Modeling and Analysis of Hybrid Systems

What’s decidable about hybrid automata?

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015
Henzinger et al.: What’s decidable about hybrid automata?
Motivation

- The special class of timed automata with TCTL is decidable, thus model checking is possible.
- What about more expressive model classes for hybrid systems?
Two central problems for the analysis of hybrid automata:

- **Safety**: The problem to decide whether something “bad” can happen during the execution of a system.

- **Liveness**: The problem to decide whether there is always the possibility that something “good” will eventually happen during the execution of a system.

Both problems are decidable in certain special cases, and undecidable in certain general cases.
A particularly interesting class:
What is decidable about hybrid automata?

A particularly interesting class:

- all conditions, effects, and flows are described by rectangular sets.
What is decidable about hybrid automata?

A particularly interesting class:
- all conditions, effects, and flows are described by rectangular sets.

Definition

- A set $\mathcal{R} \subset \mathbb{R}^n$ is rectangular if it is a cartesian product of (possibly unbounded) intervals, all of whose finite endpoints are rationals.
- The set of rectangular sets in \mathbb{R}^n is denoted \mathcal{R}^n.
A rectangular automaton \(\mathcal{A} \) is a tuple
\(\mathcal{A} = (\text{Loc}, \text{Var}, \text{Con}, \text{Lab}, \text{Edge}, \text{Act}, \text{Inv}, \text{Init}) \) with

- finite set of locations \(\text{Loc} \),
- finite set of real-valued variables \(\text{Var} = \{x_1, \ldots, x_n\} \),
- a function \(\text{Con} : \text{Loc} \to 2^{\text{Var}} \) assigning controlled variables to locations,
- finite set of synchronization labels \(\text{Lab} \),
- finite set of edges \(\text{Edge} \subseteq \text{Loc} \times \text{Lab} \times \mathbb{R}^n \times \mathbb{R}^n \times 2^{\{1, \ldots, n\}} \times \text{Loc} \),
- a flow function \(\text{Act} : \text{Loc} \to \mathbb{R}^n \),
- an invariant function \(\text{Inv} : \text{Loc} \to \mathbb{R}^n \),
- initial states \(\text{Init} : \text{Loc} \to \mathbb{R}^n \).
Rectangular automaton

Definition

A rectangular automaton A is a tuple $H = (\text{Loc}, \text{Var}, \text{Con}, \text{Lab}, \text{Edge}, \text{Act}, \text{Inv}, \text{Init})$ with

- finite set of locations Loc,
- finite set of real-valued variables $\text{Var} = \{x_1, \ldots, x_n\}$,
- a function $\text{Con} : \text{Loc} \to 2^{\text{Var}}$ assigning controlled variables to locations,
- finite set of synchronization labels Lab,
- finite set of edges $\text{Edge} \subseteq \text{Loc} \times \text{Lab} \times \mathbb{R}^n \times \mathbb{R}^n \times 2^{\{1, \ldots, n\}} \times \text{Loc}$,
- a flow function $\text{Act} : \text{Loc} \to \mathbb{R}^n$,
- an invariant function $\text{Inv} : \text{Loc} \to \mathbb{R}^n$,
- initial states $\text{Init} : \text{Loc} \to \mathbb{R}^n$.

- **States:** $\sigma = (l, \bar{x}) \in (\text{Loc} \times \mathbb{R}^n)$ with $\bar{x} \in \text{Inv}(l)$
Definition

A rectangular automaton A is a tuple $\mathcal{H} = (\text{Loc}, \text{Var}, \text{Con}, \text{Lab}, \text{Edge}, \text{Act}, \text{Inv}, \text{Init})$ with

- finite set of locations Loc,
- finite set of real-valued variables $\text{Var} = \{x_1, \ldots, x_n\}$,
- a function $\text{Con} : \text{Loc} \rightarrow 2^{\text{Var}}$ assigning controlled variables to locations,
- finite set of synchronization labels Lab,
- finite set of edges $\text{Edge} \subseteq \text{Loc} \times \text{Lab} \times \mathbb{R}^n \times \mathbb{R}^n \times 2^{\{1, \ldots, n\}} \times \text{Loc}$,
- a flow function $\text{Act} : \text{Loc} \rightarrow \mathbb{R}^n$,
- an invariant function $\text{Inv} : \text{Loc} \rightarrow \mathbb{R}^n$,
- initial states $\text{Init} : \text{Loc} \rightarrow \mathbb{R}^n$.

- **States:** $\sigma = (l, \vec{x}) \in (\text{Loc} \times \mathbb{R}^n)$ with $\vec{x} \in \text{Inv}(l)$
- **State space:** $\Sigma \subseteq \text{Loc} \times \mathbb{R}^n$ is the set of all states
Rectangular automaton

Definition

A rectangular automaton \mathcal{A} is a tuple $\mathcal{H} = (\text{Loc}, \text{Var}, \text{Con}, \text{Lab}, \text{Edge}, \text{Act}, \text{Inv}, \text{Init})$ with

- finite set of locations Loc,
- finite set of real-valued variables $\text{Var} = \{x_1, \ldots, x_n\}$,
- a function $\text{Con} : \text{Loc} \to 2^{\text{Var}}$ assigning controlled variables to locations,
- finite set of synchronization labels Lab,
- finite set of edges $\text{Edge} \subseteq \text{Loc} \times \text{Lab} \times \mathbb{R}^n \times \mathbb{R}^n \times 2^{\{1, \ldots, n\}} \times \text{Loc}$,
- a flow function $\text{Act} : \text{Loc} \to \mathbb{R}^n$,
- an invariant function $\text{Inv} : \text{Loc} \to \mathbb{R}^n$,
- initial states $\text{Init} : \text{Loc} \to \mathbb{R}^n$.

- **States:** $\sigma = (l, \vec{x}) \in (\text{Loc} \times \mathbb{R}^n)$ with $\vec{x} \in \text{Inv}(l)$
- **State space:** $\Sigma \subseteq \text{Loc} \times \mathbb{R}^n$ is the set of all states
- Is the state space rectangular?
Rectangular automaton

- **Flows**: first time derivatives of the flow trajectories in location \(l \in \text{Loc} \) are within \(\text{Act}(l) \)

- **Jumps**: \(e = (l, a, \text{pre}, \text{post}, \text{jump}, l') \in \text{Edge} \) may move control from location \(l \) to location \(l' \) starting from a valuation in \(\text{pre} \), changing the value of each variable \(x_i \) to a nondeterministically chosen value from \(\text{post}_i \) (the projection of \(\text{post} \) to the \(i \)th dimension), such that the values of the variables \(x_i \notin \text{jump} \) are unchanged.
Operational semantics
Operational semantics

\[(l, a, pre, post, jump, l') \in Edge\]
\[\vec{x} \in pre \quad \vec{x}' \in post \quad \forall i \notin jump. \quad x'_i = x_i \quad \vec{x}' \in Inv(l')\]

\[(l, \vec{x}) \xrightarrow{a} (l', \vec{x}')\]

Rule Discrete
Operational semantics

\[(l, a, \text{pre}, \text{post}, \text{jump}, l') \in \text{Edge} \]
\[
\vec{x} \in \text{pre} \quad \vec{x}' \in \text{post} \quad \forall i \notin \text{jump}. \quad x'_i = x_i \quad \vec{x}' \in \text{Inv}(l')
\]

\[
(l, \vec{x}) \xrightarrow{a} (l', \vec{x}')
\]

Rule Discrete

\[
(t = 0 \land \vec{x} = \vec{x}') \lor (t > 0 \land (\vec{x}' - \vec{x})/t \in \text{Act}(l)) \quad \vec{x}' \in \text{Inv}(l)
\]

\[
(l, \vec{x}) \xrightarrow{t} (l, \vec{x}')
\]

Rule Time
Operational semantics

\[(l, a, pre, post, jump, l') \in Edge\]
\[\vec{x} \in pre \quad \vec{x}' \in post \quad \forall i \notin jump. \ x'_i = x_i \quad \vec{x}' \in Inv(l')\]

\[\begin{array}{l}
(l, \vec{x}) \xrightarrow{a} (l', \vec{x}')
\end{array}\]

\[\begin{array}{l}
(t = 0 \land \vec{x} = \vec{x}') \lor (t > 0 \land (\vec{x}' - \vec{x})/t \in Act(l)) \quad \vec{x}' \in Inv(l)
\end{array}\]

\[\begin{array}{l}
(l, \vec{x}) \xrightarrow{t} (l, \vec{x}')
\end{array}\]

- Execution step: \(\rightarrow = a \cup t\)
- Path: \(\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \ldots \) with \(\sigma_0 = (l_0, \vec{x}_0), \ \vec{x}_0 \in Inv(l_0)\)
- Initial path: path \(\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \ldots \) with \(\sigma_0 = (l_0, \vec{x}_0), \ \vec{x}_0 \in Init(l_0)\)
- Reachability of a state: exists an initial path leading to the state
Example rectangular automaton

\[x = 0 \]

- \(l_1 \)
 - \(\dot{x} \in [1, 2] \)
 - \(x \leq 6 \)

- \(l_2 \)
 - \(\dot{x} \in [-4, -2] \)

- \(l_4 \)
 - \(\dot{x} \in [1, 2] \)
 - \(x \leq 4 \)

\[d \]

- \(x \geq 0 \)
 - \(a \) \(x \geq 2 \rightarrow x := 4 \)
 - \(x = 0 \rightarrow x := [-2, -1] \)

\[c \]

- \(b \) \(x \leq -2 \rightarrow x := [0, 4] \)
If we replace rectangular sets with linear sets, we obtain linear hybrid automata, a super-class of rectangular automata.

A timed automaton is a special rectangular automaton.
If we replace rectangular sets with linear sets, we obtain linear hybrid automata, a super-class of rectangular automata.

A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.
The reachability problem is decidable for initialized rectangular automata:
The reachability problem is decidable for initialized rectangular automata:

Definition

A rectangular automaton A is initialized, if for every edge $(l, a, pre, post, jump, l')$ of A, and every variable index $i \in \{1, \ldots, n\}$ with $Act(l)_i \neq Act(l')_i$, we have that $i \in jump$.

The reachability problem becomes undecidable if one of the restrictions is relaxed.
This rectangular automaton is initialized.
What we already know

A **timed automaton** is a special rectangular automaton such that

- for each edge, \(post_i \) is a single value for each \(i \in \text{jump} \) and
- every variable is a **clock**, i.e., \(Act(l)(x) = [1, 1] \) for all locations \(l \) and variables \(x \).
What we already know

A timed automaton is a special rectangular automaton such that
- for each edge, $post_i$ is a single value for each $i \in jump$ and
- every variable is a clock, i.e., $Act(l)(x) = [1, 1]$ for all locations l and variables x.

Lemma

The reachability problem for timed automata is complete for PSPACE.
Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.
Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.

Timed automaton

\[\uparrow\]

Initialized stopwatch automaton

\[\uparrow\]

Initialized singular automaton

\[\uparrow\]

Initialized rectangular automaton
Decidability results

Timed automaton

Initialized stopwatch automaton
A stopwatch is a variable with derivatives 0 or 1 only.

A stopwatch automaton is as a timed automaton but allowing stopwatch variables instead of clocks.

Initialized stopwatch automata can be polynomially encoded by timed automata.

Lemma

The reachability problem for initialized stopwatch automata is complete for PSPACE.

However, the reachability problem for non-initialized stopwatch automata is undecidable.
Proof idea:
Proof idea: Notice, that a timed automaton is a stopwatch automaton such that every variable is a clock.

Assume that C is an n-dimensional initialized stopwatch automaton. Let κ_C be the set of constants used in the definition of C, and let $\kappa_- = \kappa_C \cup \{-\}$.

We define an n-dimensional timed automaton D_C with locations $\text{Loc}_{D_C} = \text{Loc}_C \times \kappa^{1,\ldots,n}$. Each location (l, f) of D_C consists of a location l of C and a function $f : \{1, \ldots, n\} \rightarrow \kappa_-$. Each state $q = ((l, f), \vec{x})$ of D_C represents the state $\alpha(q) = (l, \vec{y})$ of C, where $y_i = x_i$ if $f(i) = -$, and $y_i = f(i)$ if $f(i) \neq -$.

Intuitively, if the ith stopwatch of C is running (slope 1), then its value is tracked by the value of the ith clock of D_C; if the ith stopwatch is halted (slope 0) at value $k \in \kappa_C$, then this value is remembered by the current location of D_C.
Decidability results

Timed automaton
↑
Initialized stopwatch automaton
↑
Initialized singular automaton
A variable x_i is a **finite-slope variable** if $\text{flow}(l)_i$ is a singleton in all locations l.

A **singular automaton** is as a stopwatch automaton but allowing finite-slope variables instead of stopwatches.

Initialized singular automata can be polynomially encoded by initialized stopwatch automata.

Lemma

The reachability problem for initialized singular automata is complete for PSPACE.
Proof idea:
Proof idea: Let B be an n-dimensional initialized singular automaton. We define an n-dimensional initialized stopwatch automaton C_B with the same location set, edge set, and label set as B.

Each state $q = (l, \vec{x})$ of C_B corresponds to the state $\beta(q) = (l, \beta(\vec{x}))$ of B with $\beta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as follows:

For each location l of B, if $\text{Act}_B(l) = \Pi_{i=1}^n [k_i, k_i]$, then

$$\beta(x_1, \ldots, x_n) = (l_1 \cdot x_1, \ldots, l_n \cdot x_n)$$

with $l_i = k_i$ if $k_i \neq 0$, and $l_i = 1$ if $k_i = 0$;

β can be viewed as a rescaling of the state space. All conditions in the automaton B occur accordingly rescaled in C_B.

We have:

- The reachable set of $\text{Reach}(B)$ of B is $\beta(\text{Reach}(C_B))$.
Decidability results

Timed automaton
↑
Initialized stopwatch automaton
↑
Initialized singular automaton
↑
Initialized rectangular automaton
Lemma

The reachability problem for initialized rectangular automata is complete for PSPACE.
Proof idea:
Proof idea: An n-dimensional initialized rectangular automaton A can be translated into a $2n$-dimensional initialized singular automaton B, such that B contains all reachability information about A.

The translation is similar to the subset construction for determinizing finite automata.

The idea is to replace each variable c of A by two finite-slope variables c_l and c_u: the variable c_l tracks the least possible value of c, and c_u tracks the greatest possible value of c.