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Abstract

The cylindrical algebraic decomposition (CAD) is a method that can be employed
to decide whether a conjunction of quanti�er-free non-linear real arithmetic con-
straints is satis�able. Applied in this way, the CAD needs an exact represen-
tation for real algebraic numbers and algorithms performing certain operations
on them. These include, for example, comparison, computation of intermediate
points and determination of the sign a polynomial achieves at a number given
in the speci�c representation.

In this thesis, we explain how real algebraic numbers can be represented by
so-called Thom encodings and give detailed descriptions of various algorithms
realizing the required operations. We have also implemented the algorithms
within the SMT solver SMT-RAT and evaluate them on a benchmark set provided
by the SMT community. The results are compared to the ones produced by a
CAD implementation which uses isolating intervals as a real algebraic number
representation.
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Chapter 1

Introduction

The concept of a cylindrical algebraic decomposition (CAD) was originally developed
by G. E. Collins in 1975 and since then has become a standard tool in algebraic
geometry [Col75]. Let P ⊂ Q[X1,...,Xn] be �nite. The fundamental idea of a CAD

associated to P is to construct a partition of Rn into a �nite number of cells such
that each cell is P-sign-invariant. That means that if (ξ1,...,ξn) ∈ Rn is a point from
a CAD cell, then it holds that sgn(p(ξ1,...,ξn)) is the same for all p ∈ P.1 We do
not give a formal de�nition of the CAD here since it would be beyond our scope. An
exact de�nition can be found in [ACM84].

A quanti�er-free non-linear real arithmetic constraint is an expression p ∼ 0 where
p is a polynomial in Q[X1,...,Xn] and ∼ is one of the relations >,≥,=,≤, < or 6= (see
Chapter 2 for more details). In order to decide whether a conjunction of constraints
p1 ∼ 0, ..., pk ∼ 0 is satis�able, it is enough to know only one sample point from each
cell of a CAD associated to {p1,...,pk}. Since there are �nitely many cells and thus
only �nitely many sample points, we obtain a decision procedure by trying out if any
of them satis�es all constraints.

The aim of the CAD algorithm is to compute one sample point from each cell of a
CAD associated to the set P ⊂ Q[X1,...,Xn] of polynomials it receives as input. This
is achieved in two stages which we are going to explain now using an example.

Suppose we want to compute a CAD associated to the polynomials p1(X,Y ) :=
(X − 2)2 + (Y − 2)2 − 1 and p2(X,Y ) := X − Y . Their zeros in R2 form the circle
and the line plotted in Figure 1.1.

Projection phase In this stage, we compute a set P1 of polynomials in one variable
less than p1 and p2, that means we eliminate a variable. In the example, we may
choose to eliminate Y . The polynomials in P1 should be such that their real roots
correspond to the projection of a certain set of `signi�cant points' of the circle and
the line onto the X-axis. These points will determine the boundaries of the CAD

cells. In our concrete example, they include the intersections of the circle and the
line as well as the points where the tangent of the circle is perpendicular to the X-
axis. They are depicted in Figure 1.1a. The projection, that means the polynomials
in P1, can be computed with the help of subresultants [ACM84]. It is a challenge
to design projection operators for the CAD in a way such that they do not produce
redundant polynomials having no real roots at all or polynomials with unnecessarily
high degree. Since the discovery of the original method, many improvements for the

1For x ∈ R, we let sgn(x) = 1 if and only if x > 0, sgn(x) = −1 if and only if x < 0 and
sgn(0) = 0.
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projection operator have been proposed [Hon90] [McC98]. For our example, let us
suppose that the projection operator produced the result

P1 = {X2 − 4X + 3, X2 − 4X +
2

7
}.

These polynomials are also plotted in Figure 1.1a.

Lifting phase In this stage, a sample point for each cell of the CAD is constructed.
For this sake, we have to characterize the real roots of the polynomials in P1, a
number between two consecutive roots and numbers below and above all these roots.
Each of these numbers ξ1 then has to be plugged in p1 and p2, which results again in
univariate polynomials, but this time in Y . For each p(ξ1, Y ) that we obtain in this
way, we again characterize its roots as well as points between, below and above all
roots. This operation if called `lifting' the point ξ1. For each number ξ2 that resulted
from lifting ξ1, we get a sample point (ξ1, ξ2) (Figure 1.1b).
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Figure 1.1: (a) The thick line and circle are the zeros of the polynomials p1 and p2 from
our example. The indicated spots on the circle are the `signi�cant points'. The roots of
the two parabolas, which constitute the set P1, correspond precisely to the points obtained
by projecting the signi�cant points onto the X-axis. (b) Sample points from all 47 cells of
a CAD associated to {p1, p2}. The points on the X-axis correspond to the roots of the
projection P1, numbers between, below and above all these roots.

The roots that have to be characterized in the lifting phase are real algebraic numbers
which might be irrational. Thus, they cannot always be represented explicitly. As
we want a formal method which is guaranteed to produce exact results, we are not
satis�ed with rational approximations. For this reason, we have to develop techniques
and algorithms to represent the roots exactly and perform the necessary operations
in this representation.

Related work The idea of Thom encodings as a representation technique for real
algebraic numbers �rst showed up in [CR88]. In [BPR10], it is shown how Thom
encodings can be actually used in the CAD algorithm. The sign determination al-
gorithm, which constitutes the basis for the algorithms operating on numbers in the
Thom representation, was proposed in [BOKR86].
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Contributions We describe the algorithms from [BPR10] in detail and propose
minor optimizations and adaptations to the special case of real numbers. We also
implemented the algorithms within the SMT solver SMT-RAT and evaluate them on
a benchmark set provided by the SMT community [BFT16].

Structure of this thesis In the next Chapter 2, we present some background and
preliminary knowledge needed in order to understand both the context and the math-
ematical details of the subsequent chapters. In particular, we provide an overview of
the real algebraic numbers operations necessary for the CAD algorithm. In Chapter
3, we discuss Thom encodings as the main topic of this thesis and give the algorithms
performing the operations necessary for the CAD algorithm. The following Chapter 4
is dedicated to the sign determination algorithm and, in particular, the computation
of Tarski queries. In Chapter 5, we describe some practical aspects of our implemen-
tation and provide experimental results. Finally, in Chapter 6, we discuss the results
and list a couple of aspects that could be further improved.
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Chapter 2

Background

2.1 Satis�ability checking

Propositional logic (PL) is the attempt to create a formal system which captures the
intuitive meaning of phrases like `if ... then ...', `either ... or ...' and others that we
use in our daily routine. For example, the transcription of `If it rains, then the street
is wet' into PL would be

A→ B,

where A and B are the propositions `It rains' and `The street is wet' and the symbol
→ denotes the implication `if ... then ...'. Such an expression is called a PL formula.
Other symbols that we frequently use to compose formulas are ∨ (inclusive `or'), ∧
(`and') as well as ¬ (`not'). An important characteristic of PL is that the propositions
are completely unrelated among each other. While `If it rains, then the street is wet'
might seem a reasonable statement in natural language, within PL it looks just the
same as any arbitrary nonsense like `If I am an elephant, then 2 + 2 = 5'. This is
because the system does not `know' that there is a relation between rain and water
on the street. The actual bene�t of PL is that, using the formal system, we are able
to test whether the formulas we compose contain any contradictions. Consider, for
example, the statement

`It rains and if it rains the street is wet and the street is not wet'

and its translation
A ∧ (A→ B) ∧ ¬B (2.1)

into a PL formula. Clearly, the statement contains a contradiction and this is not
due to any physical characteristics of rain and water but rather because the rules of
`logical reasoning' have been violated.

If a PL formula is free of contradictions, then there exist truth values that can be
assigned to each proposition in the formula such that it is satis�ed. In this context,
we often think about propositions being Boolean variables. The truth values are
usually denoted by true and false or 1 and 0, respectively. For example, in A→ B,
we could assign A and B the values true and the implication would be satis�ed. It
would be unsatis�ed if we set A to true and B to false. A detailed introduction to
propositional logic can be found in [vD94].

Satis�ability problem The task to decide whether a given PL formula like 2.1 is
satis�able is called the satis�ability problem (SAT). It is decidable: Since every formula
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must be �nite, it contains at most �nitely many Boolean variables A1,...,An. Thus,
one can decide whether there exists a satisfying assignment by trying out all possible
2n assignments of truth values. This method has an exponential worse case complexity
and is not applicable in practice where we have to deal with huge formulas. The Davis-
Putnam-Logemann-Loveland (DPLL) algorithm is a more sophisticated procedure for
deciding SAT, which was �rst introduced in 1962 [DLL62]. Nowadays, many SAT

solvers are still based on this algorithm, for example the open-source solver MiniSat
[ES03]. However, it has been shown that its worst case time complexity is exponential
as well and that there is not much hope for (asymptotically) faster algorithms since
SAT has been proven to be an NP-complete problem [Coo71].

2.2 Satis�ability modulo theories

Satis�ability modulo theories (SMT) is an approach which tackles the drawback that
the propositions in PL formulas are semantically isolated like explained above. In
order to create more expressive formulas, the propositions are replaced by constraints
de�ned according to some speci�c theory.

The theory of interest within this thesis is the quanti�er-free non-linear real arith-
metic (QF_NRA). Its constraints are de�ned by the following abstract grammar:

p := a | X | (p+ p) | (p · p)
c := p > 0 | p ≥ 0 | p = 0 | p ≤ 0 | p < 0 | p 6= 0

Here, a is a rational constant and X is a real valued variable from an in�nite pool
X,Y,Z,... of variables. The p are called terms or polynomials and the c are the con-
straints. Its semantics are given by the usual meanings of +, ·, > and so on for real
numbers. For example,(

(((X + −2) · (X + −2)) + ((Y + −2) · (Y + −2))) + −1
)
< 0

is a QF_NRA constraint. However, we favor the habitual notation from algebra where
we leave out brackets and use exponents, such that the syntax of the above expression
is simpli�ed to (X − 2)2 + (Y − 2)2 − 1 < 0.

A QF_NRA formula is obtained by substituting the propositions in a PL formula
with QF_NRA constraints. For example,

(X − 2)2 + (Y − 2)2 − 1 < 0 ∧ (¬(X − 3 < 0) ∨X − Y ≥ 0) (2.2)

is a QF_NRA formula. The speci�c SMT problem is then to decide whether there
exist real values for the variables in the formula such that all constraints are satis�ed.

Lazy SMT solving In the lazy approach [Seb07] for solving SMT problems, a
Boolean abstraction of the input SMT formula is handed to a DPLL-based SAT solver.
The abstraction is a PL formula which is obtained by replacing the theory constraints
by Boolean variables again. Before we do this, we also `push' the negations into
the constraints, meaning that in the example formula 2.2, the negated constraint
constraint ¬(X − 3 < 0) would become X − 3 ≥ 0. A complete Boolean abstraction
of formula 2.2 would then be

A ∧ (B ∨ C). (2.3)

The SAT solver either proves unsatis�ability of the abstraction, meaning that the
SMT problem is also unsatis�able, or it produces a satisfying variable assignment. In
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the example, the SAT solver might output the satisfying assignment

A 7→ 1, B 7→ 1, C 7→ 0,

for the Boolean abstraction 2.3. Then it has to be checked if the theory constraints
corresponding to the Boolean variables which are set to true under the current assign-
ment are consistent with respect to the semantics of the theory. This functionality is
implemented a so-called theory solver. In our example, the theory solver would have
to decide whether there exist real numbers X and Y such that the inequalities (1)
(X − 2)2 + (Y − 2)2 − 1 < 0 and (2) X − 3 ≥ 0 hold together. All points (X,Y ) that
satisfy (1) must lie within in a circle with midpoint (2,2) and radius 1. For none of
these points it holds that X ≥ 3, so the constraints (1) and (2) are contradictory.
If they were not, then we would be done and the procedure could return the result
satis�able. Since in our example this is not the case, the theory solver informs the
SAT solver about the discovered inconsistency, providing a (preferably small) subset
of constraints that are responsible for causing the con�ict. Here, this infeasible subset
would consist of the two constraints (1) and (2), but in general it can be signi�cantly
smaller than the whole input the theory module has received. As soon as the SAT

solver is informed about an inconsistency, it has to �nd an alternative satisfying as-
signment of the Boolean abstraction. In our case, it might undo its decision that B
is set to 1 and assign it 0 instead. Additionally, it sets C to 1. The theory solver
then receives the constraints (1) (X − 2)2 + (Y − 2)2 − 1 < 0 and (3) X − Y ≥ 0,
which are also depicted in Figure 1.1 of Chapter 1. The points satisfying (3) are the
ones that lie on and below the line. Since some of these points are also located within
the circle, the two constraints are not con�icting. The theory solver informs the SAT
solver about this circumstance so that it can return the �nal result satis�able.

SMT solver
SAT solver

Theory solver

(partial) assignment satis�able / infeasible subset

(un)satis�able

Figure 2.1: Architecture of a lazy SMT solver

The lazy approach can be further classi�ed into full-lazy and less-lazy SMT solving. In
a full-lazy framework, the theory module is only consulted when a complete satisfying
assignment of the Boolean abstraction is found, just like illustrated in our example. In
the less-lazy approach, the SAT solver can consult the theory solver more frequently,
even with partial assignments. Thus, the less-lazy approach is a generalization of the
full-lazy technique.

SMT-compliance A theory solver which is to be used within a lazy SMT framework
should have some speci�c features. In the example above, we have already seen that
it should have the ability to generate infeasible subsets of its input constraints if their
conjunction turns out to be unsatis�able. This has the e�ect that the SAT solver
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knows in which states it should not enter again, ensuring a terminating procedure.
Each time the SAT solver is informed about an infeasible subset, it will react undoing
a couple of decisions that led to the inconsistent variable assignment. The smaller an
infeasible subset is, the less decisions have to be undone, meaning that the SAT solver
does not always have to start from the beginning again. This results in the typical
behavior that between two consecutive theory solver calls, parts of the assignment
remain the same. In other words, the SAT solver adds and removes a few constraints
while usually the bigger part of them remains untouched. The overall procedure
greatly bene�ts from the theory solver being able to take advantage of this behavior.

Suppose that the theory solver is in a state S where it is able to decide whether
a set C of constraints is consistent. For example, if the theory is QF_NRA and the
solver is implemented using the CAD algorithm, this state corresponds to the situation
where all sample points of a CAD associated to the polynomials of the constraints in C
have already been computed (or at least enough sample points to prove satis�ability).
Now consider a set C̃ = C ∪ {c} of constraints for some c /∈ C. We say that the theory
solver supports incrementality if, starting from the state S, it can `e�ciently' get into
a state S̃ that permits deciding whether the conjunction of the constraints in C̃ is
satis�able. By `e�cient' we mean that the cost of the computations necessary to get
into S̃ is strictly less if we use S as a starting point than if we would compute S̃ from
the initial solver state. Similarly, if the same holds when C̃ = C \ {c} for some c ∈ C,
then we say that the theory solver supports backtracking.

In summary, we call a theory solver SMT-compliant if it supports incrementality,
backtracking and the generation of infeasible subsets.

2.3 SMT-RAT

SMT-RAT [CKJ+15] is a lazy SMT solver which supports several theories. Currently,
there exist SMT-compliant solvers for linear and non-linear integer and real arithmetic,
bitvectors, equality logic with uninterpreted functions and others. SMT-RAT also
permits the integration of custom theory modules into the lazy SMT framework.
Another core feature is that so called strategies can be de�ned in order to compose
new solvers easily.

Among others, there is a non-linear real arithmetic solver available which is based
on the CAD method presented in Chapter 1. The standard method is enhanced with
additional features in order to make it SMT-compliant. In particular, one can add
and remove polynomials from an already computed CAD e�ciently. Moreover, the
solving behavior is such that instead of constructing the whole set of sample points
�rst and then checking if any of these points satis�es all constraints, the sample points
are lifted one after another. Once a point is lifted completely, it is checked if it is a
solution. This often avoids constructing the complete set of sample points in cases
where the conjunction of the input constraints is satis�able.

2.4 Algebraic preliminaries

2.4.1 Polynomials

One of the most essential algebraic concepts are polynomials. We are going to de�ne
them formally and discuss some related ideas that are relevant in our further discus-
sion. The de�nitions can be found in many standard references like [BPR10], [Mis93],
[GCL92] or [vzGG13], where they are usually presented in a more general context.
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Throughout this section, let R ∈ {Z,Q,R,C} be the usual integer, rational, real or
complex numbers. Moreover, we let N be the non-negative and N+ be the positive
integers.

De�nition 2.4.1 (Polynomial). Let X = (X1,...,Xn), n ∈ N+, be a list of variables
and let e = (e1,...,en) ∈ Nn. An expression of the form

Xe :=

n∏
i=1

Xei
i

is called a monomial in X. An expression of the form

p :=
∑
e∈Nn

aeX
e (2.4)

where only a �nite number of the coe�cients ae ∈ R is non-zero is called a polynomial
in the domain R[X] = R[X1,...,Xn].

Sometimes we write p(X1,...,Xn) in order to indicate which variables appear in p. If
the coe�cient ae is non-zero, then we say that p has or contains the monomial Xe.
The degree of a monomial Xe is de�ned as deg(Xe) := e1 + ... + en. We de�ne the
degree deg(p) of a polynomial p as the maximum of the degrees of the monomials it
contains, or −∞ if p = 0. If n = 1, then we say that p is a univariate polynomial,
otherwise we call it multivariate. For a univariate polynomial p(X), we de�ne its
leading coe�cient to be the coe�cient which corresponds to the monomial Xdeg(p).
A QF_NRA term containing the variables X1,...,Xn like de�ned in 2.2, can be viewed
as a polynomial in Q[X1,...,Xn] if we apply the common laws of algebra until obtaining
a form like the one in 2.4.

Example 2.4.2. Let
p1(X,Y ) := 2X2Y +X + 1.

Then p1 is a polynomial in the domain Z[X,Y ], but we can also regard it as a poly-
nomial in the domain R[X,Y,Z], for example. The degree of p1 is 3 and it is a
multivariate polynomial. The polynomial

p2(X) := X5 +
2

7
X2 − 1

2

is a univariate polynomial in the domain Q[X] with degree 5 and leading coe�cient
1.

Of course, one can also de�ne polynomial domains with respect to other structures
R /∈ {Z,Q,R,C}. Usually, the only requirement on R is that it must be a commutative
ring. Within the scope of this thesis however, we will only focus on the domains that
are actually relevant for our problems.

Sometimes it is convenient to view a multivariate polynomial p ∈ R[X1,...,Xn,X],
n ∈ N+, as a univariate polynomial in the variable X whose coe�cients rely on the
parameters X1,...,Xn. We write p ∈ R[X1,...,Xn][X] whenever we apply this notion.
Then we write degX(p) in order to refer to the degree of p with respect to the variable
X.

Example 2.4.3. Consider once again p1(X,Y ) = 2X2Y + X + 1 from Example
2.4.2. Viewed in the domain Z[X][Y ], p becomes (2X2)Y + (X + 1), that means, the
coe�cients of p are 2X2 and X + 1 and it holds that degY (p) = 1. Regarded as a
polynomial from Z[Y ][X] on the other hand, the coe�cients are 2Y , 1, 1 and we have
degX(p) = 2.
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2.4.2 Roots

Each polynomial p ∈ R[X1,...,Xn] de�nes a function νp : Rn → R, called the evalu-
ation function of p. Given (ξ1,...,ξn) ∈ Rn, we obtain p(ξ1,...,ξn) := νp(ξ1,...,ξn) by
substituting the variables X1,...,Xn for their corresponding values ξ1,...,ξn and eval-
uating the so obtained arithmetic expression in R. We often plot this function when
we want to get a feeling of how a polynomial `looks like'.

De�nition 2.4.4 (Real root). Let p ∈ R[X]. Each ξ ∈ R with p(ξ) = 0 is called a
real root of p.

If ξ is a root of p(X), then p = q(X) · (X − ξ) for some polynomial q with deg(q) =
deg(p)− 1. This implies that p has at most deg(p) di�erent real roots.

2.4.3 Derivatives

The next de�nition will be particularly important in Chapter 3 where we introduce
Thom encodings.

De�nition 2.4.5 (Derivative). We de�ne derivatives for both univariate and multi-
variate polynomials as follows:

� Let p =
∑d
i=0 aix

i ∈ R[X]. The derivative p′ of p is de�ned as

p′ :=

d∑
i=1

i · aixi−1,

with the convention that the empty sum equals 0.

� For p ∈ R[X1,...,Xn, X], we write p′X for the derivative of p viewed as a polyno-
mial in the domain R[X1,...,Xn][X] and call this the derivative of p with respect
to X.

For a non-constant univariate polynomial p, the derivative p′ has degree deg(p)−1. We
can also take the derivative of the derivative of p. We call this the second derivative
and denote it by p′′. In general, the k-th derivative of p is denoted by p(k). The
derivative p(deg(p)) is always constant and p(deg(p)+l) is the zero polynomial for all
l > 0. Similar considerations hold when we regard p as a polynomial from a domain
like R[X1,...,Xn][X]. Then we write p(k)

X in order to refer to the k-th derivative of p
with respect to X.

Example 2.4.6. The derivative of the polynomial p2(X) = X5 + 2
7X

2 − 1
2 from

Example 2.4.2 is

p′2 = 5X4 +
4

7
X,

and the derivative of p1(X,Y ) = 2X2Y +X + 1 with respect to Y is the polynomial

p′1Y = 2X2.
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2.5 Real algebraic numbers in the CAD

De�nition 2.5.1 (Real algebraic numbers). The set Ralg of real algebraic numbers
is de�ned by

Ralg := {ξ ∈ R : there exists p ∈ Q[X] \ {0} with p(ξ) = 0}.

In other words, a real number is algebraic if it is a real root of a non-zero rational
polynomial. In the literature, the real algebraic numbers are usually de�ned as real
roots of integer polynomials (see for example [BPR10], Chapter 2). However, the two
de�nitions are equivalent because for every non-zero

p =
an
bn
Xn + ...+

a0

b0
∈ Q[X],

we observe that the polynomial bn · ... · b0 · p is in Z[X] and has the same roots as
p. We have chosen the de�nition with rational polynomials because it appears more
natural in our context.

Every q ∈ Q is algebraic since it is a root of the polynomial X − q. There are real
numbers which are not algebraic: A famous example is the number π [Lin00]. We
therefore have the relation Q ⊂ Ralg ⊂ R, where all inclusions are strict.

Another notable fact is that Ralg forms a real closed �eld ([BPR10], Exercise 2.11).
Roughly speaking, this means that certain fundamental properties of R also hold in
Ralg. In particular, Ralg is closed under addition, multiplication and the computation
of inverse elements.

2.5.1 Real algebraic number representations

Since Ralg contains irrational numbers, any �nite representation of a real algebraic
number must be implicit. From the de�nition of real algebraic numbers it follows
immediately that it is a viable approach to represent a real algebraic number by a
polynomial p ∈ Q[X] for which it is a root and � for the case that the p has multiple
real roots � add some additional information which uniquely identi�es it within the
set of all real roots of p. It is intuitive that this `additional piece of information' can
be stored in a �nite memory because we only need to distinguish between a �nite
amount of roots.

De�nition 2.5.2 (Real algebraic number representation). Let ξ ∈ Ralg and p ∈ Q[X]
such that ξ is a real root of p. A real algebraic number representation of ξ is a tuple
(p,Ω), where Ω is a �nite `additional information' which uniquely discriminates ξ
from the other real roots of p.

Di�erent designs for the additional information Ω yield di�erent representation tech-
niques. In the following, we will see two distinct approaches and in Chapter 3 we are
going to study Thom encodings as a real algebraic number representation.

A straightforward (and very `implicit') real algebraic number representation is
the order representation ([Mis93], Section 8.5). A root of a p is uniquely identi�ed
with a positive integer describing its position in the ordered list of real roots of
p. For example, (X2 − 2, 2) is an order representation of

√
2. At �rst glance, this

representation might seem quite e�cient: The root �nding problem, for example, boils
down to real root counting which is quite cheap as we will see in the next section.
However, when we try to implement the comparison operation for this representation,
we already run into trouble: The information about the position in the list of roots
does not establish any relation between two real algebraic numbers represented by
(p1, n1) and (p2, n2) with p1 6= p2. The order representation has applications [JDM12],
but in our context it does not seem well suited.
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2.5.2 Required operations

The chosen real algebraic number representation greatly in�uences the overall com-
plexity of the CAD algorithm because the operations performed in the lifting phase
almost exclusively depend on them. The next de�nition gives an overview of the
interfaces that any representation intended to be used in the CAD algorithm must
implement.

De�nition 2.5.3 (Lifting phase operations). Let ξ1, ..., ξn ∈ Ralg be given in terms
of real algebraic number representations (p1,Ω1), ..., (pn,Ωn).

1. Root �nding. Find representations for all real roots of p ∈ Q[X].

2. Comparison. Decide whether ξ1 < ξ2.

3. Intermediate points. If ξ1 < ξ2, �nd a representation of a real algebraic
number in ]ξ1, ξ2[.

4. Samples below and above. Find representations of real algebraic numbers ξl
and ξu such that ξl < ξ1 and ξu > ξ1.

5. Evaluation. For p ∈ Q[X1,...,Xn], determine sgn(p(ξ1,...,ξn)).

6. Lifting. For p ∈ Q[X1,...,Xn,X],

(a) decide whether p(ξ1,...,ξn,X) is the zero polynomial and, if not,

(b) �nd representations of all real roots of p(ξ1,...,ξn,X).

Operation 5 is not an actual evaluation in the sense that the output is a real number.
We gave it that name because it can be used to evaluate a constraint p(X1,...,Xn) ∼ 0.
For this purpose, only the sign of p(ξ1,...,ξn) is relevant.

2.6 Interval representation

Another real algebraic number representation is the interval representation where the
additional information Ω is provided in terms of an isolating interval.

De�nition 2.6.1 (Interval representation). Let ξ ∈ Ralg and p ∈ Q[X] with p(ξ) = 0.
Furthermore, let a,b ∈ Q, a ≤ b be such that for any real root ξ′ of p it holds that

ξ′ ∈ [a,b] implies that ξ′ = ξ.

Then (p, [a,b]) is called an interval representation of ξ and [a,b] is an isolating interval
for ξ.

The interval representation is a well-established real algebraic number representation
that has already been proposed in the original description of the CAD algorithm
[Col75].

2.6.1 Cauchy bounds and Sturm's theorem

Two basic ingredients that are needed in order to implement the operations listed
in De�nition 2.5.3 for the interval representation are Cauchy bounds and Sturm's
Theorem. We are going to introduce them formally since they will play a role in the
later chapters again.
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Lemma 2.6.2 (Cauchy bound, [Mis93] Corollary 8.3.2). Let

p(X) = adX
d + ad−1X

d−1 + ...+ a0 ∈ R[X] \ {0}.

If we let

C(p) := 1 + max
i=0,...,d−1

|ai|
|ad|

,

then for any real root ξ of p it holds that |ξ| < C(p).

In other words, all real roots of p lie within the interval ]− C(p), C(p)[.

Example 2.6.3. Consider p = X3−2X. We have C(p) = 1+ |−2|
|1| = 3, thus applying

Lemma 2.6.2, we conclude that for all real roots of ξ of p it holds that −3 < ξ < 3.

For polynomials p, q ∈ R[X], q 6= 0, we let rem(p, q) be the remainder of the polyno-
mial division of p by q.

De�nition 2.6.4 (Signed remainder sequence, c.f. [BPR10] De�nition 1.7). Let p, q ∈
R[X] \ {0}. The signed remainder sequence SRS(p, q) is the �nite list (p,q,r1,...,rk)
de�ned by

r1 := −rem(p, q),

r2 := −rem(q, r1),

r3 := −rem(r1, r2),

...

rk := −rem(rk−2, rk−1) 6= 0,

rk+1 := −rem(rk−1, rk) = 0.

Notice that if deg(p) > deg(q), then for the remainder r = rem(p,q) it holds that
deg(q) > deg(r). Thus, the degrees of the polynomials in a signed remainder sequence
are strictly decreasing and the sequence is always �nite. For a signed remainder
sequence SRS(p, q) = (p, q, r1,...,rk) we let

νa(SRS(p, q)) :=
(
p(a), q(a), r1(a),...,rk(a)

)
be the list of values that we obtain evaluating the polynomials in the sequence at
a ∈ R. Moreover, we de�ne V ara(SRS(p, q)) to be the number of sign variations in
νa(SRS(p, q)), ignoring zeros. That is, we count a sign variation between two non-
zero numbers a and b if sgn(a) 6= sgn(b) and a and b are either consecutive elements
in the list or there are arbitrarily many zeros between them.

Example 2.6.5. Consider once again the polynomial p = X3 − 2X from Example
2.6.3 and the polynomial q := 3X2 − 2. We compute the signed remainder sequence
of p and q:

SRS(p, q) = (X3 − 2X, 3X2 − 2,
4

3
X, 2)

The evaluated sequence at the point a = 3, for example, is

ν3(SRS(p,q)) = (21, 25, 4, 2),

and for a = −3 we obtain

ν−3(SRS(p,q)) = (−21, 25, − 4, 2).

Thus, we have V ar3(SRS(p, q)) = 0 and V ar−3(SRS(p, q)) = 3.
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In Example 2.6.5, the polynomial q was chosen to be the derivative of p. This has
a reason: There is a relation between the signed remainder sequence SRS(p, p′) and
the number of real roots of p within a speci�c interval.

Theorem 2.6.6 (Sturm's Theorem, [Mis93] Corollary 8.4.4, [BPR10] Theorem 2.50).
Let p ∈ R[X] be non-constant and let a,b ∈ R with a < b. The number of di�erent
real roots of p that lie in the interval [a,b] is equal to

V ara(SRS(p, p′))− V arb(SRS(p, p′)).

Example 2.6.7. Using the results from Example 2.6.3 and 2.6.5, we conclude that
p = X3−2X has 3 di�erent real roots by Theorem 2.6.6. We verify this result noticing
that in fact p has the roots −

√
2, 0 and

√
2.

2.6.2 Operations for the interval representation

The root �nding operation for the interval representation can be implemented as fol-
lows: Given a non-constant polynomial p, we �rst compute the Cauchy bound C(p).
Then we calculate the signed remainder sequence of p and p′ and apply Sturm's The-
orem in order to determine the number of real roots of p in the interval [−C(p), C(p)],
which is equal to the total number of roots of p. The interval is then split into
halves and once again, Sturm's theorem is applied to count the number of roots that
lie within these smaller intervals. This procedure is repeated until we �nally obtain
isolating intervals for each root of p.

In order to compare real algebraic numbers given as interval representations (p1, I1)
and (p2, I2), a similar technique can be applied to re�ne I1 and I2 until they are dis-
joint.

More sophisticated algorithms for the interval representation can be found in
[EMT08].



Chapter 3

Thom encodings of real

algebraic numbers

In this chapter, we explain how real algebraic numbers can be �nitely represented by
so-called Thom encodings. The basic idea �rst appeared in [CR88] and since then
has been studied in a number of subsequent papers. In [RS90], for example, several
improvements which we shall discuss later are presented. In [CLM+92], the authors
give an overview of a number of algorithms performing operations such as addition,
multiplication or computation of inverse elements. Nowadays, the Thom representa-
tion, which in the literature is sometimes also referred to as the sign representation,
has found its way into standard references like [Mis93] or [BPR10].

In the latter monograph it is shown how Thom encodings can be used within the
CAD algorithm to represent the real algebraic numbers arising in the lifting stage.
In particular, the notion of triangular Thom encodings is introduced. These are a
generalization of the `standard' Thom encodings and naturally show up when lifting
a sample point. The use of Thom encodings in general is motivated by the fact that
in a non-archimedean real closed �eld (see [BPR10] Section 2 for a de�nition) the
interval representation fails. According to the authors, in the case of an archimedean
real closed �eld (like R) the known algorithms for the interval representation are (in
theory) superior to the ones working on the Thom representation. One of the goals of
this thesis is to either con�rm or refute the validity of this statement in practice and, in
particular, within the context of SMT solving where we work with an SMT-compliant
CAD algorithm as explained in Chapter 2.

This chapter is divided into two sections: First we are going to present the theo-
retical foundations necessary in order to understand how Thom encodings work. In
the second part we are then going to describe the algorithms that implement the
operations we listed in De�nition 2.5.3.

3.1 Theoretical background

3.1.1 Thom's Lemma and applications

As we will see later, the basic idea of Thom encodings relies on a theorem called
`Thom's Lemma'. Before we can state it we have to introduce some notations.

De�nition 3.1.1 (Sign condition). Let P ⊆ R[X1,...,Xn] and ξ ∈ Rn.

� A mapping σ : P → {−1,0,1} is called a sign condition on P.
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� We let sgn(P, ξ) : P → {−1,0,1}, p 7→ sgn(p(ξ)) be the sign condition realized
by P on ξ.

� We say that P realizes σ ∈ {−1,0,1}P on ξ if and only if sgn(P, ξ)) = σ.

For better readability, we will sometimes denote a sign condition σ on P as follows:
σ = p1 ∼1 0 ∧ ... ∧ pk ∼k 0, where for all 1 ≤ i ≤ k we let ∼i be the symbol

< if σ(pi) = −1,

= if σ(pi) = 0,

> if σ(pi) = 1.

Example 3.1.2. Let P = {X + 1, X2 + Y 2 − 1} ∈ R[X,Y ] and σ the sign condition
on P de�ned by

X + 1 > 0 ∧X2 + Y 2 − 1 = 0.

Then P realizes σ on
(√

2
2 ,
√

2
2

)
∈ R2 because

√
2

2 + 1 > 0 and
(√

2
2

)2
+
(√

2
2

)2− 1 = 0.

In other words, sgn(P,
(√

2
2 ,
√

2
2

)
) = σ.

Another notation that we will frequently use is the following: For p ∈ R[X], we let

Der(p) := {p(i) : 0 ≤ i ≤ deg(p)},

with the convention that p(0) = p. Note that Der(p(k)) is the set of derivatives of p
starting at the k-th derivative.

Example 3.1.3. For p = 2X2 − 1, it holds that Der(p) = {2X2 − 1, 4X, 4}, and
Der(p′) = {4X, 4}. However, the expression Der(p′′′) is not valid because deg(p) =
2 < 3.

We now state a simpli�ed version of Thom's Lemma as found in [CR88].

Theorem 3.1.4 (Thom's Lemma). Let p ∈ R[X] \ {0} and let σ be a sign condition
on Der(p). The set

{ξ ∈ R : sgn(Der(p), ξ) = σ}
is either empty, a single point or an open interval.

The particularly interesting case of Theorem 3.1.4 is when only a single point ξ ∈ R
realizes the sign condition σ on Der(p). This always holds when σ(p) = 0, meaning
that ξ is a root of p. Thus, Thom's Lemma can be used to characterize the real roots
of a univariate polynomial. We will formulate this by the following corollary which is
an immediate consequence of Thom's Lemma.

Corollary 3.1.5. Let p ∈ R \ {0}. If ξ1, ξ2 ∈ R are both roots of p, then it holds that

ξ1 = ξ2 ⇐⇒ sgn(Der(p′), ξ1) = sgn(Der(p′), ξ2)

Proof. `⇒' is trivial. For `⇐' suppose that w.l.o.g. ξ1 < ξ2 but realize the same
sign condition σ on Der(p). Then, by Theorem 3.1.4, all ξ ∈ R with ξ1 ≤ ξ ≤ ξ2
also realize σ on Der(p). In particular, p(ξ) = 0 which means that p has an in�nite
number of roots. But this is a contradiction to the assumption that p 6= 0.

The preceding corollary suggests representing a real algebraic number using a poly-
nomial in Q[X] for which it is a root together with the sign condition it realizes on
the derivatives of this polynomial. Using the terms de�ned in Chapter 2, we could
also say that we obtain a real algebraic number representation letting the additional
information Ω be the sign condition the derivatives realize on the root. We are going
to make this more precise in De�nition 3.1.9.
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Example 3.1.6. Consider the polynomial p = X3 − 2X ∈ Q[X] and its derivatives
p′ = 3X2 − 2, p′′ = 6X and p′′′ = 6. The real roots of p are −

√
2, 0 and

√
2.

The tables shows the sign conditions realized by the roots on Der(p′), which are also
illustrated in Figure 3.1.

p′ p′′ p′′′

−
√

2 1 −1 1

0 −1 0 1
√

2 1 1 1

As predicted in Corollary 3.1.5, the sign conditions are all di�erent. The real algebraic
number

√
2, for example, can be represented by p and the additional information that√

2 is positive on all derivatives of p.

−2 −1 1 2

pp′

p′′

p′′′

Figure 3.1: The polynomial p = X3− 2X from Example 3.1.6 and its derivatives. The sign
conditions realized by {p′, p′′, p′′′} on the real roots of p are all di�erent.

In order to distinguish between the real roots of p ∈ Q[X], we do not necessarily
need to know the signs realized on all derivatives. In particular, if deg(p) = d, then
p(d) is constant and sgn(p(d)(ξ)) is the same for all real roots ξ of p. Hence the sign
conditions realized by p(d) on the roots ξ do not carry any information necessary to
discriminate between the roots. A more general remark can be found in [RS90]: In
some cases, even the signs realized on the non-constant derivatives can be discarded
if we are only interested in distinguishing between the roots. Note that in Example
3.1.6, the signs realized by p′′ on the roots (second column in the table) would su�ce
to discriminate one root from another. An extreme case is a high degree polynomial
which only has a single root � since there is no need to distinguish between di�erent
roots, no additional information at all is necessary.

The next corollary �rst appears in [CR88] and is another consequence of Thom's
Lemma 3.1.4. In particular, it enables us to order the real roots of a polynomial given
the sign conditions realized by the derivatives. Later in Section 3.2.5, we will use it
in a more general context.

Lemma 3.1.7 (Comparison lemma, [CR88]). Let p ∈ R[X] \ {0} and let ξ1, ξ2 ∈ R
be such that σ1 := sgn(Der(p), ξ1) 6= sgn(Der(p), ξ2) =: σ2. Furthermore, let k ∈ N
be maximal such that σ1(p(k)) 6= σ2(p(k)). The following statements all hold:
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1. σ1(p(k+1)) = σ2(p(k+1)) 6= 0

2. σ1(p(k+1)) = σ2(p(k+1)) = 1 implies that

ξ1 > ξ2 ⇐⇒ σ1(p(k)) > σ2(p(k))

3. σ1(p(k+1)) = σ2(p(k+1)) = −1 implies that

ξ1 > ξ2 ⇐⇒ σ1(p(k)) < σ2(p(k))

Example 3.1.8. Consider once again the polynomial p = X3 − 2X from Example
3.1.6. We can apply Corollary 3.1.7 to prove that that −

√
2 < 0: The greatest k ∈ N

such that p(k)(−
√

2) 6= p(k)(0) is 2. Note that for both −
√

2 and 0, the third derivative
of p is positive in accordance to item 1 of the corollary. For the same reason, we apply
item 2 and conclude, since sgn(p′′(−

√
2)) = −1 < 0 = sgn(p′′(0)), that −

√
2 < 0.

In Example 3.1.6, when we were just interested in distinguishing between the roots
of p, it was not necessary to know the signs realized on p′′′. The preceding example
however shows that in order to compare these roots, this information is crucial. On
the other hand, the knowledge about the signs realized on p′ was also redundant for
the comparison.

With these considerations in mind, we are now ready to de�ne Thom encodings
formally.

De�nition 3.1.9 (Thom encoding). Let p ∈ R[X] \ {0}, k ∈ N, k ≤ deg(p) and σ
be a sign condition on Der(p(k)). The tuple τ = (p, σ) is called a Thom encoding of
ξ ∈ R if and only if

1. ξ is a root of p,

2. Der(p(k)) realizes σ on ξ,

3. for all roots ξ′ of p, ξ′ 6= ξ, it holds that sgn(Der(p(k)), ξ′) 6= σ.

We refer to the number ξ as the decoding 〈τ〉 of τ . Furthermore, we call p the de�ning
polynomial of τ .

Our de�nition ensures that a Thom encoding τ = (p, σ) of ξ carries all information
needed to compare ξ to any other root of p which is also given in terms of a Thom
encoding.

In the de�nition we did no require p to have only rational coe�cients in order
to keep the de�nition more general. In practice however, when we implement Thom
encodings as a representation for real algebraic numbers, only polynomials with pure
rational coe�cients make sense. The signs realized on the last derivative p(deg(p)) of p
can easily be deduced from the sign of the leading coe�cient of p and thus would not
have to be stored explicitly. In order to keep our presentation simple, we abstract from
such implementational details throughout this chapter. In Section 5.1, we describe
some aspects of a realistic implementation of Thom encodings.

Example 3.1.10. Once again, let p = X3 − 2X. Let τ = (p, σ) where σ is the sign
condition on Der(p′′) given by

σ = p′′ > 0 ∧ p′′′ > 0.

Then τ is a Thom encoding with 〈τ〉 =
√

2.
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From the de�nition of real algebraic numbers it is immediately clear that for each
ξ ∈ Ralg there is a Thom encoding τ = (p, σ) such that 〈τ〉 = ξ and p has only rational
coe�cients. However, the encoding τ is not uniquely de�ned by ξ because di�erent
polynomials can have ξ a as root � in fact, there are in�nitely many such polynomials.
It should also be noted that not all tuples (p, σ) are valid Thom encodings.

Example 3.1.11. Let p = X2− 2 and let σ be the sign condition on Der(p′) de�ned
as follows:

σ = p′ > 0 ∧ p′′ > 0

Then τ = (p, σ) is also a Thom encoding of
√

2.

3.1.2 Triangular Thom encodings

In the lifting phase of the CAD, one must be able to substitute all but one of a
polynomial's variables by real algebraic numbers represented as Thom encodings. If
we would do this literally, we would need algorithms to add and multiply real algebraic
numbers in the Thom representation. As explained in [CLM+92], this is possible in
principal. However, the result would be a polynomial whose real algebraic coe�cients
again are only given in terms of Thom encodings. If we were then going to characterize
the real roots of this polynomial, we would obtain Thom encodings which depend on
the encodings de�ning the coe�cients.

The idea of triangular Thom encodings is similar to this but it avoids the costly
arithmetic operations. Before we can de�ne them formally we need some more de�-
nitions.

De�nition 3.1.12 (Zero-dimensional system, [BPR10] Section 4.5). Let Z ⊂ Q[X1,...,Xn]
be �nite. For a domain D ∈ {R,C} we de�ne the zero set of Z on Dn as

Zeros(Z, Dn) := {(ξ1,...,ξn) ∈ Dn : p(ξ1,...,ξn) = 0 for all p ∈ Z}.

The set Z is called a zero-dimensional system if and only if Zeros(Z,Cn) is �nite.

Usually, we just write Zeros(Z) instead of Zeros(Z,Rn), with the understanding
that n is the number of di�erent variables in the polynomials in Z. In the univariate
case, all �nite subsets of Q[X] which do not consist only of the zero polynomial are
zero-dimensional systems as the numbers of complex roots of a non-zero univariate
polynomial is bounded by its degree. In the multivariate case, it is more di�cult to
decide whether a given set of polynomials is a zero-dimensional system. We will come
back to this in Section 4.2.

Let p ∈ R[X1,...,Xn] be a multivariate polynomial. Similar to our notation from
above, we de�ne

DerXi(p) := {p(j)
Xi
, 0 ≤ j ≤ degXi(p)},

where 1 ≤ i ≤ n and again with the understanding that the 0-th derivative of p with
respect to the variable Xi is p itself.

De�nition 3.1.13 (Triangular Thom encoding, cf. [BPR10] De�nition 11.5). Let
n ∈ N+ and P be a zero-dimensional system with exactly n polynomials which have
the following form:

pn(X1,...,Xn) ∈ Q[X1,...,Xn]
...

p2(X1,X2) ∈ Q[X1,X2]
p1(X1) ∈ Q[X1]
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For some k = (k1,...,kn) ∈ Nn, we let Der(Pk) :=
⋃n
i=1DerXi(p

(ki)
i ) and Σ be a sign

condition on Der(Pk). The tuple T = (P,Σ) is called a triangular Thom encoding
of (ξ1,...,ξn) ∈ Rnalg if and only if it holds that

τ1 =
(
p1(X1), σ1

)
is a Thom encoding of ξ1,

τ2 =
(
p2(ξ1,X2), σ2(ξ1)

)
is a Thom encoding of ξ2,

...

τn =
(
pn(ξ1,...,ξn−1,Xn), σn(ξ1,...,ξn−1)

)
is a Thom encoding of ξn,

where

σ1 := Σ
∣∣
DerX1

(p
(k1)
1 )

and for 1 < i ≤ n, σi(ξ1,...,ξi−1) is obtained by taking

σi := Σ
∣∣
DerXi (p

(ki)

i )

and substituting all appearances of X1,...,Xi−1 in the polynomials of the domain of σi
by their corresponding values ξ1,...,ξi−1.

We denote the n-dimensional point (ξ1,..,ξn) ∈ Rnalg by 〈T 〉. The order of the numbers
in (ξ1,..,ξn) is uniquely determined by the order on the variables. Given a triangular
Thom encoding T , we refer to the set Der(Pk) as Der(T ).

Also note that for n = 1, a triangular Thom encoding is just a usual Thom
encoding. The reason why we require P to be a zero-dimensional system is that the
algorithms described in Chapter 4 only work if this conditions holds.

Example 3.1.14. Let

q := X2 + Y 2 − 2 ∈ Q[X,Y ]

and consider the Thom encoding τ = (p, σ) of
√

2 from Example 3.1.10. Substituting
X for

√
2 in q yields q̃ = −Y 2. Since the only real root of q̃ is 0, (q̃, q̃′′ > 0) is a

Thom encoding of 0. Now let P := {p,q}, and Σ := σ ∧ q′′Y > 0. Then T = (P,Σ)
is a triangular Thom encoding with 〈T 〉 = (

√
2, 0), which is also illustrated in Figure

3.2. In this case, Der(T ) contains the derivatives p′′, p′′′ and q′′Y .

3.2 Algorithms

This section is dedicated to the algorithms necessary to perform the operations listed
in De�nition 2.5.3 on real algebraic numbers given in terms of (triangular) Thom
encodings which we introduced in the preceding section. In [BPR10], Chapter 11, all
required principles are outlined. However, the author's view on the lifting procedure is
di�erent than ours: For example, instead of computing an intermediate point between
two numbers given by Thom encodings, the authors propose a method for computing
all intermediate points that lie between the zeros of the two de�ning polynomials
at once. This contradicts our notion of an incremental lifting process where we are
interested in performing only `local' operations. For this reason, we describe adapted
algorithms which better �t to our needs. We also make some considerations on how
the operations can be implemented more e�ciently in the case of real numbers.
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−1 1

−1

1

0

Zeros(X2+Y 2−2)

(
√
2, 0)

X

Y

(q = X2 + Y 2 − 2, q′′Y > 0)

(p = X3−2X, p′′>0 ∧ p′′′>0)
√
2

(
√
2,0)

depends on

Figure 3.2: (left) Lifting the polynomial q = X2 + Y 2 − 2 (whose zero set forms the

solid circle) on the sample point
√

2 given as a Thom encoding with de�ning polynomial

p = X3−2X. The dotted lines depict the set Zeros(p, R2). The thick dotted line corresponds

to the root
√

2 of p. The cross is the point (
√

2, 0). (right) Illustration of the triangular Thom

encoding from Example 3.1.14 showing the dependency between the pairs of polynomials and

sign conditions.

3.2.1 Sign determination black box

For the following discussion let us assume that we have an implementation of the
sign determination algorithm speci�ed as follows at hand. In Chapter 4 we describe
a possible implementation more in detail. Let sgn(P, S) := {sgn(P, ξ) : ξ ∈ S} for a
�nite S ⊂ Rn.

Blackbox SignDetermination

Input: A �nite P ⊂ Q[X1,...,Xn] and a zero-dimensional system Z ⊂ Q[X1,...,Xn]
Output: The set Σ = sgn

(
P, Zeros(Z)

)
of sign conditions on P

In Chapter 4, we state some results about the complexity of sign determination.
For now, let us suppose that invoking the sign determination black box is rather
expensive and should therefore be used as few times as possible. At this point, the
only thing that is important to understand is that the sign determination algorithm
works incrementally: Given P = {p1,...,pk} ⊂ Q[X1,...,Xn] and a zero-dimensional
system Z ⊂ Q[X1,...,Xn] as inputs, it computes the series

sgn
(
{p1}, Zeros(Z)

)
, ..., sgn

(
{p1,...,pk}, Zeros(Z)

)
of sets of sign conditions. It can also be halted after each step in order to continue
the computation later at a given time. In other words, it is not more expensive to
compute �rst, sgn

(
{p1,...,pi−1}, Zeros(Z)

)
and then sgn

(
{p1,...,pi−1, pi}, Zeros(Z)

)
instead of computing the latter quantity directly.

We are also going to assume that we can determine the number |Zeros(Z)| for
a given zero dimensional system Z. In Section 2.6, we have already seen how to
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implement this in the case where Z = {p} for some p ∈ Q[X]\{0}. We will see in the
next Chapter how this number can be computed in the multivariate case. We do not
have to regard this as an additional e�ort as the sign determination algorithm will
compute this number anyway.

3.2.2 Practical aspects

In our pseudo code descriptions, we assume that there is some data structure for rep-
resenting rational polynomials available which is able to perform basic operations like
multiplication or computing derivatives. Furthermore, we do not pay attention to nu-
meric limits on rational coe�cients. We also abstract from concrete data structures
implementing containers and always use (formal) sets or mappings and the corre-
sponding notation instead. For more details on how a real implementation might
look like, see Section 5.1.

3.2.3 Root �nding

With the sign determination algorithm at hand, the problem of �nding Thom encod-
ings for the real roots of a non-zero univariate polynomial becomes an easy task.

Algorithm 1 Real roots as Thom encodings

Input: p ∈ Q[X] \ {0}
Output: The set R of all real roots of p represented as Thom encodings

1: procedure RealRoots(p)
2: R ← ∅
3: D ← ∅
4: k ← deg(p)
5: while |R| < |Zeros({p})| do
6: D ← D ∪ {p(k)}
7: Σ← SignDetermination(D, {p})
8: R ← {(p, σ) : σ ∈ Σ}
9: k ← k − 1
10: end while

11: return R
12: end procedure

Algorithm 1 terminates because after at most deg(p) steps, it holds that |R| =
|Zeros({p})| by Corollary 3.1.5. It is designed so that the set Der(p(k)) is as small as
possible, while still generating Thom encodings consistent with De�nition 3.1.9. This
is achieved by successively computing the sets

sgn
(
Der(p(deg(p))), Zeros({p})

)
, sgn

(
Der(p(deg(p)−1)), Zeros({p})

)
,...

until the number of sign conditions equals |Zeros({p})|.

Example 3.2.1. We illustrate the behavior of Algorithm 1 on the input polynomial
p = X3 − 2X with |Zeros({p})| = 3.
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R D Σ

∅ ∅ -

{(p, p′′′ > 0)} {p′′′ = 6} {p′′′ > 0}
{(p, p′′ = 0 ∧ p′′′ > 0),

(p, p′′ > 0 ∧ p′′′ > 0),

(p, p′′ < 0 ∧ p′′′ > 0)}
{p′′ = 6X, p′′′ = 6}

{(p′′ = 0 ∧ p′′′ > 0),

(p′′ > 0 ∧ p′′′ > 0),

(p′′ < 0 ∧ p′′′ > 0)}

The �rst row correspond to the state after the initialization, the second and the third
row are the states achieved after the �rst and the second iteration, respectively.

After the second iteration we know that we are done because the number of di�erent
sign conditions in Σ equals |Zeros({p})| = 3. Compare the result to Figure 3.1.

Next recall what happens when we want to lift a sample point: During the lifting phase
of the CAD algorithm, sample points (ξ1,...,ξn) ∈ Rn of level n have to be plugged into
polynomials p(X1,...,Xn,X) of level n+1. In theory, this yields univariate polynomials
p̃(X) := p(ξ1,...,ξn,X) whose roots then have to be speci�ed in order to compute the
sample points on level n + 1. In our context, a sample point (ξ1,...,ξn) on level n is
given as a (triangular) Thom encoding and our task is to �nd new triangular Thom
encodings representing the set of points (ξ1,...,ξn,ξ), where the ξ are the real roots of
p̃(X).

Algorithm 2 Lifting a sample point

Input: p(X1,...,Xn,X) ∈ Q[X1,..,Xn,X] and a triangular Thom encoding T =
(P,Σ), 〈T 〉 = (ξ1,...,ξn), such that P ∪ {p} is a zero dimensional system
Output: For each real root ξ of p(ξ1,...,ξn, X) a triangular Thom encoding T̃ ,
such that 〈T̃ 〉 = (ξ1,...,ξn,ξ)

1: procedure RealRoots(p, T )
2: R ← ∅
3: DT ← Der(T )
4: D ← ∅
5: k ← degX(p)
6: while |R| < |Zeros(P ∪ {p})| do
7: D ← D ∪ {p(k)

X }
8: Σ̃← SignDetermination(DT ∪ D,P ∪ {p})
9: Σ̃← {σ̃ ∈ Σ̃ : σ̃

∣∣
DT

= Σ}
10: R ← {(P ∪ {p}, σ̃) : σ̃ ∈ Σ̃}
11: k ← k − 1
12: end while

13: return R
14: end procedure

Algorithm 2 is very similar to Algorithm 1. Actually, it can be seen as a generalization
because for n = 0, P = ∅ and Σ the empty map, Algorithm 2 becomes exactly the
root �nding algorithm for the univariate case. Using the sign determination black
box, we characterize the points (ξ1,...,ξn, ξ) in Zeros(P ∪ {p}) by means of the sign
conditions they achieve at the derivatives DT ∪ D, where D = DerX(p(k)) and k is
the greatest possible. This is achieved by the while loop, just in the same way as in
Algorithm 1. Then, from the so obtained set of sign conditions, we select only those
that extend the sign condition Σ de�ning the input point 〈T 〉 = (ξ1,...,ξn) (line 9).
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In the input speci�cation of Algorithm 2, we required P ∪ {p} to be zero-dimen-
sional. A necessary condition for this is that p does not vanish on the point 〈T 〉. In
Section 3.2.4, we describe how this can be checked. When this case occurs, we return
0 as a representative of the roots of the zero polynomial. However, there are also cases
in which p does not vanish on 〈T 〉 but P ∪{p} is no zero-dimensional system anyway.
Whenever this happens, the sign determination procedure will notice and reject the
input. We will regard this trouble as an open problem within the scope of this thesis.
In our experiments however, we observed that is does not occur very often. We give
more details about the experiments in Section 5.2.

3.2.4 Sign of a polynomial on a Thom encoding

The �rst algorithm we present in this section determines the sign realized by a polyno-
mial on a point given as a triangular Thom encoding. It corresponds to the `evaluation'
operation from De�nition 2.5.3.

Algorithm 3 Sign of a polynomial on a Thom encoding

Input: p(X1,...,Xn) ∈ Q[X1,..,Xn] and a triangular Thom encoding T = (P,Σ)
with 〈T 〉 = (ξ1,...,ξn)
Output: sgn(p(ξ1,...,ξn))

1: procedure Sign(p, T )
2: Σ̃← SignDetermination(Der(T ) ∪ {p}, P)
3: σ̃ ← only element in Σ̃ such that σ̃

∣∣
Der(T )

= Σ

4: return σ̃(p)
5: end procedure

In line 3, there is only one sign condition σ̃ in Σ̃ with this property because otherwise
there were two di�erent ξ1, ξ2 ∈ Zeros(P) with sgn(Der(T ), ξ1) = sgn(Der(T ), ξ2) =
Σ, but this is impossible by the de�nition of triangular Thom encodings 3.1.13.

Using Algorithm 3, we can also implement a procedure which checks whether
p ∈ Q[X1,...,Xn,X] vanishes on 〈T 〉 ∈ Rn for a triangular Thom encoding T .

Algorithm 4 Vanish on Thom encoding

Input: p(X1,...,Xn,X) ∈ Q[X1,..,Xn] and a triangular Thom encoding T =
(P,Σ) with 〈T 〉 = (ξ1,...,ξn)
Output: true if p(ξ1,...,ξn, X) = 0, otherwise false

1: procedure Vanishes(p, T )
2: C ← coe�cients of p viewed as a polynomial in the domain Q[X1,...,Xn][X]
3: for all c ∈ C do
4: if Sign(c, T ) 6= 0 then

5: return false
6: end if

7: end for

8: return true
9: end procedure

If we view p in the domain Q[X1,...,Xn][X], then it has the form

pd(X1,...,Xn)Xd + pd−1(X1,...,Xn)Xd−1 + ...+ p0(X1,...,Xn),
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for some d ∈ N and polynomials pi ∈ Q[X1,...,Xn] for 0 ≤ i ≤ d. They correspond to
the set C in Algorithm 4. Thus if p(ξ1,...,ξn, X) = 0 for a point (ξ1,...,ξn) ∈ Rn, then
is must hold that pi(ξ1,...,ξn) = 0 for all 0 ≤ i ≤ d.

Algorithms 4 and 2 together can be used to implement the `lifting' operation
from De�nition 2.5.3 (except for the special case where we have no zero-dimensional
system).

3.2.5 Comparison

The �rst algorithm we present here is the implementation of the comparison lemma
3.1.7.

Algorithm 5 Comparison of sign conditions with respect to the same set Der(p)

Input: For a polynomial p ∈ R[X] \ {0} and two numbers ξ1, ξ2 ∈ R the sign
conditions σ1 = sgn(Der(p), ξ1) and σ2 = sgn(Der(p), ξ2), such that σ1 6= σ2

Output: less, if ξ1 < ξ2, greater if ξ1 > ξ2
1: procedure SignCompare(σ1, σ2)
2: for k ← deg(p)− 1, ..., 0 do

3: if σ1(p(k)) 6= σ2(p(k)) then
4: if σ1(p(k+1)) = 1 then

5: if σ1(p(k)) < σ2(p(k)) then return less
6: else return greater
7: else

8: if σ1(p(k)) < σ2(p(k)) then return greater
9: else return less
10: end if

11: end if

12: end for

13: end procedure

In order to �nd the maximal k such that σ1(p(k)) 6= σ2(p(k)), we iterate over the signs
the derivatives of p achieve at ξ1 and ξ2 from back to front, starting with the second
last derivative as the last one is known to be constant. In the else case in line 7, it
holds that σ1(p(k+1)) = −1 because σ1(p(k+1)) = 0 is impossible by Corollary 3.1.7.

We can now apply Algorithm 5 in order to compare Thom encodings whose de�n-
ing polynomials are distinct. We present this as the following Algorithm 6 which is
an adaptation of Algorithm 10.16 in [BPR10].

The basic idea of Algorithm 6 is to compute the sign condition σ̃1 which 〈τ1〉 realizes
on Der(p(k2)

2 ) and then compare this to σ2 using the comparison lemma 3.1.7. Since
k2 may be greater than 0, we sometimes have to additionally extend the sign condition
σ2 (line 11). On the other hand, it is often enough to know the sign condition realized

by Der(p(k′2)
2 ) on 〈τ1〉 for some k′2 > k2. As soon as we have computed enough signs

to distinguish 〈τ1〉 and 〈τ2〉, we can apply the comparison lemma (line 15). If we go
through the complete for-loop and it never holds that σ̃1 = σ̃2, then we have proven
that Der(p2) realizes exactly the same sign conditions on 〈τ1〉 and 〈τ2〉 and thus, the
encoded numbers must be equal (line 17).

This principle can also be generalized to the multivariate case (Algorithm 10 in
the appendix).
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Algorithm 6 Comparison of Thom encodings

Input: Thom encodings τ1 = (p1, σ1), τ2 = (p2, σ2) such that σ1 is a sign condi-
tion on Der(p(k1)

1 ) and σ2 is a sign condition on Der(p(k2)
2 )

Output: less if 〈τ1〉 < 〈τ2〉, equal if 〈τ1〉 = 〈τ2〉 and greater if 〈τ1〉 > 〈τ2〉
1: procedure ThomCompare(τ1, τ2)
2: if p1 = p2 then return SignCompare(σ1, σ2)
3: D1 ← Der(k1)(p1)
4: D2 ← ∅
5: for i← deg(p2), i ≥ 0, i← i− 1 do

6: D2 ← {p(i)
2 } ∪ D2

7: Σ← SignDetermination(D1 ∪ D2, {p1})
8: σ̃1 ← only element in Σ such that σ̃1

∣∣
D1

= σ1

9: σ̃1 ← σ̃1

∣∣
D2

10: σ̃2 ← σ2

∣∣
D2

11: if k2 < |D2| then
12: Σ← SignDetermination(D2, {p2})
13: σ̃2 ← only element in Σ such that σ̃2

∣∣
Der(p

(k2)
2 )

= σ2

14: end if

15: if σ̃1 6= σ̃2 then return SignCompare(σ̃1, σ̃2)
16: end for

17: return equal
18: end procedure

Example 3.2.2. Consider the Thom encoding

τ1 = (p1 = X3 − 2X, p′′1 = 0 ∧ p′′′1 > 0)

of 0 and

τ2 = (p2 = X3 − 2, p′′′2 > 0)

of 3
√

2. Suppose we call ThomCompare(τ1, τ2). D1 is initialized with {p′′1 , p′′′1 } and
D2 with ∅. The table illustrates the subsequent behavior of the algorithm:

D2 Σ σ̃1 σ̃2

{p′′′2 }
{p′′1 = 0 ∧ p′′′1 > 0 ∧ p′′′

2 > 0,

p′′1 > 0 ∧ p′′′1 > 0 ∧ p′′′2 > 0,

p′′1 < 0 ∧ p′′′1 > 0 ∧ p′′′2 > 0}
p′′′2 > 0 p′′′2 > 0

{p′′2 , p′′′2 }
{p′′1 = 0 ∧ p′′′1 > 0 ∧ p′′

2 = 0 ∧ p′′′
2 > 0,

p′′1 > 0 ∧ p′′′1 > 0 ∧ p′′2 > 0 ∧ p′′′2 > 0,

p′′1 < 0 ∧ p′′′1 > 0 ∧ p′′2 < 0 ∧ p′′′2 > 0}
p′′2 = 0 ∧ p′′′2 > 0 p′′2 > 0 ∧ p′′′2 > 0

The parts of Σ marked in bold face correspond to the sign condition σ̃1, which is
extracted from Σ in lines 8 and 9. After the second iteration, it holds that σ̃1 6= σ̃2,
so we compare these sign conditions using Algorithm 5 which yields the result less.
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3.2.6 Intermediate points

The exact speci�cation of the algorithms computing intermediate points in the uni-
variate case is as follows:

Speci�cation Intermediate point

Input: Thom encodings τ1 = (p1, σ1), τ2 = (p2, σ2) with 〈τ1〉 < 〈τ2〉
Output: A Thom encoding τ = (p, σ) such that 〈τ1〉 < 〈τ〉 < 〈τ2〉

There are several approaches for computing intermediate points. The �rst one that
we are going to present is derived from Algorithm 10.18 in [BPR10] and relies on
Rolle's Theorem.

Lemma 3.2.3 (Rolle's Theorem, see for example [Mis93] Theorem 8.2.10). Let p ∈
R[X] and ξ1, ξ2 ∈ R be both roots of p with ξ1 < ξ2. Then the derivative p′ has a root
ξ ∈ R with ξ1 < ξ < ξ2.

We are going to apply Rolle's Theorem is the following way: Since the set of real roots
of p1p2 is equal to the union of the sets of real roots of p1 and p2, the polynomial
(p1p2)′ has at least one real root in any of the intervals ]ξ1,ξ2[, where ξ1 and ξ2 are
roots of p1p2. This consideration yields the following Algorithm 7.

Algorithm 7 Intermediate point using Rolle's Theorem

1: procedure IntermediatePoint(τ1, τ2)
2: p← (p1p2)′

3: R ← RealRoots(p)
4: for all τ in R do

5: if ThomCompare(τ1, τ) = less and ThomCompare(τ, τ2) = less then

6: return τ
7: end if

8: end for

9: end procedure

The downsides of Algorithm 7 are that the degree of the polynomial representing
the new point will be much higher than that of the input polynomials (in fact,
deg(p1) + deg(p2) − 1) and that it requires many comparison operations which are
quite expensive. However, it is then `clean' algebraic approach and can also be used
in the non-archimedean case.

We therefore present two other `seminumerical' approaches for computing inter-
mediate points which we expect to perform better in the real case. They rely on the
observation that adding rational constants to real algebraic numbers already present
in form of Thom encodings can be done e�ciently.

Lemma 3.2.4. Let (p(X), σ) be a Thom encoding of ξ ∈ Ralg and let ε ∈ Q. Then(
p(X − ε), σ(X − ε)

)
is a Thom encoding of ξ + ε,

with the understanding that p(X − ε) is obtained by substituting X in p for X − ε and
similarly, σ(X − ε) is the sign condition which results from replacing all occurrences
of X in the polynomials in the domain of σ by X − ε.

Proof. If ξ is a root of p(X) then clearly ξ + ε is a root of p(X − ε). Noticing that
(p(X − ε))′ = p′(X − ε) completes the proof.
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The same technique is also used in [CLM+92]. Note however, that substituting X for
X − ε in a `nice' polynomial, where the number of terms is small compared to the
degree, destroys this niceness.

Example 3.2.5. Consider p = X5 − 2 ∈ Q[X]. The only real root of p is 5
√

2, such
that (p, p(5) > 0) is a Thom encoding of 5

√
2. If q = (X−1)5−2 = X5−5x4 + 10x3−

10x2 + 5x − 3, then 〈(q, q(5) > 0)〉 = 5
√

2 + 1. The number of terms in q increased
signi�cantly compared to p.

The next ingredient is a lower bound on the minimal distance between two real roots
of a polynomial.1

Lemma 3.2.6 (Rumps' bound, [Rum79]). Let p ∈ Z[X] \ {0} and d = deg(p). By
‖p‖1 we denote the sum of the absolute values of the coe�cients of p. Let ξ1, ξ2 ∈ R
be di�erent roots of p. Then

|ξ1 − ξ2| >
2
√

2

d
d
2 +1(‖p‖1 + 1)d

.

Rump's bound exhibits an exponential in�uence of the degree on the size of the
denominator, but it only requires basic arithmetic operations and thus is easy to im-
plement. The bound can also be applied to rational polynomials by multiplying with
a multiple of the denominators of the coe�cients beforehand. When using Rump's
bound in a program, we have to replace

√
2 by a rational approximation 0 < r <

√
2,

for example 1 or 7/5. For a polynomial p ∈ Q[X] \ {0}, we will refer to the bound
computation as Rump(p).

A combination of the results from Lemma 3.2.4 and Lemma 3.2.6 yields the next
algorithm 8. For the substitution, we select the polynomial with smallest degree in
order to keep the degree of the output as small as possible.

Algorithm 8 Intermediate point using Rump's bound

1: procedure IntermediatePoint(τ1, τ2)
2: p← (p1p2)′

3: ε← Rump(p)
4: if deg(p1) ≤ deg(p2) then
5: q ← p1(X − ε)
6: return (q, σ1(X − ε))
7: else

8: q ← p2(X + ε)
9: return (q, σ2(X + ε))
10: end if

11: end procedure

Algorithm 8 cannot be generalized to the multivariate case so easily because the bound
only works for univariate polynomials. We therefore present an even simpler approach
which can also be used in the multivariate case (Algorithm 11 in the appendix).

1There exist tighter bounds, but the exponential in�uence of the degree on the size of the de-
nominator seems inevitable [Col01].
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Algorithm 9 Intermediate point using iterative approximation

1: procedure IntermediatePoint(τ1, τ2)
2: ε← 1
3: if deg(p1) ≤ deg(p2) then
4: q ← p1(X − ε)
5: τ ← (q, σ1(X − ε))
6: while ThomCompare(τ , τ2) 6= less do
7: ε← ε/2
8: q ← p1(X − ε)
9: τ ← (q, σ1(X − ε))
10: end while

11: return τ
12: else

13: q ← p2(X + ε)
14: τ ← (q, σ2(X + ε)
15: while ThomCompare(τ1, τ) 6= less do
16: ε← ε/2
17: q ← p2(X + ε)
18: τ ← (q, σ2(X + ε)
19: end while

20: return τ
21: end if

22: end procedure

Similar to Algorithm 8, we pick the polynomial with minimal degree for the substi-
tution. The initial value 1 for ε could also be another positive number. The same
applies for the divisor in lines 7 and 16, but it must be greater than 1.

3.2.7 Points below and above

We can always use Lemma 3.2.4 in order to add or subtract a rational constant to a
real algebraic number represented as a Thom encoding in order to obtain points below
and above. In the univariate case, where ξ = 〈τ〉 for a Thom encoding τ = (p, σ),
we can alternatively compute the Cauchy bound C(p) of p as de�ned in lemma 2.6.2.
Then, −C(p) < ξ < C(p), that means we can compute the sample points below and
above as explicitly represented rational numbers.
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Chapter 4

Sign determination

The aim of this chapter is to describe an implementation of the sign determination
black box used in the algorithms in Chapter 3.

4.1 The sign determination algorithm

Throughout the whole section, let Z ⊂ R[X1,...,Xn] be a zero-dimensional system
and let p ∈ R[X1,...,Xn]. Tarski queries will play a key role in the sign determination
algorithm we are going to develop in this section.

4.1.1 Tarski queries

For a �nite set P ⊂ R[X1,...,Xn] and a sign condition σ on P we de�ne the notation

c(σ,Z) := |{ξ ∈ Zeros(Z) : sgn(P, ξ) = σ}|.

De�nition 4.1.1 (Tarski query). The Tarski query of p on Z is de�ned by

TaQ(p,Z) := c(p > 0,Z)− c(p < 0,Z).

Recall that the notations `p > 0', `p < 0' and `p = 0' stand for sign conditions like
de�ned at the beginning of Chapter 3. In Section 4.2, we show how Tarski queries
can actually be computed.

Example 4.1.2. Let p = X − 1 and let Z = {q} with

q = X3 +X2 − 4X − 4 = (X + 2)(X + 1)(X − 2).

We have Zeros(Z) = {−2, − 1, 2}. Then c(p > 0,Z) = 1, because the only number
ξ ∈ Zeros(Z) such that p(ξ) > 0 is ξ = 2. On the other hand, c(p < 0,Z) = 2 because
there are two numbers in Zeros(Z) on which p has negative sign. Thus, the Tarski
query of p on Z is

TaQ(p,Z) = c(p > 0,Z)− c(p < 0,Z) = 1− 2 = −1.

Notice the following two properties of the Tarski query:

TaQ(1,Z) = c(p = 0,Z) + c(p > 0,Z) + c(p < 0,Z) (4.1)
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because the Tarski query of 1 on Z is just the total number of zeros in Z. Furthermore,
it holds that

TaQ(p2,Z) = c(p > 0,Z) + c(p < 0,Z) (4.2)

because p2(ξ) > 0 is true if and only if p(ξ) > 0 or p(ξ) < 0 and p2(ξ) < 0 is never
true. Together with De�nition 4.1.1, Equations 4.1 and 4.2 lead to an interesting
result.

Lemma 4.1.3. It holds that1 1 1
0 1 −1
0 1 1

 ·
c(p = 0,Z)
c(p > 0,Z)
c(p < 0,Z)

 =

 TaQ(1,Z)
TaQ(p,Z)
TaQ(p2,Z)


and the matrix is invertible.

Lemma 4.1.3 can be used to implement the sign determination black box in the case
where |P| = 1.

Example 4.1.4. Suppose that we computed the Tarski queries

TaQ(1,Z) = 3, TaQ(p,Z) = 2 and TaQ(p2,Z) = 2.

The inverse of the matrix in Lemma 4.1.3 is

1

2

2 0 −2
0 1 1
0 −1 1

 .

Thus, solving the equation system 4.1.3, we �nd that

c(p = 0,Z) = 1, c(p > 0,Z) = 2 and c(p < 0,Z) = 0.

The sign conditions realized by p on Zeros(Z) are only p = 0 and p > 0, but not
p < 0.

4.1.2 Naive sign determination

We are now going to show how the results from the previous section, especially Lemma
4.1.3, can be generalized in order to perform sign determination in the case where
|P| > 1. This will result in a `naive' algorithm which is not applicable in practice. In
the next Section 4.1.3, we will then discuss some results which improve this algorithm.

In this section, let P ⊂ R[X1,...,Xn] and let α ∈ {0,1,2}P , that means α assigns
each p ∈ P an integer between 0 and 2. This corresponds to the exponents of p which
appear in the right-hand side of the equation in Lemma 4.1.3. Furthermore, let σ be
a sign condition on P. We introduce the following notations:

� Pα := p
α(p1)
1 · ... · pα(pk)

k ∈ R[X1,...,Xn], and

� σα := σ(p1)α(p1) · ... · σ(pk)α(pk) ∈ {−1,0,1}, with the convention that 00 = 1.

The next lemma can be seen as a generalization of the Equations 4.1 and 4.2. We
need it only as an intermediate result on our way to the sign determination algorithm.
In [BPR10], it is not stated explicitly but we felt that it makes it easier to understand
Theorem 4.1.9 which will be the main result of this section.
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Lemma 4.1.5. Let Σ ⊆ {−1,0,1}P such that Σ contains all sign conditions realized
by P on Zeros(Z), that means sgn

(
P, Zeros(Z)

)
⊆ Σ. Then it holds that∑

σ∈Σ

σαc(σ,Z) = TaQ(Pα,Z).

Equations 4.1 and 4.2 are simple applications of the preceding lemma. Before we give
the proof, let us consider a more involved example.

Example 4.1.6. Let P = {p1, p2} and let α ∈ {0,1,2}P be the mapping de�ned by
α(p1) = 1 and α(p2) = 2. Furthermore, let us assume that P realizes precisely the
following 4 sign conditions on Zeros(Z):

p1 = 0 ∧ p2 > 0, p1 > 0 ∧ p2 = 0,

p1 < 0 ∧ p2 > 0, p1 < 0 ∧ p2 < 0.

Thus, applying Lemma 4.1.5, we compute

TaQ(p1p
2
2,Z) = −c(p1 < 0 ∧ p2 > 0,Z)− c(p1 < 0 ∧ p2 < 0,Z).

This is not unexpected: Consider c(p1p
2
2 > 0,Z). Since p1p

2
2 is positive whenever p1

positive and p2 is not zero, this quantity is equal to

c(p1 > 0 ∧ p2 > 0,Z) + c(p1 > 0 ∧ p2 < 0,Z).

The reason why these do not appear in the sum above is that we assumed that they
are 0 anyway. Now let us consider c(p1p

2
2 < 0,Z), which can be rewritten as

c(p1 < 0 ∧ p2 > 0,Z) + c(p1 < 0 ∧ p2 < 0,Z).

For the sign conditions p1 < 0∧p2 > 0 and p1 < 0∧p2 < 0 we have assumed that they
are realized by P on Zeros(Z). In the result produced by the Lemma, they appear
with negative sign since c(p1p

2
2 < 0,Z) also has negative sign in the Tarski query

TaQ(p1p
2
2,Z).

Proof of Lemma 4.1.5. From the assumption that sgn
(
P, Zeros(Z)

)
⊆ Σ it follows

that for all sign conditions σ′ on P that are not in Σ it holds that c(σ′,Z) = 0. Thus

c(p
α(p1)
1 ·...·pα(pk)

k > 0,Z) =
∑
σ∈Σ

c(σ(p1)α(p1) ·...·σ(pk)α(pk) > 0,Z) =
∑

σ∈Σ,σα=1

c(σ,Z)

and similarly

c(p
α(p1)
1 ·...·pα(pk)

k < 0,Z) =
∑
σ∈Σ

c(σ(p1)α(p1)·...·σ(pk)α(pk) < 0,Z) =
∑

σ∈Σ,σα=−1

c(σ,Z).

Combining these two equations we obtain

c(p
α(p1)
1 · ... · pα(pk)

k > 0,Z)− c(pα(p1)
1 · ... · pα(pk)

k < 0,Z) =
∑
σ∈Σ

σαc(σ,Z),

and the left-hand side is precisely the Tarski query TaQ(Pα,Z).

Notice that the precondition on Σ in Lemma 4.1.5 is trivially ful�lled if Σ = {−1,0,1}P .
Now let A ⊆ {0,1,2}P be a set of mappings from P to {0,1,2} and Σ ⊆ {−1,0,1}P . In
order to generalize Lemma 4.1.3, we �rst have to de�ne orderings on A and Σ. For
this purpose, we will suppose that there is already an ordering <P on P available. In
practice, when we apply the sign determination algorithm to a set P = Der(p), we
usually take the ordering which is naturally given by p < p′ < ... < p(deg(p)).
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De�nition 4.1.7 ([BPR10], Section 10.3). We de�ne lexicographic orderings <lex
on {0,1,2}P and {−1,0,1}P with respect to <P as follows:

1. Let α1 6= α2 ∈ {0,1,2}P and p ∈ P be minimal with respect to <P such that
α1(p) 6= α2(p). Then

α1 <lex α2 ⇐⇒ α1(p) < α2(p).

2. Similarly, let σ1 6= σ2 ∈ {−1,0,1}P and p ∈ P be minimal with respect to <P
such that σ1(p) 6= σ2(p). Then

σ1 <lex σ2

⇐⇒
(σ1(p) = 0 and (σ2(p) = 1 or σ2(p) = −1)) or (σ1(p) = 1 and σ2(p) = −1).

In other words, the sign conditions are ordered lexicographically using the order 0 <
1 < −1 of signs. Now consider A = {α1,...,αl} ⊆ {0,1,2}P and Σ = {σ1,...,σm} ⊆
{−1,0,1}P , where the elements have been ordered according to<lex. We letMat(A,Σ)
be the l ×m matrix de�ned by

Mat(A,Σ) :=

σ
α1
1 . . . σα1

m
...

. . .
...

σαl1 . . . σαlm

 .

With this notation, if Σ ful�lls the requirement of Lemma 4.1.5, it holds that

Mat(A,Σ) ·

 c(σ1,Z)
...

c(σm,Z)

 =

TaQ(Pα1 ,Z)
...

TaQ(Pαl ,Z)

 . (4.3)

If we let P = {p}, A = {0,1,2}{p} and Σ = {−1,0,1}{p}, Equation 4.3 is just Lemma
4.1.3. The next Theorem 4.1.9 tells us how the linear system in 4.3 can be used to
perform sign determination on an arbitrary large P. The corresponding matrix can
be determined using Kronecker products, which we de�ne below. This is convenient
because it immediately proves that this matrix is invertible.

De�nition 4.1.8 (Kronecker product). Let A be an m×m matrix and B an n× n
matrix over some structure where multiplication has been de�ned. The mn × mn
matrix A⊗B is de�ned as

A⊗B :=

a11B . . . a1mB
...

. . .
...

am1B . . . ammB


A nice property of the Kronecker products is that if A and B are invertible, then so
is A⊗B.

Theorem 4.1.9 ([BPR10], Proposition 2.72). If A = {0,1,2}P and Σ = {−1,0,1}P ,
then Mat(A,Σ) is invertible. More precisely, if |P| = k, Mat(A,Σ) is the matrix Mk

inductively de�ned as follows:

M1 :=

1 1 1
0 1 −1
0 1 1

 and Mk := Mk−1 ⊗

1 1 1
0 1 −1
0 1 1

 for k > 1.
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Example 4.1.10. If P = {p1, p2}, then with Theorem 4.1.9 and Equation 4.3 it
follows that the sign conditions realized by P on Zeros(Z) can be computed solving
the following system of 9 linear equations:

1 1 1 1 1 1 1 1 1
0 1 −1 0 1 −1 0 1 −1
0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 −1 −1 −1
0 0 0 0 1 −1 0 −1 1
0 0 0 0 1 1 0 −1 −1
0 0 0 1 1 1 1 1 1
0 0 0 0 1 −1 0 1 −1
0 0 0 0 1 1 0 1 1


·



c(p1 = 0 ∧ p2 = 0,Z)
c(p1 = 0 ∧ p2 > 0,Z)
c(p1 = 0 ∧ p2 < 0,Z)
c(p1 > 0 ∧ p2 = 0,Z)
c(p1 > 0 ∧ p2 > 0,Z)
c(p1 > 0 ∧ p2 < 0,Z)
c(p1 < 0 ∧ p2 = 0,Z)
c(p1 < 0 ∧ p2 > 0,Z)
c(p1 < 0 ∧ p2 < 0,Z)


=



TaQ(1,Z)
TaQ(p2,Z)
TaQ(p2

2,Z)
TaQ(p1,Z)
TaQ(p1p2,Z)
TaQ(p1p

2
2,Z)

TaQ(p2
1,Z)

TaQ(p2
1p2,Z)

TaQ(p2
1p

2
2,Z)


In the solution, each c(σ,Z) which is not zero corresponds to a sign condition in
sgn
(
P, Zeros(Z)

)
.

4.1.3 Avoiding exponential complexity

The problem with the approach Theorem 4.1.9 suggests for sign determination is
that the size of the matrix quickly becomes tremendously large as the number of
polynomials in P increases. The size of the matrix is 3k × 3k, if |P| = k. Even more
disadvantageous is the fact that also a corresponding number of Tarski queries (3k

many) have to be computed.
Fortunately, there exists an ingenious algorithm discovered by M. Ben-Or, D.

Kozen and J. Reif [BOKR86]. The key observation is that the number of non-zero en-
tries in the solution vector of the 3k×3k sized linear system is bounded by |Zeros(Z)|,
which in general may be signi�cantly smaller than 3k. For example, when we are in
the univariate case where Z = {q} for some q ∈ R[X], then certainly the number of
zeros of q is bounded by its degree.

The basic principle of the improved algorithm is to perform the computations
iteratively instead of computing all realized sign conditions at once like it was the
case in 4.1.10. That means, the sets

sgn
(
{p1}, Zeros(Z)

)
, ..., sgn

(
{p1,...,pk}, Zeros(Z)

)
are computed one after another. In order to keep the size of the matrices small,
we drop out the columns corresponding to the zero elements in the solution. This
yields a rectangular matrix which is guaranteed to be of full rank. The next task is
then to �nd a basis among the rows of this matrix and discard all the other rows,
obtaining once again a square matrix. In the following iteration we proceed by taking
the Kronecker product of the reduced matrix with M1, just like in Theorem 4.1.9.
The size of any matrix occurring in the procedure is then ensured to be of size at
most 3 · |Zeros(Z)| × 3 · |Zeros(Z)|.

Example 4.1.11. Consider once again Example 4.1.4. Dropping out the column
that corresponds to the sign condition p < 0 which is not realized by p on Z yields the
system 1 1

0 1
0 1

 · (c(p = 0,Z)
c(p > 0,Z)

)
=

 TaQ(1,Z)
TaQ(p,Z)
TaQ(p2,Z)

 .

Now we can discard either the second or the third row of the matrix in order to obtain
an invertible square matrix. Suppose we choose to keep the second row. The system
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then becomes (
1 1
0 1

)
·
(
c(p = 0,Z)
c(p > 0,Z)

)
=

(
TaQ(1,Z)
TaQ(p,Z)

)
.

Our implementation of the improved sign determination procedure is very similar to
the one proposed as Algorithm 10.11 in [BPR10]. There it is also shown in detail how
the basis can be extracted from the rows of the rectangular matrices. Moreover, the
authors prove that in the improved sign determination algorithm, at most 1 + 2k ·
|Zeros(Z)| di�erent Tarski queries have to be computed. In most cases, this is much
less than the 3k queries needed in the naive algorithm.

4.2 Computing Tarski queries

In this section we are going to explain how Tarski queries on a zero dimensional
system can be determined.

4.2.1 Univariate case

In the univariate case, the Tarski queries can be computed using a generalized version
of Sturm's Theorem 2.6.6.

Theorem 4.2.1 (Univariate Tarski query, [BPR10], Algorithm 9.2). Let p,q ∈ R[X],
q 6= 0. Then

TaQ(p, {q}) = V ar−∞(SRS(q, q′p))− V ar∞(SRS(q, q′p)).

The signs achieved by the polynomials in the signed remainder sequence at ±∞ can
be deduced by their degree and the signs of the leading coe�cients. Alternatively,
the Tarski query can also be computed only with respect to a given interval, similar
to the Sturm query ([BPR10], Exercise 9.1).

Example 4.2.2. Let q := X3 − 2X and p := q′ = 3X2 − 2 be the derivative of q.
Suppose we want to compute TaQ(p, {q}). First we compute the signed remainder
sequence

SRS(q, q′p) = (X3 − 2X, 9X4 − 12X2 + 4, −X3 + 2X, − 6X2 − 4, − 8

3
X, 4).

Now consider the degrees and the signs of the leading coe�cients in this sequence.
For V ar−∞(SRS(q, q′p)) we have to count the sign variations in the list

(−, + , + , − , + , +),

which are 3, and for V ar−∞(SRS(q, q′p)) we obtain the list

(+, + , − , − , − , +),

where we count 2 sign variations. Thus, applying Theorem 4.2.1, we conclude that
TaQ(p, {q}) = 3− 2 = 1. We can verify this using the plot in Figure 3.1.
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4.2.2 Multivariate case

The method from Theorem 4.2.1 that we use to compute Tarski queries for univariate
polynomials does not generalize to the case where more than one variable is involved.
The authors of [BPR10] propose a method which relies on Hermite's quadratic form
(Algorithm 12.7 in [BPR10]). The details of the method are beyond our scope. We
would only like to point out that in order to compute TaQ(p,Z), a so-called Gröbner
basis (see [BPR10], Section 12.1 for a de�nition) of Z has to be computed. The
Gröbner basis can be used to detect if Z is zero-dimensional ([BPR10], Proposition
12.7).
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Chapter 5

Implementation and

experimental results

5.1 Implementational details

We implemented all the algorithms described in Chapter 3 and 4 within the C++

library CArL1 which is also used by SMT-RAT. Among many other features, CArL
provides data structures and basic algorithms for representing and manipulating both
univariate and multivariate polynomials. There is also an implementation of an al-
gorithm computing Gröbner basis available. CArL includes the external open source
library GMP2 which provides classes for arbitrary precision integers and rational num-
bers. The precision is `arbitrary' in a sense that it is only limited by the memory
available and not by a previously �xed maximum size like it is the case for the built
in number types like int or double.

Once the algorithms were integrated into CArL, it was easy to use them in the
CAD implementation of SMT-RAT. We have created a number of classes of which we
shall discuss the most important ones here.

5.1.1 General remarks

Formally, we treated sign conditions as mappings from the corresponding sets of
derivatives to the set {−1,0,1}. In our actual implementation, it seemed more conve-
nient to represent a sign condition σ on Der(p) as the ordered list(

σ(p), σ(p′), ..., σ(p(deg(p)))
)
.

For the theoretical discussion however, the notation with mappings seemed more
convenient.

5.1.2 Mixing Thom encodings with the explicit representation

We determine the roots of univariate polynomials of degree at most 2 using explicit
formulas. For a polynomial p = aX + b, a 6= 0, the only real root is −b/a, which
certainly is a rational number. If p = aX2 + bX + c with a 6= 0, then the real roots

1Currently available at https://github.com/smtrat/carl
2Source code and documentation are currently available at https://gmplib.org/
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of p are given by the formula
−b±

√
b2 − 4ac

2a
,

which can be used to determine the roots of p explicitly. If the expression under the
root is negative, then p does not have any real roots, if it is zero is has exactly one
(rational) root and if it is positive it has 2 real roots. Only if the term b2 − 4ac is
a square number, we can deduce explicit rational representations for the roots of p
from this formula. Otherwise we characterize them as Thom encodings just as usual.

Working with the rational representation whenever it is possible of course increases
the performance. On the other hand, the implementation becomes more complicated
as there are numerous special cases to consider when the inputs to the operators are
real algebraic numbers given in di�erent representations. Usually this can be bypassed
by converting the rational number in a Thom encoding �rst, which is easy because
for a ∈ Q, the polynomial X − a has a as a root. In some cases however, the explicit
rational representation can be used more e�ciently.

� Computing an intermediate point between a number represented as a Thom
encoding and an explicitly given rational number a: Here we can �rst transform
a into a Thom encoding like described above and then perform Algorithm 9.
The resulting Thom encoding will have a de�ning polynomial of the form X−a′,
so we know that the rational number a′ is the desired intermediate point. We
can return it in its explicit rational representation.

� Lifting p ∈ Q[X1,...,Xn,X] on a point (ξ1,...,ξn): Sometimes, the point is only
partially given in terms of a triangular Thom encoding. For example, the num-
bers ξ1,...,ξk for some k < n might be present in their explicit representa-
tion, while the rest of them is given in terms of a triangular Thom encoding
〈T 〉 = (ξk+1,...,ξn). Whenever we notice that we have a case like this, we sub-
stitute X1,...,Xk in p for their corresponding values, obtaining a polynomial
p′ ∈ Q[Xk+1,...,Xn,X] and then call Algorithm 2 with inputs p′ and T . Similar
considerations hold for the evaluation operation.

� Samples below and a real algebraic number represented by a Thom encoding
(p, σ) can be computed in their explicit representation using the Cauchy bound
C(p) of p like outlined in Section 3.2.7. This is not possible in the multivariate
case though.

In summary, we try to stick to the explicit representation whenever we can.

5.1.3 The Thom encodings class

We have implemented a class that represents (triangular) Thom encodings in a similar
way like discussed in Chapter 3. ThomEncoding is a recursive data structure as it
contains a pointer to another ThomEncoding object. Each of the ThomEncoding
objects in such a hierarchy corresponds to one `level' of a triangular Thom encoding.
The encoding at the lowest level is an explicit (univariate) Thom encoding and thus
point=nullptr. For the other encodings, the member p is a multivariate polyno-
mial and the member v is a distinguished variable contained in this polynomial. It is
needed in order to know which variables are already present in the triangular Thom
encoding given by point and which one is new on this level. The member sigma is
a sign condition on DerX(p(l)), where X is the speci�ed given by v and 0 ≤ l ≤ k.
We provide an overview of the members of ThomEncoding in Figure 5.1.
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class ThomEncoding {

// private member variables

Polynomial p;
Variable v;

mutable SignCondition sigma;
int k;

ThomEncoding* point;

SignDetermination sd;

// public member functions

public:

ComparisonResult compare(const ThomEncoding& other) const;

static ThomEncoding intermediatePoint
(const ThomEncoding& lhs, const ThomEncoding& rhs);

...
};

Figure 5.1: Simpli�ed representation of the Thom encoding class

The comparison function compare is implemented with a (desired) side e�ect: In
Algorithm 6, we have seen that in order to compare Thom encodings de�ned with
respect to di�erent polynomials, we sometimes have to extend the sign condition
of one of these encodings. We have implemented the comparison algorithm in a
way such that this extension is stored permanently. This is also the reason why the
member sigma is marked mutable. With this side e�ect, we avoid recomputing sign
conditions over and over again when comparison is performed. In order to know which
part of the sign condition stored in a ThomEncoding object is actually relevant for
distinguishing between the other roots of the polynomial, we provide the additional
member k. It corresponds precisely to the k in De�nition 3.1.9.

ThomEncoding objects also have a member of type SignDetermination, whose
purpose we are going to explain now.

5.1.4 The sign determination class and Tarski queries

The functionality discussed in Chapter 4 is mainly implemented in two classes, Sign-
Determination and TarskiQueryManager. As the names suggest, the �rst one
implements the improved sign determination algorithm and the second one imple-
ments Tarski queries.

The TarskiQueryManager class computes Tarski queries on the system Z which
is passed to it at initialization. It uses the method given by Theorem 4.2.1 for comput-
ing univariate queries whenever this is possible and otherwise employs the multivariate
algorithm. For this purpose, it needs to compute a Gröbner basis of the ideal gener-
ated by Z like pointed out in Section 4.2.2. From the basis it can read o� whether Z
is a zero-dimensional system. If this is not the case, we have encountered the zero-
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dimensional problem described in Section 3.2.3. In our current prototype, we then
abort all computations. Otherwise, the basis is used to set up the multiplication table
which is crucial for the multivariate Tarski query algorithm. For multiplication tables
we have implemented an extra class which also stores the corresponding Gröbner ba-
sis and o�ers interfaces to perform operations in the structure Q[X1,...,Xn]/Ideal(Z).
The most important ones are reduction of a polynomial modulo Ideal(Z), multipli-
cation and trace computation of elements from Q[X1,...,Xn]/Ideal(Z). (See chapter
12 in [BPR10] for details.)

Another core feature of an object of type TarskiQueryManager is the ability
to cache already computed Tarski queries so that they do not have to be recomputed
every time they are requested. For this purpose, the manager class has a member
std::map<Polynomial, int> which realizes the cache. The polynomials in the
cache are normalized so that they have leading coe�cient 1. When we want to look up
a given polynomial p, we �rst normalize it in the same way. Let p′ be the normalized
polynomial. If TaQ(p′,Z) was found in the cache, we compute TaQ(p,Z) using the
relation

TaQ(c · p, Z) = sgn(c) · TaQ(p, Z),

which holds for all rational constants c. (This follows immediately from De�nition
4.1.1.)

An object of the class SignDetermination is initialized with a zero-dimensional
system Z. It then sets up a TarskiQueryManager on Z like explained above, which
is one of its members. One of its main interfaces is the function

getSignsAndAdd(Polynomial p),

which computes and returns the set sgn({p}, Zeros(Z)) of sign conditions realized by
p on the common zeros of Z. Moreover, this function updates the internal state of the
sign determination object in a way such that a subsequent call to the same function
with argument q would return sgn({p,q}, Zeros(Z)). This incremental behavior is
crucial for the root �nding algorithms 1 and 2 in Section 3.2. SignDetermination
also o�ers a method getSigns(Polynomial p), which is similar but does not
update the internal state. This is convenient for Algorithm 3.

5.2 Experimental results

We have evaluated our implementation on a benchmark set provided by the SMT-

LIB initiative [BFT16]. The problems in the particular benchmark we have used
were generated by the automated theorem prover Meti-Tarski [AP10]. It contains a
total number of 7713 examples, which involve problems with an average number of 3
di�erent variables and average polynomial degree 6. However, it should be mentioned
that a considerable amount of instances within this set can be solved trivially such
that no real algebraic number representation, besides the explicit one, is ever needed.
We observed that during the solving procedure of only 3909 of the 7713 examples in
this set we had to characterize a root as a Thom encoding.

The table summarizes the results of the evaluation. The row labeled `Thom' con-
tains the results corresponding to the CAD algorithm which uses our Thom representa-
tion for real algebraic numbers. The other row, which is labeled with `Interval', shows
the results of the CAD algorithm employing the interval representation described in
2.6. Each of the 7713 test cases appears in the table under one of the following four
categories: SAT/UNSAT means that the example was proven (un-)satis�able by the
solver. Here we additionally provide the average solving time. Examples for which we
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experienced a timeout �xed to 30 seconds are counted in the column labeled `time-
out'. Occurrences of the zero-dimensional problem are documented in the last column
`problem'. Of course, this only applies to the Thom version.

SAT UNSAT
timeout problem

solved avg. time solved avg. time

Thom 4276 425 ms 1944 426 ms 1467 26

Interval 4653 154 ms 2185 384 ms 875 -

Figure 5.2: Results of the evaluation of the two di�erent CAD variants on the benchmark
set `Meti-Tarski'

With the interval representation, we were able to solve a total number of 6838 in-
stances before the timeout, which corresponds to an 88.7%. With Thom encodings,
only 6220 or 80.6% of all problems could be solved. Among the instances that could
not be solved with the Thom approach, solely 26 caused the zero-dimensional problem.
The average solving time for examples that were satis�able increased by about 175%
compared to the interval representation. Inputs that were unsatis�able consumed
around 11% more time.
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Chapter 6

Conclusion

6.1 Summary

We have explained how Thom encodings can be used to represent real algebraic num-
bers implicitly. This was motivated by the needs of the cylindrical algebraic de-
composition method which we use in the context of lazy SMT-solving for the theory
quanti�er-free non-linear real arithmetic. For our speci�c case, we have introduced
a slightly improved variant of Thom encodings like they are usually described in the
literature. Moreover, we have worked out the operations the CAD method requires
for real algebraic numbers and presented the corresponding algorithms. When it was
possible, we proposed adaptations for the special case of real numbers. In order to
implement the `lifting' operation, we presented triangular Thom encodings as a gen-
eralization of the standard Thom encodings. In this context we also stumbled upon
the zero-dimensional problem for which we have not yet encountered a solution.

The main ingredient in our algorithms is the sign determination procedure of
which we discussed the basic principles. We have seen that it relies on a symbiosis
of linear algebra and Tarski queries. For the univariate case, we have demonstrated
how Tarski queries can be computed. There is also a method for the multivariate case
available, but the mathematical details were beyond our scope.

Apart from the theoretical discussion, we have implemented the algorithms and
a data structure which represents our notion of (triangular) Thom encodings. We
integrated it within the SMT solver SMT-RAT which provides an implementation of
the CAD that we could easily adapt. Finally, we compared the Thom version of the
CAD method with the one where the interval representation is employed as a real
algebraic number representation.

6.2 Discussion

Our experiments demonstrate that � in the current stage of development � our Thom
method is not competitive to the interval representation. Furthermore, we sometimes
have to abort the procedure because of the zero-dimensional problem. Fortunately, it
does not seem to occur too often: In the experiment, we observed it only in 1 out of
about 150 cases where Thom encodings were actually used. We conjecture that the
high amount of time consumed by the version of the CAD algorithm which uses Thom
encodings is mainly due to the multivariate Tarski query algorithm which involves
costly Gröbner basis computations. Moreover, some of the algorithms for Thom
encodings are not well suited to the case where we want to perform the operations
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locally. For example, comparing two numbers given as Thom encodings with de�ning
polynomials p1 and p2 is not much less expensive than ordering all roots of p1 and
p2 directly. This is because the calls to SignDetermination that would have to be
performed are nearly the same. However, the interfaces of the CAD implementation
that we have used could not so easily be adapted to take advantage of this.

Although the interval representation seems to be the most adequate representation
technique for real algebraic numbers in the CADmethod, we have yet shown that other
approaches are imaginable. Thom encodings are an elegant algebraic concept which
also generalizes to cases where we want to compute a CAD over less common �elds.
We are convinced that further investigations in this direction would be worthwhile.

6.3 Future work

A more re�ned investigation of the zero-dimensional problem is still pending. In
particular, it should be clari�ed if the problem is avoidable at all. If not, then it
would be bene�cial if there was a way to take advantage of the results that have been
computed up to the point where the problem occurred instead of falling back to the
interval representation and restarting the whole procedure.

Moreover, apart from general improvements of our implementation which up to
now is only a prototype, the algorithms and the Thom data structure still o�er some
room for enhancement:

Relevant sign conditions In Chapter 3, we have already made the observation
that in many cases not the whole sign condition realized by Der(p) on a root of p is
necessary to distinguish between the roots, but only a small part of it. We have partly
taken advantage of this by equipping the Thom encoding objects with an additional
parameter k, indicating that the sign condition realized by Der(pk) already contains
enough information to characterize the corresponding root. Future work could go
towards making the set Der(p(k)) even smaller by keeping only the derivatives that
are actually needed to make the distinction. For instance, in Example 3.1.6 we have
seen that the sign condition realized by p′′ was already su�cient to distinguish between
the roots of p. Let us consider an even more extreme example: Let

p(X) := (X + 1)2(X − 2)(X − 3) = X6 − 5X5 + 8X4 − 10X3 + 13X2 − 5X + 6.

p is of degree 6 but the only real roots are 2 and 3. The table gives an overview of
the signs realized by the derivatives of p on its roots:

Root p′ p′′ p′′′ p(4) p(5)

2 −1 −1 1 1 1

3 1 1 1 1 1

With our currently implemented approach, we would use the sign condition realized
by Der(p′′) on the roots for their Thom encodings. However, we can read o� the
table that the sign p′′ (or p′) achieves at the roots would already be su�cient.

Providing a smaller set of necessary derivatives means that the input size of Sign-
Determination when applied in RealRoots (triangular case) or ThomCompare
also decreases. This in turn decreases the number of calls to the Tarski query algo-
rithm which makes up a big part of the overall computation time.
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Experimenting with intermediate points In Section 3.2.6, we presented di�er-
ent approaches for computing intermediate points of which we have only used the
iterative variant (Algorithms 9 and 11) in our experiments so far. Here, di�erent
parameters for the initial value of ε and the divisor could be tested. Moreover, we do
not yet have any insights on how well the other approaches for intermediate points
work in practice.

Improving the sign determination procedure Finally, we would like to point
out that we have only implemented a very basic version of the sign determination
method because the main focus was on the algorithms operating on Thom encodings.
An immediate improvement for the basic algorithm is due to D. Perrucci: He observed
that the linear systems can be solved more e�ciently than it is possible with the
standard methods which is because of their special structure [Per09].

In [BPR10], Chapter 12, the authors propose a di�erent and much more com-
plicated sign determination algorithm which is adapted to the case where the zero-
dimensional system has a `triangular' form, just like the polynomials of a triangular
Thom encoding.
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Appendix

A Index of notation

N,N+ non-negative and positive integers

Z, Q, R, C integer, rational, real and complex numbers

Ralg real algebraic numbers

Sn n-fold cartesian product of a set S with itself

[a,b] closed interval

]a,b[ open interval

f
∣∣
D

restriction of the mapping f on the domain D

BA set of all possible mappings from A to B

deg(p) degree of a univariate polynomial p

degX(p) degree of a polynomial p with respect to X

p′, p′′, p′′′ �rst, second and third derivative of a univariate polynomial p

p(k) k-th derivative of a univariate polynomial p

p
(k)
X k-th derivative of p with respect to X

rem(p, q) remainder of p divided by q

SRS(p, q) signed remainder sequence of p and q

sgn(ξ) sign of the real number ξ

sgn(P, ξ) sign condition realized by P on ξ

sgn(P, S) set of sign conditions realized by P on the points in S

Der(p) set of derivatives of p including p itself

DerX(p) set of derivatives of p with respect to X, including p itself

Zeros(Z) set of common zeros of the polynomials in Z
〈τ〉 the real algebraic number ξ represented by the Thom encoding τ

〈T 〉 the real algebraic point (ξ1,...,ξn) represented by the triangular Thom
encoding T

Der(T ) set of derivatives de�ning a triangular Thom encoding T

c(σ,Z) number of points in Zeros(Z) that realize the same sign condition σ
on P

TaQ(p,Z) Tarski query of p on the zero-dimensional system Z
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B Generalized algorithms

Comparison

Let σ1 and σ2 be sign conditions on P1 and P1, respectively, with P1 ∩ P2 = ∅. We
let σ1 × σ2 : P1 ∪ P2 → {−1,0,1} be the sign condition de�ned by

(σ1 × σ2)(p) 7→

{
σ1(p), if p ∈ σ1,

σ2(p), if p ∈ σ2.

Algorithm 10 Comparison of Thom encodings (triangular case)

Input:

� a triangular Thom encoding T = (P,Σ) with 〈T 〉 = ξ ∈ Rn,
� p1, p2 ∈ Q[X1,...,Xn,X],

� sign conditions σ1, σ2 on DerX(p
(k1)
1 ), DerX(p

(k2)
2 ), respectively, such that

τ1 = (p1(ξ,X), σ1(ξ)) and τ2 = (p2(ξ,X), σ2(ξ)) are Thom encodings

Output: less if 〈τ1〉 < 〈τ2〉, equal if 〈τ1〉 = 〈τ2〉 and greater if 〈τ1〉 > 〈τ2〉
1: procedure ThomCompare(p1, σ1, p2, σ2, T )
2: if p1 = p2 then return SignCompare(σ1, σ2)
3: D1 ← Der(T ) ∪DerX(p

(k1)
1 )

4: D2 ← ∅
5: for i← degX(p2), i ≥ 0, i← i− 1 do

6: D2 ← {p(i)
2X
} ∪ D2

7: Σ̃← SignDetermination(D1 ∪ D2, {p1})
8: σ̃1 ← only element in Σ̃ such that σ̃1

∣∣
D1

= Σ× σ1

9: σ̃1 ← σ̃1

∣∣
D2

10: σ̃2 ← σ2

∣∣
D2

11: if k2 < |D2| then
12: Σ̃← SignDetermination(Der(T ) ∪ D2, {p2})
13: σ̃2 ← only element in Σ̃ such that σ̃2

∣∣
Der(T )∪Der(p(k2)

2 )
= Σ× σ2

14: σ̃2 ← σ̃2

∣∣
D2

15: end if

16: if σ̃1 6= σ̃2 then return SignCompare(σ̃1, σ̃2)
17: end for

18: return equal
19: end procedure
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Intermediate points

Speci�cation IntermediatePoint (triangular case)

Input:

� a triangular Thom encoding T = (P,Σ) with 〈T 〉 = ξ ∈ Rn,
� p1, p2 ∈ Q[X1,...,Xn,X],

� sign conditions σ1, σ2 on DerX(p
(k1)
1 ), DerX(p

(k2)
2 ), respectively, such that

τ1 = (p1(ξ,X), σ1(ξ)) and τ2 = (p2(ξ,X), σ2(ξ)) are Thom encodings with
〈τ1〉 < 〈τ2〉

Output:

� a polynomial p ∈ Q[X1,...,Xn,X] and a sign condition σ on DerX(p(k)) such
that τ = (p(ξ,X), σ(ξ)) is a Thom encoding with 〈τ1〉 < 〈τ〉 < 〈τ2〉

Algorithm 11 Intermediate point using iterative approximation (triangular case)

1: procedure IntermediatePoint(p1, σ1, p2, σ2, T )
2: ε← 1
3: if degX(p1) ≤ degX(p2) then
4: p← p1(X1,...,Xn,X − ε)
5: σ ← σ1(X1,...,Xn,X − ε)
6: while ThomCompare(p, σ, p2, σ2, T ) 6= less do
7: ε← ε/2
8: p← p1(X1,...,Xn,X − ε)
9: σ ← σ1(X1,...,Xn,X − ε)
10: end while

11: return p, σ
12: else

13: p← p2(X1,...,Xn,X + ε)
14: σ ← σ2(X1,...,Xn,X + ε)
15: while ThomCompare(p1, σ1, p, σ, T ) 6= less do
16: ε← ε/2
17: p← p2(X1,...,Xn,X + ε)
18: σ ← σ2(X1,...,Xn,X + ε)
19: end while

20: return p, σ
21: end if

22: end procedure
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