
Modeling and Analysis of Hybrid Systems
Timed automata

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015

Ábrahám - Hybrid Systems 1 / 1

Literature

Christel Baier and Joost-Pieter Katoen:
Principles of Model Checking

Ábrahám - Hybrid Systems 2 / 1

Contents

Ábrahám - Hybrid Systems 3 / 1

Motivation

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The first choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 1

Motivation

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.

The first choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 1

Motivation

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The first choice in modelling: discrete or continuous time?

Ábrahám - Hybrid Systems 4 / 1

Discrete-time systems

Advantages:
conceptually simple
each action lasts for a single time unit (tick)
action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:
leads to large transition systems
minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks
We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 1

Discrete-time systems

Advantages:
conceptually simple
each action lasts for a single time unit (tick)
action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:
leads to large transition systems
minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks
We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 1

Discrete-time systems

Advantages:
conceptually simple
each action lasts for a single time unit (tick)
action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:
leads to large transition systems
minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks
We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 1

Discrete-time systems

Advantages:
conceptually simple
each action lasts for a single time unit (tick)
action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:
leads to large transition systems
minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks

We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 1

Discrete-time systems

Advantages:
conceptually simple
each action lasts for a single time unit (tick)
action α lasts k > 0 time units ; k − 1 ticks followed by α

Disadvantages:
leads to large transition systems
minimal time between two actions is a multiple of the tick

Logic: CTL or LTL extended with syntactic sugar

Xϕ : ϕ holds after one tick

X kϕ : ϕ holds after k ticks

F≤kϕ : ϕ occurs within k ticks
We deal in this lecture with continuous-time models.

Ábrahám - Hybrid Systems 5 / 1

Contents

Ábrahám - Hybrid Systems 6 / 1

Timed automata

Measure time: finite set C of clocks x, y, z, . . .
Clocks increase their value implicitly as time progresses
All clocks proceed at rate 1

Limited clock access
Read access:

Atomic clock constraints:

acc ::= x < c | x ≤ c | x > c | x ≥ c
with c ∈ N (c ∈ Q) and x ∈ C.
Clock constraints:

g ::= acc | g ∧ g
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC (C): set of atomic clock constraints over C
CC (C): set of clock constraints over C

Write access: Clock reset sets clock value to 0

Ábrahám - Hybrid Systems 7 / 1

Timed automata

Measure time: finite set C of clocks x, y, z, . . .
Clocks increase their value implicitly as time progresses
All clocks proceed at rate 1
Limited clock access
Read access:

Atomic clock constraints:

acc ::= x < c | x ≤ c | x > c | x ≥ c
with c ∈ N (c ∈ Q) and x ∈ C.
Clock constraints:

g ::= acc | g ∧ g
Syntactic sugar: true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

ACC (C): set of atomic clock constraints over C
CC (C): set of clock constraints over C

Write access: Clock reset sets clock value to 0
Ábrahám - Hybrid Systems 7 / 1

Semantics of clock constraints

Given a set C of clocks, a clock valuation

ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

Definition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be defined by

ν |= x < c iff ν(x) < c
ν |= x ≤ c iff ν(x) ≤ c
ν |= x > c iff ν(x) > c
ν |= x ≥ c iff ν(x) ≥ c
ν |= g ∧ g′ iff ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 1

Semantics of clock constraints

Given a set C of clocks, a clock valuation ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

Definition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be defined by

ν |= x < c iff ν(x) < c
ν |= x ≤ c iff ν(x) ≤ c
ν |= x > c iff ν(x) > c
ν |= x ≥ c iff ν(x) ≥ c
ν |= g ∧ g′ iff ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 1

Semantics of clock constraints

Given a set C of clocks, a clock valuation ν : C → R≥0 assigns a
non-negative value to each clock. We use VC to denote the set of clock
valuations for the clock set C.

Definition (Semantics of clock constraints)

For a set C of clocks, x ∈ C, ν ∈ VC , c ∈ N, and g, g′ ∈ CC (C), let
|= ⊆ VC × CC (C) be defined by

ν |= x < c iff ν(x) < c
ν |= x ≤ c iff ν(x) ≤ c
ν |= x > c iff ν(x) > c
ν |= x ≥ c iff ν(x) ≥ c
ν |= g ∧ g′ iff ν |= g and ν |= g′

Ábrahám - Hybrid Systems 8 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with

(ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.

For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be

the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9

14 10

reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9)

0 10

(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9

9 10

reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9 9 10
reset {x, y} in ν

0 0

Ábrahám - Hybrid Systems 9 / 1

Semantics of clock access

Definition (Time delay, clock reset)

For a set C of clocks, ν ∈ VC , and c ∈ N we denote by ν + c the
valuation with (ν + c)(x) = ν(x) + c for all x ∈ C.
For a valuation ν ∈ VC and a clock set R ⊆ C we define reset R in ν
to be the valuation resulting from ν by resetting all clocks from R:

(reset R in ν)(y) =

{
ν(x) if x /∈ R
0 else

For a single clock x ∈ C we write reset x in ν.

valuation for C = {x, y} value of x value of y
ν 5 1

ν + 9 14 10
reset x in (ν + 9) 0 10
(reset x in ν) + 9 9 10
reset {x, y} in ν 0 0

Ábrahám - Hybrid Systems 9 / 1

Timed automata

A timed automaton is a special hybrid automaton:
All variables are clocks.
States σ ∈ Σ are pairs of a location and a clock valuation.
Edges are defined by

source and target locations,
a label,
a guard: clock constraint specifying enabling,
a set of clocks to be reset.

Invariants are clock constraints.

Ábrahám - Hybrid Systems 10 / 1

Timed automaton

Definition (Syntax of timed automata)

A timed automaton T = (Loc, C,Lab,Edge, Inv , Init) is a tuple with
Loc is a finite set of locations,
C is a finite set of clocks,
Lab is a finite set of synchronisation labels,
Edge ⊆ Loc × Lab × (CC (C)× 2C)× Loc is a finite set of edges,
Inv : Loc → CC (C) is a function assigning an invariant to each
location, and
Init ⊆ Σ with ν(x) = 0 for all x ∈ C and all (l, ν) ∈ Init .

We call the variables in C clocks. We also use the notation l
a:g,R
↪→ l′ to

state that there exists an edge (l, a, (g,R), l′) ∈ Edge.

Note: (1) no explicit activities given (2) restricted logic for constraints

Ábrahám - Hybrid Systems 11 / 1

Timed automaton

Analogously to Kripke structures, we can additionally define
a set of atomic propositions AP and
a labelling function L : Loc → 2AP

to model further system properties.

Ábrahám - Hybrid Systems 12 / 1

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t>0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0), l0 ∈ Init and
ν0(x) = 0 for all x ∈ C
Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 1

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t>0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0), l0 ∈ Init and
ν0(x) = 0 for all x ∈ C
Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 1

Operational semantics

(l, a, (g,R), l′) ∈ Edge

ν |= g ν ′ = reset R in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

t>0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) and ν0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0), l0 ∈ Init and
ν0(x) = 0 for all x ∈ C
Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 13 / 1

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 14 / 1

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 14 / 1

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 15 / 1

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 15 / 1

Example: Timed Automaton

q2

2 ≤ x ≤ 3, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 16 / 1

Example: Railroad Crossing

far near

y ≤ 5

past

y ≤ 5

reset(y)

approach

y > 2

enter

exit

up coming down

x ≤ 1

downgoing up

x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1

z ≤ 1

23

z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit
ra
is
e

Ábrahám - Hybrid Systems 17 / 1

Example: Railroad Crossing

far near
y ≤ 5

past
y ≤ 5

reset(y)

approach

y > 2

enter

exit

up coming down
x ≤ 1

downgoing up
x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit
ra
is
e

Ábrahám - Hybrid Systems 17 / 1

Time divergence, timelock, and Zenoness

Zeno of Elea
(ca.490 BC-ca.430 BC)

Aristotle
(384 BC-322 BC)

Paradox:
Achilles and the tortoise
(Achilles was the great Greek hero of Homer’s

The Iliad.)

“In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point where the pursued started, so that the
slower must always hold a lead.” –Aristotle, Physics VI:9, 239b15

Not all paths of a timed automata represent realistic behaviour.
Three essential phenomena: time convergence, timelock, Zenoness.

Ábrahám - Hybrid Systems 18 / 1

Time convergence

Definition
For a timed automaton T = (Loc, C,Lab,Edge, Inv , Init). we define
ExecTime : (Lab ∪ R≥0)→ R≥0 with

ExecTime(a) = 0 for a ∈ Lab and
ExecTime(d) = d for d ∈ R≥0.

Furthermore, for ρ = s0
α0→ s1

α1→ s2
α2→ . . . we define

ExecTime(ρ) =

∞∑
i=0

ExecTime(αi).

A path is time-divergent iff ExecTime(ρ) =∞, and time-convergent
otherwise.

Time-convergent paths are not realistic, and are not considered in the
semantics.
Note: their existence cannot be avoided (in general).

Ábrahám - Hybrid Systems 19 / 1

Timelock

Definition
For a state σ ∈ Σ let Pathsdiv(σ) be the set of time-divergent paths
starting in σ.
A state σ ∈ Σ contains a timelock iff Pathsdiv(σ) = ∅.
A timed automaton is timelock-free iff none of its reachable states contains
a timelock.

Timelocks are modelling flows and should be avoided.

Ábrahám - Hybrid Systems 20 / 1

Zenoness

Definition
An infinite path fragment π is Zeno iff it is time-convergent and infinitely
many discrete actions are executed within π.
A timed automaton is non-Zeno iff no Zeno path starts in an initial state.

Zeno paths represent non-realisable behaviour, since their execution
would require infinitely fast processors.
Though Zeno paths are modelling flows, they are not always easy to
avoid.
To check whether a timed automaton is non-Zeno is algorithmically
difficult.
Instead, sufficient conditions are considered that are simple to check,
e.g., by static analysis.

Ábrahám - Hybrid Systems 21 / 1

Checking non-Zenoness

Theorem (Sufficient condition for non-Zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

l0
a1:g1,R1
↪→ l1

a2:g2,R2
↪→ l2 . . .

an:gn,Rn
↪→ ln = l0

in T there exists a clock x ∈ C such that
x ∈ Ri for some 0 < i ≤ n, and
for all evaluations ν ∈ V there exist some 0 < j ≤ n and d ∈ N>0 with

ν(x) < d implies (ν 6|= Inv(lj) or ν 6|= gj).

Then T is non-Zeno.

Ábrahám - Hybrid Systems 22 / 1

Contents

Ábrahám - Hybrid Systems 23 / 1

TCTL

How to describe the behaviour of timed automata?
Logic: TCTL, a real-time variant of CTL
Syntax:

State formulae

ψ ::= true | a | g | ψ ∧ ψ | ¬ψ | Eϕ | Aϕ

Path formulae:
ϕ ::= ψ UJ ψ

with J ⊆ R≥0 is an interval with integer bounds (open right bound
may be ∞).
Note: no next-time operator

Ábrahám - Hybrid Systems 24 / 1

TCTL syntax

Syntactic sugar:
FJψ := true UJ ψ
EGJψ := ¬AFJ¬ψ
AGJψ := ¬EFJ¬ψ

ψ1 U ψ1 := ψ1 U [0,∞) ψ2

Fψ := F [0,∞)ψ

Gψ := G[0,∞)ψ

Ábrahám - Hybrid Systems 25 / 1

TCTL semantics

Definition (TCTL continuous semantics)

Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc → 2AP a state labelling function.The
function |= assigns a truth value to each TCTL state and path formulae as
follows:

σ |= true
σ |= a iff a ∈ L(σ)
σ |= g iff σ |= g
σ |= ¬ψ iff σ 6|= ψ
σ |= ψ1 ∧ ψ2 iff σ |= ψ1 and σ |= ψ2

σ |= Eϕ iff π |= ϕ for some π ∈ Pathsdiv(σ)
σ |= Aϕ iff π |= ϕ for all π ∈ Pathsdiv(σ).

where σ ∈ Σ, a ∈ AP , g ∈ ACC (C), ψ, ψ1 and ψ2 are TCTL state
formulae, and ϕ is a TCTL path formula.

Ábrahám - Hybrid Systems 26 / 1

TCTL semantics

Meaning of U : a time-divergent path satisfies ψ1 UJ ψ2 whenever at
some time point in J property ψ2 holds and at all previous time instants ψ1

is satisfied.

Ábrahám - Hybrid Systems 27 / 1

TCTL semantics

Definition (TCTL continuous semantics)

For a time-divergent path π = (`0, ν0)
α0→ (`1, ν1)

α1→ . . . we define
π |= ψ1 UJ ψ2 iff
∃i ≥ 0. (`i, νi + d) |= ψ2 for some d ∈ [0, di] with

(

i−1∑
k=0

dk) + d ∈ J, and

∀j ≤ i. (`j , νj + d′) |= ψ1 for any d′ ∈ [0, dj] with

(

j−1∑
k=0

dk) + d′ ≤ (

i−1∑
k=0

dk) + d

where di = ExecTime(αi).

Ábrahám - Hybrid Systems 28 / 1

Satisfaction set

Definition
For a timed automaton T with clocks C and locations Loc, and a TCTL
state formula ψ the satisfaction set Sat(ψ) is defined by

Sat(ψ) = {s ∈ Σ | s |= ψ}.

T satisfies ψ iff ψ holds in all initial states:

T |= ψ iff ∀l0 ∈ Init . (l0, ν0) |= ψ

where ν0(x) = 0 for all x ∈ C.

Ábrahám - Hybrid Systems 29 / 1

TCTL vs. CTL

TCTL formulae with intervals [0,∞) may be considered as CTL
formulae
However, there is a difference due to time-convergent paths
TCTL ranges over time-divergent paths, whereas CTL over all paths!

Ábrahám - Hybrid Systems 30 / 1

