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Abstract

A hybrid system combines discrete and continuous behavior. In order to

analyze a hybrid system and verify its safety against a prede�ned set of unsafe

states, we utilize classical reachability analysis via �owpipe construction. Due

to its over-approximative nature, this method can only prove safety of a hybrid

system.

In this thesis we extend our existing reachability analysis tool by a simulation-

based approach in order to be able to provide counterexample runs in case the

system is unsafe. In our approach we exploit previously gained information from

�owpipe construction in a CEGAR-like fashion to guide the simulation of �nitely

many single executions of the system with the aim to �nd a counterexample.

We evaluate our approach and the impact of the utilized sampling heuristics for

simulation on some benchmarks.
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Chapter 1

Introduction

In the last decade the usage of technology has drastically increased. Humanity has
gained trust in computer-made decisions which provide convenience and better ef-
�ciency. The higher demand has led to developing applications and systems with
increasing complexity. Systems became more automated and independent from the
need of human supervision. Examples for automated systems, which are used in our
everyday life are automatic transmissions in cars, the thermostats that are used in
houses or the automated railway crossings. However, the increasing complexity of au-
tomated systems typically involves a higher risk of system malfunction or unexpected
behavior. The software for controlling a railway crossing has to be highly reliable and
error-free. An essential task of software engineers is to ensure the accurate behavior
of such safety-critical applications and to verify the correctness of the software.

All of the examples above are hybrid systems, i.e. systems with combined discrete
and continuous behavior. A discrete system has a �nite set of states and its evolution
can be described as a sequence of discrete state changes. For instance, consider
the example of a digital controller for a thermostat whose goal it is to maintain a
certain room temperature. The thermostat has two possible discrete states: {on}
and {off}. On the other hand, the temperature in a room changes continuously
over time. This is a continuous evolution of a physical component. In the thermostat
example the physical component is temperature. Trajectories of the evolution of
such systems can be computed and their development over time can be observed.
Reachability analysis of a hybrid system is in general undecidable which presents a
challenging task for its safety veri�cation.

A formal method to prove a hybrid system of its safety is �owpipe simulation reach-
ability analysis [ÁC15, LGG09, HKPV98, ACH+95]. This method is semi-decidable,
since the system evolution is computed up to prede�ned time bound and number of
discrete jumps. Its goal is to determine, whether a set of bad states is reachable
during the execution of a certain system from a set of initial states. Bad states are
de�ned as a set of states which violate the property that is to be proved. Starting
from the initial set, the evolution of a hybrid system is computed until given time has
passed. At each step the computed set is usually over-approximated and is tested for
an intersection with the bad states. If the intersection is empty, the system is safe. If
the intersection is not empty, bad states might be reachable which leads to the conclu-
sion that the system safety cannot be guaranteed. However, there exists a trade-o�
between accuracy and required computational resources for the computation. The
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given time, until which the system evolution is been computed, can be separated into
smaller steps in order to approximate its exact development. Also, the choice of the
time step size has an impact on the precision of the obtained solution. The bigger
the time step, the faster the computation, but it delivers a more over-approximated
solution.

During the computation there are several choices for the geometrical representation
of the generated states of a hybrid system. Usually, the more complex the geometry
is, the more storage it needs, the more di�cult is it to apply operations on the sets
and the more time it takes for the computation, but a better approximation can
be achieved. For instance, boxes are fast and e�ciently computed. However, they
deliver very inaccurate and over-approximated solution, which can lead in some cases
to indecisive results.

In case of an unsafe system reducing the over-approximative error by utilizing �ner
settings does not contribute to proving safety. Therefore, instead of proving safety, our
method numerically calculates candidates for counterexamples of the system safety
and thus tries to prove unsafety. In this thesis, we introduce numerical simulation of a
hybrid system evolution using sampling, where the state set representation is a point.
The idea is to take one or a few points from the initial set and to precisely calculate
their behavior over time. This method provides an insight into the exact evolution of
the system and �nds a counterexample candidate in case of an unsafe system.

Outline. One of the main goals of this work is providing results, which are under-
standable for researchers outside of the theoretical computer science �eld. Therefore,
the next Chapter 2 features all necessary background information for understanding
this topic. Chapter 3 focuses on the solution design and displays all implementation
details of our method. Afterwards, Chapter 4 investigates the applicability of our
method in the context of hybrid systems safety veri�cation and evaluates its perfor-
mance in terms of required computational time and memory resources. Finally, the
results are summarized and a potential future work and ideas are discussed, which
can be of future interest.



Chapter 2

Preliminaries

In this chapter we present preliminary knowledge required for the rest of this work.
First, we give a formal de�nition of a hybrid automaton. In the section after that we
discuss various methods for representing a state set and consider their characteristics
about operation e�ciency and representation accuracy. Furthermore, the term of
re�nement setting along with its attributes is introduced, as well as its combination
into strategies, which is used as a a powerful mechanism to determine the accuracy and
e�ciency of the approximation of a system under computation. Further, we introduce
the essence of the already implemented reachability worker, which computes a classic
forward reachability of a model in the context of the tool HyDRA.

In order to verify a system for its safety, computing a run from the initial state
set to the set of bad states should not be possible. On the other hand, if such run of
the system can be found, the system safety cannot be guaranteed. This veri�cation
method is referred to as safety veri�cation for hybrid systems.

2.1 Hybrid automata

In order to verify a hybrid system using formal methods, an abstraction is required
which models the system in a way, that suits its behavior. There are several repre-
sentation methods, which consider di�erent aspects of the system behavior. Hybrid
automata (HA) as a model for hybrid systems have been used extensively in the past
decades. A formal de�nition of the syntax of a HA, as introduced in [ACH+95] and
in [SÁ18b], is:

De�nition 2.1.1. A hybrid automaton H is a tuple (Loc, Var, Lab, Edge, Act, Inv,
Init) where:

� Loc is a �nite set of locations or control modes;

� Var = x1,..., xd is a �nite ordered set of real-valued variables; sometimes we use
the vector notation x = (x1,..., xd). The number d is called the dimension of H.
By Var we denote the set {ẋ1,..., ẋd} of dotted variables (which represent �rst
derivatives during continuous evolution), and by Var' the set x′1,..., x

′
d of primed

variables (which represent values directly after a discrete change). Furthermore,
given a variable set X, let PredX denote a set of predicates with free variables
from X;
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� Lab is a �nite set of synchronization labels that contains the stutter label τ ∈
Lab;

� Edge is a �nite set of edges called transitions. Each transition e = (l, aµ, l′)
consists of a source location l ∈ Loc, a target location l' ∈ Loc, a synchronization
label a ∈ Lab, and a transition relation µ ⊆ V 2;

� Act is a function, assigning a set of activities f : IR≥0 → V to each location
which are time-invariant, meaning that f ∈ Act(l) implies (f+t) ∈ Act(l) where
(f + t)(t0) = f(t+ t0) for all t0 ∈ IR≥0, and

� Inv is a labeling function that assigns to each location an invariant;

� Init is a �nite set of initial predicate assignments to each location.

The di�erent components of the HA are described based on the following ther-
mostat example, as in [ACH+95]. A thermostat has two possible locations: on and
off. When the thermostat is on, the room temperature x increases until it reaches
a degree between 22◦C and 23◦C. Afterwards the thermostat switches to off until
the temperature x drops down between 17◦C and 18◦C. Note that this model is
non-deterministic, since the control can change its location anytime, when the guard
is satis�ed, for example anytime between the interval [22◦C; 23◦C]. The dynamics of
the temperature are de�ned by the following di�erential equations:

ẋ =

{
−0.1x+ 5 if the heater is on,

−0.1x if the heater is off.

Initially the room temperature is 20◦C and the heater is on. Turning the heater
on and off is a discrete change of the system (Figure2.3). The temperature evolution
over time has a continuous behavior (Figure2.2). We can model the thermostat system
by the following hybrid automaton:

on
ẋ = 5− 0.1x
x ≤ 23

x=20
off

ẋ = −0.1x
x ≥ 17

22 ≤ x ≤ 23

17 ≤ x ≤ 18

Figure 2.1: Graphical representation of a hybrid automaton, modelling the behavior
of a thermostat.

Formal model:

� Loc is a �nite set of locations, such as {on, off};

� V ar is a �nite set of real-valued variables. Such is the temperature {x};

� Lab is a �nite set of synchronization labels, such as {17 ≤ x ≤ 18, 22 ≤ x ≤
23, τ} with τ implicit self loops, also called stutter transitions, on each location,
which are usually not displayed;
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� Edge is a �nite set of explicit edges between locations and implicit edges (self
loops) τ :

Edge =
{

(on, 22 ≤ x ≤ 23,off),

(off, 17 ≤ x ≤ 18,on),

(on, τ,on),

(off, τ,off)
}

� Act is a function, which models the �ow at each location:

Act(on) = {f : IR≥0 → V | ∃c ∈ IR.∀x ∈ IR≥0.f(x) = 5− 0.1x+ c}
Act(off) = {f : IR≥0 → V | ∃c ∈ IR.∀x ∈ IR≥0.f(x) = −0.1x+ c}

� Inv is a function assigning an invariant to each location. Invariants restrict
the variable assignment at each location into a de�ned bound and enforce the
control to jump in another location:

Inv(on) = {v ∈ V | v(x) ≤ 23}
Inv(off) = {v ∈ V | v(x) ≥ 17}

� Init is a set of initial states:

Init = {(on, v) ∈ Σ | v(x) = 20}

Figure 2.2: Continuous behavior of the
thermostat. The room temperature in-
creases or decreases continuously over
time. Red: increasing temperature; blue:
decreasing temperature. [ÁC15]

Figure 2.3: Discrete behavior of the ther-
mostat. Regarding the room tempera-
ture, the heater is turned on (red line)
or o� (blue line). [ÁC15]

Figure 2.2, however displays only one possible behavior of the system. Since
the control can switch locations anytime if the temperature x is in the interval
[17◦C; 18◦C] and [22◦C; 23◦C] respectively, there are in�nitely many possible runs,
that have not been considered yet. In order to prove a system, it is required to com-
pute all possible states of the system while checking whether there is a non-empty
intersection with a set of prede�ned bad states. The computation of all reachable
states is referred to as reachability analysis.
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2.2 Reachability analysis

The following paragraph explains how reachability analysis is generally done and the
hybrid automaton from Figure 2.1, which describes the functionality of a thermostat,
will be taken as an example for a better understanding of this approach. In addition
to that, with the help of Figure 2.4 an introduction to �owpipe analysis takes place,
as it is a fundamental part of this thesis.

First the computation starts from the initial state (x = 20), which is the initial
valuation of the variable x in the �rst location (on). On Figure 2.4 the initial state
set is depicted by the blue rectangle. Then, taking into consideration the dynamics
(ẋ = 5 − 0.1x) in this location, the continuous evolution of the system is computed
(also referred to as �ow). This calculation step is done as long as the location invariant
(x ≤ 23) holds, or the guard (22 ≤ x ≤ 23) allows the control to take a discrete jump
to another location (off). The guard is represented on Figure 2.4 by the red area.
The computation of the �ow for one time step results in a segment of the �owpipe.
The very �rst segment of a �owpipe represents the geometrical representation of the
initial state set and each successive segment is a linear transformation of the previous
one.

When taking a discrete jump with a reset function which are marked on Figure
2.4 with a green arrow, the current variable valuation initializes the variable in the
next location, where the jump points to. Reset functions on discrete transitions map
the guard satisfying states to a di�erent location. In the case of the thermostat from
Figure 2.1 a variable valuation can be x = 22. The �ow is then further computed in
location off with the new dynamics ẋ = −0.1x. The result of this calculation is a
�owpipe which represents the �ow at location off.

Figure 2.4: Depiction of the omputation of a �owpipe which intersects with a guard
and takes a discrete jump with a reset to continue another �owpipe construction.
[ÁC15]

The �owpipe computation alternates between discrete steps and continuous steps
until a prede�ned time bound or set of bad states is reached. The general algorithm
for reachability analysis is illustrated in Algorithm 1.

Input of the algorithm is a set of initial states Init and the output is a set of
reachable states R. The set Rnew contains all states, that have to be analyzed. At
the beginning Rnew contains the whole set of initial states, whereas the set of reachable
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Algorithm 1 Forward reachability analysis algorithm [ÁC15]

1: function Reach(Init)
2: Rnew := Init
3: R := ∅
4: while Rnew 6= ∅ do

5: R := R ∪Rnew
6: Rnew := Reach(Rnew) \R
7: return R

states R is empty. Then a loop is entered as long as there are still any states, that have
to be analyzed. Iteratively the set of reachable states R is extended by computing the
union of itself and the calculated successors. The set of states to be analyzed Rnew is
updated by taking away the previously analyzed set R. Note that the algorithm does
not necessarily terminate.

Although the general reachability analysis of hybrid systems is undecidable [HKPV98],
the problem can be transformed to become (semi-)decidable by limiting the time hori-
zon and therefore the �ow duration and the number of discrete jumps are bounded.
The smaller the time step, the more accurate the �ow is, but also more computational
e�ort is required.

Flowpipe reachability analysis which is done on the previous thermostat example
from Figure 2.1 is shown on Figure 2.5 with a time horizon of 10s, a time step size
0.01s and maximum of 2 jumps.

 17

 18

 19

 20

 21

 22

 23

Figure 2.5: Forward reachability analysis of a thermostat [ÁCK+18]. It depicts the
temperature evolution over time.

2.3 State set representations

Representing a state set of a hybrid automaton is needed to illustrate graphically its
evolution over time. Usually we cannot compute the actual state set, therefore the
representation can be an over- or under-approximation of the state set.
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Under-approximation. An under-approximation does not consider all possible
states of the system, since at each computational step possible runs are excluded.
This approach is can be used when proving a system to be unsafe. Additionally,
using an under-approximation approach reduces the required computational power.

Over-approximation. On the other hand, an over-approximation considers more
states than the system actually can reach and it is ensured, that all reachable sets are
computed. A non-empty intersection with a set of bad states leads to the conclusion
that the simulated system might be unsafe. However, there are no insights whether
the system is in fact unsafe or the possible run into the unsafe states is caused by
the over-approximation of the state set. Therefore, there are various possibilities for
representing the state set with diverse complexity levels and exactness of the state
over-approximation.

under-approximation ⊆ actual set ⊆ over-approximation

Requirements on approximation sets. In order to compute reachability analysis
of a hybrid system, there are several requirements on the state set representation: to
e�ciently calculate operations as union with previous state sets, intersection with
guard, exclusion, membership relation, test for emptiness, etc. [SÁ18a].

An over-approximation of the state set of a hybrid automaton has to contain all
required sets of the current computational step. By using the convex hulls of sets
a computational e�ciency is achieved. There are various geometric representations
of a convex hull, such as boxes, ellipsoids, polytopes [LG09], oriented rectangular
hulls [SK03], zonotopes [Gir05], as well as symbolic representations such as support
functions [LGG09]. Each of them has its advantages and disadvantages over the other
representation methods.

All state set representations are implemented in a C++ library, called HyPro
[SÁMK17]. In the following, a few of them are compared and trade-o�s between
accuracy and required computational power are observed.

� Boxes are one of the simplest class of sets. They are e�ciently computed, since
only a pair of upper and lower corner bounds for each variable are required, as
depicted on Figure 2.6. The set operations mentioned above are also e�ciently
calculated. However, this representation method is in most cases relatively
inaccurate.

� Polytopes are a bounded intersection of a �nite set of half-spaces, as depicted
on Figure 2.7. There are two methods of representing polytopes: as a convex
hull of �nite set of vertices, referred to as V−polytope, or as a convex hull of
�nite set of closed half-spaces, referred to as H−polytope.
The computation of a geometrical operation has a di�erent complexity regarding
whether they are calculated based on a V− or H−polytopes, as listed in Table
2.1.

Operations, which are e�ciently calculated on a set of vertices, such as Minkovski
sum or union, are computed in a polynomial complexity for V−polytopes, since



2.3. State set representations 17

Figure 2.6: Over-approximation of the
state set (grey) by a box [LG09].

Figure 2.7: Over-approximation of the
state set (grey) by a polytope [LG09].

x ∈ P A× P P1 ⊕ P2 P1 ∩ P2 P1 ∪ P2

V−polytope easy easy - - -
H−polytope easy hard - - -
V−polytope and V−polytope - - easy hard easy
H−polytope and H−polytope - - hard easy hard
V−polytope and H−polytope - - hard hard hard

Table 2.1: Complexity overview of geometrical operations on polytopes (membership
relation, linear transformation, Minkowski sum, intersection and union)[ÁC15].

they are characterized by a set of vertices. For instance, convex hull of the union
of two V−polytopes can be computed by calculating the union of their vertices.
On the other hand, there is no polynomial algorithm known [ÁC15, ACH+95],
which calculates the intersection of V−polytopes, whereas the intersection of
two H−polytopes can be computed in polynomial complexity by taking the
union of their set of half-spaces. Moreover, the conversion of a H−polytope
into a V−polytope or the other way around, cannot be computed in polynomial
complexity.

The choice of representing the state sets by a polytope has an advantage on
the exactness of the over-approximation over a box representation, but requires
more computational power for calculating some geometrical operations.

� Sampling is the main objective in this thesis. The simulation of a single run
of the system is done very e�ciently, since the state set is represented only by
a point, hence sample. Its accurate evolution in time is computed in order to
get insights of the exact system behavior.

One (or many) points from the initial state set are chosen based on heuristics,
which are introduced in Chapter 3. Depending on the valuation derivation of
the current location, the sample evolution in time is calculated and results in
another point (sample). It is the initial variable valuation for computing the
next computational step.

The hybrid systems reachability analysis includes computation of a �owpipe, which
represents all reachable state sets of the system. The �owpipe contains segments,
whose state sets are represented by various representation methods (see Section 2.3).
In order to e�ciently represent all reachable states, an over-approximation of those
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states is suggested. In the case of reaching the prede�ned unsafe states, a re�nement of
the calculation on the relevant path is applied. There are several re�nement settings,
which the user can de�ne and apply.

2.4 Re�nement Settings

The segments computation has several parameters, which allow adjustments on the
calculation accuracy and e�ciency, as well as on the required computational time.
Such parameters are:

� Time horizon: also called time bound, describes the execution time covered
by the �owpipe construction. It is considered as a constraint and bounds the
�ow computation to a certain time limit. We denote the time horizon by T and
measure it in seconds. This parameter is usually de�ned in the model that we
use.

� Time step: is denoted by δ = T
n , where n is the number of time steps and T is

the de�ned time horizon. Therefore δ describes the size of one time step. The
more time steps, the smaller their size is and the more accurate the �owpipe
construction is. However, the required computational e�ort increases with the
calculation accuracy. Discretizing T in large steps o�ers less precision, but a
faster calculation.

r0

r1

r2

r3

r′0

r′1

δ = d
2

δ = d

Figure 2.8: Discretisation of the time step δ into 4 smaller time steps (darker blue)
or in 2 bigger time steps (lighter blue). [SÁ].

� Representation: as discussed above, is a geometrical object such as box, poly-
tope [LG09], zonotope [Gir05] and ellipsoid, or a symbolic representation such
as support function [LGG09] or Taylor model [ÁCS12]. Their characteristics are
discussed in Section 2.3. An example for representing a state set with di�erent
representation methods is shown on Figure 2.9.

state set boxpolytope

Figure 2.9: An ellipsoid state set over-approximatively represented by a polytope and
by a box. [SÁ].

� Aggregation and clustering: during reachability analysis it is possible, that
multiple sets satisfy a guard. Each of these sets is an initial state set for fur-
ther computation of a segment of the �owpipe. Such branching requires more
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resources for storing and processing of the successive �owpipes. A mechanism
to overcome such branching is to aggregate all sets in the guard intersection
by building their convex hull. In order to reduce the over-approximation factor
of the aggregation, clustering is suggested. This mechanism combines multiple
sets together by building their convex hull. The result is a reduction on the
total number of sets which are utilized as initial state sets for further �owpipe
construction.

guard

Figure 2.10: A guard intersection that
contains multiple sets, which are ag-
gregated into one set. [SÁ].

guard

Figure 2.11: A guard intersection that
contains multiple sets, which are clus-
tered into two di�erent sets. [SÁ].

2.4.1 Strategies

By sequentially ordering the re�nement settings together into strategies, one can
in�uence the accuracy of the delivered �owpipe and the required resources for its
computation. A strategy contains various re�nement settings with time steps, repre-
sentation types, aggregation and clustering settings used for the �owpipe construction.
It is useful to de�ne the �rst RefinementSetting to be more general than the up-
coming ones in order to cheaply get insights into the system behavior. Each following
RefinementSetting gets more complex and expensive to compute and requires
more computation resources.

An example for a strategy is depicted in Listing 2.4.1.

Strategy {
RefinementSetting1 {

timeStep: 0.1,
representation: box,
aggregation: yes,
clustering: no

},
RefinementSetting2 {

timeStep: 0.1,
representation: polytope,
aggregation: yes,
clustering: no

},

RefinementSetting3 {
timeStep: 0.01,
representation: box,
aggregation: no,
clustering: no

},
RefinementSetting4 {

timeStep: 0.1,
representation: sample,
aggregation: yes,
clustering: no

}
}

Listing 2.1: Strategy containing four di�erent re�nement settings with increasing
accuracy.
The �rst reachability analysis of a hybrid system is computed using
RefinementSetting1 of the current Strategy. In case of intersecting the
bad states a simulation takes place using the �ner RefinementSetting2. Oth-
erwise, in case of safety no more simulations of the system are needed and the
reachability analysis of the hybrid system has proven it to be safe. The re�nement
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settings which use sample as representation, and all other re�nement settings are
used similarly, but have di�erent veri�cation goals:

The goal of the over-approximative re�nement settings is to show safety of a
model by proving that there is no intersection of the �owpipe and the set of bad states
even with using an over-approximation. If such intersection after various re�nements
is still calculated, this leads to the conclusion that the reachability analysis result is
indecisive, since at each computational step the system behavior is over-approximated.
There is no proof that the system is really unsafe or the intersection is caused by the
over-approximation. The combination of the re�nement settings into strategies allows
to e�ciently generate a �owpipe by over-approximating the system evolution.

The goal of the re�nement settings using sampling is to show unsafety by
�nding a counterexample run from the initial states to the bad states, as depicted on
Figure 2.12. In case of indecisiveness from the reachability analysis it is suggested to
apply simulation to retrieve more insights in the system behavior. By computing a
counterexample run from the initial set into the bad states, we prove that the hybrid
system is unsafe. Additional information can be retrieved in order to examine which
behavior causes such a run. In the case a counterexample run cannot be found, the
sampling method is also indecisive, as depicted on Figure 2.13, since not every single
system run is computed.

Figure 2.12: A run of the system from the initial state set into the set of bad states
implies unsafety of the simulated system.

These di�erent goals imply that as soon as simulation is triggered, the veri�cation
goal changes and a mode switch occurs. While before the aim was proving safety, now
is used simulation to prove unsafety. For instance, we de�ne a strategy containing 6
re�nement settings, where the fourth and the sixth one use sample as a representation:

R1 → R2 → R3︸ ︷︷ ︸
prove safety

→

mode switch

S1 → R4 → S2︸ ︷︷ ︸
prove unsafety

(2.1)

First the computed reachability analysis aims at proving safety of the given model.
If after all three re�nements an intersection with the unsafe states is still calculated,
the next re�nement is triggered. From the point on of triggering simulation sampling,
the goal changes to looking for a counterexample run and trying to prove unsafety.
The vertical line indicates the mode switch.
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Figure 2.13: A run of the system from the initial state set which passes by the set of
bad states implies indecisiveness about the simulated system. Only one single possible
run is computed and not all of them.

The �prove safety� mode suggests, that �nding a non empty intersection with the
unsafe states is considered to be a failure, whereas the �prove unsafety� mode considers
it to be a success.
As part of this thesis the described additional second mode has been implemented.
Chapter 3 explains in detail how simulation of samples is realized. Beforehand we
introduce sampling heuristics, which are used to pick samples from the initial state of
the hybrid system and from the interval, in which a guard is being enabled for taking
a discrete jump.
The next section presents HyDRA, which is the reachability analysis tool and simula-
tion environment that is being used to compute a �owpipe from the given state sets.
Explained is the process of building such a �owpipe, as well as the dynamic creation
of the structure, which stores the already computed segments with their successors.

2.5 HyDRA

HyDRA [NÁGS16] is a tool which is in a prototypical development state run by the
Hybrid Systems Chair at the RWTH University. The acronym stands for Hybrid
Dynamic Reachability Analysis. The tool realizes reachability analysis for linear hy-
brid systems and allows for applying re�nement settings on already computed �ow-
pipes. It is also responsible for the distribution of tasks among workers and de�nes
how the workers solve these tasks. A parallel analysis based on multi-threading allows
to process di�erent tasks at the same time [SÁ18b].

Task collects all information that is required for computing a �ow and jump succes-
sors of a state [SÁ18b]. There are two types of tasks depending on safety or unsafety
proving mode, as depicted on Figure 2.14: a forward reachability task to show safety,
and a counterexample task which aims at showing unsafety.

Worker is responsible for the execution of tasks. There are various types of workers,
which are implemented to behave di�erently according to their task. In the current
state of HyDRA there are two types of workers.
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Task

forward
reachability

rachability
worker

�nd
counterexample

simulation
worker

Figure 2.14: Task and worker system in HyDRA. For each forward reachability task
there is a reachability worker assigned for computation. For each counterexample
task there is a simulation worker which computes it.

Reachability worker implements the algorithm for forward reachability analysis
by utilizing state-of-the-art method for computing �owpipes and jump successors
[SÁ18b]. The worker gets a task assigned and according to the current strategy and
the current mode (safety or unsafety proving) it computes each segment of a �owpipe,
starting from an initial set.

Simulation worker utilizes forward analysis as well, but instead of computing
each segment of a �owpipe, it samples its initial set and computes the �ow of this
sample accordingly until a given time. It aims at �nding a counterexample run of
the hybrid system and to prove it unsafe. The functionality of this worker is the
main contribution of this thesis. The sampling method and its implementation are
presented in detail in the next Chapter 3.

Reachability tree represents the data structure in which the initial state sets of
the �owpipes are stored as nodes during the computation of reachability analysis.
The root node includes all initial states and the children of a node include all discrete
successors of the �owpipe which starts from this node. Multiple children can also occur
due to non-determinism of the analyzed hybrid system. A node in the reachability
tree can also store several state sets, each computed at a di�erent re�nement level,
but referring to the same initial state of a �owpipe. The tree is computed until a set
of bad states is hit or until the prede�ned time horizon is reached.
The computation of such search tree is essential for applying further re�nement set-
tings on the simulated system, since it contains crucial information about timings,
safe and unsafe paths.

Path Re�nements A path π is an ordered sequence of alternating time and discrete
steps:

π = [t01, t02]︸ ︷︷ ︸
time step 0

, loc→ loc[t03, t04]︸ ︷︷ ︸
discrete step 1

, [t11, t12]︸ ︷︷ ︸
time step 1

, loc→ loc[t13, t14]︸ ︷︷ ︸
discrete step 2

, [t21, t22]︸ ︷︷ ︸
time step 2

, ...

A path which starts at the initial states is called an �initial path�. The simulation
worker is applied on the initial paths, which potentially end at the set of bad states.
A time step interval describes the global time interval in which the control has been
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to the initial states

Reachable states after
zero discrete transitions

Reachable states after
one discrete transition

Reachable states after
n discrete transitions
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Figure 2.15: Segments computation resulting in a tree structure [NÁGS16].

in a certain location before taking a discrete jump. Seen from the point of �owpipe
construction view this interval describes the time interval covered by the �owpipe.
For instance in the path π, the �rst �owpipe is constructed in t02 − t01 time. A
discrete step contains source and target location, as well as a time interval describing
at which global time interval the guard was satis�ed in order to take a jump.
The path which contains a run into the unsafe states (see Figure 2.16)is called a
'critical path'. It is analyzed again, where a more precise state set representation is
chosen in order to reduce the over-approximation error.

Bad states hit!

Figure 2.16: Path in the tree reaches set of unsafe states. Re�nement on the red path
is to be applied. [NÁGS16].

The reachability analysis of hybrid systems aims at verifying a system to be safe by
proving that there is no intersection with the set of bad states. However, it is possible
that after multiple analyzes of the critical path with various state set representations
such intersection still exists. This leads to the conclusion that safety cannot be proven
and the reachability analysis algorithm is undecidable.
In that case it is useful to �nd a counterexample for the system safety. By using
simulation sampling we try to �nd a run from the initial state set into the set of bad
states. When such a counterexample run is computed, a candidate for proving the
system to be unsafe is found.



24 Chapter 2. Preliminaries



Chapter 3

Simulation in hybrid systems

reachability analysis

The objective of this chapter is to introduce the algorithms, logic and heuristics
behind the implementation of the simulation worker. In the �rst section we introduce
various heuristic approaches for state set and interval sampling. Section 3.2 presents
two modes of using simulation in hybrid systems safety veri�cation: as a classical
simulation in which one or more concrete system executions are computed, or as a
counterexample validation method which is used as a RefinementSetting as a
part of a Strategy.

Trace simulation is the �rst approach and it simulates the hybrid system by
computing a single trajectory by utilizing the forward reachability analysis Algorithm
1. Starting from a single point (or a set of points), a concrete system execution
is computed by means of time- and discrete steps, which are calculated until a
time or a jump bound is reached, or an intersection with the bad states is reached.
This approach is implemented very similarly to the classical reachability analysis.
Nevertheless, it computes only one possible run of the system and a statement about
the system safety cannot be derived.

Counterexample validation is the second approach. It is triggered when an inter-
section with the set of unsafe states is already computed by the classical reachability
analysis and the system safety cannot be guaranteed. This approach relies upon in-
formation which is computed previously by over-approximating the system behavior.
The information consists of a critical path π which is a sequence of time intervals and
transitions and describes a trajectory, which may lead to the set of bad states. The
path π is analyzed again by utilizing the simulation worker which aims at �nding a
counterexample run into the set of bad states and to prove the system unsafety.
Throughout the simulation π provided by the classic reachability analysis is followed.
The starting point of the algorithm behind the simulation worker are the initial states.
Originally, they are represented by a geometrical state set, as described in Chapter 2.3.
The simulation, however, uses a point as a state set representation. This means, that
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Figure 3.1: A system evolution which is over-approximated by blue boxes. The guard
inequation (in green) is partially satis�ed by the last box. Its part which does not
satisfy the guard is colored in red. The time interval derived by the intersection of the
over-approximated state sets with the guard is also over-approximated and is depicted
with yellow borders.

a point (also called sample) from the initial states should be chosen as a representative
for the state set.
When choosing a sample, its time evolution is computed, as in the classical reachability
analysis. The di�erence is, that computing each time step is not required anymore,
since the critical path provides a time interval, in which the guard for a discrete
transition is enabled and a jump can be taken. Within this time interval, the sample
should also take the jump and follow the trajectory of the over-approximated evolution
of the system. Such an interval is depicted on Figure 3.1.
By knowing the time interval when a guard is enabled for a transition, computing
each time step with the chosen points is not required anymore. We can let the point
evolve until a certain time t0 from the interval [ta, tb]. For choosing a time sample
there are various heuristics, which are described in the next section.

3.1 Heuristics

In order to simulate a system sampling in both spatial and temporal dimensions
has to be calculated. There are two kinds of sampling methods required: one for
n-dimensional set (spatial) sampling and another for one dimensional interval (time)
sampling. This chapter proposes various heuristic approaches for both sampling meth-
ods.

3.1.1 Heuristics for state set sampling

VERTICES

The states of the system are represented by di�erent geometric representations, ex-
amples for which can be found in Chapter 2. All geometric representations that we
de�ned in HyPro are convex. Therefore, in order to illustrate the outlines of a system
�ow it is su�cient to compute the evolution of the vertices of its initial state sets.
This heuristic approach delivers the vertices of the initial state set representations and
utilizes them during the sampling procedure. For example, the state set on Figure
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3.2 is represented by a 2-dimensional polygon with 5 vertices depicted as blue dots.
Note that this heuristic is not well scalable for higher dimensions. For instance, a
two dimensional box has 4 vertices, whereas a three dimensional cube has 8 vertices.
Therefore, the number of delivered vertices grows exponentially in the number of
dimensions.

Figure 3.2: Calculating the center of gravity (the red point) of 2-dimensional polygon
with 5 vertices.

CENTER

An alternative heuristic is to use the center of gravity for set sampling. This method
delivers the average value of all initial state vertices by summing up component-wise
all vertices together and dividing each component of the result by their total count.
The output of this calculation delivers a spatial sample which is utilized for the further
computation of the system �ow. The formal de�nition for calculating the center of
gravity is:

∑n
i=1

x1i...
xki


n

where n is the number of vertices and k the dimension of the geometrical object. For
example, on Figure 3.2 the center of gravity is calculated as follows:
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RANDOM-K

Unlike the methods proposed above this heuristic approach is non-deterministic. It
randomly selects k uniformly distributed samples from a state set by using a ran-
dom generator. Each dimension of the geometrical representation is once randomly
sampled and the result is a coordinate of a point at the according dimension. The
outputted samples of this heuristic are then utilized for further computation of the
system �ow.
For example, on Figure 3.2 the �rst dimension of the geometric object x1 ∈ [−6, 1] is
once randomly sampled which results in a coordinate e.g. -3. The second dimension
x2 ∈ [−1, 5] is also once sampled and the result is e.g. 3. The output of the heuristic
RANDOM-1 is in this case

(−3
3

)
.

In Figure 3.3 RANDOM-1 is applied. A randomly placed sample from the given initial
set is chosen to represent the initial state of the analyzed system.

3.1.2 Heuristics for interval sampling

As the name suggests, these heuristics sample the temporal and not spatial position
of the samples. Sampling an interval delivers a time sample, which describes the time
of evolution of a spatial sample until reaching the guard to take a discrete transition.
By applying the matrix exponential to the initial sample according to the time sample
we can compute the spatial position of the chosen sample based on its initial position
and the current �ow dynamics.

UNIFORM-K

The interval, when a guard is enabled for a transition is a one-dimensional time
interval. From that interval a given k number of equidistant points within this time
interval are selected. They provide the initial state for calculating the next time steps.
The given interval is divided into k + 1 smaller intervals of equal size. The upper
bound of each small interval is picked as a sample. However, the upper bound of the
last small interval is not considered, since it lies on the upper bound of the whole
interval. We considered only samples which lie strictly within the interval, since it is
known that the provided interval is over-approximated and its borders are most likely
to lead to invalid spatial samples which do not satisfy the guard condition.
For instance, let [2, 12] be an interval on which the UNIFORM-K heuristic is to
be applied and let k = 4. The heuristic divides the interval into 5 smaller ones:
[2,4], [4,6], [6,8], [8,10], [10,12]. Their upper bounds are chosen, without the last one.
The choice of 4 equidistant points on the interval delivers the set {4, 6, 8, 10}.

2 12

4 6 8 10

BORDERS

This heuristic picks only the upper and the lower bound of the given interval. By
computing the borders of the interval, an outline of the system �ow is derived. For
example, given the interval [2, 12] only the samples 2 and 12 will be chosen.
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RANDOM-K

From the intersection with the guard k randomly placed samples are picked for further
computation. The heuristic works similarly to the one for spatial sampling with the
di�erence that this one only samples in one dimension: time.

Note: k is a number, selected from the user. The larger the number, the more
samples are chosen and the bigger the generated tree gets. Therefore, the simulation
of the system takes longer to compute and requires more memory. However, if k is
selected to be smaller number, it is possible that a counterexample run cannot be
found and the simulation is indecisive. The choice of k in each heuristic should be
taken into serious consideration and represent a thoroughly researched decision.
After choosing samples additional checks are carried out in order to verify them
against both the guard and the invariant condition. In case of returning an invalid
sample, the required number of veri�ed samples cannot be achieved anymore. There-
fore, re-sampling is applied with twice the samples as before. However, the required
number of samples remains the same as in the beginning. If more samples than the
required are valid, only those are taken which are in the nearest proximity of the
guard. A possible behavior is that this process is iterated multiple times until the re-
quired number of valid samples is delivered. By the end of the sampling process, only
valid samples are returned, which satisfy both the guard and the invariant condition.

3.2 Counterexample validation

After all heuristic approaches for temporal and spatial sampling are de�ned, they are
implemented into the logic for simulation. The main role of the heuristics lies within
utilizing them throughout following the critical path.
The counterexample validation approach follows a critical path provided by the clas-
sical reachability analysis by using an over-approximative representation type. Such
path is analyzed again, until unsafety of the model is proven, or the end of the path
is reached. By choosing multiple samples branching in the search tree occurs. There-
fore, multiple runs of the hybrid system can be computed at the same time. However,
in order to use this mode additional information about timings is required. For in-
stance, the interval when a guard for a discrete jump is enabled or when a �owpipe
has intersected the set of bad states. Such information cannot be retrieved by sim-
ulation sampling itself since it does not compute any time steps. Therefore, this
approach relies on the search tree. In order to use sampling, we need to �rst use an
over-approximative representation variant to derive such information. The sampling
approach as de�ned in HyDRA is outlined as follows:

Following a path from a previous �owpipe computation

1. Spatial sampling. The result is a set of samples, which are chosen for com-
puting their further evolution in time. For set sampling di�erent heuristics can
be applied, as described above.

2. Compute the time evolution of the chosen samples to a certain point

in time. Regarding the �ow dynamics in the current location, the matrix
exponential of each sample is calculated. The matrix exponential describes the
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time evolution of the given sample in the given location for a certain point in
time. Multiplying the initial sample with the exponential matrix delivers the
sample evolution after a given time period.

The equation for calculating the matrix exponential is:

eδA =

∞∑
k=0

(δA)k

k!
(3.1)

where δ is the time step. Many time steps can be taken at once by using multiple
multiplications of the matrix exponential. For example, let x0 be a sample from
the initial set. Its evolution for three time steps with size 0.1s would result in
x1 = x0 · e0.3·A.

For instance, let A =
(
0 2
0 0

)
describe the �ow in a certain location, I =(

3
4

)
be the coordinates of the initial sample for this location and the

time step length be δ = 1. The matrix exponential is:

e1·A =
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k=0

Ak

k!
=
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1 0
0 1

)
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0 2
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)
+ 0 =

(
1 2
0 1

)
The position of the initial state after one time step according to the �ow
is: (

1 2
0 1

)
·
(

3
4

)
=

(
11
4

)

This is, however, the theoretical de�nition of the matrix exponential. It is an
endless sum, therefore, in practice it is numerically approximated [War77].

3. Temporal sampling. For this step the interval heuristics from above apply.
The interval is derived from the intersection of the �owpipe and the guard
condition. After choosing samples from the interval additional checks on the
correctness of the samples are carried out, such as invariant satisfaction or
containment in the bad states P. It is ensured that the exact required number
of valid samples is delivered.

Repeat steps 2 and 3 until a counterexample run into the unsafe states P is computed,
or until a prede�ned time bound or the end of the path is reached. In the case when
a counterexample run is computed, there is a candidate found which disproves the
system safety. Otherwise the result of the sampling method is inconclusive. The fol-
lowing Figure 3.3 visualizes the described simulation sampling approach. UNIFORM-
3 interval sampling heuristic is applied and from each interval 3 samples are picked
for further time computation. In this case the sampling method results in proving
unsafety of the system.
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Figure 3.3: Sample the initial state I by picking a random point that is contained in
the set I (1. step). Compute its time evolution until a guard g1 is satis�ed (2.step).
From the guard intersection choose 3 equally distant from one another samples and
compute their further time evolution (3. step). Steps 2 and 3 are repeated 2 times.
Then a counterexample run is computed, which proves the system to be unsafe.

However, this approach is only successful when the last sample happens to be con-
tained in the set of bad states P. This is often not the case. Then a re�nement on the
simulation is applied. Its objective is to investigate why the sample has not landed
into P and nevertheless try to �nd a counterexample run. There are several causes
for such cases:

� the previous RefinementSetting was not precise enough and does not de-
liver enough precision about timings. This leads to much larger intervals of
enabled guard transitions, which causes heuristics to choose samples that are
not contained in the actual guard or do not satisfy the invariant.

� the last sample before running into P is calculated in the near proximity of P,
but not contained in P.

� there is indeed no actual run into P and the system has been safe. In such
cases the sampling method remains inconclusive, since no run into P can be
computed. Reachability analysis of the system should be done again with �ner
RefinementSettings in order to prove safety.

In order to deal with these cases and to �nd a counterexample run regardless of their
causes, we de�ne re�nements on simulation sampling. Such re�nements are trig-
gered when an intersection with P is calculated with the previous over-approximative
RefinementSetting and the last �owpipe segment is taken into consideration, but
still no run into P is computed. Figure 3.4 graphically depicts the concept step-by-step
for a better understanding.

Simulation re�nement

This part requires both types of workers to cooperate: The simulation worker deter-
mines the initial states for a �owpipe construction which is then calculated by the
reachability worker.
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1. Backtrack to parent sample and construct a �owpipe out of it. Each
sample is stored as an initial state in a corresponding node in a tree data struc-
ture. By backtracking to the parent node we can retrieve the initial state for
the further �owpipe construction.

2. Re�ne guard. By constructing such �owpipe we obtain more insights about
the sample evolution and its timings. With the new information a re�nement
of the over-approximated interval of enabled guard transition is applied. The
re�ned interval can either contain the child sample, or not, as presented on the
following �gure:

� if the re�ned interval (depicted in blue) contains the child sample (depicted
in green), return to step 1 and backtrack to parent again. This case leads
to the conclusion, that the child sample is correctly chosen and satis�es
the guard and the invariant. The indecisiveness is not caused by choosing
this sample badly, but some of its parent samples.

� if the re�ned interval does not contain the child sample (depicted in red),
choose another sample from the �ner interval that also satis�es the invari-
ant. On this new sample apply simulation as described in Section 3.2.

3. Check whether intersection is calculated

� if after all re�nements are applied and still no run into the unsafe states is
found, there can be no statement derived about the safety or the unsafety
of the system. Therefore, its analysis is inconclusive.

� if an intersection is computed the unsafety of the system is successfully
proven by providing a counterexample run into the set of unsafe states.

3.2.1 Guard expansion

As simulation sampling suggests each state is computed regarding the size of a time
step. This means that we only know the position of the sample state in a certain time
and not throughout the whole system evolution. Hence satisfying a guard equation is
nearly impossible. For instance, let a guard equation be x = 0. Computing a sample
which lands exactly on the line 0 requires a speci�c size of the time step, which is not
possible to derive.
A solution of this problem is expanding the guard and representing it as two inequali-
ties which describe the upper and the lower bound of the guard. Such guard widening
enforces samples to be able to satisfy the guard condition and to land within its expan-
sion. For instance, let the guard from above be expanded by 0.1 at each side resulting
into an interval x = [−0.1, 0.1]. It is still a considerable small guard, however, allows
sample states to land into it and enables their further computation.
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Figure 3.4: Functional concept of the workers.
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Chapter 4

Evaluation

In this chapter we are going to evaluate our method against a selection of benchmarks
to investigate its practical applicability. A benchmark consists of a model of a hybrid
automaton, a de�ned set of bad states and a strategy. Several simulation strategies
are applied on each model with di�erent heuristics. The e�ciency and e�ectiveness
of the respective heuristics are evaluated, compared and summarized.

4.1 Bouncing ball

The model describes a bouncing ball dropped from a given height (x = [10, 10.2])
and with a certain vertical velocity (v = 0). Once released, the ball starts falling
while loosing some of its potential energy. After reaching the ground (x = 0) the ball
bounces up, reaches a certain height and starts falling again. The physical behavior
of the ball can be represented by the following hybrid automation:

falling

ẋ = v
v̇ = −9.81
x ≥ 0

x = [10, 10.2],
v = 0

x = 0 ∧ v ≤ 0,
v := −c · v

Figure 4.1: Graphical representation of a hybrid automaton, modelling the behavior
of a bouncing ball.

In this model it is assumed that the ball has a mass of m = 1. Its movement is
described by the following di�erential equation:

ẋ = v

v̇ = −9.81

While falling the ball is attracted to the ground by the Earth gravitational force
9.81m/s2. The invariant x ≥ 0 ensures that the ball stays above or at the ground.
The guard label x = 0 ∧ v ≤ 0 ensures that bouncing happens after the ball was
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falling and as soon as it reaches the ground at x = 0. The reset function characterizes
the loss of the ball's energy from the impact with the ground, which depends on the
softness of the ball. This parameter is described as c and accepts values on the interval
between [0, 1]. The smaller the number, the softer the ball is and the more energy is
lost due to the impact with the ground. For the following evaluation c will be set to
c = 0.75.
One location is su�cient to represent the movement of the ball, since only a sign
change can describe whether the ball is falling or rising. We call such behavior sym-
metrical. The model is also deterministic, since for each trajectory at each point in
time its location can be determined.
The set of bad states P against which the system is being veri�ed to be safe or unsafe
is selected to be a very small box with dimensions x = [0, 0.1] and v = [0, 0.2] in
order to demonstrate the system behavior for a reasonably long time. The guard is
being expanded in order to allow the samples to satisfy its condition, as presented in
Section 3.2.1. The part of the guard from the model above where x = 0 is modi�ed
to be an interval x = [−0.1, 0.1].

4.1.1 Trace simulation

The �rst strategy that we evaluate contains only one re�nement setting with a sample
as a representation:

Strategy computeTimeAndDiscrete{
RefinementSetting {

timeStep: 0.01,
representation: sample,
aggregation: no,
clustering: no

}
}

During the simulation execution one possible run of the system is computed, starting
form the initial set. At each time step of size 0.01s the position of the ball is calculated
based on the exponential matrix as seen in Equation 3.1. The simulation results in a
trace describing the ball movement, as depicted on Figure 4.2.
This mode of sampling simulation is suitable for hybrid systems with a deterministic
location of the control, i.e. at each point in time it can be determined at which
location of the system the control currently is. Branching cannot be handled, which
leads to excluding possible scenarios of system evolution and considering only one
trajectory of one scenario. The mode does not use any heuristics about interval
sampling, since we do not have such information. The jump is taken with the last
state which satis�es the guard, since it was most suitable for our benchmarks, where
the last state is calculated at the nearest proximity of the exact guard equation.

4.1.2 Counterexample validation

In this mode we evaluate two strategies where each of them has three re�nement
settings, as de�ned in Listings 4.1 and 4.2. The �rst re�nement setting uses a box as
an over-approximative state representation. The second con�guration uses a point as
a state set representation to indicate a mode-switch in the goal of veri�cation: from
safety to unsafety proving (see Equation 2.1). The third re�nement setting is again
a box, but has a �ner time step than the previous re�nements. This setting is used
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Figure 4.2: Simulation of bouncing ball model in mode 1 using
computeTimeAndDiscrete.

to re�ne timing information which was obtained during safety veri�cation in order to
improve the simulation. It is utilized to calculate small �owpipes out of the samples
in order to retrieve more exact information about timings (as described in Section
3.2).

Strategy sampleAggregation {
RefinementSetting1 {

timeStep: 0.1,
representation: box,
aggregation: yes,
clustering: no

},
RefinementSetting2 {

timeStep: 0.1,
representation: sample,
aggregation: yes,
clustering: no

},
RefinementSetting3 {

timeStep: 0.01,
representation: box,
aggregation: yes,
clustering: no

}
}

Listing 4.1: sampleAggregation
strategy.

Strategy noSampleAggregation {
RefinementSetting1 {
timeStep: 0.1,
representation: box,
aggregation: yes,
clustering: no

},
RefinementSetting2 {
timeStep: 0.1,
representation: sample,
aggregation: no,
clustering: no

},
RefinementSetting3 {
timeStep: 0.01,
representation: box,
aggregation: yes,
clustering: no

}
}

Listing 4.2: noSampleAggregation
strategy.
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The di�erence between both strategies from Listings 4.1 and 4.2 is that
RefinementSetting2 uses aggregation on multiple samples which satis�es the
guard and invariant condition. Aggregation ensures that a set of samples satisfy-
ing a guard condition is used as a basis to obtain exactly one sample as a discrete
jump successor for the respective transition. The classical aggregation method is to
build a convex hull out of the given state sets. However, building a convex hull out
of multiple samples would not result in a single sample. Therefore the aggregation
method for samples is to choose only one of them. The most accurate choice is the
last sample which satis�es both conditions, since it is at the nearest proximity to the
guard and also ful�lls the invariant.
By applying RefinementSetting1 and utilizing the reachability worker an over-
approximation of the ball movement is calculated. On Figure 4.5 it is depicted by
the blue boxes. The �rst two �owpipes do not intersect with the set of bad states
which is considered a success, whereas the third one does intersect. In such case
RefinementSetting2 is utilized. Due to using samples as a representation, the
system switches from trying to prove safety to proving unsafety of the model. The
simulation sampling starts o� by sampling the initial state, where various heuristics
can be applied. Hereby we applied CENTER which results in a sample with coordinates
( 10.1

0 ) and is represented by a red dot with the respective coordinates on Figure 4.5.

Figure 4.3: A search tree
with three levels of
re�nement settings RS.
The tree corresponds to
the results from Figure
4.5.

Due to the application of RefinementSetting1 a
search tree is created, which contains time stamps of all
initial sets and whether a �owpipe is safe or unsafe, along
with some other information. The tree which contains
the results after applying all three re�nement settings is
depicted on Figure 4.3. The colors in the tree nodes indi-
cate that the �rst two �owpipes generated from RS1 and
RS2 have not intersected the set of bad states, hence
green, whereas the third one has, hence the red color.
The further re�nements on the path are inconclusive,
hence colored in yellow.
Furthermore, the critical path π storing all time and dis-
crete steps of the previous simulation is utilized in or-
der to retrieve information about the intervals of enabled
guard transition. In the case of bouncing ball model the
critical path is:

π =[1.4, 1.5],falling→ falling[1.4, 1.5],

[3.3, 3.9],falling→ falling[3.3, 3.9]

The intervals which we take into consideration are these from the discrete steps.
Following the path π, we apply interval sampling heuristics in the simulation worker
in order to retrieve the last possible states in the according �owpipe. These states
are required for taking a discrete jump and to calculate the initial set for the next
�owpipes. Hereby we utilize UNIFORM-3, which delivers 3 samples from the interval
it is applied on.
Sampling the �rst interval [1.4, 1.5] of the path delivers 3 samples with respective
coordinates {x, v}:



4.1. Bouncing ball 39

1.4 1.5

s1

1.4306

{0.0612,

-14.03}

s2

1.4327

{0.0325,

-14.05}

s3

1.4347

{0.0038,

-14.07}

The three sample states satisfy the guard (x = [−0.1, 0.1]) and the invariant condition
(x ≥ 0). From each of these states a task is created and is put into the global queue
in order to take its evolution into further consideration by utilizing the simulation
worker. A discrete jump is taken with the samples and the resulting states are stored
as an initial state of a node in the search tree. The next interval on the path which
we sample is [3.3, 3.9] by using the same heuristic.

3.3 3.9

s′1

3.5953

{0.0744,

-10.49}

s′2

3.5984

{0.0417,

-10.52}

s′3

3.6016

{0.0089,

-10.55}

The states which satis�es both the guard (x = [−0.1, 0.1]) and the invariant condition
(x ≥ 0) are depicted above. Their further evolution is computed until the point of
previous intersection with the set of unsafe states. This information is stored in the
nodes of the search tree and based on it we know at which time the intersection
occurred. If at this point in time the calculated sample state is contained in the
unsafe set P, then the model is proven to be unsafe and the system has provided a
counterexample.
In our case the sample state did not intersect the unsafe set, which triggers the next
RefinementSetting3. It aims at investigating the reason why a counterexample
run could not be provided. This re�nement setting is utilized for creating small
�owpipes out of each initial sample state with the purpose of obtaining additional
information about the time intervals in which the guard condition was enabled. The
�owpipes have �ner time step which leads to deriving more precise information about
the time intervals.
First a �owpipe is constructed from the last sample state which is not contained
into the set of bad states P. The small �owpipe has the objective to check whether
the sample state was computed in the near proximity of the unsafe set because of
inaccurate previous interval sampling. Calculating an intersection of the �owpipe
with the set of bad states is a prerequisite for �nding a counterexample run and to
prove the model to be unsafe. However, if such intersection is computed to be empty,
the simulation sampling re�nement from Section 3.2 is triggered and backtracking to
the parent sample state is applied, as happens in the case of the bouncing ball.
Due to the tree structure and the clear child-parent relationship maintained in the tree
�nding the parent sample state is done very e�ciently. It is utilized as the initial state
for computing the next small �owpipe the objective of which is to derive an interval
of the enabled guard transition. Due to the �ner time step of the small �owpipe than
of the over-approximated one by RefinementSetting1 the derived interval is also
�ner and more accurate. The containment of the previously chosen sample state is
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checked against the �ner interval in order to examine its validity as a legitimate state
which is indeed part of the system �ow.
In the case when the sample state is not contained in the �ner interval a conclusion
is made that this sample was badly chosen, hence no run into the unsafe states could
be computed. The more precise interval is then sampled by utilizing UNIFORM-1
heuristic for interval sampling which delivers the center of the interval it is applied
on. From this sample a forward simulation is triggered which aims at �nding a
counterexample run.
However, containment of the sample in the more precise interval leads to the con-
clusion that it is a legitimate choice for a sample, which is indeed part of the �ow.
Therefore, not being able to �nd a counterexample run is not because of the choice
of this sample, as happens in the case of the bouncing ball, and backtracking to the
parent sample state takes place again, until the root is reached. The sample choices
are veri�ed to ful�ll the conditions of the invariant and of the time intervals of the
enabled guard condition which leads to the conclusion that the simulation of the sys-
tem is inconclusive, since RefinementSetting1 uses a too large time step and a
state set representation which introduces too much over-approximation errors.
By de�ning the set of bad states as a box with coordinates x = [3, 2] and v = [4, 2]
the the system proves that the given model is unsafe regardless of the too large over-
approximation of RefinementSetting1, as depicted on Figure 4.4.

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

bouncingball10

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

bouncingball10

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

bouncingball10

Figure 4.4: Simulation in mode 2 of the bouncing ball model using strategy
sampleAggregation by utilizing UNIFORM-3 interval sampling heuristic and
CENTER set sampling heuristic. The simulation provides a counterexample candi-
date for proving the system unsafety.
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Figure 4.5: Simulation in mode 2 of the bouncing ball model using strategy
sampleAggregation by utilizing UNIFORM-3 interval sampling heuristic and
CENTER set sampling heuristic. The result of the simulation is inconclusive.
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4.2 Rod reactor

This model represents a reactor in a power plant which consists of a reactor tank
and two rods with di�erent cooling dynamics. By putting the rods into the tank the
temperature in starts to lower according to the cooling dynamics of the rods. Without
rods the temperature in the tank increases. There are two clocks c1 and c2 which are
introduced in the system in order to measure the time of utilization of the respective
rods. Each rod can be utilized for maximal time span of 20 seconds. The purpose
of the system is to keep the temperature in the tank restricted between 510◦C and
550◦C and in case it exceeds, the system should be turned o� for safety.

no rods

ẋ = 0.1x− 50
ċ1 = 1
ċ2 = 1

x ≤ 550

x = 510
c1 = 20
c2 = 20

rod1

ẋ = 0.1x − 56
ċ1 = 1
ċ2 = 1

x ≥ 510

rod2

ẋ = 0.1x − 60
ċ1 = 1
ċ2 = 1

x ≥ 510

shut down

x = 510
c1 := 0

x = 550
c1 ≥ 20

x = 550
c2 ≥ 20

x = 510
c2 := 0

x > 550
c1 ≤ 20
c2 ≤ 20

Figure 4.6: Graphical representation of a hybrid automaton, modelling the behavior
of a rod reactor.

The initial temperature in the reactor tank is 510◦C and we assume that both rods
have already been utilized for 20 seconds each. At the beginning there are no rods
in the tank and the temperature in it starts to increase as described by the following
di�erential equation: ẋ = 0.1 · x − 50. As soon as it reaches 550◦C one of the rods
is put into the tank in order to cool down the system. One of the rods has a cooling
dynamics described by the di�erential equation ẋ = 0.1 · x − 56 and the other one
by ẋ = 0.1 · x − 60, meaning that the �rst rod cools down the system slower than
the second rod. By reducing the temperature in the reactor tank to 510◦C the rod is
pulled out and the system starts to heat up again.
This model is non-deterministic, since either rod1 or rod2 can be chosen to be put
into the reactor tank at a time, however not both. The control of the system can
nondeterministically decide which rod to take when the temperature increases to
550◦C.
All reachable states contained in location shut down are de�ned to be the bad states.
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The guards x = 510 and x = 550 are extended by 0.1 at each side which delivers the
intervals x = [509.1, 510.1] and x = [549.9, 550.1] respectively. Nevertheless, the
temperature in the tank never drops under 510◦C, nor it exceeds 550◦C, since the
invariants at each location do not allow this.
The model can be veri�ed against a prede�ned set of unsafe states P. During the
evaluation process the set of bad states P is de�ned to be any state which satis�es
the following condition: after 70 seconds of utilization the temperature in the tank
lies between 515◦C and 520◦C.
Additionally, the applied strategy for the model evaluation is sampleAggrega-
tion, as introduced in Listing 4.1. The �rst re�nement setting uses a box as a state
set representation and has a time step of 0.1. Starting at time c1 = 20s and c2 = 20s
in location norod the system starts to heat up. After ca. 16 seconds of exploitation
the tank reaches a temperature of 550◦C and one of the rods should be submerged
into the tank in order to cool it down. From location norod the control can jump
either into location rod1 or rod2. The two possible scenarios are considered which
results in branching, as depicted on Figure 4.7 at c1 = 36s and c2 = 36s. All �owpipes
for both possible scenarios are computed, until the set of bad states P is hit. The
resulting search tree with its critical path is created during the computation and is
hand over to the second re�nement setting in the strategy. The critical path π for
this model is:

π =[36, 36.2],norod→ rod2[36, 36.2],

[41.8, 42.1],rod2→ norod[41.8, 42.1],

[57.8, 58.3],norod→ rod1[57.8, 58.3]

The path indicates that switching the control at time interval [36, 36.2] to location
rod2 would hit the bad states at a future point in time.
The second re�nement setting utilizes aggregated sampling. By following the critical
path, the initial set and the following intervals are sequentially sampled and depicted
as red dots on Figure 4.7. The chosen sampling heuristics are CENTER for set and
UNIFORM-3 for intervals. After computing the time evolution of the initial sample
form the the last segment, it was found that at time c1 = 72s the sample is contained
in the set of unsafe states P. By computing a run from the initial states to P it is
proven that the model is unsafe with respect to the de�ned P.
In case of proving unsafety, triggering the third re�nement setting from the strategy is
not needed. The system evaluation has provided a clear result and further re�nement
of the state sets may not lead to new conclusions.
Applying strategy noSampleAggregation leads to the same result. The di�erence
is that after each sampling a constant number of new samples is introduced for each
existing sample leading to an exponential growth in the total number of samples. The
paths from all samples result in the de�ned set of unsafe states. Applying di�erent
sampling heuristics also did not change the result. This unambiguity speaks for an
already su�ciently re�ned approximation of the set of reachable states obtained by
the preceding over-approximative re�nement setting.
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Figure 4.7: Simulation in mode 2 of the rod reactor model using Strategy
sampleAggregation by utilizing UNIFORM-3 interval sampling heuristic and
CENTER set sampling heuristic. On the horizontal axis the temperature in the tank
is depicted, whereas on the vertical the global time. The result of the simulation is a
counterexample candidate for system unsafety.
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4.3 Heuristics evaluation results

Based on the model examples above we evaluate the set and interval sampling heuris-
tics which were introduced in Chapter 3.1. Various sets of bad states are de�ned in
order to analyze the success rate of providing a counterexample run.

4.3.1 Set sampling heuristics

VERTICES:

This heuristic delivers multiple initial states, which leads to more initial nodes and
therefore to a larger search tree. It produces more runs of the system. The probability
of providing a counterexample run is therefore higher than with fewer initial states.

CENTER:

Only one initial state is delivered and is stored as a node in the search tree. Depending
on the interval sampling heuristic the tree can remain narrow or start to expand
further at each level. Although only one initial state is provided the probability of
�nding a counterexample run remains high, since the initial state is located at the
exact center of the state set.

RANDOM-K:

This state sampling heuristic delivers k initial states. The probability of computing
a counterexample run still remains high, since multiple samples can be chosen which
are randomly spread across the whole initial state set.

In general we could observe, that the impact of the initial set sampling is rather
small compared to the in�uence of the time interval sampling methods, since the set
sampling is done only once at the beginning of the simulation. Choosing multiple
spatial samples did not lead to signi�cant improvement when proving unsafety, nor
did require more computational time, since the samples evolution delivered the same
over-approximated interval of enabled guard transitions.

4.3.2 Interval sampling heuristics

UNIFORM-K:

This interval sampling heuristic delivers a total of k states from the interval it is
applied on, which leads to k branches in the search tree and produces therefore more
runs of the system. The larger the number k the more iterations are needed to
provide the required number of samples. In general, the probability of providing a
counterexample run with larger k is higher than with fewer number of states. At each
level of the tree the branching grows exponentially in the number of k. Consequently,
the required computational power also grows with the number of runs, therefore
the larger the k, the more time and computational resources are required for the
simulation.
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BORDERS:

The heuristic delivers only two samples at each side of the borders of the in-
terval it is applied on. Since the timing information provided by a previous
RefinementSetting deliver an over-approximated interval, the two samples cannot
satisfy the conditions of the guard. Applying this heuristic on the models introduced
above is only applicable, when the previous RefinementSetting delivers not an
over-approximated interval, but an exact one. Only during a simulation where an
under-approximative representation variant is chosen this heuristic is applicable and
the samples would satisfy both the guard and the invariant condition.

RANDOM-K:

This heuristic delivers k number of valid interval samples from a given interval.
Intuitively the higher the number k the higher the possibility of providing a coun-
terexample run, but also the wider the search tree gets. Similarly to UNIFORM-K
heuristic, the branching of the tree at each level grows exponentially in the number
of k.

The choice of the applied interval sampling heuristic throughout the model simulation
has an immense impact not only on the size of the tree but also on the required
computational power. Since the algorithm of the simulation worker utilizes both
set and sampling heuristics, such impact can only be measured by combining them
together and evaluating the required time for computation.

4.3.3 Combination of interval and set sampling heuristics

This section includes the exact evaluation results of the Bouncing ball and the Rod
reactor models. Their safety is checked against multiple de�nitions for sets of bad
states. Moreover, we measured the computational time required for analyzing the
models and we considered the success rate of providing a counterexample run. We
compare the number of provided counterexamples (CEX) to the total number of
runs which are generated and analyzed. During the evaluation process the average
branching of the search tree, total number of processed tasks and total number of tree
nodes are also taken into consideration.
Both models are analyzed by utilizing sampleAggregation from Listing 4.1 and
noSampleAggregation from Listing 4.2 strategies.
From the evaluation of the benchmarks we expect to show that by utilizing aggregation
on the samples before a discrete jump, the complexity of the computation increases
only linearly, whereas when aggregation is not applied, the complexity increases in
an exponential rate. The reason for the exponential complexity is the fact that at
each discrete jump from one sample k more samples are generated. We also expect to
detect deviations in the computational time and/or in the success rate which result
from choosing odd or even numbers of samples. The odd numbers of samples always
provide a sample which is placed exactly in the middle of an interval and is more
likely to be as closest to the guard line. Therefore, delivering a counterexample run
is more likely to succeed.
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Evaluation environment

We evaluated our benchmarks on a machine with 16GB RAM and 4x Intel(R)
Core(TM) i5-6200U CPU @ 2.30GHz, 64-bit architecture.

Bouncing ball

The safety of the bouncing ball model is veri�ed against two di�erent sets of bad
states:

P1
bb = x ∈ [0,1] ∧ v ∈ [0, 0.5]

and
P2

bb = x ∈ [2.7, 3.1] ∧ v ∈ [1.7, 3].

The �rst set P1
bb is chosen so that the over-approximation of RefinementSetting1

from strategy (no)sampleAggregation hits the set of unsafe states, whereas the
samples from RefinementSetting2 are not calculated within P1

bb. This means
that RefinementSetting3 is triggered. The goal of de�ning the set of bad states in
this way is to show the worst case computation time required for the simulation and for
the construction of the following �owpipes. It is the worst case, since a counterexample
run could not be provided and from each sample a �ne �owpipe should be constructed
to show inconclusiveness. The results form the benchmark lead to the conclusion that
RefinementSetting1 delivered a too over-approximated computation, which does
not provide su�cient information about the model behavior.
The second set P2

bb is de�ned in such a way that both the over-approximation of
Refinement- Setting1 from strategy (no)sampleAggregation and some of
the samples from RefinementSetting2 intersect with it. We aim to investigate
which heuristic is more suitable and has a higher success rate of �nding a counterex-
ample run.
The �rst row in each of the following tables represents the required computational time
for applying RefinementSetting1. It establishes a baseline for calculating the time
needed for the computation of the samples from the second re�nement setting and
the eventual �owpipe construction from the third one, which starts at each sample.
This way we measure the time for the overall calculation process required to provide
a counterexample run in a model.
The results provided in Table 4.1 indicate that the complexity of the computation in-
deed increases linearly with the number of samples. The computational time includes
the required time for the calculation of all three re�nement settings from the strate-
gies. The various choice of heuristics did not succeed at providing a counterexample
run as expected, since the delivered computation from RefinementSetting1 is too
over-approximated and does not deliver su�cient insights into the model evolution.
The number of nodes and the processed tasks is for each evaluation result in Table
4.1 the same, since aggregation is applied. These numbers are, however, in Table 4.2
di�erent, since at each discrete jump the number of samples increases exponentially.
The more samples are chosen, the bigger the branching factor. There is only one
path when applying CENTER since only one run of the system is computed which
starts from the center of the initial state set. By applying VERTICES there are four
chosen samples from the initial state set, namely the vertices of the initial box, which
initialize four paths.
Applying UNIFORM-1 interval sampling heuristic requires the same amount of com-
putational e�ort irregardless whether aggregation is applied or not. This is due to the
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Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1 3 3 - 0.102

CENTER

UNI-1 1 10 4 0% (0/1) 0.112
UNI-2 1 10 4 0% (0/1) 0.119
UNI-3 1 10 4 0% (0/1) 0.120
UNI-20 1 10 4 0% (0/1) 0.154

VERT

UNI-1 1.6 35 16 0% (0/4) 0.147
UNI-2 1.6 33 16 0% (0/4) 0.163
UNI-3 1.6 33 16 0% (0/4) 0.188
UNI-20 1.6 33 16 0% (0/4) 0.319

Table 4.1: Overview of the evaluation results of the bouncing ball model. The utilized
strategy is sampleAggregation and the bad states are P1

bb.

fact, that the heuristic delivers only one sample from the given interval which does
not lead to branching.
Comparing UNIFORM-1 with the other UNIFORM-K interval sampling heuristics when
applying VERTICES as a set sampling heuristic we notice that the number of pro-
cessed tasks is di�erent, although the number of nodes stays the same. The interval
which is delivered by the �rst re�nement setting is over-approximated and the chosen
by UNIFORM-1 sample is not contained in the �ner interval, derived by the third
re�nement setting. This requires resampling and calculating the trace of the new
samples.

Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1 3 3 - 0.102

CENTER

UNI-1 1 10 4 0% (1/1) 0.112
UNI-2 1.27778 21 11 0% (0/9) 0.137
UNI-3 1.4375 38 22 0% (0/20) 0.173
UNI-20 1.8925 1452 958 0% (0/400) 2.942

VERT

UNI-1 1.6 35 16 0% (0/4) 0.149
UNI-2 2.12222 91 54 0% (0/20) 0.284
UNI-3 2.36 171 106 0% (0/44) 0.446
UNI-20 3.02835 5829 3852 0% (N/A) 11.40

Table 4.2: Overview of the evaluation results of the bouncing ball model. The utilized
strategy is noSampleAggregation and the bad states are P1

bb.

The results from Tables 4.3 and 4.4 con�rm our expectations for providing a coun-
terexample run. The overall time required is less than in Tables 4.1 and 4.2, since the
computation of the small �owpipes from RefinementSetting3 is (in most cases)
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Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1 3 3 - 0.102

CENTER

UNI-1 1 6 3 100% (1/1) 0.102
UNI-2 1 6 3 100% (1/1) 0.106
UNI-3 1 6 3 100% (1/1) 0.109
UNI-20 1 6 3 100% (1/1) 0.143

VERT

UNI-1 1.6 25 14 50% (2/4) 0.129
UNI-2 1.6 15 12 100% (4/4) 0.120
UNI-3 1.6 15 12 100% (4/4) 0.131
UNI-20 1.6 15 12 100% (4/4) 0.278

Table 4.3: Overview of the evaluation results of the bouncing ball model. The utilized
strategy is sampleAggregation and the bad states are P2

bb.

not required.
An interesting result can be observed when applying VERTICES as set a sampling
heuristic and UNIFORM-1 as an interval sampling heuristic. The success rate of
�nding a CEX is only 50% in comparison with the other heuristics, which have a 100%
success rate. This is due to the fact that UNIFORM-1 provides less accurate samples,
which is further from satisfying the invariant and the guard than the samples provided
by the other interval sampling heuristics. This leads to a larger approximation error
and deviation from the exact model behavior during the computation.

Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1 3 3 - 0.102

CENTER

UNI-1 1 6 3 100%(1/1) 0.102
UNI-2 1.41667 14 8 75% (3/4) 0.127
UNI-3 1.75 23 15 78% (7/9) 0.141
UNI-20 4.24821 673 569 N/A 1.454

VERT

UNI-1 1.6 25 14 50% (2/4) 0.129
UNI-2 2.35 57 40 70% (14/20) 0.200
UNI-3 3.06 91 70 81% (36/44) 0.273
UNI-20 9.38392 2793 2350 N/A 5.420

Table 4.4: Overview of the evaluation results of the bouncing ball model. The utilized
strategy is noSampleAggregation and the bad states are P2

bb.

Another interesting result emerges when comparing Tables 4.3 and 4.4. Aggregating
the samples leads to a 100% success rate and requires less computational e�ort. Not
aggregating them allows for the paths to �spread out� and not always be able to reach
the unsafe states. Moreover, choosing more samples provides for higher success rates.
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However, the required computational e�ort increases exponentially with the number
of samples.
The conclusion which can be derived from the results for the bouncing ball model is
that aggregating the samples before a discrete jump is a useful mechanism, since the
same result is delivered as without aggregation, but with less computational e�ort
and irregardless of how over-approximated the calculation of the previous re�nement
setting is.
The evaluation results con�rmed our expectations for a linear complexity when apply-
ing aggregation as well as an exponential complexity when not applying it. Moreover,
by using sample aggregation the delivered result is derived not only faster, but also
with a higher success rate.

Rod reactor

The safety of the rod reactor model is also veri�ed against two di�erent sets of bad
states:

P1
rr = x ∈ [515, 520] ∧ c1 ≥ 70

and
P2

rr = x ∈ [525, 528] ∧ c1 ∈ [69.8, 70.3].

The �rst set P1
rr is de�ned so that both the over-approximation of

RefinementSetting1 as well as the samples from RefinementSetting2 from
strategy (no)sampleAggregation hit the set of unsafe states. This means that
RefinementSetting3 would not be triggered, since all paths already lead in P1

rr.
Therefore, the required computational time in Tables 4.5 and 4.6 includes the compu-
tation of the �owpipe construction from the �rst re�nement setting and the samples
evolution from the second one, which represents the best case during a simulation.
It is the best case, since no �owpipes are computed from the samples and the ex-
act computational time for sampling simulation can be derived by subtracting the
computational time for the reachability analysis from the time for the whole analysis.
The second set P2

rr is chosen so that the over-approximation of
RefinementSetting1 from strategy (no)sampleAggregation hits the
set of bad states. Some of the samples from RefinementSetting2 are also
calculated within P2

rr, however, not all of them. Therefore, the third re�nement
setting is triggered and more computational e�ort is required in order to construct
small �owpipes out of them.
The �rst row in each of the following tables represents the required computational time
for the reachability analysis calculated with RefinementSetting1. It establishes a
baseline for calculating the time needed for the computation of the samples from the
second re�nement setting and the eventual �owpipe construction from the third one,
which starts at each sample. This way we measure the time for the overall calculation
process required to provide a counterexample run in a model.
The results from the benchmarks are expected to con�rm our assumptions, that,
similarly to the bouncing ball model, the complexity of the calculation increases lin-
early when applying aggregation to samples at each discrete jump, whereas without
aggregation the complexity increases exponentially.
The number of processed tasks in Table 4.5 is only in�uenced by the applied set
sampling heuristic. Using CENTER heuristic delivers one sample, which is placed at
the center of the three dimensional cube formed by de�ning the initial state set of the
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Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1.16667 8 8 - 0.125

CENTER

UNI-1 1 12 4 100% (1/1) 0.128
UNI-2 1 12 4 100% (1/1) 0.128
UNI-3 1 12 4 100% (1/1) 0.132
UNI-20 1 12 4 100% (1/1) 0.169

VERT

UNI-1 1.77778 40 32 100% (8/8) 0.141
UNI-2 1.77778 40 32 100% (8/8) 0.145
UNI-3 1.77778 40 32 100% (8/8) 0.175
UNI-20 1.77778 40 32 100% (8/8) 0.488

Table 4.5: Overview of the evaluation results of the rod reactor model. The utilized
strategy is sampleAggregation and the bad states are P1

rr.

model. A cube has 8 vertices, therefore, by utilizing the VERTICES heuristic, eight
traces are computed.
The results from Table 4.5 con�rm our expectation for linear complexity of deriving
the solution by using aggregation, whereas the ones from Table 4.6 indicate exponen-
tial complexity when not applying aggregation.

Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1.16667 8 8 - 0.125

CENTER

UNI-1 1.625 24 16 100% (1/1) 0.132
UNI-2 1.875 36 28 100% (18/18) 0.137
UNI-3 2.21429 87 79 100% (54/54) 0.172
UNI-20 15.3253 17877 17869 N/A 13.85

VERT

UNI-1 2.88889 136 128 100% (72/72) 0.178
UNI-2 3.33333 224 232 N/A 0.233
UNI-3 3.93651 640 632 N/A 0.512
UNI-20 27.245 142960 142952 N/A 368.9

Table 4.6: Overview of the evaluation results of the rod reactor model. The utilized
strategy is noSampleAggregation and the bad states are P1

rr.

After exceeding 100 paths, the search tree gets too big to be depicted by the setup,
on which the evaluation is executed. Such cases mostly occur in Tables 4.6 and
4.8. All benchmarks also have a time limit of 20 seconds and by exceeding it their
execution is interrupted. For the case of applying VERTICES and UNIFORM-20, as
depicted in Table 4.6, we let the benchmark terminate, which took over 6 minutes of
computation time. The delivered result has the same accuracy as the one derived by
the other heuristics which have smaller number of samples. However, its computation
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requires exponentially more e�ort.

Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1.16667 8 8 - 0.127

CENTER

UNI-1 1 12 4 100% (1/1) 0.124
UNI-2 1 19 5 0% (0/1) 0.239
UNI-3 1 12 4 100% (1/1) 0.128
UNI-4 1 12 4 100% (1/1) 0.134
UNI-20 1 12 4 100% (1/1) 0.165

VERT

UNI-1 1.77778 40 32 100% (8/8) 0.136
UNI-2 1.77778 96 40 0% (0/8) 1.023
UNI-3 1.77778 40 32 100% (8/8) 0.169
UNI-4 1.77778 40 32 100% (8/8) 0.199
UNI-20 1.77778 40 32 100% (8/8) 0.475

Table 4.7: Overview of the evaluation results of the rod reactor model. The utilized
strategy is sampleAggregation and the bad states are P2

rr.

An intriguing result emerges when observing the results in Table 4.7. The number
of samples provided by UNIFORM-1 and -2 is not su�cient for choosing suitable
samples. Although only one sample is delivered by UNIFORM-1, the heuristic succeeds
at providing a counterexample run, whereas UNIFORM-2 does not. This anomaly is
due to the fact that the one sample from the succeeding heuristic is chosen at the
exact center of the interval it is applied on, which is more likely to be at the nearest
proximity of the guard than the other two samples. Such a result indicates that by
choosing an even number of a few samples is less likely to �nd a CEX run and therefore
the required computational time increases in order to show inconclusiveness.

Set
sampling
heuristic

Interval
sampling
heuristic

Average
branching

Nr proc.
tasks

Nr of
nodes

Success rate
(CEX/total)

Comput.
time (s)

- - 1.16667 8 8 - 0.127

CENTER

UNI-1 1.625 24 16 100% (9/9) 0.129
UNI-2 1.5 82 46 0% (0/18) 1.041
UNI-3 1.8125 199 124 16.7% (9/54) 2.346
UNI-20 - - - - timeout

VERT

UNI-1 2.88889 136 128 100% (72/72) 0.169
UNI-2 2.66667 600 368 N/A 7.413
UNI-3 3.22222 1536 992 N/A 17.44
UNI-20 - - - - timeout

Table 4.8: Overview of the evaluation results of the rod reactor model. The utilized
strategy is noSampleAggregation and the bad states are P2

rr.
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Comparing Tables 4.7 and 4.8 shows that applying aggregation is useful when hav-
ing more samples delivered by the heuristics. The mechanism reduces the required
computational e�ort tremendously. On the other hand, when the number of provided
samples is too small, the above discussed anomaly occurs and the results from the
benchmark can be inconclusive.
Overall, the results from the evaluation of the model supports our expectation for
reducing the computational e�ort from exponential to linear complexity by applying
aggregation. However, the applied heuristics can lead to anomalies when having too
few and an even number of samples.
Simulating single traces is computationally cheap in comparison to a full reachability
analysis. As a conclusion from the evaluation results, we consider that the provided
samples from the heuristic should be at least three with respect to our benchmarks.
The optimal choice for a interval sampling heuristic is therefore UNIFORM-3, since
only with few samples a big part of the system evolution is observed. In general,
aggregating the samples is also a good idea, since the same solution is provided, but
with less computational e�ort.
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Chapter 5

Conclusion

5.1 Summary

In the course of this thesis we extended the tool HyDRA for proving unsafety of
a given model against a de�ned set of bad states. In order to do so, we de�ned
various heuristics for sampling the initial states set as well as for sampling the time
interval in which a guard is enabled for taking a discrete transition. The applicability
of the heuristics are evaluated on various models against multiple de�nitions of sets
of bad states and under usage of di�erent analysis strategies. From the results we
derive that aggregating the provided samples is a powerful mechanism to reduce the
computational complexity from exponential to linear with negligible loss of solution
accuracy. Having too few samples can lead to anomalies, therefore the amount of
utilized samples should be su�ciently large compared to the state space dimension.
The computational time required to provide a counterexample run is relatively small
compared to the time required for a reachability analysis. Nevertheless, the simulation
relies upon information computed during reachability analysis of a model and cannot
be used by its own.

5.2 Future work

Throughout this thesis multiple discussions on various topics were raised which aimed
at improving the utilized algorithms for the simulation worker. We questioned whether
our general approach of forward reachability analysis is the optimal one to use, or we
can combine it with backward analysis for faster retrieval of results [Mit07]. The
employment of heuristics for spatial and temporal sampling leaves room for further
suggestions and ideas alongside the ones which were proposed in this thesis, as well
as room for improving and adjusting the existing ones.
We structured our ideas into di�erent categories: improvement of the heuristics, im-
provement of the guard expansion implementation and handling, as well as more
general ideas about utilizing backward analysis for hybrid systems.

5.2.1 Improvement and completeness of heuristics

The main motivation for choosing the heuristics which are implemented as part of this
thesis are their advantage in computational simplicity and intuitiveness in the way
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they work. From the overall six suggested heuristics only RANDOM-K set sampling
heuristic is incompletely implemented in terms of the state set representations it
can be applied on. In the course of this thesis the heuristic can be utilized for a
box. For the sake of completeness the heuristic can be extended to sample all other
representation methods which are present in HyPro.
Overall the implementation of additional set and interval sampling heuristics is en-
couraged. Their performance in terms of running time and quality of the provided
results can be measured in order to choose an optimal heuristic either for one concrete
system model or for a class of models.

5.2.2 Improvement of guard expansion implementation and

handling

In order to enforce samples to satisfy their local guard condition, we proposed a
mechanism which widens the guard in case it is an equation by representing it by two
inequalities and and relaxing them by some prede�ned error ε. This mechanism limits
the over-approximation error to a de�ned tolerance bound. However, the samples that
satisfy the expanded guard are not necessarily a part of the exact model behavior.
Such samples can be labeled for improvement potential. When applying backtracking
and re�ning the derived timing information the labels can be utilized as an evidence
that such sample can be re�ned to satisfy the actual guard condition.
The size of the ε-interval throughout this thesis is absolute. Although it can be
manually adjusted to suit the dynamics of the model it is applied on, it is nevertheless
a �xed constant. A suggestion to achieve �exibility when de�ning ε-interval is to de�ne
it relative to the guard and invariant constraints, or to the time step. By doing so,
the user is abstracted from making the decision about the size of the ε-interval and
no previous knowledge about the model is required.
Additionally, we propose a mechanism for convergence to the actual guard condition.
Its objective is to iteratively get closer to the guard by measuring the distance between
the sample and the guard. The input of the algorithm is the guard equation that is
to be satis�ed and an over-approximated interval, derived from a previous re�nement
setting. The output delivers a sample which satis�es the guard up to some error
bound ε. At each iteration the approximation error is reduced, so that the output
lies within a closer bound to reaching the exact solution. The algorithm is outlined
as follows in Algorithm 2 and an example execution is depicted in Figure 5.1.
The advantage of this approach is that the derived interval of the enabled guard
transition can be arbitrary over-approximated. Furthermore, the algorithm delivers
an exact sample while maintaining a reasonably small complexity.

5.2.3 Backward and forward analysis for hybrid systems

An alternative approach to forward reachability analysis is backward analysis, where
the safety veri�cation of the model starts from the prede�ned set of bad states. The
evolution of the bad states is computed backwards in time and if an intersection with
the initial set is computed, the model is proven to be unsafe [Mit07]. Otherwise, if
no intersection is calculated, the model is considered to be safe. Both approaches
can be used separately or simultaneously in order to prove safety of the system under
analysis. Starting o� by sampling the set of bad states and computing the �ow of
the sample backwards in time, the aim of the simulation is to calculate a run into the
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Algorithm 2 Get a sample which satis�es the guard

1: function refineSample(Interval i, Guard g)
2: size p, q . distance from upper respectively lower bound to guard
3: sample s . exact sample
4: sample sp := i.getLower() . set sp at the lower bound of the interval
5: sample sq := i.getUpper() . set sq at the upper bound of the interval
6: while !sp.satisfy(g) || !sq.satisfy(g) do

7: p := sp.getDistanceTo(g) . measure distance from sp to the guard
8: q := sq.getDistanceTo(g) . measure distance from sq to the guard
9: sp := ep·δ . compute spatial samples

10: sq := eq·δ

11: if sp.satisfy(g) then . get the optimal sample s
12: s := sp
13: else

14: s := sq

15: return s

initial states.
In order to utilize a combination of both approaches, samples from the initial and the
bad state sets have to be chosen. The �ow of the initial sample is calculated forwards
in time until the set of bad states or a time bound is reached, whereas the �ow of the
sample from the bad states is calculated backwards in time, until the initial states or
a time bound is reached. The method of combining both approaches leaves room for
de�ning further heuristics, which aim at proving safety of the analyzed hybrid system.

sp sq
p q

s′p

s′q

p′

q′

s′′p s′′q

p′′

S

Figure 5.1: Flow of a system depicted as a red line for duration of the interval de�ned
by [sp,sq]. The local guard is represented by a green line. By iteratively calculating
the spatial samples with time step size according to their distance to the guard, a
sample is derived which satis�es the guard. The respective distances are depicted as
yellow dotted lines.
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