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We had a look at state set approximations by convex polyhedra and at
basic operations (e.g., testing for membership or intersection) on
these.
Let us now have a look at another representation by orthogonal
polyhedra.
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The real domain

Definition

Domain: bounded subset X = [0,m]d ⊆ Rd (m ∈ N+) of the reals
(can be extended to X = Rd

+).
Elements of X are denoted by x = (x1, . . . , xd), zero vector 0, unit
vector 1.
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Grids

Definition
A d-dimensional grid associated with X = [0,m]d ⊆ Rd (m ∈ N+) is a
product of d subsets of {0, 1, . . . ,m− 1}.
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{0, 2, 5} × {0, 1, 3, 4}
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Grids

Definition
The elementary grid associated with X = [0,m]d ⊆ Rd (m ∈ N+) is
G = {0, 1, . . . ,m− 1}d ⊆ Nd.
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Grids

The grid admits a natural partial order with (m− 1, . . . ,m− 1) on the top
and 0 as bottom.
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Grids

The set of subsets of the elementary grid G forms a
Boolean algebra (2G,∩,∪,∼) under the set-theoretic operations

A ∪B
A ∩B
∼ A = G\A

for A,B ⊆ G ⊂ Nd.
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Definition (Elementary box)

The elementary box associated with a grid point x = (x1, . . . , xd) is
B(x) = [x1, x1 + 1]× . . . ,×[xd, xd + 1].
The point x is called the leftmost corner of B(x).
The set of elementary boxes is denoted by B.
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Ábrahám - Hybrid Systems 11 / 45



Definition (Orthogonal polyhedra)

An orthogonal polyhedron P is a union of elementary boxes, i.e., an
element of 2B.
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Boolean algebra of orthogonal polyhedra

The set 2B of orthogonal polyhedra is closed under the following
operations:

A tB = A ∪B
A uB = cl(int(A) ∩ int(B))

¬A = cl(∼ A)
with

int the interior operator yielding the largest open set int(A) contained
in A, and
cl the topological closure operator yielding the smallest closed set
cl(A) containing A.

The set of orthogonal polyhedra forms a Boolean algebra (2B,u,t,¬).
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A uB = cl(int(A) ∩ int(B))
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3([1, 2]× [1, 2]) u ([2, 3]× [1, 2]) =

cl(((1, 2)× (1, 2)) u ((2, 3)× (1, 2))) =

cl(∅) = ∅

Note: ([1, 2]× [1, 2]) ∩ ([2, 3]× [1, 2]) = [2, 2]× [1, 2]
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¬A = cl(∼ A)
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cl(∼ ([0, 2]× [0, 3])) =

cl((2, 3]× [0, 3])) = [2, 3]× [0, 3]

Note: ∼ ([0, 2]× [0, 3]) = (2, 3]× [0, 3]
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Connections

The bijection between G and B which associates every elementary box
with its leftmost corner generates an isomorphism between (2G,∩,∪,∼)
and (2B,u,t,¬).

Thus we can switch between point-based and box-based terminology
according to what serves better the intuition.
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Color function

Definition (Color function)

Let P be an orthogonal polyhedron. The color function c : X → {0, 1} is
defined by

c(x) =

{
1 if x is a grid point and B(x) ⊆ P
0 otherwise

for all x ∈ X.

If c(x) = 1 we say that x is black and that B(x) is full.
If c(x) = 0 we say that x is white and that B(x) is empty.

Note that c almost coincides with the characteristic function of P as a
subset of X. It differs from it only on right-boundary points.
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Coloring
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The following definitions capture the intuitive meaning of a facet and a
vertex and, in particular, that the boundary of an orthogonal polyhedron is
the union of its facets.
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Definition (i-predecessor)

The i-predecessor of a grid point x = (x1, . . . , xd) ∈ X is
xi− = (x1, . . . , xi−1, xi− 1, xi+1, . . . , xd). We use xij− to denote (xi−)j−.
When x has no i-predecessor, we write ⊥ for the predecessor value.
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Definition (Neighborhood)

The neighborhood of a grid point x is the set

N (x) = {x1 − 1, x1} × . . .× {xd − 1, xd}

(the vertices of a box lying between x− 1 and x). For every i, N (x) can
be partitioned into left and right i-neighborhoods

N i−(x) = {x1 − 1, x1} × . . .× {xi − 1} × {xd − 1, xd}

and
N i(x) = {x1 − 1, x1} × . . .× {xi} × {xd − 1, xd}.
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Definition (i-hyperplane)

An i-hyperplane is a (d− 1)-dimensional subset Hi,z of X consisting of all
points x satisfying xi = z.
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Observations:
Facets are d− 1-dimensional
polyhedra.
As such, facets are subsets of
i-hyperplanes.
The coloring changes on facets.
White vertices need special care
(closure to the “right”). i

j

Definition (i-facet)

An i-facet of an orthogonal polyhedron P with color function c is

Fi,z(P ) = cl{x ∈ Hi,z | c(x) 6= c(xi−)}

for some integer z ∈ [0,m).
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Definition (Vertex)

A vertex is a non-empty intersection of d distinct facets. The set of
vertices of an orthogonal polyhedron P is denoted by V (P ).
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Definition (i-vertex-predecessor)

An i-vertex-predecessor of x = (x1, . . . , xd) ∈ X is a vertex of the
form (x1, . . . , xi−1, z, xi+1, . . . , xd) for some integer z ∈ [0, xi].
When x has no i-vertex-predecessor, we write ⊥ for its value.
The first i-vertex-predecessor of x, denoted by xi←, is the one with
the maximal z.
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xxi←

y = yi←

zzi←
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A representation scheme for 2B (2G) is a set E of syntactic objects such
that there is a surjective function φ from E to 2B, i.e., every syntactic
object represents at most one polyhedron and every polyhedron has at least
one corresponding object.

If φ is an injection we say that the representation is canonical, i.e., every
polyhedron has a unique representation.
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Possible representation schemes:

Explicit representation: an enumeration of the color values on every
grid point, i.e., a d-dimensional zero-one array with md entities.
Boolean representation: based on all the formulae generated from
inequalities of the form xi ≥ z via Boolean operations.

This representation is non-canonical.
Vertex representation: consists of the set {(x, c(x)) | x is a vertex},
i.e., the vertices of P along with their color.

This representation is canonical.
The vertices alone is not a representation.
Not every set of points and colors is a valid representation of a
polyhedron.

Neighborhood representation: the colors of all the 2d points in the
neighborhoods of the vertices is attached as additional information.
Extreme vertex representation: instead of maintaining all the
neighborhood of each vertex, it suffices to keep only the parity of the
number of black points in that neighborhood. In fact, it suffices to
keep only vertices with odd parity.
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Vertex representation
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Vertex representation
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Membership problem

The membership problem

Given a representation of a polyhedron P and a grid point x, determine
c(x), that is, whether B(x) ⊆ P .
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Membership problem for the vertex representation

Observations

A point x is on an i-facet iff

∃x′ ∈ N i(x). c(x′i−) 6= c(x′).

A point x is a vertex iff

∀i ∈ {1, . . . , d}. ∃x′ ∈ N i(x). c(x′i−) 6= c(x′).

A point x is not a vertex iff

∃i ∈ {1, . . . , d}. ∀x′ ∈ N i(x). c(x′i−) = c(x′).
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Example

For d = 2 and x = (x1, x2) it means:
x is on a 1-facet iff

c(x1 − 1, x2 − 1) 6= c(x1, x2 − 1) ∨ c(x1 − 1, x2) 6= c(x1, x2).

x is on a 2-facet iff

c(x1 − 1, x2 − 1) 6= c(x1 − 1, x2) ∨ c(x1, x2 − 1) 6= c(x1, x2).

x is a vertex iff both of the above hold.
x is not a vertex iff one of the above does not hold.
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Example

x

c(x1, x2 − 1) 6= c(x1, x2)

x

c(x1 − 1, x2 − 1) 6= c(x1, x2 − 1)

x

c(x1, x2 − 1) 6= c(x1, x2)∧
c(x1 − 1, x2) 6= c(x1, x2)

x

c(x1, x2 − 1) 6= c(x1, x2)∧
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Color computation

Lemma (Color of a non-vertex)

Let x be a non-vertex. Then there exists a direction j ∈ {1, . . . , d} such
that

∀x′ ∈ N j(x)\{x}. c(x′j−) = c(x′).

Let j be such a direction. Then c(x) = c(xj−).

Proof: A point x is not a vertex iff

∃i ∈ {1, . . . , d}. ∀x′ ∈ N i(x). c(x′i−) = c(x′).

Thus j always exists. Let i and j be two dimensions
satisfying the above requirements.
Case 1: j = i: Straightforward
Case 2: j 6= i: For i we have c(xi−) = c(x) and
c(xij−) = c(xj−). For j we have c(xij−) = c(xi−).
Thus c(x) = c(xj−).
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xij− xj−

xxi−
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Complexity

Consequently we can calculate the color of a non-vertex x based on the
color of all points in N (x)− {x}: just find some j satisfying the conditions
of the above lemma and let c(x) = c(xj−).

Theorem
The membership problem for vertex representation can be solved in time
O(ndd2d) using space O(nd).

We must recursively determine the color of at most nd grid points.
For each of them we must check at most d dimensions if they satisfy
the condition of the lemma on the color of a non-vertex.
Checking the condition invokes 2d − 1 color comparisions.

However, this algorithm is not very efficient, because in the worst-case one
has to calculate the color of all the grid points between 0 and x.
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Intersection

We assume two polyhedra P1 and P2 with n1 and n2 vertices, respectively.
After intersection some vertices disappear and some new vertices are
created.
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Intersection

Lemma
A point x is a vertex of P1 ∩ P2 only if for every dimension i, x is on an
i-facet of P1 or on an i-facet of P2.

Lemma
Let x be a vertex of P1 ∩ P2 which is not an original vertex.
Then there exists a vertex y1 of P1 and a vertex y2 of P2 such that
x = max (y1,y2), where max is applied componentwise.

Conclusion: the candidates for being vertices of P1 ∩ P2 are restricted to:

V (P1) ∪ V (P2) ∪ {x | ∃y1 ∈ V (P1). ∃y2 ∈ V (P2). x = max (y1,y2)}

whose number is not greater then n1 + n2 + n1n2.
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Intersection
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Intersection computation: Vertex representation

Computation of the intersection of two polyhedra P1 and P2:

Initialize V (P1) ∪ V (P2) as the set of potential vertices of the
intersection.
For every pair of vertices calculate their max and add it to the
potential vertex set.
For each point in the potential vertex set:

Compute the color of its neighborhood in both P1 and P2.
Calculate the intersection of the neighborhood coloring pointwise.
Use the vertex rules to determine, whether the point is a vertex of the
intersection.
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Intersection example: Vertex representation

Vertex rule: A point x is a vertex iff

∀i ∈ {1, . . . , d}. ∃x′ ∈ N i(x). c(x′i−) 6= c(x′).
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