnding special cases of formulae with alternating quantiûers inHyperCTL*

that have equivalents in HyperPCTL*.
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Chapter 5

HyperPCTL vs. PHL on DTMCs

As we have noted in Chapter 3, HyperPCTL is inherently incomparable to PHL, due to
the usage of initial states in the semantics of the latter, whilst the ûrst has no intrinsic
way of selecting said initial states. Moreover, both PHL’s HyperCTL* fragment as well
asHyperPCTL* have mechanisms to express that “a path be drawn starting at the initial
state of another path,” while HyperPCTL does not. _is does not preclude it from
mimicking this behaviour, however the procedure to do so – if any exists – is not
obvious.

_erefore, in this chapter, we can, at most, examine algorithmic relations, which, in ad-
dition to transforming formulae also transform the DTMC itself, and more speciûcally
ones that label speciûc states in a unique way.

To this end, we ûx a basicmarking algorithmAm that takes aDTMCD ∶= (S , sι , p,AP, l)
with initial state sι and transforms it intoAm(D) = (S , p,APm, lm), with

– APm ∶= AP ∪ {init}, where we assume that init ∉ AP,

– lm(s) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

l(s), if s ≠ sι ,
l(s) ∪ {init}, if s = sι .

_is, essentially, givesHyperPCTLDTMC a way to select the initial state ofD inAm(D).
Given a DTMC (S , p,AP, l) with a state s ∈ S uniquely labelled init ∈ AP, we denote
byA−1

m the inverse of the algorithmAm, that generates (S , sι , p,AP, l) with initial state
sι ∶= s.

In the following, we will useAm in conjunction with transformations of formulae to
embed fragments of one logic into the other algorithmically. In any case, the constructs
will be used orthogonally to one another; the transformation of DTMCs will always
happen independently to that of formulae.

While this bridges a semantical gap between the logics, we assume that it does not
expand the expressive power of HyperPCTLDTMC beyond letting it uniquely identify
an initial state, and we explicitly do not use it for any other purpose than that.

Now, we can transfer some of the results of the previous chapter over, starting with the
relation to PHLnoϑDTMC.
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5.1 HyperCTL*-less PHL to HyperPCTL

In essence, we proceed similarly to _eorem 4.7. _e idea is as follows. For an (un-
marked) LTL formula η, the PHL expression P(η) evaluates equivalently (moduloAm)
to the HyperPCTL expression P(ηŝ) with the initial assignment s = (ŝ ↦ sι), where
ηŝ is exactly the same as η, but with its atomics marked by ŝ. _is assignment can be
induced by a HyperPCTL sentence by starting it with ∃ŝ. initŝ ∧⋯, for example

∃ŝ. initŝ → P(ηŝ) > 0 ∈ HyperPCTLDTMC,

for

P(η) > 0 ∈ PHLnoϑDTMC.

Nevertheless, we run against another problem: Purely in terms of syntax, LTL allows
only direct nesting ofU and◯ operators, whileHyperPCTL requires that a probabilistic
assertion be made in-between. A slight exception to this rule is the stacking of◯, since
◯kζ ∈ LTL can be expressed as true U[k,k] ζ as a path expression of HyperPCTLDTMC.
From now on, we consider◯k, k ≥ 2, to also be permissible inHyperPCTL as syntactic
sugar.

Due to this, we ûrst restrict ourselves to shallow LTL formulae, denoted LTLs, which
drop to a PL expression directly a�er U, or◯k, and can not mix modal operators in a
single expression. _ese make up a very small part of LTL, and thus do not contain
particularly much expressive power within.

A grammar for fragment of PHLnoϑDTMC restricted to shallow LTL expressions is given in
Figure 12.

(top-level formulae) φ ∶∶= φ ∧ φ ∣ ¬φ ∣ ρ < ρ

(probabilistic expressions) ρ ∶∶= P(η) ∣ ρ + ρ ∣ c ⋅ ρ ∣ c

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ a ∣ true

Figure 12: Grammar of [LTLs]-PHLnoϑDTMC

_eorem 5.1. [LTLs]-PHLnoϑDTMC ≼A HyperPCTLDTMC.

Proof. We give the following explicit transformation T. Let φ, φ′ be be top-level formu-
lae, ρ, ρ probabilistic expressions, η ∈ LTLs, and ζ , ζ′ ∈ PL, built as shown in Figure 12,
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HyperCTL*-less PHL to HyperPCTL

c ∈ Q, a ∈ AP, ŝ ∈ Ŝ, and set

T(φ) ∶= ∃ŝ. initŝ ∧T(φ, ŝ), (1)
T(φ ∧ φ′, ŝ) ∶= T(φ, ŝ) ∧T(φ′, ŝ), (2)
T(¬φ, ŝ) ∶= ¬T(φ, ŝ), (3)
T(ρ < ρ′, ŝ) ∶= T(ρ, ŝ) < T(ρ′, ŝ), (4)
T(c ⋅ ρ, ŝ) ∶= T(c, ŝ) ⋅T(ρ, ŝ), (5)
T(ρ + ρ′, ŝ) ∶= T(ρ, ŝ) +T(ρ′, ŝ), (6)
T(c, ŝ) ∶= c, (7)
T(P(η) , ŝ) ∶= P(T(η, ŝ)) , (8)

T(◯kζ , ŝ) ∶= ◯kT(ζ , ŝ), (9)
T(ζ U ζ′, ŝ) ∶= T(ζ , ŝ)U T(ζ′, ŝ), (10)
T(¬ζ , ŝ) ∶= ¬T(ζ , ŝ), (11)
T(ζ ∧ ζ′, ŝ) ∶= T(ζ , ŝ) ∧T(ζ′, ŝ), (12)
T(a, ŝ) ∶= aŝ , and (13)
T(true, ŝ) ∶= true. (14)

_e idea behind the transformation is laid out above, and in essence similar to _eo-
rem 4.7.

– Rule 1 creates the wrapping expression, including the reference variable for the
initial state.

– Rules 2 through 12, and rule 14 simply take over the syntactic elements of the
original formula.

– Rule 13 marks atomic propositions in the original formula with the reference
variable selected by rule 1.

We ultimately want to show

D ⊧ φ ⇐⇒ Am(D) ⊧ T(φ),

and start by noting that the semantics of ∧, ¬, <, ⋅, and + are the same across both logics.
Taking over the syntactic elements of [LTLs]-PHLnoϑDTMC creates a syntactically sound
HyperPCTLDTMC formula. Furthermore, we only have one single quantiûcation in the
wrapper expression ∃ŝ. initŝ ∧ ⋯, which induces the state assignment s ∶= (ŝ ↦ sι).
With this, the above becomes

D ⊧ φ ⇐⇒ Am(D), s ⊧ T(φ, ŝ).

We only need to make sure that probabilistic expressions in the original formula
and their transformants evaluate equivalently (modulo Am) using the initial state
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assignment above. First, we proceed to make sure LTLs formulae “select” the same paths
as their transformants. Let π ∈ PathsD, and s ∶= (ŝ ↦ π(0)). We have the following
cases.

– η = ◯kζ , k ≥ 1. We get

D, π ⊧PHL η ⇐⇒ D, π(k) ⊧PHL ζ
⇐⇒ D, s[π(k)] ⊧HyperPCTL T(ζ , ŝ)

⇐⇒ D, s, π ⊧HyperPCTL ◯kT(ζ , ŝ)
⇐⇒ D, s, π ⊧HyperPCTL T(η, ŝ).

– η = ζ U ζ′. We have

D, π ⊧PHL η ⇐⇒ ∃ j < ω ∀i < j ∶D, π(i) ⊧PHL ζ
∧D, π( j) ⊧PHL ζ′

⇐⇒ ∃ j < ω ∀i < j ∶D, s[π(i)] ⊧HyperPCTL T(ζ , ŝ)
∧D, s[π( j)] ⊧HyperPCTL T(ζ′, ŝ)

⇐⇒ D, s, π ⊧ T(η, ŝ).

Using this, we compute

JP(η)KPHLD = Pr{π ∈ PathsD(sι) ∣D, π ⊧PHL η}

= Pr{π ∈ PathsD(im(s)) ∣D, s, π ⊧HyperPCTL T(η, ŝ)}

= JP(T(η, ŝ))KHyperPCTLD, s ,

which concludes the proof.

_ere are still other formulae of PHLDTMC that are expressible in HyperPCTLDTMC,
even though they are syntactically incompatible with it at a ûrst glance.

Lemma 5.2. Let ζ ∈ PL, and ζŝ be the exact same formula with its atomics marked by ŝ.
_en, for c ∈ Q, and ∼ ∈ {<, ≤, =, ≥, >}.

P(�♦ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�P(♦ζŝ) = 1) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

(moduloAm)

P(♦�ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�ζŝ) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

(moduloAm)

Proof. We exemplarily only show the ûrst equivalence, and for the base case for ζ =
a ∈ AP. It is assumed known that HyperPCTL subsumes PCTLmoduloAm, since the
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former contains the syntax and semantics of the latter. Based on this observation, it
holds (mod.Am) that

P(♦P(�P(♦a) = 1) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PCTL

≡f ∃ŝ. initŝ ∧ P(♦P(�P(♦ζŝ) = 1) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

Furthermore, it is proven in [BK08] that the PCTL formula on the le� holds on a ûnite
DTMCD at its initial state sι , iò

Pr{π ∈ PathsD(sι) ∣ π ⊧ �♦a
±
LTL

} ∼ c,

whence we immediately get the ûrst equivalence, since this is exactly the evaluation
of the PHL formula onD. _e second equivalence can be shown in a similar fashion,
again with the aid of [BK08].

5.2 HyperCTL* Sentences in PHL

In this part, we look again at the non-probabilistic part of PHLDTMC separately. Purely
in terms of syntax, HyperCTL* allows arbitrary nesting of U and◯ expressions, while
HyperPCTL does not.

_e former has, nonetheless, a fragmentwith strictly alternating quantiûcation and path-
expression nesting – essentially HyperCTL – but even this is not easily compatible with
HyperPCTL; inHyperCTL*, nested quantiûcations range over subtrees of paths, whereas
quantiûcation in HyperPCTL has no eòect on its own on where paths themselves
start.

_is leads us directly to the thought of embedding the (starkly restricted) pnf-existential
LTL-shallow fragment of HyperCTL*, denoted [∃∗∣LTLs], intoHyperPCTL. A grammar
is presented in Figure 13.

(∃∗ formulae) φ ∶∶= ∃π̂.φ ∣ η

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂ ∣ true

Figure 13: Grammar of [∃∗∣LTLs]-HyperCTL*

_eorem 5.3. [∃∗∣LTLs]-HyperCTL* ≼A HyperPCTL.
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Proof. Let ψ,ψ′ be non-quantiûed formulae, ζ , ζ′ ∈ PL, built as shown in Figure 13,
a ∈ AP, n < ω. We assume without loss of generality that Π̂ = {π̂0, π̂1, ...}, and
Ŝ = {ŝ0, ŝ1, ...}, and consider the following transformation.

T(∃π̂n−1 . . . ∃π̂0.η) ∶= ∃ŝn−1 . . . ∃ŝ0. ⋀
i<n

initŝ i ∧ P(T(η)) > 0, (1)

T(◯kζ) ∶= ◯kT(ζ), (2)
T(ζ U ζ′) ∶= T(ζ)U T(ζ′), (3)
T(¬ζ) ∶= ¬T(ζ), (4)
T(ζ ∧ ζ′) ∶= T(ζ) ∧T(ζ′), (5)
T(aπ̂ i) ∶= aŝ i , and (6)
T(true) ∶= true. (7)

In the above, it is assumed that the n in rule 1 is the maximum applicable n for the
formula, that is, we always convert all quantiûers at the start of the formula in one step.

– Rule 1 maps sequences of quantiûed path variables to sequences of quantiûed
state variables, asserts that the computation trees bound to the new variables
are all rooted at the initial state, and wraps the rest of the formula in a nonzero
assertion.

– Rules 2 though 5, and rule 7, take over the syntactic elements of the original
formula.

– Rule 6 replaces the path variable markings π̂i with state variable markings ŝi .

_e equivalence can be shown similarly to Corollary 4.21.

At this point we surmise that a version of the above that also allows recursion of
[∃∗∣LTLs] formulae, the recursively pnf-existential LTL-shallow fragment of Hyper-
CTL*, denoted [↓∃∗∣LTLs], is still embeddable in HyperPCTL. A grammar is given in
Figure 14.

(↓∃∗ formulae) φ ∶∶= ∃π̂.φ ∣ η

(LTLs formulae) η ∶∶= ◯kψ ∣ ψ U ψ ∣ ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂ ∣ true

Figure 14: Grammar of [↓∃∗∣LTLs]-HyperCTL*

Conjecture 5.4. [↓∃∗∣LTLs]-HyperCTL* ≼A HyperPCTL. 4

A complete transformation will not be given here, but rather just a sketch of how one
could work, speciûcally for the case that each nested ∃ formula is closed.
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Example 5.5. Let φ ∶= ∃π̂0.∃π̂1.(aπ̂0 ∧ bπ̂1)U (∃π̂2.aπ̂2 U cπ̂2).

_is formula asserts that we can ûnd paths π0, π1 starting at the initial state, such that
π0 has an initial segment π0pre marked a, and π1 has in parallel an initial segment at
least as long as π0pre marked b, such that we can branch oò of π1 at some point i < ω,
and take a path π2 staring at π1(i), on which a U c holds.

_e syntax tree of φ looks as follows.

∃π̂0.∃π̂1.

U

∧

aπ̂0 bπ̂1

∃π̂2.

U

aπ̂2 cπ̂2

Here, we kept ∃π̂0.∃π̂1. together as one node to simplify the diagram. Now, we look
at the leaves descending from the U-node before the nested formula. We want π̂2 to
mimic the behaviour of the path that comes before it – π̂1. Hence, we replace the leaf
bπ̂1 with the syntax tree of bπ̂1 ∧ bπ̂2 .

∃π̂0.∃π̂1.

U

∧

aπ̂0 ∧

bπ̂1 bπ̂2

∃π̂2.

U

aπ̂2 cπ̂2
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Next, we replace the quantiûer sequences with P(⋅) > 0, and path variables π̂i with
state variables ŝi in one step, and get

>

P

U

∧

aŝ0 ∧

bŝ1 bŝ2

>

P

U

aŝ2 cŝ2

0

0

Collapsing this tree yields the expression

P((aŝ0 ∧ bŝ1 ∧ bŝ2)U (P(aŝ2 U cŝ2) > 0)) > 0,

and with this, we build the HyperPCTL formula

∃ŝ0.∃ŝ1.∃ŝ2. initŝ0 ∧ initŝ1 ∧ initŝ2 ∧ P((aŝ0 ∧ bŝ1 ∧ bŝ2)U (P(aŝ2 U cŝ2) > 0)) > 0.

In essence, this makes computation tree that is bound to ŝ2 behave the same as the
one bound to ŝ1 before the nested formula. _is imitates the behaviour of nested
quantiûcation in existential formulae of HyperPCTL*; instead of explicitly drawing π̂2
at the current position of π̂1 at some point later down the line, we implicitly “bind” the
behaviour of π̂2 to that of π̂1 and draw them both at the start.

Indeed, the generated HyperPCTL formula draws 3 paths at the initial state, ûnds one
π0 with an initial segment π0pre labelled a, and a pair (π1, π2) with initial segments at
least as long as π0pre labelled b, until at some point i < ω, π i

2 models a U c.

In the context of the original HyperCTL* formula φ, selecting π̂0 ↦ π0, π̂1 ↦ π2, and
π̂2 ↦ π i

2 creates a satisfying assignment.
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Conversely, if paths π0, π1, π2 exist that form a satisfying path assignment for φ, with
π0, π1 starting at sι , and π2 starting at π1(i), for some i < ω, then π2 is measured
nonzero by the nested P operator, since a U c is nondivergent (compare Lemma 4.19),
and subsequently, the triple (π0, π1, π1) is measured nonzero by the outer P operator.4

_e procedure we can extrapolate from this example is the following. Let φ be a
[↓∃∗∣LTLs] formula of HyperCTL*, such that each nested [↓∃∗∣LTLs] subformula is
closed, and a supply of state variables Ŝ = {ŝ0, ŝ1, . . . } be given. Assume without loss
of generality that var(φ) = {π̂0, . . . , π̂n}, n < ω, and that variable quantiûcation in φ
follows the order of the subscripts.

(i) Build the syntax tree of φ.

(ii) For each nested [↓∃∗∣LTLs] formula ψ, let π̂ j be the ûrst variable quantiûed in ψ,
j ≥ 1, and do the following.

(a) Iterate over the nodes on the path from the root to the start of ψ, excluding
the root and ψ themselves.

(b) Replace each leaf that descends from these nodes and that is marked with
π̂ j−1 – i.e. marked atomic proposition aπ̂ j−1 , with a ∈ AP – with the syntax
tree of

aπ̂ j−1 ∧ ⋀
π̂∈var(ψ)

aπ̂ ,

_is step implicitly excludes the leaves of ψ itself, since we required it to be
closed, and has the eòect of making all variables in ψ mimic the behaviour
of the path assigned to π̂ j−1 before the context of ψ.

(iii) Replace sequences of quantiûers on the tree with P(⋅) > 0.

(iv) Replace each π̂i with a unique ŝi , i ≤ n.

(v) Collapse the tree into an expression φ′.

(vi) Build

∃ŝ0 ⋯ ∃ŝn . ⋀
i≤n

initŝ i ∧ φ′ ∈ HyperPCTL.

We have already examined universal formulae, and formulae with alternating quanti-
ûers, in Chapter 4 when comparing HyperCTL* with HyperPCTL* and seen that most,
apart from a few special cases, are not embeddable in the latter. SinceHyperPCTLDTMC
is weakly subsumed by HyperPCTL* [Wan+21], we also cannot embed these classes
into HyperPCTLDTMC without considering more complex algorithms than our simple
marking oneAm. _is procedure would, however, escape the purpose of this thesis.

As a closing note on this examination, the aforementioned exceptions for univer-
sal quantiûcation seen in Lemmata 4.9(i) and 4.10(ii) can be transferred over to
HyperPCTLDTMC.
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To execute this, we ûrst declare the following syntactic sugar: If φ is aHyperPCTLDTMC
state formula (possibly not closed), set

P(�φ) ∶= 1 − P(♦¬φ) .i

Lemma 5.6. Let ζ ∈ PL, and let ζŝ , ζπ̂ represent the exact same same formula with its
atomics marked by ŝ and π̂ respectively. _e following equivalences hold.

∀π̂. �ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(�ζŝ) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

(moduloAm)

∀π̂.◯ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(◯ζπ̂) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

(moduloAm)

Proof. Similar to Lemmata 4.9(i) and 4.10(ii).

5.3 Equivalent Fragments

Similarly to Section 4.5, we will now look at what kind of formulae our transformations
generate, in order to identify equivalent fragments between the logics.

_eorem 5.1 generates HyperPCTL formulae with the following constraints.

– _ey begin with the wrapping expression

∃ŝ. initŝ ∧⋯,

– Probabilistic expressions may not be nested, and may only be multiplied with
rational constants.

– _e only usage of the syntactic rule φ U[k1 ,k2] φ that occurs is true U[k,k] φ,
which stems from stacking◯ operators inside shallow LTL expressions in PHL
formulae.

We call probabilistic expressions with only constant multiplication simple. Since we
added stacking◯ operators as syntactic sugar to HyperPCTL, we ignore the rule in
the last item altogether here. We name the part of HyperPCTL induced by these con-
straints its 1-initial-path simple LTL-shallow fragment, and denote it by [init1∣ρs ∣LTLs].
A grammar is given in Figure 15.

_eorem 5.7. [init1∣ρs ∣LTLs]-HyperPCTL ≅A [LTLs]-PHLnoϑDTMC.

i_e “naïve” deûnition P(�φ) = P(¬(true U ¬φ)) is incompatible with HyperPCTL syntax.
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(init1 formulae) φ ∶∶= ∃ŝ. initŝ ∧ ψ

(non-quantiûed formulae) ψ ∶∶= ψ ∧ ψ ∣ ¬ψ ∣ ρ < ρ

(ρs expressions) ρ ∶∶= P(η) ∣ ρ + ρ ∣ c ⋅ ρ ∣ c

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aŝ ∣ true

Figure 15: Grammar of [init1∣ρs ∣LTLs]-HyperPCTL

Proof. _e subsumption “≽A” is the content of _eorem 5.1. _e reverse direction
follows by a similar argument to that of the referenced theorem. A transformation
is given by discarding the wrapper “∃ŝ. initŝ ∧ ⋯”, taking over every other syntactic
element, and ûnally removing the state markings on atomic propositions.

_eorem 5.3 creates existential formulae that

– have the form ∃ŝn−1 ⋯∃ŝ0. ⋀i<n initŝ i ∧ ψ, for a quantiûer-free ψ,

– have no arithmetic between probabilistic expressions,

– can only assert probabilities to be nonzero, and

– can only use shallow LTL expressions.

Let this fragment of HyperPCTL be called initial-path nonzero LTL-shallow fragment,
and be denoted [init∗∣P>0∣LTLs]. A grammar is presented in Figure 16.

(init∗ formulae) φ ∶∶= ∃ŝn−1 ⋯∃ŝ0. ⋀
i<n

initŝ i ∧ P(η) > 0

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aŝ ∣ true

Figure 16: Grammar of [init∗∣P>0∣LTLs]-HyperPCTL

_eorem 5.8. [init∗∣P>0∣LTLs]-HyperPCTL ≅A [∃∗∣LTLs]-HyperCTL*

Proof. _e subsumption “≽A” is the subject of _eorem 5.3. _e reverse direction
follows by inverting the rules of the transformation given in it.
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5.4 Overview of Results

In this chapter, we started by comparing the syntactically compatible fragments of both
logics. We established that we can embed

– the LTL-shallow fragment of PHLnoϑDTMC: [LTL
s] (_eorem 5.1), and

– the pnf-existential LTL-shallow fragment of HyperCTL*: [∃∗∣LTLs] (_eorem 5.3)

into HyperPCTL, where we relied on the marking algorithm Am to give us access
to the initial state in the latter. By identifying the type of HyperPCTL formulae the
transformation in the aforementioned theorems generate, we extrapolated the following
fragments of HyperPCTL that we can embed into PHL:

– _e 1-initial path simple LTL-shallow fragment [init1∣ρs ∣LTLs] (_eorem 5.7)

– _e initial-path nonzero LTL-shallow fragment [init∗∣P>0∣LTLs] (_eorem 5.8)

Furthermore, we found special cases of formulae in PHL that are syntactically incompat-
ible withHyperPCTL at a ûrst glance, but still translatable from the former to the latter.
Speciûcally, we have proven the following 2 equivalences (moduloAm) in Lemma 5.2.

P(�♦ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�P(♦ζŝ) = 1) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

P(♦�ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�ζŝ) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

In Lemma 5.6, we have also proven the following special cases.

∀π̂. �ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(�ζŝ) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

∀π̂.◯ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(◯ζπ̂) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

Lastly, in Conjecture 5.4, we postulated that we can expand the equivalence of _eo-
rem 5.8 to [↓∃∗∣LTLs], which allows arbitrary nesting of [∃∗∣LTLs] formulae, and gave an
example of a scheme to translate certain types of [↓∃∗∣LTLs] formulae toHyperPCTL.

We le� the question of whether there are more formulae of PHL that are syntactically
incompatible with, but still translatable to HyperPCTL, open. Furthermore, we did
not examine whether we can expand the special cases of Lemmata 5.2 and 5.6 with
nesting.
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Future work on this part could include answering these questions, and examining Con-
jecture 5.4, possibly ûnding an algorithm that can translate all [↓∃∗∣LTLs]-HyperCTL*

formulae to HyperPCTL.
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Chapter 6

HyperPCTL vs. HyperPCTL* on DTMCs

While the thesis primarily focuses on the relation of HyperPCTL and HyperPCTL* to
PHL on DTMCs, we will brie�y go over the relations between fragments of the ûrst two
that are either obvious, or ones we can extrapolate from our arguments in Chapters 4
and 5. It is assumed known from [Wan+21] that HyperPCTL ≺A HyperPCTL*.

_e namingHyperPCTL* might create the false impression that it has the same relation
to HyperPCTL that CTL* has to CTL, or the one that PCTL* has to PCTL. _at is, it
might create the impression that it is an expansion ofHyperPCTL, with the requirement
for alternation between state and path formulae li�ed.

Expanding on_eorem 3.5, here, it will be made plausible that the fragment of Hyper-
PCTL* with this very restriction artiûcially introduced to it can be weakly mapped to a
strict subset of HyperPCTL.

First, consider the restricted fragment of HyperPCTL* that has the strict PCTL-style
alternation between path formulae and path expressions, can only draw paths from
the initial state, and has no functions. Let [Pε↑↓π] denote the draw-ε state-path alter-
nating fragment of HyperPCTL*, where ↑↓ stands for alternation. A grammar is given
in Figure 17.

(path formulae) φ ∶∶= φ ∧ φ ∣ ¬φ ∣ ρ < ρ ∣ aπ̂ ∣ true

(Pε expressions) ρ ∶∶= ρ + ρ ∣ ρ ⋅ ρ ∣ c ∣ Pπ̃←ε(η)

(path expressions) η ∶∶= φ U φ ∣ ◯φ ∣ φ U[k1 ,k2] φ

Figure 17: Grammar of [Pε↑↓π]-HyperPCTL*

_e operator U[k1 ,k2] can be constructed recursively in HyperPCTL* as follows.

φ U[k1 ,k2] φ′ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

false, if k1 > k2
φ′, if k1 = k2 = 0

φ′ ∨ (φ ∧◯(φ U[0,k2−1] φ′)), if k1 = 0 ∧ k2 > 0

φ ∧◯(φ U[k1−1,k2−1] φ′), if k1 > 0 ∧ k2 > 0
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Let [init∗]-HyperPCTL be the fragment of HyperPCTL that is comprised of formulae
of the form

∃ŝn−1 ⋯ ∃ŝ0. ⋀
i<n

initŝ i ∧ ψ,

for n < ω, and a quantiûer-free ψ. We call this fragment simply the initial-paths fragment
of HyperPCTL.

_eorem 6.1. [Pε↑↓π]-HyperPCTL* ≅A [init∗]-HyperPCTL

Proof (Sketch). A transformation from the former to the latter is given by assigning
a unique ŝi to each variable π̂i of a given [Pε↑↓π]-HyperPCTL* formula φ, replac-
ing all occurences of π̂i with ŝi , for all i, to get an expression ψ, and building the
[init∗]-HyperPCTL formula

φ′ ∶= ∃ŝn−1 ⋯ ∃ŝ0. ⋀
i<n

initŝ i ∧ ψ,

with φ ≡ φ′. For the reverse direction, revert the steps of this transformation.

Li�ing the requirement to only draw paths starting at the initial state in the [Pε↑↓π]
fragment of HyperPCTL* while preserving its embeddability in HyperPCTL seems
to also be possible via a procedure similar to the one given for Conjecture 5.4. Let
[P↑↓π]-HyperPCTL* denote the fragment generated by the grammar of Figure 17, with
the amended rule

(probabilistic expressions) ρ ∶∶= ρ + ρ ∣ ρ ⋅ ρ ∣ c ∣ Pκ(η) ,

where κ is an arbitrary ruleset. In conclusion of this short excursus, we surmise

Conjecture 6.2. [P↑↓π]-HyperPCTL* ≅A [init∗]-HyperPCTL. 4

We note that the procedure given for Conjecture 5.4 is likely to change the value
of the probability measures, and hence, the algorithmic relation for Conjecture 6.2
would likely need a more complex algorithm thanAm that also takes the DTMC into
consideration while transforming a formula.

_is consideration was not needed in Section 5.2, since we only asserted measures to
be nonzero, and the procedure preserves this behaviour.

If Conjecture 6.2 holds, it would mean that HyperPCTL* with strict alternation intro-
duced to it, is in weak bijection to HyperPCTL restricted to reachable states.
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Chapter 7

HyperPCTL vs. PHL on MDPs

In this ûnal chapter before the thesis reaches its conclusion, we shall revisit the results
of Chapter 5, and look at whether they scale up forMDPs. As it was the case for DTMCs,
one of the logics requires and uses an initial state while the other does not. As such,
we ûrst expand our marking algorithmAm to MDPs. IfM = (S , sι ,Act, p,AP, l) is an
MDP with initial state sι , letAm(M) be the MDP (S ,Act, p,APm, lm) with

– APm ∶= AP ∪ {init}, where we assume that init ∉ AP, and

– lm(s) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

l(s), if s ≠ sι ,
l(s) ∪ {init}, if s = sι .

_us, we give HyperPCTLMDP a way to select the initial state ofM inAm(M). In the
following, we will useAm in conjunction with transformations of formulae to embed
fragments of one logic into the other. In any case, the transformation of formulae will
happen independently of the usage ofAm.

We will explicitly only use this new construct to identify the initial state, and assume
that it does not expand the expressivity of HyperPCTLMDP beyond letting it select that
state.

As usual, we start with the comparison to the probabilistic part of PHLMDP in isolation
in the following section.

7.1 HyperCTL*-less PHL to HyperPCTL

Let PHLnoϑMDP denote the probabilistic part of PHLMDP, that results by striking out all ϑ-
rules inDeûnition 2.22. Aswe have notedwhile introducing our downscaling toDTMCs
in Section 2.3.3, the MDP version can express a restricted version of probabilistic
hyperproperties by quantifying over schedulers.

We start by looking at the fragment of PHLnoϑMDP that is syntactically compatible with
HyperPCTLMDP. To achieve this, we restrict PHL

noϑ
MDP to use only shallow LTL formulae

inside its probabilistic expressions, which drop to a PL expression directly a�erU or◯k,
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for k ≥ 1. Let this fragment be denoted [LTLs]-PHLnoϑMDP, and called the LTL-shallow frag-
ment of PHLnoϑMDP. As we did for HyperPCTLDTMC, we allow◯kφ in HyperPCTLMDP
as syntactic sugar for true U[k,k] φ, k ≥ 2.

_eorem 7.1. [LTLs]-PHLnoϑMDP ≼A HyperPCTLMDP.

Proof (Sketch). Since scheduler quantiûcation can not be nested in probabilistic expres-
sions in PHL and HyperPCTL, we can assume that all formulae in either logic can be
written in a scheduler-pnf form, in which all scheduler quantiûcations are on the very
front of the formula.

A transformation from the former to the latter is given by mapping sequences of
scheduler quantiûers, and quantiûer-free ψ

Qn−1σ̂n−1 ⋯Q0σ̂0. ψ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[LTLs]-PHLnoϑMDP

to

Qn−1σ̂n−1 ⋯Q0σ̂0. ∃ŝn−1(σ̂n−1) ⋯ ∃ŝ0(σ̂0). ⋀
i<n

initŝ i ∧T(ψ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperPCTLMDP

,

where, (Qi)i<n ⊂ {∀, ∃} is a sequence of quantiûers, and T(ψ) represents the formula
that results by replacing the markings σ̂i in ψ with ŝi , for all i < n. Since, a�er the
scheduler-quantiûcation step, we only use the DTMC induced by the drawn schedulers
in the semantics of both logics, the equivalence can be proven similarly to_eorem 5.1.

By the same reasoning, the equivalences of Lemma 5.2 should also scale upwards with
scheduler quantiûcation, and a similar mapping to the one presented in the preceding
theorem. However, since the lemma relies on ûniteness for DTMCs, this is only the
case if the DTMC induced by the MDP with the drawn schedulers is ûnite. _is would
require an artiûcial restriction of the scheduler space to e.g. ûnite-memory schedulers
that can reference a restricted amount of past choices. _is investigation exceeds the
frame of this thesis, and hence we chose to omit an explicit proof here.

We now move on to the non-probabilistic part of PHLMDP.

7.2 HyperCTL* Sentences in PHL

In this section, we will expand _eorem 5.3 to MDPs. We start by deûning the pnf-
existential LTL-shallow fragment of HyperCTL* for MDPs as the set of formulae gener-
ated by the grammar of Figure 18.
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(sched.-quantiûed formulae) φσ ∶∶= ∃σ̂ .φσ ∣ ∀σ̂ .φσ ∣ φs

(∃∗π formulae) φs ∶∶= ∃π̂(σ̂).φs ∣ η

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aπ̂ ∣ true

Figure 18: Grammar of [∃∗∣LTLs]-HyperCTL* for MDPs

_eorem 7.2. [∃∗∣LTLs]-HyperCTL* ≼A HyperPCTLMDP.

Proof (Sketch). A transformation from the former to the latter is given by mapping
formulae of the form

Qn−1σ̂n−1 ⋯Q0σ̂0. ∃π̂m−1(σ̂im−1) ⋯ ∃π̂0(σ̂i0). η
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[∃∗∣LTLs]-HyperCTL*

,

for a quantiûer-free η, to

Qn−1σ̂n−1 ⋯Q0σ̂0. ∃ŝm−1(σ̂im−1) ⋯ ∃ŝ0(σ̂i0). ⋀
i<m

initŝ i ∧ P(T(η)) > 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperPCTL

,

where n,m < ω, (i j) j<m ⊂ [0, n−1] a sequence of indices in [0, n−1], (Q j) j<n ⊂ {∀, ∃}
a sequence of quantiûers, andT(η) represents the formula η with all of its π̂i j markings
replaced by the corresponding ŝi j markings, for j < m.

_e equivalence can be proven similarly to the case for DTMCs in_eorem 5.3, a�er
resolving the schedulers, and using the DTMC induced by them.

7.3 Equivalent Fragments

_eorem 7.1 generates HyperPCTL formulae of the following form.

– _ey have the formQn−1σ̂n−1 ⋯Q0σ̂0.∃ŝn−1(σ̂n−1) ⋯ ∃ŝ0(σ̂0).⋀i<n initŝ i ∧ψ, for
a quantiûer-free ψ.

– Inside the probabilistic expressions of ψ, only shallow LTL is used.

– Probabilistic expressions may be added to one another, but only multiplied by
rational constants.i

Let this fragment be called the initial-path simple LTL-shallow fragment ofHyperPCTLMDP,
and be denoted by [init∗∣ρs ∣LTLs]. A grammar is given in Figure 19.

iRecall that these probabilistic expressions of this form are named simple.
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(init∗ formulae) φ ∶∶=Qn−1σ̂n−1 ⋯Q0σ̂0. ∃ŝn−1(σ̂n−1) ⋯ ∃ŝ0(σ̂0).⋀
i<n

initŝ i ∧ ψ

(non-quant. formulae) ψ ∶∶= φ ∧ φ ∣ ¬φ ∣ ρ < ρ

(ρs expressions) ρ ∶∶= P(η) ∣ ρ + ρ ∣ c ⋅ ρ ∣ c

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aŝ ∣ true

Figure 19: Grammar of [init∗∣ρs ∣LTLs]-HyperPCTLMDP

_eorem 7.3. [init∗∣ρs ∣LTLs]-HyperPCTLMDP ≅A [LTL
s]-PHLnoϑMDP.

Proof. _e subsumption “≽A” is the subject of_eorem 7.1. A reverse transformation is
given by removing all state quantiûcations and ⋀i<n initŝ i from a given [init∗∣ρs ∣LTLs]
formula, and replacing all of its ŝi markings with σ̂i markings.

_e transformation of _eorem 7.2 creates formulae that

– start with arbitrary scheduler quantiûcations, followed by an arbitrary number
of existential state quantiûcations,

– can only assert onemeasure to be nonzero,

– have no arithmetic between probabilistic expressions, and

– are limited to shallow LTL.

Let this the fragment of HyperPCTL deûned by these constraints be called quantiûed
initial-path nonzero shallow and be denoted by [Q∗

σ ∣init
∗∣P>0∣LTLs]. A grammar is

given in Figure 20.

(sched.-quant. formulae) φσ ∶∶= ∃σ̂ . φσ ∣ ∀σ̂ . φσ ∣ φs

(∃∗s formulae) φs ∶∶= ∃ŝ(σ̂). φs ∣ ψ

(init∗ expressions) ψ ∶∶= initŝ ∧ ψ ∣ initŝ ∧ P(η) > 0

(LTLs formulae) η ∶∶= ◯kζ ∣ ζ U ζ

(PL formulae) ζ ∶∶= ζ ∧ ζ ∣ ¬ζ ∣ aŝ ∣ true

Figure 20: Grammar of [Q∗
σ ∣init

∗∣P>0∣LTLs]-HyperPCTLMDP

_eorem 7.4. [Q∗
σ ∣init

∗∣P>0∣LTLs]-HyperPCTLMDP ≅A [∃
∗∣LTLs]-HyperCTL*

Proof. _e subsumption “≽A” is shown in_eorem 7.2. A reverse transformation is
given by inverting the steps of the one given in the referenced theorem.

_is chapter is now brought to a conclusion in
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7.4 Overview of Results

Upscaling the results of Chapter 5, in this segment, we embedded the following frag-
ments of PHLMDP into HyperPCTLMDP.

– _e LTL-shallow fragment of PHLnoϑMDP: [LTL
s] (_eorem 7.1)

– _e pnf-existential LTL-shallow fragment of HyperCTL*: [∃∗∣LTLs] (_eorem7.2)

By identifying the types of the transformed formulae, we inferred that the following
fragments of HyperPCTLMDP can be embedded back into PHLMDP.

– _e initial-path simple LTL-shallow fragment [init∗∣ρs ∣LTLs] (_eorem 7.3)

– _e initial-path nonzero LTL-shallow fragment [Q∗
σ ∣init

∗∣P>0∣LTLs] (_eorem7.4)

_e questions for this part are mostly the ones for DTMC case that were enumerated
in Section 5.4. In addition to those, it is unclear how much expressive power PHLnoϑMDP
has — as we noted in Section 2.3.3 when we proposed our downscaling of PHL for
DTMCs, the original formulation forMDPs includes a restricted version of probabilistic
hyperproperties, which we lost in the process of downscaling, as we saw in more detail
in Section 4.1.
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Chapter 8

Conclusion

In conclusion of the thesis, we shall revisit and summarise the results and open questions
of Chapters 4 to 7.

8.1 Summary

Markov Chains

In Chapter 4, we ûrst showed that PHLDTMC cannot express multivariate HyperPCTL*

formulae in Section 4.1. _en, we embedded the probabilistic part of PHLDTMC in
HyperPCTL* in Section 4.2, and subsequently focussed on HyperCTL*, starting with
formulae with one quantiûer in Section 4.3, and building up to multiple quantiûers,
and quantiûer nesting in Section 4.4. Finally, in Section 4.5, we identiûed equiva-
lent fragments between the two logics by looking at the types of formulae that our
transformations generate, and inverting them on these formulae.

In total, we saw that we can embed into HyperPCTL*

– the entire probabilistic part of PHLDTMC: PHL
noϑ
DTMC (_eorem 4.7), and

– the recursively existential path-positive fragment of HyperCTL* [↓∃∗∣π+] (_eo-
rem 4.24).

By looking at the forms of the formulae the given transformations generate, we found
fragments of HyperPCTL* that we can embed in PHL:

– _e draw-1 simple shallow fragment [P1∣ρs ∣LTLs] (_eorem 4.25)

– _e recursively nonzero path-positive fragment [↓P>0last∣π
+] (_eorem 4.26)

Moreover, in the process of examiningHyperCTL*, we made it plausible in Section 4.3.2
that we cannot li� the path-positivemodiûer. _at is, we cannot allow nested LTL, and
subsequently nested path expressions, to be negated.
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Conclusion

In Chapter 5, we relied on our marking algorithmAm to give us access to the initial
state in HyperPCTL, and started by comparing the syntactically compatible fragments
of both HyperPCTLDTMC and PHLDTMC. We established that we can embed

– the LTL-shallow fragment of PHLnoϑDTMC: [LTL
s] (_eorem 5.1), and

– the pnf-existential LTL-shallow fragment of HyperCTL*: [∃∗∣LTLs] (_eorem 5.3)

into HyperPCTL. By identifying the type of HyperPCTL formulae the transformation
in the aforementioned theorems generate, we extrapolated the following fragments of
HyperPCTL that we can embed into PHL:

– _e 1-initial path simple LTL-shallow fragment [init1∣ρs ∣LTLs] (_eorem 5.7)

– _e initial-path nonzero LTL-shallow fragment [init∗∣P>0∣LTLs] (_eorem 5.8)

Furthermore, we found special cases of formulae in PHL that are syntactically incompat-
ible withHyperPCTL at a ûrst glance, but still translatable from the former to the latter.
Speciûcally, we have proven the following 2 equivalences (moduloAm) in Lemma 5.2.

P(�♦ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�P(♦ζŝ) = 1) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

P(♦�ζ) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

PHL

≡f ∃ŝ. initŝ ∧ P(♦P(�ζŝ) = 1) ∼ c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTL

In Lemma 5.6, we have also proven the following special cases.

∀π̂. �ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(�ζŝ) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

∀π̂.◯ζπ̂
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
HyperCTL*

≡f ∃ŝ. initŝ ∧ P(◯ζπ̂) = 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HyperPCTLDTMC

In Conjecture 5.4, we postulated that we can expand the equivalence of _eorem 5.8
to [↓∃∗∣LTLs]-HyperPCTL*, which allows arbitrary nesting of [∃∗∣LTLs] formulae, and
gave an example of a scheme to translate certain types of [↓∃∗∣LTLs] formulae to Hy-
perPCTL.

In the short excursus of Chapter 6, we gave a scheme to embed the fragment of Hy-
perPCTL* with all paths drawn from an intial state and strict alternation between path
formulae and path expressions into HyperPCTL (_eorem 6.1). Moreover, we hypoth-
esised that this can be expanded to nested path quantiûcation via a more complex
algorithm in Conjecture 6.2.
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Future work

Markov Decision Processes

Upscaling the results of Chapter 5, in Chapter 7, we embedded the following fragments
of PHLMDP into HyperPCTLMDP.

– _e LTL-shallow fragment of PHLnoϑMDP: [LTL
s] (_eorem 7.1)

– _e pnf-existential LTL-shallow fragment of HyperCTL*: [∃∗∣LTLs] (_eorem7.2)

By identifying the types of the transformed formulae, we inferred that the following
fragments of HyperPCTLMDP can be embedded back into PHLMDP.

– _e initial-path simple LTL-shallow fragment [init∗∣ρs ∣LTLs] (_eorem 7.3)

– _e initial-path nonzero LTL-shallow fragment [Q∗
σ ∣init

∗∣P>0∣LTLs] (_eorem7.4)

8.2 Future work

It still remains open, whether special cases of multivariate HyperPCTL* formulae are
expressible in PHLnoϑDTMC, and whether the equivalence

[↓P>0last∣π
+]-HyperPCTL* ≅ [↓∃∗∣π+]-HyperCTL*

of _eorem 4.26 represents the largest fragment equivalence between HyperPCTL*

and HyperCTL* (excluding special cases). Speciûcally, we only saw that the most
generic case of formulae with alternating quantiûers of HyperCTL* is not embeddable
in HyperPCTL* in Section 4.4, basing this on Conjecture 4.13. Furthermore, we only
examined the probabilistic and non-probabilistic parts of PHLDTMC in isolation from
one another. It may be the case, that, when combined, they can express more parts of
HyperPCTL* than just the fragments mentioned above.

Future work on examining the relation between HyperPCTL* and PHLDTMC could
further include proving (or disproving) Conjecture 4.13, and ûnding special cases of
formulae with alternating quantiûers in HyperCTL* that have equivalents in Hyper-
PCTL*.

In Chapter 5, we le� the question of whether there are more formulae of PHLDTMC that
are syntactically incompatible with, but still translatable toHyperPCTLDTMC, open. Fur-
thermore, we did not examine whether we can expand the special cases of Lemmata 5.2
and 5.6 with nesting. Further research on this part may further encompass examining
Conjecture 5.4, possibly ûnding a scheme that can translate all [↓∃∗∣LTLs]-HyperCTL*

formulae to HyperPCTLDTMC.

_e questions that were raised through the comparison ofHyperPCTLMDP to PHLMDP
in Chapter 7 are mostly the ones for DTMC case that were enumerated in Section 5.4. In
addition to those, it is unclear how much expressive power PHLnoϑMDP has — as we noted
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Conclusion

in Section 2.3.3 when we proposed our downscaling of PHL for DTMCs, the original
formulation for MDPs includes a restricted version of probabilistic hyperproperties,
which we lost in the process of downscaling, as we saw inmore detail in Section 4.1. One
potential direction for future exploration is to ûnd an alternative way of downscaling
PHL, in which this expressiveness is preserved, and revisiting the comparisons to
HyperPCTLDTMC and HyperPCTL* with it.
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Das Ende der Melodie ist nicht deren Ziel; aber trotzdem: Hat
die Melodie ihr Ende nicht erreicht, so hat sie auch ihr Ziel
nicht erreicht.

— Friedrich Wilhelm Nietzsche
Der Wanderer und sein Schatten





Appendix A

On the Topic of HyperPCTL*

As we noted before, the version of HyperPCTL* that was presented in Section 2.3.2 was
changed drastically compared to the original of [Wan+21]. In this part, we will go over
the changes and justify them. First, a verbatim copy of the original HyperPCTL* will
be given – with minimal changes to its notation to conform to the notational scheme
of the thesis.

Deûnition A.1 (Original HyperPCTL* Syntax). HyperPCTL* formulae are deûned by
the following grammar.

– φ ∶∶= aπ̂ ∣ φπ̂ ∣ ¬φ ∣ φ ∧ φ ∣ ◯φ ∣ φ U≤k φ ∣ φ U φ ∣ ρ ∼ ρ

– ρ ∶∶= f ρ ∣ Pπ̃(φ) ∣ Pπ̃(ρ)

where

– a ∈ AP is an atomic proposition,

– π̂ ∈ Π̂ is a path variable from a countably inûnite set of variables Π̂,

– π̃ ∈ Π̂m a sequence of path variables from Π̂, for m < ω,

– k < ω a natural number,

– ∼ ∈ {<, ≤, =, ≥, >} a comparison,

– ρ a sequence of ρ-formulae, of length ∣ρ∣ < ω, and

– f ∶ Rn → R is an n-ary function, for n ∶= ∣ρ∣, that is either polynomial, expo-
nential, rational, or trigonometric, or any ûnite sum, product, or composition
thereof, or the inverse of any of these. 4

Given a DTMC D, the original formulation uses path assignments in the form of
functions p ∶ Π̂ → PathsD. By default, (unset) path variables start at sι . In our notation,
that is p(π̂)(0) = sι , if p(π̂) = �. _e semantics are deûned as follows.

Deûnition A.2 (Original HyperPCTL* Semantics). LetD = (S , sι , p,AP, l) be aDTMC,
π̂, π̂1, . . . , π̂n ∈ Π̂, a ∈ AP, φ, φ′ φ-formulae, ρ, ρ′ ρ-formulae, p a path assignment,
k < ω, and ∼ ∈ {<, ≤, =, ≥, >}.
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On the Topic of HyperPCTL*

– D, p ⊧ aπ̂ iò a ∈ l(p(π̂)(0))

– D, p ⊧ φπ̂ iò D, p′ ⊧ φ where p′ is the assignment

p′(π̂′) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

p(π̂), if π̂′ ∈ free(φ)
p(π̂′), otherwise

– D, p ⊧ ¬φ iò D, p ⊭ φ

– D, p ⊧ φ ∧ φ′ iò D, p ⊧ φ ∧ D, p ⊧ φ′,

– D, p ⊧ ◯φ iò D, p1 ⊧ φ

– D, p ⊧ φ U≤k φ′ iò ∃ j ≤ k (D, p j ⊧ φ′ ∧ ∀i < j ∶D, pi ⊧ φ)

– D, p ⊧ φ U φ′ iò ∃ j < ω (D, p j ⊧ φ′ ∧ ∀i < j ∶D, pi ⊧ φ)

– D, p ⊧ ρ ∼ ρ′ iò JρKD,p ∼ Jρ′KD,p,

–
r
P(π̂1 ,...,π̂n)(φ)

z

D,p
= Pr{(πi)i<n ∣ ∀i < n ∶πi ∈ PathsD(p(π̂i))

∧ p ○ {π̂i ↦ πi ∣ i < n} ⊧ φ}

–
r
P(π̂1 ,...,π̂n)(ρ)

z

D,p
= Pr{(πi)i<n ∣ ∀i < n ∶ πi ∈ PathsD(p(π̂i))

∧ p ○ {π̂i ↦ πi ∣ i < n} ⊧ ρ}

4

_is original formulation has the following incompatibilities to our version.

– It includes the Pπ̃(ρ) rule in syntax and semantics, which allows nesting of
probabilistic expressions without comparisons.

– Instead of drawing nested paths at P operators (via rulesets), variables are over-
written later on via the φπ̂ syntax, that is, this overwrites all free variables in φ
with the assignment of the superscripted variable.

Hence, the ûrst signiûcant change is the removal of the rule Pπ̃(ρ). _e reasoning
behind this is that it was unclear how nested formulae generated by it are to be evaluated.
Consider, for example, the formula

φ ∶= Pπ̂1(Pπ̂2(aπ̂2)) > 0.
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By applying the semantics starting with the empty assignment p = ε, we immediately
get

JφKD,p = Pr{π1 ∈ PathsD(sι) ∣ D, (π̂1 ↦ π1) ⊧ Pπ̂2(aπ̂2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

not well-deûned

} > 0.

_at is, we arrive at an expression of the formD, p ⊧ Pπ̂(φ′), for which none of the
rules of the semantics are applicable.

_e second change was the replacement of variable overwriting with rulesets. _is
was done to align the formal semantics of the logic with the textual descriptions and
pictures given in [Wan+21].

Consider as an example the formula marked (7) in [Wan+21].

ψ ∶= Pπ̂1⎛

⎝
♦(P(π̂2 ,π̂3)(aπ̂2 U (aπ̂3)π̂1) > c2)

⎞

⎠
> c1

_e semantics of ψ are textually described as follows.

_e formula (7) states that with probability greater than c1, we can ûnd a
path π1, such that ûnally from some state s on π1, with probability greater
than c2, we can ûnd a pair of paths (π2, π3) from the pair of states (sinit, s)
to satisfy “[aπ̂2 ] until [aπ̂3 ]”. _at is, the computation tree of π3 is a subtree
of the computation tree of π1 (rooted at sinit), since [π̂3] in [(aπ̂3)π̂1] is in
the scope of [π̂1]. [...]
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On the Topic of HyperPCTL*

However, by applying the semantics, we arrive at an inherently diòerent result:

D, p ⊧ Pπ̂1⎛

⎝
♦(Pπ̂2 ,π̂3(aπ̂2 U (aπ̂3)π̂1) > c2)

⎞

⎠
> c1

⇐⇒

t

Pπ̂1⎛

⎝
♦(Pπ̂2 ,π̂3(aπ̂2 U (aπ̂3)π̂1) > c2)

⎞

⎠

|

D,p

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(p(π̂1)(0)) ∶

D, p[π̂1 ↦ π1] ⊧ ♦(Pπ̂2 ,π̂3(aπ̂2 U (aπ̂3)π̂1) > c2)
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶

D, p[π̂1 ↦ π1] ⊧ ♦(Pπ̂2 ,π̂3(aπ̂2 U (aπ̂3)π̂1) > c2)
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

D, p[π̂1 ↦ π i
1]

⊧ Pπ̂2 ,π̂3(aπ̂2 U (aπ̂3)π̂1) > c2
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

D, p[π̂1 ↦ π i
1]

⊧ Pr{(π2, π3) ∈ Paths2(sι) ∶ aπ̂2 U (aπ̂3)π̂1} > c2
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

D, p[π̂1 ↦ π i
1]

⊧ Pr{(π2, π3) ∈ Paths2(sι) ∶ (∃ j < ω ∀k < j)

D, p j[π̂1 ↦ π i
1 , π̂3 ↦ π3] ⊧ (aπ̂3)π̂1

∧D, pk[π̂1 ↦ π i
1 , π̂2 ↦ π2] ⊧ aπ̂2} > c2

⎫⎪⎪
⎬
⎪⎪⎭

> c1
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⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

D, p[π̂1 ↦ π i
1]

⊧ Pr{(π2, π3) ∈ Paths2(sι) ∶ (∃ j < ω ∀k < j)

D, p[π̂1 ↦ π i+ j
1 , π̂3 ↦ π j

3] ⊧ (a
π̂3)π̂1

∧D, p[π̂1 ↦ π i+k
1 , π̂2 ↦ πk

2] ⊧ aπ̂2} > c2
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

D, p[π̂1 ↦ π i
1]

⊧ Pr{(π2, π3) ∈ Paths2(sι) ∶ (∃ j < ω ∀k < j)

D, p[π̂1 ↦ π i+ j
1 , π̂3 ↦ π i+ j

1 ] ⊧ aπ̂3

∧D, p[π̂1 ↦ π i+k
1 , π̂2 ↦ πk

2] ⊧ aπ̂2} > c2
⎫⎪⎪
⎬
⎪⎪⎭

> c1

⇐⇒ Pr
⎧⎪⎪
⎨
⎪⎪⎩

π1 ∈ Paths(sι) ∶ (∃i < ω)

Pr{π2 ∈ Paths(sι) ∶ (∃ j < ω ∀k < j)

a ∈ l(π1(i + j)) ∧ a ∈ l(π2(k))} > c2
⎫⎪⎪
⎬
⎪⎪⎭

> c1

Speciûcally, from the context of the inner P operator, the assignment of π̂1 is “set in
stone”, as it was drawn by the outer P operator. A�er that, it is only shi�ed around by
the superscripts. With this π̂3 gets ultimately assigned to a shi� π i+ j

1 of the original
path π1, and cannot branch away from it, as it is not redrawn from it, but rather only
reuses the existing assignment.

As such, π̂3 is not ranging over subtrees of π̂1, but rather, each time only over suõxes
of a ûxed π1. In the meanwhile π3 is completely ignored by the measure, hence the
original formula is equivalent to the following:

Pπ̂1⎛

⎝
♦(Pπ̂2(aπ̂2 U aπ̂1) > c2)

⎞

⎠
> c1,
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On the Topic of HyperPCTL*

which asserts we can ûnd a π1 with probability at least c1, such that, there exists a shi�
π i
1 , from the starting point of which we can ûnd a single π2 with probability at least c2,

where π2 has an a-labelled initial segment/preûx that is at least as long as the longest
(¬a)-labelled initial segment of π i

1 .

Our proposed change from the above to rulesets that cause paths to be redrawn at the
level of P operators is meant to make the textual description given on p. 91 expressible
in the logic. As an example, the formula ψ with the intended semantics according to
the description given above is now expressible as

ψ′ ∶= Pπ̂1
⎛

⎝
♦(Pπ̂2 ,π̂3←π̂1(aπ̂2 U aπ̂3) > c2)

⎞

⎠
> c1

in our version.
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Symbol Index

℘(⋅) powerset operator. 9
ω ûrst limit ordinal, set of natural

numbers incl. 0 (von-Neumann-
Ordinal). 9

[a, b]A the closed interval [a, b] in A.
9

(a, b)A the open interval (a, b) in A. 9
u[v] for u a sequence of tuples, the se-

quence that results by replacing
the second element of each tuple
with the corresponding element of
v. 9

A(E) the σ-algebra generated by the set
E. 10

Dn n-ary self-composition of a DTMC.
12

Act(s) set of actions enabled at s. 13
M σ DTMC induced by theMDPM with

scheduler σ . 14
Mn n-ary self-composition of an MDP.

14
M σ parallel composition of the DTMCs

induced by the MDP M with
schedulers σi . 14

PathsD paths onD. 15
⊑ ûnite preûx. 15
Paths<ωD ûnite path preûxes onD. 15
PathsD(s) paths onD that start at s. 15
Paths<ωD (s) ûnite path preûxes onD that

start at s. 15
Post(s) the set of all direct successors of

the state s. 15
Post∗(s) the set of all states reachable

from the state s. 15
π(i) the i-th element of the path π (start-

ing at 0). 15
π i the i-shi� path π. 15
var(⋅) set of all variables that appear in

argument. 16
free(⋅) set of all free variables that appear

in argument. 16
U until. 17
◯ next. 17
♦ eventually. 17
� globally. 17
→ implies. 17
Ŝ (countably inûnite) supply of state vari-

ables. 18, 20
s sequence of state assignments. 18, 20
dom(⋅) ordered domain of argument.

19
im(⋅) ordered image of argument. 19
Σ̂ (countably inûnite) supply of scheduler

variables. 20
r sequence of scheduler assignments.

20
M s parallel composition of the DTMCs

induced byM with im(s). 20
KΠ̂ set of all path draw substitution rules

over Π̂. 21
⊧ semantic implication of formulae. 29
⊧f semantic implication of formulae on

ûnite DTMCs. 29
≡ semantic equivalence of formulae. 29
≡f semantic equivalence of formulae on

ûnite DTMCs. 29
≼ subsumption relation between frag-

ments of logics. 29
≅ bidirectional subsumption of frag-

ments of logics, equivalence of
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Symbol Index

fragments of logics. 29
≼A weak algorithmic subsumption rela-

tion between fragments of logics.
30

≅A bidirectional algorithmic subsump-
tion of fragments of logics, algo-
rithmic equivalence of fragments
of logics. 30

≼f weak subsumption only on ûnite
DTMCs. 30

≅f bidirectional subsumption of frag-
ments of logics, equivalence of
fragments of logics, on ûnite
DTMCs. 30

trace(π) trace of the path π, sequence of
all labels that appear in π. 35

∼tr trace-equivalence relation for paths.
35

taD(π̃) space of total assignments for π̃
onD. 51

PD(π̃, u) the set of total assignments
for π̃ on D to paths of the cylin-
der sets of the path fragment in u.
51

Am algorithm that marks the initial state
of a DTMC/MDP with a unique
label init. 61
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Logics and Fragments Index

HyperPCTLDTMC formulation of Hyper-
PCTL for DTMCs. 18, 19

HyperPCTLMDP formulation of Hyper-
PCTL for MDPs. 20

HyperPCTL* formulation HyperPCTL*

for DTMCs (none available for
MDPs). 21, 22

PHLMDP formulation of PHL for MDPs.
24, 25

HyperCTL* the non-probabilistic part of
PHLMDP. 24

PHLDTMC (proposed) downscaling of
PHL for DTMCs. 26, 27

HyperCTL* the non-probabilistic part of
PHLDTMC. 26

PHLnoϑDTMC the probabilistic part of
PHLDTMC, that results by striking
out all ϑ-rules in Deûnition 2.24.
38

LTL+ positive LTL formulae, LTL formu-
lae where no negation is allowed
outside of strictly propositional
subexpressions. 45

[Σ1|LTL+]-HyperCTL* 1-existential LTL-
positive fragment of HyperCTL*.
45

[Π1|¬LTL+]-HyperCTL* 1-universal
negated LTL-positive fragment of
HyperCTL*. 46

[Σn∣LTL+] the fragment of HyperCTL*

comprised of formulae in pnf,
with n alternating quantiûers,
with the outermost being ∃. 50

[Πn∣LTL+] the fragment of HyperCTL*

comprised of formulae in pnf,

with n alternating quantiûers,
with the outermost being ∀. 50

[∃n∣LTL+]-HyperCTL* n-existential pnf
LTL-positive fragment of Hyper-
CTL*. 55

[∃∗∣LTL+]-HyperCTL* pnf-existential
LTL-positive fragment of Hyper-
CTL*. 55

[↓∃∗∣π+]-HyperCTL* recursively existen-
tial path-positive fragment of Hy-
perPCTL*. 56

[P1∣ρs ∣LTLs]-HyperPCTL* draw-1 simple
shallow fragment of HyperPCTL*.
59

[↓P>0last∣π
+]-HyperPCTL* recursively

nonzero path-positive fragment
of HyperPCTL*. 59

LTLs shallow LTL formulae, LTL formu-
lae that can either use exactly one
U, or◯k, and drop to a PL expres-
sion directly a�erwards. 62

[LTLs]-PHLnoϑDTMC the probabilistic part
of PHLDTMC restricted to shallow
LTL formulae. 62

[∃∗∣LTLs]-HyperCTL* pnf-existential
LTL-shallow fragment of Hyper-
CTL*. 65, 79

[↓∃∗∣LTLs]-HyperCTL* recursively pnf-
existential LTL-shallow fragment
of HyperCTL*. 66

[init1∣ρs ∣LTLs]-HyperPCTL 1-initial-path
simple LTL-shallow fragment of
HyperPCTL. 71

[init∗∣P>0∣LTLs]-HyperPCTL initial-
path nonzero LTL-shallow frag-

99



Logics and Fragments Index

ment of HyperPCTL. 71
[Pε↑↓π]-HyperPCTL* draw-ε state-path

alternating fragment of Hyper-
PCTL*. 75

[init∗]-HyperPCTL initial-paths frag-
ment of HyperPCTL. 76

[P↑↓π]-HyperPCTL* state-path alternat-
ing fragment of HyperPCTL*.
76

PHLnoϑMDP the probabilistic part of
PHLMDP, that results by striking
out all ϑ-rules in Deûnition 2.22.

77
[LTLs]-PHLnoϑMDP the probabilistic part of

PHLnoϑMDP restricted to shallow LTL
formulae. 78

[init∗∣ρs ∣LTLs]-HyperPCTLMDP initial-
path simple LTL-shallow fragment
of HyperPCTLMDP. 80

[Q∗
σ ∣init

∗∣P>0∣LTLs]-HyperPCTLMDP
quantiûed initial-path nonzero
shallow fragment ofHyperPCTLMDP.
80

100


	Introduction
	Preliminaries
	Probability Spaces
	Models
	Logics

	Big Picture
	Bridging Semantics
	Overview on DTMCs

	HyperPCTL* vs. PHL on DTMCs
	Probabilistic Hyperproperties
	On HyperCTL*-less PHL
	Σ1 and Π1 HyperCTL* Sentences in PHL
	HyperCTL* Sentences in PHL with Multiple Quantifiers
	Equivalent Fragments
	Overview of Results

	HyperPCTL vs. PHL on DTMCs
	HyperCTL*-less PHL to HyperPCTL
	HyperCTL* Sentences in PHL
	Equivalent Fragments
	Overview of Results

	HyperPCTL vs. HyperPCTL* on DTMCs
	HyperPCTL vs. PHL on MDPs
	HyperCTL*-less PHL to HyperPCTL
	HyperCTL* Sentences in PHL
	Equivalent Fragments
	Overview of Results

	Conclusion
	Summary
	Future work

	On the Topic of HyperPCTL*
	Bibliography
	Symbol Index
	Logics and Fragments Index

