
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

GRID BASED CONTROL STRATEGY

FOR HYBRID VEHICLES

Patricia Wessel

Examiners:
Prof. Dr. Erika Ábrahám
PD Dr. Walter Unger

Additional Advisor:
Dipl.-Inform. Johanna Nellen Aachen, 29.09.2016

Abstract

In the past years, hybrid electric vehicles (HEVs) have become increasingly
popular as they allow to combine the advantages of full electric vehicles and
the advantages of vehicles with internal combustion engines. In HEVs a control
strategy distributes the requested torque between the available engines. In this
thesis, a control strategy is presented which relies on a discrete grid. O�ine
torque distributions for discretised inputs are computed using an optimisation
algorithm and stored in a grid. Online our control strategy interpolates torque
distributions for arbitrary inputs using the precomputed grid. As interpolation
is fast and does not need much processing power, the running time of this grid
based control strategy is much lower than the running time of control strategies
based on optimal control.

iv

v

Erklärung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäÿe Zitate wurden als solche gekenn-
zeichnet.

Patricia Wessel
Aachen, den 29. September 2016

Acknowledgements

As I have ever been interested in cars and automotive engineering, I searched for a
bachelor thesis which gives me the opportunity to combine these personal interests
with computer science. I am very happy that this was made possible by the task of
this thesis as I was able to use methods of theoretical computer science in order to
develop solutions for problems in automotive engineering.

For this reason, I would like to thank Prof. Dr. Erika Ábrahám for o�ering me the
chance to write this bachelor thesis and for being my primary reviewer. Moreover, I
want to thank PD Dr. Walter Unger for being second reviewer of this thesis. Many
thanks also go to Dipl.-Inform. Johanna Nellen, who spent countless hours supervising
this thesis and the corresponding program code. Furthermore, I want to thank Lukas
Netz and Rebecca Haehn, whose work at the project has made a huge contribution
to the success of this thesis. Finally, I give thanks to my family and my friends for
supporting me all the time, especially in the most di�cult phases of this thesis. Last
but not least, thank you Louis for your encouragement and patience during all the
time in the last months, and for ensuring that we always had something delicious to
eat in the evening!

vi

Contents

1 Introduction 9

2 Preliminaries 11

2.1 Vehicle Model . 11
2.2 Control Strategies . 13
2.3 Linear Interpolation . 16
2.4 Genetic Algorithms . 18

3 Grid Control Strategy 25

3.1 Structure of the Strategy . 25
3.2 Interpolating Split Values . 28

4 Grid Optimisation 35

4.1 Structure of the Algorithm . 35
4.2 Construction of New Grid Points . 37

5 Experimental Results 41

5.1 Split Values . 42
5.2 Fuel Consumption, SoC, Running Time 45

6 Conclusion 49

6.1 Summary . 49
6.2 Future Work . 50

Bibliography 53

A Driving Cycles 55

A.1 NEDC . 55
A.2 FTP_75 . 56
A.3 HWFET . 57

viii Contents

Chapter 1

Introduction

In times where climate change and CO2 emissions has turned to the public focus, the
environmental acceptability of vehicles has become an important issue. To reduce
the global fuel consumption and the pollutant emissions of vehicles, pure electric cars
have been developed and sold. However, vehicles with only an electrical power unit
are expensive, the battery charging time may take several hours and the driving range
is limited.

Hybrid electric vehicles (HEVs) represent a good trade-o� between pure electric
vehicles and cars equipped with a combustion engine. They are characterised by
containing an internal combustion engine (ICE) as well as at least one electrical motor
(EM). Hence it is possible to bene�t from the best aspects of each technology: The
ICE is perfect for high torque values and guarantees a long driving range, whereas
the EM does not produce emissions and is suitable for low torque values [NWN+15].

As the requested torque has to be distributed between the engines of a hybrid
electric vehicle, control strategies are used to determine such a torque distribution.
A control strategy takes as input the current state of the car as well as the drivers
requested torque and computes a torque distribution with the goal to optimise output
parameters as the fuel consumption or the emissions.

In this thesis a control strategy for hybrid electric vehicles is presented which
is based on a discrete grid. The grid contains precomputed control values for a
discretised state space. In our case, the state space consists of the current state of
the car and the requested velocities for each time point in the prediction horizon.
The strategy uses the grid to determine the control value for the current input. As
normally the input is not contained in the discretised grid, the requested control must
be interpolated using control values of available points in the neighbourhood in this
grid.

The control values of the grid points are precomputed o�ine using a selected
optimisation method. In this thesis, genetic algorithms are chosen to compute the
control values in the grid. However, the strategy and the grid are not limited to

10 Chapter 1. Introduction

this approach. Di�erent optimisation procedures can be used, e. g. it might also be
possible to precompute the control values using dynamic programming. As a result,
the grid based strategy is very �exible due to the fact that the algorithm which is
used to precompute the control values in the grid is exchangeable.

Optimisation procedures are time expensive and the processing power within the
car is limited. Thus a control strategy based on optimal control might not be suit-
able. The grid based control strategy however uses interpolation to compute the
control values. This aspect is a huge advantage of the strategy due to the fact that
interpolation is fast and does not need much processing power. Since the computation
of the control values of the grid points is done o�ine as a preprocessing step, it is not
time critical and can take an arbitrary period of time. However, the strategy takes
advantages of the quality of the optimisation method as it is used to precompute the
control values in the grid.

This thesis is structured as follows: In the next chapter, the vehicle model which is
used to simulate the control strategy is introduced and a general overview of control
strategies as well as linear interpolation is given. Furthermore, genetic algorithms
are presented. In the third chapter, the grid based control strategy is explained.
Thereby, we consider the construction of the grid as well as the interpolation of the
control values. Afterwards, in the fourth chapter a procedure to optimise the grid is
introduced: By inserting new entries, the aim is to re�ne the grid at speci�c points
so that requested control values can be interpolated more precisely. We implemented
the grid based control strategy as well as the grid and the optimisation procedure.
Therefore, in the �fth chapter the results of our implementation are discussed. Finally,
in the last chapter a conclusion is given.

Chapter 2

Preliminaries

In this chapter, the vehicle model which is used to simulate control strategies is
introduced. Afterwards, a short overview of control strategies in general is given.
The grid based control strategy uses linear interpolation to approximate requested
control values. Therefore, in the third section an overview of linear interpolation is
provided. We use a genetic algorithm to precompute the control values in the grid.
For this reason, in the last section genetic algorithms are presented.

2.1 Vehicle Model

The grid based control strategy is simulated on a simpli�ed model of a �rst generation
Toyota Prius. A schematic diagram of the vehicle is presented in Figure 2.1. This
vehicle consists of an internal combustion engine (ICE) as well as an electrical motor
(EM) with a corresponding battery. Both power units are connected to the same
axis which is related with a manual transmission gearbox. Thus the engines and the
gearbox move with the same angular velocity: ωem = ωice = ωgb. The gearbox is
linked to the wheels and uses a gear ratio ri for a gear i to transform the angular
velocity at the gearbox to the angular velocity at the wheels: ωwh = ωgb/ri [NWN+15,

Motor Battery

Tank

Engine

Tice

Tem +

-

Twh Treq

ri

Gearbox

Figure 2.1: Simpli�ed model of the hybrid electric vehicle [GJN+15b]

12 Chapter 2. Preliminaries

GJN+15a].

If the driver requests an acceleration a, the required torque at the wheels can be
determined by

Twh = rwh
(1

2
ρCdAv

2 + (m+mr)a+mgfrcos(θ) +mgsin(θ)
)
, (2.1)

where rwh denotes the wheel radius, ρ the density of air, Cd the air drag resistance,
A the frontal area of the vehicle, v = rwhωwh the velocity of the vehicle, m and mr

the mass of the vehicle and the equivalent mass of the rotating parts of the vehicle, a
the acceleration, g the acceleration of gravity, fr the rolling resistance and θ the road
slope [NWN+15, GJN+15a].

The requested torque at the gear box which has to be generated by the engines to
accelerate the car can be determined by

Treq =
1

ηgbri
(Twh + Tbr). (2.2)

1/(ηgbri) denotes a constant factor consisting of the mechanical transmission e�-
ciency ηgb, which is assumed to be constant, and the corresponding gear ratio ri. Tbr
describes the torque at the brakes [NWN+15, GJN+15a].

As the power units are connected to the same axis, they take e�ect on the drive
train simultaneously. This has the advantage that the engines can be used either
separately or in combination. In addition, the requested torque Treq which has to be
generated can be split up to the two engines. Therefore, Treq can be described by

Treq = Tice + Tem, (2.3)

where Tice is the torque which is produced by the ICE and Tem describes the torque
to be provided by the EM. Moreover, the model is considered to be idealised, i. e.
the dynamics of the engines are ignored and the torque responses are assumed to be
immediately [NWN+15, GJN+15a].

While the combustion engine is powered with fuel, the electrical motor receives
its energy from a battery. The fuel consumption ṁf of the combustion engine and
the input power Pem of the electrical motor can be described by using non-linear,
discrete functions depending on speed and torque which will be interpolated during
the simulation [GJN+15b]. The battery has a state of charge (SoC; symbol: s) whose
change can be described by the following formula:

ṡ = − I

Qmax
= − Pem

UocQmax
. (2.4)

Qmax denotes the maximal battery capacity, I the battery current electricity and
Uoc the battery open circuit voltage. To protect the battery and to guarantee its
durability, the control strategy shall keep the SoC near a reference value sref = 0.6.
Furthermore, it is possible to recharge the battery with an excess of torque generated
by the ICE or by recuperating electric energy while braking [NWN+15].

2.2. Control Strategies 13

In addition, the following physical limits of the system are given to ensure a long
life time of the hybrid power train [NWN+15]:

ωice,min ≤ ωice ≤ ωice,max
ωem,min ≤ ωem ≤ ωem,max

0 ≤ Tice ≤ Tice,max(ωice)
Tem,min(ωem) ≤ Tem ≤ Tem,max(ωem)

0.5 ≤ s ≤ 0.7

(2.5)

While Tice is always non-negative, Tem can also have negative values. This happens
when the battery is recharged. smin = 0.5 and smax = 0.7 delimit the valid area for
the battery state of charge to guarantee a long battery life time [NWN+15, GJN+15b].

The vehicle model presented in this section is used to simulate control strategies.
In the next section, the general structure of a control strategy is considered.

2.2 Control Strategies

Generally, the purpose of a control strategy is to distribute the drivers requested
torque between the engines of a hybrid electric vehicle so that output parameters like
the fuel consumption, the battery state of charge level or the emissions are optimised.
Thereby it has to take care of the physical limits of the corresponding technical system.

In this thesis, we consider control strategies for the vehicle model presented in
Figure 2.1. Such a control strategy consists of two parts: In a �rst block (split
computation block), a split value that indicates the torque distribution between the
two engines is computed. In a second block (control converter block), the feasibility of
this torque distribution within the physical limits of the car is checked and the concrete
amount of torque for each engine as well as the brakes is computed. Moreover, in this
block special cases like braking or standing are handled. A graphical illustration is
given in Figure 2.2.

Tice

Tem

Tbr

Split
Computation

Control
Converter

Control Strategy

split

~vr

~sc

Figure 2.2: Control strategy consisting of the split computation block and the control
converter block

The control strategy receives as input in each time step the requested velocities ~vr
as well as the current state ~sc of the car. In the case that a predictive control strategy

14 Chapter 2. Preliminaries

is used, i. e. future driving conditions for the next time steps within the prediction
horizon of size p are given, ~vr contains the requested velocity for the current time step
as well as the p − 1 requested velocities for the following time steps. Otherwise, ~vr
describes only the requested velocity for the current time step. The current vehicle
state contains information about for example the actual velocity of the car, the current
SoC and the current gear. Moreover, the actual and the next requested velocity are
used to determine the acceleration a. Then the requested torque for the current time
step which shall be distributed between the engines can be obtained by using Formula
(2.1) and Formula (2.2).

The split computation block checks if the car is braking at the moment, or standing
at the current time step and is requested to stand still. In both cases, the split
computation block returns an unde�ned split value of −1, and the control converter
computes the torque distribution. If the requested torque value is smaller than zero,
the car is deaccelerating at the moment. Then the control converter checks if it is
possible to recharge the battery by recuperating brake energy. If so, braking is treated
to be optimal, i. e. it is recuperated as much energy as possible to recharge the battery.
The remaining torque is applied to the brakes. In the case that it is not possible to
recharge the battery, the complete torque is distributed to the brakes. Moreover, if
the current velocity of the car is zero as well as the next requested velocity, the car is
standing at the moment and will continue to stand still. In this case, for both engines
a torque value of zero is computed by the control converter.

Otherwise, if the car is neither braking nor standing at the current time step, the
split computation block computes a split value u(t) ∈ [0, 100]. This is a percentage
value that describes the amount of torque which is provided by the internal combustion
engine. The remaining part is made available by the electrical motor [NWN+15]:

Tice(t) = u(t)/100 · Treq(t)
Tem(t) = (1− u(t)/100) · Treq(t)

(2.6)

In the next step, the control converter checks the feasibility of this torque distribution
with respect to the physical limits of the car which are given in (2.5). If they are
violated, the control converter determines a new, feasible torque distribution for the
car and computes the concrete amount of torque for each engine. Otherwise, the
concrete amount of torque for each engine based on the split value which was computed
by the split computation block is returned.

The aim of a control strategy is to determine a torque distribution in such a way
that di�erent output parameters are optimised. The optimisation criterions include
for example the following aspects [PIGV01, PR07]:

� Minimisation of the fuel consumption

� Reduction of the vehicle's emissions

� Preservation of a good driving behaviour

� Management of the SoC such that a long battery life time is guaranteed.

2.2. Control Strategies 15

In order to compare di�erent control strategies regarding these aspects, driving
cycles can be used. They represent an exemplary track layout with the characteristics
of a speci�c region or country and can be used to compare e. g. the fuel consumption
and emissions of di�erent vehicles. The purpose is to simulate real driving conditions
as realistic as possible so that the results are representable for a real drive. There
exist several driving cycles for di�erent regions and road conditions, for example the
New European Driving Cycle (NEDC), which is designed to represent a typical use
of a passenger car in Europe and which is shown in Figure 2.3, or the FTP_75
and the HWFET cycle, that represent characteristical driving condition in a US city
respectively on a US highway [NWN+15].

0 200 400 600 800 1000 1200

0

10

20

30

Timestep [s]

Sp
ee
d
[m

/s
]

Figure 2.3: The New European Driving Cycle

There are di�erent types of control strategies. Basically, they can be classi�ed into
two groups: Rule based and optimisation based control strategies. Rule based control
strategies rely on heuristics, human intelligence, or mathematical models. The aim
of an optimisation based control strategies is to compute a torque distribution that
minimises a given cost function, for example the fuel consumption or the emissions.
Further distinctions of control strategies refer to the aspect of prediction or real time
capability: If the future driving condition is given, predictive control strategies can
be used. Online control strategies must be able to compute a torque split within a
limited period of time. Due to the fact that the processing power of a control device
in a vehicle is limited, they have to be e�cient concerning computation time and
memory consumption [NWN+15, PB14]. Therefore, online control strategies have to
be real time capable, which means that they have to be able to determine a new
torque distribution every 0.02 seconds according to [NWN+15] .

Our grid based control strategy uses linear interpolation to compute a torque
distribution. For this reason, the next section gives a short overview of linear inter-
polation.

16 Chapter 2. Preliminaries

P1

P2

P3

P4

P5

P6

P7

pn

x

y

Figure 2.4: Interpolation problem for n = 7 points

2.3 Linear Interpolation

The grid based control strategy uses precomputed control values of existing points
in a grid in order to approximate the requested control value for an input. Since
we do not know the complete control function but only individual function values
for each sample point in the grid, linear interpolation is used to approximate the
requested control value for an input for which normally a precomputed control value
is not contained in the grid. For this reason, in this section linear interpolation is
introduced.

Generally, interpolation denotes the problem to �nd for n + 1 pairwise di�erent
points Pi(xi,yi), i ∈ {0, . . . , n} a polynomial function pn with deg(pn) ≤ n so that the
graph of this function passes all these points. This means that for all i ∈ {0, . . . , n}
it is valid that pn(xi) = yi. Figure 2.4 illustrates the interpolation problem for n = 7
points in a two-dimensional coordinate system. The graph pn that passes all points
P1, . . . , P7 denotes one possible graphical solution of the interpolation problem [dtv].

Interpolation can be used to approximate requested function values of a function
f of which only function values for selected sample points are given. Thereby, the
function interpolating these points is evaluated for arbitrary points between the given
sample points in order to approximate the function values of f at these points. Linear
interpolation denotes the easiest way to approximate the values of a function between
given points. Thereby, neighbouring sample points are connected by a straight line
[Phi03]. The resulting interpolant is a piecewise linear function g. A requested func-
tion value f(x) is approximated by the function value of g(x). Figure 2.5 provides a
graphical illustration for a two-dimensional state space: Given the function f , whose
graph is represented by a gray line, and whose function values can only be accessed
at the points Pi1 , Pi2 and Pi3 . By linear interpolating these points, we get an approx-
imated piecewise linear function g. In order to estimate the requested function value
at x = xreq, we can evaluate g at x = xreq.

2.3. Linear Interpolation 17

f

gPi1

Pi2

Pi3

Pint

xreq

g(xreq)

x

y

Figure 2.5: Using linear interpolation to approximate requested function values

In the case that the value of a function beyond the set of sample points is requested,
extrapolation can be used to estimate this value. The easiest way to extrapolate is to
assume constant values for points beyond the given observation range. Linear extrap-
olation denotes a better possibility to estimate function values outside the current
observation area: The last line segment of the interpolant g is extended and we get a
new function g′. Afterwards, the requested function values are approximated by the
function values of this line. A graphical illustration is given in Figure 2.6: By linear
extrapolating the points Pi2 and Pi3 , we get a piecewise linear function g

′ that is used
to approximate the function value at x = xreq.

f

g′Pi1

Pi2

Pi3

Pext

xreq

g′(xreq)

x

y

Figure 2.6: Using linear extrapolation to approximate requested function values out-
side the current observation range

It is obvious that there exists an error between the function to be interpolated

18 Chapter 2. Preliminaries

and the interpolating function. For linear interpolation and extrapolation, this error
can be decreased by increasing the number of given sample points. In Figure 2.7, the
function f is approximated by the piecewise linear functions g and h. g is constructed
by linear interpolating/extrapolating the points Pi1 , Pi2 and Pi3 , whereas h is deter-
mined by linear interpolating/extrapolating the points Pi1 , Pi2 , Pi3 , Pj1 , Pj2 , Pj3 and
Pj4 . Since the number of given points is increased in contrast to the function g, h is
able to approximate f with a smaller error than g. As a result, the estimated function
values h(xreq,1 and h(xreq,2 are closer to the exact values of the function f than the
function values of g at these points.

f

h
gPi1

Pi2

Pi3
Pj1

Pj2 Pj3

Pj4
Pint,1

Pint,2

xreq,1

g(xreq,1)

h(xreq,1)

Pext,1

Pext,2

xreq,2

g(xreq,2)

h(xreq,2)

x

y

Figure 2.7: Decreasing the interpolation/extrapolation error by increasing the number
of sample points

In our implementation of the grid based control strategy, the precomputation of
the control values in the grid is done using a genetic algorithm. For this reason, in
the next section genetic algorithms are presented.

2.4 Genetic Algorithms

We use genetic algorithms to compute the control values in the grid. Therefore,
in this chapter the basic idea and the concept of these algorithms are introduced.
Afterwards, we consider a concrete implementation of a genetic algorithm that is
used in our implementation of the grid based control strategy to precompute the
control values in the grid.

2.4.1 Theory of Genetic Algorithms

Genetic algorithms (GA) are iterative optimisation and search algorithms which are
based on the biological principle of natural selection. They belong to the class of

2.4. Genetic Algorithms 19

evolutionary algorithms which are inspired by the evolution of natural creatures.
The basic idea is to evolve in each iteration step a set of solution candidates by
preserving and removing some of the old elements as well as coupling elements in
order to get new solution candidates. The algorithm terminates as soon as a prede�ned
stopping criterion has been reached. Afterwards, the current best solution candidate
is returned.

Initial population

Current population

Mating pool

O�spring pool

Next population

Return best solution

Selection

Pairing,
Crossover

Add

Mutation

Stopping criterion

Add elite
Stopping
criterion not
reached

Figure 2.8: Graphical illustration of a genetic algorithm

Figure 2.8 gives an overview of the structure of a genetic algorithm. The algorithm
starts with an initial set of solutions representing an encoding of the problem to be
solved. A solution set is also called a population. According to that, the initial solution
set is named the initial population and often, it is generated randomly. A solution
candidate is also referred to as a chromosome and can be a single value (gene) or
a sequence of values (genes). In each optimisation step, the current generation of a
population is considered: The algorithm uses a �tness function to determine a value
(�tness) for each chromosome. Afterwards, some chromosomes, usually the �ttest
ones with the highest �tness values are selected to create new solutions. Therefore,
they are added to the mating pool [NWN+15, HH98].

In order to determine if the �tness value of a chromosome is good enough so
that the chromosome is selected for the mating pool, a percentage value p can be
used. Then, only the best p percent of the chromosomes of the current generation are
selected for mating. For example, a limit of p = 50% indicates that only the best 50%
of the chromosomes are selected for the mating pool. Another possibility is the usage

20 Chapter 2. Preliminaries

of a �xed threshold value. All chromosomes whose �tness value is better than a given
threshold value are selected. But a �xed threshold value has the disadvantage that
the number of selected chromosomes is not known in advance, and in the worst case
there exist no chromosomes whose �tness values reach the threshold value [HH98].

In the next step, the chromosomes in the mating pool are paired in order to create
new solutions. There exist several strategies to couple chromosomes: A very sim-
ple approach is to pair the chromosomes from top to bottom, i. e to combine every
two successive chromosomes until each chromosome was selected for mating. An-
other possibility might be to couple the chromosomes randomly. The decision which
chromosomes are paired has e�ect on the new generation of chromosomes. The char-
acteristics of the future children depend on the characteristics of the corresponding
parents [NWN+15, HH98].

Afterwards, the couples selected in the pairing process are used to create one or
more o�spring. This is called the crossover phase. Therefore, the characteristics
of each parents are mixed or combined and a new chromosome is created. Hence
the o�spring contains elements of both parents. The number of o�spring per parent
depends on the concrete implementation, the number of overall o�spring is limited
by the population size. The children are put to the o�spring pool [NWN+15, HH98].

In order to avoid that the genetic algorithm converges too fast, mutation is used to
introduce new characteristics which are not yet contained in the current population.
Therefore, the solutions in the o�spring pool can be changed randomly with mutation

rate µ. This phase is called the mutation phase [NWN+15, HH98].

Afterwards, a new generation of chromosomes is build composed of the �ttest chro-
mosomes of the last generation (the elite) and the chromosomes from the o�spring
pool. If necessary, a new set of randomly generated chromosomes is added. After-
wards, the algorithm continues by computing the �tness values for the new generation
and the process repeats itself [NWN+15, HH98].

The algorithm terminates as soon as the stopping criterion has been reached.
This could for example be a �xed number of iterations or a convergence check. Then,
the algorithm returns the �ttest chromosome of the last generation which is the best
solution candidate computed so far [NWN+15, HH98].

Compared to other optimisation and search techniques, genetic algorithms are
di�erent within the following aspects [Gol89]:

� They do not work with the solution itself but use the encoding of a solution set
instead.

� They do not search beginning from a single point, instead a set of points is used
to start searching.

� They use �tness functions to evaluate the current set of solution candidates, not
derivatives or other information.

� They use probabilistic transition rules instead of deterministic ones.

2.4. Genetic Algorithms 21

An advantage is the fact that the search for a solution is parallelised, i. e. they
search beginning from multiple start points simultaneously in di�erent directions.
This increases the robustness of the algorithm and makes it more resistant to become
entangled in suboptimal local maxima or minima: By searching parallel, the algorithm
is able to turn away from a local maximum or minimum if a better solution in an
other area of the search space is found [Gol89, SD08].

Furthermore, genetic algorithms provide in each iteration step a complete solution
which is given by the current population. So the optimisation procedure can be
stopped at any time and it is not necessary to wait for its termination in order to
get a solution. The basic idea is simple and easy to understand and it is possible to
use genetic algorithms for solving complex optimisation problems. Generally, genetic
algorithms do not �nd optimal solutions, but for reasonable parameter settings they
are able to provide acceptable solutions within a limited range of time. As a result,
there exists a trade-o� between the quality of the solution and the time needed by
the algorithm.

2.4.2 GA Based Split Computation

In this section, a concrete realisation of a genetic algorithm is presented which allows
to compute torque distributions for hybrid electric vehicles. The implementation
was developed in [NWN+15] and is part of the extensible genetic algorithm library
GeneiAL, which can be found in [gen]. We use this realisation of a genetic algorithm
in order to precompute the control values in the grid in our implementation of the grid
based control strategy. This genetic algorithm optimises a split sequence of length p,
where p denotes the size of the prediction horizon, and returns the �rst value of this
sequence which represents the split value for the current time step. The algorithm
has the following structure [NWN+15]:

� A chromosome is a split sequence containing the split values u(i), i ∈ {t, t +
1, ..., t+p−1} for the time steps within the prediction horizon of size p. Thereby,
we assume that the current time step is part of the prediction horizon, i. e.
we consider the current time step t as well as the p − 1 following time steps
t + 1, . . . , t + p − 1. Thus a chromosome in this implementation of the genetic
algorithm has the structure:

u(t) u(t+ 1) u(t+ 2) . . . u(t+ p− 1)

The split values in this sequence are percentage values from the set {0, 1, . . . ,
100} and denote the amount of torque to be provided by the ICE. The remaining
part is produced by the EM.

� The population is a set of k chromosomes, the population size is �xed for
all generations. Furthermore, the initial population is created randomly and
thereby, smoothing is used to keep the di�erences between adjacent genes in
a prede�ned range. This process preserves a good driving comfort. We use a
population size of k = 100 in this thesis.

22 Chapter 2. Preliminaries

� The �tness function evaluates the quality of a chromosome and returns a
�tness value in the interval [0, 1]. The higher the �tness value, the better the
quality of the split sequence. The �tness function is a weighted sum of multiple
evaluation functions including di�erent aspects:

� Absolute fuel consumption: The lower the fuel consumption, the higher the
�tness value. The �tness value can be computed by the �tness function

ef := 1−
(

1

p
·
t+p−1∑
τ=t

ṁf (ωice(τ), Tuice(τ))− ṁf,min

)
/(ṁf,max − ṁf,min).

Thereby, ṁf,max as well as ṁf,min are estimated upper and lower bounds
of the fuel consumption for the time step t+ p− 1. They are used to scale
the average fuel consumption to the interval [0, 1].

� Battery state of charge level at the end of the prediction horizon: The
lower the battery energy consumption, the higher the �tness value. The
corresponding �tness value is calculated by using the �tness function

esl := (st+p−1 − smin)/(smax − smin).

smax and smin are estimated upper respectively lower bounds for the SoC
at time step t+p−1 and are used to scale the battery state of charge level
to the interval [0, 1].

� Battery state of charge deviation from sref : The SoC should be kept near
a reference value sref = 0.6 to guarantee a long battery life time. The
smaller the di�erence between the current SoC and sref , the higher the
�tness value. This �tness value can be obtained by the �tness function

esd := Nµ,σ(st+p−1)/Nµ,σ(µ),

where Nµ,σ denotes the normal distributed function with expected value
µ and standard deviation σ. µ and σ depend on the estimated lower
respectively upper bounds for the SoC (smin, smax) as well as its reference
value (sref). They are de�ned as follows:

(µ,σ) =

(smax, smax − smin/2), smax < sref

(sref , (sref + sdiff)/2), smin ≤ sref ≤ smax
(smin, smax/2), smin < sref .

Thereby, we use sdiff := max(|smin − sref |, |smax − sref |).
� Split di�erence minimisation: For a better drivability and a higher driving
comfort of the car, consecutive splits should not diverge too much. The
more homogeneous a split sequence is, the higher the �tness value. The
homogeneity of a chromosome can be evaluated by the �tness function

eud := 1−
(t+p−1∑
τ=t

(u(τ)− u(τ − 1))2
)
/(p · (umax − umin)2).

Thereby, [umin, umax] denotes the allowed split range. Moreover, we as-
sume that u(0) = 0.

2.4. Genetic Algorithms 23

� Split di�erence transgression: This evaluation function also is focused on
the evaluation of the di�erence between consecutive splits in order to im-
prove the drivability. If all di�erences between two consecutive splits within
the split sequence are below a maximal allowed split delta ∆umax, the �t-
ness value is maximal. The corresponding �tness function is given by

eut := 1−
∑t+p−1
τ=t iτ · (∆umax − |u(τ)− u(τ − 1)|)2

p · (∆umax − (umax − umin))2
.

iτ is de�ned as follows:

iτ =

{
0, |u(τ)− u(τ − 1)| < ∆umax

1, else

The �tness value f can be computed by f = wfef +wslesl +wsdesd +wudeud +
wuteut), where wf , wsl, wsd, wud, wut ∈ [0, 1] are weights that sum up to one.
A �tness con�guration is a tuple (wf , wsl, wsd, wud, wut) containing the �tness
weights. We use the �tness con�guration (0.45, 0.0, 0.45, 0.1, 0.0) in this thesis.

� Selection is realised by roulette wheel selection, a procedure based on the
idea of spinning a roulette wheel. Thereby, the range of an imagined roulette
wheel is divided into subranges so that each chromosome is related with one
subrange that has a proportional size to the �tness value of the chromosome.
The higher the �tness value, the larger the subrange in the roulette wheel for
this chromosome, and therefore, the higher the probability that the chromosome
is selected. Afterwards, a random number is determined which describes the
location where the roulette wheel has stopped after spinning. The chromosome
related to this location is selected [Gol89]. We choose in each iteration step 38
chromosomes for the mating pool.

� The pairing of the chromosomes is done randomly, i. e. chromosomes are picked
at random to form pairs.

� In the crossover process two children per chromosome pair are created. A
chromosome in the mating pool is used for crossover with a probability ρ. We
use ρ = 0.38 in this thesis. N-point crossover is used, that means at n randomly
selected points the parent's genes are swapped. We set n = 2. Moreover, we
set the number of o�spring that is generated to 38. Furthermore, smoothing is
enabled, i. e. the split di�erence between adjacent genes of the o�spring is kept
within a prede�ned range to preserve a good drivability.

� The mutation in the o�spring pool is done by using uniform mutation, this
means m randomly selected genes of a chromosome are mutated by replacing
the split value by a random value. m is de�ned using a percentage value of
10%. This value indicates the percent of genes to be mutated in a chromosome.
Furthermore, in each iteration 10 chromosomes in the o�spring pool are selected
to be mutated with a mutation probability of µ. In this thesis, we use µ = 0.1.
Mutation is done by using smoothing, i. e. the genes in the neighbourhood of
each mutated gene will be adapted so that the di�erence between adjacent split
values is limited.

24 Chapter 2. Preliminaries

� The new generation is build by preserving the chromosomes with the highest
�tness values from the last generation and by replacing the worst chromosomes
by new ones from the o�spring pool. If there is not enough o�spring, randomly
created chromosomes are added to the next generation. We use the e = 5 �ttest
chromosomes from the last generation and replace the 38 worst chromosomes
from the last generation by the 38 chromosomes from the o�spring pool. In case
of double occurrences, additional chromosomes are randomly created.

� The stopping criterion is de�ned as a maximal iteration number. After a �xed
number gmax of generations, the algorithm terminates in order to guarantee a
�xed computation time. We use gmax = 100 in this thesis.

A con�guration of this genetic algorithm is a tuple CGA = (k, ρ, µ, gmax) where k
denotes the population size, ρ the crossover rate, µ the mutation rate and gmax the
maximal number of generations [NWN+15]. In this thesis, we use the con�guration
CGA = (100, 0.38, 0.1, 100).

In this chapter, the vehicle model which is used to simulate control strategies as
well as control strategies in general were introduced. Furthermore, linear interpolation
as well as linear extrapolation were explained, and the theory of genetic algorithms and
a concrete implementation of a genetic algorithm were presented. In the next chapter,
this preliminary knowledge is used to introduce the grid based control strategy, a
predictive control strategy which uses in each time step a discrete grid in order to
compute control values.

Chapter 3

Grid Control Strategy

In this chapter, a grid based control strategy is presented. The control strategy gets
as input the current state of the car as well as the requested velocities for the current
time step and the prediction horizon. As output a distribution of the requested torque
over the available engines is returned. This torque distribution is based on a split value
which is computed by the split computation block of the strategy. The computation
of this split is done by interpolating precomputed split values of sample points in a
discrete grid. In this chapter, the structure of the strategy, especially the functionality
of the split computation block, is introduced. Moreover, the grid construction as well
as the detailed interpolation of split values is explained.

3.1 Structure of the Strategy

The grid based control strategy (Grid Control Strategy) is a rule based predictive
control strategy which relies on a discrete grid. In each time step, the strategy gets as
input the requested velocities vr1 , . . . , vrp for the prediction horizon of length p and
the current state of the car which is described by the the current gear g, the current
battery state of charge s, the split value u0 used in the previous time step, and the
actual velocity va. The previous split value is considered in order to prevent high
�uctuations within the torque distribution from one time step to another.

First, the strategy checks if the car is braking at the moment, or standing at
the current time step and is requested to stand still. If so, an invalid split of −1 is
returned and the control converter determines the torque distribution. Otherwise, the
split computation block of the strategy is requested to determine a split value that
proposes a torque distribution. The current state of the car as well as the requested
velocities describe an input point pin = (g, s, u0, va, vr1 , . . . , vrp) from the state space
S = Dg ×Ds ×Du ×Dp+1

v . The set S consists of p+ 4 dimensions:

� Dg = {x ∈ N|1 ≤ x ≤ 5} is the dimension which describes the gears of the car.

26 Chapter 3. Grid Control Strategy

d1

d2

Figure 3.1: Grid for the input dimensions d1 and d2

� Ds = {x ∈ R|0 ≤ x ≤ 1} denotes the dimension that describes the battery state
of charge level of the car.

� Du = {x ∈ R|0 ≤ x ≤ 100} is the dimension which describes the set of split
values.

� Dv = {x ∈ R|0 ≤ x ≤ 45} characterises the set of velocities in m/s our vehicle
can achieve.

The strategy uses a discrete grid in order to determine the requested control value
for pin. A grid is a set Sgrid = Dg × Ds × Du × Dp+1

v ⊂ S that contains selected
discretised points p = (g, s, u0, va, vr1 , . . . , vrp) ∈ S for which a precomputed control
value is stored. The points in Sgrid are referred to as grid points.

For each grid point pgrid ∈ Sgrid, a split value u ∈ Du is o�ine computed and can
be accessed via a function split : Dg×Ds×Du×Dp+1

v → Du. Then, split(p), p ∈ Sgrid
returns the split value for pgrid. All points pgrid ∈ Sgrid must have a split value in the
range of [0, 100], i. e. points p ∈ S that describe a car which is braking at the moment,
or standing at the current time step and is requested to stand still also in the next
time step, and which have therefore an unde�ned split of −1, are not contained in
Sgrid. This is based on the fact that the split values of the grid points are used for
interpolation, and using unde�ned split values of −1 for interpolation would lead to
unreasonable and invalid approximated split values. Moreover, the cases braking and
standing are handled separately by the strategy, we do not use the grid in these cases.

An optimisation method is used to precompute the split values in the grid. Since
the grid is precomputed o�ine, the optimisation method is not required to be real
time capable. We use a genetic algorithm to precompute the split values in the grid.
However, the Grid Control Strategy is not restricted to this optimisation method. It
is also possible to perform this precomputation process by using another optimisation
algorithm.

3.1. Structure of the Strategy 27

In order to construct a set Sgrid of grid points, the dimensions of S that have
a continuous domain must be discretised, i. e. for each dimension a lower and an
upper bound must be speci�ed as well as the amount of discretisation levels. This
discretisation approach is de�ned as follows:

De�nition 3.1.1 (Discretisation). Let D be a domain, xmin and xmax minimal and

maximal values for the domain, and let r ∈ {x ∈ N|x ≥ 2} be a resolution parameter.

Then the interval [xmin, xmax] can be homogeneously discretised to Sdis = {xi|xi =
xmin + i · xmax−xmin

r−1 , i ∈ [0, r − 1]}.

Figure 3.1 provides an example illustrating the structure of a grid for two input
dimensions d1 and d2 with domains D1 and D2, respectively. The discretisation of the
state space D1 ×D2 allows to specify grid points pgrid ∈ Sgrid which are represented
by black dots in this space. For each of these grid points, a split value is precomputed
and can be accessed by the split function.

The set Sgrid of grid points pgrid = (g, s, u0, va, vr1 , . . . , vrp) is a subset of the
state space S. The elements contained in this set have the following characteristics:

� Since we consider a car with �ve gears, the �rst dimension of the grid is Dg =
{1, 2, . . . , 5}. As the gear values are already discretised, we consider all �ve
gears in our grid �les, i. e. Sgdis = Dg. Gear shifts are not considered within the
prediction horizon, i. e. we keep the requested gear for the current time step
�xed. This has the advantage that each point p ∈ S has only a single gear value
instead of using a gear for each time step that is part of the prediction horizon.
In doing so, the number of dimensions in the state space S and therefore, in
Sgrid, is reduced.

� The battery state of charge (SoC) theoretically can have values in the interval
[0, 1], where 0 denotes that the battery is discharged, and 1 describes a battery
which is fully charged. However, in practice the Grid Control Strategy should
keep this value in the range of [0.5, 0.7] near a reference value sref = 0.6 to
guarantee a long battery lifetime. For the grid, a minimal and a maximal SoC
value smin, smax ∈ Ds with smin < smax are de�ned. Thereby, smin is set
to 0.5 and smax to 0.7 since the control converter allows only small deviations
from the interval [0.5, 0.7]. The discretised set of SoC values Ss,gdis is constructed
using smin and smax as well as for each gear g a resolution parameter rgs , whose
concrete value can be speci�ed.

� The velocity can vary between 0 m/s and 45 m/s, i. e. we have Dv = {x ∈
R|0 ≤ x ≤ 45}. The physical unit is m/s. The current gear restricts the veloc-
ity that can be obtained by the car. In Table 3.1 the minimal and the maximal
velocity value for each gear g are de�ned. The actual velocity va as well as the
requested velocities vr1 , . . . , vrp can be discretised by using the minimal and
maximal values in this table. So for each gear g exist minimal and maximal ve-
locities vga,min, v

g
a,max, v

g
r,min, v

g
r,max which describe the corresponding minimal

and maximal velocity. Furthermore, there exist resolution parameters rgva , r
g
vr ,

whose concrete values can be de�ned. These values allow to discretise the in-
tervals [vga,min, v

g
a,max], [vgr,min, v

g
r,max] in order to construct the discretised sets

of velocities Sva,gdis and Svr,gdis .

28 Chapter 3. Grid Control Strategy

[v] vmin vmax g
0.00 8.3056 1

4.73849 11.083 2
m/s 7.486 18.022 3

15.7969 20 4
18.0102 45.00 5

Table 3.1: Minimal and maximal velocity depending on the current gear

� The split values u ∈ Du as well as the previous split values u0 ∈ Du are
speci�ed as values in the range of [0, 100] and denote the percentage of torque
to be provided by the combustion engine. The remaining percentage 100− u of
torque is produced by the electrical motor. The previous split of the last time
step is considered as input in order to prevent high �uctuations from one time
step to the next one. Corresponding to this, the grid has a dimension which
contains information about the previous split. The previous split value of a
grid point is homogeneously discretised using umin = 0 and umax = 100. The
discretisation of the previous split values contained in the grid points is done
using the resolution parameter rgu0

, whose concrete value can be speci�ed for
each gear g. In doing so, we obtain the discretised sets Su0, g

dis of previous split
values. In addition, it should be noted that the computed split value u is not
discretised.

The Grid Control Strategy uses the grid and the precomputed split values of the
grid points in order to determine the requested split value of an input point pin. The
complete algorithm of the strategy is given in Algorithm 1. If pin is a grid point, its
split value can be accessed by the split function and is returned immediately. But in
general, this is not the case and an input point is not contained in the grid. Then, an
interpolation set Spinintp is computed which contains grid points in the neighbourhood
of pin. Afterwards, the requested split of pin is interpolated by the split values of the
points that are contained in Spinintp.

The concrete computation of the interpolation set is described in the next section.
Moreover, the interpolation of the requested split value of the input point based on
this interpolation set is explained.

3.2 Interpolating Split Values

First, we consider the function computeIntpolSet(Sgrid, pin). This function has the
purpose to compute an interpolation set Spinintp of neighbouring grid points of pin which
are suitable for interpolation. In a �rst approach, we de�ned this set by choosing a
�xed number of the k < |Sgrid| grid points which are closest to the input point.
However, this approach has the disadvantage that the distances between the input
point and the selected grid points can become very large in the case that the density
of grid points in the environment of the input point is small. Moreover, it is not

3.2. Interpolating Split Values 29

Input : Sgrid ⊂ S, pin = (g, s, u0, va, vr1 , . . . , vrp) ∈ S
Output: split u ∈ Du ∪ {−1}
function computeSplit(Sgrid, pin)

if braking or standing then
return −1;

else

if pin ∈ Sgrid then
return split(pin);

else
Spinintp = computeIntpolSet(Sgrid, pin);
return interpolation(Spinintp, pin);

end

end

end

Algorithm 1: Basic algorithm of the Grid Control Strategy

ensured that within each dimension neighbouring grid points are contained in the
interpolation set.

For these reasons, we decided to describe the interpolation set using a box around
the input point. This box is de�ned as follows:

De�nition 3.2.1 (Box of an input point). Given an input point pin = (gin, sin, uin0 ,
vina , v

in
r1 , . . . , v

in
rp) ∈ S. The box of pin describes the area around pin whose expan-

sion is limited in each dimension d ∈ {g, s, u0, va, vr1 , . . . , vrp} by threshold values

tg, ts, tu0
, tva , tvr ∈ R≥0. These threshold values are de�ned as follows:

� tg = 0,

� ts =

{
smax−smin

rgs−1 , s 6∈ Ss,gdis
0, else

,

� tu0
=

{
umax−umin

rgu0
−1 , u0 6∈ Su0,g

dis

0, else
,

� tva =

{
va,max−va,min

rgva−1
, va 6∈ Sva,gdis

0, else
,

� tvr =

{
vr,max−vr,min

rgvr−1
, vr 6∈ Svr,gdis

0, else
,

and they are at most as large as the di�erence between two discretised values of the

input dimensions in the grid.

The interpolation set Spinintp contains all points within the box around pin for which
a precomputed control value is stored. Points located exactly on the borders of the

30 Chapter 3. Grid Control Strategy

box are not contained in the interpolation set. If not equal to zero, the threshold val-
ues ts, tu0 , tva , tvr indicate for each dimension a supremum for the maximal deviation
a point is allowed to have from the input point. In the special case that a dimen-
sion of pin is contained in the grid, the corresponding threshold value is set to zero.
As a result, the box is reduced by one dimension. Moreover, we assume that only
grid points pgrid with the same gear g as the input point are used for interpolation.
Therefore, tg is set to zero and as a result, all grid points contained in Spinintp have the
same gear value as pin. In the case that an input point is located outside the grid, we
determine additional extrapolated points which represent the missing neighbouring
grid points of pin. These extrapolated points are added to the interpolation set of
the input point. For each extrapolated point, a �ctive split value is computed and
stored by linear extrapolating the split values of the two last known grid points. The
complete de�nition of the interpolation set is given in the following:

De�nition 3.2.2 (Interpolation Set). Given an input point pin = (gin, sin, uin0 , v
in
a ,

vinr1 , . . . , v
in
rp) ∈ S, pin 6∈ Sgrid as well as the box around this input point, which is

limited by the threshold values tg, ts, tu0 , tva , tvr ∈ R≥0. The interpolation set Spinintp

contains all points p = (g, s, u0, va, vr1 , . . . , vrp) for which a precomputed split value

is stored and which are located in the box of pin. Thus for all p ∈ Spinintp the following

conditions are ful�lled:

1. gin = g, i. e. the gear is �xed and is not interpolated,

2. ts > 0 =⇒ (|sin − s| < ts),

3. ts = 0 =⇒ (|sin − s| = 0),

4. tu0
> 0 =⇒ (|uin0 − u0| < tu0

),

5. tu0 = 0 =⇒ (|uin0 − u0| = 0),

6. tva > 0 =⇒ (|vina − va| < tva),

7. tva = 0 =⇒ (|vina − va| = 0),

8. tvr > 0 =⇒ (∀i ∈ {1, . . . , p} : |vinri − vri | < tvr),

9. tvr = 0 =⇒ (∀i ∈ {1, . . . , p} : |vinri − vri | = 0).

This interpolation set consists of all points in the neighbourhood of pin that are
suitable for interpolation. The complete algorithm to compute the interpolation set
is given in Algorithm 2.

Figure 3.2 provides an illustration for a two-dimensional grid that summarises the
di�erent cases which could occur during the computation of the interpolation set. The
threshold values for the input dimensions d1 and d2 are t1 respectively t2. In a �rst
situation, an input point pin,1 is located between given grid points. The box of pin,1 is
limited by threshold values t1 and t2. Therefore, the interpolation set Spin,1

intp contains
four grid points, marked by blue points in the �gure. Afterwards, we consider the
special case that at least one dimension of an input point is exactly contained in the
grid. In this case, the box of the input point pin,2 is reduced to a straight line and the

3.2. Interpolating Split Values 31

Input : Sgrid ⊂ S, pin = (g, s, u0, va, vr1 , . . . , vrp) ∈ S
Output: Interpolation set Spinintp of pin
function computeIntpolSet(Sgrid, pin)

Spinintp := ∅;
for all p ∈ Sgrid do

if p ∈ box(pin) then
Spinintp := Spinintp ∪ {p};

end

end

if outsideGrid(pin) then
Spinintp := Spinintp ∪ getExtrapolPoints(Sgrid, pin);

end

return Spinintp;
end

Algorithm 2: Computation of the interpolation set

interpolation set of pin,2 contains only two grid points. In a third case, the input point
pin,3 is located outside the grid. In order to interpolate its split value, we construct
additional extrapolated points e1 and e2 that represent the missing neighbouring grid
points. For each of these extrapolated points, a �ctive split value is computed by
linear extrapolating the split values of the two last known grid points. Thereby, it
should be noted that these extrapolated split values are not necessarily located in the
interval [0, 100]. As a result, the interpolation set of pin,3 contains two grid points
and two additional extrapolated points.

After determining the interpolation set of an input point pin, we consider the
function interpolation(Spinintp, pin). The purpose of this function is to interpolate the
requested split value of pin by using the split values of the points contained in the
interpolation set.

The requested split value of pin is computed by linear interpolating the split
values of the n = |Spinintp| many neighbouring points of pin which are contained in the
interpolation set. In order to access not only the split values of the grid points, but
also the split values of possible additional extrapolated points, we use an adapted
split function split′(p) : Dg ×Rp+3 → R. This function provides a precomputed split
value for each point p ∈ Sgrid as well as for each extrapolated point. Afterwards, the
requested split value of pin is computed as follows:

upin =

∑n
i=1 wi · split′(pi)∑n

i=1 wi
. (3.1)

The weight wi for each point pi includes the distance between the input point and
the respective grid point/extrapolation point. This distance is based on the euclidean
distance and is de�ned as follows:

De�nition 3.2.3 (Distance function). Given two points p1 = (g1, s1, u0,1, va,1, vr1,1,
. . . , vrp,1), p2 = (g2, s2, u0,2, va,2, vr1,2, . . . , vrp,2) ∈ S ∪ Dg × Rp+3 with g1 = g2 = g.

32 Chapter 3. Grid Control Strategy

pin,1 pin,2 pin,3

p1 p2

e1

e2
d d

d1

d2

t2

t1

t2

= 0

t2

t1

t1

t2

d d

u

p1 p2 e2

Figure 3.2: Determining the interpolation set

The distance function dist(p1, p2) is de�ned as follows:

dist(p1, p2) =

((|s1 − s2|
sgmax − sgmin

)2
+
(|u1 − u2|
ugmax − ugmin

)2
+
(|va,1 − va,2|
vga,max − vga,min

)2
+

p∑
i=1

(|vri,1 − vri,2|
vgr,max − vgr,min

)2) 1
2

.

Due to the fact that di�erent dimensions of a point have di�erent domains, the
di�erences are normalised by dividing by their maximal ranges. Thereby, we obtain
values within [0, 1] for each dimension. A small distance should result in a high value,
for this reason wi is de�ned as follows:

wi = 1.0− dist(pin, pi)

maxj=1,...,n dist(pin, pj)
(3.2)

The weights can have values in the interval [0, 1). Furthermore, the point in the
interpolation set with the highest distance to the input point has a weight of zero
and therefore, it is not in�uencing the split value of the input point. The complete
interpolation algorithm is shown in Algorithm 3.

In this chapter, the structure of the Grid Control Strategy was introduced. The
state space S = Dg ×Ds×Du×Dp+1

v describes the set of inputs of the strategy. The
set Sgrid ⊂ S of grid points contains selected discretised points p ∈ S for which a
precomputed split value can be accessed by the split function split(p), p ∈ Sgrid. In
order to construct such a grid set, the dimensions of S which have a continuous domain
must be discretised. The Grid Control Strategy uses the grid in order to interpolate
split values for an input point pin ∈ S, pin 6∈ Sgrid. Therefore, an interpolation set
Spinintp is determined that contains points which are suitable for interpolation. This

3.2. Interpolating Split Values 33

Input : Spinintp, pin = (g, s, u0, va, vr1 , . . . , vrp) ∈ S
Output: split u ∈ Du

function interpolation(Spinintp, pin)
u := 0;
sumWeights := 0;
for all p ∈ Spinintp do

wi := 1.0− (dist(pin, p)/maxnj=1 dist(pin, pj));
u+ = wi · split′(p);
sumWeights+ = wi;

end

. Limit split to [0, 100]
if split/sumWeights < 0 then

return 0;
else if split/sumWeights > 100 then

return 100;
else

return split/sumWeights;
end

end

Algorithm 3: Interpolation algorithm

interpolation set is de�ned by all points contained in a box around the input point.
In the case that an input point is located outside the grid, linear extrapolation is
used to compute split values for additional extrapolated points. Afterwards, the split
values of the points contained in the interpolation set are used to interpolate the split
value of pin. Thereby, the split values of the points p ∈ Spinintp are weighted by their
distance to the input point. The quality of the interpolated split value depends on
the available grid points. In the next chapter, we consider a procedure to optimise a
grid in order to improve the quality of the interpolated split values.

34 Chapter 3. Grid Control Strategy

Chapter 4

Grid Optimisation

The Grid Control Strategy uses the precomputed split values of the points that are
contained in the interpolation set Spinintp of an input point pin ∈ S in order to interpolate
the split value for pin. Thereby, the quality of the interpolated split value depends
on the available grid points in the grid and their distance to pin: The larger the
distance, the worse a point represents the input point and therefore, the less in�uence
the point has on the interpolation result. Moreover, the fewer the number of points
in the interpolation set of an input point, the less signi�cant the approximated split
value is.

In this chapter, a procedure to optimise the grid is presented. By inserting ad-
ditional grid points, the aim is to re�ne the grid and to increase its resolution, such
that afterwards the grid is able to interpolate requested split values more precisely
than before. Thereby, we assume that the smaller the distance between pin and a
point in the grid, the more in�uence the precomputed split value should have on the
interpolation result. Furthermore, we assume that the higher the number of points in
the interpolation set of an input point, the more precise the interpolated split value
becomes. In the �rst section, the basic algorithm of the optimisation procedure is
presented. Afterwards, the detailed construction of new grid points is explained.

4.1 Structure of the Algorithm

The optimisation procedure is an iterative approach which re�nes the grid in areas
where the optimisation algorithm that is used to precompute the split values in the
grid is poorly approximated. Thereby, new grid points are inserted into the grid so
that split values of input points can be approximated more precisely. The aim is to
increase the density of grid points in the environment of an input point pin in order
to improve the quality of the split interpolation of pin. In contrast to increasing the
resolution parameters during the grid creation, the optimisation procedure re�nes the
grid only partially. As a result, the optimised grid is smaller than a grid with increased
resolution parameters. Moreover, the optimised grid is no longer homogeneous. Figure

36 Chapter 4. Grid Optimisation

Grid before optimisation:

d1

d2

Grid after optimisation:

d1

d2

Figure 4.1: A two-dimensional homogeneous grid (left), and a two-dimensional inho-
mogeneous, optimised grid (right)

4.1 illustrates the di�erence between a homogeneous grid as considered so far, and a
grid after optimisation.

The complete algorithm of the grid optimisation procedure is presented in Algo-
rithm 4. The algorithm gets as input a grid Sgrid which shall be optimised. Moreover,
the Grid Control Strategy gridStrat as well as a reference strategy refStrat are re-
quired. As output an optimised grid is returned. In each iteration, the split values of
the Grid Control Strategy based on the current grid are compared to the split values
of a reference strategy. In order to get comparable results, both strategies must be
evaluated on the same car that is simulated on a driving cycle. Moreover, as reference
strategy a control strategy which is directly based on the optimisation procedure that
is used to precompute the split values in the grid is chosen.

Afterwards, the function getMaxSplitDiff (refStrat , gridStrat ,Signore) determines
the maximal split di�erence maxSplitDiff between the reference strategy refStrat and
the Grid Control Strategy gridStrat, whereby all time steps where the corresponding
input point is contained in Signore are ignored. The set Signore is initially empty
and contains all input points that are marked as `ignored' during the optimisation.
Further information about ignored input points are given below. In the case that
the maximal split di�erence exceeds a prede�ned value δ and not all input points are
ignored, the optimisation procedure determines the time step tmax corresponding to
maxSplitDiff as well as the input point pmax of the Grid Control Strategy at this time
step. Afterwards, the algorithm tries to insert new points into the grid. The function
insertNewPoints(Sgrid, pmax) is explained in detail in Section 4.2. Thus, additional
grid points are used for interpolation which might decrease the split di�erence at this
time step between the Grid Control Strategy and the reference strategy. After that, it
is checked if the split di�erence at time step tmax is decreased. If so, the optimisation
was successful. Otherwise, the corresponding input point is added to Signore. As a
consequence, this input point will not be considered by the optimisation algorithm
any more. This approach is necessary in order to guarantee the termination of the

4.2. Construction of New Grid Points 37

Input : Sgrid ⊂ S, refStrat, gridStrat
Output: re�ned Grid SoptGrid ⊂ S
function optimiseGrid(Sgrid, refStrat, gridStrat)

SoptGrid := Sgrid;
Signore := ∅;
maxSplitDiff = getMaxSplitDiff (refStrat , gridStrat ,Signore);
while ((maxSplitDiff > δ) && (!containsAllInputPoints(Signore)) do

tmax = getT imeStep(maxSplitDiff);
pmax = getInputPoint(tmax);
SoptGrid := insertNewPoints(SoptGrid, pmax);
d = getSplitDiff (pmax);
if d ≥ maxSplitDiff then

deleteInsertedPoints();
Signore := Signore ∪ pmax;

end

gridStrat = runGridStrat(SoptGrid);
maxSplitDiff = getMaxSplitDiff (refStrat , gridStrat ,Signore);

end

return SoptGrid;
end

Algorithm 4: Grid optimisation algorithm

procedure. Since inserting new grid points might have e�ects on the split values of
other input points in the neighbourhood, it is necessary to rerun the Grid Control
Strategy after each insertion process. In doing so, it is guaranteed that in each
optimisation step the maximal split di�erence (without the time steps which are
ignored) between the strategies is considered. Afterwards, the algorithm continues by
recomputing the maximal split di�erence and the process is repeated. In the case that
maxSplitDiff is below δ, or all input points of the Grid Control Strategy are marked as
`ignored', the algorithm terminates. However, as the optimisation procedure provides
in each iteration step a complete grid, it is also possible to stop the optimisation
before its termination.

4.2 Construction of New Grid Points

In this section, we consider the function insertNewPoints(Sgrid, pmax), which has
the purpose to add new points to the grid that are contained in the box around an
input point. The function gets as input a grid Sgrid ∈ S as well as an input point
pmax = (g, s, u0, va, vr1 , . . . , vrp) ∈ S. As output a re�ned grid is returned where the
density of grid points in the environment of pmax is increased. For a two-dimensional
grid, the approach of this function is illustrated in Figure 4.2. The input point is
represented by a red point, grid points are marked as grey dots. The grey rectangular
area de�nes the box around the input point which describes the interpolation set
Spmax

intp . The complete algorithm of the construction of new grid points is presented in
Algorithm 5.

38 Chapter 4. Grid Optimisation

Initial state: First iteration:

Second iteration: Third iteration:

d1

d2

dlow,2

dup,2

dup,1dlow,1 d1

d2

dlow,2

dup,2

dup,1dlow,1

d1

d2

dlow,2

dup,2

dup,1

dlow,1 d1

d2

dlow,2
dup,2

dup,1

dlow,1

Figure 4.2: Optimisation procedure: First, for each dimension upper and lower bounds
dlow and dup are determined. Afterwards, the intervals [dlow, dup] are divided into two
equidistant sub intervals [dlow,m] and [m, dup], and in each dimension only the sub
intervals that contain the input point are further considered. New points located on
the edges of the intervals are added to the grid. This procedure can be repeated until
a prede�ned iteration depth is reached.

The optimisation procedure allows to re�ne the dimensions s, va, vr and u0. Since
all gears g ∈ Dg are already contained in the grid, the gears are not re�ned. The
algorithm starts by determining for each dimension d the next smaller as well as the
next larger values:

De�nition 4.2.1. Let Sgrid ⊂ S be a grid and let pmax = (g, s, u0, va, vr1 , . . . , vrp) ∈
S be an input point for which the grid should be re�ned. Moreover, the discretisation

sets Ss,gdis,S
u0,g
dis ,S

va,g
dis and Svr,gdis are given. The next smaller as well as the next larger

values dlow and dup for each dimension d ∈ {s, u0, va, vr1 , . . . , vrp} are de�ned as

follows:

� dlow := e ∈ Sd,gdis , e ≤ dpmax
∧ ¬∃f ∈ Sd,gdis : (e < f < dpmax

)

� dup := e ∈ Sd,gdis , e ≥ dpmax
∧ ¬∃f ∈ Sd,gdis : (dpmax

< f < e)

4.2. Construction of New Grid Points 39

Input : Sgrid ⊂ S, pmax = (g, s, u0, va, vr1 , . . . , vrp) ∈ S
Output: re�ned Grid SoptGrid ⊂ S
function insertNewPoints(Sgrid, pmax)

SoptGrid := Sgrid;
for all d ∈ {s, u0, va, vr1 , . . . , vrp} do

dlow := nextLowerV alue(d);
dup := nextUpperV alue(d);

end

for i = 0; i < imax; + + i do
for all d ∈ {s, u0, va, vr1 , . . . , vrp} do

m := dlow +
dup−dlow

2 ;
if m ≤ dpmax

then
dlow := m;

end

if m ≥ dpmax
then

dup := m;
end

end

SnewPoints := {slow,sup} × {va,low,va,up} × {vr,low,vr,up}p × {u0,low,u0,up};
for all p ∈ SnewPoints do

u = computeSplit(p);
if ((!contained(p, SoptGrid)) && (u 6= −1)) then

SoptGrid := SoptGrid ∪ {p};
split(p) := u;

end

end

end

return SoptGrid;
end

Algorithm 5: Construction of new grid points

The following example shows the computation of dlow and dup exemplary for the
SoC:

Example 4.2.1. Let Ss,gdis = {0.5, 0.55, 0.6, 0.65, 0.7} and let pmax = (g, s, u0, va, vr1 ,
. . . , vrp). The upper and lower SoC value for s = 0.59 are slow = 0.55 and sup = 0.6.

The algorithm to determine additional grid points is based on the idea of a bi-
nary search: After de�ning the start interval [dlow, dup] for each dimension d, in
each iteration step these intervals are divided into two equidistant sub intervals:
[dlow,m], [m, dup]. In the case that dpmax

∈ [dlow,m], we set dup := m; Otherwise,
if dpmax

∈ [m, dup], we set dlow := m. Afterwards, the cartesian product of the sets
{dlow, dup} is constructed, which gives the set of points SnewPoints that contains can-
didates for new grid points. These new points are highlighted by blue dots in Figure
4.2. Furthermore, a split value u ∈ Du is computed for each new point. After that,
all points p ∈ SnewPoints whose split value is de�ned, i. e. a value in the interval
[0, 100], and which are not yet contained in the grid, are added to the grid. Thereby,
we extend the split function that returns a precomputed split value for each grid

40 Chapter 4. Grid Optimisation

point such that this function is able to return also the split values for the new grid
points. Due to the selection of the initial upper and lower values, all new grid points
are located in the box around the current input point. As a result, only grid points
that in�uence the split value of the current input point are added to the grid.

In the next step, the split di�erence between the Grid Control Strategy and the
reference strategy at this time step is evaluated. In the case that the insertion of the
new grid points has decreased the split di�erence, the optimisation of this time step is
�nished for the moment. However, the corresponding input point might be considered
again in a further optimisation step if its split di�erence is detected to be maximal
compared to all other available input points that are not yet marked as `ignored'. In
this case, the optimisation of this input point will be continued at its last used iteration
depth. Otherwise, if the split di�erence is not decreased by the new grid points, the
inserting process is repeated by further dividing the current intervals [dlow, dup]. In
order to guarantee the termination of the procedure, a maximal iteration depth imax
is speci�ed. If this limit has been reached, the corresponding input point is marked
as `ignored', and its optimisation is de�nitely �nished.

Since the inserted grid points converge towards the input point with increasing
iteration depth, the insertion of new grid points results in a smoothed re�nement of
the grid. As a result, the density of grid points increases the closer we get to an
input point to be optimised. Additionally, this optimisation method only adds grid
points close to the input point, and not in the whole state space. In doing so, the
performance of the procedure is improved.

In this chapter, a procedure to optimise the grid was presented. The aim is to
increase the quality of the interpolated split values by adding new points to the grid.
The optimisation algorithm is an iterative approach, which compares the split values
of the Grid Control Strategy to those of a reference strategy. For this purpose, a
driving cycle is used. In each optimisation step, the input point pmax of the Grid
Control Strategy corresponding to the time step where the di�erences between the
split values of the two strategies is maximal is determined. Thereby, time steps where
the corresponding input point is marked as `ignored' are skipped. Afterwards, the
function insertNewPoints(Sgrid, pmax) tries to add new points that are located in
the environment of pmax to the grid. This inserting process is based on the idea of
a binary search: It starts with lower and upper values dlow, dup for each dimension
d. Afterwards, the intervals [dlow, dup] are divided into two equidistant sub intervals,
and for each dimension the upper and lower values are set to the limits of the sub
interval that contains the dimension d of the input point. In order to construct a set
SnewPoints of new grid point candidates, the cartesian product of the sets {dlow, dup}
is determined. After that, all points p ∈ SnewPoints whose split values are de�ned and
which are not yet contained in the grid, are added to the grid. If the split di�erence for
the current input point is decreased by the new grid points, its optimisation is �nished
for the moment. Otherwise, the current intervals [dlow, dup] are further divided until
a prede�ned maximal iteration depth is reached. We implemented the Grid Control
Strategy as well as this optimisation procedure. In the next chapter, the experimental
results of our implementation are evaluated.

Chapter 5

Experimental Results

After introducing the theoretical concepts of the Grid Control Strategy, the grid,
and the grid optimisation procedure, in this chapter the experimental results of our
implementation are discussed. We use a MATLAB/Simulink model in order to test
the Grid Control Strategy and to compare it to other control strategies. For this,
three driving cycles are used: The NEDC, the FTP_75 and the HWFET. A detailed
description of each driving cycle can be found in Appendix A. Moreover, we compare
the Grid Control Strategy to the following reference strategies: The GA Control

Strategy is a predictive control strategy which is based on optimal control and which
uses in each time step a genetic algorithm to determine the split value. Further
information on this control strategy can be found in [NWN+15]. The ICE Control

Strategy uses only the combustion engine for driving.

g smin smax rgs u0,min u0,max rgu0
vgmin vgmax rgva rgvr

1 0.5 0.7 5 0 100 11 0.00 8.3056 5 3
2 0.5 0.7 5 0 100 11 4.73849 11.083 4 3
3 0.5 0.7 5 0 100 11 7.486 18.022 5 3
4 0.5 0.7 5 0 100 11 15.7969 20.00 3 3
5 0.5 0.7 5 0 100 11 18.0102 45.00 5 3

Table 5.1: Grid settings

The Grid Control Strategy uses a grid that is based on the settings which are
presented in Table 5.1. This grid contains about 59400 grid points, whereby 38610
points were left out due to the fact that their split value was unde�ned, i. e. −1.
Furthermore, the grid creation time was about one day. The split values in this
grid are precomputed using the genetic algorithm which was presented in Chapter
2.4.2. The same genetic algorithm is used by the GA Control Strategy. Thereby,
we use the GA con�guration CGA = (k, ρ, µ, gmax) = (100, 0.38, 0.1, 100) and the
�tness con�guration (wf , wsl, wsd, wud, wut) = (0.45, 0.0, 0.45, 0.1, 0.0). Moreover, all
predictive control strategies occurring in this chapter use a prediction horizon of size
p = 4.

42 Chapter 5. Experimental Results

5.1 Split Values

In this section, we evaluate the quality of the interpolation algorithm used by the
Grid Control Strategy. For this purpose, we compare the interpolated split values of
the Grid Control Strategy to the exact split values of the GA Control Strategy. In
order to get comparable results, we simulate a car driving with the torque distribution
which is determined by the GA Control Strategy and determine additionally in each
time step the split value which would be computed by the Grid Control Strategy for
the same car state. The resulting split values are shown in Figure 5.1. The red graph
displays the split values of the GA Control Strategy, whereas the blue graph shows
the split values that would be computed by the Grid Control Strategy for the same
car state.

Figure 5.1: Split values of the GA Control Strategy and the Grid Control Strategy
for the NEDC

Despite of some di�erences, the interpolation algorithm of the Grid Control Strat-
egy provides split values which approximate the reference split values of the GA
Control Strategy with an acceptable error. However, in the case that there are high
peaks within the split values of the GA Control Strategy, it is di�cult for the Grid
Control Strategy to follow them. Moreover, if the GA Control Strategy provides very
high ∼ 100 or low ∼ 0 split values, the interpolation algorithm has problems to cover
these split values. This is based on the fact that the interpolation averages the split
values of points in the neighbourhood of the input point. As a result, it is di�cult to
approximate a single very high or low split value precisely.

In order to decrease the di�erences of the split values between the strategies, we
used the optimisation procedure to re�ne the grid in speci�c areas. For this purpose,
the GA Control Strategy was used as reference strategy. We optimised the grid
for the NEDC with a maximal allowed split di�erence δ = 10. Moreover, we also

5.1. Split Values 43

Figure 5.2: Comparison of the split values of the GA Control Strategy and the Grid
Control Strategy for an optimised and an unoptimised grid and the NEDC

created a re�ned grid by increasing the resolution parameters. Thereby, we used
rs = 7 for all �ve gears as well as rva = (r1va , r

2
va , r

3
va , r

4
va , r

5
va) = (6, 5, 8, 4, 8) and

rvr = (r1vr , r
2
vr , r

3
vr , r

4
vr , r

5
vr) = (3, 3, 5, 3, 5). The parameter rgu0

as well as the minimal
and maximal values for each dimension were similar to those given in Table 5.1.

The evaluation of the two grids leads to the result that the optimised grid provides
better results than the re�ned grid. Since the creation time of the re�ned grid was
about one week, whereas the optimisation procedure terminates after three days, it
is clear that optimising the grid is the better possibility to get a re�ned grid. The
resulting split values of this optimised grid are shown in Figure 5.2. In Figure 5.3 and
Figure 5.4, di�erent extracts of Figure 5.2 are displayed. As before, we consider the
split values of the GA Control Strategy and the Grid Control Strategy based on the
same car which is simulated on the NEDC and uses the torque distribution determined
by the GA Control Strategy. The red and the blue graph still display the split values
of the GA Control Strategy as well as the split values that would be computed by
the Grid Control Strategy by using the unoptimised grid in this situation. The green
graph shows the split values of the Grid Control Strategy for the same car using the
optimised grid.

In the majority of cases, using the optimised grid instead of the initial homoge-
neous, unoptimised grid results in a reduced approximation error. The optimised grid
contains additional grid points in areas that are often used by the driving cycle. As a
result, requested split values can be approximated more precisely: The approximation
described by the green graph is closer to the red graph than the approximation shown
by the blue graph. Especially, the insertion of new grid points allows to decrease the
interpolation error at time steps where the split values of the GA Control Strategy
contain very small or very high split values, for example at time steps 210 − 220 or

44 Chapter 5. Experimental Results

Figure 5.3: Extracts of the comparison of the split values of the GA Control Strategy
and the Grid Control Strategy for an optimised and an unoptimised grid and the
NEDC

in the area of time step 250. Only in the last part of the driving cycle, from time
step 950 to 1110, the split di�erence is increased slightly. The unoptimised grid pro-
vides split values that are located below the reference split values of the GA Control
Strategy, whereas the optimised grid results in overshooting split values. This e�ect
might be caused by the fact that in general, the split values became higher in the last
part of the driving cycle (time step 1100 − 1200) by the optimisation. This increase
might have in�uence on the split values at previous time steps since the interpolation
algorithm considers all points in the neighbourhood of an input point. But for the
optimised as well as for the unoptimised grid, the di�erences to the split values of the
GA Control Strategy are below 10%, which is an acceptable result.

The total di�erence between the split values of the GA Control Strategy and the
Grid Control Strategy for the NEDC and the unoptimised grid is 6074, which denotes
an average di�erence of 8.83 for those of the 1220 time steps where the split values are
de�ned, i. e. 6= −1. In contrast, by using the optimised grid the overall split di�erence
is reduced to 4065, which describes an average di�erence of only 5.91 per time step.
Thus using the optimised grid allows to reduce the split di�erence by 33%.

Moreover, we tested our optimised grid for the HWFET driving cycle. The re-
sulting split values are shown in Figure 5.5. Also for this driving cycle, the Grid
Control Strategy computes split values that approximate the exact split values of the
GA Control Strategy with an acceptable error. Thereby, the optimised grid achieves
slightly better results than the unoptimised grid. This e�ect is not necessarily to be
expected since the grid was optimised for the NEDC. However, this observation shows
that optimising the grid for one driving cycle might also have positive e�ects on other
driving cycles.

5.2. Fuel Consumption, SoC, Running Time 45

Figure 5.4: Extracts of the comparison of the split values of the GA Control Strategy
and the Grid Control Strategy for an optimised and an unoptimised grid and the
NEDC

5.2 Fuel Consumption, SoC, Running Time

In this section, we evaluate the fuel consumption, the battery state of charge, the
drivability, and the running time of the Grid Control Strategy at the end of the
driving cycle. For this, we compare our strategy with regard to these aspects to
the GA Control Strategy as well as to the ICE Control Strategy. Therefore, we
simulate four cars on the NEDC whereby the �rst one uses the GA Control Strategy
for driving, the second and the third one drives with the torque distributions of the
Grid Control Strategy (unoptimised and optimised grid), and the fourth one uses only
the combustion engine.

The results are shown in Table 5.2. The car that drives only with the combustion
engine (ICE) has the highest fuel consumption on all three driving cycles. The fuel
consumption of the GA Control Strategy (GA) as well as the Grid Control Strategy
(GRID, GRIDopt) is signi�cantly lower. Both strategies provide good results which
do not di�er much: The GA Control Strategy achieves a lower fuel consumption for the
NEDC, whereby the Grid Control Strategy provides a slightly lower fuel consumption
for the FTP_75 as well as the HWFET. For the NEDC and the HWFET, we obtain
a lower fuel consumption by using the optimised grid instead of the unoptimised grid.

Since the ICE Control Strategy does not use the electrical motor, the battery
of the car that drives only with the combustion engine is fully charged at the end
of the driving cycle due to the recuperation of energy while braking. We evaluate
the deviation of the SoC at the end of the driving cycle from the reference value
sref = 0.6. The GA Control Strategy and the Grid Control Strategy should keep the

46 Chapter 5. Experimental Results

Figure 5.5: Comparison of the split values of the GA Control Strategy and the Grid
Control Strategy for an optimised and an unoptimised grid and the HWFET driving
cycle

battery state of charge level near this reference value. Both strategies achieve the
best results for the FTP_75.

The quality parameter is a value in the interval [0, 1] which allows to set the
fuel consumption and the battery state of charge deviation at the end of the driving
cycle in relation to each other. The higher this value, the better the strategy with
regard to these aspects. Thereby, this value is computed by evaluating the �tness
functions ef as well as esd at the end of the driving cycle and by weighting them with
the corresponding �tness weights: Quality =

wf ·ef+wsd·esd
wf+esd

. We use the following
minimal and maximal values (fuelConsmin, fuelConsmax, smin, smax) in order to
scale each �tness value to the interval [0, 1]:

� NEDC: (380.0, 430.0, 0.62, 0.71)

� FTP_75: (580.0, 728.0, 0.53, 0.71)

� HWFET: (345.0, 380.0, 0.58, 0.71)

For the NEDC, the GA Control Strategy provides the best combination of fuel
consumption minimisation and battery state of charge level management. However,
the Grid Control Strategy is only slightly behind the GA Control Strategy: Thereby,
the optimised grid achieves better results than the unoptimised grid. Concerning the
other driving cycles, both strategies provide good results that do not di�er much.
The Grid Control Strategy which uses the optimised grid provides a slightly better
combination of fuel consumption and battery state of charge management than the
GA Control Strategy or the Grid Control Strategy that uses the unoptimised grid.

5.2. Fuel Consumption, SoC, Running Time 47

NEDC
Strategy Fuel cons. SoC Quality Drivability Running time
GA 381.185 0.625893 0.925405 35624 05 : 41

GRID 383.260 0.625961 0.904346 34114 00 : 57
GRIDopt 383.030 0.626054 0.906225 31891 00 : 44
ICE 429.077 0.700031 0.076811 0 00 : 17

FTP_75
Strategy Fuel cons. SoC Quality Drivability Running time
GA 596.294 0.613648 0.926669 42228 07 : 51

GRID 592.828 0.588564 0.943752 37251 01 : 39
GRIDopt 592.859 0.590910 0.948362 37378 01 : 35
ICE 725.771 0.700004 0.075186 0 00 : 25

HWFET
Strategy Fuel cons. SoC Quality Drivability Running time
GA 354.782 0.578967 0.817921 17900 08 : 30

GRID 355.696 0.578886 0.804553 20114 01 : 31
GRIDopt 354.185 0.578910 0.826225 24202 00 : 48
ICE 380.800 0.700002 0.056229 0 00 : 17

Table 5.2: Comparison of fuel consumption in gram, battery state of charge level,
drivability, and running time in mm:ss at the end of the driving cycle. The running
time is evaluated on a 64-bit Ubuntu 14.04 machine with an i5(4200U) processor as
well as 6 GB RAM.

Drivability describes the characteristic of split values that consecutive splits do not
di�er too much. In the case that there are high �uctuations within the split values
from one time step to another, the ICE noise emissions are increasing due to the
very di�erent torque values the ICE is requested to provide. In Table 5.2, the entry
Drivability describes for each strategy the sum of the di�erences between consecutive
split values. For the NEDC and the FTP_75 , the Grid Control Strategy has the
better drivability, whereas for the HWFET the GA Control Strategy provides a better
result. The drivability of the ICE Control Strategy is always zero since this strategy
uses only the combustion engine for driving (split value of 100 for all time steps).

Finally, the running time is evaluated. The aim of this thesis was to develop a grid
based control strategy for hybrid electric vehicles that provides a smaller running time
than an optimisation based control strategy. For all three driving cycles, the running
time of the Grid Control Strategy is signi�cantly lower than the running time of
the GA Control Strategy. An interesting aspect is the fact that the optimised grid
performs better than the unoptimised grid. Since the optimised grid contains more
grid points than the unoptimised grid, it would be expected that the unoptimised grid
provides a smaller running time. An explanation could be that for the unoptimised
grid linear extrapolation is used more often than for the optimised grid since the
optimisation procedure insert new grid points for each dimension around an input
point. Linear extrapolation has a negative e�ect on the running time of the Grid
Control Strategy since the extrapolated points must be computed in addition.

48 Chapter 5. Experimental Results

In summary, the interpolation algorithm of the Grid Control Strategy is able to
cover the exact split values of the GA Control Strategy with an acceptable error. By
optimising the grid, this error can be reduced. Concerning the fuel consumption and
the battery state of charge level management, the GA Control Strategy as well as
the Grid Control Strategy provide good results that do not di�er much. Finally, the
evaluation of the running time has shown that our strategy is able to perform with a
running time signi�cantly lower than the optimisation based control strategy.

Chapter 6

Conclusion

After evaluating the experimental results of our implementation of the Grid Control
Strategy, we conclude this thesis by providing a short summary and some ideas for
further research.

6.1 Summary

In this thesis, a predictive control strategy for hybrid electric vehicles was presented
which relies on a discrete grid. The grid contains precomputed control values that
are used by the control strategy to interpolate requested control values. In each time
step, our strategy receives as input the current state of the car as well as the requested
velocities for the prediction horizon. Afterwards, the grid is used to determine the
control value for the current input. As normally the input is not contained in the grid,
its requested control value is interpolated by the control values of available points in
the grid.

The control values contained in the grid are precomputed using an optimisation
algorithm. We used a genetic algorithm for this purpose, which is inspired by the
biological principle of natural selection. The precomputation of the split values in the
grid is done as a preprocessing step for the Grid Control Strategy. For this reason, it
is not time critical and there exist no requirements for the time needed by the grid
creation.

Due to the fact that interpolation is fast, the Grid Control Strategy can be im-
plemented with a comparably short execution time in contrast to control strategies
which are based on optimal control. However, as an optimisation method is used to
precompute the control values in the grid, our strategy is able to provide good results
if the grid contains enough precomputed control values.

In order to decrease the approximation error of the interpolated split values, we
presented a method to optimise the grid. Thereby, the grid is re�ned partially by

50 Chapter 6. Conclusion

adding new grid points to the grid in areas that are often used by the strategy on a
given driving cycle. In doing so, the aim is to increase the density of grid points in
the environment of input points so that requested control values of input points can
be approximated more precisely.

In the end, we considered the experimental results of our implementation of the
Grid Control Strategy. Generally, the interpolation algorithm of the Grid Control
Strategy is able to approximate the exact split values of the GA Control Strategy
with an acceptable interpolation error. Thereby, the optimised grid achieves better
results than the unoptimised grid. The evaluation of the fuel consumption and the
battery state of charge has shown that the Grid Control Strategy as well as the GA
Control Strategy provide good results with minor di�erences. Moreover, our strategy
can be executed with a smaller running time compared to an optimisation based
control strategy.

6.2 Future Work

Finally, this thesis is concluded by suggesting some ideas for future research. The
Grid Control Strategy has potential for improvements and further development: In
our implementation, we use a genetic algorithm to precompute the split values in the
grid. Instead, it would be interesting to analyse the behaviour of the strategy if an
other optimisation algorithm is used for this purpose.

We add new grid points to the grid in order to increase the quality of interpolated
split values in areas that are often used. In contrast, another option would be to
combine similar points in the grid which are rarely used. This would reduce the size
of the grid.

Moreover, in order to de�ne the interpolation set of an input point, we consider
a �xed box around this input point. Another possibility might be to modify the size
of this box, for example using a smaller or larger box or a box whose size varies
depending on the density of grid points in the area of an input point. This aspect
especially could be interesting for an optimised, inhomogeneous grid.

Furthermore, the following ideas could be tested and evaluated for our implemen-
tation of the Grid Control Strategy:

� Using di�erent settings for the genetic algorithm, e. g. considering di�erent
�tness con�gurations, population sizes or numbers of maximal iterations.

� Testing the behaviour of the strategy for other driving cycles than those con-
sidered in this thesis.

� Further optimising the grids, not only for one driving cycle, but also training
the grids with multiple driving cycles.

Increasing the size of the prediction horizon also increases the number of grid
dimensions. The number of grid points grows exponentially for each additional di-

6.2. Future Work 51

mension. Thus the strategy is only practicable for a small prediction horizon. In
order to be able to consider also higher prediction horizons, a possibility would be to
de�ne di�erent track types with di�erent accelerations. Afterwards, each grid point
is associated with one track type. In doing so, the requested velocities for the future
time steps are no longer necessarily to be stored, instead they can be computed by
assuming that the car is accelerating continuously with the acceleration given by the
track type of the grid point.

52 Chapter 6. Conclusion

Bibliography

[BLMB09] T.J. Barlow, S. Latham, I.S. McCrae, and P.G. Boulter. A Reference Book

of Driving Cycles for Use in the Measurement of Road Vehicle Emissions:

Version 3. Published project report ppr354. TRL Limited, 2009.

[dtv] dtv-Atlas zur Mathematik - Analysis und angewandte Mathematik, Band

2. Deutscher Taschenbuch Verlag GmbH & Co.KG, Muenchen.

[gen] Genetic Algorithm Library GeneiAL. http://geneial.org.

[GJN+15a] S. Geulen, M. Josevski, J. Nellen, J. Fuchs, L. Netz, B. Wolters, D Abel,
E. Ábrahám, and W. Unger. Learning-based Control Strategies for Hy-
brid Electric Vehicles. In Proc. of CCA, pages 1722�1728. IEEE, 2015.

[GJN+15b] S. Geulen, M. Josevski, J. Nellen, J. Fuchs, L. Netz, B. Wolters,
E. Ábrahám, W. Unger, and D. Abel. Online Lernen als Kontrollstrate-
gie in Hybridfahrzeugen. In Proc. of AUTOREG: Auf dem Weg zum

automatisierten Fahren, volume 2233 of VDI-Berichte, pages 101�112.
VDI Verlag, 2015.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1989.

[HH98] R.L. Haupt and S.E. Haupt. Practical Genetic Algorithms. John Wiley
& Sons, Inc., New York, NY, USA, 1998.

[NWN+15] J. Nellen, B. Wolters, L. Netz, S. Geulen, and E. Ábrahám. A Genetic
Algorithm based Control Strategy for the Energy Management Problem
in PHEVs. In Proc. of GCAI, volume 36 of EPiC Series in Computer

Science, pages 196�214. EasyChair, 2015.

[PB14] A. Panday and H.O. Bansal. A Review of Optimal Energy Management
Strategies for Hybrid Electric Vehicle. International Journal of Vehicular
Technology, 2014:19, 2014.

[Phi03] G.M. Phillips. Interpolation and Approximation by Polynomials.
Springer-Verlag New York, Inc., 2003.

[PIGV01] A. Piccolo, L. Ippolito, V. Galdi, and A. Vaccaro. Optimisation of Energy
Flow Management in Hybrid Electric Vehicles via Genetic Algorithms.
In Proc. of ASME, pages 434�439. IEEE, 2001.

http://geneial.org

54 Bibliography

[PR07] P. Pisu and G. Rizzoni. A Comparative Study Of Supervisory Control
Strategies for Hybrid Electric Vehicles. IEEE Transactions on Control

Systems Technology, 15(3):506�518, 2007.

[SD08] S.N. Sivanandam and S.N. Deepa. Introduction to Genetic Algorithms.
Springer Verlag, 2008.

Appendix A

Driving Cycles

A.1 NEDC

The NEDC (New European Driving Cycle) is a stylised driving cycle which represents
a typical use of a passenger car in Europe. Thereby, the �rst 800 time steps represent
a city part, whereas the last 400 time steps display an extra-urban part. The city
part consists of four equivalent sections which are repeated. The driving cycle has
a duration of 1220 s. In this time, a route of 11017 m is covered. Moreover, the
maximal velocity the car achieves is 120 km/h, which is about 33 m/s [BLMB09].

0 200 400 600 800 1000 1200

0

10

20

30

Timestep [s]

Sp
ee
d
[m

/s
]

Figure A.1: The NEDC

56 Appendix A. Driving Cycles

A.2 FTP_75

The FTP_75 represents characteristic driving conditions in a US city. In contrast to
the NEDC, the US driving cycles are not generated. Instead, they are constructed by
averaging the data which was obtained by real cars driving the routes. For this reason,
these driving cycle do not seem to be as generic as the NEDC. The total duration of
the FTP_75 is 1874 s, whereby a route of 17786 m is covered. The maximum speed
is about 91 km/h, which is ≈ 25 m/s [BLMB09].

0 200 400 600 800 1000 1200 1400 1600 1800

0

10

20

Timestep [s]

Sp
ee
d
[m

/s
]

Figure A.2: The FTP_75 driving cycle

A.3. HWFET 57

A.3 HWFET

The HWFET cycle represents characteristic driving conditions on a US highway. Its
duration is 765 s, whereby the car received a maximum speed of about 96 km/h ≈ 27
m/s. In total, a distance of about 16503 m is covered [BLMB09].

0 100 200 300 400 500 600 700

0

10

20

Timestep [s]

Sp
ee
d
[m

/s
]

Figure A.3: The HWFET driving cycle

	Introduction
	Preliminaries
	Vehicle Model
	Control Strategies
	Linear Interpolation
	Genetic Algorithms

	Grid Control Strategy
	Structure of the Strategy
	Interpolating Split Values

	Grid Optimisation
	Structure of the Algorithm
	Construction of New Grid Points

	Experimental Results
	Split Values
	Fuel Consumption, SoC, Running Time

	Conclusion
	Summary
	Future Work

	Bibliography
	Driving Cycles
	NEDC
	FTP_75
	HWFET

