Modeling and Analysis of Hybrid Systems Hybrid systems and their modeling

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2013

1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems

4 Hybrid automata

1 Hybrid systems

2 Labeled state transition systems

3 Labeled transition systems

4 Hybrid automata

 Dynamical system: continuous evolution of the state over time Discrete system: instantaneous state changes
 Hybrid system: combination

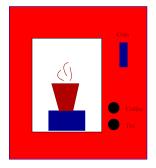
Motivation

- Dynamical system: continuous evolution of the state over time Discrete system: instantaneous state changes
 Hybrid system: combination
- Time model:
 - continuous $\rightsquigarrow t \in \mathbb{R}$
 - discrete \rightsquigarrow $k \in \mathbb{Z}$
 - hybrid \rightsquigarrow continuous time, but there are also discrete "instants" where something "special" happens

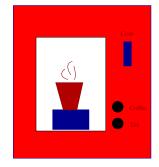
Motivation

- Dynamical system: continuous evolution of the state over time Discrete system: instantaneous state changes
 Hybrid system: combination
- Time model:
 - continuous $\rightsquigarrow t \in \mathbb{R}$
 - discrete \rightsquigarrow $k \in \mathbb{Z}$
 - hybrid ~>> continuous time, but there are also discrete "instants" where something "special" happens
- State model: continuous \rightsquigarrow evolution described by ordinary differential equations (ODEs) $\dot{x} = \overline{f(x, u)}$ discrete \rightsquigarrow evolution described by difference equations $x_{k+1} = f(x_k, u_k)$ hybrid \rightsquigarrow continuous space, but there are also discrete "instants" for that something "special" holds

- insert coin
- choose beverage (coffee/tee)
- wait for cup
- take cup



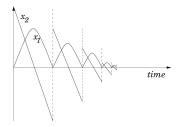
- insert coin
- choose beverage (coffee/tee)
- wait for cup
- take cup



 \rightsquigarrow Can be modeled discretely, when abstracting away from time and physical processes

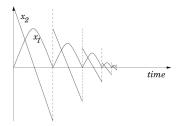
Example: Bouncing ball

- \blacksquare vertical position of the ball x_1
- velocity x₂
- continuous changes of position between bounces
- discrete changes at bounce time



Example: Bouncing ball

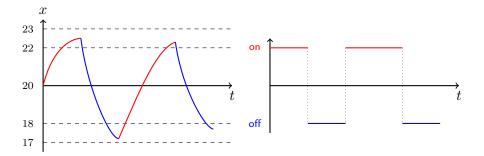
- vertical position of the ball x_1
- velocity x₂
- continuous changes of position between bounces
- discrete changes at bounce time



Example: Thermostat

Temperature x is controlled by switching a heater on and off
 x is regulated by a thermostat:
 17% m < 18% m "heater on"

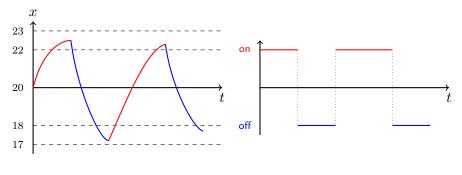
- $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on"
- $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"



Example: Thermostat

Temperature x is controlled by switching a heater on and off
 x is regulated by a thermostat:
 17% x < 18% x "heater or"

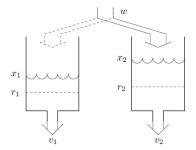
- $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on"
- $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"



~ Hybrid

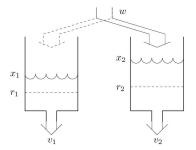
Example: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- w can switch between tanks instantaneously



Example: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- w can switch between tanks instantaneously



→ Hybrid

There are much more complex examples of hybrid systems...

- automobils, trains, etc.
- automated highway systems
- collision-avoidance and free flight for aircrafts
- biological cell growth and division

1 Hybrid systems

2 Labeled state transition systems

3 Labeled transition systems

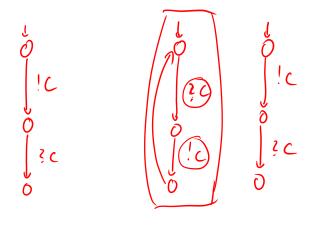
4 Hybrid automata

Labeled state transition systems

Definition

- A labeled state transition system (LSTS) is a tuple $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$ with
 - a (probably infinite) state set Σ ,
 - a label set *Lab*,
 - a transition relation $Edge \subseteq \Sigma \times Lab \times \Sigma$,
 - non-empty set of initial states $Init \subseteq \Sigma$.

luit = { x & # | x > 0 } {x >0} lo: while (x > 0) { Ly: x:= x-1 -x(5,){x+1 SF 12: 3 $\overline{2} = \overline{4}$ Sç Edge = { x => x' | x'=x-1 A SZ x >0 } S¥. AGx+



dal = { ! C , ? C }

Operational semantics is trivial:

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

system run (execution): $\sigma_0 \stackrel{a_0}{\to} \sigma_1 \stackrel{a_1}{\to} \sigma_2 \dots$ with $\sigma_0 \in Init$

a state is called reachable iff there is a run leading to it

Larger or more complex systems are often modeled compositionally.

- The global system is given by the parallel composition of the components.
- Component-local, non-synchronizing transitions, having labels belonging to one components's label set only, are executed in an interleaved manner.
- Synchronizing transitions of the components, agreeing on the label, are executed synchronously.

Parallel composition of LSTSs

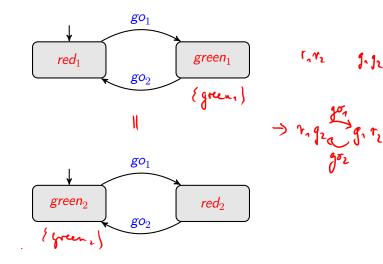
Definition

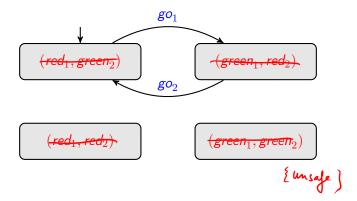
Let

$$\mathcal{LSTS}_1 = (\Sigma_1, Lab_1, Edge_1, Init_1)$$
 and
 $\mathcal{LSTS}_2 = (\Sigma_2, Lab_2, Edge_2, Init_2)$

be two LSTSs. The parallel composition $\mathcal{LSTS}_1 || \mathcal{LSTS}_2$ is the LSTS $(\Sigma, Lab, Edge, Init)$ with $\Sigma = \Sigma_1 \times \Sigma_2$, $Lab = Lab_1 \cup Lab_2$, $((s_1, s_2), a, (s'_1, s'_2)) \in Edge$ iff $a \in Lab_1 \cap Lab_2, (s_1, a, s'_1) \in Edge_1$, and $(s_2, a, s'_2) \in Edge_2$, or $a \in Lab_1 \setminus Lab_2, (s_1, a, s'_1) \in Edge_1$, and $s_2 = s'_2$, or $a \in Lab_1 \setminus Lab_2, (s_2, a, s'_2) \in Edge_2$, and $s_1 = s'_1$, $Init = (Init_1 \times Init_2)$.

Two traffic lights

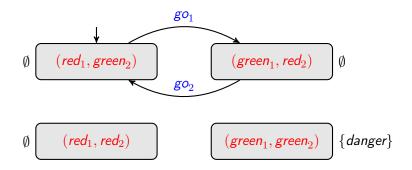




To be able to formalize properties of LSTSs, it is common to define

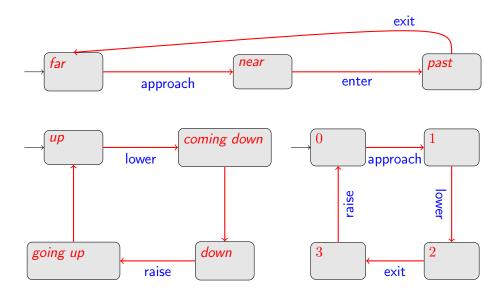
- a set of atomic propositions *AP* and
- a labeling function $L: \Sigma \to 2^{AP}$ assigning a set of atomic propositions to each state.

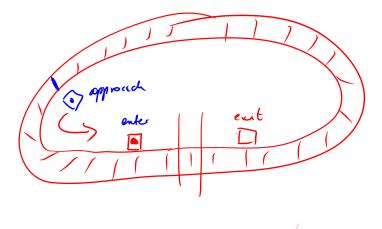
The set $L(\sigma)$ consists of all propositions that are defined to hold in σ . These propositional labels on states should not be mixed up with the synchronization labels on edges.



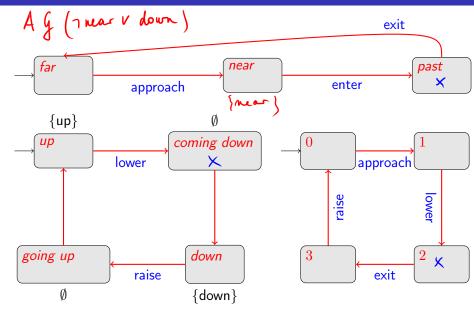
Railroad crossing: Train, controller and gate

Railroad crossing: Train, controller and gate





Railroad crossing: Train, controller and gate



1 Hybrid systems

- 2 Labeled state transition systems
- 3 Labeled transition systems

4 Hybrid automata

Definition

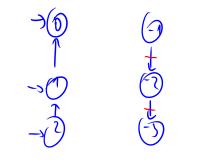
A labeled transition system (LTS) is a tuple $\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$ with

- finite set of locations Loc,
- finite set of (typed) variables Var,
- finite set of synchronization labels Lab, $au \in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, μ_{τ}, l) for each location $l \in Loc$),
- initial states $Init \subseteq \Sigma$.

with

- valuations $\nu: Var \rightarrow Domain, V$ is the set of valuations
- state $\sigma = (l, \nu) \in Loc \times V$, Σ is the set of states

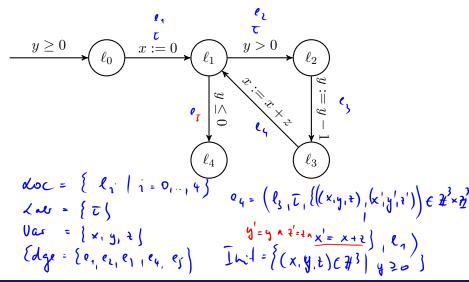
 $\{x \ge 0\}$ l. while $x \ge 0$ $l_1 = x = x - 1;$ l_2



-) C X > -) X := x-1

 $\left\{ \left(\sigma_{1}, \sigma_{2} \right) \in \mathcal{H} \times \mathcal{H} \middle| \sigma_{1} > \sigma \wedge \sigma_{2} = \sigma_{1-1} \right\}$

Modeling a simple while-program



Operational semantics has a single rule:

Operational semantics has a single rule:

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

(x20)			
(. while (x> 0) x := x	-1;	→(0)	$\overline{(}$
L ₁		1	J
$\begin{array}{c} \ell_{L} \\ \times \\ \rangle \circ \qquad \chi \\ \leq \circ \end{array}$		->() ⁻	$\overline{\mathbf{a}}$
$()_{\ell_1} \in$		ſ	ķ
x > 0 -> x := x-1		→(1)	0
1 -> 0			
2 -> 1		-(<u>)</u>	
(l, x=2) -> (l, x=1) -	$l_1 = \frac{l_1}{2} \left(l_0 + x = 0 \right)$	(1,7,{($V_1 r') \in V^2 \Big V(x) > 0 \land$ $V'(x) = V(x) - 1 \Big _1^3$
			=2, x=1) EM
	((_{1 X=0})	(101 ×=)	$(l) \xrightarrow{\tilde{l}} (l_0, k:A)$

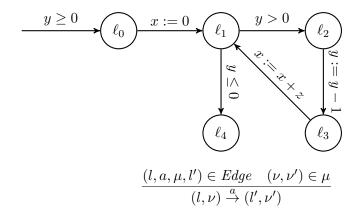
(1, x=0) x+ (1, x-1) 150 ->(1., x-0) ** x) 0 (10,-2) (l, x=1) x+ (l, x-2) (0, X=1) e. x>0->x:=x.1 (10,-3) X= 2) (l, x=2)x (l, x=-3) Xlo,X= LSTS LTS e1

Operational semantics has a single rule:

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \stackrel{a}{\rightarrow} (l', \nu')}$$

• system run (execution): $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$ • a state is called reachable iff there is a run leading to it

Semantics of the simple while-program



Definition

Let

$$\mathcal{LTS}_1 = (Loc_1, Var, Lab_1, Edge_1, Init_1)$$
 and
 $\mathcal{LTS}_2 = (Loc_2, Var, Lab_2, Edge_2, Init_2)$

be two LTSs. The parallel composition or product $\mathcal{LTS}_1 || \mathcal{LTS}_2$ is $\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$

with

•
$$Loc = Loc_1 \times Loc_2$$
,
• $Lab = Lab_1 \cup Lab_2$,
• $Init = \{((l_1, l_2), \nu) \mid (l_1, \nu) \in Init_1 \land (l_2, \nu) \in Init_2\}$

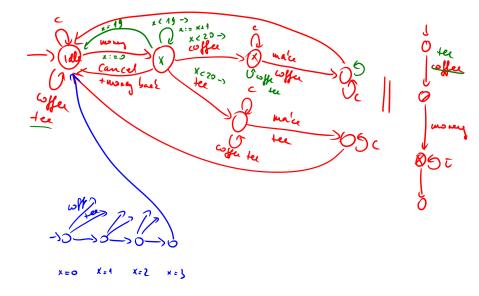
Definition ((Cont.))

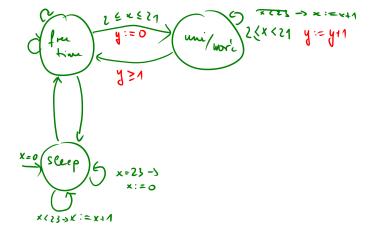
and

•
$$((l_1, l_2), a, \mu, (l'_1, l'_2)) \in Edge$$
 iff
• there exist $(l_1, a_1, \mu_1, l'_1) \in Edge_1$ and $(l_2, a_2, \mu_2, l'_2) \in Edge_2$ such that
• either $a_1 = a_2 = a$ or
 $a_1 = a \in Lab_1 \setminus Lab_2$ and $a_2 = \tau$, or
 $a_1 = \tau$ and $a_2 = a \in Lab_2 \setminus Lab_1$, and
• $\mu = \mu_1 \cap \mu_2$.

$$\{x=0\}$$
 $\{y=0\}$
 $x:=y+1$ $\|y:=x+1$

Parallel composition of LTSs





1 Hybrid systems

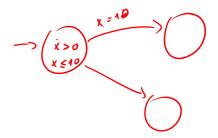
- 2 Labeled state transition systems
- 3 Labeled transition systems

4 Hybrid automata

Hybrid automata

Definition

A hybrid automaton is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with



Operational semantics of hybrid automata

$$(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu \quad \nu' \in Inv(l') \quad \text{Rule Discrete}$$

$$(l, \nu) \xrightarrow{a} (l', \nu') \quad x = 1$$

$$f \in Act(l) \quad f(0) = \nu \quad f(t) = \nu' \quad x = 1$$

$$f(x) = x + 1 \quad y(v) = 1$$

$$(v, \nu) \xrightarrow{t} (l, \nu') \quad \text{Rule Time } v(1) = 1 + 1 = 2$$

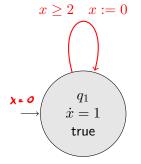
$$(l, \nu) \xrightarrow{t} (l, \nu') \quad (l, \nu') = 1$$

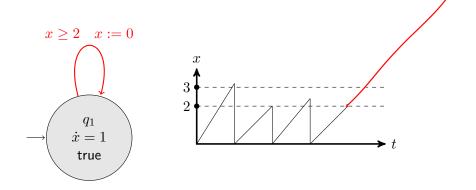
$$execution \text{ step:} \implies = \xrightarrow{a} \cup \xrightarrow{t} \qquad y(x) = 1$$

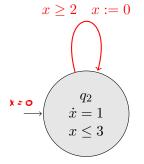
$$run: \sigma_0 \to \sigma_1 \to \sigma_2 \dots \text{ with } \sigma_0 = (l_0, \nu_0) \in Init \text{ and } \nu_0 \in Inv(l_0) \quad z$$

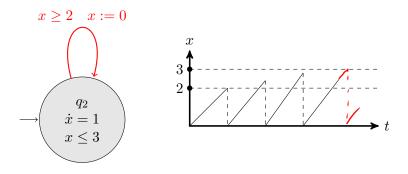
$$execution \text{ state: exists run leading to the state}$$

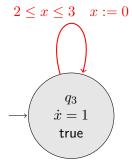
$$activities are represented in form of differential equations$$

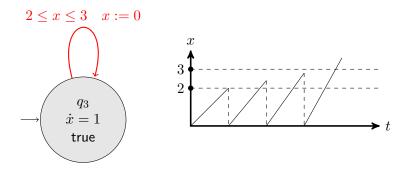






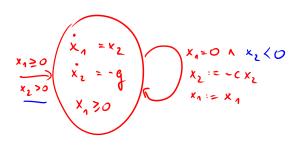






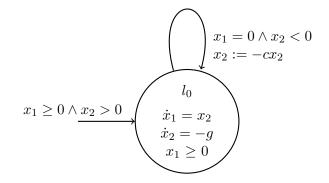
Example revisited: Bouncing ball

- \blacksquare vertical position of the ball x_1
- velocity x_2
- continuous changes of position between bounces
- discrete changes at bounce time



Example revisited: Bouncing ball

- vertical position of the ball x_1
- velocity x₂
- continuous changes of position between bounces
- discrete changes at bounce time

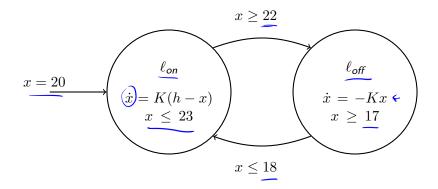


Example revisited: Thermostat

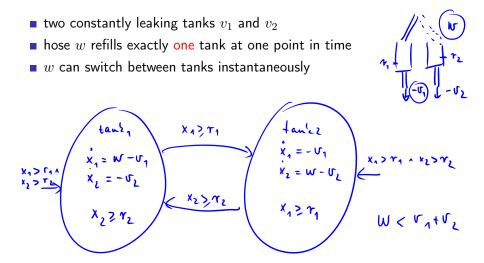
- $17^{\circ} \le x \le 18^{\circ} \rightsquigarrow$ "heater on"
- $22^{\circ} \le x \le 23^{\circ} \rightsquigarrow$ "heater off"

Example revisited: Thermostat

• $\underline{17}^{\circ} \le x \le \underline{18}^{\circ} \rightsquigarrow$ "heater on" • $\underline{22}^{\circ} \le x \le \underline{23}^{\circ} \rightsquigarrow$ "heater off"

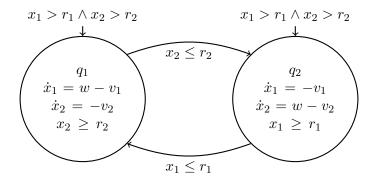


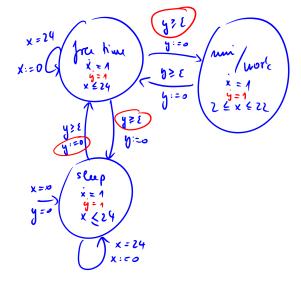
Example revisited: Water tank system



Example revisited: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly one tank at one point in time
- w can switch between tanks instantaneously





wore :

2 4 x 4 22

Definition

Let $\mathcal{H}_1 = (Loc_1, Var, Lab_1, Edge_1, Act_1, Inv_1, Init_1)$ and $\mathcal{H}_2 = (Loc_2, Var, Lab_2, Edge_2, Act_2, Inv_2, Init_2)$ be two hybrid automata. The product $\mathcal{H}_1 || \mathcal{H}_2 = (Loc_1 \times Loc_2, Var, Lab_1 \cup Lab_2, Edge, Act, Inv, Init)$ is the hybrid automaton with

•
$$Act(l_1, l_2) = Act_1(l_1) \cap Act_2(l_2)$$
 for all $(l_1, l_2) \in Loc$,

•
$$Inv(l_1, l_2) = Inv_1(l_1) \cap Inv_2(l_2)$$
 for all $(l_1, l_2) \in Loc$,

Init = {
$$((l_1, l_2), \nu) | (l_1, \nu) \in Init_1, (l_2, \nu) \in Init_2$$
}, and

•
$$((l_1, l_2), a, \mu, (l'_1, l'_2)) \in \underline{Edge}$$
 iff

•
$$(l_1, a_1, \mu_1, l_1') \in Edge_1$$
 and $(l_2, a_2, \mu_2, l_2') \in Edge_2$, and

either
$$a_1 = a_2 = a$$
, or $a_1 = a \notin Lab_2$ and $a_2 = \tau$, or $a_1 = \tau$ and $a_2 = a \notin Lab_1$, and

$$\bullet \mu = \mu_1 \cap \mu_2.$$

