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Linear hybrid automata

0
bty

m A linear term e over a set Var = {z1,...,x,} of variables is a linear

combination(Z;‘:1 c;izl of variables x; € Var with integer (rational)
coefficients ¢;;7=1,...,n
m A linear constraint ¢ over Var is an (in)equality e; ~ e with , o
~€ {>,>,=,<,<} between linear terms e, e3 over Var. 1"
m A hybrid automaton is time-deterministic iff for every location [ € Loc
and every valuation v € V there is exactly one activity f € Act(l)
with f(0) = v. The activity f, then, is denoted by fl[ |, it

component for z € Var by f/[v]. —

k=1 x(t) = x(o)+ 2¢
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Linear hybrid automata

Linear hybrid automata are time-deterministic hybrid automata whose
definitions contain linear terms, only.
m Activities Act(l) are given as sets of differential equations & = k,, one
for each variable x € Var, with k, an integer (rational) constant:

FEI( (@) +lk) -t &

m Invariants Inv(l) are defined by conjunctions ¢ of linear constraints
over Var:
velw(l) iff vEY
m For all edges, the transision relation p is defined by a guarded set of
nondeterministic assignments:

= {x:=[ag, B | x € Var},

where the quard 1) is a conjunction of linear constraints and a, 3, are
linear terms:

(v, Yep iff vEYAVzE Var. v(iag) <V (z) < v(Be).

X‘-’CZ'Q.-ZB



Water-level monitor

Xl—ZJ=n- Xtt'a42.

y=10—z2:=0
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Leaking gas burner

r=0Ay=0A2=0

\_/

30<xz—>z:=0
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Reminder: Semantics of hybrid automata

(lya,p,l") € Edge  (v,v')epn v € Inv(l')

Rule piscrete

(Lv) S (I',V)

fedAc(l) f(O)=v ft)=2

t>0 Vo<t <tf(t)eInv(l)
Rule Time

(Lv) 5 (1,0)
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Time-deterministic systems

For linear hybrid automata we can rewrite the time-step rule to:

vV = filv](t) V' € Inv(l)

Rule Time

(L,v) 5 (1,0)
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Forward analysis
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m Given a region I C ¥, the reachable region (I —*) C X of I is the set
of all states that are reachable from states in I:

ce(Iw") iff Jo'el. o ="o.
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m Given a region I C ¥, the reachable region (I —*) C X of I is the set
of all states that are reachable from states in I:

ce(I—") iff Fo'el o —=*o.

m Our goal is to compute the reachable region of a set I of initial states.

m More specifically, we want to check whether the reachable region
intersects with a set of bad (unsafe) states.
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One-step reachability under time steps:

ﬁ*(P)Iofmat l € Loc as

m We define the forward time closure
the set of valuations reachable from P by letting time progress:

TeY = {vev| J Lo o o velo()] 40
= /\

Jo'e?. 3teR .t 204
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One-step reachability under time steps:

m We define the forward time closure 7,7 (P) of P C V at [ € Loc as
the set of valuations reachable from P by letting time progress:

Ve TH(P) iff weP. IeR.V = filv)(t) AV € Inv(l).
m Extension to regions R = Ujcr,.(l, R;), Ry CV for each | € Loc:

T+(R) = UZGLoc(l, 7;+(Rl))

Abraham - Hybrid Systems 11 / 18



One-step reachability under time steps:

m We define the forward time closure 7,7 (P) of P C V at [ € Loc as
the set of valuations reachable from P by letting time progress:

Ve TH(P) iff weP. IeR.V = filv)(t) AV € Inv(l).
m Extension to regions R = Ujcr,.(l, R;), Ry CV for each | € Loc:
TH(R) = Uieroc(l, T, (Ry)).

One-step reachability under discrete steps:

m We define the postcondition D} (P) of P with respect to an edge
e = (l,a,p,1") as the set of valuations reachable from P by e:

= D (PY={reV[3veP (vv)epmn ve Juu’(t()g
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One-step reachability under time steps:

m We define the forward time closure 7,7 (P) of P C V at [ € Loc as
the set of valuations reachable from P by letting time progress:

Ve TH(P) iff weP. IeR.V = filv)(t) AV € Inv(l).
m Extension to regions R = Ujcr,.(l, R;), Ry CV for each | € Loc:
TH(R) = Uieroc(l, T, (Ry)).

One-step reachability under discrete steps:

m We define the postcondition D} (P) of P with respect to an edge
e = (l,a,p,1") as the set of valuations reachable from P by e:

vV eDHP) iff weP (v)epuAr env(l).
m Extension to regions R = Ujcro.(l, R)): '/’O
OO0
D+(R) = Ue:(l,a,u,l")EE’dge (!7 Di(_li)) \Q\)O
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Linearity of reachable sets

Lemma

For all linear hybrid automata, if P C V is a linear set of valuations, then

for all | € Loc and e € Edge, both T, (P) and D (P) are linear sets of
valuations.

([l'+\< 04
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Linearity of reachable sets

Lemma

For all linear hybrid automata, if P C V is a linear set of valuations, then
for all | € Loc and e € Edge, both T,"(P) and D} (P) are linear sets of
valuations.

Lemma

Let I C Jjero.(l, Inv(l)) be a region of the linear hybrid automaton A.
The reachable region (I,—*) = Ujcroc(l, R;) is the least fixpoint of the
equation

= X=T7(IUD"(X))

or, equivalently, for all locations | € Loc, the set R; of valuations is the
least fixpoint of the set of equations

= X; =T (LU U
= e=(l',a,u,l)EEdge
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State set representation and the computation of the forward

reachability

{‘(é\/ ,JQ«’C‘. o Quvn. LE(VarV Un,f)"g
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Pegt > Pusat €
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Backward analysis
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m We define the backward time closure 7,”(P) of P C V at [ € Loc as
the set of valuations from which it is possible to reach a valuation in
P by letting time progress:
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m We define the backward time closure 7,”(P) of P C V at [ € Loc as
the set of valuations from which it is possible to reach a valuation in
P by letting time progress:

—_—

vV e T (P) iff FveP. FeR . v=Ff0t)AY € Inv(l).
Extension t ions R = Ujeroc(l, Ry): .
m Extension to regions 1e Loc (1, Ry) L veP
T (R) = UleLoc(la 7;7 (Rl)) F 3\?'6? v v

m We define the precondition D, (P) of P with respect to an edge

e= (l,a@l’) as the set of valuations from which it is possible to
reach a valuation from P by e:

S e () iff Ived (V\iep A ()3
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m We define the backward time closure 7,”(P) of P C V at [ € Loc as
the set of valuations from which it is possible to reach a valuation in
P by letting time progress:

Ve T (P) iff weP 3teR v=fV]t) AV € Inv(l).
m Extension to regions R = Ujero. (1, Ry):
T (R) = UleLoc(la 7;7 (Rl))

m We define the precondition D, (P) of P with respect to an edge
e = (l,a, p,1") as the set of valuations from which it is possible to
reach a valuation from P by e:

VeD,(P) iff weP (V,v)eunv eInv(l).
m Extension to regions R = Ujcr,.(l, R)):
Di(E) = Ue=(l’,a,p,,l)€E'dgeg/7;Z>—;(‘&))'
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m Given a region R C (J;c1,. (I, Inv(l)), the initial region (—* R) C X
of R is the set of all states from which a state in R is reachable:
oce(="R) iff Fo'€R oc—*o.

=
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Lemma

For all linear hybrid automata, if P C V is a linear set of valuations, then
for all | € Loc and e € Edge, both T,”(P) and D_ (P) are linear sets of
valuations.
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For all linear hybrid automata, if P C V is a linear set of valuations, then
for all | € Loc and e € Edge, both T,”(P) and D_ (P) are linear sets of
valuations.

Lemma

Let R = Ujeroc(l, Ry) be a region of the linear hybrid automaton A. The
initial region I = Ujcro:(1, I}) is the least fixpoint of the equation

= X =T (RUD (X))

or, equivalently, for all locations | € Loc, the set I; of valuations is the
least fixpoint of the set of equations

> X =T (Ru |J D).
= = e=(l,a,u,l") € Edge =

P
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