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Abstract

Probabilistic hyperproperties are specifications that describe the form of the traces of
executions of probabilistic systems that compare multiple traces simultaneously and
with one another, and make statements concerning the probabilities of certain events
happening across these traces. In this thesis, we explore the expressive power of
three probabilistic hyperlogics — that is, logics that can formulate properties matching
this description - in relation to one another: HyperPCTL, HyperPCTL; and PHL, on
(discrete-time) Markov Chains, and Markov Decision Processes. The focus is primarily
on the relation of HyperPCTL and HyperPCTL" to PHL on Markov Chains.
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Chapter 1

Introduction

Discrete-Time Markov Chains (DTMCs) are mathematical objects, not dissimilar to
Kripke structures, or even some forms of automata, which can be used to model proba-
bilistic processes. Markov Decision Processes (MDPs) combine this concept with layers of
nondeterministic choice. The formalism for resolving the choices lies within schedulers,
which, intuitively, replace each layer of choices with a probability distribution, while
also being allowed to reference past choices during the selection of the distribution
itself. Both DTMCs and MDPs have atomically labelled states.

The trace of a path on a labelled transition system is the ordered collection of labels that
appear on it. A trace property is, hence, simply a specification of how a trace should
look like. Alternatively, a trace property is some collection of acceptable traces.

We have well-established logics that can be used to express trace properties in labelled
transition systems, with a very important example in the context of this thesis being
computational tree logic (CTL) . CTL makes a strict distinction between state
and path formulae. The former are those that specify either branching behaviour, or
make local assertions referencing labels, on certain states. The latter express temporal
modalities along paths. That is, they express how properties change along them - or,
in other words in which order they appear. CTL requires alternation of path and
state formulae in nesting, and CTL is an expansion of it that lifts this very
restriction.

PCTL, first seen in [HJ89]], and PCTL, first seen in [Azi+9s], have been formulated to
make assertions involving probabilistic trace properties in DTMCs and MDPs. These
exchanged the quantifiers of their non-probabilistic counterparts for probabilistic
operators of the form P..(-) that can measure sets of paths fulfilling the specifications
laid out in their arguments, and compare these measures with constants (“< ¢” in the
example above).

Hyperproperties are properties that can compare multiple traces at once, and with
one another. For the probabilistic versions of these, the logics mentioned have been
reformed into HyperPCTL and HyperPCTL , in the former by adding
quantification over states, and in the latter by making probabilistic operators draw
explicit paths that can then be referenced in nested expressions. Both logics can also
compare measures to one another, that is, they are not limited to comparison with
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constants, as was the case with PCTL and PCTL. HyperPCTL has further seen an
extension to MDPs in [Abr+20|] by way of quantification over schedulers.

A completely distinct approach at solving the same problem is found in PHL [HJ89],
which only has a formulation for MDPs, and deals with probabilistic properties com-
pletely separately from (non-probabilistic) hyperproperties. Essentially, it delegates
the former to measures of scheduler-marked LTL [Pnu77], and the latter to Hyper-
CTL [Cla+14], with the extra step of binding path quantification to schedulers. A
downscaled version of PHL for DTMCs will be proposed later on.

In contrast to the logics that laid their foundations, the relationship between Hyper-
PCTL, HyperPCTL; and PHL in terms of expressive power on DTMCs, as well as the
one between HyperPCTL and PHL on MDPs, is currently largely unknown. This thesis
aims to explore exactly this relationship. To this end, apart from proposing a down-
scaled version of PHL for DTMCs, all of the logics have been reformulated to use
consistent notation and comparable mathematical abstractions in their syntax and
semantics across the board. In particular, HyperPCTL" had to be changed relatively
drastically due to our perceived ambiguities in its formulation in [Wan+21]. The rea-
soning behind this and the changes themselves, as well as a verbatim copy of the logic
is provided in Appendix[Al

We mostly focus on HyperPCTL vs. PHL, and HyperPCTL" vs. PHL, on DTMCs due
to the following reasons.

- HyperPCTL" does not yet have a formulation for MDPs, and upscaling it is
non-trivial.

— The relation between HyperPCTL and HyperPCTL* on DTMCs is explained
(albeit not exhaustively proven) in [Wan+21].

- Exploring the above in detail would not have fit the time frame for this thesis.

The structure of the thesis as follows. Chapter |2 goes over the required measure-
theoretical background, lays out notational conventions, and defines the models and the
logics concretely. Furthermore, it proposes a downscaled version of PHL for DTMCs.
In Chapter [3} definitions for relations (e.g. implication, subsumption, equivalence)
between formulae and fragments across all logics are provided, and inherent differences
between the logics, and how they work, are pointed out. Chapters|4 and 5| examine the
relation between HyperPCTL" and PHL, and HyperPCTL and PHL, respectively. This
is done by embedding fragments of one into the other. In Chapter|6} we briefly look
at what relations between HyperPCTL and HyperPCTL" can be extrapolated from the
results of previous chapters. Finally, Chapter[7|deals with the question of whether the
results of Chapter [5|scale upwards for MDPs. Chapter 8| reiterates on the results and
open questions of all chapters, and concludes the thesis.



Chapter 2

Preliminaries

Let[f(+)|denote the powerset operator and |w|the first limit ordinal. For the purposes
of this thesis, we consider w equivalent to the set of the finite ordinals, the natural
numbers (von-Neumann-construction). As such, the expressions n < w and n € w are
to be interpreted the same. Furthermore, R denotes the set of the real numbers, (Q the
set of rational numbers, and we set R* := R U {-o00, 00 }.

Let A be an ordered set, and a, b € A. We define the closed interval [a,b] in A as

[@b]a:={ccAla<c<b).

Similarly, we also define the open interval (a, b) in A by

(a,0)4:={ceAla<c<b}.

If the subscript A is omitted, it is assumed to be w. As such [a, b] denotes the discrete
interval {a,a+1,...,b—1,b}. Inany case, [a,b]s = @, ifa > b, and (a,b)4 = @, if
a > b (in case A = w, even a > b — 1 suffices).

Let u be a sequence of length [u] := n < w. The expressions u;, and u(i), i < n, denote
the i-th member of u. Expressions of the form u +— v are used to represent the tuples
(u,v), where it contributes to readability (e.g. assignments).

Finally, let A, B, C be sets, u := ((a;, b,-))kn € (Ax B)", n < w asequence of tuples, and
v:=(c¢i)i<n € C" a sequence in C. denotes the sequence ((ai, Ci))i<n that results
by replacing each second element of the tuples in u by the corresponding element of
V.
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2.1 Probability Spaces

Before we start, it is essential to go over a few fundamental definitions regarding
probability and measure theory. The basic building blocks we will need to use are
o-algebras, which, intuitively, represent a formal expression of measurable events in the
form of collections of sets. Due to this connotation, the elements of a o-algebra are often
called events. The definitions that follow are adapted from Chapter 1 of [Bogo7].

Definition 2.1 (0-algebra). Let Q # & be a space. A collection of sets 2 c £(Q) is
called o-algebra over (1 if the following conditions are met.

(i) Qe
(i) AeA=> QA (stability under complements)
(iii) If I is a countable set of indices, and (A;);c; ¢ 2 a sequence of events in 2, then
Uier Aj € 2. (0-u stability)
A

The tuple (Q,2() of a space Q) and a o-algebra 2 over Q) is called a sample space. The
entire collection £(Q) is in itself the largest o-algebra over (), and the smallest possible
one is {Q, @}. Any other ¢-algebra lies between these two.

It is often required to define measures on an arbitrary collection € of subsets of Q.
To this end, the intersection of all expansions of € with other subsets of () that are o-
algebras is taken. The result is a unique o-algebra that contains the entire collection €.

Definition 2.2 (o-algebra generated by a collection). Let O # & be a space, and & c
£(Q) a collection of sets. The smallest o-algebra containing € is called the o-algebra
generated by € and defined by = Naeg A, where § = {A c P(Q) | €
20 A 2is o-algebra over Q} A

The well-definedness and existence of 2(¢) from Definition|2.2|falls into the domain
of measure theory [Bogo7, Prop.1.2.6]. With these definitions, we can introduce the
notion of a probability measure.

Definition 2.3 (Probability measure). Let Q0 # & be a space, 2 c £(Q) a o-algebra
over O, and y : 2 — [0, 0o |gee. y is called a probability measure on (Q,2), if

©) u(2) =0,
(i) u(Q)= lﬂand,

(iii) if I is a countable set of indices, and (A;);er ¢ 2 a sequence of pairwise disjunct
events in 2, then y (Uje; Ai) = Yjer u(Ai). (0-additivity)

"Without this condition, y is called simply a measure.

10
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A
Putting everything together, we get
Definition 2.4 (Probability space). A probability space is a triple (Q, 2, y) where
- Q is a nonempty space,
- A cP(Q) is a g-algebra over Q, and
- u:2A - [0, c0]g~ is a probability measure on (Q,2l). A

An adjacent term that we will need to use is the following.

Definition 2.5 (Probability distribution). Let A be a discrete set. A function p: A —
[0, 1]r=~ is called a (discrete) probability distribution over A, if (A, £(A), u,) is a proba-
bility space, where i, is the measure induced by p and defined by

up(B):= > p(b), forBcA
beB A

We can already put the preceding definitions to use and prove a useful relation that
connects the probability measure of a set with the one of its complement.

Lemma 2.6 (Dual events). Let (Q,2, i) be a probability space. Then

p(QNA)=1-pu(A), forallAeA.

Proof. Let A € 2(. By Definition [2.1(ii), Q \ A € 2 and we get

u(QNA) =pu(QNA) +u(A) - u(A)

=0
= (u(Q~ A) +u(4)) - u(4)

=u((QNA)UA) - pu(A) (Def. [23|(ii) )

= u(Q) - u(A)

=1-u(A). (Def. [23((ii) ) O

2.2 Models

In this section, we shall introduce the abstract mathematical models, upon the founda-
tion of which we will base the definitions of the logics later on.

11
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2.2.1 Markov Chains

Discrete-Time Markov Chains, or DTMCs, are mathematical objects that can be used
to model probabilistic processes. They are, intuitively, labelled transition systems, in
which the transitions themselves happen probabilistically.

Definition 2.7 (Markov Chain). A (discrete-time) Markov Chain (DTMC) is a tuple
D= (S, p,AP, 1), where

S is a countable, nonempty set of states,

p:Sx8—[0,1]g is a transition probability function, such that

> p(s,t) =1, forallsesS,

teS

AP is a set of atomic propositions, and

- 1: S - P(AP) is a labelling function. A

We call a DTMC finite iff S is finite. Note that some definitions also include an initial
probability distribution of the form 1 : § — [0,1], with } . ¢(s) = 1, or may specify a
unique initial state s,. In the sequel, if either of these is being used, it will be explicitly
noted.

Definition 2.8 (n-ary parallel composition of Markov Chains). Let n < w, and
D; = (Si, pi» AP, I;), for i < n, be a sequence of DTMCs. The n-ary parallel com-
position over this sequence is defined as the DTMC X;., D; = (S, p, AP, ), with

- S = Xi<n Si)

PG, ) = Tlicn p(sis ti)s
AP := X;., AP;, and
~ 1) = (ll(sl),...,ln(sn)),

withs, f € S. AN

Note that I(5) € Xi<i<, £(AP;), instead of I(5) € (AP) = £(Xi<i<n AP;), which is
what one would expect after Definition[2.7} This notational choice was made for purely
stylistic reasons, as it aids readability and allows us to easily define legible notation of
the form “I(5)(i)” to get the label of the i-th component of s.

Based on Definition [2.8, we call the n-ary parallel composition of a DTMC D with
itself the n-ary self-composition of D and denote it by[D”"}

12



Models

2.2.2 Markov Decision Processes

An “expansion” of the DTMC model can be found in Markov Decision Processes,
or MDPs for short. These add a layer of nondeterminism, represented by actions,
in-between state transitions.

Definition 2.9 (Markov Decision Process). A Markov Decision Process is a tuple M =
(S, Act, p, AP, 1), where

S is a finite, nonempty set of states,

Act is a nonempty set of actions,

p:SxAct xS — [0,1]g is a transition probability function, such that

- the partially applied function p; 4, defined by p; () := p(s, «, t), is either
a probability distribution over S, or identical to 0, for all (s, a) € S x Act,
and

- for each s € S there is at least one a € Act such that p; , # 0.

- AP is a set of atomic propositions, and

l:S — P(AP) is a labelling function. A

If pso # 0, we call a € Act enabled at s € S, and denote withthe set of all such
actions. We will now look at a way to remove nondeterminism from MDPs, namely
scheduler Intuitively, these replace each nondeterministic layer of actions with a
probability distribution over these actions. Since each choice made by a scheduler can
depend on its previous ones, the DTMC that results may be infinite.

Similarly to DTMCs, MDPs might have an initial state s,, or an initial distribution
1§ = [0,1] with Y is1(s) = 1. If either of these is being used, it will be noted
explicitly.

Definition 2.10 (Scheduler). Given an MDP M = (S, Act, p, AP, 1), a scheduler for
M is a tuple 0 = (Q, act, mode, init), where

- Q is a countable set of modes,

- act: Q x § x Act - [0,1]p is a function such that its partial application acty,,
defined by act, («) := act(g, s, &), is a probability distribution over Act(s), for
all (g,s) eQ xS,

- mode: Q x S — Q is a mode transition function, and

- init: S — Q is an initial mode function. A

'In some stochastics literature also referred to as policies.

13
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We denote the set of all schedulers for an MDP M as X4,. An alternative — but still
equivalent - definition for a scheduler is found in [DFT20], in which it is formulated as
a function that assigns probability distributions over Act to histories, that is, sequences
of states and actions of the form spa...a,—15, € (S-Act)*S. Within Deﬁnition the
entire history space of an MDP can be encoded into different sequences of modes and
transitions in the mode space and transition function respectively, as it is countable.

As it was alluded to before, a pair M, o induces a DTMC.

Definition 2.11. Let M = (S, Act, p,AP, ) be an MDP, and ¢ € 24,. The DTMC
induced by M with ¢ is:: (8%, p%, AP, 17), where

- 8§7:=QxS,

0, otherwise, and

4 Yaeact(s) act(g, s, a) - p(s, a, t), if r = mode(q,s),
-P((q,s),(r,t)):z{ Act(s) act(qs s, &) - p( ) (95)

- 17(g,5) = 1(s),

with g,r € Qands, t € S. A

Definition 2.12 (n-ary parallel composition of Markov Decision Processes). Let n <
w,and M; = (S;, Act;, pi, AP;, I;), for i < n, be a sequence of MDPs. The n-ary parallel
composition over this sequence is defined as the MDP X; ., M; = (S, Act, p, AP, 1),
with

S:= ><i<n Si’

Act := X, Act;,

- p(s,a,t) = Tlic, pi(si> ais 1),

AP := X;., AP;, and

1) = (h(s0)s oo In(sn))s

withs, € S, and & € Act. A

Again, we made the notational choice to have I(5) € X<, P(AP;) instead of I(5) €
P(Xicicn AP;).

The n-ary self-composition of an MDP M is denoted by|/M"|and defined similarly
to the DTMC case. For a sequence of schedulers o € X7, W represents the DTMC
Xicn MO, that is the parallel composition of the DTMCs induced by the pairs M, o;.

14
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2.2.3 Paths & Reachability

Let D = (S, p,AP,I) be a DTMC. A path n on D is an infinite sequence of states
7= (8i)icw € S, such that p(s;,s;+1) > 0, for all i < w. We denote the set of all paths
on D by|Pathsqp| For a j < w, the sequence 7’ := (s!) ;<j € $/ is called a finite prefix of
m, written 71| g| 71, iff s; = s/, for all i < j. We define the length of 7’ by |7'| := j.
represents the set of all finite prefixes of paths in Pathsp. Similarly, and

Pathsz} (s)|are defined as the sets of paths and finite path prefixes, respectively, that
startatafixed s € S. A state t € S is reachable from s € S iff there exists a 7 € Paths3)’(s)

that ends in ¢.

Now consider an MDP M = (S, Act, p, AP, ). A path on M is an infinite sequence of
states (s;)i<e € S, this time with the condition that for all i < w there exists an action
« € Act with p(s;, a,si+1) > 0. A consequence of this is, that, given 0 € X4/, a path
on the induced DTMC M? of the form ((g;, Si))i<w € Pathsgyo corresponds to the
path (s;)i<, on the original MDP that results by leaving out the modes g;. The sets
Pathsgy, Paths;[“, Pathsg,(+), and Paths}ﬁ}’(-), as well as the relation £ share the same
semantics and definitions with their DTMC equivalents above.

For a DTMC or MDP N, and one of its states s, we define

~ [Postly(s) := {t € S| 37 € Pathsoy(s) : m(1) = ¢}, the set of all successors of s,
and

- (s) :={t eS| 3ImePathsy(s): Ij<w: n(j) = t}, the set of all states
reachable from s.

Furthermore, for 7 € Pathsy, we denote by the i-th element of 7, and set =
(ﬂ(i + j))j<w to denote the i-shift of 7, that is the path that results by discarding the

first i elements of 7. Let (i) and 7’ be defined the same for finite path fragments
7 € Pathsyy, setting 7(i) := L, and 7’ := 1 (undefined) if i > |n|.

2.2.4 Measurability of Events in Markov Chains

An important detail to the logics that will be discussed later on is the well-definedness
of the interpretations of their probabilistic operators. To guarantee this, one needs to
establish a connection between paths on DTMCs and probability spaces. This topic is

covered in [BKo§|.

Definition 2.13 (Cylinder set). Let D = (S, p, AP, ) be a Markov chain, and 7 «
Pathssy’. The cylinder set of i is Cylp,(7) = {n’ € Pathsp | m = 7'} A

Cylinder sets are generally a concept founded in measure theory, and used as a basis
to induce measures on infinite-dimensional product spaces [Bogo7]||. This is done by
collecting the cylinder sets of all finite-dimensional subspaces; a finite path fragment

15
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of length n can ultimately be viewed as an element of the space S”, whereas a path is
one of the space S“.

Definition 2.14 (o-algebras of DTMCs). Given a pair (‘D,s) of a DTMC D, and one
of its states s, the g-algebra associated with the pair, and denoted by (D, s), is the

o-algebra generated by the set {CyI,D(n) | 7 € Paths3)’(s) } A

For a DTMC D = (S, p,AP,1), and s € S there exists a unique probability measure
Pro,s on 2A(D, s), which yields the following probabilities for these cylinder sets:

Per,S(CyI,D(so...s,,)) =[s=s0]" Hp(s,-,sm), for sg,...,S, € S,

i<n

1, ifs=sp,

where [s = so] :=
0, otherwise.

Finally, sets of paths of D starting at s can be measured as events on (D, s) [BKo8].

The subscripts D and s in the probability measure and the cylinder set are usually

omitted, given they can be inferred from context.

2.3 Logics

Let Z be a quantified logic. We use, for reasons of brevity and clearness, the subscripts
ZprMmc to refer to the formulation of Z for DTMCs and Zypp to refer the one for
MDPs, respectively, and where applicable.

Consider a formula ¢ € 7. We denote with [var(¢)|the set of all variables that appear
in ¢. A variable v € is called free if at least one instance of it is not bound by
any quantifier (V, 3). Let[free(¢)|denote the set of all free variables in ¢.

Similarly, v is called bound, if at least one instance of it is bound by a quantifier. ¢ is
called closed, or a sentence, if it has no free variables, and clean, if no two quantifiers
bind different instances of the same v € var(¢) and no variable appears both bound
and unbound in it.

Example 2.15. Consider the following first-order logic formula over a signature with a
binary functional symbol f:

¢:=(3x32Vy fxy=2z) A (3y fxy = y)

@ expresses that there is one x such that f becomes constant in its second argument,
and that it also has a fixed point in its second argument (for a free first argument x).

16
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We have var(¢) = {x, y,z}. Out of these, x appears both bound and free, y is bound
(twice), and z is bound. An equivalent clean formula is given by

@' = (IvIzVy frvy =y) A (3w fxw =w),

and by binding the free instance of x, for example in Ix¢, or Vx¢', we get a sentence./\

As it was the case for CTL mentioned in Chapter [1, some of the logics we will see
make clear distinctions between state formulae that make local assertions at states and
specify branching behaviour, and path formluae (or path subexpressions) that express
temporal modalities along paths. In some cases, this distinction is not present, and we
simply have top-level formulae and certain categories of subexpressions.

In the sequel, state (or otherwise top-level) formulae will be denoted by ¢ and vy,
probabilistic formulae and expressions by p, path ones by 9 and #, and in each case
also variants such as ¢, ¢;, etc. Lowercase hatted letters ($, 6, 71, ...) shall further be
used for variables, normal letters (s, 0, 7, ...) for concrete objects, and lowercase fraktur
(blackletter) letters (p,t, s, ...) for variable-to-object assignments. In each case, the
uppercase variants (§ R ﬁl, f[, S, 2,11, ...) will be used for the corresponding sets, and an
overscore will be added (s, 0, 7, ...) for sequences. To avoid 5, we use a tilde instead for
sequences of variables (5, 7, 71, ...).

In all of the logics, we will encounter the modal operators |U| (until) and @ (next).
Intuitively, for a path 7 and atomics a, b, 7 £ a U b holds iff we can reach a b-state
on 7 while only crossing a-states, and 7 = Qa iff the state right after the current one
is labelled a. Wherever the syntax allows it, we also implicitly define the following
syntactic sugar exemplarily for atomic propositions.

(i) Eventually operator:|[Qla = true U a.
(ii) Globally operator: [Ja := ~(true U -a).
(iii) Implies junctor: b:=-avb.

The case for more complex formulae - again, where permitted by syntactical rules - is
similar.

To avoid writing excessively many nested parentheses, let the binding strength of
operations be as follows (strongest to weakest):

(i) Functional symbols: ¢, f, g, ...
(ii) Multiplication: -
(iii) Addition: +
(iv) Comparisons: <, <, =, ...

(v) All unary operators: -, O, 0,1, ...

17
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(vi) Until operator: U
(vii) And, or junctors: A,V
(viii) Implies junctor: —

To break (some) ties, we assume right-associativity for all binary operations. That is, for
example

aUbUc=aU(bUc),and a—-b->c=a—(b-c).

Unary operators and functions are resolved innermost-to-outermost. For instance, if f
is a binary and g a unary function, then, as a (very contrived) example, we have

~00f ga-b = ﬁ(o(m(f(ga)(ﬂb)))).

2.3.1 HyperPCTL

The versions of HyperPCTL that will be introduced in the following are based on [AB18]

and [Abr+20], but have been slightly adjusted to use variable assignments instead of
syntactic replacements.

Markov Chains

Definition 2.16 (HyperPCTL,,, | Syntax). HyperPCTLppyc formulae are built ac-
cording to the following grammar rules:

— (state formulae) ¢ ==V ‘ Js.p ‘ PAQ ‘ -9 ‘ true | a; ‘ p<p
— (probabilistic formulae) p :=P(9) ‘ p+p ‘ p-p ’ c
— (path formulae) 9:=Qp¢ ‘ oUgp ‘ ¢ Ulkkal g

where ki, ky < w, ¢ € Q, and § is a state variable from a countably infinite supply of
state variables A

In the following, we implicitly only consider closed formulae, and conflate the term
HyperPCTLyyc formula with closed, clean HyperPCTLypyc state formula.

To assign state variables from S to concrete states from the state space S of a DTMC, we
will use sequences of the formEI = (§; ¥ $i)icn € (S X S)n, for n < w. s will be called a
state assignment and its length will be denoted by |s| := n.

18
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We define s o (§ — s) as the expansion of s by the assignment § — s ¢ $ x S, that
isso (s s) = (§0 P> 50500y Sp] F> Sp_1,S > s), and we denote byand
the sequences (§;)i<n € $™ and (s;)i<p € S" respectively. The empty sequence is
represented by e.

For § € S, we write, in function notation, 5($), to recall the assignment of § in 5. Should
no such assignment exist, then we set §(5) := L (undefined). Since we only deal with
clean formulae, each variable has at most one assignment in s, and s itself takes the
form of a partial function over § - S U {1}, justifying the notation laid out above.

Definition 2.17 (HyperPCTL.. . [Semantics). Let D = (S, p,AP,1) be a DTMC,
@, y state formulae, p, p’ probabilistic formulae, and 9 a path formula of HyperPCTLpy -
Also,letn < w, s € (S X S)TQ e{V,3}, » e {+,-}, c€Q, and a € AP. We define

- D,s=Q5.¢ iff QseS: D,so(§—5s)E0,

- D,sE@AY it D,sk=¢and D,s =y,

- D,skE g ifft D,s ¥ o,

- D,s E true,

- D,sE a; iff ae l(s(ﬁ)),

- DyseEp<p iff  [plps <[P lps

- [P)]ops =  Pr{mePathsp:(im(s)) | D,s, = 9},
- [p*p'lops = [plps*[p'lp, and

- lelps = c

Furthermore, let n > 1, k;, k3 < w, and 7 € Pathsp». We define
- D,s,m= Q¢ iff D,s[n(1)] E ¢,
- Dys,mrepUy iff Jj<o(Ds[r(j)]Ey
AVi<j:D,s[n(i)]E ¢),and
flly it 3je [k, ko] (Ds[n(j)] =y
AVi<j:D,s[n(i)] E¢),

- D,s,mE ¢ Ul

where s[71(i) ] denotes the state assignment that results by replacing im(s) with 7(i )

Lastly, if ¢ is a closed, clean HyperPCTLypy ¢ formula,let D= @ it D,eF ¢ . A

We further allow standard syntactic sugar such as false := —true, vV := =(~p A-y),
p1=p2:==(p2 < p1) A=(p1 < p2), pr < p2:= (p1 = p2) v (p1 < p2), and so on.

'im(s) and 7(i) always have the same type and length, since both are states of D". The general
definition of this notation in the context of sequences can be found on p.|§|
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Markov Decision Processes

Definition 2.18 (HyperPCTL, .|Syntax). HyperPCTLypp formulae are built by the
following grammar rules:

— (quantified formulae) ¢=V6.9|36.9|V$(6).9]35(8).0|v

(non-quantified formulae) v ==y Ay ‘ -y ‘ true | az ‘ p<p

(probabilistic expressions) p ::=P(9) | p+p | p-p ‘ c

(path expressions) 9:=Qvy ‘ yUy ‘ y Ulkokal

where ¢ is a scheduler variable from a countably infinite supply of variables X} § a state
variable from a countably infinite supply of Variables ceQ,and kj, k; < w. A

In the following, we only consider clean formulae, and refer to closed, clean HyperPCTLpp
state formulae as simply HyperPCTLypp formulae.

Let M be an MDP. To assign schedulers from X, to the corresponding variables from
3, we will use sequences of the formH = (6, 0)i<n € (Z x ZM)H, for n < w. vt will
be called a scheduler assignment. The expressions t(6), im(t), dom(t), as well as |t| are
defined similarly to state assignments as seen on p.[18]

This time, state variables will be assigned to schedulers by|s, and the expression =
M™E) will denote the DTMC induced by M with the tuple of schedulers im(s), as
defined in Concrete state variable instantiations will be tracked in a sequence of
states of M>.

For a state variable § such that () # L, and 7 € S% let [°(7) () be the element of the

tuple I°(7) at the index i < |s|, where i corresponds to the index in s in which § appears,
i.e. dom(s)(i) =3$.

Definition 2.19 (HyperPCTL, . |Semantics). Let M = (S, Act, p, AP, 1) be an MDP,
¢ a quantified formula, v, y' non-quantified formulae, p, p' probabilistic expressions, and
9 a path expression of HyperPCTLypp. Also, let m, n < w, s € (S X ZM)W,lt € (Z X ZM)’:
Qe{V,3}, xe{+,-},c€Q,and a € AP, as well as 7 be a state of the induced DTMC
M*. We define

- M,v,8,7=Q06.9 if QoeZg:M,vo(6~0),57E¢,
- M,t,5,7EQ3(6).9 iff QseS:M,v,50(5 > t(d)),7o(initys)(s),5) F 9,

- M,t,5,7EY it M°,revy,
- M, rEyny iff M, reyand M°,7Ev/,
- M, TE -y iff M7 % v,

- M, 7 E true,
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- M7 a; iff ael*(r)(s),
- MrEp<p it [plagsz < [Pl gss 5o
- [P(9)]ppe 7 = Pr{mePathsys(7) | M®, me 9}
= [p* Pl = ez * [p']gse 7> and
= [elgss 7 = ¢
Furthermore, let n > 1, k;, k; < w, and 7 € Pathsgs. We define
- M, e Qu iff M, (1) Evy,
- MreyUy iff Jj<o (M, n(j) =y

AVi<j: M, n(i) = y),and

- M ey Ukl y! S Jje [k, k] (MP,7(j) E v/
AVi<j: M, n(i) E ).

Lastly, if ¢ is a closed, clean HyperPCTLy,p state formula, we define M = ¢ iff
M, e, ¢, ¢ = @, where € denotes the empty tuple. VAN

2.3.2 HyperPCTL"

HyperPCTL* has only been formulated for DTMCs. It is based on PCTL" and
extends it by including arithmetic operations directly between probabilistic expressions,
and arbitrary nesting thereof, as well as by allowing the indexing of atomics by paths,
which are drawn at the level of a probabilistic operator. HyperPCTL" does not feature
any explicit quantification other than this drawing of paths.

Before we start with the syntax, we are going to define an auxiliary construct that will
be needed to allow the existence of well-defined clean formulae, in which nested proba-
bilistic operators can reference paths that are drawn at the level of their parents. This
is a stark deviation from the original version of HyperPCTL" presented in [Wan+21].
The reasoning behind this is explained in Appendix[A]

A path draw substitution rule over a set of variables 1, denoted by x and variants, is
a tuple (#, #"), for some 7, 7’ € I1. A sequence of rules % is also called a ruleset. For
reasons that are going to become clear when we define the semantics, we write 77 « 7’
instead of the tuple itself and read this as 7 draws from 7. Also allowed is the half-rule
# < ¢, or simply 7. We denote the space of all path draw substitution rules over I1

by[Rp}

Definition 2.20 (HyperPCTL|Syntax). HyperPCTL" formulae are built according to
the following rules.

- (path formulae) PrI=QAQ | ) ‘ 9 ‘ true ‘ as | p<p
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- (probabilistic expressions) p == fp ’ Pz(¢)
— (path expressions) 9:=Q¢ ‘ pUg | p Uk g

where 7 is a path variable from a countably infinite supply of path variables IT, ¥ is
a finite sequence of path draw substitution rules from 8, a is an atomic proposition,
k < w, |p| < w, and f is an elementary function. A

In the context of HyperPCTL", an elementary function is either a polynomial, a rational,
trigonometric, or exponential function, or any finite composition thereof. Nullary
functions represent arbitrary constants.

Closedness, in this case, refers to all variable instances being inside the scope of a P(+)
symbol and bound by a rule of « (i.e. appearing in its left-hand-side). This includes the
right-hand-sides of rulesets of nested probabilistic operators, where ¢ is considered
axiomatically bound.

Cleanliness extends to path draw substitution rules as follows: If ¢ is cleam a Hyper-
PCTL" formula, then for each v € var(¢) there is at most one rule x in ¢ with v on its
left-hand-side.

In the following, we implicitly only consider clean formulae. Furthermore, the gen-
eral term HyperPCTL® formulae shall refer only to closed, clean HyperPCTL path
formulae.

The variant of DTMCs that will be used here is the one with an explicit initial state,
which we shall denote by s,. To define the semantics of this logic, we will need to assign
path variables from IT to paths from the path space Pathsq, of a given Markov chain
D. To this end, we shall use sequences of the form p := (7; = 7;) i<y € (H x Paths@)n,
n < w. p will be called a path assignment, and the expressions im(p), dom(p), |p|, and
p(7#) be defined as for state (p.[18) and scheduler (p.}20) assignments.

Furthermore, let p% for k < w, be the variable assignment that results by discarding
the first k elements of the paths (i.e. by shifting the paths k places) in im(p), and, in a
slight abuse of notation, we set p(¢)(0) := s,, where ¢ is the empty right-hand-side of a
path draw substitution rule. This makes path variables that “draw from ¢” start at s,.

Definition 2.21 (HyperPCTL|Semantics). Let D := (S, s,, p, AP, 1) be a DTMC with
unique initial state s, € S, n, m < w, ¢, ¢’ path formulae, p, p’, and py, ..., p,, probabilistic
eXPTeSSIONS, L, M1, <., Ty T} oovy Ty € 11, pe (H X Paths@)rr,land a € AP. We define

- Dyp=opng ift D,pE¢@and D,pE ¢

- D,pE - iff D,p ¥ ¢,

- D,pE Q¢ if D,p'Eog,

- DypegoUg’ if Jj<w (Dp/Eg AVi<j:Dp Eg),
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- Dpe Uy iff i<k (Dopieg A Vicj:Dyp' e o),
- D,p E true,

~ DpEay iff ael(p(#)(0)),

- DypeEp<p it [plp, <[P lopy

- [ferpuloy = flploy-lpalp,y and

—
=
S)
1
=X
S
=
t
X
R4
~
-
N—’
==
I

Prq)n{((m(k),...,nn(k)))k<w |
Vi € [1,n] m; € Pathsp(p(#7)(0))

D,p

AD,po{a;mmi|ie[ln]}F ol

Lastly, if ¢ is a closed, clean HyperPCTL" path formula, we set D = ¢ iff D, e = ¢. A

In the last item of the previous definition, path tuples (7, ..., 77, ) are drawn from D,
where the i-th component starts where the assignment of the right-hand-side of i-th
rule started. Then, for each k < w, the k-th states of the paths are collected into new
tuples (71(k), ..., m,(k)), which are themselves states of D". Finally all of these tuples
are ordered together into a path of D", and the probability space of D" is used to take
the measure. In the following, we shall write Pr { (7115 +os ) | } instead of the above
for ease of notation.

To reiterate on the role of rulesets: P4, ;(+) causes the assignment of the new variable
7t to start wherever the assignment of the old variable 7’ started. Hence comes the
wording 7 draws from 7t and the notation 7t < 7’. The old variable must be present in
the left-hand-side of a parent probabilistic operator, or be ¢, in which case the starting
point becomes the initial state s,.

2.3.3 PHL

Probabilistic Hyper Logic (PHL) was introduced for MDPs in [DFT20]. Its fragments
encompass probabilistic expressions over LTL formulae [Pnuy7], in which atomics are
indexed by schedulers, as well as non-probabilistic path expressions in the form of
HyperCTL" [Cla+14]), which are in turn indexed by paths. Later on, PHL will also be
downscaled to fit DTMCs.

The original formulation from uses history-based schedulers, and hence it will
be slightly modified to fit Definitions and Furthermore, we will also deviate
from the original by using a unique initial state instead of an initial state distribution.
This is done to keep the definitions in line with HyperPCTL and HyperPCTL, and
it doesn't restrict the expressiveness of the model. One can convert an MDP from
the latter to the former by introducing a unique state s,, and a unique action ¢, and
assigning p(s;, 1,s) = 1(s), for all states s. An example of this is shown in Figure[t]
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Po

DO O 6

(a) MDP with initial probability distribution ((s;) = p;, i < 4.
L, P2

?@

(b) MDP with unique initial state s,, and p(s,, ,s;) = p;, i < 4.

Figure 1: Example of MDPs with initial probability distribution and unique initial state.

Markov Decision Processes

Definition 2.22 (PHL,,,,[Syntax). PHLyp formulae are built by the following gram-
mar rules:
— (sched.-quant. formulae) ¢ == 36.¢ ‘ Vé.¢ ‘ PAQ ‘ - ‘ 9 ‘ p<p

9=

(HyperCTL'| formulae)
— (probabilistic expressions) p ==P(n) ‘ p+p ‘ c-p | c

a;|true| 9A9]-9|O9]9U 9| v#(6).9

(marked LTL formulae) nu=ag ‘ true ‘ nany | -n ‘ On ‘ nUn

where a is an atomic proposition, ¢ a scheduler variable from a countably infinite supply
of scheduler variables X, 7 a path variable from a countably infinite supply of path
variables I1, and ¢ € Q a constant. A

In the sequel, we only consider closed, clean formulae and refer to closed, clean PHLypp
scheduler-quantified formulae simply as PHLpp formulae.

Let M = (S, s,, Act, p, AP, 1) be an MDP with unique initial state s, € S. This time, the
semantics will require a scheduler assignment of the form v € (Z X Zm)r: and a path
pl> [¢, dom(-), im(-),

>

assignment of the form p € ((Z x IT) x Pathsm)r?with n,m< w.
p*, and ¢(4) for 6 € 3 are defined as usual.
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Here, multiple path variables may reference the same scheduler variable. Hence, we
need a mechanism to recall path assignments both for path variables in general, as well
as for the most recent path variable that references a specific scheduler variable.

In essence, we want p(7r) to recall the assignment of 7 (as we assume clean formulae,
there will be at most one such assignment), and p(&) to recall the assignment of the
last path variable associated with 4.

As such, for ¢ € 3, let p(6) = im(p) (i), where
i = max{k < |p| | 34 € [T : dom(p) (k) = (6, %)},

and, for 7 € IT, let p(#) = im(p)(j), with j being the unique index such that dom(p)(j) =
(6,7) fora ¢ € 3. In either case p(6) = L or p(#) = L if no such i or j exists. Con-
tinuing the abuse of notation seen in p. 22/ for HyperPCTL;, we define p(-)(0) := s,, if

p() =L
Similarly to HyperPCTLypp, we write M* for M™(), Since the MDP has an initial
state, the induced DTMC also has one, specifically

S| = ((initgl(s,),s,),..., (initg‘d(s,),sl)),

where (o1, ..., 0|t|) =im(v).

Definition 2.23 Semantics). Let M = (S, s,, Act, p, AP, 1) be an MDP with
unique initial state s, € S, Q € {3,V }, ¢, ¢’ scheduler-quantified formulae, p, p' proba-
bilistic expressions, 9, 9’ HyperCTL" formulae, 1, ' LTL formulae, 6 € S ell,acAP,
ceQ,mn<w,te (Z X ZM)’? andp € ((2 x I1) x PathsM)n? We define

- M,c=Q6.9 iff QoeZy:M,xo(6~0)Eo,
- M,repng' if M,xE¢@and M, vk ¢,

- M,t= -9 iff Mt ¥ o,

- M, iff M,v,ex9,

- Mxep<p it [place <[P Tare

- M,t,pEa; iff ael(p(7)(0)),

- M,t,p E true,

- M,e,pEINY iff M,e,pE9d A Mue,ped,

- M,t,pE -9 iff  M,ce,pw 9,

- M,e,p=O9 it M,t,plE 9,

- Mepe9UY  iff Fj<o (Mouep/Ed AVi<jiMup'EY),
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M,v,p e VA(6).9 iff V7 ePathsyun(p(6)(0))
j\/[,t,p o (((},f[) — 7‘[) E 9,

- [P(1)] s = Pr{me Pathsy:(s}) | M, mE 1},
= lp+P'lore = [place + 1P Tare
= e plas, = [elare - [Plas, and
- [elpre = c
For 7 € Paths gy, let further
- M, mEag iff ael(n(0))(6),
- M, 7= true,
- M menay if MY, me=nand M*, 77,
- M' = it Mt 7mow g,
- M e Oy if M*, 7' n, and

- M meqUy iff Jj<o (MSnien AVi<j: M, ney),
where I*(7)(6) = I'(7) (i), with i = max{i < |t| ‘ dom(t)(i) = 6}, if this exists, or &
otherwise, and 7 € S®

Finally, if ¢ is a closed, clean PHLypp scheduler-quantified formula, we define that
DE @it D, ek ¢. A

Markov Chains

Next up, PHLy;pp will be downscaled for DTMCs. Since a DTMC is equivalent to
an MDP with |Act(s)| = 1 for all of its states s, we opt to carefully remove scheduler
expressions from the previous definitions, as scheduler quantification collapses to the
trivial scheduler.

Definition 2.24 (PHL.|Syntax). PHLpyy;c formulae are built by the following

grammar rules:

(top-level formulae) PI=QAQ ‘ - | 9 | p<p
(HyperCTL | formulae) 9:=a;|true| 9A9|-9]O9|0U9| VA9

(probabilistic expressions)  p == P(n) ‘ p+p ‘ c-p | ¢

(LTL formulae) nu=a|true|nan|-n|On|nUn

where a is an atomic proposition, 7r a path variable from a countably infinite supply of
path variables I, and ¢ € Q a constant. A
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In the following, we implicitly only consider closed, clean formulae, and call closed,
clean PHLypyc top-level formulae simply PHL\ formulae.

Definition 2.25 MSemantics) Let D = (S,s, p,AP,1) be a DTMC with
unique initial state s, € S, (p ¢’ top- -level formulae, p, p ! probabilistic expressions, 9, 9’
HyperCTL* formulae, 1,1’ LTL formulae, 7t € II, a € AP, c € Q, n < w, p € (H X

Paths@) . We define

- Deong ift DEgand DE ¢/,

- De-g iff D ¥ g,

- DI it D,eE9,

- Dep<yp ift - [plp <[p']p

- D,pEay it ael(p(7)(0)),

- D,p = true,

- DypEIAY if D,peEd A Dpre?,

- D,pE-I it D,pw9,

- D,peQOI if D,ple 9,

- DypeE9UY iff Jj<wVi<j(Dp'E9 A Dp ),
- D,pEVAY iff Ve Pathsp(last(p)(0)) D,po (A~ n)EI,
- [P(m)]op = Pr{mePathsp(s,) | D,mE 1},

- [p+rlo = [plp+1p o

= [c-plp = [clp-[plp»and

- lelop = 6

where last(p) is the last path that was added to p and last(p)(0) :=s,, if p = €. For
7 € Pathso, let further

- D,rEa iff ael(n(0))
- D, mE true,
- D,menny if D,menand D, e 7,
- D,mE=-ny it D,m ¥ g,
- D,n=QOn iff @,ﬂllzn,and
- D,aenUy if Jj<oVi<j(D,r'ennsrDaey),
where 7', i < w is the path that results by discarding the first i elements of 7. A
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This is just one way to downscale PHL for DTMCs, in which a feature of the MDP
version is lost. Specifically, if we view a DTMC D = (S, s, p, AP, 1) as an MDP with
|Act(s)| = 1, for all s € S, we can still use the probabilistic part of PHL,,p to compare
probabilistic hyperproperties restricted to paths starting at s,, and with no specifications
concerning their branching behaviour later down the line.

For example, take
361362P(a61 U bﬁ-z) > O € PHLMDP’

which, when evaluated on D, asserts that there exist a pair of paths so that we reach
a b-state on the second while crossing a-states on the first. In contrast to this, our
proposed downscaling only allows unmarked LTL in probabilistic expressions, and can
express, for example

P(aUb) >0, and P(0a)>0 A P(Ob) >0,

which both imply the original PHL,p formula, but neither is equivalent to it.
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Big Picture

In the sequel, we fix a set AP of atomic propositions and consider all three logics over
this set. Furthermore, we always implicitly assume all formulae are closed and clean,
unless explicitly stated otherwise.

3.1 Bridging Semantics

Definition 3.1 (Semantic implication). Let Z and 7 each be one of HyperPCTLpryc>
HyperPCTL', and PHLpp - and ¢ € Z, y € Z'. We say that ¢ implies y, written v,
iff for all DTMCs D

rDl=1(p=>@l=1/I//.

If the above holds only for finite DTMCs, we write v instead. JAN

Definition 3.2 (Semantic equivalence). Let Z and 7' eachbe one of HyperPCTLppyc>
HyperPCTL", and PHLppyc and ¢ € Z, y € L. ¢ is called (semantically) equivalent to

y, written ¢[ =[y, iff
¢pFvy and Y @.
If ¢ = v only on finite DTMCs, we write v instead. JAN

Definition 3.3 (Subsumption). Let F and T’ each be a fragment of either
HyperPCTLyrye, HyperPCTL, or PHLppye. T’ subsumes F, written F, iff
to each ¢ € F there exists a y € F' such that ¢ = y.

If both F < F" and F’ < F, we simply write F. A

In many cases, one of the logics does not subsume another in the mathematical sense,
but a pair (D, ¢) can be transformed by a polynomial-time algorithm to a pair (D', ¢")
such that D = ¢ iff D' = ¢’. That is, the model-checking problem of one of the logics is
polynomially reducible to the one of the other. To cover these cases, as well as consider
finite DTMCs separately, we also define some watered-down forms of subsumption.
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Definition 3.4 (Weak subsumption). Let F and F’ each be a fragment of either
HyperPCTLy > HyperPCTL', or PHLp . We define that

(i) F’ weakly (algorithmically) subsumes F, denoted F', if, on finite DTMCs,
the model-checking problem of F-sentences is Karp-reducible to the model-
checking problem of F'sentences.

If both F <4 F' and F' <4 F, we simply write F.

(ii) F' weakly subsumes F on finite DTMCs, denoted F', iff to each ¢ € F there
exists a € F' such that ¢ = y.

If both F <¢ F' and F’ <¢ F, we simply write F'. A

The relations of Definitions|3.1/to[3.4} are similarly defined for MDPs with HyperPCTLy,p,
and PHLp. Note that in both cases < = <¢ = <g.

3.2 Overview on DTMCs

In this section, we shall point out superficial differences between the three logics that
are easy to see a priori.

As we have seen in Sections to HyperPCTLppyc is the only one of the
three logics that does not require nor use an initial state in the DTMCs on which

its semantics operate, and the only one that can quantify over states arbitrarily. In
contrast to this, both HyperPCTL" and PHL - can only quantify over paths drawn
starting at a unique initial state. This simple difference alone is enough to conclude that
HyperPCTLpyc is subsumed by neither HyperPCTL' nor PHL ¢, as the semantics
of the first will also take unreachable states into consideration.

{a} {b}

oNo

{a}

$1

Figure 2: DTMC with a uniquely labelled unreachable state s.

Theorem 3.5. HyperPCTLypc ¥ HyperPCTL" and HyperPCTLy i ¥ PHLp e
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Proof. Consider the DTMC D shown in Figure 2} and the HyperPCTLppy formula
@ = 351.35,. ag, A by,
which asserts that there exists one state marked a and one marked b. Obviously D & ¢,

for example with the state assignment ($§; — s,,$; — s,).

In both other logics, there is no possibility to discover this pair of states laid out by
Definitions and|2.25} so any check for this, be it probabilistic or otherwise, will fail.
This remains the case, no matter which state of that DTMC is chosen as initial. O

On the same note, Wang et al. [Wan+21] argue, albeit without providing an explicit
proof, that HyperPCTLypy,c <2 HyperPCTL".

Both HyperPCTL" and PHLyyc can express weaker formulae that imply the coun-
terexample ¢ given in the preceding theorem, for example

Am. 3. Qazy A Obs, € PHLppc» and
Pi 4, (Oaz AObs,) >0 € HyperPCTL,

which both assert that states s, s, € S can be found, such that a € I(s;), b € I(s,) and
both s; and s, are reachable from the initial state s, by a finite path fragment.
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Chapter 4

HyperPCTL" vs. PHL on DTMCs

In this chapter, we compare HyperPCTL" with PHL ;1 and a focus is laid mostly on
embedding classes of formulae of the latter into the former. First, we will look at the
strictly probabilistic part of PHL1c» and it will be shown that this part is completely -
and strictly - subsumed by HyperPCTL" Having done this, we will explore the fragment
of PHL ¢ that is comprised of non-probabilistic HyperCTL" formulae, and we will
identify parts of it that are also expressible in HyperPCTL. At the very end, we will
use the identified transformations to find equivalences between fragments of the two
logics.

In the sequel, we consider a fixed set of atomic propositions AP. Furthermore, both of
the logics use DTMCs with an explicit initial state. We assume this state to be always
named s,.

4.1 Probabilistic Hyperproperties

As we have noted in Section [2.3.3/and Section 3.2} the probabilistic part of our proposed
downscaling of PHL to DTMCs can only take measures over paths modelling unmarked
LTL formulae — that is, it expresses probabilistic non-hyper properties. First up, we
will prove, based on this, that HyperPCTL" is not embeddable in PHLpyc-

We proceed to fix a constant ¢ € QQ and take a look at HyperPCTL" formulae that
compare multiple different paths at once, such as

Q= Pf[l’frz(aﬁl U bﬁz) > C.

This formula draws pairs of paths starting at s,, and asserts that the probability of
continuously crossing a-labelled states on one path until reaching a b-state on the
other is larger than c. Recall that the semantics advance all drawn paths at the
same time, so anything that happens on (the assignment of) 7, before reaching b on it
is unimportant. If there is a way to uniquely identify the initial state by atomics, for
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example if the initial state is uniquely labelled by an atomic proposition init, then this
is equivalent to the following HyperPCTLpyc formula:

q), = 35.355. initg A initg, /\I[D(CLS*1 U bgz) >c

Later, it will be shown that this argument is correct and generalises to an embedding
of a considerable fragment of HyperPCTL" into HyperPCTLypc. However, these
probabilistic comparisons are inherently incompatible with our proposed PHLy 1y
which only allows unmarked LTL formulae inside its probabilistic operator. It can,
nevertheless, express stricter non-probabilistic variants, such as

V= V.Y 7. az u bﬁz,

with y £ ¢, ¢’. We lay emphasis on the following: y' := P(a U b) > ¢ € PHLpyc is
implied by neither ¢, nor ¢’. a U b models single paths that reach a b-state while only
crossing a-states, while the latter two formulae take the measure over pairs of possibly
different paths in parallel, such that only a-states are crossed on the first one until a
b-state is reached on the other one.

Example 4.1. Consider the DTMC D in Figure[3} We compute

[P(aU b)]];HLDTMC = Pr{rr € Pathsp(s,) ’ ne=al b}
=Pr{s;s}}
= Pr(Cyly(s512))

as well as
[Ps (a5, U b )™ = Pr{(m, m) € Pathso(s,)’|
D, (7~ m, 1, = M) E az U b;,z}
=Pr {(s,sus‘z"l, $:513)5 (85118575 1513553 )»

(51579, 5:512)» (8513853, s,sf’z)}

33 31 11 31
= i — e — e — 4 — . —
77 77 77 77
16
49
Select ¢ := % For this ¢, D # y' but D k ¢, since ¢ = % = % < g. A

We will now collect and prove the preceding thoughts in the following segment. To
argue about LTL formulae in probabilistic expressions of PHL ¢, we first need more
auxiliary terms.
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{a} W) ()

S12

{a} {b}

Figure 3: DTMC where b is reached at different offsets in “0b”-paths.

Definition 4.2 (Trace). Let D be a DTMC with labelling function [, and 7 € Pathsqp.
The trace of m is defined as the sequence of all labels that appear in m:

trace(m)|:= (l(ﬂ(’)))

A word over the trace trace() is an infinite word that results by selecting exactly one
atomic proposition from each member of the sequence. VAN

For example, from ({a},{b,c},{d},{d},...), we can extract the words abd® and
acd®.
Definition 4.3 (Trace equivalence). Let 7, 7’ be paths of one or more DTMCs. 7 is

called trace-equivalent to n’, denoted ', iff

trace(rm) = trace(n’). A

It can be shown [BKo8] that the language of all words recognised by an LTL formula
is w-regular and that trace-equivalence implies LTL-equivalence, i.e. that two trace-
equivalent paths can not be separated by an LTL formula.

Theorem 4.4. Let a,b € AP, a # b, and 7y, 71, be path variables. PHL - can not
express a probabilistic expression which evaluates equivalently to P4, 4, (az U bs,) in
HyperPCTL".
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Proof. We shall construct a counterexample. Consider a family of DTMCs (D;, ) 2<n<w>
where each D,,, 2 < n < w is defined as shown in Figure We have

{trace(n) | w € Pathsp, (s)} = {a"c®,a""'c?, a"'b®}.

Importantly, no single LTL formula can separate a"c“ from a™1¢? for all n. As such,
we have the following possibilities for the evaluation of the PHLyp\,c probabilistic
expression P(#), n € LTL:

1
n+l"

(1) 1 models only s,s1;...s5;. Then [P(17)[,, =

(i) # models a path s,s1j...5,,,, ;> j € [2, n]. Then it models the paths of that form for
n-1

all j € [2, n], since they are trace-equivalent and we compute [P(#)],, = 75

(iii) # models both the paths laid out in (i) as well as those in (ii). In this case, we get
[UP(’?)]]@” = ﬁ
(iv) 1 models no paths in D,,. This resolves to [P(17)],, = 0.

(v) In each of the cases (i)-(iv), 7 additionally models s,s;...s};, ;. This adds the factor

S+l
1 . 2 n 1 .
el and results in the measures = 5L and 7 respectively.

In contrast to the preceding computations, the evaluation of the HyperPCTL" expression
yields

[P(az, Ubs)lyp .= Pr{(m,nz) ’ (711 = 5,81j.--5y41,; for some j € [2, n]
Vo = sle...sZ’H)

w
A Ty = slsl...snﬂ}

= Pr(s,s1...5,1) - (Pr(s,sl...sﬁﬂ) + Y Pr(slslj...szﬂ’j))

2<j<n
( )

_n
(n+1)?

which differs from all possibilities for the evaluation of P(#) in PHLyy by a noncon-
stant factor that depends on n. Hence there is no way to combine PHL 4 probabilistic
expressions by constant multiplication or finite addition such that the resulting formula
evaluates to the above for all n. O

This result does not preclude finding equivalent formulae given knowledge of a specific
DTMC, or a family of DTMCs. For example, if one selects a constant n, and builds a
factor using this # to bridge the difference, a PHL )¢ probabilistic expression can be
constructed, which is equivalent to P4, 4, (a4 U by, ) specifically on a single D,,.
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Probabilistic Hyperproperties

Figure 4: A DTMC, which has n + 1 paths with equal measures, for n < w. The traces
of the paths are (left-to-right) a"c®, a"*'c® (n — 1 times), a"*'b®.
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Example 4.5. Select a fixed n > 2, set

H PCTL*
c . H]P)ﬁl,ﬁz (aﬁl U bﬁ'z)]]@:per (n-:ll)z n
,Dn = = = N
H]P)(Ob)]]ED]:LDTMC _n}i-l n+1

and, with this, build the PHL ;1\, expression
po, = cp, - P(0b).
po, evaluates equivalently to P;, 4 (az U bs,) on Dy, A

The preceding theorem leads us directly to
Corollary 4.6. HyperPCTL" ¥ PHL 1y c-

Proof. Select a constant ¢ € (0,1)g and the formula
Pi 4, (as Ubs,) = c € HyperPCTL
The result follows directly from Theorem 4.4l O

There exist more reasons why HyperPCTL" does not fit into PHL . For instance,
HyperPCTL" allows, among others, direct multiplication of probabilistic expressions,
and the usage of exponential functions, which cannot be represented exactly in a finite
form to be compatible with PHL -

4.2 On HyperCTL*-less PHL

Let be the HyperCTL"less fragment of PHLyc, i.e. the fragment that is
generated by striking out all 9 rules in Definition [2.24| The semantics of this fragment

are fully compatible with HyperPCTL".

Essentially, all of the syntactic rules can be taken over verbatim, and the only change
we need to make is map P(#) to P;(#4), where 7; is identical to #, but has its atomics
marked by 7. Nevertheless, we still want to produce clean formulae, so we need to
ensure that 77 is fresh in its context. To achieve this, our transformation will include a
counter as a second argument. The counter will be used to index variables and will be
incremented for every variable that we add.

Theorem 4.7. PHLBOTSMC < HyperPCTL".
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Proof. We know that HyperPCTL" ¥ PHLy1y from Corollary[4.6} so equivalence is
ruled out. For the strict subsumption, we give the following transformation. Assume
nod

without loss of generality that IT = {7, 711, ...}, let ¢, ¢’ be PH Lrmc top-level formulae,
p, p probabilistic expressions, ¢ € Q, , " LTL formulae, a € AP, i < w, and set

o) = T(,0), )
Tpnghi) = T(p,i) AT(9)i+|var(T(g, 1)), (2)
(-9, i) = -%p,i), ©)
Tp<phi) = F(p,i) <T(p'i+]|var(T(p,i))]), (4)
e-psi) = Tei)-Tp,i), (s)
Tp+phi) = F(p,i)+T(phi+|var(T(p,i))l), (6)
T(c, i) = )
T(P(n),i) = Pp(%(n.i)), (8)
T(On,i) = O i), (9)
T(nUnsi) = T(n,i) UZ(n’i), (10)
T(-n,i) = =Tn,i), (11)
Tnansi) = T(ni) AZ(n’0), (12)
%(a,i) = az,, and (13)
T(true,i) := true. (14)

Rule 1| initialises a counter variable that is used to produce clean HyperPCTL'
formulae.

- Rules|2} 4} and|6|recurse on the LHSs, and then on the RHs after incrementing its
counter by the number of variables that were used in the LHs.

Rules and [g| through [12] simply take over the syntactical elements of the
original formula and recurse on its subformula(e), keeping the counter the same.

Rule 8/ drops into a probabilistic expression, using the variable with the same
index as the current counter value.

Rule 13/ marks the original atomic proposition with the same index as the current
counter value.

Rule 14/ maps the truth constant to itself.

In PH LI”)"T‘(’MC, atomic propositions only appear within a probabilistic expression, and
probabilistic expressions can’t be nested. Hence if rule[8)is used, it is never used again
recursively and all atomics that appeared in the original PHL - subformula # are
mapped to themselves indexed by the variable selected by that instance of rule|8| The
semantics of A, =, U, and O (within probabilistic expressions) are the same across both
logics, and the syntactic rules of LTL are compatible with those of path expressions in
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HyperPCTL". Thus every probabilistic expression that is generated by rules 8| through
14]is a syntactically correct, closed HyperPCTL" probabilistic expression.

Since the top-level semantics of A, —, <, -, and + are the same, it only remains to show
that the resulting formula is indeed clean, and that probabilistic expressions and their
mappings evaluate equivalently. The latter half is easy to see; to this end, let D =
(8,5, p, AP, I) be an arbitrary DTMC. Since PHLppy does not allow nesting of P
operators, no recursive usage of ruleoccurs, and we introduce no P-nesting in the
resulting formula. Furthermore, each path that is drawn, is drawn from s,. Let i < w
and note that T(#, i) is exactly the same as #, but with its atomics marked with 7; by
rule[13, We compute

[[IP’(U)]];HLDTMC = Pr{m € Pathsq(s,) | D, FPHLy e n}
= Pr{ﬂ € Pathsq(s,) | D, (i = 7) Epyperpet T(7, 1)}
. HyperPCTL*
= [Pa (T )] "
_ [[T(P(ﬂ) , l.)]]%yperPCTL*

Finally, to show that the formulae that are generated are clean, we only need to consider
the transformants of formulae of the form

oAy, or pxp,forxe{<,+}.

This suffices, since the counter does not change after rule[8, and rules and [6|are
exactly the ones before rule|8, in which we recurse on both sides of the expression. We
ignore rulels} since its left-recursion cannot reach rule(8|

From rule|2} we get T(¢ Ay, i) = (¢, i) A T(y, i + [var(@)|). Let j be the index of a
variable in y. We have j > i + |var(¢)|. For a variable indexed by k in ¢, we compute
i <k <i+|var(¢p)| Intotal, we get j > i + |var(¢)| > k,so j > k.

Since j is the index of an arbitrary variable in y, and k the index of an arbitrary
variable in ¢, the maximum index in ¢ is strictly less than the minimum index in y

and T(¢ Ay, i) is clean.

The same result also follows for p * p” in a similar fashion by applying rule|4} or rule6|]

Example 4.8. Consider the PH L%OTSMC formula

P(OaUb)<P(cUa)A=(0<P(0a)).

The most straightforward strategy to apply the transformation from above is leftmost-
innermost and we can visualise that as seen in Figure|s|
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By putting the branches back together using the original junctors, we finally get

Py (Oaz, U bz,) <Py (e, Uaz) A= (0<Pz,(0az,)) A

T(P(QaUb) <P(cUa)a-(0<P(0a)))

T(P(OQaUb)<P(cUa)A-(0<P(0a)),0) ®

T(P(OaUb) <Py (cUa),0) (- (0 < P(0a)),2)
s
T(P(OaUb),0) T(P(cUa),1) -Z(0<P(0a),2)
S I E—
P;, (3(Oa U b,0)) P (T(cUa,1)) 7(0,2) T(P(0a),2)
(10)
P4, (2(Oa,0) UT(b,0)) Ps (T(c,1) UT(a,1)) 0 P, (%(0a,2))
(&) —
Py, (OF(a,0) U T(b,0)) P, (¢, UT(a,1)) Py, (0%(a,2))
— @ — @
P, (Oaz, UE(b,0)) Py (cs Uay) P, (0az, )

P, (Oaﬁo U bﬁo)

Figure 5: Visualisation of the mapping from Theorem |4.7| applied to P(Qa U b) <
P(cUa) A= (0 <P(Qa)). The numbers on the right correspond to the rules
used in each step.

The preceding result naturally raises the question of how much of the rest of PHL ¢
that is HyperCTL; fits into HyperPCTL", which we will look into in the following.

4.3 % and II; HyperCTL' Sentences in PHL

In this segment we shall consider 2,/IT; sentences of the HyperCTL" fragment of PHL,
that is sentences of the form

n.y, or V.,

for a quantifier-free #. This was chosen as a starting point, since X; and IT; represent
the only possible formulae in HyperCTL" with only one quantifier.

First up, we will show that some parts of the X;/IT; fragments of HyperCTL" are re-
dundant in PHL ¢, since they can also be expressed by its probabilistic expressions.
For this part, we can trivially extract a mapping to HyperPCTL" by translating it to
PHLMS - and then applying Theorem This will be done by adapting a subset of
the results of Ch. 10.2.2] to fit our case, since the reasoning is very similar.
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4.3.1 Redundant Rules

Let us start with an example. Consider V7.Qa;, which simply asserts that every path
has at least one a-labelled state. If this is the case, then

Pr{n|nE Qa} =1,
since the measure above evaluates to the measure of Cyl(s,). Hence
Via.Qay EP(Qa) = 1.

Using the same reasoning, a can be replaced by any propositional logic (PL) expression {
over AP. In short, if we denote with {; the formula { with all of its atomics marked
with 7, this generalises to

V.00 EP(O0) =1, for { € PL.

However, the reverse direction does not hold. For example, in the DTMC of Figure 6}
we have a single “~{Qa”-path with measure zero, that is s{°, so the (dual) measure of Qa
evaluates to one. Obviously, the absolute property V7.Qa; does not hold here.

12

@ {a}

Figure 6: DTMC with Pr {7 & {a} =1, and a single “~{a”-path.

Lemma 4.9. Let € PL. The following equivalences hold:
i) P(OQ) =1=Va.O0.

(i) P(O0) > 0= I%.00.

Proof. We will only prove the base case { = g, for a € AP. Let D = (S, s,, p, AP, ) bea
DTMC.
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() DeP(Oa) =1 < [F(Oa)]p=1

Pr{m € Pathsp(s,) | D,mE Qa} =1

Pr{m € Pathsq(s,) |ael(m(1))} =1

Pr| {Cylp(sis) [seSnacl(s)} =1
> Pr(Cylp(sis)) =1

seSAacel(s)

Frid

— Z p(s;,s) =1
seS Aael(s)
— Zp(s,,s) =1
ses
<= VsePostp(s,):acl(s)
<= VmePathsp(s):ac l(ﬂ(l))
<~ DeEVa.Qas.
(i) DEP(Qa) >0 < [P(Oa)]p >0
<= Pr{m e Pathsp(s,) | D,n=Qa} >0
<= Pr{mePathsp(s,) [acl(n(1))}>0
< Pr|J{Cylp(sis)|seSnacli(s)}>0
< 3dseS:acl(s)APr (CyI,D(s,s)) >0
<= dsePostp(s):acl(s)
< 3JmePathsp(s,):ael(n(l))
— DEIn.Oay.
This concludes the proof. O

The argument above relies entirely on
t € Postp(s) Aael(t) = Cyly(st) c {mePathsp(s) | 1= Qa},

i.e. ifa path fragment models Oa, then so do all paths that have this fragment as a prefix.
This line of argumentation can also be expanded to U. The sentence 377.a; U b5 holds on
paths where b can be reached by a finite fragment while only crossing a-labelled states.
Hence, the cylinder set of this fragment is a subset of {7 € Pathsp(s) | 7= a U b},
making the measure of the latter nonzero. Furthermore, we can also extract a special
case from -Qa = O-a.

Lemma 4.10. Let {, {’ € PL. The following equivalences hold.
(i) P(CU{)>0=37 (UL,
(ii) P(0¢) =1= Va.0¢.

43



HyperPCTL vs. PHL on DTMCs

Proof. Again, we only prove the base case for { = a and ' = b, a,b € AP. Let
D=(S,s,,p,AP,1) be a DTMC.

(i) DeP(aUb)>0 <—
—

—

!

[

(i) DeP(a)=1

Pttt reptd

This concludes the proof.

[P(aUb)]p>0
Pr{m € Pathsp(s,) | D,m=aUb} >0
Pr{m € Pathsp(s,) | Fj<w Vi< j:
ael(n(i))abel(n(j))}>0
3j < w 3s;51...5j € Paths3y’(s,) :
bel(sj))aVi<j:ael(s;)
APr (Cylgp(si...s;)) >0
3m e Pathsp(s,) Jj<w Vi< j:
ael(n(i))abel(n(j))
D = 3. a; U by,
[P(Oa)]p =1
[1-P(0Oa)]p=0
[P(-Oa)], =0
[P(O-a)]p =0
~(IP(0-a)]p>0)
~(D=P(0-a) >0)
D#P(O-a)>0
@P’Z E|7Al'.<>—|a7¢[
DE —EIf[.O—‘a;T
DE Vf[.Daf,.
O

The argument of item (i) in the preceding lemma can be generalised for arbitrary
nesting of U operations. An exhaustive proof will be given in the next section for
the more general case, however the intuition behind it is as follows. First consider

right-nesting:

aUbUc

Any path 7 that models a U b U ¢ has a trace that has a word with an initial segment of
the form a"b™¢, for n, m < w. Whatever follows is irrelevant, hence every path in

Cyl(ﬂ(O)mT[(l’l)--'T[(H +m)n(n+m+ 1))
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models it as well. The cylinder set has a nonzero measure, whence follows the wanted
result. For left-nesting, as in

(aUb)Uc,

we would get the following situation. A path 7 models it iff it has an initial segment
with a trace with a word of the form, for example, a"b™c, ¢, or similar, for n, m < w.
The same argument as for right-nesting applies, since it all comes down to the existence
of a finite prefix of the path that has the wanted trace.

Note, however, that we can not swap 3 and V, or > 0 and = 1. The reason behind this
is similar to the one presented in for VOa and 30Jb in the context of CTL vs.
PCTL. Here, explicitly transferring this result over is beyond the point, since we are
ultimately interested in embedding PHL in HyperPCTL}; and not PHL in itself; knowing
that a class of formulae of HyperCTL" is not expressible in the probabilistic part of
PHL does not preclude them from being expressible in HyperPCTL:

In the same line of argumentation, one can show that O is compatible with U and [J in
the above. First, note that O distributes with U:

O(aUb)=0aUQOb

With this, 37.0(a; U b)) = P(O(a U b)) > 0 follows exactly as in the preceding
theorem by replacing 7(i) and 7(j) with (i + 1) and 7(j + 1), respectively. The case
for Va.O0ay follows, again, by duality. Similarly, one can show that 37.(Qa; Ubj) =
P(OaUb)>0,37.(az UObs) =P(aUOb) > 0, and so on.

Chaining all of the preceding using A, and Vv is also possible. For A, take the path
fragment with the maximum length of those modelling the Lus and rHs, and for v a
path fragment that models either formula.

In essence, the X; fragment of HyperCTL, where also no negation of U and O terms
is allowed (LTLY), in total denoted [%;|LTL"], and called the 1-existential L TL-positive
fragment of HyperCTL, can be mapped to PHL probabilistic expressions, and via
Theorem 4.7|to HyperPCTL" formulae. An explicit grammar for this fragment is shown
in Figure[7} Note that negation of strictly propositional formulae inside U and O terms
is still allowed. Due to this, and O—-a = -a, it is implicitly allowed that O terms that
contain strictly propositional formulae also be negated.

(2 formulae) ¢ == 3y
(LTL" formulae) n==nUn|On|nan|nvy|C
(PL formulae) (==(nA (| ﬁ(| as

Figure 7: Grammar of|[ £;|LTL* ]-HyperCTL*
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At last, we sum all of this up in
Theorem 4.11. [Zj|LTL"]-HyperCTL" < PHLRS) - < HyperPCTL".

Proof. We give the following explicit transformation from [Z;|LTL"]-HyperCTL" to
PHLS . Let #,7" be LTL" formulae, and ¢, {* PL formulae, built as shown in the
grammar of Figure[7} a € AP, and 7 a path variable. Set

T(3rn) = P(2(n))>0, (1)
T(nUy') = () UI(y), (2)
LOn) = On), (3)
Tnan) = () AZ(n'), (4)
Tvy') = ) vE(), (5)
TAAT) = O A, (6)
T(-0) = =%((), and )
T(az) = a. (8)

Lemmataandallow us to map 374.( U " to P(T({) UZ({')) > 0,and I37.O¢
to P(OZ({)) > 0, where ¥ only strips the variable markings of { and {’. The result
follows as a direct consequence of these, with the preceding argumentation concerning
nesting of U and O terms, and by chaining of Theorem|4.7 with %, i.e. o T.[0

Let |[I1;|-LTL" |-HyperCTL"| be the fragment that results by replacing the rule ¢ of
Figure[7|by

@ == Vi.-n.

This will be called the 1-universal negated LTL-positive fragment of HyperCTL; i.e. the
fragment comprised of the formulae that have exactly one universal quantifier followed
by a negated top-level LTL formula, which in itself has no negations in front of modal
operators. We can expand the previous theorem to map this fragment to PH LD°TMC as
follows.

Corollary 4.12. [IT)|-LTL ]-HyperCTL" < PHLS - < HyperPCTL".

Proof. Follows from Theorem 4.1/ with V71.-# = =377, by introducing the extra rule

to the transformation given in said theorem. O]

Note that this corollary also includes the special case for V7.01{; shown in Lemma)4.10((ii),
and the one for V7.0, shown in Lemma |4.9((ii).
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As mentioned previously, based on [BKo8], it is reasonable to surmise that 3 generally
cannot be exchanged with V, and > 0 with = 1, in the preceding theorem and corollary.
This also precludes us from systematically axiomatising HyperCTL" statements of the
form V7.Q#, 37.0x, and so on, in HyperPCTL"

Conjecture 4.13. Let a € AP. The HyperCTL" sentences

Va.0as, and
EIf[.Da;T

are not axiomatisable in HyperPCTL" A

4.3.2 Nested LTL Negation

In the final part of this section, we will briefly make it plausible that the requirement
that LTL formulae - apart from the outermost one - be not negated, which we saw in

Section cannot be lifted.

This will be done by looking at examples of formulae in HyperCTL" with nested negation
of modal operators, which evaluate differently from their counterparts in HyperPCTL"
on certain DTMC:s.

We consider the simplest case of nested-negated LTL formulae,
O0a, orequivalently trueU —(trueU -a),

first up with existential quantification:
3A.00ay; € HyperCTL.

To discover the existence of such a path with a HyperPCTL" formula Pz(¢) ~ ¢, with
¢ € HyperPCTL, c e R,k € Riand ~e {<,<,=,#,>, >}, we must construct ¢ in such
a way that

Pr {7 ¢ (Pathso(s,) | D,&[7] = 9} ~ ¢ = D Ir.00as,

for all DTMCs ‘D. However, we can construct families of DTMCs (D, ) which contain
one DTMC for each value r in the interval [0, 1]g, such that the measure of “00a”-
paths on D, is r, which indirectly shows that this equivalence isn’t constructible via
comparison to a constant. One such example is shown in Figure 8|
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1/2

{a}

(a) Dy with Pr{m £ ¢0Oa} = 0. (b) Dy with Pr{m = 00a} =1

(c) D, with Pr{m = Q0a} =r,re (0,1) cR.

Figure 8: Family of DTMCs (D; ) e[g,1;}, where Pr{m & OlJa} spans the entire real
interval [0,1], while all D, model 37.00a.

Lemma 4.14. There exists no constant ¢ € [0,1]g such that

Pﬁ(ODaﬁ) ~C= Hﬁ.ODaﬂ
—
HyperPCTL* HyperCTL*

Proof. Consider the family (D;),e(o,1), of Figure 8, All D, model the HyperCTL"
formula, which asserts that there exists one path 7, such that an offset 7/, for some
j < w, has a trace with the word a®. Specifically, on Dy and Dj, this holds for the path
s ande.g. j=0,and on D,, r € (0,1)R for the path s,;s{" and e.g. j = 1.

Nevertheless, the evaluation of the HyperPCTL" expression on D, yields
[[IP’fT(ODaﬁ)]],Dr =r, forre[0,1]g,

that is, the probability that a path models ¢OCa spans the entire real interval [0,1]g on
the family (D, ). O

Using the same family, we can draw a conclusion for

V#.QO0-a; € HyperCTL.

48
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Specifically, while it implies

P;(O0-ay;) = 1€ HyperPCTL,

there is no HyperPCTL" formula which is equivalent to it, simply because there exists
no HyperPCTL" formula that can reliably detect ${J-a on all paths of a given DTMC.
The family of Figure [8|attests this.

Lemma 4.15. There exists no constant ¢ € [0,1]g such that

]P)f[(<>|:|—|aﬁ) ~C= Vﬁ.OD—'aﬁ

HyperPCTL* HyperCTL*

Proof. We compute

[[Pﬂ(omﬂaﬁ)]]@, =1-re[0,1], forre0,1]g,

while none of the D, model the universally-quantified HyperCTL" formula. A coun-
terexample on Dy and D; is s, and one on Dy, for r € (0,1)R, is 5,5 O

Furthermore, using more (nested) quantifiers does not help, as it forces either new
quantification over all paths starting as s, — which repeats the incompatibilities laid out
in Lemmatal4.14/and[4.15 - or quantification over subtrees of a drawn path. The latter
will be examined in-depth in the next section. However, for the purposes of the current
argument, let it simply be noted that nested quantification in HyperPCTL" behaves
similarly to its counterpart in HyperCTL; and it should be clear, that, for example

Eﬁl.ODaﬁl ES Eﬁl.OVﬂz.Daﬁz,

since Dy (Figure [8a) models the left, but not the right one. Replacing ¥V with 3 in the
latter furthermore cannot lead to a fitting solution; while it holds that

Elfrl.(}Da;Tl = Elﬁl.OElfrz.Daﬁz,

mapping this to HyperPCTL" would require us to have a way to axiomatise 377.00a; in
HyperPCTL; which is not the case.

49



HyperPCTL vs. PHL on DTMCs

4.4 HyperCTL' Sentences in PHL with Multiple
Quantifiers

The natural next step is to see if and how the results of the preceding section scale with
multiple quantifiers. However, we now have two cases to consider, based on whether
the formula in question is in Prenex Normal Form (PNE), that is whether it has the
form

Qpo1Xn-1 QuaXp— -+ QX1 QoX. n,
for a sequence of quantifiers (9;)i<, c {3, Y}, and a quantifier-free 4. We make a
distinction between
— formulae in PNF and ones that can be transformed to PNF, and

- formulae with nested quantification that cannot be transformed to PNF.

The need for this arises from the semantics of quantification in HyperCTL" Specifically,
quantifiers draw new paths from the start of the last drawn path. As such formulae in
PNF draw all their paths from the initial state, whereas ones not in PNF may quantify
over subtrees of paths.

In Section|4.3, we did not have to deal with this difference, since the only possible form
of (closed) HyperCTL" formulae with just one quantifier is already PNF.

We introduce the following shorthand notation. For Q € {V, 3}, let

0"%  stand for QXg---QX,-1.

4.4.1 Formulae in PNF

First up, we will briefly outline that X, /IT, with alternating quantifiers is incompatible
with HyperPCTL" X,,/I1,, formulae are defined as having the form

Qp-1Xp-1 Qn—szn—z o X QOJAC- n,

for a sequence of quantifiers (Q;);<, c {3, V}, and a quantifier-free #, where
— The quantifiers are alternating: 9Q;.; = {V,3} \ Q;, foralli <n —1.
— For Z,: The outermost quantifier is existential: Q,,_; = 3.

— For I1,,: The outermost quantifier is universal: Q,_; = V.

Lemma 4.16. Let1 < n < w. If Conjecture|4.13 holds, then neither the|[Z,|LTL"]} nor
the|[I1,|LTL" ||fragment of HyperCTL" is embeddable in HyperPCTL"
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Proof. The result follows by simple application of the well-known hierarchical inclusion
chains X, c IT,4;, and IT,, ¢ ¥,4;. To reach a contradiction, assume that the opposite
of the statement above is true, and consider

¢ = 3m,_ 1. Vitu_p. - 3. V1T. (true U aﬁo), and

¢ =V, Ifp_g. - V1. Elﬂo.ﬁ(true U ﬁaﬁo).

Note that ¢ = V7.0 a;, and ¢” = 37.00a;. By hypothesis, there exist y, v’ € HyperPCTL,
with y = ¢, a ¢y’ = ¢’, however then y = V7.0Qay, and v/ = 37.0a;. In both cases, a
contradiction to Conjecture O

The result of the lemma does not prevent specific special cases of formulae with al-
ternating quantifiers from being embeddable in HyperPCTL;, however it precludes a
systematic transformation similar to the ones in the previous sections.

Here, we subsequently focus on PNF prefixed by 3" and V". To continue, we need to
introduce a new concept and use it to prove a key property of LTL" that was only glossed
over in Section 4.3.1— namely, when evaluating the semantics of LTL', formulae, we
always can limit ourselves to finite path prefixes. For example, for a path 7, we have

nEaUbelTl" < Jj<wVi<j:neanneb.

Unbounded expressions of the form “j < w” as above exclusively turn up with existential
quantification, i.e. we never get Vi < w ...,or 3j < w Yk > j ..., or anything similar
that would cause an index to range over an unbounded subset of w.

This very property allowed us to embed [Z|LTL* |-HyperCTL" in HyperPCTL" - and its
IT; counterpart by way of reduction to Z; via duality. Based hereupon, we introduce the
term non-divergent for properties that can not induce unbounded behaviour, similar to
the example above. In the case of DTMCs, we can formalise this using prefixes and
cylinder sets.

Definition 4.17 (Non-divergent properties). A trace property P is called non-divergent,
iff for all DTMCs D and any path 7 € Pathsp, such that D, 7 £ P, we can find a prefix
Tlpre € 71, such that D, ' = P, for all 7' € Cyl(7mpre ). AN

Let D be a DTMC. For a path prefix 77, and a path expression #, we write Cyl,,(7) E 7
(the cylinder set of m models @) as a shorthand for Vn' € Cyl,,(7) : D, 7’ E ¢.

We call the path assignment p total for the sequence 7t € 11", n < w, iff p(#;) # L, for all
i < n, and denote the space of path assignments on D that are total for 7 by [tap (7)]

For a tuple of path fragments u := (7o, ..., 7,), and 7 = (g, . .., 7y_1) € I1" we set

Po(7,7):= {p € tan(7) | Vi < n:p() € Cyly(m) |,
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that is P (7, u) is the set of assignments over 7 to paths of the cylinder sets of the
fragments in u. Intuitively, this construct represents a translation of cylinder sets to sets
of path assignments, and will now be used to expand Definition|4.17/to hyperproperties
in

Definition 4.18 (Non-divergent hyperproperties). Let 77 be a sequence of path vari-
ables, and H a hyperproperty referencing the variables of 7z. The hyperproperty H is
called non-divergent, iff for any DTMC D, and path assignment p € (7 — Pathsqp)
with D, p = H, we can find a sequence u of prefixes of the paths in im(p), such that
D,p e H, forall p e P (7, u). AN

For a set of path assignments 33, we write D,’P F #, as a shorthand for Vmr € ‘P :
D, p E 1. Based on these definitions, we can now prove the following intermediary
result connecting LTL" and non-divergence.

Lemma 4.19. (Marked) LTL" formulae specify non-divergent (hyper-)properties.

Proof. The wanted result for marked LTL" shall be shown via structural induction
over the form of LTL" formulae. Let D := (S,s,, p, AP, 1) be a DTMC, and p a path
assignment. Furthermore, let n := |p|, and (7o, . .., 71,-1) := dom(p).

Induction Start. Let { be a PL formula. We have p = ( iff the tuple of the first
states of all paths in p models { on its own, since modalities are not allowed in
PL. Hence

Poo(dom(p), (p(0)(0), .., p(a1)(0))) = 9.

Induction Hypothesis. Let 1 € LTL" be non-divergent, and 1 < n := |var(#)|. Then
if, for a path assignment p € tap(dom(p)), we have D, p 7, there exists by
definition an n-tuple of finite prefixes u = (7, ..., 7,-1) of the paths in im(p),
such that P (dom(p),u) & 7.

Induction Step. We have the following cases.

- 9 :=nAn"s p models I iff it models both # and %' separately. From this,
we extract via the hypothesis two tuples of prefixes of im(p)

Uy = (ﬂLpre,O’ N ﬂLpre,n—l), and

Ug = (”Rpre,Oa cees ”Rpre,n—l)

with

‘,Brp(dom(p),ﬁL) E 7, and
‘B@(dom(p),HR) Eqn
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We build a sequence of prefixes u as follows. For i < n, set

Tlipre,is 7t; € var(n) ~ var(n")
Uj = 9 Tlrpre,i> 7t; € var(n') \ var(n)

arg max 7t € var(n) nvar(n")

”E{”Lpre,i )”Rpre,i} |T[| >

In essence, for each variable 71 € var(9), we select the corresponding
member of the L-sequence, if 7 only appears in #, and the corresponding
member of the rR-sequence, if 7 only appears in #’. If 7t appears in both
formulae, we take the corresponding member with the maximum length
out of the two sequences.

With this sequence, we directly get

PBo(dom(p),u) = 9.

9 := n v y': p models 9 iff it models either of the formulae. The result

follows similarly to the previous case, by selecting all the members of the

L-sequence, if D, p & 7, or all the members of the r-sequence, if D, p E 7.

9 := On: p models 9 iff p! models #. From the hypothesis, we extract a
sequence of prefixes u of the paths in im (pl) with

P (dom(p),u) = 1.
The result follows immediately prepending p(7;)(0) to u;, for all i < |p|.
9 := n U ’: We have, by definition

DypEY — Jj<w: D'y AVi<j:Dyp' En.
Let j < w be given. By hypothesis, we get tuples of prefixes

Ui = (Mipre,i,05 - - - » Mipre,isn—1), for each i < j, and

HR = (T[RPI'C,O’ ey ﬂRpre,n—l)
of the paths in im(pi), i< j,and im(pj), respectively, with

‘Bq)(dom(p),ﬂm) =7, foralli < j, and
PBo(dom(p),u:) E1

Define for k < nand i < j
E(k) = (p()(0)) = (P () (j = 1)) Maprer and
Ei(k) = (p(0)(0)) -+ (p(k) (i =1)) Tupresi

The function & prepends the path fragments of u, with initial segments
starting at the corresponding initial state of im(p). Similarly, & ; does the
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same with the paths of the sequences u, ;, i < j. This is done to bridge the
gap between the original assignment p and the shifted ones.

We set

E. (k)= {EL,,-(k) |i< j}, and
E(k) = EL(k) U {gR(k)}‘

The set E; (k) contains the k-th component of all updated L-sequences,
and E(k) additionally the k-th component of the updated r-sequence.

Finally, we use these to construct the sequence u by

&r (k) 7 € var(n') ~ var(n)
Uk = Jargmax, g |7, Ak € var(n) N var(y')
argmax, .z |, A € var(y) nvar(y'),
that is we select as the k-th element either the corresponding path of the
updated r-sequence, if the related variable only appears in #’, the longest

path out of the k-th members of all the updated L-sequences, if it only
appears in 7, and the longest out of all of these if it appears in both formulae.

By construction, we have

Bo(dom(p),u) E 9.

The result for unmarked formulae follows as a special case from the above, by consider-
ing unmarked # € LTL" equivalent to #; € LTL" marked with exactly one variable 7,
and by using Cyl,(7) £ < P (7, 1) = 44 O

We are now equipped to prove

Theorem 4.20. Let 77(X) be an LTL" formula with 1 < [%| =: n < w free path indices.
The following equivalence holds.

F"7.q(7) =Pz(n(7)) >0
[ S N —
HyperCTL* HyperPCTL*

Proof. Let y, be the LHs and v, the rRHS of the above.

= Trivial. If the measure of n-tuples of paths modelling #(7) is nonzero, then there
exists at least one tuple of paths that models (7).

£ The result follows similarly to Lemma Let D := (S,s,p,AP,l) be a
DTMC with initial state s,. Since LTL" formulae specify non-divergent properties
(Lemma , D = yy, holds iff there exists an n-tuple of paths (7, ..., 7,-1) on
D, such that the cylinder set of a sequence of their prefixes

((10(1)) i<y wos (-1 ()i
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models v, where y > 1is the length of the individual paths. If y = 1, then the
initial state models #(7) on its own, and the measure evaluates to 1. Otherwise,
if u > 1, we get from

{7 € Pathsp(s,)" | D, 7t~ 7 E (i)} 2 {(70, .o0r Tn-1) }

the following:

[Pz(¢(7))]p = Pr{7 € Pathsp(s,)" | D, w7 = ()}
> Pr{(mg, ..., my-1) }

2Pr(Cyl((ﬂO(i)’""ﬂn—l(i))iql)) (Lemmal4.19)
- U Pr(Cyl((ﬂm(i))KM))
Dgec-vesoy

>0, since 7y, is a path

>0, since y<w

>0 since n<w

> 0.

The measure is nonzero in every case, and hence y, F . O

In the sequel, we call the class of HyperCTL" formulae that have the form 3" 7.%(7), for
n € LTL', the pNF-existential LTL-positive fragment of HyperCTL; denoted |[ 3" |LTL" |}
and set

[F[LTL FHyperCTL := | J[3"|LTL"]-HyperCTL"

n<w

Corollary 4.21. [3*|LTL"]-HyperCTL" < HyperPCTL".

Proof. Direct application of Theorem 4.20] O

4.4.2 Formulae with nested quantifiers

Lastly, it will be proven that [3*|LTL" ]-HyperCTL" expanded with nesting of further
[3*|LTL"] formulae is still compatible with HyperPCTL" That, is we can replace LTL*
subexpressions in [ 3*|LTL"]-HyperCTL" with nested [ 3*|LTL"] formulae, and we can
repeat this arbitrarily, while preserving the embeddability of the formulae in Hyper-
PCTL:
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In short, consider formulae ¢(x) and y(y), with placeholders x and y, such that ¢(#)
is [3*|LTL ], and y(#) € HyperPCTL" and equivalent to ¢(7), for some € LTL,
then

(0] (3”7:[1’],(7:[)) = W(Pfﬂ—last(ﬂ,(ﬁ)) > 0)’

HyperCTL* HyperPCTL*

where last is the last quantified path variable in the context of the placeholder y - or ¢
if no such variable exists — and 7 < last a shorthand for the ruleset

(70 < last, ..., 717 < last).

To subsequently formalise this, we first need a grammar (Figure|o)) for the fragment
of HyperCTL; which admits this — and only this — form of nesting. This fragment
will be called recursively existential path-positive, denoted [} 3*|7* |, where | stands for
recursion. As before, we continue to allow negation exclusively in PL formulae. Note
that this is a generalisation of [2|LTL" ], and [3*|LTL"], and therefore contains all of
their formulae.

(13" formulae) ¢ == 3.9 ‘ N ‘ Ve | n
(n* formulae) n:=pUg|Op|{
(PL formulae) (=0 A (| ﬂ(| as ‘ true

Figure 9: Grammar 0f|[¢§|*|7'[+]—HyperCTL*|

Lemma 4.22. 7" expressions, built as shown in Figure|g|specify non-divergent hyper-
properties.

Proof. The claim can be shown via structural induction over the form of 7* formulae,
similarly to Lemma O

As a last step before moving on to the embedding itself, we need the following auxiliary
term.

Definition 4.23 (Quantifier nesting depth). Let ¢ be a HyperCTL" formula. We de-
note by nd(9) the quantifier nesting depth of 9, which is defined recursively as follows.

nd(9 » 9") = max{nd(S),nd(Q')}
nd(~ 9) = nd(9)

nd(Qu-17p-1. - Qo7e.9) = 1+nd(9)

nd(az) =0

nd(true) = 0
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for x € {n,U}, ~e {~, O}, and (Q;)i<n ¢ {V, 3} a sequence of quantifiers. In the 3rd
rule, we assume that we always select the greatest applicable # for the formula, that is,
we never split a sequence of quantifiers across two steps. A
We can now prove

Theorem 4.24. [|3*|n*]-HyperCTL" < HyperPCTL".

Proof. We will give an explicit transformation. Let ¢, ¢’ be | 3* formulae, { be a PL
formula, built as seen in the grammar of Figure|9} and # < w, and set

T(p) = T(¢.e), (1)
T(3A".9,1) = Pr(ZT(g,last(7))) >0, (2)
Tpnep't) = g, 1) AE(¢) 1), (3)
Tpve'1) = g 1)VvE(9, 1), (4)
TpUgir) = T(p,7)UT(9)7), (5)
T(Oep, 1) = O%(¢,1), and (6)
T({, 1) = ?)

where last(7) is the last element of 7.

In short, the second argument of the transformation is used to keep track of the last
drawn path variable, all syntactic elements apart from 3 are taken over, while 3 itself is
mapped to a “> 0” assertion in rule[2} where it is also assumed that the largest applicable
n is taken - that is, we never split a sequence of quantifiers across multiple steps of the
transformation.

The most important addition in relation to Theorems|4.11and|4.20|is that we take over
the quantification context in rule[2/and use it to nest quantified formulae.

We want to prove
D,eE @ < D,e=T(p,¢),

and start by noting that the semantics of U, O, A, and v, are the same across both logics.
As such, we will only focus on rulel2, When we reach an instance of rule |2[starting
from the above, and having collected a path assignment p from previous steps, we map

"¢ to Pr . (T(g,last(7))) >0,

where 7 = last(p) is the last variable added to p, or ¢ if no such variable exists. As such,
the wanted equivalence from above ultimately reduces to

D,p =3¢ <= D,prEPi(T(p,last(7))) > 0.
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Since the starting formula is closed, we have p(7) # L, for all 77 € free(3"7.¢). We
continue via induction over the nesting depth of ¢.

Induction Start. For nesting depth 0, ¢ is LTLY, and 3"7.¢ is [3*|LTL"]. The
equivalence can be proven similarly to Theorem by drawing paths from
p(7)(0), instead of the initial state.

Induction Hypothesis. Let 1 < n < w be given, such that, for all formulae (closed
or not) ¢ € [{3*|n*]-HyperCTL with nd(¢) = n,

DypE ¢ < D,pEZT(9,1),

for all path assignments p, such that p(7) # L, for all 7 € free(3"7.¢), and
7 = last(p) is the last variable that was added to p, or ¢ if no such variable exists.

Induction Step. Let 3"7.¢ be an [|3*|n" ] formula of depth n + 1. We get

D,p = I".9 < Ime Pathsp(p(1)(0))" :
D,po{fti>mi|i<n}Eg

< 37 ¢ Pathso (p(7)(0))" -

@,p o {ﬁ', = 7T | i< T’l} = ‘I((p,f[nfl)
<= 37 € Pathsp(p(7)(0))" :
D,po{fti~>mi|i<n}E=T(¢,last(7))

< Pron {7—1 € Pathsq(p(7)(0))" :
(D,po{ﬁiHﬂ,'|Z'<l’l}

= T(g,last(7))} > 0
— D,pE=Pi(T(gp,last(7))) >0 O

4.5 Equivalent Fragments

In this chapter, we have mainly seen transformations that embed parts of PHLp\c
into HyperPCTL" These transformations generate certain types of expressions in the
latter, and can be inverted on these very types of expressions.

Theorem |4.7 creates HyperPCTL" expressions with in which
- no PP-nesting occurs, since PHL - does not allow this at all,

— each probabilistic operator draws exactly one path starting from the initial state,
and
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- probability measures can be added to one another arbitrarily, but can only be
multiplied with rational constants.

Let the fragment of HyperPCTL" that is comprised of these expressions be called its
draw-1 simple shallow fragment, and be denoted by [P;|p*|LTL*]. This fragment also
excludes the usage of functions such as exponential or polynomial ones in HyperPCTL".
A grammar is given in Figure[1o|

Here, shallow references that the content of IP operators is reduced to singleton-marked
LTL, and simple that functions are disallowed - with the implicit allowance of multi-
variate polynomials in Q of degree 1, that is, exactly those that can be represented by
applying the rules ¢ - p and p + p finitely many times.

oA |-p|p<p
clp+plecp|Pa(n)
(LTL formulae) Q= aﬁ‘true|17/\71‘ﬁ’7‘077"1u’7

(P; formulae) @

(p° expressions)  p =

Figure 10: Grammar of|[]P’1|pS|LTLS]—HyperPCTL*|

Theorem 4.25. [Py|p*|LTL*]-HyperPCTL' = PHLISY .

Proof. “>” is the content of Theorem 4.7, “<” follows by using the same reasoning and
inverting the steps of the transformation given in Theorem 4.7} specifically, simply by
removing all 77-indices from the LTL formulae and 7-rules from [P operators. O

Theorem generates expressions with nesting, in which probability measures are
only asserted to be nonzero, the only path variable that may be referenced by rules is the
last one that was quantified over (last), and negation is only allowed in PL formulae. Let
this fragment be named recursively nonzero path-positive and be denoted by [in2t|n+].
A grammar is given in Figure[i,

(UP’;(;tformulae) ¢ = Prpast(9) >0 ‘ PAQ | Ve ‘ n
(" formulae) n:=pUg|Op|{
(PL formulae) (a=0AC ‘ -( ‘ as | true

Figure 11: Grammar of |[J,]P’g2t

" ]-HyperPCTL|

Theorem 4.26. [|P}°

last

|7*]-HyperPCTL = [|3*|n* ]-HyperCTL".

Proof. “>” is the content of Theorem “<” follows by inverting the rules of the
transformation given in it. O
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4.6 Overview of Results

In this chapter, we first showed that PHL 1 cannot express multivariate HyperPCTL*
formulae in Section Then, we embedded the probabilistic part of PHLy ¢ in
HyperPCTL" in Section 4.2} and subsequently focussed on HyperCTL, starting with
formulae with one quantifier in Section 4.3, and building up to multiple quantifiers,
and quantifier nesting in Section Finally, in Section [4.5| we identified equiva-
lent fragments between the two logics by looking at the types of formulae that our
transformations generate, and inverting them on these formulae.

In total, we saw that we can embed into HyperPCTL"
— the entire probabilistic part of PHLpypyc: PHLIS - (Theorem , and

— the recursively existential path-positive fragment of HyperCTL" [{3*|n* ] (Theo-
rem |4.24j).

By looking at the forms of the formulae the given transformations generate, we found
fragments of HyperPCTL" that we can embed in PHL:

— The draw-1 simple shallow fragment [IPy|p*|LTL*] (Theorem 4.23)
— The recursively nonzero path-positive fragment [JP;° |7*] (Theorem

Moreover, in the process of examining HyperCTL, we made it plausible in Section
that we cannot lift the path-positive modifier. That is, we cannot allow nested LTL, and
subsequently nested path expressions, to be negated.

It still remains open, whether special cases of multivariate HyperPCTL" formulae are

expressible in PHLIY -, and whether the equivalence

[{P;0 |7 ]-HyperPCTL = [} 3*|7* ]-HyperCTL*
of Theorem represents the largest fragment equivalence between HyperPCTL"
and HyperCTL" (excluding special cases). Specifically, we only saw that the most
generic case of formulae with alternating quantifiers of HyperCTL" is not embeddable
in HyperPCTL" in Section |4.4} basing this on Conjecture|4.13} Furthermore, we only
examined the probabilistic and non-probabilistic parts of PHLy 1 in isolation from
one another. It may be the case, that, when combined, they can express more parts of
HyperPCTL" than just the fragments mentioned above.

Future work on this examination could further include proving (or disproving) the con-
jecture, and finding special cases of formulae with alternating quantifiers in HyperCTL®
that have equivalents in HyperPCTL.
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Chapter 5

HyperPCTL vs. PHL on DTMCs

As we have noted in Chapter 3, HyperPCTL is inherently incomparable to PHL, due to
the usage of initial states in the semantics of the latter, whilst the first has no intrinsic
way of selecting said initial states. Moreover, both PHL’s HyperCTL" fragment as well
as HyperPCTL" have mechanisms to express that “a path be drawn starting at the initial
state of another path,” while HyperPCTL does not. This does not preclude it from
mimicking this behaviour, however the procedure to do so - if any exists — is not
obvious.

Therefore, in this chapter, we can, at most, examine algorithmic relations, which, in ad-
dition to transforming formulae also transform the DTMC itself, and more specifically
ones that label specific states in a unique way.

To this end, we fix a basic marking algorithmthat takesaDTMC D := (S, s,, p, AP, )
with initial state s, and transforms it into A (D) = (S, p, APm, I ), with

- APy, := AP U {init}, where we assume that init ¢ AP,

_ 1(s), ifs#s,,
= In(s) = {l(s)u{init}, ifs=s,.

This, essentially, gives HyperPCTLy @ way to select the initial state of D in A (D).
Given a DTMC (S, p, AP, 1) with a state s € S uniquely labelled init € AP, we denote
by A, the inverse of the algorithm Ay, that generates (S, s,, p, AP, I) with initial state
S, =S,

In the following, we will use Ay, in conjunction with transformations of formulae to
embed fragments of one logic into the other algorithmically. In any case, the constructs
will be used orthogonally to one another; the transformation of DTMCs will always
happen independently to that of formulae.

While this bridges a semantical gap between the logics, we assume that it does not
expand the expressive power of HyperPCTLpy beyond letting it uniquely identify
an initial state, and we explicitly do not use it for any other purpose than that.

Now, we can transfer some of the results of the previous chapter over, starting with the

relation to PH LEOTSMC.
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5.1 HyperCTL'-less PHL to HyperPCTL

In essence, we proceed similarly to Theorem The idea is as follows. For an (un-
marked) LTL formula #, the PHL expression P(#) evaluates equivalently (modulo Ay,)
to the HyperPCTL expression P(7;) with the initial assignment s = (§ — s,), where
1; is exactly the same as 7, but with its atomics marked by $. This assignment can be
induced by a HyperPCTL sentence by starting it with 3. init; A ---, for example

35. init; > P(#:) > 0 € HyperPCTLyrycs
for
P(#) > 0 € PHLIS .

Nevertheless, we run against another problem: Purely in terms of syntax, LTL allows
only direct nesting of U and O operators, while HyperPCTL requires that a probabilistic
assertion be made in-between. A slight exception to this rule is the stacking of O, since
OF{ € LTL can be expressed as true UK ¢ as a path expression of HyperPCTLypyc-
From now on, we consider Ok, k > 2, to also be permissible in HyperPCTL as syntactic
sugar.

Due to this, we first restrict ourselves to shallow LTL formulae, denoted [LTLY] which
drop to a PL expression directly after U, or O and can not mix modal operators in a
single expression. These make up a very small part of LTL, and thus do not contain
particularly much expressive power within.

A grammar for fragment of PHLIS),, - restricted to shallow LTL expressions is given in

Figurei2|
(top-level formulae) Pu=QAQ ‘ - | p<p
(probabilistic expressions) p :=P(n) | p+p|c-p|c

(LTL formulae) nu= O*¢ ‘ (U¢
(PL formulae) (=0 ‘ -( ‘ a ‘ true

Figure 12: Grammar of |[LTLS ]-PH L]”)"TSMC|

Theorem 5.1. [LTL’]-PH Ll")"TSMC <z HyperPCTLppc-

Proof. We give the following explicit transformation ¥. Let ¢, ¢’ be be top-level formu-
lae, p, p probabilistic expressions, 7 € LTL, and , {’ € PL, built as shown in Figure
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ceQ,acAP,$eS, and set

T(p) = 35 init; A Z(9,9), (1)
Tpne's) = T(p,8)AT(9'3), (2)
(-9, $) = -T(g:$), €))
Tp<p’s) = T(p,s) <T(p’3), (4)
Tepd) = (0 T(p.S), )
T(p+ps8) = T(p.3)+T(p’3), (6)
T(c,$) = ¢, 7)
T(P(n),8) = P(T(n,9)), (8)
T(O8) = O, 9)
TEUES) = T(L3HUI(LS), (10)
T(=(,8) = =%((9), (1)
TN = T AT, (12)
%(a,s) = ag and (13)
T(true,§) = true. (14)

The idea behind the transformation is laid out above, and in essence similar to Theo-
rem 4.7}

- Rule/1creates the wrapping expression, including the reference variable for the
initial state.

- Rules]2| through [12] and rule 14/ simply take over the syntactic elements of the
original formula.

- Rule 13 marks atomic propositions in the original formula with the reference
variable selected by rule

We ultimately want to show

DE ¢ < An(D) =%(9),
and start by noting that the semantics of A, -, <, -, and + are the same across both logics.
Taking over the syntactic elements of [LTL]-PHLISY, - creates a syntactically sound
HyperPCTLypyc formula. Furthermore, we only have one single quantification in the

wrapper expression 3$. init; A ---, which induces the state assignment s := (§ — s,).
With this, the above becomes

DE ¢ < An(D),s=%(9,5).

We only need to make sure that probabilistic expressions in the original formula
and their transformants evaluate equivalently (modulo Ay,) using the initial state
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assignment above. First, we proceed to make sure LTL formulae “select” the same paths
as their transformants. Let 7 € Pathsp, and s := (§ —» 7(0)). We have the following
cases.

- 7 =0F k> 1. We get

D, m EpuL N <— @,ﬂ(k) FPHL (
= D,s[n(k)] FryperprctL T((9)

<~ D,s,n ':HyperPCTL Ok‘z((;g)
< D,s, 7 EnyperpcTL T(7,5).

- n={U . We have

D,meEpuL ] <= Fj<wVi<j:D,n(i)EpyL
A D,7(j) EpnL ¢
> Jj<wVi<j:D,s[n(i)] Fnyperpctt T((,9)
A D, s[7(j)] Eryperpett T($5$)
<~ D,s,mE=%(n,S).

Using this, we compute

[[P(q)}];HL = Pr{m € Pathsqp(s,) | D, 7 EpuL 17}
= Pr{n € Pathsp(im(s)) ‘ D, §, 7T EtyperpCTL fg(n,g)}
= [P(T(n, )™,

which concludes the proof. O]

There are still other formulae of PHL ), that are expressible in HyperPCTLypy e
even though they are syntactically incompatible with it at a first glance.

Lemmas.2. Let { € PL, and {; be the exact same formula with its atomics marked by §.
Then, for c € Q, and ~ € {<,<,=,>,>}.

P(OO0) ~c = 3s.init; A IP’(()P(D]P’(O(}) =1)= 1) ~¢ (modulo Ay)

| —
PHL HyperPCTL
P(OO() ~¢c = 3s.initg A IP’(OIP’(DQ) = 1) ~C (modulo A,)
| —
PHL HyperPCTL

Proof. We exemplarily only show the first equivalence, and for the base case for { =
a € AP. It is assumed known that HyperPCTL subsumes PCTL modulo A, since the
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former contains the syntax and semantics of the latter. Based on this observation, it
holds (mod. 4,,) that

P(OP(OP(0a) =1) =1) ~c = 3. init; AP(OP(OP(0%) =1) =1) ~ ¢

PCTL HyperPCTL

Furthermore, it is proven in [BKo8] that the PCTL formula on the left holds on a finite
DTMC D at its initial state s,, iff

Pr{n € Pathsp(s,) ‘ mE D(}a} ~ G,
o

whence we immediately get the first equivalence, since this is exactly the evaluation
of the PHL formula on D. The second equivalence can be shown in a similar fashion,

again with the aid of [BKo8|. O

5.2 HyperCTL" Sentences in PHL

In this part, we look again at the non-probabilistic part of PHL - separately. Purely
in terms of syntax, HyperCTL" allows arbitrary nesting of U and O expressions, while
HyperPCTL does not.

The former has, nonetheless, a fragment with strictly alternating quantification and path-
expression nesting — essentially HyperCTL - but even this is not easily compatible with
HyperPCTL; in HyperCTL nested quantifications range over subtrees of paths, whereas
quantification in HyperPCTL has no effect on its own on where paths themselves
start.

This leads us directly to the thought of embedding the (starkly restricted) PNF-existential
LTL-shallow fragment of HyperCTL; denoted [3*|LTL’], into HyperPCTL. A grammar
is presented in Figure 13|

(3* formulae) ¢ == 3.9 ‘ n
(LTL formulae) nu= Ok(| (u¢
(PL formulae) (a==(0AC ‘ ﬁ(‘ as ‘ true

Figure 13: Grammar of [ 3*|LTL']-HyperCTL|

Theorem 5.3. [3*|LTL’]-HyperCTL <4 HyperPCTL.
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Proof. Let v,y be non-quantified formulae, {,{’ € PL, built as shown in Figure
a € AP, n < w. We assume without loss of generality that IT = {7, 7, ...}, and
S = {50, 51, ...}, and consider the following transformation.

T(3ftpor... Ifoy) = Fduor...3s. Ninit;, AP(T(y)) >0, (1)
T(O0) = O*%(0), (2)
T(CUT) = T(HU(), (3)
T(=0) = =%(0), (4)
T(CA L) = (O AT, (5)
T(az,) = ay, and (6)
T(true) = true. )

In the above, it is assumed that the # in ruleifis the maximum applicable n for the
formula, that is, we always convert all quantifiers at the start of the formula in one step.

— Rule)l maps sequences of quantified path variables to sequences of quantified
state variables, asserts that the computation trees bound to the new variables
are all rooted at the initial state, and wraps the rest of the formula in a nonzero
assertion.

— Rules |2 though 5} and rule[7] take over the syntactic elements of the original
formula.

— Rule[6|replaces the path variable markings 7; with state variable markings $;.

The equivalence can be shown similarly to Corollary|4.21, O

At this point we surmise that a version of the above that also allows recursion of
[3*|LTL] formulae, the recursively pNr-existential LTL-shallow fragment of Hyper-
CTL, denoted [} 3*|LTL’], is still embeddable in HyperPCTL. A grammar is given in

Figure

(13" formulae) ¢ == 3.9 | n
(LTL formulae) n == Ofy lyUy|¢
(PL formulae) (=0 A C‘ —-(| as ‘ true

Figure 14: Grammar of|[J,EI*]LTLS]—HyperCTL*

Conjecture 5.4. [|3*|LTL]-HyperCTL" <4 HyperPCTL. A

A complete transformation will not be given here, but rather just a sketch of how one
could work, specifically for the case that each nested 3 formula is closed.
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Example 5.5. Let ¢ := Hﬁg.ﬂﬁl.(aﬁo A bﬁl) U (Hﬁz.aﬁz U c;,z).

This formula asserts that we can find paths 7y, m; starting at the initial state, such that
7o has an initial segment 7qpe marked a, and m; has in parallel an initial segment at
least as long as 7qpre marked b, such that we can branch oft of 7; at some point i < w,
and take a path 7, staring at 71;(i), on which a U ¢ holds.

The syntax tree of ¢ looks as follows.

U
a;,z Cﬁz

Here, we kept 3779.377;. together as one node to simplify the diagram. Now, we look
at the leaves descending from the U-node before the nested formula. We want 77, to
mimic the behaviour of the path that comes before it - ;. Hence, we replace the leaf
b, with the syntax tree of b, A by, .

I710.371.

N
SN
ANWAY
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Next, we replace the quantifier sequences with P(+) > 0, and path variables 71; with

state variables §; in one step, and get
>
P 0

SN
ANVAN
AN

ag

U

/\

agz C5‘2

Collapsing this tree yields the expression
IP’((ago Abg Abg,) U (P(as, Uc,) > 0)) >0,
and with this, we build the HyperPCTL formula
330.381.35,. inity, A initg, A initg, A ]P’((ago Aby Abg, ) U (P(ag, Ucg,) > 0)) > 0.

In essence, this makes computation tree that is bound to $, behave the same as the
one bound to $§; before the nested formula. This imitates the behaviour of nested
quantification in existential formulae of HyperPCTL'; instead of explicitly drawing 7,
at the current position of 71 at some point later down the line, we implicitly “bind” the
behaviour of 7, to that of 71; and draw them both at the start.

Indeed, the generated HyperPCTL formula draws 3 paths at the initial state, finds one
o with an initial segment 7oy labelled a, and a pair (71, m2) with initial segments at
least as long as 7pre labelled b, until at some point i < w, 75 models a U c.

In the context of the original HyperCTL" formula ¢, selecting 71y — 79, 711 = 72, and
71, = ), creates a satisfying assignment.
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Conversely, if paths 7, 71, 1, exist that form a satistying path assignment for ¢, with
7o, m starting at s,, and 7, starting at (i), for some i < w, then 7, is measured
nonzero by the nested IP operator, since a U c is nondivergent (compare Lemma|4.19)),
and subsequently, the triple (7, 711, 711) is measured nonzero by the outer PP operator.A

The procedure we can extrapolate from this example is the following. Let ¢ be a
[L3*|LTL] formula of HyperCTL", such that each nested [|3*|LTL’] subformula is
closed, and a supply of state variables $={%,8,...} be given. Assume without loss
of generality that var(¢) = {7, ..., 7, }, n < w, and that variable quantification in ¢
follows the order of the subscripts.

(i) Build the syntax tree of ¢.

(i) For each nested [|3*|LTL’] formula v, let 77; be the first variable quantified in y,
j 21, and do the following.

(a) Iterate over the nodes on the path from the root to the start of v, excluding
the root and y themselves.

(b) Replace each leaf that descends from these nodes and that is marked with
ftj-1 - i.e. marked atomic proposition aj,_,, with a € AP - with the syntax
tree of

a;TH N /\ A,y
frevar(y)

This step implicitly excludes the leaves of y itself, since we required it to be
closed, and has the effect of making all variables in ¥ mimic the behaviour
of the path assigned to 7;_; before the context of y.

(iii) Replace sequences of quantifiers on the tree with P(-) > 0.

(iv) Replace each 7; with a unique §;, i < n.

(v) Collapse the tree into an expression ¢

(vi) Build

389 -+ 38,. /\ inits, A ¢ € HyperPCTL.
i<n

We have already examined universal formulae, and formulae with alternating quanti-
fiers, in Chapter|4 when comparing HyperCTL" with HyperPCTL" and seen that most,
apart from a few special cases, are not embeddable in the latter. Since HyperPCTL ¢
is weakly subsumed by HyperPCTL" [Wan+21]], we also cannot embed these classes

into HyperPCTLpyc without considering more complex algorithms than our simple
marking one Ay,. This procedure would, however, escape the purpose of this thesis.

As a closing note on this examination, the aforementioned exceptions for univer-

sal quantification seen in Lemmata |4.9(i) and |4.10(ii) can be transferred over to
HyperPCTLy e
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To execute this, we first declare the following syntactic sugar: If ¢ is a HyperPCTLypy
state formula (possibly not closed), set

P(Og) :=1-P(0-)f]

Lemma 5.6. Let { € PL, and let (;, (; represent the exact same same formula with its
atomics marked by § and 7 respectively. The following equivalences hold.

VA.O0; =  3s.init; AP(0OG) =1 (modulo Ay,)
———

HyperCTL* HyperPCTLy 1y

Va. Ol = 35 init; AP(OC;) =1 (modulo Ay,)
—_———

HyperCTL* HyperPCTLy 1y

Proof. Similar to Lemmata 4.9(i) and |4.10(ii). O

5.3 Equivalent Fragments

Similarly to Section 4.5, we will now look at what kind of formulae our transformations
generate, in order to identify equivalent fragments between the logics.

Theorem 5.1/ generates HyperPCTL formulae with the following constraints.
— They begin with the wrapping expression
38 initg Ao,

- Probabilistic expressions may not be nested, and may only be multiplied with
rational constants.

— The only usage of the syntactic rule ¢ Ulk%2] ¢ that occurs is true UIFK o,
which stems from stacking O operators inside shallow LTL expressions in PHL
formulae.

We call probabilistic expressions with only constant multiplication simple. Since we
added stacking O operators as syntactic sugar to HyperPCTL, we ignore the rule in
the last item altogether here. We name the part of HyperPCTL induced by these con-
straints its 1-initial-path simple LTL-shallow fragment, and denote it by [init'|p*|LTL].
A grammar is given in Figure[is|

Theorem 5.7. [init'|p*|LTL]-HyperPCTL =g [LTL]-PHL .

"The “naive” definition P(Cg) = P(~(true U —~¢)) is incompatible with HyperPCTL syntax.
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(init' formulae) @ == 38 init; Ay
(non-quantified formulae) Y=y Ay ’ -y | p<p

(p® expressions) pu=P(n) |p+p|cplc
(LTL formulae) n = Ok(| cu¢

(PL formulae) (=0 A C‘ —|C| a; ‘ true

Figure 15: Grammar of|[init1|p5|LTLS]—HyperPCTL|

»

Proof. The subsumption “>4” is the content of Theorem The reverse direction
follows by a similar argument to that of the referenced theorem. A transformation
is given by discarding the wrapper “35. init; A ---”, taking over every other syntactic
element, and finally removing the state markings on atomic propositions. O]

Theorem 5.3 creates existential formulae that

have the form 35,,_; ---35. Aji<p init;, Ay, for a quantifier-free v,

have no arithmetic between probabilistic expressions,

can only assert probabilities to be nonzero, and

can only use shallow LTL expressions.

Let this fragment of HyperPCTL be called initial-path nonzero LTL-shallow fragment,
and be denoted [init*|P>°|LTL’]. A grammar is presented in Figure|16}

(init* formulae) @ == 38,1 380, /\ init;, AP(17) >0
i<n

(LTL formulae) 7= Ok(| (u¢

(PL formulae) (=0 A (‘ —-{| az ‘ true

Figure 16: Grammar of [init*|P>°|LTL]-HyperPCTL|

Theorem 5.8. [init*|P>|LTL]-HyperPCTL =4 [3*|LTL]-HyperCTL*

Proof. The subsumption “>4” is the subject of Theorem The reverse direction
follows by inverting the rules of the transformation given in it. O
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5.4 Overview of Results

In this chapter, we started by comparing the syntactically compatible fragments of both
logics. We established that we can embed

— the LTL-shallow fragment of PHLIS} ,: [LTL] (Theorem , and
— the pNF-existential LTL-shallow fragment of HyperCTL": [3*|LTL'] (Theorem|s.3)

into HyperPCTL, where we relied on the marking algorithm A, to give us access
to the initial state in the latter. By identifying the type of HyperPCTL formulae the
transformation in the aforementioned theorems generate, we extrapolated the following
fragments of HyperPCTL that we can embed into PHL:

— 'The 1-initial path simple LTL-shallow fragment [init'[p*|LTL] (Theorem 5.7)
— 'The initial-path nonzero LTL-shallow fragment [init*|P>|LTL] (Theorem

Furthermore, we found special cases of formulae in PHL that are syntactically incompat-
ible with HyperPCTL at a first glance, but still translatable from the former to the latter.
Specifically, we have proven the following 2 equivalences (modulo A,) in Lemmals.2|

P(O0¢) ~c = 3. init; AP(OP(OP(0G) =1) =1) ~ ¢
PHL

HyperPCTL

P(OC) ~e = 3. init; AP(OP(0G) =1) ~ ¢

PHL

HyperPCTL

In Lemma 5.6} we have also proven the following special cases.

Va. Ol = 3. initg/\P(D{g) =1

—_———
HyperCTL* HyperPCTLy

Va. Ol = 3. initg/\P(O(ﬁ) =1
———

HyperCTL* HyperPCTLy 1y

Lastly, in Conjecture|s.4} we postulated that we can expand the equivalence of Theo-
remls.8|to [{3*|LTL], which allows arbitrary nesting of [ 3*|LTL’] formulae, and gave an
example of a scheme to translate certain types of [ | 3*|LTL’] formulae to HyperPCTL.

We left the question of whether there are more formulae of PHL that are syntactically
incompatible with, but still translatable to HyperPCTL, open. Furthermore, we did
not examine whether we can expand the special cases of Lemmata s.2] and [5.6| with
nesting.
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Future work on this part could include answering these questions, and examining Con-
jecture|s.4 possibly finding an algorithm that can translate all [} 3*|LTL*]-HyperCTL*
formulae to HyperPCTL.
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Chapter 6

HyperPCTL vs. HyperPCTL on DTMCs

While the thesis primarily focuses on the relation of HyperPCTL and HyperPCTL" to
PHL on DTMCs, we will briefly go over the relations between fragments of the first two
that are either obvious, or ones we can extrapolate from our arguments in Chapters|4]
and|s| It is assumed known from that HyperPCTL <4 HyperPCTL.

The naming HyperPCTL" might create the false impression that it has the same relation
to HyperPCTL that CTL" has to CTL, or the one that PCTL" has to PCTL. That is, it
might create the impression that it is an expansion of HyperPCTL, with the requirement
for alternation between state and path formulae lifted.

Expanding on Theorem [3.5} here, it will be made plausible that the fragment of Hyper-
PCTL" with this very restriction artificially introduced to it can be weakly mapped to a
strict subset of HyperPCTL.

First, consider the restricted fragment of HyperPCTL" that has the strict PCTL-style
alternation between path formulae and path expressions, can only draw paths from
the initial state, and has no functions. Let [P. 1} ] denote the draw-¢ state-path alter-
nating fragment of HyperPCTL,, where 1| stands for alternation. A grammar is given

in Figure

(path formulae) PE=QAQ ‘ - ‘ p<p ‘ ajy ‘ true
(P expressions) pi=p+plp-p|c|Prce(n)
(path expressions) n==¢Ueg ‘ Og¢ ‘ ® ythokal ®

Figure 17: Grammar 0f|[IP>€N,7T]—HyperPCTL*

The operator UK%2] can be constructed recursively in HyperPCTL* as follows.

false, ifky > ky
¢ U[kl,kz] (P, . (P’, ifki=k;=0

gD,V((P/\O((P U[O’kz_l] ¢,)), ifk]ZO/\k2>0

9 A O(p ylh-tke] 9'), ifki>0nky >0
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Let|[init* |-HyperPCTL|be the fragment of HyperPCTL that is comprised of formulae
of the form

38,1 -+ 38p. /\ initgi AY,

i<n

for n < w, and a quantifier-free y. We call this fragment simply the initial-paths fragment
of HyperPCTL.

Theorem 6.1. [P N 7]-HyperPCTL 24 [init*]-HyperPCTL

Proof (Sketch). A transformation from the former to the latter is given by assigning
a unique $; to each variable 7; of a given [P.N7]-HyperPCTL" formula ¢, replac-
ing all occurences of 7; with §;, for all 7, to get an expression y, and building the
[init*]-HyperPCTL formula

(p' = 38,1 -+ 38p. /\ init;, Ay,

i<n

with ¢ = ¢”. For the reverse direction, revert the steps of this transformation. O

Lifting the requirement to only draw paths starting at the initial state in the [P} 7]
fragment of HyperPCTL" while preserving its embeddability in HyperPCTL seems
to also be possible via a procedure similar to the one given for Conjecture Let
[Pin]-HyperPCTL]|denote the fragment generated by the grammar of Figure[17, with
the amended rule

(probabilistic expressions) p == p + p ‘ p-p | c ‘ Pe(7)»

where ¥ is an arbitrary ruleset. In conclusion of this short excursus, we surmise

Conjecture 6.2. [P 7]-HyperPCTL" 24 [init*]-HyperPCTL. A

We note that the procedure given for Conjecture |5.4is likely to change the value
of the probability measures, and hence, the algorithmic relation for Conjecture
would likely need a more complex algorithm than A, that also takes the DTMC into
consideration while transforming a formula.

This consideration was not needed in Section 5.2} since we only asserted measures to
be nonzero, and the procedure preserves this behaviour.

If Conjecture|6.2]holds, it would mean that HyperPCTL" with strict alternation intro-
duced to it, is in weak bijection to HyperPCTL restricted to reachable states.
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Chapter 7

HyperPCTL vs. PHL on MDPs

In this final chapter before the thesis reaches its conclusion, we shall revisit the results
of Chapter[s} and look at whether they scale up for MDPs. As it was the case for DTMCs,
one of the logics requires and uses an initial state while the other does not. As such,
we first expand our marking algorithm A, to MDPs. If M = (S, s, Act, p, AP, ) is an
MDP with initial state s,, let A (M) be the MDP (S, Act, p, APy, Iy ) with

- APy := AP U {init}, where we assume that init ¢ AP, and

_ I(s), ifs s,
= Inls) = {l(s)u{init}, ifs =s,.

Thus, we give HyperPCTL,,pp a way to select the initial state of M in Ay (M). In the
following, we will use A, in conjunction with transformations of formulae to embed
fragments of one logic into the other. In any case, the transformation of formulae will
happen independently of the usage of Ay,.

We will explicitly only use this new construct to identify the initial state, and assume
that it does not expand the expressivity of HyperPCTL,,p beyond letting it select that
state.

As usual, we start with the comparison to the probabilistic part of PHL,p in isolation
in the following section.

7.1 HyperCTL'-less PHL to HyperPCTL

Letdenote the probabilistic part of PHL,,p, that results by striking out all 9-
rules in Definition[2.22] Aswe have noted while introducing our downscaling to DTMCs
in Section the MDP version can express a restricted version of probabilistic
hyperproperties by quantifying over schedulers.

We start by looking at the fragment of PHL}?S, that is syntactically compatible with
HyperPCTLypp. To achieve this, we restrict PHLISS, to use only shallow LTL formulae
inside its probabilistic expressions, which drop to a PL expression directly after U or OF
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for k > 1. Let this fragment be denoted ‘ and called the LTL-shallow frag-

ment of PHL}?S,. As we did for HyperPCTLypyc> we allow OF g in HyperPCTLypp
as syntactic sugar for true UPKl o k > 2.

Theorem 7.1. [LTL]-PHLESS, <7 HyperPCTLypp.

Proof (Sketch). Since scheduler quantification can not be nested in probabilistic expres-
sions in PHL and HyperPCTL, we can assume that all formulae in either logic can be
written in a scheduler-pPNF form, in which all scheduler quantifications are on the very
front of the formula.

A transformation from the former to the latter is given by mapping sequences of
scheduler quantifiers, and quantifier-free y

Qn—lé'n—l QO(}O- 14

[LTL]-PHLYS,

to

Q16,1 -+ Qo 0p. E|§n_1((3'n_1) E|§0((3'0). /\ initgi A ‘Z(I//),

i<n

HyperPCTLypp

where, (Q;)i<n ¢ {V, 3} is a sequence of quantifiers, and T(y) represents the formula
that results by replacing the markings 6; in v with §;, for all i < n. Since, after the
scheduler-quantification step, we only use the DTMC induced by the drawn schedulers
in the semantics of both logics, the equivalence can be proven similarly to Theorem|s.1|[]

By the same reasoning, the equivalences of Lemma 5.2 should also scale upwards with
scheduler quantification, and a similar mapping to the one presented in the preceding
theorem. However, since the lemma relies on finiteness for DTMC:s, this is only the
case if the DTMC induced by the MDP with the drawn schedulers is finite. This would
require an artificial restriction of the scheduler space to e.g. finite-memory schedulers
that can reference a restricted amount of past choices. This investigation exceeds the
frame of this thesis, and hence we chose to omit an explicit proof here.

We now move on to the non-probabilistic part of PHLp.

7.2 HyperCTL" Sentences in PHL

In this section, we will expand Theorem 5.3/ to MDPs. We start by defining the PNF-
existential LTL-shallow fragment of HyperCTL" for MDPs as the set of formulae gener-
ated by the grammar of Figure
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(sched.-quantified formulae) ¢° == 36.¢" | ¥6.9" | ¢°

(3% formulae) ¢ == 37(6).¢° | 1
(LTL formulae) n == 0N ‘ (u¢
(PL formulae) ( ==0AC ‘ -{ ‘ a | true

Figure 18: Grammar of|[EI*|LTLS]—HyperCTL*|for MDPs

Theorem 7.2. [3*|LTL]-HyperCTL <4 HyperPCTLypp.

Proof (Sketch). A transformation from the former to the latter is given by mapping
formulae of the form

Qp-10p-1 - Qo0o. EI7ATm—1(5'im,1) 37%0(5'1'0)- 1,

[3*|LTLE ]-HyperCTL*

for a quantifier-free #, to

anlé—nfl Qoé’o. Elgm—l(é'im_l) 350(6’,‘0). /\ initg’. A P(‘I(l/l)) > 0,

i<m

HyperPCTL

where n, m < w, (i;) jem € [0, n—1] asequence of indices in [0, n—-1], (Q;) j<n c {V, 3}
a sequence of quantifiers, and T(#) represents the formula 7 with all of its 7;, markings
replaced by the corresponding $;; markings, for j < m.

The equivalence can be proven similarly to the case for DTMCs in Theorem 5.3} after
resolving the schedulers, and using the DTMC induced by them. O

7.3 Equivalent Fragments

Theorem [7.1/generates HyperPCTL formulae of the following form.

- They have the form Q16,1 -+ Q000.384-1(Fn-1) - 350(60). Ai<n init, Ay, for
a quantifier-free y.

- Inside the probabilistic expressions of y, only shallow LTL is used.

- Probabilistic expressions may be added to one another, but only multiplied by
rational constants]

Let this fragment be called the initial-path simple L TL-shallow fragment of HyperPCTL,pp,
and be denoted by [init*|p*|LTL’]. A grammar is given in Figure[i9|

"Recall that these probabilistic expressions of this form are named simple.
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(init* formulae) @ 1= Q10,1 -+ Q000. I8p-1(6n-1) -+ I50(d0). /\ init;, Ay
i<n

(non-quant. formulae) y = ¢ A @ ‘ -9 ‘ p<p

(p* expressions) p:=P(n) ‘ p+p ‘ c-p | ¢
(LTL formulae) nu= O CUL
(PL formulae) (=0 A (‘ —{‘ a; ‘ true

Figure 19: Grammar of|[init*|p5|LTl_S]—HyperPCTLMDP

Theorem 7.3. [init*|p*|LTL]-HyperPCTLypp =g [LTL]-PHLYS,.

Proof. The subsumption “>5” is the subject of Theorem 7.1 A reverse transformation is
given by removing all state quantifications and A;, init;, from a given [init*|p*|LTL]
formula, and replacing all of its §; markings with ¢; markings. O

The transformation of Theorem [7.2] creates formulae that

start with arbitrary scheduler quantifications, followed by an arbitrary number
of existential state quantifications,

can only assert one measure to be nonzero,

have no arithmetic between probabilistic expressions, and

are limited to shallow LTL.

Let this the fragment of HyperPCTL defined by these constraints be called quantified
initial-path nonzero shallow and be denoted by [Q}]init*|P>°|LTL*]. A grammar is

given in Figure

(sched.-quant. formulae) 97 :=36.¢9° | V6. 97 | ¢°

(3 formulae) ¢’ u=33(6). ¢° | v

(init* expressions) Y = initg A 1//| init; AP(%) >0
(LTL formulae) n = Ok(| (u¢

(PL formulae) C ==0n( ‘ -{ ‘ a; ’ true

Figure 20: Grammar of [ Q; finit*[P>°|LTL*]-HyperPCTLy,pp|

Theorem 7.4. [Q}]init*|P”°|LTLS]-HyperPCTLypp =g [3*|LTL]-HyperCTL*

Proof. The subsumption “>5” is shown in Theorem|7.2} A reverse transformation is
given by inverting the steps of the one given in the referenced theorem. O

This chapter is now brought to a conclusion in
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Overview of Results

7.4 Overview of Results

Upscaling the results of Chapter s} in this segment, we embedded the following frag-
ments of PHLypp into HyperPCTLypp.

— The LTL-shallow fragment of PHLY),: [LTL] (Theorem
— The pNr-existential L TL-shallow fragment of HyperCTL": [3*|LTL'] (Theorem[7.2)

By identifying the types of the transformed formulae, we inferred that the following
fragments of HyperPCTL,,p can be embedded back into PHLy;p.

~ 'The initial-path simple LTL-shallow fragment [init*|p*|LTL’] (Theorem [7.3)
~ The initial-path nonzero LTL-shallow fragment [Q%|init*|P>°|LTL*] (Theorem[7.4)

The questions for this part are mostly the ones for DTMC case that were enumerated
in Section In addition to those, it is unclear how much expressive power PHLISY,
has — as we noted in Section [2.3.3 when we proposed our downscaling of PHL for
DTMCs, the original formulation for MDPs includes a restricted version of probabilistic
hyperproperties, which we lost in the process of downscaling, as we saw in more detail

in Section |4.1
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Chapter 8

Conclusion

In conclusion of the thesis, we shall revisit and summarise the results and open questions
of Chapters|4|to

8.1 Summary

Markov Chains

In Chapter |4, we first showed that PHLpy cannot express multivariate HyperPCTL*
formulae in Section Then, we embedded the probabilistic part of PHLyp,c in
HyperPCTL" in Section [4.2) and subsequently focussed on HyperCTL, starting with
formulae with one quantifier in Section and building up to multiple quantifiers,
and quantifier nesting in Section Finally, in Section we identified equiva-
lent fragments between the two logics by looking at the types of formulae that our
transformations generate, and inverting them on these formulae.

In total, we saw that we can embed into HyperPCTL"
— the entire probabilistic part of PHLpypyc: PHLESY - (Theorem , and

— the recursively existential path-positive fragment of HyperCTL" [|3*|n*] (Theo-
rem |4.24j).

By looking at the forms of the formulae the given transformations generate, we found
fragments of HyperPCTL" that we can embed in PHL:

~ The draw-1 simple shallow fragment [Py |p*|LTL*] (Theorem |4.25)

— 'The recursively nonzero path-positive fragment [|P° |7*] (Theorem |4.26)

last

Moreover, in the process of examining HyperCTL’, we made it plausible in Section|4.3.2]
that we cannot lift the path-positive modifier. That is, we cannot allow nested LTL, and
subsequently nested path expressions, to be negated.
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Conclusion

In Chapter|s} we relied on our marking algorithm Ay, to give us access to the initial
state in HyperPCTL, and started by comparing the syntactically compatible fragments
of both HyperPCTLypyc and PHLy . We established that we can embed

— the LTL-shallow fragment of PHLIS} ,: [LTL] (Theorem , and
— the PNF-existential LTL-shallow fragment of HyperCTL": [3*|LTL] (Theorem]s.3)

into HyperPCTL. By identifying the type of HyperPCTL formulae the transformation
in the aforementioned theorems generate, we extrapolated the following fragments of
HyperPCTL that we can embed into PHL:

— The 1-initial path simple LTL-shallow fragment [init'[p*|LTL] (Theorem5.7)
— The initial-path nonzero LTL-shallow fragment [init*|P>°|LTL] (Theorem

Furthermore, we found special cases of formulae in PHL that are syntactically incompat-
ible with HyperPCTL at a first glance, but still translatable from the former to the latter.
Specifically, we have proven the following 2 equivalences (modulo A,) in Lemmals.2|

P(O0¢) ~c = 3. init; AP(OP(OP(0G) =1) =1) ~ ¢

| —
PHL HyperPCTL
P(O0() ~c = 3. inits A IP(OIP’(DQ) - 1) ~ ¢
PHL HyperPCTL

In Lemmal|s5.6} we have also proven the following special cases.

Va. Ol = 3. initgAP(D{g) =1

—_———

HyperCTL* HyperPCTLy 1y

Va. Ol = 3. initz A P(O(n) =1
—_———

HyperCTL* HyperPCTLy 1y

In Conjecture 5.4, we postulated that we can expand the equivalence of Theorem
to [L3*|LTL’]-HyperPCTL", which allows arbitrary nesting of [ 3*|LTL’] formulae, and
gave an example of a scheme to translate certain types of [|3*|LTL’] formulae to Hy-
perPCTL.

In the short excursus of Chapter|6, we gave a scheme to embed the fragment of Hy-
perPCTL" with all paths drawn from an intial state and strict alternation between path
formulae and path expressions into HyperPCTL (Theorem 6.1). Moreover, we hypoth-
esised that this can be expanded to nested path quantification via a more complex
algorithm in Conjecture|6.2}
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Future work

Markov Decision Processes

Upscaling the results of Chapter s}, in Chapter[7, we embedded the following fragments
of PHL,p,p into HyperPCTL,pp.

— The LTL-shallow fragment of PHLY),: [LTL] (Theorem
— The PNF-existential L TL-shallow fragment of HyperCTL": [3*|LTL’] (Theorem};.2)

By identifying the types of the transformed formulae, we inferred that the following
fragments of HyperPCTL,,p can be embedded back into PHLy;p.

- 'The initial-path simple LTL-shallow fragment [init*|p*|LTL’] (Theorem [7.3)
— The initial-path nonzero L TL-shallow fragment [Q|init*[P>°|LTL?] (Theorem

8.2 Future work

It still remains open, whether special cases of multivariate HyperPCTL" formulae are

expressible in PH LB"T‘()MC, and whether the equivalence

[VPyo|m* ]-HyperPCTL" = [{3*|n*]-HyperCTL"
of Theorem represents the largest fragment equivalence between HyperPCTL"
and HyperCTL" (excluding special cases). Specifically, we only saw that the most
generic case of formulae with alternating quantifiers of HyperCTL" is not embeddable
in HyperPCTL" in Section |4.4, basing this on Conjecture|4.13} Furthermore, we only
examined the probabilistic and non-probabilistic parts of PHLyp\c in isolation from
one another. It may be the case, that, when combined, they can express more parts of
HyperPCTL" than just the fragments mentioned above.

Future work on examining the relation between HyperPCTL® and PHL,c could
further include proving (or disproving) Conjecture4.13} and finding special cases of
formulae with alternating quantifiers in HyperCTL" that have equivalents in Hyper-
PCTL:

In Chapter s} we left the question of whether there are more formulae of PHLyp that
are syntactically incompatible with, but still translatable to HyperPCTL ¢, open. Fur-
thermore, we did not examine whether we can expand the special cases of Lemmata|s.2]
and|s.6| with nesting. Further research on this part may further encompass examining
Conjecturels.4} possibly finding a scheme that can translate all [ 3*|LTL*]-HyperCTL*
formulae to HyperPCTLy -

The questions that were raised through the comparison of HyperPCTL,p to PHLypp
in Chapter7|are mostly the ones for DTMC case that were enumerated in Section|5.4} In
addition to those, it is unclear how much expressive power PH LR,‘I’SP has — as we noted
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Conclusion

in Section [2.3.3when we proposed our downscaling of PHL for DTMCs, the original
formulation for MDPs includes a restricted version of probabilistic hyperproperties,
which we lost in the process of downscaling, as we saw in more detail in Section|4.1, One
potential direction for future exploration is to find an alternative way of downscaling
PHL, in which this expressiveness is preserved, and revisiting the comparisons to
HyperPCTLy e and HyperPCTL' with it.
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Das Ende der Melodie ist nicht deren Ziel; aber trotzdem: Hat
die Melodie ihr Ende nicht erreicht, so hat sie auch ihr Ziel

nicht erreicht.
— Friedrich Wilhelm Nietzsche

Der Wanderer und sein Schatten






Appendix A

On the Topic of HyperPCTL*

As we noted before, the version of HyperPCTL" that was presented in Section|2.3.2| was
changed drastically compared to the original of [Wan+21]. In this part, we will go over
the changes and justify them. First, a verbatim copy of the original HyperPCTL" will
be given — with minimal changes to its notation to conform to the notational scheme
of the thesis.

Definition A.1 (Original HyperPCTL® Syntax). HyperPCTL" formulae are defined by
the following grammar.

-pu=a" 9" |9 png|OpleUtg|pUp|p~p
- pu=fP| P (9) [P*(p)

where
~ 4 ¢ AP is an atomic proposition,

# € 1T is a path variable from a countably infinite set of variables IT,

~ fell™a sequence of path variables from 11, for m < w,

k < w a natural number,
- ~€{<,<,=,>,>} a comparison,
- p a sequence of p-formulae, of length |p| < w, and

- f:R" - Ris an n-ary function, for n := |p|, that is either polynomial, expo-
nential, rational, or trigonometric, or any finite sum, product, or composition
thereof, or the inverse of any of these. YA

Given a DTMC D, the original formulation uses path assignments in the form of
functions p : IT — Pathsp. By default, (unset) path variables start at s,. In our notation,
thatis p(7)(0) = s,, if p(7) = L. The semantics are defined as follows.

Definition A.2 (Original HyperPCTL" Semantics). Let D = (S, s,, p, AP, 1) bea DTMC,
7, ..., 7ty € 11, a € AP, ¢, ¢’ ¢-formulae, p, p’ p-formulae, p a path assignment,
k<w,and ~ € {<,<,=,>,>}.
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On the Topic of HyperPCTL'

- D,pEa” iff ael(p(#)(0))
- DypE¢” ifft D,p’ = ¢ where p’ is the assignment

b (i) = {p(ﬁ), if 7 € free(p)

p(7t"), otherwise

- D,pE-¢ it Dypwo
- Dyp=opng if D,peEg@ A DpE ¢,
- D,p = O¢ iff D,p'Eg

- DypreUkg  iff 3j<k(DpiEg A Vi<j:iDpieg)
- DpegU¢ iff Jj<w(DpEg AVi<j:Dp'Eg)

- Dipep~p' it [plp, ~ [P loy

=
=
=8
=2
4
=
NS
~
RS
N—
[
Il

Dy Pr{(n,-)ml ’ Vi<n:ime Paths@(p(ﬁi))

/\Po{ffiHﬂi|i<”}':(P}
- [[}P’(ﬁl ----- ﬁn)(p)]]@p = Pr{(ﬂi)i<n | Vi< n:mePathsp(p(#;))

/\po{ﬁib—>ﬂi|i<n}|=p}

This original formulation has the following incompatibilities to our version.

~ It includes the P"(p) rule in syntax and semantics, which allows nesting of
probabilistic expressions without comparisons.

- Instead of drawing nested paths at P operators (via rulesets), variables are over-
written later on via the ¢” syntax, that is, this overwrites all free variables in ¢
with the assignment of the superscripted variable.

Hence, the first significant change is the removal of the rule P*(p). The reasoning
behind this is that it was unclear how nested formulae generated by it are to be evaluated.
Consider, for example, the formula

p =P (P"(a™)) > 0.
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By applying the semantics starting with the empty assignment p = ¢, we immediately
get

[elp, = Pr{m € Pathsp(s,) | D, (7> m) E Pﬁ2(aﬁ2) } > 0.

not well-defined

That is, we arrive at an expression of the form D, p = IPﬁ(go’ ), for which none of the
rules of the semantics are applicable.

The second change was the replacement of variable overwriting with rulesets. This
was done to align the formal semantics of the logic with the textual descriptions and

pictures given in [Wan+21].

Consider as an example the formula marked (7) in [Wan+21].

yie Pﬁl(o(ﬁp(ﬂz,m)(aﬁz U (aﬂs)fn) S Cz)) >

The semantics of y are textually described as follows.

The formula (7) states that with probability greater than ¢;, we can find a
path my, such that finally from some state s on 7, with probability greater
than c¢,, we can find a pair of paths (71, 773 ) from the pair of states (snit, 5)
to satisfy “[a™] until [a™]” That is, the computation tree of 773 is a subtree
of the computation tree of 7 (rooted at sn; ), since [73] in [(a’A’3 )ﬁl] isin
the scope of [711]. [...]
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However, by applying the semantics, we arrive at an inherently different result:
D,p e Pﬁl(Q(Pﬁz,ﬁs(aﬁz U (aﬁa)ﬁl) > 62)) > ¢

— upﬁl(o(Pﬁz,ﬁ3(aﬁz ] (aﬁs)ﬁl) S CZ))H >0

D,p

— Pr{m € Paths(p(711)(0)) :

@,p[ﬂl — m] E Q(Pﬁz”%(aﬁz U (aﬂ3)’%l) > cz)} >
— Pr{nl € Paths(s,) :

D,p[i —m] e <>(IP>ﬁ2ﬁ3(aﬁ2 U (a™)™) > cz)} >0

— Pr{m € Paths(s,) (Ji<w)
D,p[ > ]

E ]P)ﬁz’ﬁ3(aﬂ2 U (aﬂ3)ﬁ1) > cz} >

— Pr{m € Paths(s,) : (i< w)
D, p[; > ]

E PI‘{(T[Z,T[3) ¢ Paths?(s,) : a™ U (a’h)ﬁl} > cz} > ()

— Pr{m € Paths(s,) : (3i<w)

D[ o 1]
= Pr{(ﬂz,ﬂ3) € Paths?(s,) : (3j < w Yk < j)

@,pj[ﬁl = 7'[{, f[3 = 7'[3] = (aﬂ3)ﬁ1

A @,pk[f[l g T[ll,f[z = 7'[2] = a”z} > Cz} >
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— Pr{m € Paths(s,) s (Ji<w)

D, p[ iy o ]
= Pr{(rtz,m) € Paths®(s,) : (3j < w Yk < §)

"D,p[frl — 7'[{+j, 3 = ﬂé] E (af“)ﬂ1

A 'D,p[ﬁl > 7'[{+k,7:[2 > ng] E a"z} > cz} >

— Pr{m € Paths(s,) : (i< w)

@,p[f[l = 7'[{]
= Pr{(nz,m) € Paths®(s,) : (3j < w Yk < §)
73

~ itj A i+j
’D,p[m»—»ﬂl ],713 > 7 J] Ea

A @,p[ﬁl > R Ay e 71]2‘] E aﬁz} > cz} > ()
— Pr{m € Paths(sl) : (Ji<w)

Pr{nz € Paths(s,) : (Fj< w Vk < j)

ae l(m(i+j)) Aace l(nz(k))} > cz} > (1

Specifically, from the context of the inner P operator, the assignment of 7; is “set in
stone”, as it was drawn by the outer [P operator. After that, it is only shifted around by

the superscripts. With this 773 gets ultimately assigned to a shift rrli+j of the original
path 7, and cannot branch away from it, as it is not redrawn from it, but rather only
reuses the existing assignment.

As such, 713 is not ranging over subtrees of 77, but rather, each time only over suffixes
of a fixed ;. In the meanwhile 73 is completely ignored by the measure, hence the
original formula is equivalent to the following:

]P’f”(O(]Pﬁz(a’%2 U a’%l) > cz)) > ¢,
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On the Topic of HyperPCTL'

which asserts we can find a 7m; with probability at least ¢, such that, there exists a shift
nt, from the starting point of which we can find a single 7, with probability at least c;,
where 7, has an a-labelled initial segment/prefix that is at least as long as the longest
(—a)-labelled initial segment of 7..

Our proposed change from the above to rulesets that cause paths to be redrawn at the
level of I operators is meant to make the textual description given on p.|91 expressible
in the logic. As an example, the formula y with the intended semantics according to
the description given above is now expressible as

v = Pﬁl(O(Pﬁz,ﬁ3(_ﬁl(aﬂ2 u a;U) > cz)) > 1

in our version.
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Symbol Index

() powerset operator. [g|

w first limit ordinal, set of natural
numbers incl. 0 (von-Neumann-
Ordinal). [g]

[a,b]4 the closed interval [a,b] in A.
9l

(a,b) 4 the open interval (a, b) in A.g)

u[v] for u a sequence of tuples, the se-
quence that results by replacing
the second element of each tuple
with the corresponding element of
v.[9l

2(&) the o-algebra generated by the set
¢.hd

D" n-ary self-composition of a DTMC.
12

Act(s) set of actions enabled at s.

M° DTMC induced by the MDP M with
scheduler o.

M" n-ary self-composition of an MDP.

N

M? parallel composition of the DTMCs
induced by the MDP M with
schedulers ;.

Pathsq paths on D.

C finite prefix.

Paths?y finite path prefixes on D.

Pathsqp(s) paths on D that start at s.

Paths3y’ (s) finite path prefixes on D that
start at s.

Post(s) the set of all direct successors of
the state s.

Post*(s) the set of all states reachable
from the state s.

(i) the i-th element of the path 7 (start-

ing at 0).

' the i-shift path 7.

var(-) set of all variables that appear in
argument.

free(-) set of all free variables that appear
in argument.

U until.

O next.

{ eventually.

[ globally.

— implies.

$ (countably infinite) supply of state vari-
ables.

s sequence of state assignments.

dom(-) ordered domain of argument.

im(-) ordered image of argument.

) (countably infinite) supply of scheduler
variables. 20

t sequence of scheduler assignments.
20l

M? parallel composition of the DTMCs
induced by M with im(s).

Ry set of all path draw substitution rules
over I1.

E semantic implication of formulae.

¢ semantic implication of formulae on
finite DTMCs.

= semantic equivalence of formulae.

=¢ semantic equivalence of formulae on
finite DTMCs.

< subsumption relation between frag-
ments of logics.

~ bidirectional subsumption of frag-
ments of logics, equivalence of
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Symbol Index

fragments of logics.

<z weak algorithmic subsumption rela-
tion between fragments of logics.
39

=~ 4 bidirectional algorithmic subsump-
tion of fragments of logics, algo-
rithmic equivalence of fragments
of logics.

<¢ weak subsumption only on finite
DTMC:s. 30|

~¢ bidirectional subsumption of frag-
ments of logics, equivalence of
fragments of logics, on finite
DTMC:s. 30|

98

trace(7r) trace of the path 7, sequence of
all labels that appear in 7.

~tr trace-equivalence relation for paths.
35]

tap(77) space of total assignments for 77
on D.

PBo(7,u) the set of total assignments
for 7 on D to paths of the cylin-
der sets of the path fragment in u.

A algorithm that marks the initial state
of a DTMC/MDP with a unique
label init.



Logics and Fragments Index

HyperPCTLypyc formulation of Hyper-
PCTL for DTMCs.

HyperPCTL,,pp formulation of Hyper-
PCTL for MDPs.

HyperPCTL" formulation HyperPCTL
for DTMCs (none available for
MDPs).

PHL,pp formulation of PHL for MDPs.

HyperCTL" the non-probabilistic part of
PHLypp-

PHLppyvc (proposed) downscaling of
PHL for DTMCs.

HyperCTL" the non-probabilistic part of
PHLprMC

PHL]"D"TSMC the probabilistic part of
PHLp 1y c» that results by striking
out all 9-rules in Definition [2.24

LTL" positive LTL formulae, LTL formu-
lae where no negation is allowed
outside of strictly propositional
subexpressions.

[Z1|LTL" |-HyperCTL" 1-existential LTL-
positive fragment of HyperCTL".
451

[I;|-LTL"]-HyperCTL
negated LTL-positive fragment of
HyperCTL".

[Z,4|LTL*] the fragment of HyperCTL
comprised of formulae in PNF,
with » alternating quantifiers,
with the outermost being 3.

[I1,|LTL*] the fragment of HyperCTL
comprised of formulae in PNF,

1-universal

with » alternating quantifiers,
with the outermost being V.

[3"|LTL"]-HyperCTL" n-existential PNF
LTL-positive fragment of Hyper-
CTL.

[3*|LTL']-HyperCTL"  PNF-existential
LTL-positive fragment of Hyper-
CTL".

[13*|7* ]-HyperCTL" recursively existen-
tial path-positive fragment of Hy-
perPCTL".

[Py|p°|LTL* ]-HyperPCTL" draw-1 simple
shallow fragment of HyperPCTL".
59l

[P0 |7 ]-HyperPCTL* recursively
nonzero path-positive fragment
of HyperPCTL".

LTL® shallow LTL formulae, LTL formu-
lae that can either use exactly one
U, or O and drop to a PL expres-
sion directly afterwards.

[LTL]-PHLE ¢ the probabilistic part
of PHLppc restricted to shallow
LTL formulae.

[3*|LTL]-HyperCTL  pNF-existential
LTL-shallow fragment of Hyper-
CTL". |65} 79|

[L3*|LTL)-HyperCTL" recursively pNF-
existential LTL-shallow fragment
of HyperCTL".

[init!|p°|LTL ]-HyperPCTL 1-initial-path
simple LTL-shallow fragment of
HyperPCTL.

[init*|P>°|LTL]-HyperPCTL initial-
path nonzero LTL-shallow frag-

99
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ment of HyperPCTL.

[P ]-HyperPCTL" draw-¢ state-path
alternating fragment of Hyper-
PCTL".[75|

[init*]-HyperPCTL initial-paths frag-
ment of HyperPCTL.

[PN7]-HyperPCTL" state-path alternat-
ing fragment of HyperPCTL".

PHLIS, the probabilistic part of
PHL,pp> that results by striking
out all 9-rules in Definition [2.22]

100

/7
- the probabilistic part o
LTL]-PHLY?Y, the probabilistic part of
PHLY,, restricted to shallow LTL
formulae. [78|
[init*|p*|LTL]-HyperPCTLypp  initial-
path simple LTL-shallow fragment
of HyperPCTLypp.
[Q]init*|P°|LTL*]-HyperPCTLypp
quantified initial-path nonzero
shallow fragment of HyperPCTLyp.
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