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Abstract

One task in the field of satisfiability modulo theories (SMT) is to solve for-
mulas that are build out of nonlinear real arithmetic constraints. A technique
suitable in this context is the cylindrical algebraic decomposition procedure
(CAD). Given constraints consisting of τ -variate polynomials, CAD is used to
create sample points of the Rτ space, that are sufficient to deduce the satisfia-
bility of these constraints. Core of the CAD procedure is to reduce the problem
setting to the case of univariate polynomials by projecting the input polynomials
down. There are various improvements made on the field of designing suiting
projection operators. This paper wraps up the design of Collins first operator,
Hongs refinement, McCallums approach and its refinement by Brown. Then
the operators get tested by implementing them to the SMT-RAT framework.
The theoretical improvements are reflected in the benchmarks and the quality
of improvement is reviewed.
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Chapter 1

Introduction

The research field of satisfiability modulo theories (SMT) deals with decision proce-
dures of first-order logic formulas, where the predicates, functions and constants are
fixed by some background theories. In this paper the theory of quantifier-free non-
linear real arithmetics (QF_NRA) is of interest. This theory allows to add atoms of
the form f < g to the boolean structure of a formula, where f and g are multivariate
polynomials with integer coefficients. Figure 1.1 shows the standard syntax of NRA
formulas. The quantifier-free fragment does not allow the negation of formulas that
contain existential quantifiers as this would require additional quantifier elimination
methods.

Polynomials t ::= 0 | 1 | x | t+ t | t ∗ t
Constraints c ::= t < t
Formulas ϕ ::= c | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where x is a variable of domain R

Figure 1.1: Syntax of NRA formulas

The task of solving QF_NRA formula is known to be decidable as it was proven by
Tarski [Tar48] and of great interest in both industrial and scientific context, because
of the expressive power, that QF_NRA formulas provide to model real world problem
instances.
Given such a QF_NRA formula ϕ, a SAT solver can check for satisfiability of the
boolean skeleton of ϕ, dealing also with the existential quantifiers. If ϕ is already
unsatisfiable by its boolean structure, it can be returned, else the SAT solver finds
an assignment for the boolean skeleton, which translates into a set of constraints
c1, . . . ,cm that must hold in order to satisfy ϕ.
The cylindrical algebraic decomposition (CAD) procedure can be used as a method,
to check whether such a set of constraints can be satisfied or not. It uses the fact, that
a constraint cj of the form cj := g < h can be transformed to f < 0 with f := g − h.
So the task can be simplified as it is sufficient to analyze a given set Aτ = {f1, . . . ,fm}
of τ -variate polynomials, τ ∈ N, with respect to the arrangement of their real roots.
As the domain for the variables is Rτ , the CAD procedure partitions the Rτ space into
finitely many nonempty connected subsets D1, . . . ,Dn (called regions). These regions
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are arranged in a special way, that is called “cylindrical”. Each region is constructed,
so that Aτ is sign-invariant on each subset Di.

Definition 1.0.1. Let X be a subset of Rτ and let f ∈ Z[x1, . . . ,xτ ]. f is sign-
invariant on X, if one of the following conditions holds:

• f(x) > 0∀x ∈ X

• f(x) = 0∀x ∈ X

• f(x) < 0∀x ∈ X

Let A be a finite subset of Z[x1, . . . ,xτ ]. A is sign-invariant on X, if each f ∈ A is
sign-invariant on X.
Let D = {X1, . . . ,Xn} be a set of disjoint subsets of Eτ . A is sign-invariant on D, if
A is sign-invariant on Xi,∀1 ≤ i ≤ n.

The regions Di,1 ≤ i ≤ n are therefore chosen in a way, that the satisfiability of
each constraint cj ,1 ≤ j ≤ m does not change, independent from the sample point
α ∈ Di that could be taken, to check. This justifies to only take one sample point out
of each region and test, whether one of them satisfies all constraints, or not. If such
a sample point exists, “satisfiable” is returned, else “unsatisfiable”.
During the CAD procedure, the problem of finding those regions for the Rτ space
is reduced to that of finding regions of R. This is done by the use of a projection
operator, that relaxes the problem setting by inductively eliminating one dimension.
After regions of R are determined, sample points are chosen and then lifted up again
to sample points of Rτ that represent the regions D1, . . . ,Dn. The projection operator
is of great interest, as it has direct influence on the number of sample points, that are
constructed in the end.

This thesis gives an overview about the theoretical progress that was made with
respect to the projection operator within the CAD procedure, since Collins first came
up with CAD in the context of quantifier elimination in [Col75]. His work got pre-
sented in [ACM84], where a full CAD algorithm is proposed. The other work covered
in this thesis are the refinements of Hong in [Hon90], McCallum in [McC85] and Brown
in [Bro01a]. It aims at stating out the core ideas for the operators as well as pointing
out the changes, that come along by using the different approaches. Furthermore the
four projection operators got implemented in the SMT-RAT framework and analyzed
with respect to the growth of polynomials in each projection step, their degree and
the time to establish a full CAD on the benchmarks of QF_NRA formulas of the
SMT-LIB.
Chapter 2 gives an abstract overview over the CAD procedure as well as the exact
definition of a CAD. Then in chapter 3 some mathematical background knowledge is
collected, mostly on the field of ring theory and results in the theory of resultants.
The presented theorems are used to give an inside on the validation of the presented
operators, which get formulated in the following chapter. In section 5.1 the proof
sketch for Collins operator is depicted. Then Hongs justification for his improved
operator is given, followed by a section dedicated to McCallums work. The focus
there is to explain, why his operator underlays some restrictions, like the mandatory
usage of finest square-free bases and the restriction to well-oriented polynomials, and
what needs to be noted, when using his operator in the CAD procedure. In sec-
tion 5.4 Browns improvement on McCallums operator is explained and the important
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changes between them are highlighted. Then the practical results of the benchmarks
are presented and reviewed.
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Chapter 2

CAD Procedure

2.1 The Role of Projection Operators in CAD

The motivation for the CAD algorithms, that were developed in the past decades, is,
that creating a CAD is easy in case of univariate polynomials. A CAD is determined
by the arrangement of the real roots of each polynomial in the input set. It is common
knowledge that zeros of univariate polynomials can be computed efficiently. The CAD
in the univariate case therefore consists of all real roots of the polynomials, the open
intervals between the real roots and the open intervals from the smallest zero to −∞
and from the greatest real root to ∞. Figure 2.1 shows decomposition of R into a
{f,g}-invariant CAD {R1, . . . ,R11}.

x

y

f

g

−∞ R2 R4 R6 R8 R10
∞

R1 R3 R5 R7 R9 R11

Figure 2.1: {f,g}-invariant CAD of R

The idea in CAD is, that the τ -variate polynomials are projected to univariate
polynomials by eliminating one dimension in each projection step. Then a CAD of the
R gets calculated and inductively lifted to a CAD of Rτ . Therefore CAD algorithms
work in 3 phases: projection, base and extension phase. In the projection phase, Aτ
is projected to Aτ−1 (a set of (τ−1)-variate polynomials) with the use of a projection
operator proj. proj is designed in a way, that any on proj(Ai) sign-invariant CAD
can be extended to a sign-invariant CAD on Ai. This process is repeated inductively
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until A1 is constructed. In the base phase a CAD of R1 is constructed out of A1 by
finding the real roots of all polynomials and choosing a sample point inside of each
open interval on R between two zeros (or −∞/∞). Thus it yields a list of sample
points p1, . . . ,pt ∈ R. The lifting phase then lifts the sample points in Ri to sets of
sample points in Ri+1 inductively until a CAD of Rτ is produced.
One bottleneck during CAD procedure turns out to be an exponential growth in the
size of the projected polynomials due to the inductive usage of proj. This carries on
to an inductive growth on the number of sample points due to the inductive lifting
with respect to the projected polynomials. This doubly-exponential growth that is
directly influenced by the quick growth in polynomials during projection in each step
is the reason why this paper focuses on observing the quality of improvements that
were made since Collins et al. proposed the first complete CAD algorithm in [ACM84]
based on his work on quantifier elimination methods [Col75]. The improvements cov-
ered are: The refinement of Collins operator by Hong [Hon90], the reduced operator
under the assumption of well-oriented polynomials by McCallum [McC85] and the
improvement on McCallums operator by Brown [Bro01a] with the help of a modified
lifting phase.

2.2 Definition of CAD
Before getting down to the different operators, the exact definition of a cylindrical
algebraic decomposition is given here as compact as possible. The naming conventions
are taken from [ACM84].

Definition 2.2.1. For M ⊆ Rτ ,M 6= ∅, a finite set of disjoint regions, whose union
is M is called decomposition of M .

To define the term “cylindrical”, some more notations are needed:

Definition 2.2.2. 1. For a region R, the cylinder over R is defined as Z(R) :=
R× R.

2. The graph of a a continuous function f : R→ R defines a section of Z(R).

3. Let f1,f2 : R → R be continuous functions with f1 < f2. The set of points
{(α,β) ∈ Z(R) | α ∈ R,β ∈ R, f1(α) < β < f2(α)} is called (f1,f2)-sector of
Z(R).

Note that a finite set of continuous functions f1 < f2 < . . . < fk, k ≥ 0 defined
on R induce a decomposition of Z(R) by the (fi,fi+1)-sectors for 0 ≤ i ≤ k and
f0 := −∞,fk+1 :=∞ together with the fi-sections of Z(R) for 1 ≤ i ≤ k.

Definition 2.2.3. A decomposition of Z(R), that is induced by f1 < f2 < . . . <
fk, k ≥ 0 is called a stack over R.

This is sufficient to formulate the cylindrical property that a CAD has.

Definition 2.2.4. A decomposition D of R1 is cylindrical, if D is a stack over R0

(a single point).
A decomposition D of Rτ ,τ > 1 is cylindrical, if there is a decomposition D′ of Rτ ,
such that for any region R there is a subset of D that is a stack over R.

Now the definition of an algebraic decomposition can be given:



2.2. Definition of CAD 15

Definition 2.2.5. A set R ⊂ Rτ is semi-algebraic, if there is a NRA formula ϕ,
which defines R:

ϕ(x1, . . . ,xτ ) = TRUE ⇔ (x1 . . . ,xτ ) ∈ Rτ

Note that this is not the general definition of semi-algebraic sets, but only a
sufficient one, when dealing with subsets of Rτ . See [ACM84] chapter 2 for more
details on this.

Definition 2.2.6. A decomposition D of Rτ is algebraic, if each region R ∈ D is a
semi-algebraic set.
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Chapter 3

Results of Algebra and the
Theory of Resultants

This chapter gives a rough overview over the theorems and notations that are used
within this paper. To begin with, here 0 ∈ N. Since the algebraic structure of the
polynomials is Z[x1, . . . ,xτ ], some properties of this ring is given here.
char denotes the characteristic of a ring. Let R be a unitary ring, char(R) := n, if

n is the smallest positive integer such that
n∑
i=1

1 = 0 in R. char(R) := 0 if no such

integer exists. So char(Z[x1, . . . ,xτ ]) = 0 and char(R) = 0.
Z is a unique factorization domain (UFD), since the unique (up to ordering) prime
factorization of N can be extended to an unique (up to ordering and multiplication
with the units Z∗ := {1,− 1} of Z) factorization.
As Gauss’s theorem in ring theory states, Z[x] is also a UFD.

Theorem 3.0.1 (Gauss - Ring Theory). Let R be a UFD ⇒ R[x] is a UFD.

Proof reference. See theorem 18.29 [Jud16].

The definition for multivariate polynomial rings implies that Z[x1, . . . ,xτ ] also is
a UFD.

Definition 3.0.2. Let R be a commutative unitary ring, {x1, . . . ,xτ} a set of vari-
ables, R[x1, . . . ,xτ ] := S[xτ ], with S := R[x1, . . . ,xτ−1] (inductively).

This also justifies a different view on multivariate polynomials: Assuming a vari-
able order of x1 < . . . < xτ one could look at xτ as the main variable of any polynomial

f ∈ Z[x1, . . . ,xτ ] which has coefficients ai ∈ Z[x1, . . . ,xτ−1] with f =
n∑
i=0

aix
i for some

n ∈ N.
Depending on the chosen main variable, the primitive part of a polynomial can be
defined as well as the content, the leading coefficient, reductum and its degree. Note
that within this paper the variable order stays fixed and the lexicographically great-
est variable is set to be the main variable. So the ring Z[x1, . . . ,xτ ] is interpreted
as R[xτ ] = Z[x1, . . . ,xτ ] with R := Z[x1, . . . ,xτ−1]. Also GCD denotes the greatest
common divisor function.
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Definition 3.0.3. Let R be be a unique factorization domain, f ∈ R[x]. Let n ∈ N

such that f =
n∑
i=0

aix
i, ai ∈ R,0 ≤ i ≤ n and with an 6= 0.

contx(f) : = GCD(a0, . . . ,an)

primx(f) : = f/contx(f)

degx(f) : = n

ldcfx(f) : = an

redx(f) : = f − anxn

Since the variable order is obvious in this paper, the subscript may be omitted.
Also points of the form (α1, . . . ,ατ ,β), where α = (α1, . . . ,ατ ) ∈ Rτ and β ∈ R may
be abbreviated to (α,β).
Another required concept is the use of finest square-free bases, which needs the defi-
nition of square-free factorization.

Definition 3.0.4. Let R be a UFD, 0 6= f ∈ R[x]. f is square-free, if g2 does not
divide f, ∀g ∈ R[x] \R. There exists f1, . . . ,fk ∈ R[x] \ {0} with k > 0 and

• fi is square-free ∀1 ≤ i ≤ k,

• fi = primx(fi),∀2 ≤ i ≤ k,

• GCD(fi,fj) = 1,∀1 ≤ i < j ≤ k and f =
k∏
i=1

f ii .

The fi are unique up to factors of units R∗ of R. This factorization is called square-
free factorization. f1, . . . ,fk are called the square-free factors.

The finest square-free base of a set of polynomials

P := {p1, . . . ,pn} ⊂ Z[x1, . . . ,xτ ]

denotes the set of all irreducible factors of
k∏
i=1

pi. This set then contains only factors

that are square-free and pairwise relatively prime.
Another useful fact comes from the observation that the GCD of a polynomial and
its derivative contains all square-free factors fi with multiplicity i− 1.

Theorem 3.0.5. Let R be a unique factorization domain with char(R) = 0, f ∈ R[x]

with square-free factorization f =
k∏
i=1

f ii . Then the following equation holds:

gcd(f,f ′) = cont(f) ·
k∏
i=2

f i−1i

Proof reference. See [GCL92] theorem 8.1.

From this theorem one can obtain a method to count the number of distinct roots
of f evaluated at a fixed point.
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Corollary 3.0.6 ([Col75], Theorem 3). Let f ∈ Z[x1, . . . ,xτ ], with xi of domain
R, 1 ≤ i ≤ τ, α := (α1, . . . ,ατ−1) ∈ Rτ−1. The number of distinct real roots cr of
f(α,xτ ) = f(α1, . . . ,ατ−1,xτ ) is given by

cr = degxτ (f(α,xτ ))− degxτ (gcd(f(α,xτ ),f ′((α,xτ )))).

Computing the GCD of polynomials however is not a trivial task, which is where
polynomial remainder sequences come into play.

Definition 3.0.7. Let R be a UFD. Given polynomials f,g ∈ R[x] with deg(f) =

n,deg(g) = m f =
n∑
i=0

aix
i,g =

m∑
i=0

bix
i the Sylvester matrix of f and g (with respect

to the variable x) is defined as

Sylx(f,g) :=



an · · · a0
an · · · a0

. . . . . .
an . . . a0

bm · · · b0
bm · · · b0

. . . . . .
bm . . . b0



m

n

Definition 3.0.8. Let Mi,j be the the matrix obtained from Sylx(f,g) by deleting the
last j rows of f coefficients, the last j rows of g coefficients and the last 2j+1 columns
except the column m+ n− i− j.

1. The j-th subresultant of f and g is defined as Sj(f,g) :=
j∑
i=0

det(Mj,i)x
i.

2. The j-th principal subresultant coefficient of f and g is the leading coefficient
of Sj(f,g), pscj(f,g) := det(Mj,j).

3. the resultant of f and g is defined as: res(f,g) := det(Sylx(f,g)) = S0 =
psc0(f,g).

The (inductive) euclidean algorithm to compute the GCD of two univariate poly-
nomials f,g ∈ Z[x], deg(f) = n,deg(g) = m, 0 < m ≤ n relies on the fact that there
always exists a remainder polynomial r ∈ Z[x] along with a,b,c ∈ Z such that af =
bg+cr (since Z[x] is no euclidean ring, calculation is done in Q[x] and normalized back
to Z[x]). One should note that this remainders are only unique up to multiplication
with elements of Z. During the euclidean algorithm, subsequent remainders are cal-
culated, starting with rem(f,g), then rem(g,rem(f,g)) and so on until the remainder
is element of Z. This leads to a sequence of f1 = f,f2 = g,f3 = rem(f,g), . . . ,fk = 0.
The GCD of f and g then is GCD(cont(f),cont(g)) ·fk−1. The problem of calculating
the GCD of two polynomials with the standard euclidean algorithm is, that even in
the univariate case the coefficients can grow at a rapid rate when using the euclidean
algorithm.
Collins discovered in [Col67], that subresultants also define polynomial remainder
sequences. Thus subresultants could be used to compute the GCD. The essential
information that is of importance here can be deduced from his fundamental theorem
of polynomial remainder sequences and formulated as followed.
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Corollary 3.0.9. Let f,g ∈ Z[x] with deg(f) ≥ deg(g). The sequence f1, . . . ,fk = 0
with f1 := f,f2 := g,fi := Sdeg(fi−1)−1(f,g),∀3 ≤ i ≤ k is a polynomial reminder
sequence.

GCD(f,g) = GCD(cont(f),cont(g)) · prim(fk−1).

Sj(f,g) = 0 ∀j 6= deg(fi)− 1, i ∈ {0, . . . ,k − 1}

Another concept that is related to subresultant, is the discriminant.

Definition 3.0.10. Let R be a UFD, f ∈ R[x], let α1, . . . ,αm be the zeros of f in the
algebraic closure of R, a := ldcf(f). The discriminant of f is defined as followed:

discrx(f) := a2m−2
∏
i<j

(αi − αj)2

The following well known theorem shows the relation to resultants

Theorem 3.0.11. Let R be an integral domain, f ∈ R[X] m := deg(f), a := ldcf(f)
c := char(R). Assume c does not divide m, then

a · discr(f) = (−1)m(m−1)/2res(f,f ′)

Another connection between resultants and discriminants can be observed in the
product rule for discriminants.

Theorem 3.0.12. Let R be an integral domain with char(R) = 0, let f,g ∈ R[X].

discr(f · g) = discr(f)discr(g)res(f,g)2

Proof reference. See theorem 2.3.3 in [McC85].

Both resultants and discriminants have a very important property:

Corollary 3.0.13. Let R be a UFD, let f,g ∈ R[x].

• discr(f) = 0⇔ f not square-free.

• res(f,g) = 0⇔ f and g not relatively prime.
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The Operators

4.1 General Concept

The desired property for a projection operator proj is stated as: Any CAD of Rτ−1,
that is sign-invariant on proj(Aτ ) induces a CAD of Rτ , that is sign-invariant on Aτ .
Then the inductive projection on to the R1 can be used to create a CAD of R1, which
recursively induces a CAD of Rτ .
So according the definition of CAD it suffices for any on proj(A) sign-invariant region
to induce an algebraic stack, that is sign-invariant on Aτ . An intuitive way of building
such a stack given a region R is to look at the real variety V (f) := {(a1, . . . ,aτ ) ∈
Rτ | f(a1, . . . ,aτ ) = 0} of each polynomial f ∈ Aτ . If Z(R)∩

⋃
f∈Aτ

V (f) forms a stack

over R, then every sample point of R can be lifted to a set of sample point of Z(R),
representing the sign-invariant regions of Aτ on Z(R). This regions are the sectors
and sections of the functions, that define the stack on Z(R) ∩

⋃
f∈Aτ

V (f).

However to ensure this, for any function f ∈ Aτ , V (f) needs to only consist of k
disjoint sections on Z(R) for some k ≥ 0. A function with that property is called
delineable. Note that while Collins proposed a more strict definition of delineability in
[Col75], he argued that this relaxed definition is sufficient in [ACM84]. If additionally
those sections of two different functions f,g ∈ A,f 6= g are either disjoint or identical,
then it gives rise to a stack over R determined by the continuous functions whose
graphs describe Z(R) ∩

⋃
f∈A

V (f).

Figure 4.1 illustrates some problematic scenarios that could occur. It shows some re-
gion R and the portion of real variety of 3 hypothetical bivariate polynomials on this
region. While the variety of f1 on R can be described by 2 disjoint continuous func-
tions and therefore is delineable on R, one of the continuous function graphs crosses
the graph of the continuous function that describes V (f2). Thus no sign-invariant
stack over R is induced with respect to {f1,f2}. The variety of f3 on R can not be
described by disjoint continuous functions as it contains a self-crossing, therefore f3 is
not delineable and no on f3 sign-invariant stack on R can be constructed. The right
side of figure 4.1 shows, how R needs to be split up in order to obtain regions, where
delineability and the disjoint section criteria is preserved on the region R1, . . . ,R5.
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R4

V (f3)

V (f2)

V (f1)

R

V (f3)

V (f2)

V (f1)

R1

R2

R3

R4

R5

Figure 4.1: Left: Only V (f1) and V (f2) delineable on R. Right: V (f1),V (f2) and
V (f3) delineable on R1-R5.

Self-crossing is only one example case where the variety portion on a region is
not delineable, there are many more, like cusps or asymptotes, where continuous
functions can not describe the variety. One special case however is, when a function
vanishes on every point of a region. A simple example is, when looking at the set
A2 := {f(x,y) := x,g(x,y) := x2 + y2 − 1} ⊂ Z[x,y]. f(0,y) = 0,∀y ∈ R so f is not
delineable on the region R = {0} nor on any superset of it. This is no problem since
f is sign-invariant on Z(R) and therefore can be ignored when decomposing Z(R). f
is called identically zero on R.
So, given a finite set of polynomials Aτ , the idea behind the proj operator is to make
sure the following 2 conditions hold for any proj(Aτ ) invariant region R:

1. ∀f ∈ Aτ : f is delineable or identically zero on R.

2. ∀f,g ∈ Aτ , f 6= g the sections of V (f) and V (g) on Z(R) are either disjoint or
identical.

The projection operators that are compared in this paper, therefore consist of 2 parts
each, one to satisfy each condition.

4.2 Definition of the Operators

4.2.1 Collins

Given a set of polynomials Aτ ⊂ Z[x1, . . . ,xτ ] as input with main variable xτ , a
projection operator produces a set of polynomials Aτ−1 ⊂ Z[x1, . . . ,xτ−1] as output
with main variable xτ−1. Collins defined his operator using his definition of principle
subresultant coefficient sets and reducta sets.

Definition 4.2.1. Let f,g ∈ Aτ with n := min(deg(f),deg(g)). The psc set of f and
g is defined as:

PSC(f,g) := {pscj(f,g) | 0 ≤ j ≤ n, pscj(f,g) 6= 0}

.
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Definition 4.2.2. Let f ∈ Aτ with deg(f) = n. The reducta set of f is defined as:

RED(f) := {redk(f) | 0 ≤ k ≤ n, redk(f) 6= 0},

where red0xτ (f) := f, redkxτ (f) := redxτ (red
k−1
xτ (f)).

His operator as defined in [ACM84] is:

Definition 4.2.3 (Collins). Let Aτ be a finite set of τ -variate polynomials with Aτ =
{f1, . . . ,fm}.

projC(Aτ ) := projC1(Aτ ) ∪ projC2(Aτ )

projC1(Aτ ) :=
⋃

fi∈Aτ

⋃
r∈RED(fi)

({ldcf(r)} ∪ PSC(r,r′))

projC2(Aτ ) :=
⋃

1≤i<j≤m

⋃
ri∈RED(fi)
rj∈RED(fj)

PSC(ri,rj)

He proved, that given any on projC1(Aτ ) sign-invariant region R, the polynomials
in Aτ are all either delineable or identically zero on R. In addition he then showed
that if projC1 gets extended with projC2 to projC, that the sections of V (f) and
V (g) of any two polynomials f,g ∈ Aτ are either disjoint or identical on any on
projC(Aτ ) sign-invariant region R. Then he stated out a method of obtaining defining
formulas on Z(R) given a semi-algebraic region R, that is sign-invariant on projC.
This concludes the proof that indeed an algebraic decomposition can be established
within the CAD procedure, because in the base phase, the regions are connected
subsets of R and thus easily definable. In [Col75] Collins also analyzed his operator
with the result, that, given |Aτ | = m and a bound on the degree of each polynomial
in its main variable of n, the number of polynomials in projC(Aτ ) is dominated by
m2n3.

4.2.2 Hong

Hong showed in [Hon90], that within ProjC2 the added psc sets have redundancies
and proposed the following operator:

Definition 4.2.4 (Hong). Let Aτ be a finite set of τ -variate polynomials with Aτ =
{f1, . . . ,fm}.

projH(Aτ ) := projC1(Aτ ) ∪ projH2(Aτ )

projH2(Aτ ) :=
⋃

1≤i<j≤m

⋃
r∈RED(fi)

PSC(r,fj)

Again, let |Aτ | = m and n be a bound on the degree of each polynomial in its
main variable, Hong verified, that the number of polynomials included in projH(Aτ )
is dominated by m2n2, which implies a possible significant impact on the overall
performance compared to Collins operator, since the degree bound impacts the size
in quadratic instead of cubic order.
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4.2.3 McCallum
While Hongs operator can be validated with the same arguments that Collins used,
McCallum defined an operator in [McC85] based on the work of Zariski on local
properties of complex hyper-surfaces in [Zar75]. McCallum found this work to be
closely related to the properties that projection operators in the CAD procedure have.
His operator ensures analytic delineability, which is defined as the usual delineability
property but instead of continuous functions to describe the real variety, analytic
functions are used (which are special continuous functions). For exact definitions of
analytic functions and their properties see chapter 2.1 of [McC85]. Also his operator
aims at a decomposition into connected submanifolds (subsets of the Rτ with special
properties) instead of regions. For the definition of submanifolds the reader is referred
to chapter 2.2 of [McC85], since the knowledge in algebraic geometry is not necessary
for this thesis. The CAD procedure stays untouched regardless of these theoretical
changes in McCallums operator. A relevant change in McCallums work however is,
that order-invariance is guaranteed when creating a CAD with his projection operator,
which is a stronger proerty than sign-invariance.

Definition 4.2.5. f ∈ Z[x1, . . . ,xτ ], α = (α1, . . . ,ατ ) ∈ Rτ . f has order k in α, writ-

ten ordα(f) = k, if k ∈ N is minimal such that some k-th derivative
∂kf

∂xi11 , . . . ,∂x
iτ
τ

,

i1, . . . ,iτ ∈ N,
τ∑
j=1

ij = k of f does not vanish at α.

Let S ⊂ Rτ be a connected submanifold, f is called order-invariant on S, if for a k ∈ N
ordα(f) = k,∀α ∈ S.

He defined his operator as:

Definition 4.2.6 (McCallum). Let Aτ be a finite set of τ -variate polynomials and
let Bτ be the finest square-free base of Aτ with Bτ = {f1, . . . ,fm}.

projM(Aτ ) := projM1(Bτ ) ∪ projM2(Bτ ) ∪
⋃

fi∈Aτ

{contxτ (fi)}

projM1(Bτ ) :=
⋃

fi∈Bτ

{discr(fi)} ∪ ⋃
r∈RED(fi)

{ldcf(r)}


projM2(Bτ ) :=

⋃
1≤i<j≤m

{res(fi,fj)}

Although it seems substantially different to the previous operators, McCallum
actually showed that, when using 3.0.11, one could also redefine Collins operator to
operate with subdiscriminants rather than subresultants such hat projM ⊆ projC.
For more details see chapter 3.1 in [McC85]. McCallums operator not only requires the
use of finest square-free bases in each step, but also can only guarantee the correctness
of a CAD procedure with his operator when the input polynomials are well-oriented.

Definition 4.2.7. A finite set Aτ of non-zero τ -variate integral polynomials is called
well-oriented with regards to an projection operator P , if τ = 1 or, if τ > 1, then

1. for every f ∈ prim(Aτ ), f(α,xτ ) = 0 for at most finitely many α ∈ Rτ−1 and

2. P (Aτ ) is well-oriented.
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In addition to this restriction, the finite amount of real roots of the well oriented
polynomials in the set projM(A) require a slight modification of the lifting phase
to preserve the order-invariance in every step. McCallum also provided incomplete
methods to check, whether a polynomial has finitely many zeros or not. It is also
possible to detect if the input polynomials were not well-oriented during lifting phase,
when one keeps track while creating sample points, whether they present a space of
positive dimension or not. If a sample point p ∈ Ri, that represents a cell of positive
dimension (thus was chosen to represent a sector in some lower dimensional lifting
step) causes a (i + 1)-variate projection polynomial to vanish, then this polynomial
has an infinite amount of zeros (namely all sample points that could have been chosen
instead of the one that lead to p in this lower dimensional lifting step). McCallum
further argued, that the vast majority of polynomials is well-oriented including all
polynomials with at most three variables. A test on a set of 7317 Benchmark from
the SMT-COMP sowed, that in 353 cases, some projection set turned out to not be
well-oriented. This however causes no failure in the actual solving process on the
examples, when using SMT-RAT, because those benchmarks were either unsatisfiable
by their boolean structure or even satisfiable by the broken CAD that McCallums
operator produces.

4.2.4 Brown
While McCallums operator produces order-invariant CADs which might be needed
in some scenarios, it is not required to solve QF_NRA formulas, because only the
sign-invariance is mandatory there. Brown observed, that then McCallums operator
can be further improved. He showed, that it is sufficient for the projM1 operator to
only contain the leading coefficient of each polynomial instead of all coefficients. This
however needs to come along with further modifications in the liftings stage, that are
explained in chapter 5.4.

Definition 4.2.8 (Brown). Let Aτ be a finite set of τ -variate polynomials and let Bτ
be the finest square-free base of A with Bτ = {f1, . . . ,fm}.

projB(Aτ ) := projB1(Bτ ) ∪ projM2(Bτ ) ∪
⋃

fi∈Aτ

{cont(fi)}

projB1(Bτ ) :=
⋃

fi∈Aτ

{discr(fi)} ∪ {ldcf(fi)}

He also made another modification to the lifting stage, that allows the CAD to
stay correct in some cases, where the polynomials are not well-oriented.
Note that essentially projB ⊆ projM ⊆ projH ⊆ projC.
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Chapter 5

On the Theory behind the
Operators

5.1 Proof overview for Collins operator
Recall the desired properties of projection operators given in chapter 4.1. Collins
proved that projC1 ensures, given a finite set of polynomials Aτ ⊂ Z[x1, . . . ,xτ ] and
region R, where on projC1(Aτ ) is sign-invariant on, that every f ∈ Aτ is delineable on
R. Core of his argumentation was the following theorem, that states the connection
between the (point-wise) number of distinct roots of a polynomial and its delineability.

Theorem 5.1.1. Let f ∈ Z[x1, . . . ,xτ ] be a polynomial, let τ ≥ 2. Let R be a
connected subset of Rτ−1. If ldcf(f(α1, . . . ,ατ−1,xτ )) 6= 0,∀α = (α1, . . . ,ατ−1) ∈ R
and it exists an l ∈ N, such that the number of distinct roots of f(α1, . . . ,ατ−1,xτ ) is
l,∀α = (α1, . . . ,ατ−1) ∈ R, then f is delineable on R.

Proof reference. See [Col75] theorem 1 (Note the more strict definition of delineabil-
ity).

It could happen, that certain coefficients vanish on a set of points, like this example
shows:

Example 5.1.2. Given f(x,y,z) = (x2 + y2 − 1)z2 + (x − 1)z + (x − 1)2 + y2 with
main variable z. Consider P1 = {(x,y) ∈ R2 | x2 + y2 − 1 = 0}, P2 = R2 \ P1.

• ldcf(f(α,z)) = 0,∀α ∈ P1

• deg(f(α,z)) = 1,∀α ∈ P1 \ {(1,0)}

• f(1,0,z) = 0

• deg(f(α,z)) = 2,∀α ∈ P2

To ensure that f has a constant degree on any on proj(f) sign-invariant region it
suffices to add all coefficients of f to the projection. It becomes a bit more compli-
cated to keep the number of distinct roots constant and this is ensured the following
way:
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Assume a region R ⊂ Rτ−1 where all coefficients of f are sign-invariant on. Fur-
ther let k denote the integer, such that the first k coefficients of f vanish on R,
0 ≤ k ≤ deg(f). Then f(α,xτ ) = g(α,xτ ),∀α ∈ R, where g := redk(f). So it suffices
to ensure the delineability of g on R. If g is identically zero on R, g can be ignored,
else ldcf(g(α,xτ )) 6= 0,∀α ∈ R. Thus the requirements of theorem 5.1.1 are almost
met, the number of distinct roots of g could still vary on R.
As corollary 3.0.6 states, the number of distinct roots cr in a point α ∈ R of g
is given by cr = deg(g(α,xτ )) − deg(GCD(g(α,xτ ),g

′(α,xτ ))). Corollary 3.0.9 im-
plies that, given a point α ∈ R, GCD(g(α,xτ ),g

′(α,xτ )) is the least j-th subresultant
Sj(g(α,xτ ),g

′(α,xτ )), which is not identically zero. Since ldcf(g) 6= 0 and ldcf(g′) 6= 0
the Sylvester matrix Syl(g(α,xτ ),g′(α,xτ )) = Syl(g,g′)(α,xτ ), so per definition of sub-
resultants it does not matter, if the j-th subresultant is calculated on g and g′ and then
get evaluated at α afterwards, or if the subresultant of g(α,xτ ) is constructed, thus:
Sj(g,g

′)(α,xτ ) = Sj(g(α,xτ ),g
′(α,xτ ))(xτ ). It concludes, that the same property holds

for the principle subresultant coefficients: pscj(g,g′)(α) = pscj(g(α,xτ ),g
′(α,xτ )).

So it would suffice to ensure that all subresultants of g and g′ are of constant degree
on R. It is even sufficient to guarantee that all pscj(g,g′) are of constant degree on
R, as the following corollary shows.

Corollary 5.1.3. Let f,g ∈ Z[x1, . . . ,xτ ], then deg(GCD(f,g)) = k if and only if k
is the least j such that pscj(f,g) 6= 0.

Proof reference. See [ACM82] See corollary 3.3 and theorem 3.2.

This is why in addition to all coefficients the pscs for every possible reductum of f
are added to projC1, which then is validated to provide delineability for polynomials
f on each on projC1(f) sign-invariant region.
To further guarantee that any on projC(Aτ ) sign-invariant region R the sections (the
delineating functions) of different f 6= g, f,g ∈ Aτ do not cross, Collins argued, that it
would suffice to make sure, that the product PAτ :=

∏
fi∈Aτ

f is delineable on R. This is

due to the following observation. Assume PAτ as well as all polynomials in Aτ to be de-
lineable on R. Let α = (α1, . . . ,ατ−1) ∈ R and let β ∈ R with PA(α1, . . . ,ατ−1,β) = 0.
Since PAτ ∈ Z[x1, . . . ,xτ ] and Z[x1, . . . ,xτ ] is a UFD, PA(α1, . . . ,ατ−1,β) = 0 if and
only if there exists fi ∈ Aτ with fi(α1, . . . ,ατ−1,β) = 0. Since fi is delineable on
R, there exists a delineating function θfi of fi, with θfi(α1, . . . ,ατ−1) = β. On the
other hand assume any point γ ∈ Im(θfi). Then there exists α′ = (α′1, . . . ,α

′
τ−1) ∈ R

with PAτ (α′1, . . . ,α′τ−1,γ) = 0. It concludes that θfi is a delineating function of PAτ .
Since PAτ is delineable on R, the delineating functions θPAτ are disjoint, thus the
delineating functions of fi and fj are either disjoint or identical. The delineability of
the functions in Aτ is already covered by projC1.

The only problematic scenario remaining is, when delineating functions cross each
other. Let f,g ∈ Aτ and let R be a region, where projC1(Aτ ) is sign-invariant on.
Assume that a delineating function of f crosses a delineating function of g. Let
(α1, . . . ,ατ−1,β) ∈ Z(R) with α = (α1, . . . ,ατ−1) ∈ R and β ∈ R be the point in
Z(R), where those delineating functions are equal. Then f(α1, . . . ,ατ−1,β) = 0 and
g(α1, . . . ,ατ−1,β) = 0, thus (xτ − β) divides f(α,xτ ) and (xτ − β) divides g(α,xτ ),
which implies that (xτ − β) divides GCD(f(α,xτ ),g(α,xτ )).
Conversely consider γ ∈ R. If (xτ−γ) devides GCD(f(α,xτ ),g(α,xτ )), then f(α,γ) =
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0 and g(α,γ) = 0 so some delineating functions of f and g cross each other. Example
5.1 depicts this situation.

Example 5.1.4. Let f(x,y) := y − x and g(x,y) := y − 3, with main variable y. Let
α1 := 1,α2 := 3,β := 3,γ1 := 1,γ2 := 3. Then

GCD(f(α1,y),g(α1,y)) = GCD(y − 1,y − 3) = 1,

GCD(f(α2,y),g(α2,y)) = GCD(y − 3,y − 3) = y − 3.

Figure 5.1 illustrates the delineating functions of f and g.

α1

γ1

γ2

α2

β

x

y
θf

θg

Figure 5.1: {f,g}-invariant CAD of R

Collins therefore argued, that if the degree of the GCD of pairs of polynomials f
and g is constant on each projC sign-invariant region, then the delineating functions
of f and g are either disjoint or identical on those regions. Using corollary 5.1.3 and
the same argumentation as for the validation of projC1 this concludes to taking pairs
of functions out of the reducta sets of f,g ∈ Aτ and adding their psc sets to the
projection. Then for some reducta ri ∈ RED(f),rj ∈ RED(g) ri = f and rj = g
on any on projC(Aτ ) sign-invariant region R. So ldcf(ri) 6= 0 and ldcf(rj) 6= 0 and
deg(psck(ri,rj)) = deg(GCD(ri,rj)) for some 0 ≤ k ≤ min(deg(ri),deg(rj))). Thus
the degree of the GCD is constant on R and therefore the delineating functions of
ri and rj are either disjoint or identical on R. The full proof is given in [ACM82]
theorem 3.7.

5.2 Correctness of Hongs Refinement

While Collins used the observation that given f,g ∈ Z[x1, . . . ,xτ ] and α ∈ Rτ−1,
Syl(f,g)(α,xτ ) = Syl(f(α,xτ ),g(α,xτ )) only when ldcf(f) and ldcf(g) do not vanish
in α, Hong came up with the following lemma in [Hon90] that can be deduced by the
definition of pscs.

Lemma 5.2.1. Let f,g ∈ Z[x1, . . . ,xτ ],degτ (f) = n,degτ (g) = m and let α ∈ Rτ−1
such that ldcf(f(α)) 6= 0 and deg(g(α)) = l ≥ 1 then

pscj(f,g)(α) = [ldcf(f)(α)]
m−l

pscj(f(α,xτ ),g(α,xτ ))
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Proof. pscj(f(α,xτ ),g(α,xτ )) is defined to be the determinant of the Minor Mj,j of
Syl(f(α,xτ ),g(α,xτ )).

Mj,j :=



an · · · a0
an · · · a0

. . . . . .
an . . . aj

bl · · · b0
bl · · · b0

. . . . . .
bl . . . bj



 l-j

 n-j

Now assume deg(g(α,xτ )) = l, let M ′j,j be the j-th minor of Syl(f,g)(α,xτ ).

M ′j,j :=



an · · ·
. . .

an

a0
. . .

a0
0 · · · 0
0 · · · 0
0 · · · 0

Mj,j



m-l

 n+l-2j

By inductively using the well known Laplace expansion along the first column to
calculate det(M ′j,j) the claim follows.

The consequence of this lemma is, that Collins operator can be reduced without
losing functionality.

Given a finite polynomial set Aτ ∈ Z[x1, . . . ,xτ ] let fi,fj ∈ Aτ with deg(fi) = n,
deg(fj) = m, projC2 constructs every possible combination of reducta pairs of fi
and fj and adds their psc sets to ensure they are all constant on any on projC(Aτ )
sign-invariant region R. Then there are reducta rk ∈ RED(fi) and rl ∈ RED(fj)
with rk(α,xτ ) = fi(α,xτ ) and rl(α,xτ ) = fj(α,xτ ) and with ldcf(rk(α,xτ )) 6= 0 and
ldcf(rl(α,xτ )) 6= 0 for all α ∈ R. With the lemma it is clear, that this can be
optimized. It suffices to construct the reducta of fi, as it is done in projH. Then on
any on projH(Aτ ) sign-invariant region R, all elements of PSC(ri,fj) are constant
on R, thus [ldcf(ri)(α)]

m−l
psck(ri(α,xτ ),fj(α,xτ )) is constant for 0 ≤ k ≤ min(n,l)

where l = deg(ri), since ldcf(ri) is non-negative and constant (due to projC1 ⊂
projH) on R. Thus also psck(ri(α,xτ ),fj(α,xτ )) is constant. This was essential
for the functionality of projC, so projH works as intended, while producing less
polynomials in each projection step.

5.3 Changes, when using McCallums Operator
McCallums work in [McC85] centralizes on his main theorem that he stated as:

Theorem 5.3.1 (Lifting Theorem). Let f ∈ Z[x1, . . . ,xτ ] with degxτ ≥ 1 and with
discrxτ (f) 6= 0. Let S be a connected submanifold of Rτ−1 in which f has constant
degree and is not identically zero, and in which discrxτ (f) is order-invariant. Then
f is analytic delineable on S and is order-invariant in each of its sections over S.
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Proof reference. See theorem 3.2.1, proof contained in chapter 3.3 of [McC85].

Note that the sectors between two sections of the variety of f on S are also order-
invariant since the order is 0.

The lifting theorem can be used to validate his operator. Let Aτ ⊂ Z[x1, . . . ,xτ ]
be the finest square-free base of a finite set of polynomials, let Aτ = {f1, . . . ,fn}. The
lifting theorem already ensures the analytic delineability of the polynomials on any on
projM1 order-invariant submanifold, because projM1 consists of all coefficients (to
keep the degree invariant) and the discriminants of all polynomials of Aτ . Since Aτ
is per assumption a finest square-free base, discr(f) 6= 0,∀f ∈ Aτ as corollary 3.0.13
implies. The only exception is, when a polynomial or its discriminant is identically
zero on S. Assuming well-oriented polynomials as input, this would mean that S is
zero dimensional. Then the lifting theorem can not be applied. However if S has
dimension zero, the polynomials are either delineable or identically zero on S. The
order-invariance of a function fi ∈ Aτ is not guaranteed on the cylinder over S, when
fi is identically zero. Example 5.3.2 depicts such a scenario. The solution for this
problem is, to ensure order-invariance in the lifting phase, when some polynomial
vanishes on a sample point. More details on how to establish order-invariance in this
special case are given later.

To also guarantee that delineating functions of different polynomials in Aτ do
not cross on a on projM(Aτ ) order-invariant submanifold S, McCallum argued like
Collins and proved by using the lifting theorem on PAτ :=

∏
f∈Aτ

f , that PAτ is also

analytic delineable. Using theorem 3.0.12:

discr(PAτ ) =

n∏
i=1

discr(fi)

n∏
j=i+1

res(fi,fj)
2.

Since pairwise all resultants are included in projM , and also the discriminants of
each polynomial are in projM , all of the factors are order-invariant on S. According
to [McC85] lemma 3.2.2 this implies that also the product, thus discr(PAτ ) is order
invariant on S. The requirements of the lifting theorem are therefore met, with excep-
tion to the side-case, where PAτ vanishes everywhere on S or its discriminant is zero.
The former is no problem, because [McC85] lemma 3.2.2 works in both directions
and thus if all polynomials in Aτ are order-invariant on S, also PAτ is order-invariant
on S. This is given, as the lifting phase will deal with those exceptional cases. The
latter is also no problem as of corollary 3.0.13 implies. Since only finest square-free
bases are used for projection, the discriminants of the projection polynomial is never
0 as well as pairwise resultants. So the only thing missing is a way to reestablish
order-invariance, when some polynomial vanishes identically over a zero dimensional
submanifold.
The following example depicts a situation, where order-invariance needs to be estab-
lished in the lifting phase.

Example 5.3.2. Let f := (w2 + x2 − 1)y + (w − 1),p = f + z2. A4 := {p} with
variable order w < x < y < z. A4 is square-free and since |A4| = 1, it is also a finest
square-free base. Note that polynomials in this example all get normalized, thus only
the primitive part is considered. Also constants get removed on each projection level
and polynomials that only are constant with respect to the main variable are pushed
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down to the next relevant level.
Projection phase:

• discrz(p) = f

• ProjM(A4) = {f,1} → {f} := A3. f is square-free.

• discry(f) = 1.

• ProjM(A3) = {g := w2 + x2 − 1,h := w − 1,1} → {g,} := A2. h gets pushed
down to A1

• discrx(w
2 + x2 − 1) = w2 − 1

• ProjM(A2) = {w2 − 1,1,− 1} → {w2 − 1,h} := A1

Base phase:

• S1 = (−∞,− 1),S2 = [−1,− 1],S3 = (−1,1),S4 = [1,1],S5 = (1,∞)

• → CAD(A1) = {−2− 1,0,1,2}

Lifting phase:

• g(0,x) = x2 − 1→ add x = 1, x = −1.

• g(1,x) = g(−1,x) = x2 → add x = 0.

• g(2,x) = g(−2,x) = x2 + 3→ add nothing.

• CAD(A2) = {(0,0),(0,1),(0,2),(0,− 1),(0,− 2),
(1,0),(1,1),(1,− 1),(−1,0),(−1,1),(−1,− 1),(2,0),(−2,0)}

• f(1,0,y) = 0→ exceptional case.

Problem:

• f(α,y) is identically zero for some α ∈ CAD(A2). Consider α = (1,0).

• f might not be order-invariant on Z((1,0)).

– f is the discriminant of p.

– Lifting theorem can not guarantee, that p is delineable on any submanifold
of α× R.

• ord(1,0,y)(f) > 0, because f is identically zero on.

• ord(0,1,y)(f) ≥ 1, because:

– d1 :=
∂f

∂y
= x− 1→ d1(1,0,y) = 0

– d2 :=
∂f

∂x
= 2xy → d2(1,0,y) = 0

– d3 :=
∂f

∂w
= 2wy + 1→ d2(1,0,y) = 2y − 1

• ord(0,1,1)(f) = 1,ord(0,1,0.5)(f) > 1
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Looking now at the sample point (1,0), f(1,0,y) = 0. Order invariance is not given
on any submanifold S ⊂ (0,1)×R. f is the discriminant of p, thus the lifting theorem
can not be used to validate, that p is analytic delineable on S. The solution to this
dilemma is to ensure order-invariance on those submanifolds manually.

Let f ∈ Ai be a polynomial, that vanishes on a sample point α ∈ Ai−1. Let k be
the least non-negative integer, such that the set

Dk(f) =

{
q | q 6= 0,∃e1, . . . , ei.

i∑
r=1

er = k, q =
∂kf

∂xe11 , . . . ,∂x
ei
i

}

is not empty. Then ord(α,β)(f) ≥ k,∀β ∈ R and ord(α,β)(f) > k if and only if
Dk(f(α,β)) is empty. Since f is assumed to be well-oriented, there are at most
finitely many points β1, . . . ,βn ∈ R, where ord(α,βi)(f) > k, 1 ≤ i ≤ n. Adding a
polynomial with β1, . . . ,βn as zeros to Ai ensures that all those cases are covered by
the decomposition, because the points (α,β) ∈ Ri are chosen as sample points as well
as sample points from the open subsets in between. McCallum named this polynomial
a delineating polynomial. To determine β1, . . . ,βn McCallum stated, that it would
be sufficient to add one k − th partial derivate d ∈ Dk(f). This would split the
cylinder over α according to all of d-s zeros. Splitting along all zeros is not necessary,
since some other k − th partial derivate might not vanish when d does. Thus Brown
suggested in [Bro01b] to instead add a minimal delineating polynomial which is the
greatest common divisor of all polynomials in Dk. Then the splitting is only done
along the points where the order actually changes. This could save a lot of time as
the amount of sample points grow exponentially while lifting.

5.4 Browns improvement on McCallums Operator
Brown observed in [Bro01a], that the degree-invariance, required in McCallums lifting
theorem is already implicitly given by the order-invariance of its discriminant and the
sign-invariance of its leading coefficients. This allowed him to state a theorem to
justify an improvement in the projection size.

Theorem 5.4.1. Let f ∈ Z[x1, . . . ,xτ ] with degxτ ≥ 1 and with discrxτ (f) 6= 0. Let
S be a connected submanifold of Rτ−1 in which ldcf(f) is sign-invariant and where f
is not identically zero on any point of S, and in which discrxτ (f) is order-invariant.
Then f has constant degree on S.

Proof reference. See theorem 3.1 of [Bro01a].

This theorem implies, that it is not necessary to add all coefficients of a polyno-
mial into the projected set. Instead the leading coefficient is sufficient. Exceptions
are τ -variate polynomials that turn out to be identically zero on some points of Rτ−1.
This sounds problematic at first, but these points, where a polynomial turns out to
be identically zero on S, can be computed and added manually in the lifting phase.
Since input polynomials are assumed to be well-oriented, this are at most finitely many

points. Let f ∈ Aτ ⊂ Z[x1, . . . ,xτ ], with deg(f) = n and f =
n∑
i=0

pi(x1, . . . ,xτ−1)x
i
τ

, where pi ∈ Z[x1, . . . ,xτ−1] for 0 ≤ i ≤ n and pn 6= 0. The interesting scenario is,
when pn = pn−1 = . . . = p0 = 0. This polynomial system needs to be analyzed. If the
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solution space turns out to be of positive dimension, then f is not well-oriented, if the
dimension is 0, then the finite amount of points must be considered when producing
a CAD of Aτ . If the system has no solution in the reals, then nothing needs to be
done.
One straight forward way would be to produce a CAD of {p0, . . . ,pn} to find the solu-
tion. This is very well possible and while it appears to be very inefficient at first, this
is the same thing that McCallums operator actually does by adding all coefficients
to the projection. The improvement however would still be that a separate CAD of
{p0, . . . ,pn} would not deal with the mix of other factors (coefficients, discriminants
and resultants from other polynomials) during projection, like McCallums original
would have. So this approach is in theory always more efficient than McCallums op-
erator. Another advantage is, that any other method for solving equalities over the
reals could be taken to determine the isolated points, since only equalities need to be
considered and thus using CAD would may be overkill.
The way how to add the points, where a polynomial is identically zero is described in
algorithm 1 and 2. In addition Brown proposed another optimization for the lifting
phase, which is motivated by the idea, that delineating polynomials not necessarily
have to be added every time, when a polynomial vanishes over a cell. It is only
mandatory, when the polynomial was added because of a discriminant. This is due
to the lifting theorem only requiring the discriminants to have constant order on the
submanifolds. This can be implemented by tagging every polynomial, that was added
in the projection phase because of a discriminant of a projection set of greater di-
mension. This however ruins the guarantee of receiving an order-invariant CAD and
only assures sign-invariance, which is perfectly fine for most applications, including
SMT-solving. Another benefit from tagging the polynomials derived from discrim-
inants is, that a polynomial, that vanishes over a positive dimensional submanifold
will only cause problems, if it is tagged. If it is not tagged, it can be ignored, as only
sign-invariance is required, which is certainly given on this cell.
Now pseudo-code is given to show the modifications in the lifting phase.
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Preprocessing:
Data: τ : dimension of input polynomials. Sets A1, . . . ,Aτ

Result: If input polynomials are not well-oriented: Error, else: sets Qi where a
i+ 1-variate polynomial is identically zero.

for i = 3; i ≤ τ ; i = i+ 1 do

for f ∈ Ai with f =
n∑
k=0

pk(x1, . . . ,xi−1)x
k
τ do

if p1 = . . . = pn = 0 has infinite solutions then
return ERROR - Not Well-Oriented

else if p1 = . . . = pn has no solution in the reals then
do nothing

else
for α = (α1, . . . ,αi−1) with p1(α) = . . . = pn(α) = 0 do

Qi−1 = Qi−1 ∪ {(xi−1 − αi−1)}
end

end
end

end

Algorithm 1: Isolating points to add

Lifting:
Data: polynomial f ∈ Ai, sample point α ∈ Rτ−1

if there is a point β = (β1, . . . ,βi+1) ∈ Qi+1 with αk = βk for all 1 ≤ k ≤ i then
Lift α with respect to Ai+1 ∪ {xi+1 − βi+1} instead of just Ai+1

else if f(α,xi) is identically zero then
if α represents zero dimensional space then

if f is tagged then
replace f by the minimal delineating polynomial q of f

else
do nothing (f is sign-invariant on the space α represents)

end
else

if f is tagged then
return ERROR - Not Well-Oriented

else
no-op (f is sign-invariant on the space α represents)

end
end

else
Do the usual lifting

end

Algorithm 2: Modified Lifting Stage
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The following example, taken from [Bro01a], shows the potential difference, that
Browns operator could have compared to McCallum.

Example 5.4.2. A classic scenario in elementary school is, analyzing polynomials of
degree 2 with respect to their zeros. CAD can deal with the generic case by inspecting
f(a,b,c,x) := ax2 + bx+ c. Let a < b < c < x be the variable order,A4 = {f}.
CAD using McCallum:
Projection phase:

• discrx(f) = b2 − 4ac := g.

• projM(A4) = {g,a,b,c} → A3 := {g,c}. a and b get pushed down.

• discr(g) = discr(c) = 1,resc(g,c) = b2.

• projM(A3) = {1,b2,− 4a,− b2} → A2 := {b}. a gets pushed down.

• projM(A2) = {a} → A1 = {a}.

Base phase:

• S1 = (−∞,0),S2 = [0,0],S3 = (0,∞).

• → CAD(A1) = {−1,0,1}.

Lifting phase:

• CAD(A2) = {(0,0),(0,1),(0,− 1),(1,0),(1,1),(1,− 1),(−1,0),
(−1,1),(−1,− 1)}.

• Since c ∈ A3,CAD(A3) has at least 27 points.

• . . .

CAD using Brown:
Projection phase:

• discrx(f) = b2 − 4ac := g (tagged).

• projM(A4) = {g,a} → A3 := {g}. a gets pushed down.

• discrc(g) = 1.

• projM(A3) = {} → A2 := {}.

• → A1 = {a}

Preprocessing:

• g(0,0,c) is identically zero → Q2 = {(0,0)}.

• f(0,0,0,x) is identically zero → Q3 = {(0,0,0)}.

Base phase:

• S1 = (−∞,0),S2 = [0,0],S3 = (0,∞).

• → CAD(A1) = {−1,0,1}.
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Lifting phase:

• Q2 = {(0,0)} → 0 needs to be lifted with respect to A2 ∪ {b− 0}.

• CAD(A2) = {(0,0),(0,1),(0,− 1),(1,0),(−1,0)}.

• Q3 = {(0,0,0)} → (0,0) needs to be lifted with respect to A3 ∪ {c− 0}.

• g(0,1) = 1,g(0,− 1) = 1,g(1,0) = −4c,g(−1,0) = 4c.

• g(0,0) = 0, g is tagged, replace with delineating polynomial:
D1(g) = {−4c,2b,− 4a},D1(g(0,0)) = {−4c,0} → q = c (normalized).

• CAD(A3) = {(0,1,0),(0,− 1,0),(1,0,− 1),(1,0,0),(1,0,1),(−1,0,− 1),
(−1,0,0),(−1,0,1),(0,0,− 1),(0,0,0),(0,0,1)}

• . . .
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Chapter 6

Experimental Results

The four Operators presented in this paper got implemented in the SMT-RAT tool-
box (See [CKJ+15] for more information), which allows to compose SMT-solvers,
by offering a SAT-Solver, theory modules for various applications (including a CAD
module based on Browns operator) and interfaces to create own modules. Different
theory modules can be combined using strategies. All mathematical operations are
implemented in the computer Arithmetic and logic library (cArl), which provides all
the necessary functions for the operators.
The test setting was based on the implemented CAD module, which uses some opti-
mizations. Constants get removed instantly and are not projected down. The same
also goes for positive definite and negative definite functions, as they are always sign-
and order-invariant. Another aspect is, that polynomials always get normalized and
thus, only the primitive part of each polynomial is considered. While SMT-RAT also
can be run in incremental fashion and thus can deal with backtracking scenarios by
offering ways of adding and removing polynomials on each projection level, this fea-
ture was not utilized here as the study of interest is the efficiency of the operators
by the theoretical improvements, that were made on the field of CAD. Also note,
that the CAD module of SMT-RAT projects the polynomials down to the univariate
case right when they are added. So it always project single polynomials instead of
polynomial sets and projects them in depth-first as opposed to breadth-first fashion.
The Benchmarks are taken from the SMT-COMP and in the first run, the composed
solver only takes the received polynomials of each formula and projects them down.
The tests were run on AMD Opteron 6172 with a timeout limit of 60 seconds. Table
6.1 shows, how many benchmarks the different solvers were able to run, given this
settings. Then the benchmarks, that all 4 solvers were able to project down was
taken and analyzed more closely. This benchmarks are exactly all tests, that Collins
operator was able to handle.

Operator Solved Benchmarks
Collins 5698
Hong 6052
McCallum 6828
Brown 6828

Table 6.1: Number of test runs
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The performance of the four participants on this tests was observed more closely.
The rough structure of this tests can be seen in table 6.2.

avg min 25% qt median 75% qt max
number of polys ≈ 6,37 1 5 6 8 34
max degree(main var) ≈ 5,23 1 2 3 6 44
max degree (combined) ≈ 6,06 1 2 4 7 44

Table 6.2: Benchmark structure (qt=quartile), 5698 instances

On the first four projection levels, the number of polynomials and the maximum
degree got tracked, the results are depicted in the tables 6.3,6.4 ,6.5 and 6.6. Only
few solved instances caused projections with more then 5 variables, which is why this
restriction is made. Noticeable things are, that the upper bound on the degree in
the main variable is only slightly different from the one, where the combined degree
is considered. The combined degree is the sum over the degrees of each variable in
a term. This implies, that the polynomials in this benchmarks have a very simple
structure. Also with Browns operator it happened, that a whole projection level could
be skipped on 11 instances on projection level 1 and on 137 instances on projection
level 2. Despite that, Browns operator could only handle the exact same instances
with this 60 second upper bound on runtime, as McCallums was able to deal with. So
at least in the projection phase, the improvements of Browns operator are not too big.
This however is no big surprise, as the real strength of Browns operator is in the lifting
phase, where the amount of lifting points are kept smaller due to the manual adding
of points, only when it is necessary. Looking at the statistics that regard polynomial
degrees, Collins and Hongs operators scored similar results. The same can be seen,
when comparing McCallums operator to the one of Brown. However, there is a gap
between this 2 groups (Collins approach vs McCallums design). This indicates the
huge step, that McCallums operator was able to make in the context of CAD. The last
thing to mention about the benchmarks is, that the maximum amount of polynomials
can pretty much explode using Collins operator, while the refinement of Hong was
able to keep the number of polynomials much smaller. This also gives an idea about
the importance of Hongs operator in practical uses (especially, since Hongs operator
can be used on any set of integer polynomials and not just well-oriented ones, unlike
McCallums and Browns operators).
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number of polys avg min 25% qt median 75% qt max
Collins ≈ 10,89 1 3 6 16 99
Hong ≈ 8,62 1 2 5 12 57
McCallum ≈ 6,06 1 2 4 8 31
Brown ≈ 5,29 1 2 4 7 25
max degree(main var) avg min 25% qt median 75% qt max
Collins ≈ 7,06 1 2 3 10 182
Hong ≈ 7,05 1 2 3 10 182
McCallum ≈ 6,05 1 2 2 8 182
Brown ≈ 6,04 1 2 2 8 182
max degree(combined avg min 25% qt median 75% qt max
Collins ≈ 7,76 1 2 4 10 182
Hong ≈ 7,75 1 2 4 10 182
McCallum ≈ 6,68 1 2 3 8 182
Brown ≈ 6,68 1 2 3 8 182

Table 6.3: Results on projection level 1 (5693 instances)

number of polys avg min 25% qt median 75% qt max
Collins ≈ 783,14 1 2 11 116 24489
Hong ≈ 158,77 1 2 6 43 6056
McCallum ≈ 16,74 1 2 5 15 227
Brown ≈ 11,62 1 2 4 12 168
max degree(main var) avg min 25% qt median 75% qt max
Collins ≈ 26,32 1 1 6 26 419
Hong ≈ 26,16 1 1 6 26 419
McCallum ≈ 13,29 1 1 3 16 264
Brown ≈ 13,48 1 1 3 16 264
max degree(combined) avg min 25% qt median 75% qt max
Collins ≈ 26,39 1 1 6 26 419
Hong ≈ 26,23 1 1 6 26 419
McCallum ≈ 13,34 1 1 3 16 264
Brown ≈ 13,53 1 1 3 16 264

Table 6.4: Results on projection level 2 (5583 instances)
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number of polys avg min 25% qt median 75% qt max
Collins ≈ 117,00 1 1 3 10 22806
Hong ≈ 20,20 1 1 3 9 2009
McCallum ≈ 5,06 1 1 2 7 80
Brown ≈ 4,65 1 1 2 7 73
max degree(main var) avg min 25% qt median 75% qt max
Collins ≈ 11,79 1 1 1 4 286
Hong ≈ 11,66 1 1 1 4 286
McCallum ≈ 5,25 1 1 1 4 64
Brown ≈ 5,03 1 1 1 4 64
max degree(combined) avg min 25% qt median 75% qt max
Collins ≈ 11,82 1 1 1 4 286
Hong ≈ 11,68 1 1 1 4 286
McCallum ≈ 5,28 1 1 1 4 64
Brown ≈ 5,06 1 1 1 4 64

Table 6.5: Results on projection level 3 (789 instances)

number of polys avg min 25% qt median 75% qt max
Collins ≈ 15,61 1 2 4 11 302
Hong ≈ 10,27 1 2 4 8 106
McCallum ≈ 7,91 1 2 3 6 29
Brown ≈ 5,46 1 2 3 5 26
max degree(main var) avg min 25% qt median 75% qt max
Collins ≈ 4,02 1 1 2 5 32
Hong ≈ 3,84 1 1 2 5 24
McCallum ≈ 3,43 1 1 1 4 16
Brown ≈ 2,74 1 1 1 4 16
max degree(combined) avg min 25% qt median 75% qt max
Collins ≈ 5,25 1 1 2 6 32
Hong ≈ 5,07 1 1 2 6 24
McCallum ≈ 3,84 1 1 2 4 16
Brown ≈ 3,48 1 1 2 4 16

Table 6.6: Results on projection level 4 (147 instances)

This statistics are also visualized in the form of boxplots in the appendix. The
boxplots were made with pgfpfots and have the following build rule. Let the inter-
quantile-range (IQR) denote the number given by the 75% quartile minus the number
that the 25% quartile denots. The 25% quartile denotes the smallest data point, that
is greater than 25% of the data. In symmetric fashion, the 75% is the greatest data
point, that is smaller than 75% of all data points. The lower (left) whisker is set
to smallest number, that is greater than the 25% quartile - 1.5 · IQR and the upper
whisker: biggest number, that is smaller than the 75% quartile + 1.5 · IQR. The
bar inside the box represents the median and black points illustrate the data points,
that are outliers with respect to the boxplots. The range depicted in these figures is
chosen, such that the maximum value is always visible. In most cases this required
some non-continuity on the x-axis.
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In a second test run, the 5698 samples were given to the full SMT-solver. The
time bound was again set to 60 seconds and the following table shows the success rate
of this procedure using the different operators.

porjection operator solved formulas timeouts timeut relative
Collins 5041 657 ≈ 11,53%
Hong 5125 573 ≈ 10,06%
McCallum 5284 414 ≈ 7,27%
Brown 5299 399 ≈ 7,00%

Table 6.7: General statistics of full SMT-procedure

This rate of timeouts is pretty low, considering the given setting. The benchmark
set was chosen, so that the raw projection could be done in 60 seconds by every op-
erator. Collins operator was only able to exactly handle those benchmarks. Now in
the full SMT-solving settings, one could expect higher time consumption. But SMT-
RAT is very efficient, when it comes to keeping the projection size as small as possible.
Close analysis within the SAT-module enables SMT-RAT to filter out some polyno-
mials based on the boolean structure. In fact, some of the benchmarks, that caused
the greatest amount of polynomials in the first test run, turned out to be solvable in
a very short amount of time. One example is the benchmark “meti-tarski/polypaver-
bench-sqrt-3d-chunk-0479.smt2”. It had a total amount of 24575 polynomials during
the projection phase in test phase one. It could be solved in 33 milliseconds, due to
some contradicting bounds.
Also the full SMT-solver of SMT-RAT creates partial CADs and checks for satisfia-
bility. So it could happen, that satisfiable formulas can be solved before the whole
projection is done. The runtimes on the benchmarks, that could be finished is given
in table 6.8.

runtime (ms) avg min 25% qt median 75% qt max
Collins ≈ 452,80 16 27 32 47 56538
Hong ≈ 233,30 17 28 36 55 48504
McCallum ≈ 216,38 20 34 45 72 38727
Brown ≈ 220,11 17 27 35 52 49497

Table 6.8: runtimes on the finished benchmarks

An interesting note to mention is, that according to the data, McCallum was faster
in average than Brown. This partly is because usnig McCallums operator, the solver
could not solve some harder benchmarks, which the use of Browns operator allowed
to solve. The scatter plot in 6.1 shows the competition of these operators on the set
of benchmarks, that both solvers could solve in time:

The expected behavior based on the theoretical superiority of Browns operator
over McCallums operator is not reflected by the benchmarks. This can be explained
by the way, that the SMT-solver works. Since partial CADs are used to check for
satisfiability before the full projection is done. If the coefficients that McCallums
operator includes and Browns does not include get projected first and this partial
projection is sufficient to find sample points to satisfy the formula, then McCallums
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Figure 6.1: runtimes Brown vs McCallum

operator is faster. This is also due to the degree, which on the used benchmarks does
shrink on the coefficients, while the degree of discriminants and resultants is likely to
grow. So a partial CAD based on the coefficients results in less sample points and
can return faster answers.
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Conclusion

This thesis gave an overview about different approaches to the projection operator in
the CAD procedure. The main theoretical results, that are necessary to validate the
presented operators, got collected and all extra requirements in order to use those op-
erators in the context of SMT-solving were highlighted. The practical analysis using
SMT-RAT mirrored the theoretical results on the number of projected polynomials.
Future work might include a closer look at the side cases, when using Browns projec-
tion on examples, where points need to be added to the projection. Also the runtimes
on the tests, where Browns operator competed versus McCallums operator, suggest
a dual approach, where McCallums operator is used for a bounded time. If satisfia-
bility can be determined, it is returned, else one could switch back to using Browns
operator to complete the projection on harder cases, where the theoretical superiority
allows a faster lifting as the projection set grows. Some further improvements can
also be made in the projection phase, when dealing with bounded sets as mentioned
in the second part of[Bro01a]. Another quite promising approach is to use equational
constraints to simplify the CAD procedure, see [BDE+14].
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Appendix A

Experimental Results

Figure A.1: Level 0 (before projection): 5698 data points
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Figure A.2: number of polynomials in projection level 1 (5693 data points)
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Figure A.3: degree in main variable in projection level 1 (5693 data points)
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Figure A.4: combined degree in projection level 2 (5693 data points)
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Figure A.5: number of polynomials in projection level 2 (5583 data points)
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Figure A.6: degree in main variable in projection level 2 (5583 data points)
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Figure A.7: combined degree in projection level 2 (5583 data points)
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Figure A.8: number of polynomials in projection level 3 (789 data points)
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Figure A.9: degree in main variable in projection level 3 (789 data points)
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Figure A.10: combined degree in projection level 3 (789 data points)
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Figure A.11: number of polynomials in projection level 4 (147 data points)
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Figure A.12: degree in main variable in projection level 4 (147 data points)
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Figure A.13: combined degree in projection level 4 (147 data points)
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