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1. Introduction

Environmental sciences describe the interdisciplinary study about physical, chemical
and biological conditions of the environment and their effects on organisms. This aca-
demic field has gained attention over the last few decades as many studies emerged to
examine the extent of anthropogenic actions destabilizing our long-established ecolog-
ical balance. Besides exhaustive exploitation of resources and the emerging problem
of waste management, climate change due to greenhouse gas emissions is probably the
most prominent field of research in this area.

Climate as a statistical entity arises from the assessment of several meteorological vari-
ables, for example temperature or atmospheric pressure, which are averaged over a long
period of time for a given location. As such it contrasts the short-term expressiveness
of weather since models based on climate statistics provide the framework to extrapo-
late climate conditions for years to come. Weather records exist for roughly 150 years,
so in order to compensate for that relatively short amount of time, scientists use proxy
evidence like ice cores or ocean sediments to reconstruct developments in paleoclimato-
logical time frames [11]. Figure 1 shows a series of reconstructed conditions regarding
temperature deviations from recently measured means. The modelled datasets suggest
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Figure 1: Reconstructed estimations of temperature anomalies [36]. Note that empiri-
cal data represented by the black line is only available starting in the second
half of the 19" century.

a clear upward trend in temperatures since at least one hundred years which can be
verified by the empirical data acquisition of HadCRUT [32]. Even though one can ar-
gue on basis of the Milankovitch cycle that temperature fluctuations have been present
throughout time, Crowley among others argued that recent increases cannot be justi-
fied by natural variability alone [13].

Findings of anthropogenic temperature changes is usually intertwined with unnatural
excess of carbon dioxide in the atmosphere which scientists believe to be one of the
main culprits causing the greenhouse effect [47]. Scientists For Future as one of those



groups incorporates a data visualization for global temperature change in their cur-
rent logo (see Figure 2) that aims at increasing public awareness about this issue on a
popularized level.
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Figure 2: Banner from Scientists for Future [18]. It shows the group’s logo and a
warming strip from 1850 to 2018 that visualizes the temperature in each
year compared against the average temperature of this period. The darker
the colour the greater the distance to the average, where blue refers to colder
and red refers to hotter temperatures than average in corresponding years.
According to them the years 2015 to 2018 were the warmest years since the
beginning of weather records.
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In the long term the distribution of carbon in our environment is in a balanced state.
We can still identify certain cycles which transfer carbon from one pool to another.
With regard to the greenhouse effect, we perturb an intrinsically slow cycle of car-
bon bound in fossil fuels. Those compounds form from organic matter that has been
compressed by pressure and heat under layers of mud for millions of years. Volcanic
activity is the main driver for the counter rotation of carbon into the atmosphere,
which is a relatively slow process as well under natural circumstances. By excessively
burning fossil fuels, humans have greatly accelerated this cycle unilaterally and thus
increased atmospheric carbon levels to 410 ppm from a pre-industrial concentration of
around 270 ppm [5].

Less than half of anthropogenic emissions remain in the atmosphere which implies an
absorption of carbon surplus by either terrestrial plants or the ocean [43]. Plants gen-
erally experience a boost in biomass production when more carbon becomes available
as long as water and other nutrients do not limit their growth. The other player in
this system is the vast ocean with its biotic and abiotic carbon pumps. Latter is often
referred to as solubility pump that is shaped by a carbon dioxide exchange via the
sea-air interface. A quite simplistic view on carbon intake of the ocean presumed that
mere measurements of carbon concentrations at two points in time would reveal the
anthropogenic proportion in this matter. It became clear, however, that there is more
to it because a multitude of factors from winds to fluid dynamics and nutrient supply
for primary production of algae and plankton significantly alter the carbon cycle in the
ocean and thus the global cycle. As a consequence, biogeochemical models emerged in
the science community to better understand and predict implications for the climate
as a whole.



1.1. Related Work

This thesis resides in the context of a Biogeochemical Ocean Model. Its embedment
within the model community is depicted in the next section. Afterwards, the area of
Uncertainty Quantification (UQ) is explored where we discuss several methods that
are further investigated in the course of this work. We later present the methodi-
cal approach of a Sensitivity Analysis (SA) that is deeply ingrained in the preceding
Uncertainty Quantification.

1.1.1. Model

Global climate models in the 1950’s started off as computerized attempts to create a
representation of the earth’s atmospheric system as it was at that time [39]. By the
time scientists recognized anthropogenic actions as a driving force for climate change,
models had become detailed enough and computers more powerful in order for models
to gain prognostic capabilities, e.g. the Community Climate Model [34]. Despite
increased computational resources, simulations are not even remotely able to render
down to a molecular level. Modern projections in the family of General Circulation
Models (GCMs) therefore divide the examined three dimensional space volume of the
atmosphere and the ocean into cell compartments of feasible size. We distinguish
between an Atmosphere GCM (AGCM), an Ocean GCM (OGCM) or their coupled
AOGCM which can naturally be even more detailed, but also more complex. An
example of a state-of-the art model for latter category is GEOS-5 that can analyse
climate variability on a wide range of time scales [6].

When it comes to OGCMs, ocean fluid dynamics have advanced our understandings
of physical and thermodynamical processes in the ocean on the basis of the Navier-
Stokes equations. Biogeochemical models are often coupled with OGCMs to form
Biogeochemical Ocean GCMs (BOGCMs), but in contrast to standalone OGCMs they
have no known equivalent to these techniques of numerical modelling. The chem-
ical component of biogeochemical models are widely explained with stoichiometric
relations, but things become significantly more complex once transformations among
organic and inorganic compounds are considered. Marine ecosystems are thus of-
ten divided into compartments that are intertwined by transportation of compounds
to one another. NPZD-type models as seen in Figure 3 originate from a version of
Fasham et al. and they incorporate a rough division into compartments of nutrients,
phytoplankton, zooplankton and detritus [17]. Modifications of these models integrate
even more compounds like phosphorus and nitrogen. General improvements include
eddy-permitting ocean circulation models like ORCA-LIM [27] that further advances
towards real ocean conditions. More recent models like the Dynamic Green Ocean
Model tend to go beyond the division seen in NPZD-type models and for example
further break down the distinction between both supergroups of phytoplankton and
zooplankton and result in far more parameters used in the model [7].
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Figure 3: Layout of a classic NPZD-type model with its compartments of Nutrients,
Phytoplankton, Zooplankton and Detritus. Arrows between compartments
indicate the fluxes between them. The dotted arrows imply boundary inter-
actions with the atmosphere and the benthos.

1.1.2. Uncertainty Quantification

Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) often go hand in hand,
where the former can be viewed as a prerequisite for SA. Uncertainty Quantification in
the context of our thesis firstly deals with the characterization of uncertainties within
a parameterized model, whereas the Sensitivity Analysis generally refers to an assess-
ment of the sensitivities in the model output with respect to changes in the input
values.

It is important to distinguish between different sources of uncertainty because they
determine how they can be quantified. De Wit and Augenbroe categorized sources
into model, numerical, specification and scenario uncertainties, where the last two can
be summarized as model input uncertainty [15]. Model uncertainty is attributed to the
fact that models are inherently only approximations of the real world and thus lack
absolute accuracy. An example for these in biogeochemical models are unknown fu-
ture greenhouse gas emissions or natural variability [21]. Numerical uncertainties arise
from computational limitations. These include storing floating numbers in a computer
number format which need to be rounded to some extent or discretization errors in the
execution of simulations. In the context of Building Simulations, De Wit and Augen-
broe argued that numerical uncertainties can be neglected. For the sake of focussing
on more influential uncertainties, we will also refrain from taking model and numerical



uncertainties into account.

In order to quantify input uncertainty, Saltelli and Tarantola suggested techniques
ranging from physical bounds and estimates to expert judgement and measurements
[45]. Even though it is viable to rely on literature and experts for a rough quantifica-
tion, most applications only incorporate their assessments in the determination of for
example the choice of a suitable probability density function around model parameters.
Depending on their individual context, Macdonald presented implications of different
distributions for complex simulation models [28]. Such distributions set the basis for
Monte Carlo techniques which are commonly used in the background of UQ and SA.
Cox and Baybutt included Monte Carlo simulations in their distinction of approaches
in probabilistic risk assessment, but argued that Monte Carlo techniques have the dis-
advantage that they are computationally expensive. They rather recommended the
use of analytical techniques if applicable to the underlying model. However, their sug-
gestions are dated back to 1981 and computational power has increased greatly and
thus lead to Monte Carlo simulations as commonly preferred method [12].

Another way of quantifying uncertainties was described by Oakley and O’Hagan who
employed a Bayesian approach [35]. The main idea is to observe output values and
try to find input values X* that can produce this output. Since an exact solution is
not reachable in practice, an approximation is sought with an observation error kept
as small as possible. A Bayesian framework hence shifts the perspective from forward
propagated uncertainties to an inverse setting. Instead of choosing samples uniformly
at random, the Bayesian method considers previous runs and hence is able to perform
more efficiently. Note that the key requirement and also downside is that the under-
lying model function is assumed to be a smooth function in order to extract viable
information from X*.

1.1.3. Sensitivity Analysis

Sensitivity Analysis facilitates the calibration of models and the identification of criti-
cal regions for input parameters. We distinguish between local and global SA methods.
Former focuses on a local range around a base point in the parameter space and thus
is limited in its effectiveness if the parameter region is not known. Derivative based
methods as applied by Rao and Haghighat count as local SA and employ the partial
derivative g—}é for an input X; and output value Y; [41]. Computing these derivatives
algebraically, however, requires the model to be formulated in an explicit algebraic
equation. Note that this is not the case for our underlying biogeochemical ocean model
REcoM?2 . The one-at-a-time (OAT) method overcomes this problem by varying pa-
rameters from their base values. This is performed for every parameter consecutively
while leaving all other parameters at their original value. OAT can hence be viewed as
a method for the approximation to the partial derivative method. Saltelli and Annoni
presented the inefficiency of an OAT method since it does not capture the interactions
between input parameters and as a consequence they suggested the use of global meth-
ods [44].

For a Sensitivity Analysis of complex and non-linear models like REcoM2 ; Burhenne



considered global methods as the preferable choice since they analyse the parameter
space with respect to their corresponding output of the model [8]. If the number of
parameters is relatively low, the Scatter Plot Method is capable of quickly distinguish-
ing between influential and non-influential parameters. On the basis of a Monte Carlo
simulation, sample values together with their result (i.e. (:L‘(l), y(l)) Tl (a:(N), y(N)))
are plotted. In this setting, a uniform cloud of points for example could be an indicator
of a non-influential parameter. Drawbacks are the necessity of a visual inspection of
every graph and partial loss of granularity if parameters are not dominant enough to
produce a visible pattern.

Campolongo et al. made an effort to present advantages of variance-based SA methods
like the independence of the underlying model and their inclusion of interactions be-
tween uncertain parameters [10]. A variance-based method managed to perform well
for a numerical model by Zhao and Tiede that examines only five parameters randomly
sampled from a uniform distribution [64]. Even though variance-based methods have
a high computational overhead, they can be used for most applications. More impor-
tantly, they allow us to perform a Sensitivity Analysis that answers two of the main
questions of this thesis: Which parameters of the Biogeochemical Ocean Model are
highly sensitive and its inverted counterpart question of which parameters can later be
neglected?

1.2. Goal of This Thesis

In this work, we are looking at the Regulated Ecosystem Model 2 (REcoM2 ) which
simulates among other output variables the net primary production of phytoplankton
and the concentration of chlorophyll in the ocean. Due to its complexity, the accuracy
of the model is highly susceptible to uncertainties which are expressed in its parameters.
Our goal is to quantify those uncertainties and to subsequently perform an analysis of
their respective sensitivity. Even though we will not directly decrease its complexity,
a sensitivity analysis will hopefully improve the forecast accuracy of the model by
providing insights on the sensitivity of its input parameters. Furthermore, it could
potentially benefit broader climate models that incorporate results from the underlying
biogeochemical ocean model.

1.3. Outline

Section 2 will cover some technical processes of the underlying biogeochemical model
REcoM?2 . An introduction into the methodology of a Sensitivity Analysis in the con-
text of Uncertainty Quantification is given in Section 3. In order to explain the principle
of our Sensitivity Analysis, Section 4 demonstrates the codebase used in this thesis and
also presents academic test cases for an analysis. After that we will present results of a
Sensitivity Analysis that is performed on the biogeochemical model and offer insights
into the sensitivity of parameters in Section 5. Finally, Section 6 will summarize our
results and will give an outlook on future work that is beyond the scope of this thesis.



2. Biogeochemical Model

In the following we present the biogeochemical model REcoM2 . Goal of this chapter
is to give a rough outline of the model in Section 2.1 and explain its mode of operation
in a more technical way in Section 2.2.

REcoM?2 is usually not used as a standalone model and requires an Ocean General
Circulation Model as physical simulation component. A coupling has been performed
for instance with the model MITgem which is also the coupling we employ for our
case study [26]. In the following we describe a coupling with the ocean model FESOM
which does not greatly diverge in substance, but rather in notation. This fact is of
little significance since this thesis is not concerned with a thorough analysis of the
model itself. Note that we will refer to a coupling only as REcoM?2 .

2.1. REcoM2 Overview

Ocean biogeochemical processes are inherently influenced by circulation and turbu-
lent transport processes within the ocean medium. In models these are approximated
through coupled OGCMs. Photosynthetically available radiation as well as fluxes at
the sea-air interface are also considered in their framework. Figure 4 shows the general
relationship between common model actors and mutual interactions.

We now take a closer look at the biogeochemical model REcoM?2 which will be used
throughout this work. A full description is provided by Schourup-Kristensen et al.
[49]. With regard to Section 1.1.1, REcoM2 can be considered an advanced NPZD-type
model because besides the basic Nutrients, Zooplankton and Detritus compartment,
the phytoplankton are further divided into nanophytoplankton and diatoms. The ben-
thos (biogeochemical processes at the seafloor) plays an important part in the nutrient
cycle and is also incorporated as a compartment. An overview of those compartments
and the fluxes between them is given in Figure 4.

REcoM2 considers the air-sea gas exchange of carbon in accordance to findings by
the Ocean Carbon Model Intercomparison Project and Wanninkhof [37, 60]. One driv-
ing force for carbon exchange is a combination of a thermodynamic property of C'O,
and ocean circulation, the so-called physical carbon pump. The solubility of C'O, in
sea-water is greater at lower temperature and the ocean is therefore capable of taking
up more C'O, at high latitudes. As the dense water formed in these regions sinks and
subsequently spreads into the interior of the ocean, a vertical gradient of dissolved inor-
ganic carbon (DIC) is produced. The deep and C'Oy-rich water masses are transported
by the global ocean circulation and close the cycle by upwelling and mixing with the
surface ocean, where solubility decreases and outgassing happens [38].

Even though the solubility pump is partially responsible for the vertical DIC gradi-
ent, about three quarters of that phenomenon are attributed to the biological carbon
pump [59]. It is tightly coupled to the compartments of REcoM2 and emphasizes the
importance of biogeochemical ocean models for the evaluation of global carbon cy-
cle. Photosynthetically active phytoplankton generate organic carbon mainly in the
euphotic zone situated at the surface ocean and thereby decrease DIC concentrations
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Figure 4: REcoM?2 compartments together with the pool of compounds associated with
them [49]. Arrows indicate fluxes between compartments.

and the partial pressure of COy (pCO,) accordingly. The opposite effect comes from
metabolic processes (respiration) in zooplankton as high trophic organisms, in the phy-
toplankton themselves as well as in bacteria. Since biogenic particles tend to sink in
the water column rather than follow the forces of advection, respiration generally oc-
curs in lower ocean layers than photosynthesis and thus contributes to the vertical DIC
gradient. A particular subset of nanophytoplankton (coccolithophores) in our model
form calcium carbonate (CaCOj3) which also affects the carbon cycle. Its formation
increases pC'O, and creates a countering effect to the aforementioned biological pump
in terms of C'O, concentration at the surface ocean. The sinking of particulate CaCO3,
the subsequent dissolution of CaC O3 at depth and the transport of the remineralized
material back to the surface is sometimes called the CaC'O3 counter pump. Detritus
acts as the bridge compartment that maintains the nutrient supply back to the upper
ocean layers by ocean circulation dynamics.

Observe that we have only focused on the carbon specific cycle in REcoM2 . Besides
carbon, the model also incorporates nitrogen, silicon and iron as nutrient compounds.
Iron is an important factor for primary production and new supply of iron is included
from aeolian dust at the sea-air interface and from input of the sediment. Nitrogen
and silicon generally undergo the same cycle as carbon, from their dissolved state to
organic matter as nutrients and later on mostly back to the nutrient pool through
remineralization.

The reasoning for splitting phytoplankton into nanophytoplankton and diatoms be-
comes apparent when inspecting their respective cell structures. Nanophytoplankton
form calcite shells that we discussed above, whereas diatom cells are contained within
a silica cell wall. REcoM2 thereby considers silicon and calcite exclusively for diatoms
and nanophytoplankton, respectively. With regard to zooplankton nutrient uptake,
the model only recognizes carbon and nitrogen as well as the factors for the grazing of
both phytoplankton types.



Boundary conditions do not only apply to the atmosphere (CO; gas exchange and
iron input), but also to the ocean floor. Detritus is split into nitrogen, organic carbon,
calcite and silicate. Matter from the detritus which is not dissolved during sinking is
provided to the benthos and in turn is remineralized and given back to the pool of
inorganic matter.

2.2. Model Formulas

We now present more detailed information about the internal processes of REcoM2 .
This includes used variables, their mutual dependencies and specific formulas used for
calculation. Note that this model is only the basis for the specific implementation we
will be using and that certain workflows may differ from the actual program.
Biochemical processes of the model are embedded in the ocean medium. RFEcoM2 is
hence exposed to the physical ocean circulation mechanisms and biochemical processes
within the water on the one hand and impacted by boundary conditions from the at-
mosphere and benthos on the other hand.

The benthos has been fully included in the model and especially in the nutrient cycle,
whereas the atmosphere is not represented by state variables and is only responsible
for iron input and C'O, fluxes at the sea-air interface. Orr et al. provided the guidelines
from which the CO; flux calculations are derived [37].

Biological state variables like the concentration of nutrient compounds within the water
body or within the cells of primary producers are constantly affected by ocean circula-
tion and biological processes. The goal is to calculate the change in concentration of a
biological state variable S in a given volume of water. The water’s velocity in x,y and
z directions is given by U = (z,y, z). Dead organic matter is supposed to sink with a
gravitational settling velocity that increases linearly with depth. The velocity wge is

determined by
0.0288

day

Weet = -2+ wy (1)

where z is the current depth in meters and wy is the sinking speed at surface level
found as parameter in Table 24. Then, the term —U - V.S describes the change in S
due to advection. Turbulent motion is also considered by the term V - (k- V.S), where
k represents the diffusity tensor. Biological processes that act as either source or sink
are taken into account through the function SMS(S), where SMS stands for "sources
minus sinks”. Those functions are yet to be individually illustrated for a few state
variables. With our terms for advection, turbulent motion and the SMS-function, we
attain the following equation for change in concentration over time:

oS

= =—U-VS+7-(x-9S)+ SMS(S) (2)

2.2.1. Sources Minus Sinks

Formulas and naming conventions in this section have been adapted from [49].
We distinguish between state variables of the model (Tables 18-21) and its parameters



with fixed values (Tables 22-27). Table 18 and Table 19 depict the state variables for
which we will calculate the SMS terms. Fluxes from or to the benthos are denoted in
variables in Table 21 and are partially dependent on ocean or benthos state variables.
Lastly, Table 20 contains general model variables that are used in several SMS func-
tions.

In light of the sheer mass of functions that arise from the model, we only present a
handful of formulas that transport the essence of REcoM?2 . If not explicitly mentioned
otherwise, we refer to the tables in Appendix A.1 for an explanation of symbols in the
equations. Terms that are highlighted by a green color represent sources whereas the
color red depicts sinks.

Dissolved inorganic nitrogen (DIN):

SMS(DIN) = py - fr- DOM

~~
DON remineralization

— VN . Phycnano - ‘/él\;g . Phycdi‘d

nano
.

(3)

VvV VvV
Nitrogen assimilation Nitrogen assimilation

pn - fr describes the temperature dependent remineralization of dissolved organic nitro-
gen (DON). VN “and V{¥ are the nitrogen assimilation rates for nanophytoplankton
and diatoms, respectively. Intracellular carbon concentration in nanophytoplankton
and diatoms, respectively, is denoted by PhyCy;, and PhyClan.. DOM is an acronym
for dissolved organic matter.

The remineralization of dissolved organic nitrogen has a temperature dependency ( fr)

which is derived by an Arrhenius function with 7" as the local temperature:

T = exp (—4500K- (% —~ T;)) (4)

Tret as the reference temperature is parameterized in Table 27. Figure 5 illustrates the
temperature dependency function.

Dissolved iron (DFe):

Dissolved iron is accounted for by a constant Fe : N ratio which is denoted as ¢™ in
Table 23.

10
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e%hy and e° are the excretion rates of organic nitrogen per day for phytoplankton and

zooplankton. The parameter ppen is the temperature dependent degradation factor
of detritus nitrogen concentration (DetN). ZooN is the zooplankton nitrogen concen-
tration and 7,,, is the zooplankton respiration rate per day. Net growth of plankton is
described by the fourth term where V¥ ~and VY are the nitrogen assimilation rates

for nanophytoplankton and diatoms, respectively. Finally, the last term depicts an iron

11



sink via scavenging with kg, as the iron stability constant and Fe’ as the concentra-
tion of free iron. Scavenging in this context is the net absorption into sinking organic
matter.

Iron input is taken into account by a spatially and temporally varying iron flux for
both the sediment and dust. This contrasts a proposition by Elrod et al. that suggests
a constant supply of 2.65 - 10° mol DFe per year from the atmosphere and 2.67 - 108
mol DFe per year from the sediment [16].

Excretion from phytoplankton is depicted in the first term of Equation (5). For both
nanophytoplankton and diatoms the summand contains a factor ffif?f;‘nojdia} which
limits the excretion of dissolved organic nitrogen and thus also the excretion of iron.
The general limiting function for different metabolic process modulations is based on
a slope s regulating the limitation rate and two parameters ¢; and ¢ which represent
the limit value and current value, respectively:

flim(87QI7QQ) =1—exp (—5 ) <| qr — g2 | - (Q2 - QI))Q) (6)

Inserting the values for our special case leads us to a limiter function that is parame-
terized by sN__ and ¢™¢™a that can be found in Table 27. The third parameter ¢":¢

max

describes the current nitrogen to carbon ratio:

lli\In:S?r?;no,dia} = flim (Siaw qN:CmaX’ qN:C) (7)

Limiting functions are also used to end the release of nitrogen or limit an unregulated
uptake of different nutrients in the process of assimilation. Figure 6 illustrates the
intracellular regulation of nitrogen release and carbon update by the limiter function
i max . Observe that a nitrogen to carbon quota of 16/106 ~ 0.151 and higher causes
a diminishing function output up to a complete limitation at a quota of 0.2. Such lim-
itation is directly linked to the so-called Redfield ratio which describes the consistent
atomic carbon to nitrogen ratio of 106 : 16 found on average in phytoplankton through-

out ocean waters [42].

Zooplankton nitrogen concentration (ZooN):

SMS(ZOON) = 7" (anulo + Gdia)

(. S

~
Grazing on phytoplankton

Meyoo - Z00N?
—_—————

Zooplankton mortality

— ex’ - ZooN

—_——
DON excretion

The second and third term describe nitrogen sinks with m,., as the zooplankton mor-
tality rate, ZooN as the nitrogen concentration in zooplankton and eX° as the zoo-
plankton excretion rate of organic nitrogen.

In the source term, we have a factor v for the fraction of grazing flux to the zooplankton
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Figure 6: The limiter function f:cmax
qN:CmaX =0.2. ’

pool as parameter in Table 24 multiplied by the grazing rates Gan, and Ggi.. These
grazing rates on either type of phytoplankton are calculated by their respective ratios
of total grazing Gi:

PhyNyano
Gnano - Gtot : yG—, (9)
PhyNy;, - fdia
Gdia = Gtot . yé—,fz (10)

dia i a constant of the relative grazing preference for diatoms and G’ can be formulated

as

G’ = PhyNyao + PhyNaia - f* . (11)
The total grazing rate from Equation (9) and Equation (10) is calculated as follows:
o
Giot = fr - Gax m - ZooN (12)

Gmax is taken from Table 26 and represents the maximum grazing rate at 0°. It is
on the one hand modulated by fr (see Equation (4)) and by a ratio depending on a
half-saturation constant for grazing loss on the other hand which can be found in Table
26.

Benthos:
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Remember that the benthos is a seafloor compartment in RFEcoM2 where nutrients are
supplied by sinking detritus. As such it is also subject to the biological process of
uptake and release of compounds. We exemplarily illustrate the formula for benthos
silicon concentration (BenthosSi):

SMS(BenthosSi) = wqe - DetSi
——
Sinking detritus
(13)
— p&™ . BenthosSi

VvV
Remineralization

The sinking speed wqe; is explained in Equation (1) and pS™ is a parameter found

in Table 22 for the remineralization rate per day. DetSi and BenthosSi specify the
concentration of silicon in detritus and benthos, respectively.

Note that the state variables in Table 19 regarding the nutrients in the benthos are

given in %201 as opposed to %301 from ocean variables in Table 18. The nutrient

concentrations in the benthos as boundary condition have been vertically integrated in
order to act as a surface plane at the edge of three dimensional grid cells in the model.
Remineralized nutrients are thus assumed to be released into the lowest grid cell. Even
though only nitrogen, carbon, silicon and calcite are considered as state variable in the
benthos, fluxes of alkalinity and iron from the benthos to the lowest layer of the water
column are taken into account by variables from Table 21.

Alkalinity:

The benthos flux variable BenFay from Table 21 is calculated as follows:

1
BenFyy = (1 + 1_6> - pR . BenthosN + 2 - Dissey. - BenthosCalc (14)

with pR" as remineralization rate of nitrogen in the benthos, BenthosN and BenthosCalc

as nitrogen and calcite concentration in the benthos, respectively, and with Dissc, as
the rate of calcium carbonate dissolution per day.

Alkalinity measures the ability of a volume of water to neutralise acids and is equal
to the stoichiometric sum of the bases. With regard to our model, total alkalinity is
affected by calcite, nitrogen and phosphate. All three compounds were considered in
Equation (14); phosphate (P) as a nutrient is not included in REcoM?2 directly and is
taken into account by the constant P : N ratio of 1 : 16. Hence, the factor of 1—16 is
added to the nitrogen remineralization term. The dissolution rate Diss.,. of calcite
on a length scale of 3500m is derived as follows [63]:

Wy
3500m

Note that this derivation holds for the water column, but not the benthos. There, a
constant dissolution rate is assumed, neglecting the dependence on the C'aC O3 satura-
tion state. We define w, as presented in Equation (1) for depth z. The SMS-function

Di5Scp1e = (15)
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for alkalinity (Alk) is formulated similarly to the benthos flux in Equation (14):

16 N nano

1
SMS(Alk) = <1+>- VE  PhyChame  + Vi - PhyCgia
- —_——

~
Nanoplankton N assimilation = Diatom N assimilation,

1
— (1 + 16) . \pN . fTvDON,

DON Remineralization

4+ 2- DiSScq1e - DetCalc

Detritus calcite dissolution

-2 w : Pnano ' Phycnano

~
Nanophytoplankton calcification

(16)

with DetCalc as calcite concentration in detritus and ¢ as nanophytoplankton pro-

duction ratio of C'aCOs.

The term of % again is added to compensate phosphate by a constant 1 : 16 ratio.
Equations for the nitrogen assimilation rates VX and V. for nanophytoplankton and

nano

diatoms, respectively, have been omitted. Upon dissolution of calcite from detritus,
COj3™ is supplied to the water and increases alkalinity with two moles for each dissolved
mole of calcium carbonate. Same applies to the reverse process of calcification which

causes a multiplication by a factor of two in both summands.
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3. Methodology

In this section we discuss the methodological approach for the Quantification of Uncer-
tainties and Analysis of Sensitivities for Biogeochemical Ocean Simulations. Section
3.1 will present common methods used for Uncertainty Quantification. This includes
the techniques of Monte Carlo simulations and Stochastic Collocation. In Section 3.2
the Bayesian framework will be introduced that engages the problem from a data driven
perspective. After that we present the ideas of a variance-based Sensitivity Analysis
in Section 3.3 where different measures of sensitivity and their computation techniques
get displayed.

3.1. Uncertainty Quantification

This section focuses on the topic of Uncertainty Quantification. Note that this tech-
nique is usually tightly coupled with some form of Sensitivity Analysis which directly
incorporates results from an Uncertainty Quantification. The main idea can be de-
scribed as the quantification and successively the propagation of uncertainties through
the model in order to determine its sensitivities with respect to these uncertainties.
Sources of uncertainties can be multifold, especially for complex models. In Section
1.1.2 we presented a distinction between uncertainties arising from either the model
setup, numerical limitations of computers or model input. Since the scope of this thesis
does not cover a deep analysis or even questioning of the underlying biogeochemical
model and accuracy of computers, we project all uncertainties onto the model inputs.
The REcoM2 model has been put into action before and provided reasonable results
with a predefined set of input parameters that simulate conditions in the Bermuda
region. We hence assume that all parameters are already tweaked to feasible values to
a qualified extent. Uncertainties in the inputs are therefore limited to a relatively small
interval. An additional limiting factor are physical bounds of parameters. Consider for
example the light harvesting efficiency « for both types of phytoplankton (see Table
25), which naturally has to be non-negative.

In the following we examine the Monte Carlo method, where distribution functions
dictate the range and probability of values for uncertain parameters. However, inde-
pendent sampling of a uniformly random value for each parameter neglects possible
dependencies or correlations between two or more parameters. Even though the detri-
tus sinking speed wq (see Table 24), for instance, will most likely be uncorrelated to a
parameter like the chlorophyll degradation rate degcy, (see Table 22), we cannot easily
make definite statements about each subset of parameters. A clear dependency can at
least be derived for parameters regarding the limitation functions in Table 27, where
for example s5. < s5  must hold. In order to address this problem of parameter
dependency, we will further explore a method in the Bayesian framework. Note that
the application of this method is beyond the scope of this thesis and only serves as
an introduction to potential future work. Before that we offer an alternative to classic
Monte Carlo simulations which is usually referred to as Stochastic Collocation and
which employs a deterministic sampling technique.
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3.1.1. Monte Carlo

Deterministic numerical integration encounters problems if the underlying function has
many variables. The number of function evaluations required increases exponentially
with the number of dimensions, which is sometimes called the "curse of dimensional-
ity”. For instance, assuming an adequate accuracy for one dimension is achieved by
100 evaluations, then all 51 degrees of freedom in REcoM2 (see Tables 22-27) would
demand 100%! evaluations, which is not feasible at all for such a complex model. The
Monte Carlo method breaks out of these dimensional constraint by solving the multi-
dimensional definite integral for a quantity of interest probabilistically. Observe that
such modification will turn the inherently deterministic model into a stochastic one.
Let f ()Z' ) be the numerical model function with the input parameters X. A function
for a quantity of interest is generically designed by the user. An integral often yields
a desired value and such function can be mathematically formulated as

/ f(X)dX (17)
Qm

where €2,, € R™ is the parameter domain in the m-dimensional hypercube with
m = |X|.

Remember that we roam in the area of Uncertainty Quantification where some val-
ues of X are affected by uncertainty. We thus split the input into a new vector X of
undisturbed parameters and a vector 5 of parameters susceptible to uncertainties, i.e.
X = (x‘,é’) In order to describe the domain of uncertainty, we define a probability
space for the parameters of g by assigning suitable probability density functions r(g)
The question of a most adequate distribution for 5, i.e. function r, cannot easily be
answered, but the focus lies on continuous probability distributions because the pa-
rameters of REcoM?2 are represented by floating-point values. Since each parameter of
REcoM2 has some predefined default setting ¢ and uncertainties are supposed to ad-
dress relatively small deviations, it is plausible to employ a probability density function
where the statistical properties of mean, median or mode lie close to ¢t and where values
are more improbable the more they diverge from ¢. Such intuition naturally excludes
uniform or exponential distributions for example. A commonly used distribution for
this purpose is the normal distribution. With a normal distribution N (1, o?) for some
standard deviation o, we would center its bell curve above the normalizing factor of
one such that uncertainties are realized by a factor multiplication of ¢ with a normally
distributed variable. However, the question of how to handle negative values remains
because negative parameters are explicitly not allowed and could potentially even crash
the execution of a model run. For this reason, we will use the lognormal distribution
LN (0,0.125) throughout this project. A random variable A is lognormally distributed
if and only if A = e for a normally distributed random variable B. Lognormally dis-
tributed random variables thus cannot be negative. The downside is a skewness of the
probability density function (pdf) to the right. Notice that our predefined variance of
0% = 0.125 above results in a pdf which closely resembles that of a normal distribution
(see Figure 7). Smaller values for 02 would in theory conform to statistics of a normal
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distribution even more, but we stick to our setting for the sake of a broader uncertainty
margin.

— WNM1,1) — WMN(1,0.125)

0.7
— £AN(0,1) | 3.09 —— £N(0,0.125)

0.6 1
2.54

0.51
2.01
0.4+
1.5
0.34

1.0
0.24

0.1 0.51

0.0 T t T T T 7 0.0

Figure 7: Comparison of probability density functions (pdf) from a normal distri-
bution and a lognormal distribution with variances of 1 (left) and 0.125
(right), respectively. Note the resemblence of the curves on the right and
that the mean of LN (0,0.125) lies close enough to one for our purpose with

exp (%2> = exp (42) ~ 1.064.

—

Respective probability functions r(£) enable us to reformulate the expected value of
F(X) with regard to X in order to fit our needs. The calculation for a quantity
of interest, such as the expectation of chlorophyll concentration in output data of
REcoM?2 , can be written as

— — —

E|f.8|= [ fR&r@de=1 . (18)
Qq

Observe that in contrast to Equation (17), we integrate over the vector £ = {&, ..., &}
The integral bounds are therefore only d-dimensional here. However, without loss of
generality we assume in the following for convenience that Qg C [0,1]% instead of R
since all parameters can in theory be normalized to the d-dimensional unit hypercube.
The Monte Carlo approach now samples points uniformly at random on unit hypercube
Q4. Since computers are inherently deterministic machines, generating random num-
bers is a difficult task. In this thesis we employ the pseudo-random number generator
that is embedded in the core Python library. Its documentation states the following
[19]:

”Almost all module functions depend on the basic function random(),
which generates a random float uniformly in the semi-open range
[0.0,1.0). Python uses the Mersenne Twister as the core generator. It
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produces 53-bit precision floats and has a period of 219937 — 1. The
underlying implementation in C is both fast and threadsafe. The
Mersenne Twister is one of the most extensively tested random number
generators in existence.”

Given a number of N generated samples {1, cee 57\7, Equation (18) can be approximated
by

1 & -
I%CNENZfOZafn) (19)
n=1

where f(¥, 5”) is the model function for the respective sample. Recall that Y is fixed.

As long as the sequence 5_1, e ,57\7 only consists of independent and identically dis-
tributed random parameters, the law of large numbers applies:

lim Cy =1 (20)
N—o0
In order to assess the performance of the Monte Carlo approach, we need to explore
the convergence rate of Cy since an equivalence as shown in Equation (20) cannot
be reached in practice. The error of Cy can be estimated by calculating the sample

variance o% in Equation (21) and using it to derive the variance of Cy in Equation
(22) as follows:

Var(f) & o = —— ' (fbaé‘)r(é) S E{c¢ 7’)) (21)

This leads to

N
1 o3
Var(CN) = m ZO’?V = W . (22)
i=1
The bounded sequence {0?,...,0%} ensures a variance that decreases asymptotically

to zero. Finally, we can derive the standard error of the mean for Cy with

(Cy) ~ \/Var(Cy) = J—\/% (23)

which decreases as \/LN Monte Carlo sampling thus converges with a rate of O(N~1/?)

where O(+) denotes the upper bound for the growth rate of a function. Observe that this
method does indeed not depend on the dimension of the probability space €2;. However,
enhancing the accuracy by one digit increases the number of required simulations by
a factor of 100.

3.1.2. Quasi Monte Carlo

In the last section we introduced the standard Monte Carlo method and proved its con-
vergence rate of O(N~1/2). Morokoff and Caflisch presented a way that maintains the
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main sampling idea, but replaced pseudo-random numbers with quasi-random num-
bers generated by so-called low-frequency sequences [33]. They compared three such
sequences, the Sobol, the Halton and the Faure sequence. For numerical problems
with more than six parameters, the Sobol sequence performed best and hence deserves
our attention. Generally, these sequences serve as reference points for the creation of
a hypercube filled with a set of points such that void regions are avoided. Figure 8
illustrates the difference between numbers generated by pseudo-random generators and
an algorithm which employs the Sobol sequence. More evenly distributed points in the
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Figure 8: Unit planes with 256 consecutive points generated by a pseudo-random gen-
erator (left) and a generator based on a Sobol sequence (right). The colors
indicate the indices within the sequence (red: 1-64, green: 65-128, blue: 129-
192, black: 193-256).

hypercube enable a potentially faster convergence rate than that of classic Monte Carlo
simulations. Caflisch et al. showed that using the Sobol sequence for the generation of
quasi-random numbers resulted in a convergence rate of O((log N )d N~1) where d is the
dimension of the considered probability space [9]. This means that for a small number
of dimensions, the quasi-Monte Carlo approach needs only a fraction of simulations
for an additional digit of accuracy as compared to pure Monte Carlo. The drawback
becomes apparent if d is larger and the number of samples N remains relatively low,
where the classic Monte Carlo method outperforms the quasi-Monte Carlo method in
terms of convergence.

3.1.3. Stochastic Collocation

Unlike previous methods, the Stochastic Collocation method does not reside in the
realm of Monte Carlo simulations. However, it still can be described as a sampling-
based method. The major difference is the fact that Stochastic Collocation employs a
deterministic sampling approach and not a probabilistic one.

Instead of generating samples based on probability distributions and using them to
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calculate an ensemble average like in Equation (19), Stochstic Collocation determinis-
tically predefines collocation points and then computes the solution of the underlying
function at these points. By strategically assigning weights as coefficiants to the nodes,
we are able to approximate the expectation value from Equation (18) by

— — —

B0 = [ S Or@dE S wif(w) (24)

where w; are the weights and f(u;) are the function evaluations at collocation point
u; with 1 <4 < n [40]. Note that each collocation point u; is w.l.o.g. defined on the
unit hypercube €2, as well. Same approach can be employed for the calculation of the
function variance by

V[0 =E[f(x.67] ~E[sx.6] ~ iwif(um - <§_j wz-f(u@-)> . (29)

A set of collocation points usually consists of the nodes of a quadrature rule in multi-
dimensional space defined on the unit hypercube such that one can use the integration
rule defined by the quadrature to calculate statistics for a quantity of interest. Multidi-
mensional quadratures rules are sometimes called cubatures rules and are characterized
by its degree. A rule of degree d, for example, indicates that an integral is exact as
long as the integrand is any multivariate polynomial of degree less or equal to d.

The selection of a suitable cubature rule is essential for Stochastic Collocation because
the underlying function has to be calculated for every cubature point and the number
of these points increases exponentially with the dimension d of the probability space
Q4. Gauss quadratures usually provide the optimal choice for d = 1, but the challenge
is in the multidimensional space with d > 1.

One choice is to apply the tensor product to one-dimensional nodes, for example the
aforementioned Gauss quadratures. Mathelin and Hussaini used this approach among
others in order to conveniently generalize properties of one-dimensional integration
[31]. However, the number of points still grow rapidly in multidimensional probability
spaces, and they concluded that the tensor product approach is not feasible for dimen-
sions d > 5 in most applications [4].

Another way to construct efficient cubature rules are sparse grids which are based
on the Smolyak algorithm [51]. They are a subset of the full tensor product grids
and the points are chosen strategically in a way that the advantageous approximation
properties for the one-dimensional probability space are preserved and for the multidi-
mensional case as much as possible [62]. Figure 9 shows an example for tensor product
grids and sparse grids. Latter clearly contain much less number of points such that
they can provide the framework to conduct a Stochastic Collocation approximation in
a high dimensional setting. Observe that the sparse grid still contains the same set of
points along the dimensional axes. According to Smith the quadrature error is of order

O(N™*(log N) =Dty | (26)
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Figure 9: Examples of collocation points in two-dimensional space. Left: Sparse grid.
Right: Tensor product grid.

with N the number of collocation points and « a constant that is dependent on the
smoothness of the function [50]. The node count (number of collocation points) is
dependent on the node type. In this work we employ the Clenshaw Curtis (CC) nodes.
These nodes are typically defined on the interval [—1, 1]d and describe the extrema of
the Chebyshev polynomials [14]. For a desired level [ of refinement the nodes can be

calculated by

Q{:—cos% ,1<r <R (27)
where R; =1 and R; = 271 +1 for [ > 1. Figure 10 illustrates the arrangement of CC
nodes with different refinement levels in three dimensional space. It is interesting to
observe the effect of increasing refinement levels (Figure 10a and 10b) and increasing
dimension (Figure 9(left) and 10b) on node count and nestedness.
As the Clenshaw Curtis node type yields nodes on the interval [—1, 1] and thus would
not be a suitable quadrature rule for unbounded probability density functions like for
example the normal distribution, we use an inverse cumulative distribution function
transform to translate the set of nodes to (—oo, 00) [58].

3.2. Bayesian Method

In the last sections we discussed Uncertainty Quantification methods which are based
on forward uncertainty propagation. In these cases the uncertainties are propagated
through the model to predict the overall uncertainty for a quantity of interest (see
Figure 11).

Equation (18) already formulated this system mathematically. For the sake of sim-
plicity, we now omit a distinction between certain and uncertain parameters and rather
use 5 as (possibly) uncertain input parameters in general. Moreover, an explicit func-
tional is also left out in the following and is replaced by the notion of g(-). We reach
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Figure 10: Visualization of sparse grids with nested Clenshaw Curtis nodes.

the rephrased formula

1(§) =1 =g(f(8)) (28)
where f(-) still describes the underlying model function.
Our goal now is to consider an inverse problem, that is, examining observational data
y and finding input parameters E* such that the equation

y=9(f(&)) +e (29)
is satisfied with the observation error ¢ as small as possible. Figure 12 illustrates the
paradigm shift where the input parameter {* is under investigation.

Solving for equality is unrealistic in practice due to its ill-posedness according to
Hadamard [20]. Techniques like the Tikhonov Regularization hence aim for the mini-
mization of the residual for the Euclidian norm || - ||2 [56]. Unfortunately, this method
is not useful for our purposes because we want to extract additional information that
helps us quantifying uncertainties.

Remember that we acknowledged the difficulty of finding suitable probability density
functions for each parameter and detecting mutual dependencies of parameters with
regard to Monte Carlo methods. Using a Bayesian approach will help us overcome
this obstacle by fine-tuning the probability distribution of input parameters based on
observational data.

Since randomness perturbs Equation (29), we now consider 5 to be a random variable.
The Bayesian framework facilitates the acquisition of knowledge about the entire dis-
tribution of parameters E given that we have observed y. In statistical terms we can
denote this as the conditional IP’(E | ¥) which poses as the posterior distribution. It can
be attained with help of the fundamental Bayesian Theorem:

— —

_ By | HPE)

P(E | y) Py)

(30)
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Figure 11: Setup for a forward uncertainty propagation model like the (quasi)-Monte
Carlo Simulation.
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Figure 12: UQ model setup assuming that the actual parameters f:* are known. Note
that the obseration data y is affected by some error e.

The probability of obeserved data is independent of 5 and not relevant for our exami-
nation which leaves us with

P(€]y) ~Ply| EPE) (31)

—

In this context P(£) is the a priori distribution and describes our initial descriptions
of probability density function for the input parameters. The likelihood P(y | 5) is the
probability of observed data given that the input vector is fixed. Assuming that we
employ a multivariate normal distribution for an Bayesian approach and define for the

measurement error that e ~ A(0,3), we can concretely deduce it with Equation (29):

9(f(€) —y=e~N(O,%)

&y~ N (9((E),3) .
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Once we have incorporated our findings regarding the likelihood from Equation (32)
into the posterior distribution, we can ﬁnfmlly close the feedback loop for the readjust-
ment of the uncertainty distributions of £. Figure 13 illustrates this cycle.

. fPrior‘
Posterior distribution 1 oEmatlon
rv = P(€| h(f(€) +e=1y) E~r
True h Observation
parameters data

& f v =h(f(E) +e

Uncertain
parameters Qol
£y g 9(f(£))
0.4 ]
0.2 8
| |
0 1 2 3

Figure 13: Inverse UQ model with the Bayesian method. The feedback loop allows
refining prior distributions by a type of data assimilation.

We have to stress that this general Bayesian framework itself is not a standalone method
to generate samples, but rather an approach to refine a priori defined probability
density functions by a posteriori distributions r¥. With a sampling based method like
Monte Carlo, for example, samples can be generated from r¥ such that 5 ~rY,

Note that we do not employ the Bayesian framework for this thesis. The introduction
above, however, aims at giving the reader an insight of potentially useful work that
may be tackled in the future.

3.3. Sensitivity Analysis

We are now shifting our attention from a pure examination of uncertainties for input
parameters to a more comprehensive view of model statistics. Nevertheless, Uncer-
tainty Quantification is a key prerequisite for a Sensitivity Analysis where the impacts
of uncertainties with regard to the model output are investigated.
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REcoM2 as a complex and non-linear model is preferably analysed with global Sensi-
tivity Analysis methods [8]. In this thesis we will employ a variance-based Sensitivity
Analysis which is a member of those global approaches.

3.3.1. Variance-Based SA

The variance-based Sensitivity Analysis is based on two mathematical observations:

1. Law of Total Variance [61]: Remember that our methods of Uncertainty Quan-
tification have turned the model into a stochastic one because both the system
response y and input parameters 5 = (&, ...,&,) are treated as random variables.
The law now states that

Viyl = VIE[y | &]] + E[V]y | &]] (33)

where V[-] (V[ |:]) and E[-] (E[-|-]) denote the (conditional) variance and
(conditional) expected value, respectively. In other words, the total variance
V [y] can be decomposed into the sum of two terms: One measures the variance
between the conditional means given the inputs &;. The second term describes the
mean of the conditional variances which is sometimes referred to as the residual.

2. High-Dimensional Model Representation [52]: Sobol showed that any function
of the type y = f(&1,&,...,&,) can be decomposed into the following terms
where 1 <13 < -+ <1y <n:

y=f(§1,§2,.--,§n)=]E[y]+Z Z zi1---is(§i17"'7§is) : (34)

s=1 i1 <<is

Note that Equation (34) contains 2" summands that can be disentangled such

that
y=Ely)+ iz&&) + ;zzj(&,@) +o 26,0 6)  (35)
where
%(6) =Ely | & —Ely) - (36)
2j(&, &) =Ely | &Gl —Ely |Gl —Ely [ —Ey] - (37)

All terms of higher order up to z19. ,(&1,&, ..., &,) are derived analogously. The
2;(&;) terms are called the main effects (or first-order interactions), the z;;(&;, ;)
terms are denoted as second-order interactions and so on.

Note that these terms are dependent on the probability distribution of the un-
certain parameters which is illustrated by Example 3.1.
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Example 3.1. Let the considered model be f(&1,&) = & and y = f(&1,&2). We
have E [y] = E [¢] and thus

21(6) =Ely | &] —Ely]
=E[f(&, &) | &) —E[f(&,&)] (38)
=& —E[&]

If the distributions of & and & are independent then 2z5(&2) = 0 and 212(&;, &) =
0. In this case the representation reflects the structure of the model function
itself with a linear effect of & without interactions with &. If however both
parameters are not independent, we have the general case of

2(8) = E[& | & —E[&] = —212(61,62)

which is not necessarily zero.

3.3.2. Sensitivity Measures

In the previous section we prepared the mathematical framework to extract different
kind of sensitivity measures. It is up to the user and dependent on the application
which measures fit best. We present some popular sensitivity measures that were first
presented by Saltelli et al. [46] and later extended by Marzban [30]. See Table 1 for a
list of selected sensitivity measures.

The first measure is given by E[V[y] — V]y | &]] and is motivated by an expected
reduction in the variance of the output. It is equal to V [y] —E [V [y | &]] and according
to Equation (33) it can be rewritten as

Vi=VIE | & (39)

Similar measures for an expected reduction of output uncertainty with multiple fixed
parameters can be obtained analogously. For example, it follows from Equations (34)-
(37) that a measure complementary to V; can be deduced given the premise that we
knew the true value of two inputs:

Vieg = VI[E[y [ &, &l = Vi+ V; +V [2;(&,&5)] (40)

For the case that z;(&;) and z;(§;) are mutually independent we can assess the level of
interaction between §; and §; with

Vij =V [2;5(&,§)] - (41)

In contrast to previous measures, observing the uncertainty remaining in the output
while given all input parameters, except &;, can be expressed by

Vi =Vl -V [E |y | &4 (42)
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where 512- denotes the vector of all input parameters 5 except & which results in the

vector i = (&1, €1y Eipty -2 En)-

Usually, the measures V; and Vp; are converted to scale invariant proportions, respec-
tively:

Vi
Vi )
Vri
Sri = —— 44
YY) .
Sensitivity Measure Description
Vi=VI[E]y | &]] Reduction in uncertainty of y, given &;

Interaction between & and &; (if 2;(&;) and z;(§;) are
mutually independent)

Vij = V[z;(&,§5)]

o B o Uncertainty remaining in y, given every parameter
Vri = Vly] [ [y | SN’” except &
S; =V;/V]y| Normalized first order index
Sti = Vi /V [y] Normalized total effect index

Table 1: Sensitivity measures and their effect on output uncertainty.

3.3.3. Sensitivity Calculation

Saltelli presents different approaches for the calculation of both S; and Sy ;. All tech-
niques, however, share the same core structure of two independently created sample
matrices A and B that need to be evaluated by the underlying model function. These
matrices consist of N rows and d columns such that each row represents one generated
sample in the d-dimensional probability space of uncertain parameters. From A and B
we introduce the matrix Ag’ (Ba") where all columns are from A (B) except the i-th
column which is from B (A). Figure 14 illustrates the generation of those matrices.
Sensitivity index S; can be calculated by dividing

Vim D0 F(B)(f(AR), - S(A)) (45)

by the normalizing model variance V [y] where f(R"*?); denotes the model evaluation
with the input values of the j-th row of the sample matrix RV*<. Observe that only
the triplet A, B and Ag’ is required for this estimate by Saltelli. Jansen proposed an
even better estimator that does not require the evaluations from sample matrix A, but
the estimated model variance V [y] [24]:

1 N
Vi &~ ——N; f(AB");) (46)
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3.14 0.54 7.40 3.54 0.77 7.81 3.54 0.54 7.40
2.95 0.41 6.57 3.11 1.01 7.47 3.11 0.41 6.57
3.04 0.98 7.32 2.78 0.04 7.01 2.78 0.98 7.32
3.15 0.56 7.89 3.71 0.28 8.14 3.71 0.56 7.89
3.33 0.67 7.03 3.34 0.71 7.55 3.34 0.67 7.03

Figure 14: Exemplary sample matrices A, B and Ag' with N = 5 and d = 3. Matrices
Ap? and Ag® are generated analogously to Ag’.

Sensitivity Sr; can be obtained by dividing the following estimation of Vi; by V [y]:

1« 2
Vi~ 5 ;(f(A)j — f(AB");) (47)

We will use the estimators from Equations 46 and 47 in our work which allows us to

avoid additional model simulations of Bp‘. Model variance V [y] is generally estimated
by appending A and B such that the variance is dependent on both sample matrices.

It is important to point out that previous formulas for the calculation of sensitivities
are only estimates and are not exact with regard to Equations (39) and (42). Even
more so, the estimators we use may for example yield negative values which is naturally
not possible. Calculating the sensitivities directly with exact formulas would, however,
require a simulation overhead of order O(N?) with the sample size N. Degrees of
accuracy are thus commonly traded in with a linear growth rate of simulations instead.
In order to still be able to assess the quality and robustness of our results, we go beyond
an error estimate by Sobol that merely relies on the underlying sampling variability
[53]. The bootstrap subsampling technique formulated by Archer et al. [2] allows us to
evaluate the sensitivities based on already obtained data. Its idea is to choose a number
of subsamples from the original data set and to calculate the sensitivities on these
subsamples. If the estimate is already sufficiently accurate the sensitivities computed
by the subsamples will hopefully not diverge greatly from this value. The span of
divergence is then embedded in a confidence interval which provides an educated guess
for the precision of the sensitivities.

An open question remains the adequate number of times the subsampling should be
executed (number of replicas). For our work we use 10000 replicas which has proven
effective in literature [2] [46]. As for the size of the subsample set, we found that N/4
subsampling points yield robust results.
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4. Implementation

In this section we present an implementation of methodological approaches discussed
in Section 3. The overall layout of the execution pipeline will be illustrated in Section
4.1. This pipeline consists of roughly three steps that are modularized in mutually
independent algorithms. Even though these steps are independent of one another in
terms of their execution, they still have to be run consecutively because the input of a
step is dependent on the output of the previous one.

Section 4.2 and 4.3 address our implementations for the Uncertainty Quantification
methods as the first step. REcoM2 as the underlying model is an external implemen-
tation that is also executed on remote computer systems. Section 4.4 will therefore
focus on the interface that we have established with that system. In order to test our
implementation and to avoid a time-delayed and computational expensive simulation,
we furthermore demonstrate a synthetic test model in Section 4.5. As the final step,
Section 4.6 presents our implementation of a variance-based Sensitivity Analysis. Be-
fore starting a case study we also present an empirical validation of the implemented
methods in Section 4.7.

4.1. Architecture

Goal of this thesis is the contribution of profound results to the investigation of highly
sensitive parameters in REcoM2 and to answer the dual question of which parame-
ters can be neglected. Our variance-based Sensitivity Analysis requires a preceding
Uncertainty Quantification and its trailing model execution with multiple parameter
configurations for that task. This rough setup is illustrated by Figure 15. As stated
above, these three steps have to be run consecutively. Note that the settings file con-
fig.json serves as the overall configuration file for all pipeline steps. If we assume
that a Monte Carlo algorithm is used for the Uncertainty Quantification, the file for
example defines the number of iterations to run and which of the input parameters for
the subsequent model simulation are considered to be uncertain.

The output file, regardless of chosen UQ method, always has to abide by the same
format which is a list of key-value pairs. As a consequence of this prerequisite, the
execution of our UQ methods will produce a series of files labelled data.recom-i with
¢ the running index up to the desired sample size, where their contents only differ in
the values of the specified uncertain parameters.

REcoM2 as a model is complex and running thousands of simulations would take too
much time on machines that are designed for everyday work. We thus outsource this
task to an external supercomputer system (see Section 4.4). The outputs of RE-
coM2 are several netCDF (.nc) files that for example contain values of a biochemical
variable over the course of the simulation time frame. All relevant output data is re-
trieved from the external system and then serves as input for the Sensitivity Analysis.
Since our UQ and SA approach is independent of the underlying model and only
requires some generic Quantity of Interest (Qol), we are able to circumvent a com-
putational overhead of REcoM2 by deploying a synthetic test model that satisfies the
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@ data.recom-1

@ config.json —) UuQ I,

@ data.recom-n :
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Test Model E REcoM2

SA G

Figure 15: General layout of the pipeline to produce sensitivity indices .S; and Sr;.

same input specifications as REcoM?2 (see Section 4.5).

Long story short, the UQ step produces a batch of input files with different parameter
perturbations for the model and the SA step retrieves Qols from the model output and
calculates desired statistical measures.

4.2. (Quasi)-Monte Carlo

Our implementation of the (quasi)-Monte Carlo approach is based on an existing
python library called XMC' where X is a wildcard for different Monte Carlo variants
[3]. The GitLab repository gives following description:

"XMC is a Python library for parallel, adaptive, hierarchical Monte Carlo
algorithms, aiming at reliability, modularity, extensibility and high
performance.”

However, we do not intend to employ a wide range of variants in this thesis and confine
ourselves to the already introduced standard Monte Carlo (MC) method and quasi-
Monte Carlo (¢qMC) method. The library was thus shrunk down to its core functionality
by removing its parallelization capabilities for example. Our resulting code still retains
two key qualities of XMC"
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e A Modular implementation allows to easily integrate modifications like quasi-
Monte Carlo or to exchange a functionality by replacing a specific class.

e Parameterization via settings file enables a compact and adaptable configura-
tion of the program. Changes to its operating mode are hence possible without
modifying the code base itself.

Since the model interface by design expects a series of input files (see Section 4.4), we
integrated the perturbation of parameter values and generation of input files into the
MC algorithm. In the following we give an overview over the steps in the (quasi)-Monte
Carlo implementation.

Note that the following description is partially valid for the Stochastic Collocation
method as well because MC and SC are both contained in the same UQ framework.

Initialization:

The execution is entirely configurable by a key-value pair system in the file re-
sources/config. json. These settings are parsed and employed in the top level mod-
ule ug_standalone.py. The user is further able to provide a specified set of command
line arguments depicted in Table 2. Note that all arguments are optional. Besides ini-
tializing environment variables, uq_standalone.py assembles all configurations that
are used to provide the parameters for dynamic instantiations of all modular com-
ponents. This is achieved during runtime based on a file path provided in the con-
fig.json. We present this approach in Example 4.1.

Parameter | Description

Stores an optional message in the output file info that allows a

-m --message L. . .
& description of the current simulation.

Specifies the output directory relative to ./out/. Default value is

-p --path .
p~"pa the current timestamp.

Overrides the logger level specified in the configuration file. Options

“1--level | ) (DEBUG), 1 (INFO), 2 (RESULT) or 3 (ERROR).

Table 2: Optional command line arguments that can be provided when executing the
UQ algorithm.

Example 4.1. Values produced by a random number generator during the (quasi)-
Monte Carlo execution need to be transformed onto a specified distribution. There
exists a predefined superclass TransformWrapper from which a user defined class can
inherit and provide individual implementations. Let inverseTransformWrapper.py
be such realization containing a class InverseTransformWrapper which inherits from
TransformWrapper. In order to integrate this module, it only has to be in the correct
directory which in this case would be /uq/classDefs_transformWrapper/ and needs
to be addressed in the config. json file under the JSON node uq/transformer/ by set-
ting the value of key type to inverseTransformWrapper . InverseTransformWrapper.
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Configurations are generally extracted by a custom method getConfig in the utility

module util.py that extends straightforward dictionary parsing for example by de-
manding a default value and alerting the user of faulty entries.
The file resources/data.recom contains all relevant biochemical input parameters
for REcoM?2 as key-value pairs. Since we want to keep all configurations in one place,
each parameter can also be found in the configuration file under the JSON node /pa-
rameters/ where each parameter can be linked to the data.recom parameter by the
JSON key recomKey. The boolean value of subkey uncertain determines whether this
parameter is considered in the algorithm. Note that the file data.recom serves only
as formatting template for output generation and the values within the file function as
default values on which we realize a perturbation by factor multiplication.

Main Loop:

From the entry module uq_standalone.py we instantiate the class UQAlgorithm in
ugAlgorithm.py and run the algorithm’s main execution loop. A single iteration of
that loop can be boiled down to the steps of sample generation, input perturbation
of the original values with these samples and a subsequent creation of input files for
the biogeochemical model that incorporate the perturbed inputs. Listing 1 illustrates
the modular steps of the algorithm. The number of iterations which correspond to
the desired sample size can be defined in the configuration file under the JSON node
uq/ugAlgorithm/iterations.

def run(sampleSize, allParameters):
# ’allParameters’ contains information about distributions
certainParameters = filterCertain (allParameters)
uncertainParameters = filterUncertain (allParameters)

for i in range(sampleSize):
# Uncertainty dimension
dimension = len(uncertainParameters)

# Iteration 1s passed for the Sobol
# sequence offset (qMC)

randomVector = _randomGenerator. generate (dimension, i)

# Target distribution can be specified for

# each uncertain parameter

transformedVector = _transformer.transform (
randomVector, uncertainParameters. distributions)

# ‘uncertainParameters’ contains the original

# default parameter values

perturbedVector = _perturbator.perturb (
uncertainParameters, transformedVector)
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# Building the output file retains original values of
# ’“certainParameters’ and overwrites original values of
# ‘uncertainParameters’ with ’‘perturbedVector’
outputPerturbedFile (certainParameters, perturbedVector)

Listing 1: Main execution loop for both standard Monte Carlo and quasi-Monte Carlo
where only the concrete random number generator implementation differs.
Note that the algorithm does not have a return value, but outputs results
directly to files.

Random Number Generation:

We need to generate (pseudo)-random values for both standard Monte Carlo and quasi-
Monte Carlo. In Section 3.1.1 and Section 3.1.2 we explained that their key difference is
the choice of a random number generator. For MC we use the method random.uniform
from the standard python library random in order to generate uniform random values
and for gMC we employ a custom module that generates quasi random values based
on a Sobol Sequence. Both generators can be seen in Figure 16a and Figure 17a, re-
spectively. Section 3.3.3 illustrated why two sample matrices are needed for the SA
algorithm. The user can choose the methods for both matrices A and B in the JSON
nodes ug/ugMethodA and ug/ugMethodB, respectively. As a consequence the appropri-
ate candidate of JSON node ug/randomGenerator/generators is chosen accordingly
to accommodate both MC variants by an option switch that is resolved during dynamic
module instantiation (see Example 4.1). Note that any random number generator needs
to return a (quasi)-random vector of length d where d describes the uncertainty di-
mension.

Transformation:

After the random number generator has returned a random vector, we call a method
for each entry that transforms the value which is by default given in the inverval [0, 1)
onto a probability density function (see Figure 16 and Figure 17). The function can
either be specified for each uncertain parameter individually in the configuration file
config.json or can be globally overwritten by the value of JSON node ug/trans-
former/pdf if the value of uq/transformer/overrideParameterDistribution is set
to true. By default we use the inverse transform sampling method for a transforma-
tion, but a custom approach can also be implemented (see Example 4.1).

Perturbation:

A random number generation and a subsequent transformation onto a given proba-
bility density function results in a MC sample. Accordingly, this sample is a vector
of transformed random numbers. The goal of this step is applying each entry of this
vector to the uncertain parameters. In our context, applying the sample means a
factor multiplication with the original value of the uncertain parameter. Remember
that the configuration file config. json does not actually hold the default values of
the parameters, but rather contains a link to the corresponding parameter in the file
data.recom. In our default perturbation class (which again may be replaced by a

34



4.0

1.4 ---= PDF: Uniform distribution ———— PDF: £A10,0.125)
BN RNG numbers

354 W erf~1(x) RNG numbers
1.2

1.0 1
0.81
0.6 1
0.4 4

0.2

0.0-
0.0 0.2 0.4 0.6 0.8 1.0

(a)

Figure 16: Inverse Transform Method with a Python random number generator. Figure
(a) illustrates the relation between the pdf of a uniform distribution and
the relative frequencies of the Python random number generator numbers.
Figure (b) shows the frequencies of these numbers after their transformation
onto a lognormal distribution. We used a sample size of 10000.

custom implementation) we therefore demand a path to the data.recon file under the
JSON node uq/perturbator/inputPath. When calling a perturbation of an uncertain
parameter with a sample, the value of the corresponding key in data.recom is loaded
before multiplying it with the sample value.

Output:

The main loop of the Monte Carlo algorithm does not return some result, but outputs it
directly into files at the end of each iteration. In order to map uncertain parameters to
their newly perturbed values, we use tuples of the form (recomKey, perturbedV alue)
where recom K ey describes the identifier of a parameter in both the configuration file
config. json as well as the model input file data.recom and where perturbedV alue
is the result from the perturbation step.

Section 3.3.1 presented common sensitivity measures. We will calculate both the nor-
malized first order index (5;) and the normalized total effect index (Sp;) where the
index ¢ refers to the i¢th uncertain parameter &;. Observe upon re-examining Table
1 that both measures need the total variance V [y| for their calculation. S; further
requires the variance of the conditional expectation value where §; is considered to be
certain and Sr; demands the variance of the conditional expectation value where all
uncertain parameters except & are supposed to be known. A naive consideration could
assume that the number m of input files that later need to be executed separately by
the model could be calculated by the following formula where n describes the sample
size and d the number of uncertain parameters:

m=mn-(1+2d) (48)

It becomes clear that the time complexity of cumulated model simulations is not only
dependent on a given sample size, but is also greatly influenced by the uncertainty
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Figure 17: Inverse Transform Method with quasi-random numbers generated from a
Sobol sequence. Figure (a) illustrates the relation between the pdf of a
uniform distribution and the relative frequencies of quasi-random numbers.
Figure (b) shows the frequencies of these numbers after their transformation
onto a lognormal distribution. We used a sample size of 10000.

0.0-

dimension. However, Equations (46) and (47) argued that only the triplet A, B and
Ag’ needs to be evaluated by some model function f. A and B represent a sample
matrix where every parameter is perturbed, respectively. Ag’ are the matrices for
1 <4 < d with d the number of uncertain parameters where parameter §; is assumed
to be fixed. We hence improve the number of simulations from the naive consideration
drastically in Equation (49) which corresponds to the matrix triplet:

m=n-(2+d) (49)

Note that generating both A and B naturally requires the generation and manipulation
of two independent sets of samples during prior UQ steps.

REcoM?2 and also our toy model do not distinguish between an input file where, let us
say, all parameters are perturbed and a file where maybe only a single one is altered.
The MC algorithm thus produces files with /resources/data.recom as its format
template that carry the same contents except for the perturbed parameter values.
Since we number the MC output files consecutively, there appears to be no easy way
for a Sensitivity Analysis to tell whether a model output was produced by an input
file where for example only the first parameter was uncertain. We avoid any kind
of confusion by a file numbering convention that is closely linked to Equation (49).
Example 4.2 demonstrates this convention.

Example 4.2. Suppose a user wants to perform a Sensitivity Analysis on three uncer-
tain parameters (&1, &s,&3) with the aforementioned sample matrix triplet A, B and
Ag’. The standard MC algorithm could be configured for this purpose as shown in
Table 3.

At the end of the first iteration of the main loop the MC algorithm will pass the
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JSON node ug/ugAlgorithm/* | value | Description

iterations 100 | The used sample size (n)

Whether to output files where every un-

tputFullAPerturbedFil 15 . .
cutputiu erturbedriie "€ 1 certain parameter is perturbed (A)

Whether to output files where every un-
certain parameter is perturbed (B)

Whether to output files where all but
outputSingleAPerturbedFile true | one uncertain parameter from A are per-
turbed at a time (Ag")

Whether to output files where all but
outputSingleBPerturbedFile | false | one uncertain parameter from B are per-
turbed at a time (Ba')

ugMethodA mc | Sampling strategy for sampling matrix A

outputFullBPerturbedFile true

ugMethodB mc | Sampling strategy for sampling matrix B

Table 3: Exemplary configuration where the user wants to compute the sensitivities .S;
and Sp; in a subsequent Sensitivity Analysis with the standard Monte Carlo
approach. Even though not used in this work we still allow for the user to
output the files that correspond to the sample matrix Ba®.

list [(&1,2a1,%B1), (§2, Ta2, Tp2) , (&3, T a3, Tp3)] to the output function where x4; and
xp; are the perturbed values for uncertain parameter &; from sample matrix A and B,
respectively. Since outputFullAPerturbedFile is true, the file data.recom-001 will
be created. With a sample size of n = 100, the indices 001 up to 100 are reserved
for all files regarding A. Analogously, files data.recom-101 up to data.recom-200
are created because outputFullBPerturbedFile is true. The value of outputSin-
gleAPerturbedFile is also true such that the files data.recom-201, data.recom-202
and data.recom-203 will be created after the first iteration. They implement the
case where every uncertain parameter is perturbed with sample matrix A except &,
& and &3, respectively, which are fixed with the corresponding column from B. This
corresponds to the first row of matrix Ag', Ag® and Ag?®, respectively. With a sample
size of n = 100 and d = 3 uncertain parameters, the indices 201 up to 500 are reserved
for these cases. If outputSingleBPerturbedFile was also set to true, then the files
with indices 501 to 800 would have been created for the sample matrix Ba’. The file
indices of each file output type drop the offset if an output switch was set to false. For
example, if the user intended to use the matrix triplet A, B and BA® for the SA and
prevented the output of Ag’ by disabling outputSingleAPerturbedFile then the file
indices for Ba* would have been shifted by 300 accordingly to 201 up to 500.

With our configuration from Table 3 the algorithm produces 500 files which verifies
Equation (49) because

m=mn-(2+d) =100-(2+3) =500 .
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The file indices are generally padded with preceding zeros such that all indices for
example have an effective string length of three for 100 < m < 999 where m is the
total number of files created by the MC algorithm.

All output will be written to the base output directory /out/{id} where {id} by default
is the current timestamp at the start of the algorithm or the user defined output path
(see Table 2). Besides all input parameter files for the model, this directory also
contains some metadata that is listed in Table 4. Note that this directory is given as
input for the Sensitivity Analysis. This implies that model output will be placed in
this directory as well as the output of the Sensitivity Analysis.

File in /out/{id} | Description

data/ Directory for all data.recom-x files.

config.json Configuration used for this particular UQ run.

Base parameter file. Values of uncertain parameters from this
file were perturbed by the UQ algorithm.

All console output during execution. JSON node /log-
ger/writeToFile must be true.

data.recom

log

Plain list of all perturbed sample values produced for each un-
samplesA certain parameter for sample matrix A. JSON node ug/uqAl-
gorithm/outputVectorAPerturbedFile must be true.

Plain list of all perturbed sample values produced for each un-
samplesB certain parameter for sample matrix B. JSON node ug/uqAl-
gorithm/outputVectorBPerturbedFile must be true.

Contains the Sobol seed used for sample matrix A. File only

bol dA e, .
sobolSee produced if it is a quasi-Monte Carlo run.
Contains the Sobol seed used for sample matrix B. File only
sobolSeedB P .
produced if it is a quasi-Monte Carlo run.
info Carries the current timestamp at the start of the MC algorithm

as well as an optional description from the user (see Table 2).

Table 4: List of output produced by a (quasi)-Monte Carlo simulation.

4.3. Stochastic Collocation

Last section showed the common workflow if a Monte Carlo approach is chosen as the
desired UQ method. Our implementation aims to incorporate the SC method in the
framework even though Stochastic Collocation will not be used to calculate sensitivity
indices, but rather to approximate sample statistics (means and variance). The only
modification to the existing workflow is essentially to not produce samples based on
two sample matrices (A, B and in turn Ag® and B A'), but merely output a single
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one (e.g. A). Table 5 shows an exemplary configuration if the user wants to employ
Stochastic Collocation as the UQ method.

JSON node ug/ugAlgorithm/* | value | Description

Whether to output files where every un-

tputFullAPerturbedFil 15 . .
cutputtu eriurbedriie "€ 1 certain parameter is perturbed (A).

Whether to output files where every un-
certain parameter is perturbed (B).

Whether to output files where all but
outputSingleAPerturbedFile | false | one uncertain parameter from A are per-
turbed at a time (Ag*).

Whether to output files where all but
outputSingleBPerturbedFile | false | one uncertain parameter from B are per-
turbed at a time (Ba").

Sampling strategy for sampling matrix

outputFullBPerturbedFile false

ugMethodA sc

A.
ugMethodB ]S?’ampling strategy for sampling matrix
JSON node ug/sc/* value | Description.
level 3 Refinement level for sparse grid genera-

tion.

Table 5: Exemplary configuration where the user wants to compute expectation value
and variance in a subsequent Sensitivity Analysis with Stochastic Collocation.
Note that ugMethodB is left blank and that only files of type FullA will be
produced.

Sparse Grid Generation:

Unlike previous MC methods, Stochastic Collocation does not create samples based on
(quasi)-random numbers. It rather creates a set of collocation points (nodes) at which
the underlying function has to be evaluated (see Section 3.1.3). We implemented the
class sparseGrid that computes such nodes and corresponding weights. Note that this
class creates a sparse grid with Clenshaw Curtis (CC) nodes and that the process is
deterministic.

The only modifying parameter is the refinement level found in JSON node uq/sc/level
which determines the number of nodes and subsequently the nodes’ density in the d-
dimensional hypercube where d is the number of uncertain parameters. A point in
this hypercube corresponds to a d-dimensional (quasi)-random vector created in the
(quasi)-Monte Carlo method. However, it is important to acknowledge their respec-
tive value domains. The random vector is commonly given on [0,1) whereas all CC
nodes lie in [—1,1]. Since a subsequent transformation onto a given probability den-
sity function (see Section 4.2) expects values distributed on former domain, we shift
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all node values based on a target domain. For both sample matrices, this shift can be
configured in JSON nodes ug/randomGenerator/domainTranslationA and uq/ran-
domGenerator/domainTranslationB, respectively.

Output:

Table 4 showed the output produced for a (quasi)-Monte Carlo simulation. The list is
extended by entries of Table 6 if the SC method is chosen. Note that file weights is
essential because it serves as input for the Sensitivity Analysis where node weights are
used for the calculation of expectation value and variance according to Equations (24)

and (25).

File in /out/{id} | Description

totallterations | Number of nodes in the sparse grid.

Contains all nodes of the sparse grid before transformation such

nodes that all entries are given in the domain [—1, 1].

weights Weights associated with the nodes in the sparse grid.

Table 6: Additional items produced by the Stochastic Collocation method.

4.4. Model Interface

REcoM?2 is currently being maintained by researchers at the Alfred- Wegener-Institut
(AWI) [1]. For functional details on REcoM2 see Section 2. Providing insight into the
technical code base of REcoMZ2is beyond the scope of this thesis. In this section we
rather focus on the interface of the model by viewing it as a black box model with
some input and output.

The model is dependent on several input files which on the one hand cover the initial-
ization of boundary conditions and oceans forcings. On the other hand there exists an
input file called data.recom that encompasses the range of all biochemical parameters.
Since our Sensitivity Analysis will only consider parameters from that particular file,
we are able to contain all uncertainty in one place.

Even a single simulation of the model is quite costly in terms of computational time due
to complex integrations. It becomes clear that it would simply be unfeasible to execute
the model on local machines if we want to obtain a reasonable sample size. For this
reason we outsourced the model simulation to the distributed supercomputer system
hosted at the sites Georg-August-Universitdt Gottingen and Zuse Institute Berlin. The
alliance operating the system is the HLRN (Norddeutscher Verbund zur Férderung des
Hoch- und Hdéchstleistungsrechnens) which aims at providing means for high perfor-
mance computing to scientific institutions throughout Germany. Figure 18 portrays a
physical section of the LISE system in Berlin. In the 56th edition of the "TOP500” the
Emmy system in Gottingen even reached the 47th place, clocking in at 5.948, 8T Flop/s
[57]. For our computations we can use up to 16 standard compute node that feature
following specifications [22]:
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e 2 CPUs + 1 Intel Omni-Path host fabric adapter

e Per CPU 1 Intel Cascade Lake Platinum 9242 (CLX-AP), 48 cores

Figure 18: HLRN-IV system LISE in Berlin. Photo: ITMZ | University Rostock

Note that these specifications are valid for both systems in Berlin and Géttingen and
that we will not distinguish between them. With 2 CPUs and 48 cores per CPU we are
therefore able to run 96 simulations in parallel. For benchmarks regarding the actual
execution performance we refer to Section 5. The system employs SLURM as their
batch scheduler which allows a job script based execution. A typical job submission
script is displayed in Listing 2 by which 1000 simulations will be scheduled for execu-
tion.

#1/bin/bash

#SBATCH --job-name=recom
#SBATCH --time=02:00:00
#SBATCH --nodes=1

#SBATCH --ntasks=96

#SBATCH --mem-per-cpu=1500M
cat $0

module load intel/18.0.6
module load impi/2018.5

module load netcdf/intel/4.7.3
module load hdf5/intel/1.10.5
export NETCDF_RO0T=/sw/dataformats/netcdf/intel.18/4.7.3/skl
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13
14
15
16
17
18
19

20
21

22
23

export MPI_RO0T=$(dirname $(dirname ‘which mpiifort ))
export MPI_INC_DIR=${MPI_ROOT}/include
export TMPDIR=/tmp
#
srun="srun --exclusive -N1 -nl1"
#
parallel="parallel --delay 0.2 -j $SLURM_NTASKS \
--joblog recom_runtask.log.$SLURM_JOB_ID --resume"
#
$parallel "mkdir $LOCAL_TMPDIR/bin-{} \
&& cp ./build/mitgcmuv $LOCAL_TMPDIR/bin-{} \
&% $srun $LOCAL_TMPDIR/bin-{}/mitgcmuv > slurm.out \
&% mv recomDiags2D.nc $HOME/recomDiags2D-{} \
&% mv recomDiags3D.nc $HOME/recomDiags3D-{} \
&% rm -r $LOCAL_TMPDIR/bin-{}" ::: {0001..1000}
#
sacct -j $SLURM_JOB_ID
--format="JobID,NodelList , AveVMSize ,MaxVMSize,
MaxRSS ,Start ,CPUTime ,Elapsed"

Listing 2: Job submission script for the SLURM environment. Note that this setup
allows for 96 concurrent tasks and that we are granted 2 hours of wall time
to finish 1000 simulations.

Revisit the command in line 21 of Listing 2. This line essentially tells the sched-
uler that it is supposed to distribute the execution of mitgcmuv inside the directories
$LOCAL_TMPDIR/bin-i for ¢ the left padded running index to the available 96 cores.
The directory $LOCAL_TMPDIR resides in the transient memory of the compute node
itself which mitigates operations on the server filesystem. Remember that biochemi-
cal parameters are located in the input file data.recom and that we create a batch
of perturbed input files data.recom-i with ¢ the left padded running index in a UQ
simulation. Since each of the model instances requires its individual data.recon file,
we link it to the respective file data.recom-i during the directory setup. As a con-
sequence, the batch of perturbed parameter files from the output of a UQ method
need to be copied to the HLRN file system because the Uncertainty Quantification is
executed outside their system

Once all simulations have successfully terminated, the necessary output files produced
in each directory $LOCAL_TMPDIR/bin-i have been moved to the $HOME directory and
may be copied to the respective output folder of the corresponding UQ run. From
this point, it is the task of a Sensitivity Analysis to extract some desired quantity of
interest from these output files.
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4.5. Test Model

Last section revealed how expensive the REcoM2 model is with its actual execution of
the code on the one hand and the overhead of manual initialization and copying pro-
cesses on the other hand. For this reason we implemented a test model that employs
simple simulation functions and avoids the overhead because the program can be run
on the same system as the Uncertainty Quantification and the Sensitivity Analysis.

Initialization:

Initialization is performed by the top level module model_standalone.py which works
analogously to ug_standalone.py presented in Section 4.2. Unlike for the UQ simula-
tion we demand a command line argument that serves as the base input directory for
the model. It has to be some path residing in the UQ output directory ./out/. Re-
member that the original configuration file . /resources/config. json has been copied
to this base directory in the state at the time of the UQ method execution. This ap-
proach implicates that the configuration of the test model (and that of a subsequent
SA) are both loaded from this file and motivates the user to set up a configuration
for all steps in this pipeline beforehand. Furthermore, the model even needs some
configuration defined for Monte Carlo or Stochastic Collocation for its own execution
(see Tables 3 and 5). Following configurations in Table 7 are meant for the test model
only. Similar to Example 4.1, the variable simulationFunction enables the user to
easily implement and integrate a custom simulation function.

JSON node /model/* | Description

Name of the file where results of a model iteration will be

iFileN .
qoirileliame written to.

simulationFunction | Test function used in each iteration.

Table 7: Additional parameters configurable in the file config. json located in the
model input directory.

Main Loop:

From the entry module model_standalone.py we instantiate the class ModelSimula-
tion in ./model/modelSimulation.py and run the main execution loop. The first
step is a file structure integrity check. With the configuration provided from the UQ
step and Equation (49) we are able to test if the correct number of parameter files
exist. An iteration over all input files executes the following steps where i describes
the left padded iteration index:

e Load and parse the data from the ./data/data.recom-i into a dictionary object.
e (Call the simulation function with the loaded dictionary as input parameter. The
result is specified as a tuple (result, equation) where result is the actual

output value of the function and equation is a string based description that
specifies the used equation for debug and logging purposes.
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e Pass the raw result to a method that writes it to the file
./out/{id}/qoi/{qoiFileName}-i.

We provide simple test functions like squareValue that can be expressed as 2 +&% + 3 x
&+ E2+E+ - -+ &4 where € describes an uncertain parameter in the input parameters
and where d is the number of uncertain parameters. Note that the test model produces
a single value as output which contrasts the multidimensional output from REcoM2 .

4.6. Sensitivity Analysis

The last part of our implementation is a Sensitivity Analysis in accordance to the
methodology presented in Section 3.3. We maintain a code structure similar to the
previous implementations because function modularity and configuration via JSON file
remain a key feature.

Initialization:

Data produced by either REcoM2 or our test model drives the SA. The input path is
relative to the base path ./out/ and is defined by a positional command line argu-
ment when executing the top module sa_standalone.py (see Table 8). The settings

Parameter | Description

[Required] Determines the input path for the SA algorithm relative to

#1 input Jout/.

[Optional] Specifies the output directory relative to ./out/#1/sa/.

-p ——path . .
p~"pa Default value is the current timestamp.

Table 8: Command line arguments that can be provided when executing the Sensitivity
Analysis algorithm.

file . /out/{id}/config. json serves as configuration for the SA analogous to the test
model where {id} corresponds to the required input command line argument. Apart
from the information regarding the number of expected data files (see Table 3), the
Sensitivity Analysis also loads the parameters. Note that these parameters do not
serve any logical purpose regarding the working process of a SA, but they provide
information about the uncertain parameters we have perturbed, for example their dis-
play name. If Stochastic Collocation was chosen as UQ method the algorithm further
parses the weights from the file ./out/{id}/weights.

Observe that the output of REcoM2 and our test model fundamentally differs from
each other in terms of their file name convention as well as their individual content.
Such discrepancy should be allowed because our overall non-intrusive approach intends
to treat the model as a black box model where some generic output may be produced.
Our Sensitivity Analysis thus needs to dynamically interpret different types of output.
A modular implementation that we advocate already allows these individual interpreta-
tions of output. However, in order to enable multiple distinct variations of a Sensitivity
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Analysis in sequence and to arrange certain configurations for a user, we established a
system of so-called SA templates. These templates can be found in the configuration
file under the JSON node /sa/templates/. Templates defined here can be employed
in the current SA run by adding them to the list of JSON node /sa/useTemplates.
Table 9 shows the entries necessary for a template that will be explained in more detail
in the following. Note that such template structure is specialized for applications with
.nc files.

Qol Extraction:

The main loop of our SA implementation iterates over all desired templates specified
in the configuration file under JSON node /sa/useTemplates. Extracting a Qol is a
template specific process whereas calculating sensitivities and outputting results of a
run is globally implemented regardless of the current template.

Table 9 introduces an exemplary template layout that aggregates all steps necessary for

JSON node /sa/templates/*/ | Description

Implementation that defines the extraction
qoiExtractor process of data from the file. Must inherit from
qoiExtractorWrapper.

Name of the file from which the SA will parse

qoiFileName data.
A list of keys that allows to extract multiple
qoiVariableList parts from an output file at once. For example,

it enables us to read the same quantities for
both types of plankton from .nc files.

Defines how the data is read out from qoiFile-

variableExtractionFunction
Name.

Applies some function in order to produce a
Qol.

Applies an operation to the list of Qols pro-
duced from each variable in qoiVariableList.

goiOperatorFunction

multiVariableOperatorFunction

Allows to insert a post-processing step before

iPostP ingFuncti .
qoiPostProcessingFunction returning the final Qol.

Table 9: Exemplary SA template entries that are needed if the default class QoiEx-
tractor is used for Qol extraction. This composition is especially designed
for work with netCDF files.

an extraction of a Qol as it will be performed for REcoM2 output. Listing 3 illustrates
these extraction steps.

Suppose Qols were extracted in a previous SA run. Calculating sensitivities again for
the same Qols would require the overhead of another Qol extraction. This overhead
can be circumvented if the JSON node sa/qoiInputDirectory is set to the output
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directory of the previous SA run. Instead of extracting the data from the files again,
data will then be parsed from the previous run which drastically decreases computa-
tional time.

Revisit Equation (49) and remember that the user could decide before the Uncer-
tainty Quantification whether to produce perturbed output where every parameter is
uncertain (A and B) and where their individual columns are kept fixed with the corre-
sponding column of the other matrix (Ag’ and B"). Note that equivalent notations
for configurations are mcFullAPerturbed, mcFullBPerturbed, mcSingleAPerturbed
and mcSingleBPerturbed, respectively. If a function parameter in our code needs to
distinguish between them it refers to the string constants FullA, FullB, SingleA and
SingleB, respectively.

def extractAggregatedQols(matrixType):

if matrixType = ’'FullA’ or matrixType = ’FullB ’:
# result shape: (qoiDimension)
return aggregateQol (matrixType)

else:
# result shape: (numUncertainties, qoiDimension)
return [aggregateQol(matrixType, u)

for u in range(numUncertainties)]

def aggregateQol (matrixType, parameter=None):
qoi = []
# Calculates output file numbers based on
# matrixType and parameter offset
qoiFileNums = getFileNums (matrixType, parameter)

for i in qoiFileNums:
# File path to output file
qoiPath = buildPath (i, _qoiFileName)

for varName in _qoiVariableList:

# How to extract wvalues from the file
extracedVar = _extractVariable (qoiPath, varName)

# Generates a Qol from data
qoiOperatedVar = _qoiOperator (extractedVar)

# Defines how multiple variables (Qols) are handled
multiVarQoi= _multiVariableOperator (qoiOperatedVar)

qoi.append (multiVarQoi)
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# Applies a post processing step
return _qoiPostProcessing(qoi)

Listing 3: Qol extraction performed by the default implementation in class QoiEx-
tractor. This whole process can be replaced with a custom implementation
that inherits from abstract class QoiExtractorWrapper. Observe how the
template definitions from Table 9 are incorporated.

Sensitivity Calculation:

With Qols extracted for all model output data, we can use classic arithmetic operations
to calculate expectation values and variances. The mathematical basis for the Jansen
estimators that are commonly used to compute sensitivities S; and Sp; were given in
Equation (46) and (47). See Figure 19 for a visual illustration of the components that
lead to the final sensitivities. Observe that the estimators merely yield V; and Vg,
respectively, and that another estimator for the model variance V [y] is necessary for
the sensitivity normalization.

All three estimators can be configured by the JSON nodes sa/estimatorFunctionSi,
sa/estimatorFunctionSTi and sa/estimatorFunctionVY, respectively. In order to
evaluate the quality of our estimations, we further allow for a calculation of confidence
intervals around the results (see Section 3.3.3). The implemented bootstrap method
can be configured accordingly with the JSON nodes given in Table 10.

JSON node /sa/* | Default | Description

Number of repetitions for the subsampling pro-
cess.

bootstrapReplicas 10000

Specifies the size of one subsample set relative to

b leFact 2 .. .
Subsamp.leractor 0.25 the original sample size.

confidencelnterval 0.95 Range of the confidence interval.

Table 10: Configurations regarding the confidence interval calculation.

4.7. Academic Validation

Before starting our case study, we want to validate and test our implementation to
some extent. Even though we will not verify the correctness of individual functions,
the manual examination of a prepared test setting suffices to confirm the goodness of
results that will be obtained in the case study.

4.7.1. UQ Model

The correctness of our implemented UQ methods can be reliably validated by their
respective convergence rates presented in Section 3.1.1 that are recapitulated in Table
11. Numerically studied error patterns are shown in Figures 20 and 21. The methods
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Figure 19: Components and steps involved in order to calculate the normalized first
order index and the normalized total effect index. Observe that the esti-
mator from Jansen for the calculation of V; also requires the overall model
variance V' [y] as input whereas the estimator for Vp; does not.

Monte Carlo | quasi-Monte Carlo | Sparse Grid Stochastic Collocation
O(1/V'N) O((log N)?/N) O(N~*(log N){@-1ie+1)

Table 11: Order of the convergence rates of the presented UQ methods.

are compared in terms of their error in expectation and variance relative to an analytical
result of a univariate polynomial function. Note that this translates to a probability
space of d = 1 such that quasi-Monte Carlo clearly outperforms classic Monte Carlo
even for a relatively small sample size even though Monte Carlo would in theory result
in a total convergence for N — oo. The presented numerical results confirm our
theoretical assumptions which are plotted in dashed lines. As for the sparse grid
Stochastic Collocation, it is interesting to observe its convergence behaviour since it
depends on the unknown smoothness a of the underlying problem. Our test case is
quite simple such that it performs best with a convergence of order O(1/N?), but it
has to be assumed that performance could be worse in non-trivial scenarios.

4.7.2. SA Model

In order to evaluate our SA implementation we numerically retrieve the sensitivities
of a function for which analytically calculated values exist. A widely used function
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Figure 20: Convergence behaviour of the presented UQ methods in terms of their rel-
ative error in the mean with respect to an analytical solution.

is the Ishigami function that exhibits strong non-linearity and non-monotonicity [23].
Equation (50) shows the function with coefficients 7 and 0.1 used by Marrel et al.
where &1, & and & are uniformly distributed random variables on [—7, 7] [29].

f(€1,&,&3) =sin& + Tsin? & + 0.1 &5 sin g (50)

Analytically calculated sensitivities are known and can be seen in Table 12. The
evaluation of the function is performed by our test model and is illustrated in Figure
25. Empirical results of a variance-based Sensitivity Analysis are presented in Figure
26 and 27. Observe that the analytical sensitivity always lies within the confidence
interval which indicates a robust result for the employed sample size of 50000.
Stochastic Collocation is not designed for a direct calculation of sensitivity measures.
However, we are still able to compare the sample statistics (mean and variance) of the
Ishigami function with the real values and with the results obtained by our (quasi)-
Monte Carlo approach. Table 13 shows the results of this comparison. Observe that
SC clearly outperforms both MC methods even with a fraction of necessary function
evaluations.
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Figure 21: Convergence behaviour of the presented UQ methods in terms of their rel-

ative error in the variance with respect to an analytical solution.

Uncertainty | sensitivity S; | sensitivity Sp;
& 0.3138 0.5574
& 0.4424 0.4424
& 0.0 0.2436

Table 12: Analytically calculated sensitivities S; and St; for the Ishigami function.

Exact Value MC quasi-MC SC
Sample Size - 10000 10000 1073 (1vl 6)
E(Y) 3.5 3.4245172 3.5005840 3.4999999
Error - 755 x 1072 | 584 x107* | 1.8 x 107"
V(Y) 13.8445879 | 14.0475143 | 13.8398975 | 13.8444250
Error - 2.02 x 1071 | 4.69 x 1073 | 1.63 x 1074

Table 13: Comparison between the analytical values for means

and variance of the

Ishigami function and results obtained by different U() methods. Note that
the sample size for SC corresponds to the node count in the underlying sparse

grid.
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5. Case Study

This section presents results of a variance-based Sensitivity Analysis that is performed
on uncertain input parameters of the biogeochemical model REcoM?2 . All results are
produced by the pipeline of algorithms introduced in Section 4. In collaboration with
researchers at the Alfred-Wegener-Institut (AWI) we compiled Quantities of Interest
(Qol) which can be seen in Table 14. These Qols refer to data extracted during the
bloom period of plankton each year.

Qol Description

Bloom Mean Peak (BMP) Highest value of a year averaged over five years.

Average value during bloom averaged over five

Bloom Mean Value (BMV)
years.

Duration of a bloom in days averaged over five

Bloom Mean Duration (BMD)
years.

Table 14: Quantities of Interest for REcoM2 .

Activity of plankton is examined and analysed in two ways. We can either consider
the net primary production (NPP) which describes how much carbon plankton take
in during photosynthesis minus how much carbon they release during respiration and
decay. On the other hand we can examine the concentration of chlorophyll (CHLa)
that correlates with NPP because a high concentration implies a dense occurrence of
phytoplankton that in turn display a generally higher cumulated productivity. Since
NPP characterizes a process and a concentration of chlorophyll represents an envi-
ronmental state after the production itself, it can be assumed that both quantities
inherently feature a slight temporal shift.

Note that the chosen Qols are all connected to the bloom period because this time
period expresses a higher variability. A bloom commonly occurs at some time during
spring season in the northern hemisphere (see Figure 22). We adapt the definition of
a bloom period for a NPP (CHLa) quantity from Soppa et al. [54]: Phytoplankton
bloom starts when the NPP (CHLa) value exceeds a value of 5% above the median
and remains above this threshold for at least 15 days. The bloom ends after the NPP
(CHLa) value drops below the threshold for 10 days. Note that the threshold periods
of 15 and 10 days are derived from a multiple of 5 days which is the frequency of in-
termediate REcoM2 output data. Our bloom definition thus translates to a threshold
traverse of 3 and 2 consecutive model data points, respectively.

Satellites are able to measure chlorophyll on a global scale throughout the year by
interpreting characteristics of light or radiance coming from the earth’s surface [48].
Those measurements, however, yield reliable results only for surface water. In con-
trast, REcoM2 provides CHLa values for all 30 modelled vertical water layers. The
NPP quantity on the other hand is not given for each layer and is vertically integrated
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Figure 22: Chlorophyll concentration in the ocean during northern hemisphere spring
season [25]. A warmer color indicates a higher concentration.

such that NPP is provided only in relation to a temporal axis whereas CHLa is further
embedded in a depth dimension. In order to extract a 0-dimensional Qol from the
chlorophyll data, we will examine the value of the surface layer and the value averaged
over all water layers separately. This distinction is denoted as [CHLa (Surface)] and
[CHLa (Average)], respectively. We hence analyse the sensitivities from Table 14 once
for the NPP values and twice for the CHLa data. Figures 23 and 24 depict exemplary
output of REcoM?2 . Figure 23 further illustrates the quantities that we extract from
this data.

RFEcoM2 is configured for us such that it simulates 10 years of biochemical processes
in a 1D water column in the Bermuda region where a discrete intermediate result reso-
lution of 5 days is chosen. The model is prone to unrealistic results in the first couple of
simulated years due to its initial settings and first needs to adjust itself until it reaches
a balanced state. We thus omit the first 5 years entirely which is more than sufficient.

Earlier we stated that REcoMZ2is a rather complex model in terms of computational
time. Since our study is confined to its one dimensional setup the complexity is in turn
also quite limited. A single simulation is executed in under 400 seconds on a compute
node at the HLRN (see Section 4.4). Even though this number sounds extremely low
at first, one has to consider Equation (49). A large sample size in combination with
several uncertain parameters could result in weeks of computation time. Fortunately,
each compute node can execute 96 simulations in parallel, and we are able to reserve
multiple compute nodes simultaneously depending on the overall load of the HLRN
system.

The model is to be examined with regard to the sensitivity of ten parameters which
are listed in Table 15. All parameters are assumed to be mutually independent. In ac-
cordance to Section 3 each parameter £ is modelled as a lognormal distributed random
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Figure 23: Cumulative net primary production of nanophytoplankton and diatoms dur-
ing the last five years of REcoM2 output. Note that the Qols from Table 14
are O-dimensional and that each visualized quantity must be averaged over
all five years.

variable & ~ LN (1,0.125). In Section 5.1 we present the results of a variance-based
SA for all ten parameters. Results obtained by the analysis will allow us to restrict
an examination to a subset of the most relevant (sensitive) parameters in Section 5.2.
Fewer parameters will allow us to increase the sample size and to hopefully attain more
accurate sensitivities.

5.1. High-dimensional Parameter Space

This section presents results of a variance-based SA for all ten parameters listed in
Table 15 with regard to the quantity of interests shown in Table 14. Section 5.1.4 goes
beyond the interpretation of individual Qols and discusses the choice of parameters
for the low-dimensional SA setup in Section 5.2. All referenced figures are attached in
Appendix A.3.

An examination of ten uncertain parameters renders the quasi-Monte Carlo approach
virtually infeasible because a faster convergence rate only comes into effect if the di-
mensionality is relatively low (see Table 11). We hence used pure Monte Carlo as a
tool to produce samples. The process was performed with a sample size of 25000 such
that 300000 simulations had to be executed at the HLRN according to Equation (49).

5.1.1. Bloom Mean Peak

The Bloom Mean Peak (BMP) describes the highest Qol value during bloom season
averaged over the last five years of REcoM2 output (see Figure 23). Figures 28 and 29
show the sensitivities of the BMP quantity with regard to the net primary production.
Parameter alpha is clearly the most sensitive parameter. The grazing parameters
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Figure 24: Chlorophyll concentration during the last five years of REcoM2 output. Ob-
serve that Qols from Table 14 are extracted from the surface layer as well
as from the overall layer average.

graz, .. and grazpg as well as alphay and P, 4 also contribute a considerable part to
the overall sensitivity. Observe that the values of the total effect indices in Figure 29
are slightly higher than their corresponding first order index in Figure 28 except for
aggpp Which can be attributed to a numerical error. These higher values indicate that
some parameters have mutual dependencies that is expressed in higher order sensitivity
indices. The sum of all .S; displays the overall degree of mutual dependencies where
a deviation of under 0.1 can be considered low. Remember that }_,.S; = 1.0 would
imply that all variance is contained only in the first order indices and that in theory
> S7i = 1.0 should hold as well.

Results for the BMP quantity with regard to chlorophyll concentration (CHLa) are
quite similar for the surface layer and the vertical layer average which can be seen
in Figures 30 to 33. Here the most influential parameters are in both cases degcy,,
graz, .. and grazpg.

5.1.2. Bloom Mean Value

Our Bloom Mean Value (BMV) quantity is defined as the mean value during bloom
season averaged over the last five years of REcoM2 output (see Figure 23). The results
with regard to NPP and CHLa concentration can be seen in Figures 34 to 39 and
can be interpreted analogously to the respective Qol from Section 5.1.1. However, the
sum of all first order sensitivities in Figure 36 exceeds 1.0 which is mathematically not
possible. Since the value is not significantly greater than 1.0 and since the confidence
intervals around the individual sensitivities show a margin of error we can identify a
numerical error as the cause for the excess. Note that such errors could be reduced
by increasing the sample size. The CHLa (Average) data in Figures 38 and 39 show
that up to six parameters may be interpreted as relatively sensitive and that there are
probably little mutual interactions happening in the higher order sensitivity indices
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Parameter Default Description
Initial slope of the photosynthesis irradiance curve for both
alpha 0.14 . .
types of phytoplankton. Determines how efficient photosyn-
alphay 0.19 o . .
thesis is at low irradiance.
Pem 3.0 Maximum photosynthesis rate for both types of phytoplank-
Pena 3.5 ton. Specifies the upper efficiency limit.
deg, 0.1 Chlorophyll degradation rate for both types of phytoplank-
deg. g 0.1 ton.
Bl max 24 Maximum grazing rate and grazing efficienc
grazpg 0.4 & & & & v
aggpp 0.165 . .
Specific aggregation rate for both types of phytoplankton.
aggpp 0.015

Table 15: Uncertain parameters under examination.

due to the convergence of S; and Sp; to 1.0.

5.1.3. Bloom Mean Duration

The Bloom Mean Duration (BMD) quantity is defined as the duration (in days) of
the bloom season averaged over the last five years of REcoM2 output (see Figure 23).
Unlike the BMP and BMV quantities we can observe that a large portion of the overall
variance can be attributed to mutual interactions of parameters. Figures 40 and 41
illustrate this phenomenon where the sums ), .S; = 0.298 and ), Sp; = 2.848 deviate
greatly from the equilibrium of 1.0. Without computing the higher order indices there
is little room for the identification of sensitive parameters since every parameter has a
relatively low first order sensitivity. Note that in Figure 40 the first order sensitivity of
aggpp is portrayed as —0.003 even though negative values are theoretically impossible.
The absolute value, however, is quite low and the corresponding confidence interval
includes zero as well as positive values such that we may interpret the index as zero.
Even though mutual parameter interactions are lower in the CHLa Qols (see Figures
42 to 45) the results are still not as distinct as for the BMP and BMV quantities.

5.1.4. Evaluation

Previous sections presented results of a Sensitivity Analysis where all ten parameters
from Table 15 are assumed to be uncertain. In order to narrow down the considered
probability space we need to exclude some of these parameters. Since first order sensi-
tivity indices are expressive when it comes to the relative significance of parameters we
employ a metric that picks out the most influential parameters based on their ranking
of S; values in the Qols presented in the last sections. We define a parameter to be rel-
atively sensitive if .S; > Cll = 0.1 for d = 10 the number of uncertain parameters. Table
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16 shows the number of times the respective parameter was sensitive for a given Qol.
Note that there are nine test cases (three for NPP and six for CHLa concentration).
The highlighted rows show the most relevant parameters with regard to the examined
Qols and these parameters will thus be chosen for the shrunk dimensional space in the
next section.
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Table 16: Ranking of each parameter in terms of their relative sensitivity.

5.2. Low-dimensional Parameter Space

Last section presented the results of a Sensitivity Analysis for a 10-dimensional setup
where we used the standard Monte Carlo approach with a sample size of 25000. Goal
of this section is to confine ourselves to the restricted set of highly sensitive parameters
identified in Table 16. This more focused view allows us to increase the sample size and
to expand the analysis of Qol data to the quasi-Monte Carlo and Stochastic Collocation
methods. All referenced figures are attached in Appendix A.4 and A.5.

5.2.1. Monte Carlo

According to Equation (49) the SA performed in Section 5.1 required 300000 model
evaluations for a base sample size of 25000. With a reduced number of only 4 uncertain
parameters, we were able to double the sample size while maintaining the computa-
tional load of 300000 simulations.

A selection of results is depicted in Figures 46 to 51. The results across all nine ex-
amined Qols draw a very similar, but consistent picture: The sensitivity indices tend
to rise uniformly to their counterpart in the high-dimensional setup. This behaviour
is most likely due to the redistribution of proportional variance which the sensitivity
indices S; and S7; basically express. However, there appears to be no significant de-
velopment in terms of changing sensitivity rankings. The given confidence intervals
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are also slightly more confined which was expected by a higher sample size. It is in-
teresting to note that the sum of the total effect indices (> (Sr;)) was always closer
to one than the respective counterpart in the high-dimensional setup. For example,
the quantity BMD [CHLa (Average)] yielded > (Sr;) = 1.904 in the high-dimensional
case, whereas the corresponding quantity in the low-dimensional experiment resulted
in > (St;) = 1.515 even though their respective sums of first order indices remained
approximately the same. This phenomenon can probably be attributed to a generally
lower number of uncertain parameters since less mutual interactions occur and thus
fewer higher order indices get included in the total effect index of one parameter.

5.2.2. Quasi-Monte Carlo

According to Table 11 a better convergence rate of the quasi-Monte Carlo method with
d = 4 as opposed to the standard MC is only given with a relatively high number of
samples. We still conducted an experiment with settings analogous to those applied
in Section 5.2.1, but where we used the quasi-Monte Carlo approach instead. It was
expected that a sample size of 50000 should still result in fairly good result that are
close to those obtained with the standard MC.

Unfortunately, the actual results revealed that the values for both S; and Sp; ren-
dered unusable. Most of the time negative or unreasonably high values were output
by the estimators. We took a step back and considered the Ishigami function from
Equation (50) again. Even though we depicted only the SA results for this function
based on the MC method, we also conducted an analysis for the qMC that yielded
reasonable values. What we found was that the estimators are highly susceptible to
the chosen seeds for the Sobol sequence wich is used in the quasi-random number
generation of the qMC process. Remember that two independent sample matrices A
and B are built up for the calculation of the sensitivity indices. Quasi-Monte Carlo
hence generates two continuous lists of quasi-random numbers with length N from the
Sobol sequence that start from specified seed numbers seeds and seedp, respectively.
Our first assumption was an overlap of both lists such that both sample matrices
would contain a continuous sublist of duplicate entries. However, this special case
of maz(seedy, seedp) < min(seedy, seedp) + N is not the culprit as the same effect
showed up in completely separated lists.

Sadly, we were not able to identify the definite source of this behaviour for the sen-
sitivity calculation, but it is clear that it most certainly concerns the low-discrepency
of the drawn quasi-random numbers that produce unwanted interconnections between
the sample matrices. Table 17 illustrates this phenomenon where we chose a setting
with highly overlapping seeds. The values for identical seeds become apparent once
Equations (46) and (47) are considered because their sums always yield a value of zero.
It is more interesting to observe that shifting the seed for sample matrix B by one gives
us reasonable results to a limited extent and that another shift renders the method
completely useless again.
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seedy | seedg | Uncertainty | sensitivity S; | sensitivity Sp;

& 1.0 0.0
450 450 & 1.0 0.0

&3 1.0 0.0

& 0.3345 0.6304
450 451 & 0.4526 0.3358

&3 0.0337 0.3281

& 0.0697 0.9708
450 452 & 0.2177 0.6717

&3 —0.6432 0.2585

Table 17: Sensitivities S; and Sp; for the Ishigami function that were calculated using
the quasi-Monte Carlo method with a sample size of 10000.

5.2.3. UQ Methods Convergence

Previous section dealt with the extraction of sensitivity indices for the presented Qols.
It was argued that a high dimensional examination is only viable with the standard
Monte Carlo approach whereas a reduction of uncertain parameters facilitates the in-
corporation of the quasi-Monte Carlo method whose problems were discussed in Section
5.2.2. In this section, however, we will find that MC performs well outside the context
of sensitivity indices.

We analysed the convergence rates for both Monte Carlo variants as well as for the
Stochastic Collocation regarding the statistics of mean and variance for a Qol. Results
for all nine considered quantities can be seen in Figures 52 to 60. Since the sample size
of the Stochastic Collocation method is derived from the node count of the underlying
sparse grid we are only able to examine the discrete levels of refinement. The sample
size for the (quasi)-Monte Carlo approaches were thus adjusted accordingly.
Generally, we can observe that SC performs worst and qMC performs best. One has
to consider, however, that these results are highly dependent on the applied context:
For example, the examined Qols are generically constructed on the one hand and the
considered uncertain parameters (and hence dimension) are not universal on the other

hand.

Monte Carlo:

Computed expectation values were often volatile for a relatively small sample size.
Consider for example Figure 52 where a great spike was obtained for a sample size
of 1000 and that the value converged quickly with a sample size of 7500. As for the
variance, Monte Carlo proved to be fairly stable even for small sample sizes. It can
be concluded that a sample size of at least 10000 should be applied for the standard
Monte Carlo approach.
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Quasi-Monte Carlo:

The results prove that qMC is a very robust method for the computation of the pre-
sented sample statistics. Expectation value and variance yielded by quasi-Monte Carlo
remained on a relatively constant level across all Qols. Even for a small sample size,
where MC struggled with regard to the expectation value, quasi-Monte Carlo results
are mostly consistent with those obtained by larger sample sizes.

Stochastic Collocation:

Stochastic Collocation was certainly outperformed by the Monte Carlo variants in all
conducted experiments. Especially small sample sizes (sparse grid node counts) often
produced high fluctuations and deviations from values supplied by (quasi)-Monte Carlo
(for example see Figure 58). Results like Figure 57 prove that SC can converge to val-
ues from the other methods tough. Still, Stochastic Collocation apparently requires a
larger sample size in order to converge. Considering all results, a sample size of 50000
suffices for most of the Qols. The nearest discrete node count equivalent for this would
be a refinement level of [ = 9 that gives us exactly 46721 nodes in a 4-dimensional
sparse grid. Statistics for some quantities like BMP [NPP], BMD [CHLa (Surface)] or
BMD [CHLa (Average)|, however, should be computed with an even higher refinement
level since no clear convergence towards (quasi)-Monte Carlo values can be observed.
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6. Conclusion

In this thesis we examined the biogeochemical ocean model RFEcoM2 with regard to the
sensitivities of its input parameters. Since RFEcoM?2 is a rather complex model and its
inner workings are beyond the scope of this work, it was concluded that a global Sen-
sitivity Analysis approach would be required. We decided to aim for a variance-based
Sensitivity Analysis which allowed us to treat REcoM2 as a black-box model where
only its output is of significance. Different sensitivity measures were introduced in Ta-
ble 1 and the focus was set on the sensitivity indices S; and S7;. The analysis pipeline
demands a preceding Uncertainty Quantification step that evaluates the uncertainties
of the considered parameters. For this task, Section 3 presented the standard Monte
Carlo approach and its quasi-Monte Carlo variant as well as the Stochastic Collocation
method. The implementation of the pipeline for a complete Sensitivity Analysis was
introduced in Section 4.

In order to perform a variance-based Sensitivity Analysis with our implemented al-
gorithm we defined following prerequisites in collaboration with researchers at the
Alfred-Wegener-Institut:

e Ten parameters are considered to be uncertain (see Table 15).
e All parameters are assumed to be mutually independent.

e Uncertainty in parameters is described in the transformation of the model into
a stochastic one where each uncertain parameter £ is modelled as a lognormal
distributed random variable & ~ LN(1,0.125).

e Quantity of Interests are defined as 0-dimensional values that can be determin-
istically extracted from RFEcoM2 output (see Table 14).

Section 5 presented results of a variance-based Sensitivity Analysis based on the stan-
dard Monte Carlo approach in accordance with the conditions above. In the high-
dimensional setup with all ten uncertain parameters we concluded that the parame-
ters like the aggregation rate for phytoplankton (aggpp and aggpp,) are not important
whereas others demonstrated a high sensitivity. These parameters are highlighted in
Table 16 and they enabled us to lower the dimension to a number of four. The re-
fined Sensitivity Analysis confirmed our previous results of the parameters’ sensitivity
by a higher accuracy and suggested that all four parameters are of great significance
depending on the case-specific Quantity of Interest.

Quasi-Monte Carlo as an alleged improvement to the standard Monte Carlo exhibited
a poor performance and rendered unusable in the context of a Sensitivity Analysis.
Stochastic Collocation cannot be directly incorporated into our Sensitivity Analysis
framework to calculate sensitivities due to its deterministic sampling strategy. How-
ever, SC is known to yield precise results for sample statistics like expectation value
and variance. This quality was verified with regard to the Ishigami function where
SC clearly outperformed both Monte Carlo variants (see Table 13). In context of
REcoM?2 , however, Stochastic Collocation could not keep up with the convergence
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rates demonstrated by (quasi)-Monte Carlo where especially the quasi-Monte Carlo
approach supplied robust results.

In conclusion we can declare the parameters alpha, deg,, graz, ., and grazgg as highly
sensitive and advise that emphasis is placed on them when configuring the model. The
data did not allow a definite statement on the mutual dependencies of parameters
because they greatly fluctuated between the examined quantities and higher order sen-
sitivity indices were not analysed.

The Stochastic Collocation method is not viable for the calculation of expectation
value or variance of REcoM2 . Here we rather advocate the use of the quasi-Monte
Carlo approach. As for the calculation of sensitivity indices, the standard Monte Carlo
method should be employed because quasi-Monte Carlo failed to provide valid results.
Since the calculation of the sensitivities via the Sensitivity Analysis algorithm already
incorporates the computation of mean and variance it could in many cases be desir-
able to simply use the standard Monte Carlo method. This approach might also be
favourable due to ease of implementation and sample generation speed of the standard
Monte Carlo method. Furthermore, its convergence rate is theoretically not dependent
on the uncertainty dimension. However, we suggest using a sample size of at least
25000 in order to obtain robust and accurate results.

6.1. Future Work

e RFEcoM2 as the underlying model has been used in its 1D configuration for our
thesis. For a more realistic simulation the 2D and later on the 3D setup are of
great significance. Our Sensitivity Analysis could play a major role for the higher
dimensional cases because a correct configuration can be deduced from sensitiv-
ities in the 1D case and the Sensitivity Analysis algorithm itself is suitable for
higher dimensional setups. Of course one has to consider the massive increase in
computational time of a higher dimensional model and that a Sensitivity Analysis
may not be feasible for a large sample size anymore.

e We confined our examination to the first order sensitivity index .S; and total effect
index S7; which in most use cases provide enough information about sensitivities.
If mutual interconnections of uncertain parameters are of greater interest an
extension to the higher order indices can prove useful.

e The extraction of different Quantity of Interests has been performed without a
distinction between nanophytoplankton and diatoms. Defining separate analyses
for each type could be interesting because the sensitivity indices may differ a lot
between the individual examinations.

e In Section 3.2 we introduced the Bayesian Method which has not been imple-
mented in this work. This method, however, could potentially be advantageous
to the other sample based methods because a data driven approach is not entirely
dependent on the premises set by the user and aims at iteratively improving itself
by observation data.
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e Stochastic Collocation is not used in the calculation of sensitivity indices in this
work due to our implementation that is not tailored to this integration. Tang
et al. among others presented a method that allows for the calculation of sensi-
tivity indices [55].

e Monte Carlo as an Uncertainty Quantification method comes in various modifi-
cations. In this thesis we confined ourselves to the quasi-Monte Carlo variant,
but an extension to other modifications are possible. For example a Multilevel
Monte Carlo approach may prove beneficial for a reduction in computational
time, especially once the RFEcoM?2 model is set up to its higher dimensional con-
figuration.
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A. Appendix

A.1. REcoM2 Tables

Tables 18-21 contain model and state variables for REcoM?2 . Tables 22-27 show model
parameters together with their default settings specified in [49]. Table 28 explains the
effects of the limiter function shown in Equation (7).

Variable Unit Description
DIN mmol N m =3 Dissolved inorganic nitrogen
DSi mmol Si m =3 Dissolved inorganic silicon
DFe mmol Fe m™3 Dissolved inorganic iron
DIC mmol C m=3 Dissolved inorganic carbon
Alk mmol C m=3 Alkalinity
PhvN ol N m—3 Intracellular nitrogen concentration in nanophy-
Y nano toplankton
Intracellular carbon concentration in nanophyto-
-3
PhyC, .. mmol C m plankton
PhyCale mmol CaCO; m-3 Intracellular calcite concentration in nanophyto-
plankton
_ Intracellular CHLa concentration in nanophyto-
3
PhyChl .., mg Chlm plankton
PhyN 4, mmol N m ™3 Intracellular nitrogen concentration in diatoms
PhyCga mmol C m™3 Intracellular carbon concentration in diatoms
PhySi mmol Si m~3 Intracellular silicon concentration in diatoms
PhyChl,;, mg Chl m™3 Intracellular CHLa concentration in diatoms
ZooN mmol N m =3 Zooplankton nitrogen concentration
Z0ooC mmol C m=3 Zooplankton carbon concentration
DetN mmol N m =3 Detritus nitrogen concentration
DetC mmol C m~=3 Detritus carbon concentration
DetCalc mmol CaCos m™3  Detritus calcite concentration
DetSi mmol Si m™3 Detritus silicon concentration
DON mmol N m =3 Extracellular dissolved organic nitrogen
DOC mmol C m™3 Extracellular dissolved organic carbon

Table 18: Ocean State variables
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Variable Unit Description
BenthosN ol N -2 Benthos nitrogen concentration (vertically inte-
grated)
BenthosC mmol C m=2 Benthos carbon concentration (vertically inte-
grated)
BenthosSi ol Si =2 Benthos silicon concentration (vertically inte-
grated)
BenthosCale  mmol CaCox m—2 Benthos calcite concentration (vertically inte-
3 grated)
Table 19: Benthos State variables
Variable Unit Description
BenF . mmol m~2 day Flux of alkalinity from benthos to bottom
water
BenF mmol C m~2 day~! Flux of carbon from benthos to bottom wa-
DIC
ter
BenF ol N m=2 dav—" Flux of nitrogen from benthos to bottom
DIN Y water
Flux of silicon from benthos to bottom wa-
BenFpg; 1 Si m=2 day ™!
enFpg; mmol Sim~* day tor
BenF ol Fe m-2 day—! Flux of nitrogen from benthos to bottom
DFe H Y water
BenFpecae  mmol CaCos m—2 day~" Flux of detritus calcite from water to ben-
thos
BenF ol C m-2 dav-! Flux of detritus carbon from water to ben-
_ _ Flux of detritus nitrogen from water to ben-
BenFpeey  mmol N m~—2 day ™! thos &
BenF mmol Si m~2 day ! Flux of detritus silicon from water to ben-
DetSi

thos

Table 20: Benthos Variables
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Variable

Agg
Disscale
Fe’

fr

Q’

Gtot

(}nano

Gdia
PAR

PnanOa Pdia

}nnax

Thano, Tdia

rZOO
T
Psi

Schl

nano?’

T

chl
Sdia

N N
vnano ’ vdia
VSi

Wdet

Unit
day™!
day*

pmol Fe m™

mmol N m~

mmol N m =2 day ™!
mmol N m =2 day ™!

mmol N m =2 day ™"

W m—2

day™*

day™?

day™
day*

day™*

mg Chl mmol C™! day ™

K

mmol N mmol C™! day™

mmol Si mmol C™! day™

m day

3

3

1

1

Description

Aggregation rate

Rate of calcium carbonate dissolution
Concentration of free iron

Temperature dependence of rates
Phytoplankton available for food intake
Total zooplankton grazing rate

Zooplankton grazing rate for nanophyto-
plankton

Zooplankton grazing rate for diatoms
Photosynthetically available radiation

Carbon-specific actual rate of photosyn-
thesis

Carbon-specific light saturated rate of
photosynthesis

Phytoplankton respiration rate
Zooplankton respiration rate

Temperature dependent remineralization
rate of silicon

Rate of chlorophyll synthesis
Local temperature

Nitrogen assimilation rate for phytoplank-
ton

Diatom silicon assimilation rate

Sinking velocity of detritus

Table 21: Model Variables
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Variable Value Unit Description
e%hy 0.05 day™! Phytoplankton excretion of organic nitrogen
2 0.1 day™' Phytoplankton excretion of organic carbon
ex’° 0.1 day™' Zooplankton excretion of organic nitrogen
€5’ 0.1 day™' Zooplankton excretion of organic carbon
pRen 0.005 day ' Remineralization rate for benthos nitrogen
phen 0.005 day ' Remineralization rate for benthos silicon
ppen 0.005 day ' Remineralization rate for benthos carbon
PN 0.11 day™' Temperature dependent remineralization of DON
pc 0.1 day™! Temperature dependent remineralization of DOC
psi 0.02 day™! Temperature dependent remineralization of DetSi
PDetN 0.165 day ! Temperature dependent degradation of DetN
PDetC 0.15 day™! Temperature dependent degradation of DetC
degcon 0.3 day™' Chlorophyll degradation rate
Table 22: Degradation parameters for sources minus sinks equations
Variable Value Unit Description
gFeN 0.0008 pmol Fe mmol N~ Intracellular Fe : N ratio
Krop, 100.0  m~3 pmol Iron stability constant
L 1.0 pamol m =3 Total ligand concentration
KFe 0.0312 m? mmol C~! day™' Scavenging rate of iron
g 0.011  pmol Fe mmol C~! f; j m ge;iﬁ?s for remineralization of iron
Table 23: Parameters for iron calculations
Variable Value Unit Description
P 0.1 - Calcite production ratio
Fraction of grazing flux to zooplankton
v 0.3 - -
Moo 0.05 m? mmol N™! day™! Zooplankton mortality rate
Ol Nyt ol et o puanetr
Ddet 0.22 m3 mmol N~} dayfl gifzzitlﬁsalnifigiiation loss parameter for
Wy 20.0 m day ! Detritus sinking speed at surface

Table 24: Parameters for sources minus sinks equations.
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Variable Value Unit Description
9 —1 Light harvesting efficiency for
Onano 0.19  mmol C m* (mg Chl W day) nanophytoplankton
i 0.23 sl (@ 2 (oo CIL Y day)_l L.1ght harvesting efficiency for
diatoms
Half-saturation constant for
Ko 0.55 mmol N m ™3 nanophytoplankton nitrogen
uptake
K din 100 mmol N m-3 H.alf—satu.ratlon constant for
diatom nitrogen uptake
K 400 mmol Si m—2 H.alf—satu.r.atlon constant for
diatom silicon uptake
_ Rate of carbon-specific photo-
max 1
He 3:00 S synthesis
. _ Maximum Chl : N ratio for
ChI:N 1
Qs 4.20 mg Chl mmol N phytoplankton
res 0.01 dayfl Maintenance respiration rate
constant
ON-C 0.20 mmol N mmol C™* Maximum uptake ratio N : C
0si.C 0.20 mmol Si mmol C~! Maximum uptake ratio S7 : C'
i 0.01 day~! rf.urne‘scale for zooplankton res-
piration
Vo 0.70 i Sca,h‘ng factor for carbon-
specific nitrogen uptake
¢ 933 mmol € mmol N- Cost of biosynthesis of nitro-
gen
Table 25: Parameters for phytoplankton growth.
Variable Value Unit Description
dia 0.50 - Relative grazing preference for diatoms
Gmax 2.40 day ™! Maximum grazing rate at 0°
Kg 0.35 (mmol N m_3)2 Half-saturation constant for grazing loss

Table 26: Parameters for grazing.
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Variable Value Unit Description

Jpano 0.04 jimol Fe m=— Half—satur.atlon constant for nanophyto-
plankton iron uptake

K din 0.12 jimol Fe m=3 Half-saturation constant for diatom iron
uptake

FNCmin (04 mmol N mmol ¢~ Min intracellular N : C' ratio for nanophy-
toplankton

FNCmax () 90 mmol N mmol €1 Max intracellular N : C' ratio for nanophy-
toplankton

g>i:Cmin 0.04 mmol Si mmol C™'  Min intracellular Si : C' ratio for diatoms

gSiCmax () 80 mmol Si mmol C™'  Max intracellular Si : C ratio for diatoms

sN. 20 mmol C mmol N™*  Minimum limiter regulator for nitrogen

sN o 1000 mmol C mmol N™'  Maximum limiter regulator for nitrogen

sSL 1000 mmol C mmol N™'  Minimum limiter regulator for silicon

sSi 1000  mmol C mmol N™'  Maximum limiter regulator for silicon

T 938 15 K Referfance temperature for the Arrhenius
function

Table 27: Parameters for limitation functions.
Process Effect of ¢N'C — gn.Cmax

Nitrogen assimilation

Silicon assimilation
Respiration by phytoplankton
Phytoplankton DOC excretion
Phytoplankton DON excretion

Phytoplankton calcite excretion

Ends uptake of nitrogen

Ends uptake of silicon

Ends release of carbon
Ends release of carbon
Ends release of nitrogen

Ends release of carbon

Table 28: Processes modulated by the limiter function f

N:Cmax
lim .
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A.2. Ishigami Plots

B [shigami function evaluations

0.12 A

0.10 A

0.08

0.06 -

0.04 -

0.02 A

0.00 -

-10 -5 0 5 10 15

Figure 25: The Ishigami function with parameters ¢ = 7 and b = 0.1. We used a
sample size of 50000.
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Figure 26: First order sensitivities S; for the Ishigami function with 95% confidence
intervals. We used a sample size of 50000 with the MC method.
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Figure 27: Total effect sensitivities Sp; for the Ishigami function with 95% confidence
intervals. We used a sample size of 50000 with the MC method.
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A.3. Sensitivity Analysis Results (High-Dimensional)

BMP [NPP] - S;
1.0
0.8 A
0.6 1
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alpha P_cm deg CHL alpha_d P_cm_d deg CHL d graz_max grazEff agg_PD agg_PP

Figure 28: First order sensitivities .S; for the BMP [NPP] quantity with 95% confidence
intervals. We used a sample size of 25000 with the MC method.
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Figure 29: Total effect sensitivities Sp; for the BMP [NPP] quantity with 95% confi-
dence intervals. We used a sample size of 25000 with the MC method.
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Figure 30: First order sensitivities S; for the BMP [CHLa (Surface)] quantity with 95%
confidence intervals. We used a sample size of 25000 with the MC method.
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Figure 31: Total effect sensitivities Sp; for the BMP [CHLa (Surface)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC

method.
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Figure 32: First order sensitivities S; for the BMP [CHLa (Average)| quantity with
95% confidence intervals. We used a sample size of 25000 with the MC
method.

79



BMP [CHLa (Average)] - St;

B i i
---- X(57;)=1.083
X St
0.8 1
0.6 1
0.405
0.4 - ==
0.271 0.262
== ==
0.2 1
0.038 . 0.036
0.01 0.023 0.034 0.0 0.005
0.04 g > ¢ ¢ o
alpha P_cm deg_CHL alpha_d P_cm_d deg _CHL d graz_max grazEff agg_PD agg_PP

Figure 33: Total effect sensitivities Sp; for the BMP [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC

method.
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Figure 34: First order sensitivities S; for the BMV [NPP] quantity with 95% confidence
intervals. We used a sample size of 25000 with the MC method.
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Figure 35: Total effect sensitivities Sp; for the BMV [NPP| quantity with 95% confi-
dence intervals. We used a sample size of 25000 with the MC method.
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Figure 36: First order sensitivities S; for the BMV [CHLa (Surface)] quantity with 95%
confidence intervals. We used a sample size of 25000 with the MC method.
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Figure 37: Total effect sensitivities Sp; for the BMV [CHLa (Surface)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC

method.
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Figure 38: First order sensitivities S; for the BMV [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC

method.
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Figure 39: Total effect sensitivities Sp; for the BMV [CHLa (Average)] quantity with

95% confidence intervals. We used a sample size of 25000 with the MC
method.
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Figure 40: First order sensitivities S; for the BMD [NPP] quantity with 95% confidence

intervals. We used a sample size of 25000 with the MC method.
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Figure 41: Total effect sensitivities Sp; for the BMD [NPP| quantity with 95% confi-
dence intervals. We used a sample size of 25000 with the MC method.
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Figure 42: First order sensitivities S; for the BMD [CHLa (Surface)] quantity with 95%
confidence intervals. We used a sample size of 25000 with the MC method.
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Figure 43: Total effect sensitivities Sp; for the BMD [CHLa (Surface)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC

method.
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Figure 44: First order sensitivities S; for the BMD [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC
method.
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Figure 45: Total effect sensitivities Sp; for the BMD [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 25000 with the MC
method.
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A.4. Sensitivity Analysis Results (Low-Dimensional)
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Figure 46: First order sensitivities .S; for the BMP [NPP] quantity with 95% confidence
intervals. We used a sample size of 50000 with the MC method.
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Figure 47: Total effect sensitivities Sp; for the BMP [NPP] quantity with 95% confi-
dence intervals. We used a sample size of 50000 with the MC method.
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Figure 48: First order sensitivities S; for the BMV [CHLa (Surface)] quantity with 95%
confidence intervals. We used a sample size of 50000 with the MC method.
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Figure 49: Total effect sensitivities Sp; for the BMV [CHLa (Surface)] quantity with
95% confidence intervals. We used a sample size of 50000 with the MC

method.
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Figure 50: First order sensitivities S; for the BMD [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 50000 with the MC
method.

89



BMD [CHLa (Average)] - St

1.0 peeeeeeeeeeeeeeeeeeeee e e e e
---- X(57)=1.515
X St
0.8 1
0.587
0.6 1 —=— 0-551
=
0.4
0.243
— ]
0.2 A 0134
EE
0.0 1
alpha deg_CHL graz_max grazeff

Figure 51: Total effect sensitivities Sp; for the BMD [CHLa (Average)] quantity with
95% confidence intervals. We used a sample size of 50000 with the MC
method.
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A.5. Sensitivity Analysis Convergence
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Figure 52: Convergence rates of expectation value (left) and variance (right) for the
BMP [NPP] quantity.
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Figure 53: Convergence rates of expectation value (left) and variance (right) for the
BMP [CHLa (Surface)] quantity.
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Figure 54: Convergence rates of expectation value (left) and variance (right) for the
BMP [CHLa (Average)] quantity.
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Figure 55: Convergence rates of expectation value (left) and variance (right) for the

BMV [NPP] quantity.
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Figure 56: Convergence rates of expectation value (left) and variance (right) for the

BMV [CHLa (Surface)] quantity.
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Figure 57: Convergence rates of expectation value (left) and variance (right) for the
BMV [CHLa (Average)| quantity.
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Figure 58: Convergence rates of expectation
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Figure 59: Convergence rates of expectation value (left) and variance (right) for the

BMD [CHLa (Surface)] quantity.
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Figure 60: Convergence rates of expectation value (left) and variance (right) for the

BMD [CHLa (Average)| quantity.
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