Modeling and Analysis of Hybrid Systems
Some decidability and undecidability results

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015
Subclasses of hybrid automata for which reachability is **decidable**:

- Timed automata
- Initialized stopwatch automata
- Initialized singular automata
- Initialized rectangular automata
- Timed automata with difference constraints $x - y \sim c$
- Simple multirate timed systems

Subclasses of hybrid automata for which reachability is **undecidable**:

- Discrete automata
- Uninitialized stopwatch automata
- Uninitialized singular automata
- Uninitialized rectangular automata
- 2-rate timed systems
Decidability: Timed automata with difference constraints

Difference constraint:

\[x - y \sim c \] with \(x, y \) being clocks and \(c \) a non-negative integer

A state is reachable in the original system iff it is reachable in one of the copies.
Decidability: Timed automata with difference constraints

Difference constraint:

\[x - y \sim c \] with \(x, y \) being clocks and \(c \) a non-negative integer

A state is reachable in the original system iff it is reachable in one of the copies.

\[x := 0 \quad y := 0 \quad x - y \leq c \]

\[x := 0 \quad x > c \quad y := 0 \]

\[x := 0 \quad x \leq c \]

\[y := 0 \]
Multirate timed systems

- A skewed clock is a variable x with $\dot{x} = c$ in all locations for some $c \in \mathbb{Z}$.
- Multirate timed systems have
 - skewed clocks as variables,
 - resets to 0,
 - clock constraints $x \sim c$ and equality constraints $x = y$ in conditions and invariants.
- Simple multirate timed systems have no equality constraints.
- 2-rate timed systems are multirate timed systems with skewed clocks at two different rates.
Decidability: Simple multirate timed systems

For each variable \(x \) let \(k_x \) denote its derivative and let \(k \) be the smallest common multiple of all non-zero derivatives. For each variable \(x \) with \(k_x \neq 0 \) we set its derivative to 1 and replace in all initial conditions, location invariants and transition guards each clock constraint \(x \sim c \) by \(x \sim c \cdot k \).

\[
\dot{x} = 3 \\
\dot{y} = 2 \\
x \leq 4 \land y < 3 \\
y := 0 \\
\dot{x} = 1 \\
\dot{y} = 1 \\
x \leq 4 \cdot 6 \\
y < 3 \cdot 6 \\
y := 0
\]

Let \(f : V \rightarrow V \) with \(f(\nu)(x) = \nu(x) \) if \(k_x = 0 \) and \(f(\nu)(x) = \nu(x) \cdot k \) otherwise. Then \((l, \nu) \) is reachable in the original system iff \((l, f(\nu)) \) is reachable in the transformed system.
Decidability: Simple multirate timed systems

For each variable x let k_x denote its derivative and let k be the smallest common multiple of all non-zero derivatives. For each variable x with $k_x \neq 0$ we set its derivative to 1 and replace in all

- initial conditions,
- location invariants and
- transition guards

each clock constraint $x \sim c$ by $x \sim \frac{c \cdot k}{k_x}$.

Let $f : V \rightarrow V$ with $f(\nu)(x) = \nu(x)$ if $k_x = 0$ and $f(\nu)(x) = \frac{\nu(x) \cdot k}{k_x}$ otherwise. Then (l, ν) is reachable in the original system iff $(l, f(\nu))$ is reachable in the transformed system.
A 2-counter machine [Minsky (1961, 1967), Lambek (1961)] consists of

- 2 unsigned-integer-valued registers,
- a program counter, and
- a list of labelled sequential instructions:
 - increment a register and let the other register unchanged
 - decrement a register and let the other register unchanged
 - if a given register contains 0 then jump to a given instruction else continue in sequence; the register values remain unchanged
Proven undecidable: 2-counter machines

A 2-counter machine [Minsky (1961, 1967), Lambek (1961)] consists of
- 2 unsigned-integer-valued registers,
- a program counter, and
- a list of labelled sequential instructions:
 - increment a register and let the other register unchanged
 - decrement a register and let the other register unchanged
 - if a given register contains 0 then jump to a given instruction else
 continue in sequence; the register values remain unchanged

To encode the computations of a 2-counter machine by a 2-rate timed system we need to encode
- setting up the initial configuration,
- changing the program counter,
- testing a register for 0,
- letting a register unchanged,
- incrementing a register, and
- decrementing a register.
Undecidability: Uninitialized singular automata
Undecidability: 2-rate timed systems
Encoding the register values

We use two clocks \(x_1 \) and \(x_2 \) of rate 1 to encode the register values. The \(i \)th state of the 2-counter machine is encoded by the state of the 2-rate timed system at time \(2^i \). The value \(n \) of register \(i \) is encoded by the value \(\frac{1}{2^n} \) of \(x_i \).

We use a clock \(y \) of rate 1 to measure the step length \(1 \); it is reset to 0 whenever it reaches the value 1. We additionally use a clock \(z \) of rate 1, and a skewed clock \(z' \) of rate 2.
Encoding the register values

- We use two clocks x_1 and x_2 of rate 1 to encode the register values. The ith state of the 2-counter machine is encoded by the state of the 2-rate timed system at time $2i$.
- The value n of register i is encoded by the value $1/2^n$ of x_i.
- We use a clock y of rate 1 to measure the step length 1; it is reset to 0 whenever it reaches the value 1.
- We additionally use a clock z of rate 1, and a skewed clock z' of rate 2.
Letting a register unchanged
Letting a register unchanged

\[x_j := 0 \]

\[y = 0 \]

\[x_j := 0 \]

\[y = 2 \]

\[y := 0 \]

\[x_j := 0 \]

\[y := 0 \]
Incrementing a register
Incrementing a register

\[x_j \]
\[z \]
\[z' \]
\[t \]
\[2i - \frac{1}{2^n} \]
\[2i \]
\[2i + 1 - \frac{1}{2^n} \]
\[2(i+1) - \frac{1}{2^{n+1}} \]

\[y := 0 \]
\[z := 0 \]
\[x_j := 1 \]
\[y = 1 \land z = z' \]
\[y := 0 \]
Decrementing a register
Decrementing a register

\[x_j = 1 \]
\[z = 0 \]
\[z' = 0 \]
\[y = 0 \]

\[y = 2 \]
\[x_j = 0 \]
\[z = 1 \]
\[z' = 0 \]
\[y = 1 \land z = z' \]