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Linear hybrid automata

A linear term e over a set Var = {x1, . . . , xn} of variables is a linear
combination

∑n
i=1 cixi of variables xi ∈ Var with integer (rational)

coefficients ci, i = 1, . . . , n.
A linear constraint t over Var is an (in)equality e1 ∼ e2 with
∼∈ {>,≥,=,≤, <} between linear terms e1, e2 over Var .
A hybrid automaton is time-deterministic iff for every location l ∈ Loc
and every valuation ν ∈ V there is exactly one activity f ∈ Act(l)
with f(0) = ν. The activity f , then, is denoted by fl[ν], its
component for x ∈ Var by fxl [ν].

Ábrahám - Hybrid Systems 3 / 18



Linear hybrid automata

Linear hybrid automata are time-deterministic hybrid automata whose
definitions contain linear terms, only.

Activities Act(l) are given as sets of differential equations ẋ = kx, one
for each variable x ∈ Var , with kx an integer (rational) constant:

fxl [ν](t) = ν(x) + kx · t.

Invariants Inv(l) are defined by conjunctions ψ of linear constraints
over Var :

ν ∈ Inv(l) iff ν |= ψ

For all edges, the transision relation µ is defined by a guarded set of
nondeterministic assignments:

ψ ⇒ {x := [αx, βx] | x ∈ Var},

where the quard ψ is a conjunction of linear constraints and αx, βx are
linear terms:

(ν, ν ′) ∈ µ iff ν |= ψ ∧ ∀x ∈ Var . ν(αx) ≤ ν ′(x) ≤ ν(βx).
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Water-level monitor

l0
ẋ = 1
ẏ = 1
y ≤ 10

x = 0

∧y = 1

l1
ẋ = 1
ẏ = 1
x ≤ 2

l2
ẋ = 1
ẏ = −2
y ≥ 5

l3
ẋ = 1
ẏ = −2
x ≤ 2

y = 10→ x := 0

x = 2

y = 5→ x := 0

x = 2
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Leaking gas burner

l1
ẋ = 1
ẏ = 1
ż = 1
x ≤ 1

x = 0 ∧ y = 0 ∧ z = 0

l2
ẋ = 1
ẏ = 1
ż = 0

x := 0

30 ≤ x→ x := 0
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Reminder: Semantics of hybrid automata

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time
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Time-deterministic systems

For linear hybrid automata we can rewrite the time-step rule to:

ν ′ = fl[ν](t) ν ′ ∈ Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Ábrahám - Hybrid Systems 8 / 18



Forward analysis
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Given a region I ⊆ Σ, the reachable region (I 7→∗) ⊆ Σ of I is the set
of all states that are reachable from states in I:

σ ∈ (I 7→∗) iff ∃σ′ ∈ I. σ′ →∗ σ.

Our goal is to compute the reachable region of a set I of initial states.
More specifically, we want to check whether the reachable region
intersects with a set of bad (unsafe) states.
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One-step reachability under time steps:
We define the forward time closure T +

l (P ) of P ⊆ V at l ∈ Loc as
the set of valuations reachable from P by letting time progress:

ν ′ ∈ T +

l (P ) iff ∃ν ∈ P. ∃t ∈ R≥0. ν ′ = fl[ν](t) ∧ ν ′ ∈ Inv(l).

Extension to regions R = ∪l∈Loc(l, Rl), Rl ⊆ V for each l ∈ Loc:

T +(R) = ∪l∈Loc(l, T +

l (Rl)).

One-step reachability under discrete steps:
We define the postcondition D+

e (P ) of P with respect to an edge
e = (l, a, µ, l′) as the set of valuations reachable from P by e:

ν ′ ∈ D+
e (P ) iff ∃ν ∈ P. (ν, ν ′) ∈ µ ∧ ν ′ ∈ Inv(l′).

Extension to regions R = ∪l∈Loc(l, Rl):

D+(R) = ∪e=(l,a,µ,l′)∈Edge(l′,D+
e (Rl)).
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Linearity of reachable sets

Lemma
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then
for all l ∈ Loc and e ∈ Edge, both T +

l (P ) and D+
e (P ) are linear sets of

valuations.

Lemma
Let I ⊆

⋃
l∈Loc(l, Inv(l)) be a region of the linear hybrid automaton A.

The reachable region (I, 7→∗) = ∪l∈Loc(l, Rl) is the least fixpoint of the
equation

X = T +(I ∪ D+(X))

or, equivalently, for all locations l ∈ Loc, the set Rl of valuations is the
least fixpoint of the set of equations

Xl = T +

l (Il ∪
⋃

e=(l′,a,µ,l)∈Edge

T +

l (D+
e (Xl′))).
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X

= T +(I ∪ D+(X))

= T +(I) ∪ T +(D+(X))

= T +(I) ∪ T +(D+(T +(I ∪ D+(X))))

= T +(I) ∪ T +(D+(T +(I))) ∪ T +(D+(T +(D+(X))))

= T +(I) ∪ T +(D+(T +(I))) ∪ T +(D+(T +(D+(T +(I ∪ D+(X))))))

= T +(I) ∪ T +(D+(T +(I))) ∪ T +(D+(T +(D+(T +(I))))) ∪
T +(D+(T +(D+(T +(D+(X)))))) . . .
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State set representation and the computation of the forward
reachability
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Backward analysis
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We define the backward time closure T −l (P ) of P ⊆ V at l ∈ Loc as
the set of valuations from which it is possible to reach a valuation in
P by letting time progress:

ν ′ ∈ T −l (P ) iff ∃ν ∈ P. ∃t ∈ R≥0. ν = fl[ν
′](t) ∧ ν ′ ∈ Inv(l).

Extension to regions R = ∪l∈Loc(l, Rl):

T −(R) = ∪l∈Loc(l, T −l (Rl)).

We define the precondition D−e (P ) of P with respect to an edge
e = (l, a, µ, l′) as the set of valuations from which it is possible to
reach a valuation from P by e:

ν ′ ∈ D−e (P ) iff ∃ν ∈ P. (ν ′, ν) ∈ µ ∧ ν ′ ∈ Inv(l).

Extension to regions R = ∪l∈Loc(l, Rl):

D−(R) = ∪e=(l′,a,µ,l)∈Edge(l′,D−e (Rl)).
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Given a region R ⊆
⋃
l∈Loc(l, Inv(l)), the initial region (7→∗ R) ⊆ Σ

of R is the set of all states from which a state in R is reachable:

σ ∈ (7→∗ R) iff ∃σ′ ∈ R. σ →∗ σ′.
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Lemma
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then
for all l ∈ Loc and e ∈ Edge, both T −l (P ) and D−e (P ) are linear sets of
valuations.

Lemma
Let R = ∪l∈Loc(l, Rl) be a region of the linear hybrid automaton A. The
initial region I = ∪l∈Loc(l, Il) is the least fixpoint of the equation

X = T −(R ∪ D−(X))

or, equivalently, for all locations l ∈ Loc, the set Il of valuations is the
least fixpoint of the set of equations

Xl = T −l (Rl ∪
⋃

e=(l,a,µ,l′)∈Edge

D−e (Xl′)).
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