Modeling and Analysis of Hybrid Systems
Convex polyhedra

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015
Polyhedra
Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.
Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Definition

A set S is called convex, if

$$\forall x, y \in S. \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.
Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Definition

A set S is called convex, if

$$\forall x, y \in S. \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.
Depending on the form of the representation we distinguish between

- \mathcal{H}-polytopes and
- \mathcal{V}-polytopes
Intersection of a finite set of halfspaces

\[x_1 + 2x_2 \leq 12 \]
Intersection of a finite set of halfspaces

\[-3x_1 + 2x_2 \leq 1\]

\[x_1 + 2x_2 \leq 12\]
Intersection of a finite set of halfspaces

\[-3x_1 + 2x_2 \leq 1\]

\[x_1 + 2x_2 \leq 12\]

\[x_1 \leq 7\]
Definition (Closed halfspace)

A d-dimensional \textbf{closed halfspace} is a set $\mathcal{H} = \{ x \in \mathbb{R}^d \mid c^T x \leq z \}$ for some $c \in \mathbb{R}^d$, called the \textbf{normal} of the halfspace, and a $z \in \mathbb{R}$.
\textbf{Definition (Closed halfspace)}

A d-dimensional \textbf{closed halfspace} is a set $\mathcal{H} = \{ x \in \mathbb{R}^d \mid c^T x \leq z \}$ for some $c \in \mathbb{R}^d$, called the \textbf{normal} of the halfspace, and a $z \in \mathbb{R}$.

\textbf{Definition (\mathcal{H}-polyhedron, \mathcal{H}-polytope)}

A d-dimensional \mathcal{H}-\textbf{polyhedron} $P = \bigcap_{i=1}^{n} \mathcal{H}_i$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H}-polyhedron is called an \mathcal{H}-\textbf{polytope}.

The facets of a d-dimensional \mathcal{H}-polytope are $d-1$-dimensional \mathcal{H}-polytopes.
An \mathcal{H}-polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_i = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the \mathcal{H}-representation of the polytope.
An \mathcal{H}-polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_i = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the \mathcal{H}-representation of the polytope.

- Each row of C is the normal vector to the ith facet of the polytope.
H-polytopes

An H-polytope

\[
P = \bigcap_{i=1}^{n} \mathcal{H}_i = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}
\]

can also be written in the form

\[
P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.
\]

We call (C, z) the H-representation of the polytope.

- Each row of C is the normal vector to the ith facet of the polytope.
- An H-polytope P has a finite number of vertices $V(P)$.
Convex hull of a finite set of points
Convex hull of a finite set of points
Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the **convex hull** $\text{conv}(V)$ of V is the smallest convex set that contains V.

Definition (\mathcal{V}-polytope)

A \mathcal{V}-polytope $P = \text{conv}(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V}-representation of the polytope. Note that all \mathcal{V}-polytopes are bounded. Unbounded polyhedra can be represented by extending convex hulls with conical hulls.
\(\mathcal{V} \)-polytopes

Definition (Convex hull)

Given a set \(V \subseteq \mathbb{R}^d \), the **convex hull** \(\text{conv}(V) \) of \(V \) is the smallest convex set that contains \(V \).

For a finite set \(V = \{v_1, \ldots, v_n\} \), its convex hull can be computed by

\[
\text{conv}(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x \}.
\]
Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull $\text{conv}(V)$ of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

$$\text{conv}(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^{n} \lambda_i = 1 \wedge \sum_{i=1}^{n} \lambda_i v_i = x \}.$$

Definition (\mathcal{V}-polytope)

A \mathcal{V}-polytope $P = \text{conv}(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V}-representation of the polytope.
\(V \)-polytopes

Definition (Convex hull)

Given a set \(V \subseteq \mathbb{R}^d \), the **convex hull** \(\text{conv}(V) \) of \(V \) is the smallest convex set that contains \(V \).

For a finite set \(V = \{v_1, \ldots, v_n\} \), its convex hull can be computed by

\[
\text{conv}(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x\}.
\]

Definition (\(V \)-polytope)

A **\(V \)-polytope** \(P = \text{conv}(V) \) is the convex hull of a finite set \(V \subseteq \mathbb{R}^d \). We call \(V \) the **\(V \)-representation** of the polytope.

Note that all \(V \)-polytopes are bounded.
Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull $\text{conv}(V)$ of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

\[
\text{conv}(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x \}\.
\]

Definition (\mathcal{V}-polytope)

A \mathcal{V}-polytope $P = \text{conv}(V)$ is the convex hull of a finite set $V \subseteq \mathbb{R}^d$. We call V the \mathcal{V}-representation of the polytope.

Note that all \mathcal{V}-polytopes are bounded.
Unbounded polyhedra can be represented by extending convex hulls with conical hulls.
Conical hull of a finite set of points
Conical hull of a finite set of points
Conical hull of a finite set of points

If $U = \{u_1, \ldots, u_n\}$ is a finite set of points in \mathbb{R}^d, the conical hull of U is defined by

$$\text{cone}(U) = \{x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \geq 0\}. \quad (1)$$
If $U = \{u_1, \ldots, u_n\}$ is a finite set of points in \mathbb{R}^d, the conical hull of U is defined by

$$cone(U) = \{x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \geq 0\}.$$ (1)

Each polyhedra $P \subseteq \mathbb{R}^d$ can be represented by two finite sets $V, U \subseteq \mathbb{R}^d$ such that

$$P = conv(V) \oplus cone(U).$$

If U is empty then P is bounded (e.g., a polytope).
Motzkin’s theorem

- For each \mathcal{H}-polytope, the convex hull of its vertices defines the same set in the form of a \mathcal{V}-polytope, and vice versa,

- each set defined as a \mathcal{V}-polytope can be also given as an \mathcal{H}-polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H}- and the \mathcal{V}-representations of polytopes can be exponential in the state space dimension d.
If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation,
- intersection, or the
- union of two polytopes.
Operations: Membership

Membership for $p \in \mathbb{R}^d$:
Membership for $p \in \mathbb{R}^d$:

- \mathcal{H}-polytope defined by $Cx \leq z$:

 - just substitute p for x to check if the inequation holds.

 - V-polytope defined by the vertex set V:
 - check satisfiability of
 $$\exists \lambda_1, \ldots, \lambda_n \in [0,1] \subseteq \mathbb{R}^d.$$
 $$\sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x.$$

 - Alternatively:
 - convert the V-polytope into an \mathcal{H}-polytope by computing its facets.
Membership for $p \in \mathbb{R}^d$:

- **H-polytope** defined by $Cx \leq z$:
 just substitute p for x to check if the inequation holds.

- **V-polytope** defined by the vertex set V:
 check satisfiability of
 \[
 \exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d.
 \]
 \[
 n \sum_{i=1}^{n} \lambda_i = 1 \land
 n \sum_{i=1}^{n} \lambda_i v_i = x.
 \]
 Alternatively:
 convert the **V-polytope** into an **H-polytope** by computing its facets.
Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H}-polytope defined by $Cx \leq z$:
 just substitute p for x to check if the inequation holds.
- \mathcal{V}-polytope defined by the vertex set V:
Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- **\mathcal{H}-polytope** defined by $Cx \leq z$:
 just substitute p for x to check if the inequation holds.

- **\mathcal{V}-polytope** defined by the vertex set V:
 check satisfiability of

\[
\exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x.
\]
Membership for $p \in \mathbb{R}^d$:

- **\mathcal{H}-polytope** defined by $Cx \leq z$:
 just substitute p for x to check if the inequation holds.

- **\mathcal{V}-polytope** defined by the vertex set V:
 check satisfiability of

\[
\exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d \quad \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x.
\]

Alternatively:

\[
\text{convert the } \mathcal{V}\text{-polytope into an } \mathcal{H}\text{-polytope by computing its facets.}
\]
Operations: Membership

Membership for \(p \in \mathbb{R}^d \):

- **\(\mathcal{H} \)-polytope** defined by \(Cx \leq z \):
 just substitute \(p \) for \(x \) to check if the inequation holds.

- **\(\mathcal{V} \)-polytope** defined by the vertex set \(V \):
 check satisfiability of

\[
\exists \lambda_1, \ldots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^{n} \lambda_i = 1 \land \sum_{i=1}^{n} \lambda_i v_i = x.
\]

Alternatively: convert the \(\mathcal{V} \)-polytope into an \(\mathcal{H} \)-polytope by computing its facets.
Intersection for two polytopes P_1 and P_2:

- \mathcal{H}-polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:
Intersection for two polytopes P_1 and P_2:

- \mathcal{H}-polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:
 the resulting \mathcal{H}-polytope is defined by $\left(\begin{array}{c} C_1 \\ C_2 \end{array} \right) x \leq \left(\begin{array}{c} z_1 \\ z_2 \end{array} \right)$.

- \mathcal{V}-polytopes defined by V_1 and V_2:

 Convert P_1 and P_2 to \mathcal{H}-polytopes and convert the result back to a \mathcal{V}-polytope.
Intersection for two polytopes P_1 and P_2:

- **\mathcal{H}-polytopes** defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$:
 the resulting \mathcal{H}-polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

- **\mathcal{V}-polytopes** defined by V_1 and V_2:
 Convert P_1 and P_2 to \mathcal{H}-polytopes and convert the result back to a \mathcal{V}-polytope.
Note that the union of two convex polytopes is in general not a convex polytope.
Note that the union of two convex polytopes is in general not a convex polytope.
→ take the convex hull of the union.
Note that the union of two convex polytopes is in general not a convex polytope.
→ take the convex hull of the union.

\-polytopes defined by V_1 and V_2:
Note that the union of two convex polytopes is in general not a convex polytope.
→ take the convex hull of the union.
- \mathcal{V}-polytopes defined by V_1 and V_2:
 \mathcal{V}-representation $V_1 \cup V_2$.
- \mathcal{H}-polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$:
Note that the union of two convex polytopes is in general not a convex polytope.

→ take the convex hull of the union.

- \mathcal{V}-polytopes defined by V_1 and V_2:
 \[V_1 \cup V_2. \]

- \mathcal{H}-polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$:
 convert to \mathcal{V}-polytopes and compute back the result.
Hardness of the convex hull computation

<table>
<thead>
<tr>
<th></th>
<th>\Rightarrow</th>
<th>conv</th>
<th>\oplus</th>
<th>\cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}-polytope</td>
<td>easy</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{H}-polytope</td>
<td>hard</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{V}-polytope and \mathcal{V}-polytope</td>
<td>—</td>
<td>easy</td>
<td>easy</td>
<td>hard</td>
</tr>
<tr>
<td>\mathcal{H}-polytope and \mathcal{H}-polytope</td>
<td>—</td>
<td>hard</td>
<td>hard</td>
<td>easy</td>
</tr>
<tr>
<td>\mathcal{V}-polytope and \mathcal{H}-polytope</td>
<td>—</td>
<td>hard</td>
<td>hard</td>
<td>hard</td>
</tr>
</tbody>
</table>

It could also be hard to translate a \mathcal{V}-polytope to an \mathcal{H}-polytope or vice versa.