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Abstract

This thesis presents a novel, level-wise approach to single cell construction
in Cylindrical Algebraic Decomposition (CAD). It can be used in Satisfiability
Modulo Theories solvers for Quantifier Free Non-Linear Real Arithmetic like for
example nlsat [JdM12]. For one such solver, testing shows that the usage of
the level-wise approach over a recursive approach [BK15] decreases the mean
solving time by 10.38%.

Given a set of multivariate polynomials with rational coefficients and a point,
a single cell construction algorithm returns a cylindrical algebraic cell around
the point. In general, this cell is a superset of the cell that would be constructed
as a part of a CAD.

The idea of the level-wise approach is to construct the cell top to bottom.
This means initializing the cell as Ri for the appropriate i and then determining
the correct bounds one component after the other, starting in the i-th dimension
down to the first. Brown-McCallum’s projection operator [Bro01][BK15] which
is a reduction of McCallum’s projection operator [McC98] is used in the process.
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Chapter 1

Introduction

Satisfiability Modulo Theories (SMT) solving deals with the checking of satisfiability
of First Order Logic (FOL) formulas over specific FOL theories. One such theory
for which specific solvers exist is the Quantifier Free Non-Linear Real Arithmetic
(QFNRA). This theory’s literals are essentially equalities and inequalities, each com-
paring a multivariate polynomial with rational coefficients to zero. The first remotely
efficient SMT solver for QFNRA was presented in 1975, creating a Cylindrical Alge-
braic Decomposition (CAD) [Col75]. To check satisfiability for a formula, this tech-
nique receives a set containing all polynomials that are in the formula as an input. It
then partitions the possible solution space into a finite number of regions over which
the sign of every polynomial is constant. Thus, the (in)equalities that the polynomi-
als are embedded in evaluate to either true or false over the entire region. Checking
satisfiability is then only a question of checking a sample for each of the regions.

A more recent algorithm to check satisfiability of a QFNRA formula called nlsat
was published in 2012 [JdM12]. nlsat essentially searches over the entire Rn for a
satisfying theory assignment α = (α1, . . . , αn) ∈ Rn. Thereby, n is the maximal
number of variables in a polynomial in the given formula. This assignment α is
constructed dimension by dimension. At some point, the algorithm might run into a
situation where there is a partially constructed sample αi = (α1, . . . , αi) with 1 ≤ i ≤
n− 1, that cannot be extended because the insertion of αi into the formula makes it
unsatisfiable. In this case, the algorithm wants to find a sign-invariant region around
αi, so that it can be excluded from the search space. One way of doing so is the single
cell construction. This means constructing a description of the cell of a CAD in which
αi lies or if possible even a superset of this cell.

The main contribution of this thesis is a level-wise single cell construction algo-
rithm. Thereby, the “level” refers to the level of a polynomial p which can be seen as
an extension of the term of the dimension of a space to polynomials. Given a variable
order, the level of p is defined as the index of the greatest variable appearing in p.
Generally, a single cell construction algorithm receives a point α = (α1, . . . , αi) ∈ Ri
and a set containing polynomials of maximally level i. The level-wise algorithm works
as follows on this input. First, the cell is initialized as Ri. Then, the cell’s bounds
are determined level by level, iterating down the variable order and thus the dimen-
sions of the cell. On each level, after determining the bounds, the polynomials on
the current level are projected using an optimized version of McCallum’s projection
operator. One part of this optimization is derived from the projection that is used in
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another, recursive single cell construction algorithm [BK15].
Additionally, level-wise single cell construction has been implemented in Smt-

Rat, an Open Source C++ Toolbox for Strategic and Parallel SMT Solving [smt]
[CKJ+15], where recursive single cell construction is already implemented [Neu18].
These implementations are compared in the use-case of an SMT solver for QFNRA
that is similar to nlsat. The results indicate that the level-wise algorithm is correct
and that it is computationally more efficient than the recursive algorithm.

The remainder of this thesis is structured as follows. In Chapter 2, an intuitive
explanation of nlsat is given as a use case for single cell construction. The following
Chapter 3, gives some preliminaries to CAD, again in a mostly intuitive manner.
In Chapter 4, a primitive but already level-wise approach to single cell construction
is presented. An optimization to this approach is then given in Chapter 5. The
main part of the thesis is then concluded with the evaluation in Chapter 6. This
evaluation is a comparison of two implementations of SMT solvers for QFNRA, one
using recursive single cell construction as in [BK15] and one using optimized level-wise
single cell construction. Finally, in Chapter 7, the thesis is summarized and possible
future work is presented.



Chapter 2

nlsat: A Decision Procedure for
Non-Linear Arithmetic

In 2013, Leonardo de Moura and Dejan Jovanović [dMJ13] proposed Model Con-
structing Satisfiability Calculus (mcSat) as a novel, abstract decision procedure for
checking Satisfiability Modulo Theories (SMT) for certain theories. One first order
theory for which they specified this abstract procedure is the theory of Quantifier
Free Non-Linear Real Arithmetic (QFNRA). They called this specified algorithm nl-
sat [JdM12].

As the name suggests, mcSat works by constructing a model for a given formula,
meaning that it searches for a Boolean assignment to satisfy the Boolean abstraction
but also for a theory assignment for each theory variable to satisfy the underlying
literals in parallel. If the search runs into a conflicting theory assignment, theory
conflict resolution is done with regard to the current, possibly partial assignment.
Specified to nlsat, this allows for an optimized resolution approach like single cell
construction, in contrast to the computation of a whole CAD. Furthermore, resolving
theory conflicts is only done for a small set of constraints, a conflicting core. Also,
theory conflict resolution for QFNRA is usually based on CAD which is very com-
putationally heavy. Therefore, it is computationally the most expensive part of the
procedure. Only considering a conflicting core and having a partial assignment leads
to a conservative use of CAD which is an advantage of nlsat.

This advantage’s effect can be seen in testing. An implementation of nlsat performs
consistently better than other (at that point in time) modern SMT solvers for QFNRA
[JdM12]. It is thus in our interest to further optimize this procedure. Therefore, after
introducing some definitions, we will give an intuitive explanation to nlsat as an
application of single cell construction.

2.1 Preliminaries
Since we only give an intuitive insight on nlsat, we will not give nlsat specific defini-
tions, but we will clarify our language used for talking about QFNRA since this will
be used throughout this thesis.

Definition 2.1.1 (Level of a polynomial). Given an variable ordering x1 ≺ . . . ≺ xn,
the level of a polynomial p ∈ R[x1, . . . ,xn] for a ring R is the greatest i such that
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degxi
(p) > 0 if p is non-constant or 0 if p is constant.

Throughout this thesis, we will always use variables x1, . . . ,xn in polynomials and
the variable ordering x1 ≺ . . . ≺ xn for some n ∈ N.

Definition 2.1.2 (Constraint). A constraint F over R[x1, . . . ,xn] is of the form pO0
where p ∈ R[x1, . . . ,xn] for a ring R ∈ {Z,Q} and O ∈ {=, 6=,≥,≤, >,<}. Also, the
level of a constraint pO0 is the level of p.

Note that the multiplication of a constraint over Q[x1, . . . ,xn] with the prod-
uct of the denominators of all its coefficients results in an equivalent constraint
over Z[x1, . . . ,xn]. Throughout this thesis, we will therefor consider polynomials in
Z[x1, . . . ,xn] in the input of procedures, even though polynomials in Q[x1, . . . ,xn]
could be used equivalently.

Definition 2.1.3 (Formula, Clause). A (QFNRA) formula F in CNF is of the form∧
i∈N

∨
j∈M Fij where N and M are finite index sets and Fij is a constraint or,

generalized to first order logic terms, a literal. Then for each i ∈ N ,
∨
j∈M Fij is a

clause. F can be represented in clausal form as {
⋃
j∈M{lij} | i ∈ N}.

Example 2.1.1. F1 is a QFNRA formula in CNF in constraints over Z[x1,x2]

F1 = (x21x2 + x31 − 3 > 0︸ ︷︷ ︸
a literal/constraint

∨x21− x2 ≤ 0)∧ (x41x72 − x2 + 7 6= 0 ∨ x21x72 − x1x2 − 6 ≥ 0)︸ ︷︷ ︸
a clause

.

In clausal form

F1 = {{x21x2 + x31 − 3 > 0, x21 − x2 ≤ 0}, {x41x72 − x2 + 7 6= 0, x21x
7
2 − x1x2 − 6 ≥ 0}}.

2.2 nlsat Algorithm Intuition
Generally, nlsat is used to check the satisfiability of a QFNRA Formula F in CNF
consisting of constraints over Z[x1, . . . ,xn]. For this, F is decomposed into F0

.
∪. . .

.
∪Fn

where Fi is a set containing all clauses of F where i is the maximal level of a constraint
in such clauses. F0 can be dealt with on a Boolean level since the constraints in the
clauses in F0 contain no variables and thus all evaluate to true or false. Then, nlsat
searches for a Boolean assignment for the literals, as well as for an assignment for the
theory variables contained in said literals level by level.

More precisely, nlsat first look into the clauses contained in F1. The algorithm
tries to find a Boolean assignment for the literals which satisfies each clause while
still keeping the theory compatible. This means that a literal is only assumed to
be true if it has at least one common, satisfying assignment to the theory variable
x1 with all the previously assumed to be true literals. Such an assignment to x1 is
called feasible. If a Boolean assignment is found which satisfies all clauses in F1 while
still maintaining a non-empty set of feasible candidates for x1, one such candidate is
picked as a for the time being fixed assignment for x1.

Then, F2 can be examined in the same way since the constraints in the clauses
in F2 becomes univariate through the assignment of x1 on the previous level. This is
continued level by level. If level n + 1 would be reached, nlsat would have found an
assignment for x1, . . . ,xn which satisfies literals in such a way that overall the formula
F would be satisfied. Therefore, the procedure would return that F is satisfiable.
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Single Cell Construction around α

U ′ ⊆ Z[x1, . . . ,xi−1]
eliminate xi

U ⊆ Z[x1, . . . ,xi]

(D1, . . . ,Di−1) ⊆ Ri−1

Figure 2.1: Use of Single Cell Construction in explain function of mcSat as black-box

Nevertheless, it can also happen that while examining Fi for some i ∈ {1, . . . ,n},
a Boolean assignment which is not satisfying or leaves no feasible candidate for xi is
reached. The first case is a Boolean conflict, the latter a theory conflict. In both cases,
nlsat will employ conflict resolution and backtrack. Boolean conflicts are dealt with by
Boolean resolution. For a theory conflict on the other hand, nlsat needs to determine
why there is no possible assignment for xi. It therefor isolates a minimal subset of the
constraints which causes a possible theory assignment to fail, an unsatisfiable core,
and creates an explanation to why that is.

Creating this explanation is where single cell construction can be utilized. In the
current state, there is a small set of conflicting constraints U of at most level i and a
theory assignment for x1, . . . ,xi−1 which is represented as the point α = (α1, . . . ,αi−1).
Doing a full CAD-projection for the i-th level (more on projection in Chapter 3),
results in a sample point α in i − 1 components and a set U ′ containing constraints
of maximal level i − 1. This is exactly the input necessary for the construction of
a single algebraic cell around α. Executing single cell construction then results in a
cell (D1, . . . ,Di−1) ⊆ Ri−1 that can be exclude from the search space for the theory
assignment in the nlsat algorithm. This is summarized and displayed in Figure 2.1.

Now, formulating into a QFNRA formula that for each j ∈ {1, . . . ,i − 1}, xj can
not be in Dj , is an explanation that can be merged into F . This concludes the conflict
resolution and nlsat can backtrack to a lower level where a Boolean assignment that
leaves a feasible theory assignment exists. If there is no such level, the algorithm es-
sentially backtracks to level 0, thus concluding that the given formula is unsatisfiable.
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Chapter 3

Cylindrical Algebraic
Decomposition

Alfred Tarski published a decision procedure to check satisfiability modulo theories
for the theory of QFNRA in 1948 [Tar98] which proved the problem’s decidability.
His approach was computationally very inefficient so that later in 1975, most notably
George E. Collins introduced the Cylindrical Algebraic Decomposition (CAD) [Col75]
as a far more efficient, yet still doubly exponentially complex, approach.

To decide satisfiability for a QFNRA Formula F in constraints over Z[x1, . . . ,xn],
a CAD can be computed. Let Q be the set containing all the constraints in F . A
CAD is a partition of Rn into finite connected regions. For all these regions R ⊆ Rn,
each polynomial p of a constraint F ∈ Q does not change its sign over R, meaning
that for all a ∈ R either p(a) = 0, p(a) < 0 or p(a) > 0. Thus, each constraint
is either satisfied or unsatisfied over the entire region which results in F also being
either satisfied or unsatisfied over the entire region. Therefore, only one sample point
from each of the finite regions has to be checked for satisfaction of F . If one such
point satisfies F , the formula is satisfiable, otherwise it is not. After introducing some
definitions, we will further investigate how to compute a CAD.

3.1 Preliminaries

First, we will substantiate some of the terms that were already used in the introduction
of this chapter. Then, some more concepts which will be of relevance in the more
specific explanation of the CAD are defined. Definitions 3.1.1 to 3.1.4 are copied
from [ÁHK20] and Definitions 3.1.5 is copied from [BK15].

Definition 3.1.1 (Region). A region of Rn is a non-empty, connected subset of Rn.

Thus follows that every real, open or closed interval (a,b) ⊆ R is a Region of R for
a,b ∈ R. Also, for every two regions R,R′ ⊆ R, R×R′ ⊆ R2 is a region on R2.

Definition 3.1.2 (sign of a polynomial). Given a polynomial p ∈ Z[x1, . . . ,xn],
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a ∈ Rn, the sign of p at a is

sgn(p(a)) :=


−1, if p(a) < 0,

0, if p(a) = 0,

1, if p(a) > 0.

Definition 3.1.3 (Sign-invariant Region). Given a finite, non-empty set
P ⊆ Z[x1, . . . ,xn], a region R ⊆ Rn is (P-)sign-invariant if for all p ∈ P and a,b ∈ R,
sgn(p(a)) = sgn(p(b)).

Let us have a look at some sign invariant regions defined by the polynomials

p1 = (x1 − 4)2 + (x2 − 4)2 − 9 and p2 = x1 − x2 − 3 (3.1)

over Z[x1,x2]. For this, we consider the plots of the implicit equations p1
!
= 0 and

p2
!
= 0. These can be seen in Figure 3.1. The blue (•) regions displayed in (a), (b)

and (c) are each maximal sign-invariant regions. They are maximal in a sense that
there exists no superset of the region which is also sign-invariant.

In Figure 3.1(a), a sign-invariant region in the form of a two dimensional plane
is displayed. For each point (a,b) ∈ R2 of said plane, it holds that p1(a,b) < 0 and
p1(a,b) < 0. Figure 3.1(b) shows a sign-invariant region being a one dimensional line
so that for each point (a,b) ∈ R2 on the line, it holds that p1(a,b) < 0 and p1(a,b) = 0.
Finally, in Figure 3.1(c), there is a zero dimensional, sign-invariant region displayed
as a point in (7,4). For this point, it holds that p1(7,4) = p2(7,4) = 0.

Before continuing with the definition of delineability, we would like to create an
intuition for this term along the previous example of p1 and p2. Delineability of a set
of polynomials P of level n over a region R of dimension n−1 means that the number
and order of the real roots of P over R is fixed.

Figure 3.2 visualizes this. We again consider the plot of the implicit equations
p1

!
= 0 and p2

!
= 0 but this time with the addition of regions R1 = (3,7) ⊆ R1 and

R2 = (4,7) ⊆ R1. Figure 3.2(a) shows region R1 on which {p1,p2} is not delineable
since the number of roots over 4 ∈ R1 is equal to 2 and is thereby smaller than the
number of roots over 5 ∈ R1 which is equal to 3. Said roots are marked in blue (•).
Figure 3.2(b) on the other hand shows region R2 on which {p1,p2} is delineable. The
number of roots over each point in R2 is fixed at 3 and the order is also fixed as
informally speaking root of p1 → root of p2 → root of p1.

Definition 3.1.4 (Delineability). Given a region R ⊆ Rn−1 and finite, non-empty
P ⊆ Z[x1, . . . ,xn] where n ≥ 2. P is delineable on R if for all p ∈ P , a ∈ R:

1.) the number of roots of p(a) is constant,

2.) the number of different roots of p(a) is constant,

3.) for all q ∈ P , q 6= p, the number of common roots of p(a) and q(a) is constant.

Last of all, we assume that we have a procedure to isolate the roots of a univariate
polynomial p ∈ Z[x], for example one of the algorithms presented in [Joh98].
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Figure 3.2: Plot of the implicit equations of p1 = 0 and p2 = 0 with highlighted
regions
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3.2 Procedure for CAD Computation
Before presenting a procedure which can be used to calculate a CAD, let us formally
define this term (adapted1 from [ÁHK20], originally defined in [Col75]):

Definition 3.2.1 (Cylindrical Algebraic Decomposition). A finite C ⊆ P(Rn) is
called a Cylindrical Algebraic Decomposition (CAD) of Rn for a finite, non-empty
P ⊆ Z[x1, . . . ,xn], n ≥ 1 and an element C ∈ C is called a (CAD-)cell, if the following
holds:

1.
⋃
C∈C C = Rn,

2. C ∩ C ′ = ∅ for all C,C ′ ∈ C with C 6= C ′,

3. Every C ∈ C is a P -sign-invariant region,

4. Every C ∈ C can be represented as the solution of a set of constraints restricted
to operators =, > and < over Q[x1, . . . ,xn],

5. If n > 1 then there exists a CAD C′ of Rn−1 such that for every C ∈ C there is
a C ′ ∈ C′ such that the projection of C to the first n− 1 dimensions is C ′.

Point one to three state that a CAD is a partition, or rather decomposition of
Rn into sign-invariant regions. The fourth point states that the decomposition is
algebraic. And the last point states that the decomposition is cylindrical, meaning
that each cell C of dimension n forms a cylinder over the cell that is C’s projection
to its first n− 1 dimensions.

We now present a procedure to calculate a CAD, or to be more precise, a finite set
S ⊆ Rn which contains one point from each cell of the CAD since we need just that
for the purpose of satisfiability checking. We call this procedure compute_cad. As
input, it takes a set of polynomials P ⊆ Z[x1, . . . ,xn] which for checking satisfiability
of a Formula F were taken from the Constraints in F . Note that only the polynomials
are taken from F , ignoring the operators comparing them to 0 as well as the logical
operators connecting the constraints. This is due to a CAD being a more fine-grained
partition of Rn than theoretically necessary, namely into sign-invariant regions re-
garding the polynomials rather than “satisfiability-invariant” regions regarding the
constraints.

Generally, compute_cad consists of two main phases, the projection phase and
the lifting phase. In the projection phase, a CAD-projection operator (definition
adapted from [ÁHK20]) is used.

Definition 3.2.2 ((CAD-)projection operator). Given finite, non-empty
P ⊆ Z[x1, . . . ,xn] where n ≥ 2, a mapping

pr : P(Z[x1, . . . ,xn])→ P(Z[x1, . . . ,xn−1])

is a projection operator. We call pr a CAD-projection operator, if any region R ⊆
Rn−1 is pr(P )-sign invariant iff R is P -delineable.

The closure of P under pr is defined as the set of polynomials

pr ∗(P ) = P ∪
i−1⋃
k=1

pr k(P )

1By "adapted" we always mean structurally copied but modified in regard to application to our
purposes
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where pr 1(P ) := pr (P ) and pr n+1(P ) := pr (pr n(P )) for n ≥ 1.

Such a projection operator is recursively applied to the starting polynomials, pro-
jecting polynomials to lower levels along the given variable order until univariate
polynomials are reached. This is depicted on the left side of Figure 3.3. A concrete
projection operator is McCallum’s Projection Operator (originally defined by Scott
McCallum [McC98]).

Definition 3.2.3 (McCallum’s projection operator). Given a set P of polynomials
of level ≤ i, McCallum’s projection operator is defined as

proj (P ) =
⋃
p∈P

p of level i

coeffxi
(p) ∪

⋃
p∈P

p of level i

{discxi
(p)} ∪

⋃
p,q∈P, p6=q
p,q of level i

{resxi
(p,q)} ∪

⋃
p∈P

level of p <i

{p}

where for p, q ∈ Q[x1, . . . , xi−1][xi] of level i, considered as univariate in xi

• coeffxi
(p) ⊆ Q[x1, . . . , xi−1] is the set containing the coefficients of p,

• discxi(p) ∈ Q[x1, . . . , xi−1] is the discriminant of p,

• resxi
(p,q) ∈ Q[x1, . . . , xi−1] is the resultant of p and q.

Note that McCallum’s projection operator is incomplete. This means that there
are some inputs for which the operator fails which can be detected before applying it.
In practical application, these inputs are rare; 15.42% or 3.57% in our testing of the
level-wise algorithm, depending on the context (see Table 6.1). Therefore, we ignore
them in this chapter. For the single cell construction later on, this will lead to there
being a case distinction where FAIL might be returned.

McCallum’s projection operator clearly is a projection operator since its compo-
nents - coefficients, discriminants and resultants of polynomials of level i - are of level
less than i. Harder to see is how it is an incomplete CAD-projection operator. Let us
therefore for some polynomials Q look at the roots of the polynomials in proj(Q) since
these roots define the proj(Q)-sign-invariant regions that are Q-delineable as stated in
Definition 3.2.2. Generally speaking, the polynomials in proj(Q) are coefficients, dis-
criminants and resultants. We will inspect where these have their roots with respect
to the polynomial(s) that they are derived from. For the purposes of demonstration,
we consider 2-dimensional polynomials as examples because higher dimensional cases
are essentially based on these.

First, consider the discriminant. It covers turning points in the root plot since
at these points the number in roots changes. To visualize this, Figure 3.4a shows
p1

!
= 0 with p1 as in Equation (3.1). Also, the roots of discx2(p1) ∈ Q[x1] are depicted

in blue (•). The gray points (•) mark the turning points which caused the roots.
Additionally, the cylinder walls which would be implied by these roots in a CAD are
depicted as gray, dashed lines. It can be seen that over the sign-invariant regions
(−∞,1), [1,1], (1,7), [7,7], (7,∞) ⊆ R1 which are implied by the roots of discx2

(p1),
the number and order of the roots of p1 is fixed, meaning that these regions are all
already {p1}-delineable in this example.

The second component of McCallum’s operator is the resultant. It projects inter-
sections of the roots of two polynomials to the roots of a polynomial on a lower level.
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Pn ⊆ Z[x1, . . . , xn]
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...

P1 ⊆ Z[x1]

eliminate
xn
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Figure 3.3: Sketch of compute_cad procedure (adapted from [ÁHK20])

We again consider the example of p1 and p2 as in Equation (3.1). In Figure 3.4b,
p1

!
= 0 and p2

!
= 0 are depicted. Along this, the roots of resx2(p1,p2) ∈ Q[x1] can be

seen in blue (•) with the intersections that cause them marked in gray (•). Also, the
gray, dashed lines display the cylinder walls which would be implied by these roots in
a CAD.

Last of all, consider the coefficients. These project where the roots of the poly-
nomial they are taken from are tending towards infinity to roots on a lower level.
Since this does not happen for p1 and p2, we consider a new example, namely
p3 = (x1 − 2)x2 − 1. The plot of the implicit equation p3

!
= 0 with the root of

coeffx2
(p3) ∈ Q[x1] in blue (•) is depicted in 3.4b.

Having roots at these points is essential for the lifting to work properly. Let us
refocus on the bigger picture again. We just saw that a projection operator can be ap-
plied iteratively, level by level, along the variable order, calculating the closure under
the projection operator. The polynomials in the closure are divided by level into sets
P1, . . . , Pn where Pi contains the polynomials of the closure that are of level i. With
this calculated, the lifting starts. For this, the roots of the univariate polynomials in
P1 are isolated. Adding a point from in between each pair of neighboring roots, as
well as a point above the greatest and one below the smallest root, results in a set of
1-dimensional points which is the CAD for R1. A CAD for R1 is then expanded to a
CAD for R2 and so on until level n is reached. For such a step from a CAD for Ri
to a CAD for Ri+1, the polynomials in Pi are evaluated at each point from the CAD
for Ri. These polynomials are again univariate. Thus, the roots and the additional
points can be calculated as before to receive a set of 1-dimensional points. Taking the
Cartesian product of this set with the i-dimensional set of points which is the CAD
for Ri is then the CAD for Ri+1. The lifting phase is shown on the right in Figure 3.3.
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Figure 3.4: Plots of implicit equation(s) with highlighted roots of different components
of McCallum’s projection operator
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3.3 Exemplary Computation of a CAD
To clarify how compute_cad using McCallum’s projection operator works, we visu-
alize it on our example of P = {p1, p2} as given in equations (3.1). Again, the implicit
equations p1

!
= 0 and p2

!
= 0 are considered. First, the closure under McCallum’s

projection operator is calculated which in this case is just the computation of the
polynomials that result from projection of p1 and p2 on level 1. Then, the lifting of
the CAD to level 1 starts. For this, the roots of the polynomials that resulted from
projection are considered. These roots of the polynomials in proj(P ) ⊆ Q[x1] are
{1,4,7} ⊆ R1 (see Figure 3.4). They are depicted in blue (•) in Figure 3.5a. The
additional points between roots, above the greatest and below the smallest root are
marked in green (•).

The next step is already the lifting to level 2 which can be seen in Figure 3.5b. The
points over which we lift are now black and the roots of p1 and p2 over each of these
points are marked in blue (•). The additional points are then marked in green (•)
again. Note that a few points below the x1-axis are not depicted. Still, Figure 3.5b
(almost) shows a possible set of testing candidates for every sign-invariant region in
blue and green. It can also be seen that some regions have more than one sample
point constructed for it. A minimal set of sample points that represents a CAD is
depicted in Figure 3.6.
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Figure 3.5: Plot of the implicit equations p1
!
= 0 and p2

!
= 0 during the

compute_cad procedure
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Chapter 4

Single Cell Construction

In the terms of what is achievable with compute_cad, we now do not want construct
a CAD C for P ⊆ Z[x1, . . . ,xn], but instead with the additional input of a point α ∈ Rn
construct only the cell in C which contains α (if possible even a superset). Note that
in this case, we actually want to create a description of the cell. First, we take a brief
look at the existing work on this topic.

4.1 Related Work: Recursive Single Cell Construc-
tion

Christopher W. Brown and Marek Kos̆ta in [BK15] presented an algorithm for single
cell construction that works recursively in a Depth First Search-style. More precisely,
for a set Q of polynomials and a point α, their algorithm calls a merge procedure
for each polynomial q ∈ Q. Let q be of level i. The merge procedure projects q to
polynomials of lower levels which are then each merged recursively, unless they are
already of level 1. When the recursive call returns to q, the bounds of the so far
constructed cell in the i-th dimension are updated through the consideration of the
roots of p(α1, . . . ,αi−1,x1) as bounds for the cell in the i-th dimension. To be precise,
if one such root lies closer to αi than the current upper or lower bound, then the
respective bound is updated as this root.

This approach has been implemented by Malte Neuss [Neu18] in Smt-Rat, an
Open Source C++ Toolbox for Strategic and Parallel SMT Solving [smt][CKJ+15].
We implemented the later on presented novel algorithm in Smt-Rat as well and
will test the implementation against the recursive one. The results can be found
in Chapter 6. Before the implemented algorithm is presented, we present a simpler
algorithm. In order to do so, we need a few more definitions.

4.2 Preliminaries

We first introduce a theoretical and then a practical representation of roots. The
following definitions are adapted from [BK15].

Definition 4.2.1 (Indexed root expression). For p ∈ Q[x1, . . . ,xi] of level i and
non-negative integer j, we define the indexed root expression root(p, j, xi) at the point
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α = (α1, . . . ,αi−1) as the j-th distinct real root of p(α1, . . . ,αi−1,xi) (ordered smallest
to largest). If polynomial p(α1, . . . ,αi−1,xi) is the zero polynomial or if it has fewer
than j distinct real roots, the expression has value undef.

We also allow the special indexed root expressions root(+∞, 1, xi) and
root(−∞, 1, xi) to represent positive and negative infinity, respectively. We will not
do any arithmetic with these expressions, so those semantics will not be addressed.

We formally extend the usual relational operators {< , > , ≤ , ≥,=, 6=} to be false
if either the left or right hand side is undef. We allow the expressions root(+∞, 1, xi)
and root(−∞, 1, xi) on the left and right hand side of the relational operators with the
obvious semantics.

Definition 4.2.2 (RealAlgNum). A RealAlgNum is a pair (p, I), where p is a square-
free univariate polynomial whose coefficients are rational numbers or RealAlgNum’s.
I is an isolating interval for a distinct real root of p. If A is a RealAlgNum, we adopt
the notation A.p and A.I to refer to the two components of the pair. We refer to the
real algebraic number that is the distinct real root of A.p in A.I as val(A).

To simplify the presentation below, we will use A to denote both the pair (p, I) and
the real algebraic number val(A), which the pair represents. This will always be clear
from context. Furthermore, we allow A.p to be +∞ or −∞, in which case val(A) is
+∞ or −∞, respectively.

RealAlgNums are used in the following algorithms to represent roots. They are
useful since we are generally not able to calculate roots of univariate polynomials but
to isolate them in an arbitrarily small interval. Also, they are used in the following
data structure that will represent the cell throughout the algorithm and as a result.

A OneCell data structure is a tuple (P,D) = ((Pn, . . . ,P1),(D1, . . . ,Dn)). In P , the
initial polynomials and the polynomials that result from projection throughout the
presented algorithms are inserted and stored. A polynomial of level i can be found in
Pi. D represents the actual cell with reference to polynomials in P . Each dimension
of D is either a section or a sector.

A section of level i is described by a single root r of a univariate polynomial
p(α1, . . . ,αi−1,xi) where p is of level i. For this root, it must hold that r = αi to be
a section.

A sector on level i is described by two roots r1,r2 of univariate polynomials
p1(α1, . . . ,αi−1,x1), p2(α1, . . . ,αi−1,x1) where p1 and p2 are each of level i. They
surround the i-th component of the given point, meaning that r1 < αi < r2. In the
case of a sector, it is also possible that one or both of the bounds are not existent,
meaning that r1 = −∞ and/or r2 =∞. A more formal definition follows.

Definition 4.2.3 (OneCell Data Structure). A OneCell data structure containing
point α = (α1, . . . ,αn) is a pair (P,D), where P = (Pn, . . . ,P1) is a tuple of sets
of integer polynomials, and D = (D1, . . . ,Dn). Dn is either (sector, l, L, u, U) or
(section, e, E).

If Dn is a section, then Dn.e = (p,j) is a pair where p ∈ Z[x1, . . . ,xn] is a polyno-
mial of level n and j ∈ N. Dn.E is a RealAlgNum. If Dn is a sector, then:

• Either Dn.l is a pair (p,j) where p ∈ Z[x1, . . . ,xn] is a polynomial of level n and
j ∈ N, and Dn.L is a RealAlgNum, or Dn.l = (−∞,1).

• Either Dn.u is a pair (p,j) where p ∈ Z[x1, . . . ,xn] is a polynomial of level n
and j ∈ N, and Dn.U is a RealAlgNum, or Dn.u = (+∞,1).
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Furthermore, the following conditions hold:

1. If n > 1, ((Pn−1, . . . ,P1), (D1, . . . , Dn−1)) is a OneCell data structure contain-
ing the point (α1, . . . ,αn−1).

2. If Dn is a section, then Dn.E.p is a non-constant univariate polynomial in
variable xn, which divides Dn.e.p(α1, . . . , αn−1, xn).

3. If Dn is a sector, then either Dn.l = (−∞,1) and Dn.L = (−∞, [0, 0]), or the
following conditions hold:

(i) Dn.L.p is a non-constant univariate polynomial in variable xn, which di-
vides Dn.l.p(α1, . . . , αn−1, xn).

(ii) Dn.L.p has no real root in the open interval (val(Dn.L), val(Dn.U)).

4. If Dn is a sector, then either Dn.u = (−∞,1) and Dn.U = (+∞, [0, 0]), or the
following conditions hold:

(i) Dn.U.p is a non-constant univariate polynomial in variable xn, which di-
vides Dn.u.p(α1, . . . , αn−1, xn).

(ii) Dn.U.p has no real root in the open interval (val(Dn.L), val(Dn.U)).

5. If Dn is a section, the following formula is true at point α:

αn = root(Dn.e.p,Dn.e.j,xn)

6. If Dn is a sector, the following formula is true at point α:

root(Dn.l.p,Dn.l.j,xn) < αn < root(Dn.u.p,Dn.u.j,xn)

7. S(D1, . . . ,Dn) (see Definition 4.2.4) is a cylindrical subset of Rn.

8. The polynomials in bpoly(Dn) ⊆ P (see Definition 4.2.5) are delineable on
S(D1, . . . , Dn−1).

9. Let S be the maximal connected region of Rn containing α, such that the poly-
nomials from P of level at most n are tag-invariant in S (see Definition 5.1.2).
Then it holds that S = S(D1, . . . , Dn).

Definition 4.2.4. Let D = (D1, . . . ,Di) be as in Definition 4.2.3 and α = (α1, . . . ,αn)
∈ Rn, where n ≥ i. We define F (D) to be a formula which is true when i = 0. If
i > 0, and Di is a section then we define F (D) to be:

F (D1, . . . ,Di−1) ∧ xi = root(Di.e.p,Di.e.j,xi).

If i > 0, and Di is a sector then we define F (D) to be:

root(Di.l.p,Di.l.j,xi) < αn < root(Di.u.p,Di.u.j,xi).

We define S(D) as R0 if i = 0, and otherwise

S(D) = {γ ∈ Ri | F (D) is true at γ}.

We define Sα(D) as

Sα(D) = {(α1, . . . ,αi−1, γi) ∈ Ri | F (D) is true at (α1, . . . ,αi−1, γi)}.
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Definition 4.2.5. Let ((Pn, . . . ,P1),(D1, . . . ,Dn)) be a OneCell data structure. For
1 ≤ i ≤ n we define bpoly(Di) to be the set of bounding polynomials occurring in Di.
If Di is a section, then bpoly(Di) = {Di.e.p}. If Di is a sector then bpoly(Di) =
{Di.l.p,Di.u.p}\{−∞,+∞}.

For m ≤ n we define bpoly(D1, . . . , Dm) =
⋃m
i=1 bpoly(Di).

4.3 Primitive level-wise Single Cell Construction
The following algorithm (Alg. 1) constructs a single algebraic cell around a point
α. We call it primitive since it does a full projection with McCallum’s projection
operator (see l.2) which we will later on improve upon. On the other hand, this yields
the advantage of the projection operator being easily exchangeable. First, the full
projection is stored in P and the cell D is initialized (see ll.2-5). Then, the levels are
iterated from top to bottom, making it a level-wise approach.

For each level i, the algorithm distinguishes whether Di is a section or a sector.
In the section case, the algorithm first checks for failure (see ll.9-12). Failure occurs
when a polynomial p is nullified over (α1, . . . ,αi−1), meaning that p(α1, . . . ,αi−1,x1)
is constantly 0. After that, the section simply gets defined through a polynomial that
vanishes at (α1, . . . ,αi) and the according root as a RealAlgNum (see ll.13-15).

In the sector case, all polynomials of level i, evaluated at (α1, . . . ,αi−1), are con-
sidered. The roots of all these univariate polynomials in xi are then isolated. From
all these roots, the two which are the closest above and below αi are searched for.
These two roots as RealAlgNums, with the polynomials from which they are derived,
then define the sector (see ll.17-26).
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Algorithm 1: Primitive level-wise Single Cell Construction
Input : α = (α1, . . . ,αn) ∈ Rn where αk is a RealAlgNum for k ∈ {1, . . . ,n}

Q = {q1, . . . ,qm} ⊆ Z[x1, . . . ,xn]
Output: a OneCell data structure ((Pn,..,P1),(D1, . . . ,Dn)) containing α, such that

{q1, . . . ,qm} ⊆ (Pn

.
∪ . . .

.
∪ P1) ⊆ proj ∗(Q)

or (FAIL,f,i). In that case the following hold:
1. f is an irreducible integer polynomial of level 2 ≤ i ≤ n
2. f ∈ proj ∗(Q)
3. f(α1, . . . ,αi−1,xi) = 0

1 set P = (Pn, . . . ,P1) where Pi = ∅
2 for each p ∈ proj∗(Q) do
3 for each non-constant irreducible factor f of p do
4 let i be the level of f
5 set Pi = Pi ∪ {f}

6 set D = (D1, . . . ,Dn) where Di = (sector,(−∞,1),(−∞,[0,0]),(+∞,1),(+∞,[0,0]))
7 for i := n to 1 do
8 if for some p ∈ Pi, p(α1, . . . ,αi) = 0 then

/* Di is a section */
9 if i 6= 1 then

/* Check for failure caused by projection */
10 for each q ∈ Pi do
11 if q(α1, . . . ,αi−1,xi) = 0 then
12 return (FAIL,q,i)

13 set p to be the square-free part of
the univariate polynomial p(α1, . . . ,αi−1,xi)

14 let j be the index of the root αi of p and let I be an interval so that αi is
the only root of p in I

15 set Di = (section,(p,j),(p,I))
16 else

/* Di is a sector */
17 for each p ∈ Pi do
18 set p to the square-free part of

the univariate polynomial p(α1, . . . ,αi−1,xi)
19 if p has a root between Di.L and αi then
20 let the RealAlgNum B be the root of p between

Di.L and αi which is closest to αi

21 let j be the index of the root B of p
22 set Di.l = (p,j) and Di.L = B

23 if p has a root between αi and Di.U then
24 let the RealAlgNum B be the root of p between

αi and Di.R which is closest to αi

25 let j be the index of the root B of p
26 set Di.u = (p,j) and Di.U = B

27 return (P,D)

In the following, this procedure is visualized on the previously seen example of the
polynomials p1 and p2 as in equations (3.1). The point around which the cell will be
constructed is α = (3,4). This initialization can be seen in Figure 4.1a.
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Figure 4.1: Plot of the implicit equations p1
!
= 0 and p2

!
= 0 throughout Alg. 1 with

α = (3,4)

In the first iteration of the algorithm, the roots of p1(3,x2) and p2(3,x2) are con-
sidered. The roots are marked as points in blue (•) on the x2-axis in Figure 4.1b.
They give the bounds for α2 that can also be seen in light blue

root(p1,1,x2) < α2 < root(p1,2,x2).

In the second iteration, the roots of the resultant of p1 and p2 as well as the roots
of the discriminant of p1 are considered. These can be seen as blue (•) points on the
x2-axis in Figure 4.1c. Note that the the discriminant of p2 and the coefficients of p1
and p2 are in the projection but have no roots and are thus not relevant here. From
these roots, the bounds for α1 are derived

root(discx2
(p1),1,x1) < α1 < root(resx2

(p1,p2),1,x1).

These two bounds combined result in the cell which can be seen in blue in Figure 4.1c.
The effort of the algorithm is similar to the of compute_cad since the compu-

tationally most expensive part in compute_cad is the projection which Alg. 1 does
in a full manner. The algorithm presented in the next Chapter improves upon this.



Chapter 5

Optimized Level-wise Single
Cell Construction

We propose a more optimized approach to level-wise Single Cell Construction. This
optimization for once comes through a reduction of McCallum’s projection operator
found by Christopher W. Brown [Bro01]. We call this reduced operator Brown-
McCallum’s projection operator. With this optimization, only the leading coefficient
with the addition of another coefficient in some cases is considered instead of all
coefficients. Additionally, we reduce the projection with the incorporation of the
knowledge that only a single cell is constructed. This leads to a general reduction of
the amount of considered resultants.

5.1 Preliminaries
Before getting into the algorithm, we need two last definitions (Definition 5.1.2 copied
from [BK15]).

Definition 5.1.1 (order-invariance). A polynomial p is order-invariant over a region
R iff p is sign-invariant over R and if the sign over R is zero (all a ∈ R are already
roots of p), then the multiplicity of any two roots in R is the same.

Another way to phrase having constant multiplicity of roots is that the order of
p is constant over the region. A more formal definition can be found in McCallum
[McC98].

Definition 5.1.2 (tagged polynomial). A tagged polynomial of level i is a pair (t,p),
where t ∈ {oi,si} and p ∈ R[x1,...,xn] is a polynomial of level i. A tagged polynomial
(t,p) is tag-invariant on a connected region R ⊆ Ri if t = oi and p is order-invariant
on R, or if t = si and p is sign-invariant on R.

We will sometimes refer to a tagged polynomial (t,p) as p when the tag is not of
relevance in a situation. This will be clear from context. In the same spirit, we use the
OneCell data structure (Definition 4.2.3) with tagged polynomials in the upcoming
algorithm.

With McCallum’s projection operator, all polynomials are assumed to be order-
invariant. Brown then showed that this property that is stronger than sign-invariance
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is not necessary for the coefficients [Bro01][BK15]. Therefore, projected coefficients
will always be tagged with si and all other polynomials with oi during their initial-
ization.

5.2 Algorithm for Optimized Level-wise Single Cell
Construction

The optimized algorithm is a variant of Alg. 1. Essentially, a full projection as seen
in lines 2-4 is not done, but after determining the section or sector on the current
level, the polynomials on the current level are projected. In the case of a section, this
projection is inserted after line 15 and for the sector case after the loop in lines 17-26
of Alg. 1. The complete optimized algorithm can be seen in Alg. 2-6.

First of all, Append (Alg. 3) is a helper method to add each polynomial on its
correct level in P . It is used for the initialization of P and for storing projection results
in P . In the algorithm, the tag of the to be appended polynomial is considered. Since
order-invariance implies sign-invariance (but not the other way around), the algorithm
just updates the tag of a polynomial p from si to oi if p already was in P with si
and is now appended with oi. Otherwise, it is simply appended on the correct level
without duplication.

Construct (Alg. 2) is the main procedure that is structured similarly to Alg. 1.
The addition of projection on the current level can be seen in lines 12-28 for the case
of a section and in lines 31-32 with the call of ProjectSector (Alg. 6) for the case of
a sector. With the exception of resultants, projection is done as in the algorithms
MergeRoot and MergeNotRoot from [BK15] (converted to work iteratively). Thus
also, the addition of CoeffNonNull (Alg. 4) which is an adaptation of RefNonNull in
[BK15]. This algorithm possibly returns an additional coefficient of a given polynomial
that is added to the projection. The additional coefficient can potentially shrink the
cell below the level of the polynomial to prevent nullification of other projection
components over a part of the otherwise bigger cell.

Also, in contrast to the algorithm in [BK15], the level-wise algorithm covers one
case less to prevent nullification and thus failure that it can not easily deal with due
to it being level-wise. When the recursive algorithm [BK15] reaches a polynomial
that is nullified, it calls the algorithm MergeNull which does not return fail if the so
far constructed cell below is already a point. Since the level-wise algorithm constructs
the cell entirely top to bottom, this check is not easily possible.

Overall, using Brown-McCallum’s operator reduces the amount of coefficients that
are calculated to at most two. Additionally, in the case of a section fewer discriminants
are calculated. More precisely, the discriminant is only calculated for the bounding
polynomial and for polynomials that vanish at (α1, . . . , αi) and are tagged as order-
invariant.

As to resultants, an optimization is done that is possible due to the iterative nature
of the algorithm. Because of this, the bound(s) of the cell on level i are known when
projecting the polynomials of level i. Therefore, in the section case, only the resultants
between the polynomial defining the section on level i and every other polynomial are
calculated. Let us visualize exemplary why resultants between two polynomials, of
which neither is defining the section, are unnecessary in the projection. In Figure 5.1,
the root plot of the implicit equations p1

!
= 0 and p2

!
= 0 as in Equation (3.1) with the
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Figure 5.1: Plot of the implicit equations p1
!
= 0, p2

!
= 0 and p3

!
= 0 showing

exemplary the unnecessity of some resultants in projection in single cell construction

addition of the implicit equation p3
!
= 0 where p3 = x1−x2 are depicted. Additionally,

the point α = (7.5,7.5) and the cell it is contained in are marked in blue (•). This cell
is defined by a section in its second dimension because p3(α) = 0. Therefore, when
the algorithm reaches the projection part in the section case, the resultant of p1 and
p2 is not calculated and appended as neither of the polynomials define the section.
And this is clearly useful; since resultants project intersections of two polynomials
in their roots, taking the resultant would cut the cell shorter than necessary, loosing
the part between the gray, dashed lines. This generalizes, common roots between
polynomials other than the one defining the cell on level i do not influence the cell.

In the sector case, resultants are calculated between the upper bound and the
lower bound (if neither is (−)∞). Additionally, resultants between the upper bound
and each polynomial p for which p(α1, . . . , αi−1,xi) has a root above αi as well as
between the lower bound and polynomials p for which p(α1, . . . , αi−1,xi) has a root
below αi are calculated. These polynomials above and below the bounds that will be
used in resultant calculation are filtered out in DetermineBounds (Alg. 5) and are
put in the sets up and down. This is the only thing differentiating DetermineBounds
from Alg. 1, lines 17-26.

An example for resultants that are not calculated in the sector case can be seen in
Figure 5.1b. The same situation as in Figure 5.1a is depicted, only that α is now at
(7.5,3), making the second dimension of the cell a sector. In this case, the algorithm
would solely calculate the resultant between p2 and p3. Even though in this example
this resultant is superfluous, if the line depicting the roots of p3 was tilted differently
so that it cut the roots of p2 somewhere after 7.5 in the x1-direction, not having this
resultant would calculate a cell that is bigger than would be correct. On the other
hand, not calculating the resultant between p1 and p3 is fine since their intersection
in roots cannot interfere with the upper bound which is defined by p2. The same
holds for the resultant of p2 and p3; the intersection in their roots falls together with
a turning point in roots of p1 so that the edge of the cell is already inserted through
the discriminant. Note that the discriminant is in the sector case of the algorithm
taken for each polynomial.

Generalized, if two polynomials of which neither are the bounds of a cell intersect,



34 Chapter 5. Optimized Level-wise Single Cell Construction

they intersect outside of the cell so that their resultant is not of importance for the
single cell construction. If one of the two polynomials is a bound but for the other
polynomial p, p(α1, . . . , αi−1,xi) does not have a root over/under αi, then the interac-
tion of p with the cell is already covered through the consideration of its discriminant
or coefficients that are computed.

Overall, less resultants are calculated in the algorithm in contrast to a full pro-
jection with McCallum’s projection operator, which calculates the resultant of every
two polynomials of level i.

After projecting, sometimes tags are updated in the algorithms (see Alg. 2,
l.11+28 and Alg. 6, l.8). This is theoretically not necessary since after projection,
the tag of a polynomial is never considered again but it gives useful meaning to the
tags. Before being projected, the tag states which type of invariance is required for
the polynomial over the cell. After being projected (and possibly changed), the tag
states which type of invariance is guaranteed for the polynomial over the cell.
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Algorithm 2: Iterative OneCell Construct (Construct)
Input : α = (α1,...,αn) ∈ Rn where αk is a RealAlgNum for k ∈ {1,...,n}

Q = {q1,...,qm} ⊆ Z[x1,...,xn]
Output: a OneCell data structure ((Pn,..,P1),(D1,...,Dn)) containing α, such that

{(si,q1),...,(si,qm)} ⊆ (Pn

.
∪ ...

.
∪ P1) ⊆ proj ∗(Q)

or (FAIL,f,i). In that case the following hold:
1. f is an irreducible integer polynomial of level 2 ≤ i ≤ n
2. f ∈ proj ∗(Q)
3. f(α1,...,αi−1,xi) = 0

1 set P = (Pn,...,P1) where Pi = ∅
2 set P = Append(P,{(si,q) | q ∈ Q})
3 set D = (D1,...,Dn) where Di = (sector,(−∞,1),(−∞,[0,0]),(+∞,1),(+∞,[0,0]))
4 for i := n to 1 do
5 if for some (t,p) ∈ Pi, p(α1,...,αi) = 0 then

/* Di is a section */
6 set p to be the square-free part of

the univariate polynomial p(α1,...,αi−1,xi)
7 if p = 0 and i 6= 1 then
8 return (FAIL,p,i)

9 let j be the index of the root αi of p and let I be an interval so that αi is
the only root of p in I

10 set Di = (section,(p,j),(p,I))
11 set t = oi // modifies Pi

12 if i 6= 1 then
13 set P = Append(P,{(si,ldcfxi

(p)),(oi,discxi(p))})
14 set r = CoeffNonNull(α,p,(P,D))
15 if r 6= 0 then
16 P = Append(P,{(si,r)})
17 for each (t′,q) ∈ Pi\{p} do
18 if q(α1,...,αi−1,xi) = 0 then
19 return (FAIL,p,i)

20 set P = Append(P,{(oi,resxi(p,q))})
21 if q(α1,...,αi) = 0 then
22 if t′ = oi then
23 set P = Append(P,{(oi,discxi(q))})
24 set r = CoeffNonNull(α,q,(P,D))
25 if r 6= 0 then
26 P = Append(P,{(si,r)})

27 else
28 set t′ = oi // modifies Pi

29 else
/* Di is a sector */

30 set ((P,D), down, up) = DetermineBounds(α,i,(P,D))
31 if i 6= 1 then
32 set P = ProjectSector(α,i,(P,D), down, up)

33 return (P,D)
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Algorithm 3: Append P by polynomials contained in Q (Append)
Input : a tuple of sets (Pn,..,P1)

a set of tagged polynomials Q ⊆ Z[xi,...,xn]
Output: a tuple of sets (P ′n,..,P ′1)

1 for each (t,q) ∈ Q do
2 for each non-constant irreducible factor f of q do
3 let i be the level of f
4 if (t,f) /∈ Pi and (oi,f) /∈ Pi then
5 set Pi = Pi ∪ {(t,f)}
6 if t = oi then
7 set Pi = Pi\{(si,f)}

8 return P

Algorithm 4: Ensure non-nullification of a polynomial (CoeffNonNull)
Input : α = (α1,...,αn) ∈ Rn where αk is a RealAlgNum for k ∈ {1,...,n}

p is an irreducible integer polynomial of level i ∈ {1,...,n}
((Pn,..,P1),(D1,...,Dn)) is a OneCell data structure

Output: a polynomial r ∈ Z[x1,...,xi−1]
1 let p(x1,...,xi) = cmx

m
i + ...+ c1xi + c0 where cj is a polynomial of at most level

i− 1
2 if there is a non-zero constant in {cm,...,c0} then
3 return 0

4 if ldcfxi(p) ∈ P and ldcfxi(p)(α1,...,αi−1) 6= 0 then
5 return 0

6 if discxi(p) ∈ P and discxi(p)(α1,...,αi−1) 6= 0 then
7 return 0

8 if F (D1,...,Di−1) ∧
∧m

j=0 cj = 0 is inconsistent then
9 return 0

10 set r = cj such that cj(α1,...,αi−1) 6= 0
11 return r
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Algorithm 5: Determine bounds for a sector (DetermineBounds)
Input : α = (α1,...,αn) ∈ Rn where αk is a RealAlgNum for k ∈ {1,...,n}

the current level i of polynomials which are looked at
((Pn,..,P1),(D1,...,Dn)) is a OneCell data structure where
for all p ∈ Pi, p(α) 6= 0

Output: a OneCell data structure ((P ′n,..,P
′
1),(D

′
1,...,D

′
n)) with updated bounds in

D′i
two sets down and up, containing all polynomials p ∈ Pi for which
p(α1,...,αi−1,xi) has a root in (−∞,αi), respectively (αi,+∞)

1 set down = ∅ and up = ∅
2 for each (t,p) ∈ Pi do
3 set p to the square-free part of

the univariate polynomial p(α1,...,αi−1,xi)
4 if p has a root between −∞ and αi then
5 set down = down ∪ {p}
6 if p has a root between Di.L and αi then
7 let the RealAlgNum B be the root of p between

Di.L and αi which is closest to αi

8 let j be the index of the root B of p
9 set Di.l = (p,j) and Di.L = B

10 if p has a root between αi and +∞ then
11 set up = up ∪ {p}
12 if p has a root between αi and Di.U then
13 let the RealAlgNum B be the root of p between

αi and Di.R which is closest to αi

14 let j be the index of the root B of p
15 set Di.u = (p,j) and Di.U = B

16 return ((P,D), down, up)
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Algorithm 6: Project polynomials of level i for a Sector (ProjectSector)
Input : α = (α1,...,αn) ∈ Rn where αk is a RealAlgNum for k ∈ {1,...,n}

the current level i of polynomials which are looked at
((Pn,..,P1),(D1,...,Dn)) is a OneCell data structure where
for all p ∈ Pi, p(α) 6= 0
two sets down and up, containing all polynomials p ∈ Pi for which
p(α1,...,αi−1,xi) has a root in (−∞,αi), respectively (αi,+∞)

Output: a OneCell data structure ((P ′n,..,P
′
1),(D

′
1,...,D

′
n)) with an update of P

which includes the projected polynomials of level i
1 for each (t,p) ∈ Pi do
2 if Di.l = −∞ or Di.u = +∞ or some real root of p(α1,...,αi−1,xi) is equal to

val(Di.L) or val(Di.U) then
3 set P = Append(P,{(si,ldcfxi

(p))})
4 set P = Append(P,{(oi,discxi(p))})
5 set r = CoeffNonNull(α,p,(P,D))
6 if r 6= 0 then
7 set P = Append(P,{(si,r)})
8 set t = oi // modifies Pi

9 if Di.l.p 6= −∞ then
10 for each p ∈ down do
11 if p 6= Di.l.p then
12 set P = Append(P,{(oi,resxi(p,Di.l.p))})

13 if Di.u.p 6= +∞ then
14 for each p ∈ up do
15 if p 6= Di.u.p then
16 set P = Append(P,{(oi,resxi(p,Di.u.p))})

17 if Di.l 6= −∞ and Di.u 6= +∞ then
18 set P = Append(P,{(oi,resxi(Di.l.p,Di.u.p)})
19 return P



Chapter 6

Comparison: Recursive vs
Level-wise Single Cell
Construction

The optimized level-wise single cell construction algorithm from Chapter 5 as well
as the recursive single cell construction [BK15] are implemented in Smt-Rat [smt]
[CKJ+15]. We will in the following test them against each other. For this com-
parison, we utilize the sets of benchmarks contained in the SMT-LIB-Benchmarks
QF_NRA library [QFN][BST+10]. The contained benchmarks are QFNRA formulas
which we will refer to as problems. Therefore, we actually test the implementations
in the use-case of a SMT solver for QFNRA that is based on mcSat and is similar to
nlsat. Still, since only the source of the explanation changes between tests, we can
draw conclusions to the performance of the recursive and the level-wise approach in
comparison.

The solver is implemented in Smt-Rat. In the following, we will refer to this
solver using explanations resulting from recursive single cell construction as OC and
using explanations resulting from level-wise single cell construction as LW. Since both
of theses explanations can fail, there is a fallback procedure which is similar to Alg.
1 but using a complete projection operator. This fallback is slower than both ap-
proaches to single cell construction. Thus, possible performance differences between
LW and OC must still correlate to the performance of level-wise and recursive single
cell construction.

Additionally, we created two solvers which try to apply each Fourier-Motzkin vari-
able elimination (FM) [JBDM13], Interval Constraint Propagation (ICP) [Kre19] and
Virtual Substitution (VS) [ÁNK] in that order before resorting to recursive, respec-
tively level-wise single cell construction for the creation of explanations. We call these
solvers OC+ and LW+. Since FM, ICP and VS only work for polynomials of low de-
grees but faster for these, OC+ and LW+ are generally faster than OC and LW and
use single cell construction more rarely. Therefore, the + solvers will give less of an
impression on the performance of recursive against level-wise approach but more on
the difference it can make in practical application.

The machine used for testing has four 2.1 GHz AMD Opteron CPUs with 12 Cores
each. In the created test series, each problem had 15 minutes for computations with
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6 GB of RAM available.

6.1 Use Case Focused

Firstly, we do not prove the correctness of our algorithm in this thesis but since the
correct result is given with each problem, we can compare the results with the solution
to indicate correctness. And indeed, all 9262 of 11489 problems solved by LW and all
9688 problems solved by LW+ returned correct results.

The overall performance in the test series can be seen in Table 6.1. Statistics two
to five show that LW(+) generally performs better than OC(+). The following four
statistics show that this is also true if we restrict the test to the problems solved by
both solvers. Additionally, the overlap between problems solved by at least LW(+)
or OC(+), and problems solved by both is very high at 99.29% for the non+, and at
99.92% for the + solvers. This can be derived from comparing statistics one and six,
and shows that there is not a very significant amount of problems that only one of
the solvers can solve in 15 minutes.

For the last three statistics, we should differentiate between the + and non+
solvers since the numbers vary vastly between them. In the non+ case, at least
299672 explanations were called which is a lot considering that these were called in
the run of 11489 problems. Also, the success rate of explanations is higher for OC in
comparison to LW. This could be due to OC covering an additional case to prevent
failure as mentioned in Section 5.2. In contrast to that, the + solvers only call for
at most 3786 explanations. This indicates that there are a lot of problems with low
degrees in our testing data and shows that at most 3786 out of 11489 could have
used single cell construction. This gives reason to a more specific comparison that
focuses on the problems that actually used single cell construction in its calculation
for a better comparison of the different ways of single cell construction.

We also looked into the actual results of the computations, i.e. if the solved
problems were either satisfiable or not, but the results were very similar across the
board when comparing OC(+) and LW(+).

6.2 Single Cell Construction Focused

For this comparison, we consider the same test but try to get as close as possible
to the difference in performance that comes from having different ways of creating
explanations through single cell construction. Thus, we isolated only the problems
that employed single cell construction at least once during their solving time. This
performance evaluation can be seen in Table 6.2.

The first statistic alone further justifies this comparison since the previously de-
rived upper bound of at most 3786 problems that used single cell construction with
the + solvers is actually even lower at not more than 767 problems. Thus, for a
comparison of solving time between the single cell construction approaches, 95.39%1

of the problems solved by at least one solver have no value. The same can be seen for
the non+ solvers which was not obvious from the previous comparison, even though
the effect is not as strong with 51.21% of the solved samples not using single cell
construction.

1 # problems solved by at least one−# problems solved by at least one using single cell construction
# problems solved by at least one
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As an effect, the statistics show more clearly that the usage of level-wise single
cell construction outperforms the recursive approach since LW is faster than OC with
an even greater difference than before. In this evaluation, the improvement can also
be seen clearly for LW+ over OC+. Furthermore, the overlap in problems solved by
at least OC(+) or LW(+), and problems solved by both is decreased by roughly 1%
to 98.48% for the + and to 98.43% for the non+ solvers compared to the previous
evaluation. This decrease was expected; we will look further into these problems
outside of the overlap in Section 6.3.2.

To quantify the difference in performance, we can look at the decrease in time in

Performance Solver
measure OC LW OC+ LW+

# problems solved by at least one 9294 9692
# problems solved 9260 9262 9688 9688

Mean runtime of solved problems in s 6.784 6.080 7.400 7.227
Difference in means in s 0.704 0.173
Decrease in time in % 10.38 2.34
# problems both solved 9228 9684

Mean runtime of problems both solved in s 6.196 5.547 7.170 7.164
Difference in means in s 0.650 0.007
Decrease in time in % 10.49 0.01
# explanations called 308633 299672 3761 3786

# explanations successful 267945 253468 3625 3651
Explanation success rate in % 86.82 84.58 96.38 96.43

Table 6.1: Overall performance comparison of QFNRA solvers with 15 minutes run-
time and 6 GB RAM on 11489 problems

Performance Solver
measure OC LW OC+ LW+

# problems 5888 5867 771 767
# problems solved by at least one 4331 447

# solved problems 4297 4299 443 444
Mean runtime of solved problems in s 13.385 11.861 34.124 31.168

Difference in means in s 1.524 2.955
Decrease in time in % 11.39 8.66
# problems both solved 4265 440

Mean runtime of problems both solved in s 12.163 10.753 31.267 29.986
Difference in means in s 1.410 1.281
Decrease in time in % 11.59 4.10

Table 6.2: Single cell construction focused performance comparison of QFNRA solvers
with 15 minutes runtime and 6 GB RAM on overall 11489 problems. Each statistic
is meant with the premise “using single cell construction at least once in the solving
process”
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percent. It shows that the mean solving time needed on all problems that each solver
solved using single cell construction is decreased by 11.39% by using LW over OC and
by 8.66% by using LW+ over OC+. When considering only the problems that both
solver solved using single cell construction this decrease is 11.59%, respectively 4.10%.
This is still not a direct comparison of the runtime of the two single cell construction
algorithms but most likely as close as we can get to the difference in performance
using this method of testing.

6.3 Graphical Comparison
We will now analyze the test results in a less generalizing way. For this, we first
consider performance profiles and then scatter plots.

6.3.1 Performance Profiles
A performance profile is a plot of time against the number of problems solved in
under (or equal) that time. The time axis is thereby scaled logarithmic. Performance
profiles for all four solvers on all problems can be seen in Figure 6.1.

The plot underlines that LW is generally faster than OC, even though there are
points in time where their number in solved problems matches. A new take-away
is that the results from the previous comparisons are not just due to a well chosen
time parameter since this continuous depiction shows that LW has the upper hand
at most points in time or is at least evenly matched. As to LW+ and OC+, a
difference in performance between is not clearly visible. This is on par with the
previous observation that few problems rely on single cell construction which is the
only differentiating factor for the two solvers.

Analogous to before, we therefore consider the performance profile for all problems
that used single cell construction in one or the other form as quantified in statistic
three of Table 6.2. Since the difference in solved problems between + and non+
solvers is very high, the profiles are plotted separately. In Figure 6.2, the profiles
for the + solvers can be seen and in Figure 6.3 the profiles for the non+ solvers are
depicted. The scales in Figure 6.1 and Figure 6.2 are the same size so that a direct,
visual comparison is possible. This comparison confirms what has previously seen,
namely that a restriction to problems using single cell construction sets LW a bit
further apart from OC. Even though Figure 6.3 is not on the same scale as the other
figures, it still shows that LW+ performs better than OC+ which was not clear from
Figure 6.1.

6.3.2 Scatter Plots
The scatter plots in Figure 6.4 and Figure 6.5 display the time needed for problems
with LW(+) against the time needed with OC(+). Timeouts and memouts are incor-
porated as having taken the maximum computation time of 15 minutes. The subset
of problems we consider contains only problems which used single cell construction in
the solving process for at least one of the two solvers. This is useful since problems
that did not use single cell construction would cluster on the diagonal since the pro-
cedures are the same in that case. Also, problems that neither of the solvers solved
are omitted since these would just be a dot in the top right corner. The displayed set
of problems is the one quantified in statistic two of Table 6.2.
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As for illustration, problems that returned satisfiable are displayed as green up-
ward pointing triangles and problems that returned unsatisfiable are marked as red
downward pointing triangles. Additionally, the opacity of the dots is dimmed down so
that clustering is indicated by more saturated coloring. Furthermore, a gray diagonal
is shown in both of the plots. Problems that lay on this took the same time with both
solvers. Problems lying above it took less time using LW(+) and problems below took
less time using OC(+).

Generally, it looks like more dots are above the diagonal in both plots, again
supporting our argument of a better performance of LW(+) over OC(+). Most of the
points seem to cluster in the lower left corner around the diagonal, showing that there
are a lot of simple problems in the testing data. Otherwise, some problems are on the
outer rim of the plot indicating that for both solvers there are a few problems that
only one of them is capable of solving in under 15 minutes. A noticeable clustering
or pattern of unsatisfiable or satisfiable problems does not seem to occur in the plots.
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Figure 6.1: Performance profiles of QFNRA solvers with 15 minutes runtime and 6
GB RAM
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Figure 6.2: Performance profiles for LW and OC with 15 minutes runtime and 6 GB
RAM restricted to problems solved with single cell construction

Figure 6.3: Performance profiles for LW+ and OC+ with 15 minutes runtime and 6
GB RAM restricted to problems solved with single cell construction
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Figure 6.4: Scatter plot showing the runtime of LW vs OC with 15 minutes maximal
runtime and 6 GB RAM each
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Figure 6.5: Scatter plot showing the runtime of LW+ vs OC+ with 15 minutes max-
imal runtime and 6 GB RAM each
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Chapter 7

Conclusion

We conclude this thesis with a short summary and ideas for possible future work.

7.1 Summary

This thesis presented a novel approach to single cell construction that can be used
in SMT solvers for QFNRA like for example nlsat [JdM12]. Single cell construction
is essentially the construction of the cell of a CAD [Col75] in which a given point
is contained. The presented, level-wise algorithm builds said cell level by level in
contrast to the recursive algorithm [BK15] that merges polynomials as they come,
thus refining bounds of the cell at different levels throughout the entire procedure.
Both these algorithms use Brown-McCallum’s projection operator [Bro01][McC98]
with the level wise algorithm having some further optimization, reducing the amount
of calculated resultants. Also, both are implemented in Smt-Rat, an Open Source
C++ Toolbox for Strategic and Parallel SMT Solving [smt][CKJ+15].

With theses implementations, we compared the performance of the two approaches
in the use-case of a solver for QFNRA similar to nlsat. As benchmarks, we chose
the QFNRA formulas contained in the SMT-LIB-Benchmarks QF_NRA library
[QFN][BST+10]. Running all benchmarks with 15 minutes maximal runtime and 6
GB RAM available each, showed that using the level-wise over the recursive approach
in the solver resulted in a decrease in mean solving time of 10.38% (considering only
solved formulas). With the help of performance profiles, we also verified that the
found improvement is a continuous trend.

7.2 Future work

First of all, we did not proof the correctness of our algorithm. Proofing it would
eliminate the marginal chance of there being an input for which the algorithm does
not return the correct result.

Furthermore, McCallum’s projection operator is not complete so that the algo-
rithm can potentially return FAIL. Thus, a next step could be to use a complete
operator like Lazard’s projection operator [Laz94] to avoid the necessity of a fallback
strategy. Still, in our testing, the proportion of failed single cell constructions is max-
imally 15.42% and in a more practical use-case only 3.57%. Therefore, it should be
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Figure 7.1: Alternative heuristic for resultant calculation in optimized level-wise single
cell construction

kept in mind that a complete operator might increase the complexity so that using a
Fallback strategy might still be better in performance.

Last of all, further heuristics for calculating resultants could be considered. With-
out proving correctness, we propose another heuristic for picking resultants to calcu-
late in the section case of the optimized level-wise algorithm. Currently, the resultant
between the upper/lower bound q and polynomials p with p(α1, . . . , αi−1,xi) having
a root above/below αi are calculated. Another idea is to sort the roots of all polyno-
mials p with a root in p(α1, . . . , αi−1,xi) and then taking the resultant between the
polynomials that have neighboring roots. This is visualized in Figure 7.1. Further-
more, a hybrid variant of the currently implemented and the just presented heuristic
is imaginable. If it works correctly, the hybrid variant could try to avoid very com-
plex resultants or even try to calculate the least complex resultants. This is possible
since the (asymptotic) complexity of the calculation of a resultant of two polynomials
depends on the degrees of these polynomials which are accessible before calculating
the resultant.
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