Modeling and Analysis of Hybrid Systems Orthogonal polyhedra

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2012

- We had a look at state set approximations by convex polyhedra and at basic operations (e.g., testing for membership or intersection) on these.
- Let us now have a look at another representation by orthogonal polyhedra.

Oliver Bournez, Oded Maler, and Amir Pnueli: Orthogonal Polyhedra: Representation and Computation Hybrid Systems: Computation and Control, LNCS 1569, pp. 46-60, 1999

1 Orthogonal polyhedra

2 Membership problem for the vertex representation

3 Intersection computation

1 Orthogonal polyhedra

2 Membership problem for the vertex representation

3 Intersection computation

The real domain

Definition

- Domain: bounded subset $X = [0, m]^d \subseteq \mathbb{R}^d$ $(m \in \mathbb{N}_+)$ of the reals (can be extended to $X = \mathbb{R}^d_+$).
- Elements of X are denoted by $\mathbf{x} = (x_1, \dots, x_d)$, zero vector 0, unit vector 1.

A *d*-dimensional grid associated with $X = [0, m]^d \subseteq \mathbb{R}^d$ $(m \in \mathbb{N}_+)$ is a product of *d* subsets of $\{0, 1, \dots, m-1\}$.

2-dimensional grid:

$$\{0, 2, 5\} \times \{0, 1, 3, 4\}$$

A *d*-dimensional grid associated with $X = [0, m]^d \subseteq \mathbb{R}^d$ $(m \in \mathbb{N}_+)$ is a product of *d* subsets of $\{0, 1, \dots, m-1\}$.

2-dimensional grid:

 $\{0,2,5\}\times\{0,1,3,4\}$

The elementary grid associated with $X = [0, m]^d \subseteq \mathbb{R}^d$ $(m \in \mathbb{N}_+)$ is $\mathbf{G} = \{0, 1, \dots, m-1\}^d \subseteq \mathbb{N}^d$.

$$G = \{0, \dots, 5\} \times \{0, \dots, 5\}$$

The elementary grid associated with $X = [0, m]^d \subseteq \mathbb{R}^d \ (m \in \mathbb{N}_+)$ is $\mathbf{G} = \{0, 1, \dots, m-1\}^d \subseteq \mathbb{N}^d$.

$$G = \{0,\ldots,5\} \times \{0,\ldots,5\}$$

The grid admits a natural partial order with $(m-1,\ldots,m-1)$ on the top and ${\bf 0}$ as bottom.

$$G = \{0, \dots, 5\} \times \{0, \dots, 5\}$$

The grid admits a natural partial order with $(m-1,\ldots,m-1)$ on the top and ${\bf 0}$ as bottom.

$$G = \{0, \dots, 5\} \times \{0, \dots, 5\}$$

Grids

The set of subsets of the elementary grid ${\bf G}$ forms a Boolean algebra $(2^{\bf G},\cap,\cup,\sim)$ under the set-theoretic operations

- $\bullet A \cup B$
- $\bullet A \cap B$
- $\blacksquare \sim A = \mathsf{G} \backslash A$

for $A, B \subseteq \mathbf{G} \subset \mathbb{N}^d$.

 $\{(0,4),(1,2),(3,3)\} \cap \{(1,2),(5,3)\} = \{(1,2)\}$

Definition (Elementary box)

- The elementary box associated with a grid point $\mathbf{x} = (x_1, \dots, x_d)$ is $B(\mathbf{x}) = [x_1, x_1 + 1] \times \dots \times [x_d, x_d + 1].$
- The point \mathbf{x} is called the leftmost corner of $B(\mathbf{x})$.
- The set of elementary boxes is denoted by **B**.

Definition (Orthogonal polyhedra)

An orthogonal polyhedron P is a union of elementary boxes, i.e., an element of $2^{\mathbf{B}}$.

 $B((2,4)) \cup B((3,4)) \cup B((2,3)) \cup B((2,3)) \cup B((2,3)) \cup B((2,2)) \cup B((2,2)) \cup B((2,1)) \cup B((2,1))$

The set $2^{\mathbf{B}}$ of orthogonal polyhedra is closed under the following operations:

 $A \sqcup B = A \cup B$ $A \sqcap B = cl(int(A) \cap int(B))$ $\neg A = cl(\sim A)$

with

- *int* the interior operator yielding the largest open set *int*(A) contained in A, and
- cl the topological closure operator yielding the smallest closed set cl(A) containing A.

The set of orthogonal polyhedra forms a Boolean algebra $(2^{\mathbf{B}}, \Box, \sqcup, \neg)$.

$A \sqcap B = cl(int(A) \cap int(B))$

$$\neg A = cl(\sim A)$$

$$\neg([0,2] \times [0,3]) =$$

 $cl(\sim ([0,2] \times [0,3])) =$
 $cl((2,3] \times [0,3])) = [2,3] \times [0,3]$

Note: $\sim ([0, 2] \times [0, 3]) = (2, 3] \times [0, 3]$

The bijection between G and B which associates every elementary box with its leftmost corner generates an isomorphism between $(2^{\mathbf{G}}, \cap, \cup, \sim)$ and $(2^{\mathbf{B}}, \sqcap, \sqcup, \neg)$.

Thus we can switch between point-based and box-based terminology according to what serves better the intuition.

Definition (Color function)

Let P be an orthogonal polyhedron. The color function $c:X\to \{0,1\}$ is defined by

$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is a grid point and } B(\mathbf{x}) \subseteq P \\ 0 & \text{otherwise} \end{cases}$$

for all $\mathbf{x} \in X$.

- If $c(\mathbf{x}) = 1$ we say that \mathbf{x} is black and that $B(\mathbf{x})$ is full.
- If $c(\mathbf{x}) = 0$ we say that \mathbf{x} is white and that $B(\mathbf{x})$ is empty.

Note that c almost coincides with the characteristic function of P as a subset of X. It differs from it only on right-boundary points.

Coloring

The following definitions capture the intuitive meaning of a facet and a vertex and, in particular, that the boundary of an orthogonal polyhedron is the union of its facets.

Definition (*i*-predecessor)

The *i*-predecessor of a grid point $\mathbf{x} = (x_1, \ldots, x_d) \in X$ is $\mathbf{x}^{i-} = (x_1, \ldots, x_{i-1}, x_i - 1, x_{i+1}, \ldots, x_d)$. We use \mathbf{x}^{ij-} to denote $(\mathbf{x}^{i-})^{j-}$. When \mathbf{x} has no *i*-predecessor, we write \perp for the predecessor value.

Definition (Neighborhood)

The neighborhood of a grid point \mathbf{x} is the set

$$\mathcal{N}(\mathbf{x}) = \{x_1 - 1, x_1\} \times \ldots \times \{x_d - 1, x_d\}$$

(the vertices of a box lying between x - 1 and x). For every i, $\mathcal{N}(x)$ can be partitioned into left and right *i*-neighborhoods

$$\mathcal{N}^{i-}(\mathbf{x}) = \{x_1 - 1, x_1\} \times \ldots \times \{x_i - 1\} \times \{x_d - 1, x_d\}$$

and

$$\mathcal{N}^{i}(\mathbf{x}) = \{x_{1} - 1, x_{1}\} \times \ldots \times \{x_{i}\} \times \{x_{d} - 1, x_{d}\}.$$

Definition (*i*-hyperplane)

An *i*-hyperplane is a (d-1)-dimensional subset $H_{i,z}$ of X consisting of all points x satisfying $x_i = z$.

Observations:

- Facets are *d* − 1-dimensional polyhedra.
- As such, facets are subsets of *i*-hyperplanes.
- The coloring changes on facets.
- White vertices need special care (closure to the "right").

Observations:

- Facets are *d* − 1-dimensional polyhedra.
- As such, facets are subsets of *i*-hyperplanes.
- The coloring changes on facets.
- White vertices need special care (closure to the "right").

Definition (*i*-facet)

An i-facet of an orthogonal polyhedron P with color function c is

$$F_{i,z}(P) = cl\{\mathbf{x} \in H_{i,z} \mid c(\mathbf{x}) \neq c(\mathbf{x}^{i-1})\}$$

for some integer $z \in [0, m)$.

Definition (Vertex)

A vertex is a non-empty intersection of d distinct facets. The set of vertices of an orthogonal polyhedron P is denoted by V(P).

Definition (*i*-vertex-predecessor)

- An *i*-vertex-predecessor of $\mathbf{x} = (x_1, \ldots, x_d) \in X$ is a vertex of the form $(x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_d)$ for some integer $z \in [0, x_i]$. When \mathbf{x} has no *i*-vertex-predecessor, we write \perp for its value.
- The first *i*-vertex-predecessor of x, denoted by xⁱ, is the one with the maximal z.

A representation scheme for $2^{\mathbf{B}}$ ($2^{\mathbf{G}}$) is a set \mathcal{E} of syntactic objects such that there is a surjective function ϕ from \mathcal{E} to $2^{\mathbf{B}}$, i.e., every syntactic object represents at most one polyhedron and every polyhedron has at least one corresponding object.

If ϕ is an injection we say that the representation is canonical, i.e., every polyhedron has a unique representation.

Explicit representation: an enumeration of the color values on every grid point, i.e., a *d*-dimensional zero-one array with m^d entities.

- **Explicit representation**: an enumeration of the color values on every grid point, i.e., a *d*-dimensional zero-one array with m^d entities.
- Boolean representation: based on all the formulae generated from inequalities of the form $x_i \ge z$ via Boolean operations.
 - This representation is non-canonical.

- **Explicit representation**: an enumeration of the color values on every grid point, i.e., a *d*-dimensional zero-one array with m^d entities.
- Boolean representation: based on all the formulae generated from inequalities of the form $x_i \ge z$ via Boolean operations.
 - This representation is non-canonical.
- Vertex representation: consists of the set $\{(\mathbf{x}, c(\mathbf{x})) \mid \mathbf{x} \text{ is a vertex}\}$, i.e., the vertices of P along with their color.
 - This representation is canonical.
 - The vertices alone is not a representation.
 - Not every set of points and colors is a valid representation of a polyhedron.

- **Explicit representation**: an enumeration of the color values on every grid point, i.e., a *d*-dimensional zero-one array with m^d entities.
- Boolean representation: based on all the formulae generated from inequalities of the form $x_i \ge z$ via Boolean operations.
 - This representation is non-canonical.
- Vertex representation: consists of the set $\{(\mathbf{x}, c(\mathbf{x})) \mid \mathbf{x} \text{ is a vertex}\}$, i.e., the vertices of P along with their color.
 - This representation is canonical.
 - The vertices alone is not a representation.
 - Not every set of points and colors is a valid representation of a polyhedron.
- Neighborhood representation: the colors of all the 2^d points in the neighborhoods of the vertices is attached as additional information.

- **Explicit representation**: an enumeration of the color values on every grid point, i.e., a *d*-dimensional zero-one array with m^d entities.
- Boolean representation: based on all the formulae generated from inequalities of the form $x_i \ge z$ via Boolean operations.
 - This representation is non-canonical.
- Vertex representation: consists of the set $\{(\mathbf{x}, c(\mathbf{x})) \mid \mathbf{x} \text{ is a vertex}\}$, i.e., the vertices of P along with their color.
 - This representation is canonical.
 - The vertices alone is not a representation.
 - Not every set of points and colors is a valid representation of a polyhedron.
- Neighborhood representation: the colors of all the 2^d points in the neighborhoods of the vertices is attached as additional information.
- Extreme vertex representation: instead of maintaining all the neighborhood of each vertex, it suffices to keep only the *parity* of the number of black points in that neighborhood. In fact, it suffices to keep only vertices with odd parity.

1 Orthogonal polyhedra

2 Membership problem for the vertex representation

3 Intersection computation

The membership problem

Given a representation of a polyhedron P and a grid point ${\bf x}$, determine $c({\bf x})$, that is, whether $B({\bf x})\subseteq P.$

Observations

 $\frac{2}{2} \begin{pmatrix} x_{1}-1, x_{2} \\ 0 \\ x_{1}-1, x_{2}-1 \end{pmatrix} \begin{pmatrix} x_{1}, y_{2} \\ 0 \\ x_{1}, y_{2}-1 \end{pmatrix}$

 $c(x_1 - 1, x_2 - 1) \neq c(x_1, x_2 - 1) \lor c(x_1 - 1, x_2) \neq c(x_1, x_2).$

x is on a 2-facet iff

x is on a 1-facet iff

For d = 2 and $\mathbf{x} = (x_1, x_2)$ it means:

 $c(x_1 - 1, x_2 - 1) \neq c(x_1 - 1, x_2) \lor c(x_1, x_2 - 1) \neq c(x_1, x_2).$

x is a vertex iff both of the above hold.

• x is not a vertex iff one of the above does not hold.

Lemma (Color of a non-vertex)

Let ${\bf x}$ be a non-vertex. Then there exists a direction $j \in \{1,\ldots,d\}$ such that

$$\forall \mathbf{x}' \in \mathcal{N}^j(\mathbf{x}) \setminus \{\mathbf{x}\}. \ c(\mathbf{x}'^{j-}) = c(\mathbf{x}').$$

Let j be such a direction. Then $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Lemma (Color of a non-vertex)

Let ${\bf x}$ be a non-vertex. Then there exists a direction $j \in \{1,\ldots,d\}$ such that

$$\forall \mathbf{x}' \in \mathcal{N}^j(\mathbf{x}) \setminus \{\mathbf{x}\}. \ c(\mathbf{x}'^{j-}) = c(\mathbf{x}').$$

Let j be such a direction. Then $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Proof: A point \mathbf{x} is not a vertex iff

$$\exists i \in \{1, \ldots, d\}. \ \forall \mathbf{x}' \in \mathcal{N}^i(\mathbf{x}). \ c(\mathbf{x}'^{i-}) = c(\mathbf{x}').$$

Thus j always exists. Let i and j be two dimensions satisfying the above requirements.

Case 1:
$$j = i$$
: Straightforward
Case 2: $j \neq i$: For i we have $c(\mathbf{x}^{i-}) = c(\mathbf{x})$ and
 $c(\mathbf{x}^{ij-}) = c(\mathbf{x}^{j-})$. For j we have $c(\mathbf{x}^{ij-}) = c(\mathbf{x}^{i-})$
Thus $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Consequently we can calculate the color of a non-vertex \mathbf{x} based on the color of all points in $\mathcal{N}(\mathbf{x}) - \{\mathbf{x}\}$: just find some j satisfying the conditions of the above lemma and let $c(\mathbf{x}) = c(\mathbf{x}^{j-1})$.

Consequently we can calculate the color of a non-vertex \mathbf{x} based on the color of all points in $\mathcal{N}(\mathbf{x}) - \{\mathbf{x}\}$: just find some j satisfying the conditions of the above lemma and let $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Theorem

The membership problem for vertex representation can be solved in time $\mathcal{O}(n^d d2^d)$ using space $\mathcal{O}(n^d).$

Consequently we can calculate the color of a non-vertex \mathbf{x} based on the color of all points in $\mathcal{N}(\mathbf{x}) - \{\mathbf{x}\}$: just find some j satisfying the conditions of the above lemma and let $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Theorem

The membership problem for vertex representation can be solved in time $\mathcal{O}(n^d d2^d)$ using space $\mathcal{O}(n^d).$

- We must recursively determine the color of at most n^d grid points.
- For each of them we must check at most *d* dimensions if they satisfy the condition of the lemma on the color of a non-vertex.
- Checking the condition invokes $2^d 1$ color comparisions.

Consequently we can calculate the color of a non-vertex \mathbf{x} based on the color of all points in $\mathcal{N}(\mathbf{x}) - \{\mathbf{x}\}$: just find some j satisfying the conditions of the above lemma and let $c(\mathbf{x}) = c(\mathbf{x}^{j-})$.

Theorem

The membership problem for vertex representation can be solved in time $\mathcal{O}(n^d d2^d)$ using space $\mathcal{O}(n^d).$

- We must recursively determine the color of at most n^d grid points.
- For each of them we must check at most *d* dimensions if they satisfy the condition of the lemma on the color of a non-vertex.
- Checking the condition invokes $2^d 1$ color comparisions.

However, this algorithm is not very efficient, because in the worst-case one has to calculate the color of all the grid points between 0 and \mathbf{x} .

1 Orthogonal polyhedra

2 Membership problem for the vertex representation

3 Intersection computation

We assume two polyhedra P_1 and P_2 with n_1 and n_2 vertices, respectively. After intersection some vertices disappear and some new vertices are created.

A point x is a vertex of $P_1 \cap P_2$ only if for every dimension i, x is on an *i*-facet of P_1 or on an *i*-facet of P_2 .

A point \mathbf{x} is a vertex of $P_1 \cap P_2$ only if for every dimension i, \mathbf{x} is on an *i*-facet of P_1 or on an *i*-facet of P_2 .

Lemma

Let \mathbf{x} be a vertex of $P_1 \cap P_2$ which is not an original vertex. Then there exists a vertex \mathbf{y}_1 of P_1 and a vertex \mathbf{y}_2 of P_2 such that $\mathbf{x} = \max(\mathbf{y}_1, \mathbf{y}_2)$, where max is applied componentwise.

A point \mathbf{x} is a vertex of $P_1 \cap P_2$ only if for every dimension i, \mathbf{x} is on an *i*-facet of P_1 or on an *i*-facet of P_2 .

Lemma

Let \mathbf{x} be a vertex of $P_1 \cap P_2$ which is not an original vertex. Then there exists a vertex \mathbf{y}_1 of P_1 and a vertex \mathbf{y}_2 of P_2 such that $\mathbf{x} = \max(\mathbf{y}_1, \mathbf{y}_2)$, where max is applied componentwise.

Conclusion: the candidates for being vertices of $P_1 \cap P_2$ are restricted to:

$$V(P_1) \cup V(P_2) \cup \{ \mathbf{x} \mid \exists \mathbf{y}_1 \in V(P_1). \exists \mathbf{y}_2 \in V(P_2). \mathbf{x} = \max(\mathbf{y}_1, \mathbf{y}_2) \}$$

A point \mathbf{x} is a vertex of $P_1 \cap P_2$ only if for every dimension i, \mathbf{x} is on an *i*-facet of P_1 or on an *i*-facet of P_2 .

Lemma

Let \mathbf{x} be a vertex of $P_1 \cap P_2$ which is not an original vertex. Then there exists a vertex \mathbf{y}_1 of P_1 and a vertex \mathbf{y}_2 of P_2 such that $\mathbf{x} = \max(\mathbf{y}_1, \mathbf{y}_2)$, where max is applied componentwise.

Conclusion: the candidates for being vertices of $P_1 \cap P_2$ are restricted to:

$$V(P_1) \cup V(P_2) \cup \{ \mathbf{x} \mid \exists \mathbf{y}_1 \in V(P_1). \exists \mathbf{y}_2 \in V(P_2). \mathbf{x} = \max(\mathbf{y}_1, \mathbf{y}_2) \}$$

whose number is not greater then $n_1 + n_2 + n_1 n_2$.

■ Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.

- Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.
- For every pair of vertices calculate their \max and add it to the potential vertex set.

- Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.
- For every pair of vertices calculate their max and add it to the potential vertex set.
- For each point in the potential vertex set:

- Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.
- For every pair of vertices calculate their max and add it to the potential vertex set.
- For each point in the potential vertex set:
 - Compute the color of its neighborhood in both P_1 and P_2 .

- Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.
- For every pair of vertices calculate their max and add it to the potential vertex set.
- For each point in the potential vertex set:
 - Compute the color of its neighborhood in both P_1 and P_2 .
 - Calculate the intersection of the neighborhood coloring pointwise.

- Initialize $V(P_1) \cup V(P_2)$ as the set of potential vertices of the intersection.
- For every pair of vertices calculate their max and add it to the potential vertex set.
- For each point in the potential vertex set:
 - Compute the color of its neighborhood in both P_1 and P_2 .
 - Calculate the intersection of the neighborhood coloring pointwise.
 - Use the vertex rules to determine, whether the point is a vertex of the intersection.

$$\forall i \in \{1, \dots, d\}. \exists \mathbf{x}' \in \mathcal{N}^i(\mathbf{x}). \ c(\mathbf{x}'^{i-}) \neq c(\mathbf{x}').$$

