
Modeling and Analysis of Hybrid Systems
Propositional and temporal logics

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015

Ábrahám - Hybrid Systems 1 / 25

Temporal logics

Assume
a labeled state transition system LST S = (Σ,Lab,Edge, Init),
a set of atomic propositions AP, and
a labeling function L : Σ→ 2AP .

How can we describe properties of this system?
We need a well-suited logic.

Ábrahám - Hybrid Systems 2 / 25

Temporal logics

Assume
a labeled state transition system LST S = (Σ,Lab,Edge, Init),
a set of atomic propositions AP, and
a labeling function L : Σ→ 2AP .

How can we describe properties of this system?

We need a well-suited logic.

Ábrahám - Hybrid Systems 2 / 25

Temporal logics

Assume
a labeled state transition system LST S = (Σ,Lab,Edge, Init),
a set of atomic propositions AP, and
a labeling function L : Σ→ 2AP .

How can we describe properties of this system?
We need a well-suited logic.

Ábrahám - Hybrid Systems 2 / 25

Propositional logic

Abstract syntax:
ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ)

with a ∈ AP.
Syntactic sugar: true, false,∨,→,↔, . . .
Omit parentheses when no confusion
Semantics:

σ |= a iff a ∈ L(σ),
σ |= (ϕ1 ∧ ϕ2) iff σ |= ϕ1 and σ |= ϕ2,
σ |= (¬ϕ) iff σ 6|= ϕ.

Ábrahám - Hybrid Systems 3 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 4 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 4 / 25

Temporal logics

In the computation tree we can describe
a given path starting in a state (path formulas, “linear” properties) and
quantified (universal/existential) properties over all paths starting in a
given state (state formulas, “branching” properties).

CTL∗

LTL
(linear temporal logic)

CTL
(computation tree logic)

Ábrahám - Hybrid Systems 5 / 25

Examples for path formulas

a :proposition σ1 σ2 σ2 σ1 σ1 . . .

{a}

X b :next σ1 σ2 σ1 σ1 σ1 . . .

{b}

a U b :until σ1 σ1 σ1 σ2 σ1 . . .

{a} {a} {a} {b}

Fb :finally σ1 σ1 σ1 σ1 σ2 . . .

{b}

Ga :globally σ1 σ1 σ1 σ1 σ1 . . .

{a} {a} {a} {a} {a}

Ábrahám - Hybrid Systems 6 / 25

Examples for state formulas

a :proposition σ1

E ϕp :exists σ1

A ϕp :for all σ1

Ábrahám - Hybrid Systems 7 / 25

CTL∗ syntax

CTL∗ state formulae:

ϕs ::= a | (ϕs ∧ ϕs) | (¬ϕs) | (Eϕp)

with a ∈ AP and ϕp are CTL∗ path formulae.

CTL∗ path formulae:

ϕp ::= ϕs | (ϕp ∧ ϕp) | (¬ϕp) | (Xϕp) | (ϕp U ϕp)

where ϕs are CTL∗ state formulae.

CTL∗ formulae are CTL∗ state formulae.

We sometimes omit parentheses, based on the order E > U > X > ∧ > ¬
from strongest to weakest binding.
Syntactic sugar:
Aϕp := ¬E¬ϕp (“for all”), Fϕp := true Uϕp (“finally” or “eventually”),
Gϕp := ¬F¬ϕp (“globally” or “always”), R (“releases”), . . .

Ábrahám - Hybrid Systems 8 / 25

CTL∗ syntax

CTL∗ state formulae:

ϕs ::= a | (ϕs ∧ ϕs) | (¬ϕs) | (Eϕp)

with a ∈ AP and ϕp are CTL∗ path formulae.

CTL∗ path formulae:

ϕp ::= ϕs | (ϕp ∧ ϕp) | (¬ϕp) | (Xϕp) | (ϕp U ϕp)

where ϕs are CTL∗ state formulae.

CTL∗ formulae are CTL∗ state formulae.

We sometimes omit parentheses, based on the order E > U > X > ∧ > ¬
from strongest to weakest binding.
Syntactic sugar:
Aϕp := ¬E¬ϕp (“for all”), Fϕp := true Uϕp (“finally” or “eventually”),
Gϕp := ¬F¬ϕp (“globally” or “always”), R (“releases”), . . .

Ábrahám - Hybrid Systems 8 / 25

CTL∗ syntax

CTL∗ state formulae:

ϕs ::= a | (ϕs ∧ ϕs) | (¬ϕs) | (Eϕp)

with a ∈ AP and ϕp are CTL∗ path formulae.

CTL∗ path formulae:

ϕp ::= ϕs | (ϕp ∧ ϕp) | (¬ϕp) | (Xϕp) | (ϕp U ϕp)

where ϕs are CTL∗ state formulae.

CTL∗ formulae are CTL∗ state formulae.

We sometimes omit parentheses, based on the order E > U > X > ∧ > ¬
from strongest to weakest binding.

Syntactic sugar:
Aϕp := ¬E¬ϕp (“for all”), Fϕp := true Uϕp (“finally” or “eventually”),
Gϕp := ¬F¬ϕp (“globally” or “always”), R (“releases”), . . .

Ábrahám - Hybrid Systems 8 / 25

CTL∗ syntax

CTL∗ state formulae:

ϕs ::= a | (ϕs ∧ ϕs) | (¬ϕs) | (Eϕp)

with a ∈ AP and ϕp are CTL∗ path formulae.

CTL∗ path formulae:

ϕp ::= ϕs | (ϕp ∧ ϕp) | (¬ϕp) | (Xϕp) | (ϕp U ϕp)

where ϕs are CTL∗ state formulae.

CTL∗ formulae are CTL∗ state formulae.

We sometimes omit parentheses, based on the order E > U > X > ∧ > ¬
from strongest to weakest binding.
Syntactic sugar:
Aϕp := ¬E¬ϕp (“for all”), Fϕp := true Uϕp (“finally” or “eventually”),
Gϕp := ¬F¬ϕp (“globally” or “always”), R (“releases”), . . .

Ábrahám - Hybrid Systems 8 / 25

CTL∗ semantics

Assume L = (Σ,Lab,Edge, Init , L) to be a labeled state transition system
LST S = (Σ,Lab,Edge, Init) along with a labeling function L : Σ→ 2AP ,
where AP is a finite set of atomic propositions.
For a path π = σ0 → σ1 → . . . of LST S, let π(i) denote σi, and
let πi denote σi → σi+1 →

L, σ |= a iff a ∈ L(σ)
L, σ |= ϕs

1 ∧ ϕs
2 iff L, σ |= ϕs

1 and L, σ |= ϕs
2

L, σ |= ¬ϕs iff L, σ 6|= ϕs

L, σ |= Eϕp iff L, π |= ϕp for some path π = σ → . . . of LST S
L, π |= ϕs iff L, π(0) |= ϕs

L, π |= ϕp
1 ∧ ϕ

p
2 iff L, π |= ϕp

1 and L, π |= ϕp
2

L, π |= ¬ϕp iff L, π 6|= ϕp

L, π |= Xϕp iff L, π1 |= ϕp

L, π |= ϕp
1 U ϕ

p
2 iff exists 0 ≤ j with L, πj |= ϕp

2 and
L, πi |= ϕp

1 for all 0 ≤ i < j.

L |= ϕs iff L, σ0 |= ϕs for all initial states σ0 of LST S.
Ábrahám - Hybrid Systems 9 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 10 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 10 / 25

The relation of LTL, CTL, and CTL∗

CTL∗

LTL
(linear temporal logic)

CTL
(computation tree logic)

Ábrahám - Hybrid Systems 11 / 25

LTL syntax

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths
in the computation tree.

Abstract syntax:

ϕp ::= a | (ϕp ∧ ϕp) | (¬ϕp) | (Xϕp) | (ϕp U ϕp)

where a ∈ AP.
Syntactic sugar: F (“finally” or “eventually”), G (“globally”), etc.
Again, we sometimes omit parentheses using the same binding order
as for CTL∗.

Ábrahám - Hybrid Systems 12 / 25

LTL semantics

Assume L = (Σ,Lab,Edge, Init , L) to be a labeled state transition system
LST S = (Σ,Lab,Edge, Init) along with a labeling function L : Σ→ 2AP ,
where AP is a finite set of atomic propositions.
For a path π = σ0 → σ1 → . . . of LST S, let π(i) denote σi, and
let πi denote σi → σi+1 →

L, π |= a iff a ∈ L(π(0)),
L, π |= ϕp

1 ∧ ϕ
p
2 iff L, π |= ϕp

1 and L, π |= ϕp
2,

L, π |= ¬ϕp iff L, π 6|= ϕp,
L, π |= Xϕp iff π1 |= ϕp,
L, π |= ϕp

1 U ϕ
p
2 iff ∃j ≥ 0.πj |= ϕp

2 ∧ ∀0 ≤ i < j.πi |= ϕp
1.

LST S |= ϕp iff π |= ϕp for all paths π of LST S starting in an initial state.

Ábrahám - Hybrid Systems 13 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 14 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 14 / 25

CTL syntax

CTL state formulae:

ϕs ::= a | (ϕs ∧ ϕs) | (¬ϕs) | (Eϕp) | (Aϕp)

with a ∈ AP and ϕp are CTL path formulae.

CTL path formulae:

ϕp ::= Xϕs | ϕs U ϕs

where ϕs are CTL state formulae.

CTL formulae are CTL state formulae.

As before, we sometimes omit parentheses.

Ábrahám - Hybrid Systems 15 / 25

CTL semantics

Assume L = (Σ,Lab,Edge, Init , L) to be a labeled state transition system
LST S = (Σ,Lab,Edge, Init) along with a labeling function L : Σ→ 2AP ,
where AP is a finite set of atomic propositions.
For a path π = σ0 → σ1 → . . . of LST S, let π(i) denote σi, and
let πi denote σi → σi+1 →

L, σ |= a iff a ∈ L(σ)
L, σ |= ϕs

1 ∧ ϕs
2 iff L, σ |= ϕs

1 and L, σ |= ϕs
2

L, σ |= ¬ϕs iff L, σ 6|= ϕs

L, σ |= Eϕp iff L, π |= ϕp for some path π = σ → . . . of LST S
L, σ |= Aϕp iff L, π |= ϕp for all π = σ0 → σ1 → . . . with σ0 = σ

L, π |= Xϕs iff L, π(1) |= ϕs

L, π |= ϕs
1 U ϕs

2 iff exists 0 ≤ j with L, π(j) |= ϕs
2 and

L, π(i) |= ϕs
1 for all 0 ≤ i < j.

L |= ϕs iff L, σ0 |= ϕs for all initial states σ0 of LST S.
Ábrahám - Hybrid Systems 16 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 17 / 25

Computation tree

σ1 σ2{a} {b}

σ1

σ1

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

σ2

σ1

σ1

.

σ2

.

σ2

σ1

.

σ2

.

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Ábrahám - Hybrid Systems 17 / 25

The relation of LTL, CTL, and CTL∗

LTL CTL

CTL∗

The LTL formula FGa is not expressible in CTL.
The CTL formula AFAGa is not expressible in LTL.

Ábrahám - Hybrid Systems 18 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff the

state is labeled with both ψs
1 and ψs

2.
Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by

a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff the

state is labeled with both ψs
1 and ψs

2.
Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.

Given the labelings for ψs
1 and ψs

2, we label a state with ψs
1 ∧ψs

2 iff the
state is labeled with both ψs

1 and ψs
2.

Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff

the
state is labeled with both ψs

1 and ψs
2.

Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff the

state is labeled with both ψs
1 and ψs

2.

Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff the

state is labeled with both ψs
1 and ψs

2.
Given the labeling for ψs, we label a state with ¬ψs iff

the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given a state transition system and a CTL formula ψs, CTL model checking
labels the states recursively with the sub-formulae of ψs inside-out.

The labeling with atomic propositions a ∈ AP is given by a labeling
function.
Given the labelings for ψs

1 and ψs
2, we label a state with ψs

1 ∧ψs
2 iff the

state is labeled with both ψs
1 and ψs

2.
Given the labeling for ψs, we label a state with ¬ψs iff the state is not
labeled with ψs.

Ábrahám - Hybrid Systems 19 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff

there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.

Given the labeling for ψs
1 and ψs

2, we
label all with ψs

2 labeled states additionally with Eψs
1 U ψs

2, and
label all states that have the label ψs

1 and have a successor state with
the label Eψs

1 U ψs
2 also with Eψs

1 U ψs
1 iteratively until a fixed point

is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff

all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.

Given the labeling for ψs
1 and ψs

2, we
label all with ψs

2 labeled states additionally with Aψs
1 U ψs

2, and
label all states that have the label ψs

1 and all of their successor states
have the label Aψs

1 U ψs
2 also with Aψs

1 U ψs
2 iteratively until a fixed

point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

CTL (explicit) model checking

Given the labeling for ψs, we label a state with EXψs iff there is a
successor state labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Eψs

1 U ψs
2, and

label all states that have the label ψs
1 and have a successor state with

the label Eψs
1 U ψs

2 also with Eψs
1 U ψs

1 iteratively until a fixed point
is reached.

Given the labeling for ψs, we label a state with AXψs iff all successor
states are labeled with ψs.
Given the labeling for ψs

1 and ψs
2, we

label all with ψs
2 labeled states additionally with Aψs

1 U ψs
2, and

label all states that have the label ψs
1 and all of their successor states

have the label Aψs
1 U ψs

2 also with Aψs
1 U ψs

2 iteratively until a fixed
point is reached.

Ábrahám - Hybrid Systems 20 / 25

Discrete-time LTL

X kϕp = {
ϕp if k = 0
XX k−1ϕp else.

ϕp
1 U [k1,k2] ϕp

2 =
ϕp
1 U ϕ

p
2 for [k1, k2] = [0,∞]

ϕp
2 for [k1, k2] = [0, 0]

ϕp
1 ∧ X (ϕp

1 U [k1−1,k2−1] ϕp
2) for k1 > 0

ϕp
2 ∨ (ϕp

1 ∧ X (ϕp
1 U [0,k2−1] ϕp

2)) for k1 = 0, k2 > 0

Ábrahám - Hybrid Systems 21 / 25

Discrete-time CTL

EX kψs = {
ψs if k = 0
EXEX k−1ψs else.

Eψs
1 U [k1,k2] ψs

2 =
Eψs

1 U ψs
2 for [k1, k2] = [0,∞]

ψs
2 for [k1, k2] = [0, 0]

ψs
1 ∧EXE(ψs

1 U [k1−1,k2−1] ψs
2) for k1 > 0

ψs
2 ∨ (ψs

1 ∧EXE(ψs
1 U [0,k2−1] ψs

2)) for k1 = 0, k2 > 0

Ábrahám - Hybrid Systems 22 / 25

Syntactic sugar

We also write
U≤k instead of U [0,k],
U≥k for U [k,∞],
U=k for U [k,k], and
U for U [0,∞].

Ábrahám - Hybrid Systems 23 / 25

Example

The discrete-time LTL formula a U [2,3] b is defined as

a ∧ X (a ∧ X (b ∨ (a ∧ X b))).

It is satisfied by paths of the following form:

. . .

{a} {a} {b}

. . .

{a} {a} {a} {b}

Ábrahám - Hybrid Systems 24 / 25

Discrete-time model checking

As the discrete-time temporal operators are defined as syntactic sugar, LTL
model checking can be applied to check the validity of discrete-time LTL
formulae for state transition systems.

Ábrahám - Hybrid Systems 25 / 25

