Modeling and Analysis of Hybrid Systems Propositional and temporal logics

Prof. Dr. Erika Ábrahám

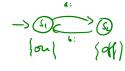
Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2013

Assume

- lacksquare a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions *AP*, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.

$$S_1 = on$$
 $S_2 = oN$
 $S_1 \neq on \land oN$



Assume

- lacktriangle a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?

Assume

- lacktriangle a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?
- We need a well-suited logic.

Propositional logic

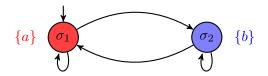
■ Abstract syntax:

$$\varphi \; ::= \; a \mid (\varphi \wedge \varphi) \mid (\neg \varphi) \quad \big| \quad \biguplus \Upsilon \ \big| \ \gimel \ \Upsilon$$

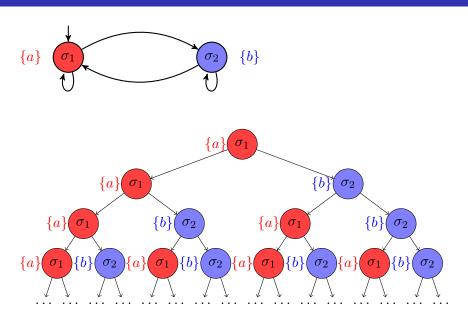
with $a \in AP$.

- Syntactic sugar: true, false, \lor , \rightarrow , \leftrightarrow , . . .
- Omit parentheses when no confusion
- Semantics:

$$\begin{array}{ll} \sigma \models a & \text{iff} \quad a \in L(\sigma), \\ \sigma \models (\varphi_1 \land \varphi_2) & \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2, \\ \sigma \models (\neg \varphi) & \text{iff} \quad \sigma \not\models \varphi. \end{array}$$

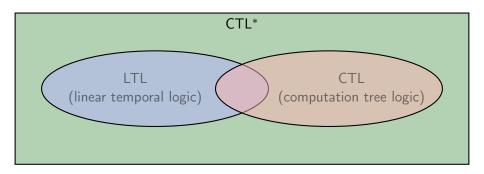


Į	ا د،
7,	6 1
ļ	Į
1	T2
,	ſ
	4
ا آر	L
	6,
Į	_
1	1
	i

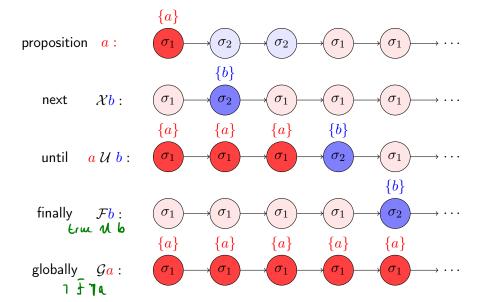


In the computation tree we can describe

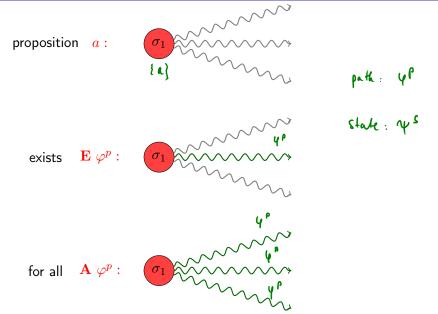
- a given path starting in a state (path formulas, "linear" properties) and
- quantified (universal/existential) properties over all paths starting in a given state (state formulas, "branching" properties).



Examples for path formulas



Examples for state formulas



CTL* syntax

CTL* state formulae:

$$\psi^s ::= a \mid (\psi^s \wedge \psi^s) \mid (\neg \psi^s) \mid (\mathbf{E}\varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^{p} ::= \psi^{s} \mid (\varphi^{p} \wedge \varphi^{p}) \mid (\neg \varphi^{p}) \mid (\mathcal{X}\varphi^{p}) \mid (\varphi^{p} \mathcal{U} \varphi^{p}) \mid \mathcal{G}^{p}$$
where ψ^{s} are CTL* state formulae.
$$\{a\} \qquad \{\{b\} \qquad \sigma_{1} \vDash_{c_{1}c_{1}}, \qquad \sigma_{1} \vDash \qquad \sigma_{1$$

CTL* CTL LTL Q Op Q Op A (path (seumlas) A a u (gb) AGEFa

CTL* syntax

CTL* state formulae:

$$\psi^s ::= a \mid (\psi^s \wedge \psi^s) \mid (\neg \psi^s) \mid (\mathbf{E}\varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \psi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \mathcal{U} \varphi^p)$$

where ψ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

CTL* syntax

CTL* state formulae:

$$\psi^s ::= a \mid (\psi^s \wedge \psi^s) \mid (\neg \psi^s) \mid (\mathbf{E}\varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \psi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \mathcal{U} \varphi^p)$$

where ψ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae. LSTS
$$\models \psi^s$$
 iff LSTs, s, $\models \phi^s$

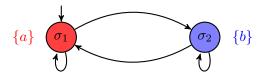
We often omit parentheses. Syntactic sugar:

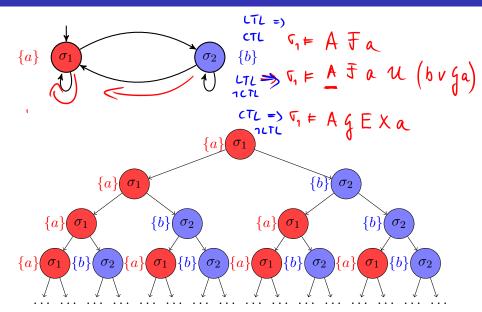
A ("for all"), \mathcal{F} ("finally" or "eventually"), \mathcal{G} ("globally" or "always"), \mathcal{R} ("releases")

CTL* semantics

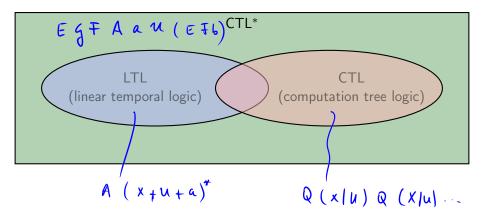
```
For a path \pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots
   let \pi(i) denote \sigma_i, and
   let \pi^i denote \sigma_i \to \sigma_{i+1} \to \dots
LSTS, \sigma \models a
                     iff a \in L(\sigma)
\bullet \bullet \sigma \models \psi_1^s \wedge \psi_2^s iff \sigma \models \psi_1^s and \sigma \models \psi_2^s
      \sigma \models \neg \psi^s iff \sigma \not\models \psi^s
       \sigma \models \mathbf{E}\varphi^p iff \pi \models \varphi^p for some \pi = \sigma_0 \to \sigma_1 \to \dots with \sigma_0 = \sigma
       \pi \models \psi^s iff \pi(0) \models \psi^s
       \pi \models \varphi_1^p \land \varphi_2^p iff \pi \models \varphi_1^p and \pi \models \varphi_2^p
       \pi \models \neg \varphi^p iff \pi \not\models \varphi^p
       \pi \models \mathcal{X}\varphi^p iff \pi^1 \models \varphi^p
       \pi \models \varphi_1^p \mathcal{U} \varphi_2^p iff exists 0 \leq j with \pi^j \models \varphi_2^p and
                                             \pi^i \models \varphi_1^p for all 0 \le i < j.
```

 $\mathcal{LSTS} \models \psi^s$ iff $\sigma_0 \models \psi^s$ for all initial states σ_0 of \mathcal{LSTS} .





The relation of LTL, CTL, and CTL*



LTL syntax

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation tree.

■ Abstract syntax:

$$\varphi^p \ ::= \ a \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$$

where $a \in AP$.

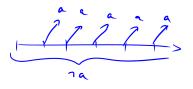
- Syntactic sugar: \mathcal{F} ("finally" or "eventually"), \mathcal{G} ("globally"), etc.
- We often omit parentheses when no confusion.

 Ta = +nu U a

 Ja = 1(f(a))

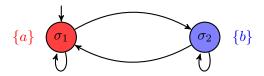
LTL semantics

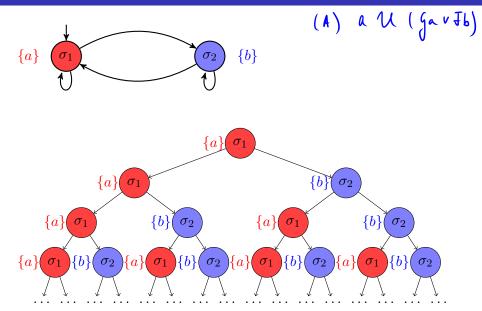
Remember: For a path $\pi = \sigma_0 \to \sigma_1 \to \dots$ let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \dots$



$$\begin{array}{lll} \pi \models a & \text{iff} & a \in L(\pi(0)), \\ \pi \models \varphi_1^p \wedge \varphi_2^p & \text{iff} & \pi \models \varphi_1^p \text{ and } \pi \models \varphi_2^p, \\ \pi \models \neg \varphi^p & \text{iff} & \pi \not\models \varphi^p, \\ \pi \models \mathcal{X}\varphi^p & \text{iff} & \pi^1 \models \varphi^p, \\ \pi \models \varphi_1^p \ \mathcal{U} \ \varphi_2^p & \text{iff} & \exists j \geq 0.\pi^j \models \varphi_2^p \wedge \forall 0 \leq i < j.\pi^i \models \varphi_1^p. \end{array}$$

 $\mathcal{LSTS} \models \varphi^p$ iff $\pi \models \varphi^p$ for all paths π of \mathcal{LSTS} .





CTL syntax

CTL state formulae:

$$\psi^s ::= a \mid (\psi^s \wedge \psi^s) \mid (\neg \psi^s) \mid (\mathbf{E}\varphi^p) \mid (\mathbf{A}\varphi^p)$$

with $a \in AP$ and φ^p are CTL path formulae.

CTL path formulae:

$$\varphi^p ::= \mathcal{X}\psi^s \mid \psi^s \, \mathcal{U} \, \psi^s$$

where ψ^s are CTL state formulae.

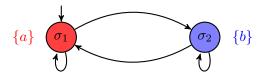
CTL formulae are CTL state formulae.

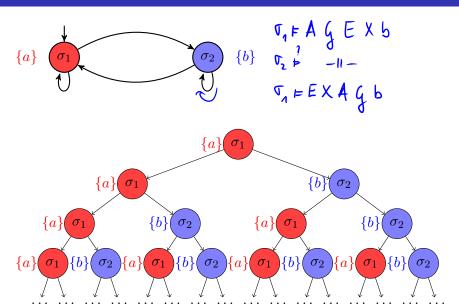
We omit parentheses when causing no confusion.

CTL semantics

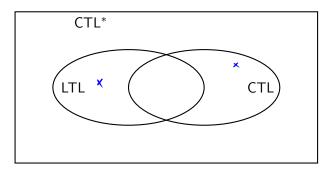
```
\begin{array}{lll} \sigma \models a & \text{iff} & a \in L(\sigma) \\ \sigma \models \psi_1^s \wedge \psi_2^s & \text{iff} & \sigma \models \psi_1^s \text{ and } \sigma \models \psi_2^s \\ \sigma \models \neg \psi^s & \text{iff} & \sigma \not\models \psi^s \\ \sigma \models \mathbf{E} \varphi^p & \text{iff} & \pi \models \varphi^p \text{ for some } \pi = \sigma_0 \to \sigma_1 \to \dots \text{ with } \sigma_0 = \sigma \\ \sigma \models \mathbf{A} \varphi^p & \text{iff} & \pi \models \varphi^p \text{ for all } \pi = \sigma_0 \to \sigma_1 \to \dots \text{ with } \sigma_0 = \sigma \\ \hline \pi \models \mathcal{X} \psi^s & \text{iff} & \pi(1) \models \psi^s \\ \pi \models \psi_1^s \ \mathcal{U} \ \psi_2^s & \text{iff} & \text{exists } 0 \leq j \text{ with } \pi(j) \models \psi_2^s \text{ and } \\ & \pi(i) \models \psi_1^s \text{ for all } 0 \leq i < j. \end{array}
```

 $\mathcal{LSTS} \models \psi^s$ iff $\sigma_0 \models \psi^s$ for all initial states σ_0 of \mathcal{LSTS} .





The relation of LTL, CTL, and CTL*



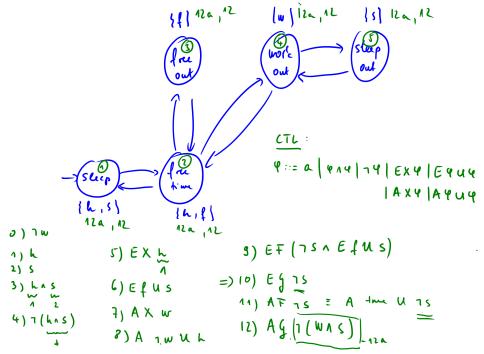
- The LTL formula $\mathcal{FG}a$ is not expressible in CTL.
- The CTL formula $\mathbf{A}\mathcal{F}\mathbf{A}\mathcal{G}a$ is not expressible in LTL.

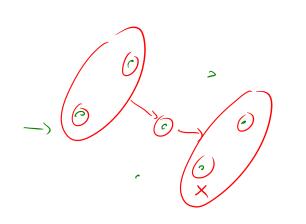
Shep
$$\models E \times \times g \text{ w}$$

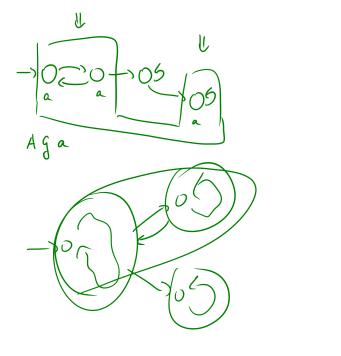
shep $\models E \times \times g \text{ w}$

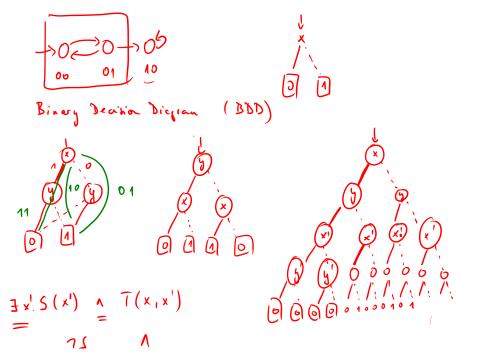
shep $\models E \times \times g \text{ w}$

shep $\models E \times \times g \text{ w}$
 $S \Rightarrow \overline{f} f$
 $S \Rightarrow \overline{f} f$
 $S \Rightarrow \overline{f} (7S)$
 $S \Rightarrow \overline{f} (7S)$









$$I(x) T(x,x') A(x) (A)$$

$$E \neq a$$
 $\exists x', A(x') \land T(x_1 x')$ (2)

CTL model checking

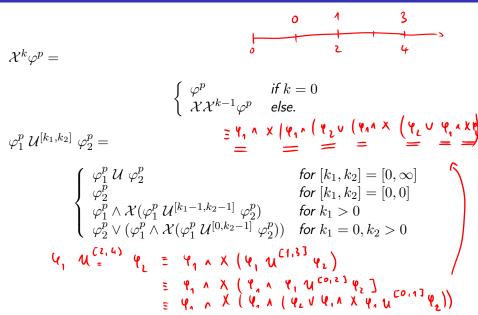
Given a state transition system and a CTL formula ψ^s , CTL model checking labels the states recursively with the sub-formulae of ψ^s inside-out.

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .
- Given the labeling for ψ^s , we label a state with $\neg \psi^s$ iff the state is not labeled with ψ^s .

CTL model checking

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- lacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$, and
 - label all states that have the label ψ_1^s and all of their successor states have the label $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$ iteratively until a fixed point is reached.

Discrete-time LTL



Discrete-time CTL

$$\mathbf{E}\mathcal{X}^k\psi^s = \begin{cases} \psi^s & \text{if } k=0\\ \mathbf{E}\mathcal{X}\mathbf{E}\mathcal{X}^{k-1}\psi^s & \text{else.} \end{cases}$$

$$\mathbf{E}\psi_1^s \ \mathcal{U}^{[k_1,k_2]} \ \psi_2^s =$$

$$\begin{cases} \mathbf{E}\psi_{1}^{s} \ \mathcal{U} \ \psi_{2}^{s} & \text{for } [k_{1}, k_{2}] = [0, \infty] \\ \psi_{2}^{s} & \text{for } [k_{1}, k_{2}] = [0, 0] \\ \psi_{1}^{s} \wedge \mathbf{E}\mathcal{X}\mathbf{E}(\psi_{1}^{s} \ \mathcal{U}^{[k_{1}-1, k_{2}-1]} \ \psi_{2}^{s}) & \text{for } k_{1} > 0 \\ \psi_{2}^{s} \vee (\psi_{1}^{s} \wedge \mathbf{E}\mathcal{X}\mathbf{E}(\psi_{1}^{s} \ \mathcal{U}^{[0, k_{2}-1]} \ \psi_{2}^{s})) & \text{for } k_{1} = 0, k_{2} > 0 \end{cases}$$

Syntactic sugar

We also write

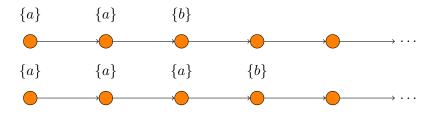
- $lacksquare \mathcal{U}^{\leq k}$ instead of $\mathcal{U}^{[0,k]}$,
- lacksquare $\mathcal{U}^{\geq k}$ for $\mathcal{U}^{[k,\infty]}$,
- lacksquare $\mathcal{U}^{=k}$ for $\mathcal{U}^{[k,k]}$, and
- lacksquare \mathcal{U} for $\mathcal{U}^{[0,\infty]}$.

Example

The discrete-time LTL formula $a \ \mathcal{U}^{[2,3]} \ b$ is defined as

$$a \wedge \mathcal{X}(a \wedge \mathcal{X}(b \vee (a \wedge \mathcal{X}b))).$$

It is satisfied by paths of the following form:



Discrete-time model checking

As the discrete-time temporal operators are defined as syntactic sugar, LTL model checking can be applied to check the validity of discrete-time LTL formulae for state transition systems.