Exercise 1

Consider the following timed automaton \mathcal{T}:

Please perform the TCTL model checking algorithm as presented in the lecture on \mathcal{T} and verify $\mathcal{T} \models \varphi$, where $\varphi = AF^{\leq 2}p$.

a) Construct $\hat{\varphi}$ by eliminating timing parameters from φ. Use the name y for the auxiliary clock.

b) Construct a RTS \mathcal{R}, such that $\mathcal{T} \models_{TCTL} \varphi$ iff $\mathcal{R} \models_{CTL} \hat{\varphi}$. As \mathcal{R} will become big, use the prepared grid below to sketch the RTS (by adding the required transitions) as follows:

- \bigcirc represents a state, where the location is l_0.
- \square represents a state, where the location is l_1.
- The position of a state in the grid remarks, which clock region the state represents.
- Please draw only the reachable fragment of \mathcal{R}.
c) Apply CTL model checking to verify $\mathcal{R} \models_{CTL} \hat{\varphi}$. You can color states in your previously created RTS to indicate that a certain subformula holds in the respective state.