Exercise 1

Consider the following timed automaton \mathcal{T}:

```
\begin{align*}
x &:= 0 \\
x \leq 1 & \xrightarrow{\{p\}} l_0 \\
x > 0 & \xrightarrow{x = 1 \text{ reset}(x)} l_1
\end{align*}
```

Please perform the TCTL model checking algorithm as presented in the lecture on \mathcal{T} and verify $\mathcal{T} \models \varphi$, where $\varphi = AF \leq 2p$.

a) Construct $\hat{\varphi}$ by eliminating timing parameters from φ. Use the name y for the auxiliary clock.

b) Construct a RTS \mathcal{R}, such that $\mathcal{T} \models_{TCTL} \varphi$ iff $\mathcal{R} \models_{CTL} \hat{\varphi}$. As \mathcal{R} will become big, use the prepared grid below to sketch the RTS (by adding the required transitions) as follows:

- \bigcirc represents a state, where the location is l_0.
- \square represents a state, where the location is l_1.
- The position of a state in the grid remarks, which clock region the state represents.
- Please draw only the reachable fragment of \mathcal{R}.

\begin{enumerate}
\item
\begin{itemize}
\item
\end{itemize}
\item
\begin{itemize}
\item
\end{itemize}
\item
\begin{itemize}
\item
\end{itemize}
\item
\begin{itemize}
\item
\end{itemize}
\end{enumerate}
c) Apply CTL model checking to verify $\mathcal{R} \models_{CTL} \phi$. You can color states in your previously created RTS to indicate that a certain subformula holds in the respective state.

Solution:

a) We add an additional clock y to \mathcal{T}, such that $\mathcal{T'}$:
Removing syntactic sugar from φ yields $\varphi = A(\text{true} \ U^{\leq 2} \ p)$ and finally removing time parameters yields $\hat{\varphi} = A(\text{true} \ U ((y \leq 2) \land p))$.

b) The RTS \mathcal{R} is specified as follows:

c) Model checking $\mathcal{R} \models_{\text{CTL}} \hat{\varphi}$

Step 1: $\psi_1 = (y \leq 2) \land p$
Model checking $\mathcal{R} \models_{\text{CTL}} \phi$
Step 2: $\psi_2 = A(true \ U \ \psi_1)$
As for all initial states $\sigma = (l, \nu) \in \mathcal{R}$ with $\nu(y) = 0$ it holds that $\sigma \models \hat{\varphi}$, we conclude $\mathcal{R} \models_{CTL} \hat{\varphi}$, and thus $\mathcal{T} \models_{TCTL} \varphi$.