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Abstract

Planning as satisfiability and planning with first-order logic in contrast to other plan-
ning approaches have become more popular in research in the past years. Still, most
of the problems consider deterministic planning only, and those that do not tend to deal
with problems other than to find a most probable solution. In this thesis, an algorithm
is presented that can handle probabilistic domains with discrete probability distributions.
It utilizes SMT to determine a plan with maximum success probability. Two simple al-
gorithms are introduced for comparison. The aim of this work is to elaborate and use a
suitable algorithm to identify use cases for finding most probable solutions and for ap-
plying probabilities in planning with SMT. The usage of SMT for probabilistic planning
problems is examined in comparison to current planners for RDDL planning tracks of the
International Planning Competition.
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Chapter 1

Introduction

Planning software can be used to generate instructions for autonomous robots, to navigate
or to calculate a schedule for a project. As the planning domains of the International Plan-
ning Competition show (see Chapter 6 and Appendix A.4), planning problems can become
very complex. There have been many approaches to formalize and solve these problems
in computer science in the past decades. One of them, planning as satisfiability, relies on
propositional logic and SAT solvers, and was elaborated as an alternative to deductive plan-
ning. Planning using satisfiability modulo theories (SMT) with SMT solvers like Z3 has been
examined as well.

Still, probabilities have not yet been used in planning using SMT on a larger scale. Other
planners, like the ones for the probabilistic tracks of the International Planning Competition,
rely on heuristic tree searches, neural networks or similar ideas. As planning as satisfiability
has some advantages over a deductive approach, planning using SMT might benefit from
similar properties compared to other planning algorithms. Therefore, this thesis is meant to
contribute to the discussion of probabilistic planning by introducing basic ideas on how to
integrate probabilities in SMT solving: These include a translation from a planning language
called RDDL to the language used by Z3, the integration of probabilistic statements in Z3
and a simple algorithm to generate a plan with high probability of success. The performance
of the algorithm is compared to other planners that do not rely on SMT. The results can be
used as a foundation for further discussion of the topic.

Background knowledge about planning as satisfiability, SMT, OMT, Z3, MDPs, the In-
ternational Planning Competition (IPC) and RDDL is provided in Chapter 2. In Chapter 3,
the problem examined in this thesis is formally defined. In Chapter 4, other concepts for
planning in the IPC, planning using SAT and SMT and a symbolic graph search are exam-
ined. This allows for a brief comparison to other approaches and indicates the interest in the
field to solve probabilistic planning problems. The general idea of the algorithm on an MDP
is presented in Chapter 5. The method is also explained in form of constraints for an SMT
solver. The chapter also includes a brief description of the translation of RDDL statements to
Z3, especially of probabilistic statements, which need to be treated differently. Other simpler
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methods and an older idea that could not be applied are mentioned as well. The resulting
algorithm is then evaluated with different parameters in comparison to other planners that
can handle RDDL domains in Chapter 6. Seven domains have been chosen and are analyzed
separately, with focus on the performance and usefulness of the algorithm and whether it be-
haves correctly. The results are discussed at the end of the chapter. In Chapter 7, a conclusion
is drawn to assess the use of SMT in probabilistic planning, the quality of the algorithm and
the actual implementation that was tested and to give ideas for further improvements.

The publications in [BT18] and [KS92] that are cited in the following chapter could not
be compared with the online versions of these papers, which were used as sources for the
citations. Thus, page numbers were given for the latter instead, which are referred to in a
note in the bibliography to allow for a comparison.



Chapter 2

Preliminaries

This chapter provides basic knowledge necessary for the understanding of the following dis-
cussion.

2.1 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories consider the satisfiability of first-order formulas given a the-
ory T in first-order logic that is decidable [Seb07, p. 141], including e.g. the theory of linear
arithmetic over the reals or integers [Seb07, p. 144]. The limitation to models of a theory
can, as semantic restriction on the formula, make the satisfiability of such a formula decid-
able as well [BT18, see p. 2]. Thus, SMT can be seen as a restriction on first-order logic
to decidable formulas. This approach allows for “specialized satisfiability procedures that
exploit properties of the fragment” [BT18, p. 2] - some theories might have properties that
can be used to speed up the search for a satisfying assignment. These procedures can bring a
“great advantage for practical efficiency” [BT18, p. 2], so especially problems that are hard
to solve in praxis could benefit from the usage of SMT.

ϕ := (a > 5)∧ (a < 20)

ϕ
′ := A ∧ B

(2.1)

Problems expressed in SMT can, referring to the so-called “‘lazy approach’” [BT18, p. 3],
be solved with a SAT solver and specialized solvers for the used theories [BT18, p. 3]: As-
sume that a T-formula ϕ needs to be solved. The input formula’s atoms are replaced by new
propositional variables and the resulting formula ϕ ′ can be passed to a SAT solver [BDS02,
p. 241]. An example for this procedure is shown in Equation (2.1). If a model for ϕ ′ is found,
a theory solver for T checks if it is consistent to the theory [ST14, p. 5]. A model of the orig-
inal problem was determined if this consistency is given. Otherwise, an additional constraint,
taking a with T conflicting subset of the assignment into account, is added to the formula and
the process is repeated [ST14, p. 5]. Thus, inconsistent models are excluded, until either a
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solution has been found or the formula is unsatisfiable, which means that ϕ is T-unsatisfiable
[BT18, pp. 9–10].

SMT is an approach that allows for a higher expressiveness than SAT due to the possibility
to use features of first-order logic while still being decidable [BT18, p. 2]. It has already been
used to solve problems in the industry [ST17, p. 1], for example in the field of automated
reasoning [ST14, p. 1], and its utility in planning is still being researched (see Section 2.3,
Section 2.4 and Section 4.3).

Due to the expressiveness of SMT and the advantage of specialized procedures as well
as the interest of using SMT in planning, which is shown in Chapter 4, an examination of its
usage in the context of probabilistic planning problems seemed reasonable.

2.2 Optimization Modulo Theories (OMT) and Z3

OMT extends SMT by allowing to “optimize given objectives” [ST17, p. 1], for example by
using a cost variable in ϕ that needs to be minimized [ST12, p. 8]. Not any satisfying model,
but instead an optimal model according to a cost function is desired.

Consider a problem specified by a satisfiable formula ϕ , given a background theory T,
where the value of an integer variable cost should be minimized. A realization of an OMT
procedure with only an upper bound could rely on ϕ ′ = ϕ ∧ (cost < ci) (see [ST12, p. 8]).
The formula would be repeatedly passed to an SMT solver, each time with a lower value for
ci [ST12, p. 9]. In this example, the model satisfying ϕ with the lowest cost (if any exists)
would be found [ST17, see p. 4]. Such procedures are “very naive” [ST12, p. 9], but they
provide a basic understanding of the principle of OMT.

An example of its usage in νZ, “part of the SMT solver Z3” [BPF15, p. 194], which is
used in this thesis, is given in Figure 2.1. νZ “allows users to solve SMT constraints and at the
same time formulate optimality criteria for the solutions” [BPF15, p. 194] and thus includes
an OMT procedure. In the example given in Figure 2.1, OMT is used to maximize the objec-
tive function b−a under the constraints a > 5, a < 20, b < 10 and a < b. The interpretation
with a = 6 and b = 9 is the optimal solution. The encoding in Z3 is shown in Figure 2.1a,
the output of the solver in Figure 2.1b. This small example indicates the capabilities of OMT
regarding objectives that are supposed to be optimized, which can be much more complex
than demonstrated here, and, using a solver like νZ, can also be combined [BPF15, p. 195].

It is important to note that the solver can be used “for solving linear optimization prob-
lems” [BPF15, p. 194] and does not seem to be applicable for non-linear objective functions.
Yet, advances in this area are anticipated by the authors of the paper [BPF15, p. 196]. As the
graphic in an online chapter on optimization in Z3 [BdMNW] indicates, which describes νZ’s
architecture in [BPF15, p. 197], Z3 might thus currently not support non-linear optimization.
This is important for the evaluation in Chapter 6 and the choice of the algorithm.
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1 (declare−fun a () Int)
2 (declare−fun b () Int)
3 (assert (> a 5))
4 (assert (< a 20))
5 (assert (< b 10))
6 (assert (< a b))
7 (maximize (− b a))
8 (check−sat)
9 (get−model)

(a) OMT example in Z3

1 sat
2 (model
3 (define−fun b () Int 9)
4 (define−fun a () Int 6)
5 )

(b) Output given by Z3

Figure 2.1: Z3 example code and output

2.3 Planning as Satisfiability

Planning as Satisfiability is a method of planning using propositional satisfiability, which
was introduced as an alternative to deduction [KS92, pp. 1–2]: Conditions and actions are
formalized as axioms [KS92, p. 5], and it is “easy to specify conditions in any intermediate
state” [KS92, p. 6], giving more control over desired plan properties. If specified correctly,
models for a thereby resulting formula found by a SAT solver can be used as valid plans for
the planning problem.

(precondition∧action)⇒ effect (2.2)

In order to formalize a plan in propositional logic, the formalization must be stronger
than in deductive reasoning [KS92, p. 10]: Using deduction, initial conditions and actions
together imply the goal conditions [KS92, p. 4], but a model that satisfies these deductive
planning axioms alone must not represent a valid plan in the context of the planning domain
[KS92, p. 4]. It can also be “anomalous” [KS92, p. 4], meaning that the plan found must not
make sense in the world it should be applied to: For example, in Equation (2.2) the action
and the effect can be interpreted as being true if the precondition is not satisfied. For the
planning as satisfiability approach to work, it is therefore important to fully specify the initial
state [KS92, p. 6] and all axioms necessary to encode the desired requirements as constraints
on the plan [KS92, compare p. 5]. Thus, problems must be formalized differently than in
deductive reasoning to obtain valid plans.

on(A,B,1)∧on(B,Table,1)∧ clear(A,1)∧on(B,A,3) (2.3)

To give an example, Equation (2.3) from [KS92, p. 5] describes the initial and the goal
state of two blocks A and B. At time 1, A is on B, B is on the table and A is clear, meaning
that no other block is on top of A at that time. At time 3, B is on A. By using this notation,
implications of actions on the world’s state can be formalized as well.

The satisfiability problem can be solved by any SAT solver. Using GSAT, the authors of
[KS92, p. 9] noticed that adding additional axioms which could be derived from the initial
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axioms can improve the performance of the computation.

2.4 Planning Using SMT

Based on the idea of planning as satisfiability, plans can also be generated using SMT or
OMT in a similar manner, which can be interesting due to the expressiveness of the language.
Planning problems defined in a planning language like PDDL+ can even be translated to and
solved by SMT solvers [CFLM16, p. 79]. Given a set of constraints over a domain D and a
set of theories T , properties of and actions in a problem definition, e.g. of navigating a robot
in a small room that contains obstacles, can be formalized in first-order logic. A solver like
Z3 can then be used to find a model for the formalization. Z3 is used by [CFLM16, p. 85] to
find a proof, and a plan can be obtained by using the assignment of all action variables in it
[CFLM16, p. 82].

2.5 Markov Decision Process

2.5.1 Transition Systems and Planning

Definition 2.5.1 (p. 20 in [BK08])
A transition system T S is a tuple (S,Act,−→, I,AP,L) where

• S is a set of states,

• Act is a set of actions,

• −→⊆ S×Act×S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S→ 2AP is a labeling function.

A transition system is similar to a directed graph, where states, which represent the prop-
erties of the modeled system at one point in time, are represented by nodes and nondetermin-
istic transitions between these states by edges [BK08, pp. 19–20]. Transitions are labeled
with action names [BK08, p. 20]. The initial state is drawn nondeterministically [BK08,
p. 20].

A basic knowledge of transition systems is necessary to understand Markov Decision
Processes (MDPs), which are used to explain the algorithm presented in Chapter 5. In Sub-
section 2.5.3, a concept called scheduler will be introduced, and with such a scheduler a
deterministic behavior can be obtained.
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buy ticket lottery won1

0.0001

0.9999
1

Figure 2.2: A simple Markov chain

2.5.2 Markov Chains and Rewards

Definition 2.5.2 (see pp. 747–748 in [BK08])
A Markov chain is defined as a tuple (S,P, ιinit,AP,L) where

• S is a countable, nonempty set of states, AP is a set of atomic propositions, L : S→ 2AP

is a labeling function

• P : S×S→ [0,1] is the transition probability function where for all s ∈ S:

∑
s′∈S

P(s,s′) = 1

• ιinit : S→ [0,1] is the initial distribution with ∑s∈S ιinit(s) = 1.

If, instead of nondeterministic transitions and actions like in transition systems, a prob-
ability distribution given by P determines the successor of a state s ∈ S [BK08, p. 747],
depending only on s [BK08, p. 747], that is called a Markov chain. ιinit is similar to I in
transition systems, but the initial state is chosen probabilistically [BK08, p. 748]. Edges are
labelled with the corresponding probability [BK08, p. 749] instead of action names.

An example for a Markov chain is given in Figure 2.2. It models a customer that buys
new lottery tickets until he wins the lottery, which happens with a probability of 0.01%. As
soon as the lottery is won, the customer stops buying new tickets. The initial distribution only
includes the state “buy tickets”.

A Markov chainM can be extended by a reward function rew, and the resulting model
(M,rew) is called a Markov reward model, with rew : S→ N [BK08, p. 817]. The reward
rew(s) for a state s ∈ S is earned as soon as it is left [BK08, p. 817].

Rewards will play an important role in RDDL domains, as the goal that needs to be
achieved is only defined implicitly by the reward function.

2.5.3 Markov Decision Processes and Schedulers

Definition 2.5.3 (see pp. 833–834 [BK08])
A Markov decision process (MDP) is a tuple (S,Act,P, ιinit,AP,L) where

• S is a countable, nonempty set of states, Act is a set of actions, AP is a set of atomic
propositions, L : S→ 2AP is a labeling function
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box on ground box picked up

pick up, 0.9

pick up, 0.1

put down, 1

do nothing, 1 drive around, 1

Figure 2.3: A simple MDP

• ιinit : S→ [0,1] is the initial distribution with ∑s∈S ιinit(s) = 1.

• P : S×Act × S→ [0,1] is the transition probability function where for all s ∈ S and
α ∈ Act:

∑
s′∈S

P(s,α,s′) ∈ {0,1}

Act here is the set of actions for which the sum above is 1. Furthermore, Act is extended
in each state by a “noop” action that always succeeds. It does not have any effect on the
current state of the MDP. If such an action is not allowed by an RDDL instance, then the sum
above must be 1 for at least one action in each state to prevent deadlocks.

MDPs can be interpreted as a combination of transition systems and Markov chains. S,
Act, ιinit, AP and L thus have the same properties as described before. The transition function
now allows for nondeterministic and probabilistic transitions [BK08, p. 832]. For any state
s∈ S where more than one action can be taken, meaning ∑α∈Act ∑s′∈S P(s,α,s′)> 1, an action
α ∈ Act needs to be chosen nondeterministically [BK08, p. 834], and from all outgoing α-
transitions of s one transition is chosen according to the probability distribution given by P
over α [BK08, p. 834].

Edges where the probability given by P is 0 are omitted. Edges are labeled with the action
name and the probability of the transition.

The MDP given in Figure 2.3 considers a robot that can perform actions like “pick up”.
This action succeeds with a probability of 90% and fails with a probability of 10%. If it
is selected nondeterministically, the outcome of the action is therefore uncertain. In order
to give a solution for planning problems formalized with an MDP, it is important to define
what a solution in an MDP looks like. The choice between different actions does not need
to be resolved nondeterministically. If certain states are defined as goal states and a plan can
be generated that deterministically selects an action according to the current state and, by
following the path determined by the plan, a goal state is reached from an initial state, then
this is a solution for the given instance.

Definition 2.5.4 (see p. 841 [BK08])
For an MDP M = (S,Act,P, ιinit,AP,L), the infinite sequence s0α1s1α2 . . . ∈ (S×Act)ω is
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called an infinite path. It is written as

π = s0
α1−→ s1

α2−→ . . .

with P(si,αi+1,si+1) > 0 for all i ≥ 0. The set of all infinite paths starting in state s is given
by Paths(s), the set of finite paths - all distinct finite sequences π ′ in all paths π ∈ Paths(s) -
by Paths f in(s).

Example 2.5.1

box on ground
pick up−−−−→ box picked up drive around−−−−−−→ box picked up

Definition 2.5.5 (see p. 842 [BK08])
LetM= (S,Act,P, ιinit,AP,L). A (deterministic) scheduler forM is a function S : S+→ Act
such that S(s0s1 . . .sn) ∈ Act(sn) for all s0s1 . . .sn ∈ S+. π = s0

α1−→ . . . is called a S-path if
αi =S(s0 . . .si−1) for all i > 0.

Schedulers are used for the formalization of a plan. They contain the rules that decide
which action to take next, beginning in any starting point s0 ∈ S. Example 2.5.1 is a finite path
that represents one of many possible executions that could have been planned by the robot’s
planning software. It could also be interpreted as the beginning of an infinite S-path of any
scheduler S where S(box on ground) = pick up and S(box on ground, box picked up) =
drive around. If “box picked up” were a goal state, these schedulers could even be interpreted
as solutions for the domain. But such a scheduler does not always reach a goal state, as “pick
up” is an action that might infinitely often fail. Thus, schedulers do not induce paths, as, after
the resolution of nondeterminism in an MDP, probabilistic statements remain.

A scheduler induces a Markov chainM instead (e.g. Figure 2.4). The probability that
the finite path given in Example 2.5.1 is taken onM, beginning at the initial state, is 90%, as
the first action fails with a probability of 10%.

Definition 2.5.6 (see p. 843 [BK08])
A scheduler S on an MDPM= (S,Act,P, ιinit,AP,L) induces the Markov chain

MS = (S+,PS, ι ′init,AP,L′)

where for σ = s0s1 . . .sn: PS(σ ,sn+1) = P(sn,S(σ),sn+1) and L′(σ) = L(sn). The induced
initial distribution is

ι
′
init : S+→ [0,1],σ 7→ ιinit(sn) for σ = s0 . . .sn ∈ S+

Let Sexec be a scheduler where Sexec(s0 . . .sn) = pick up if sn = box on ground and
Sexec(s0 . . .sn) = drive around otherwise. Figure 2.4 shows the beginning of the Markov
chain induced by Sexec on the MDP in Figure 2.3.
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box on ground

box picked up

box on ground

box picked up

box picked up

box on ground

. . .

. . .

. . .

. . .

0.9

0.1

1

0.9

0.1

1

1

0.9

0.1

Figure 2.4: Markov chain induced by a scheduler on the MDP in Figure 2.3

2.6 International Planning Competition

In order to evaluate the solution presented in this thesis, it is compared with other planners
that can operate on MDPs used in the International Planning Competition.

The International Planning Competition (IPC) has taken place multiple times since 1998.
One of its benefits is to support the development of planners [CCO+12, see p. 85]. Sub-
mitted planners and the gathered data and benchmarks generated during the competition are
supposed to be advantageous for the planning community [CCO+12, see p. 85]. It was thus
chosen as the basis for comparison.

In 2011, the tracks of the IPC included deterministic, learning and uncertainty tracks
[CCO+12, p. 83]. The latter, called probabilistic tracks in 2018 [ippc], are of interest in
this thesis. First, in 2004, PPDDL, whose problems can be represented as an MDP, was
used [YLWA05, see p. 851, p. 853, p. 854], but since 2011, PPDDL was replaced by RDDL
[CCO+12, p. 84], which can be used to model new problems [San10, see p. 2]. The per-
formance metric for planners of the 2011 competition was based on the received reward
[CCO+12, p. 87].

The probabilistic part of the IPC will be abbreviated as IPPC.

2.7 RDDL

RDDL (Relational Dynamic Influence Diagram Language) is a language that is used by the
IPPC to describe probabilistic planning problems. It supports for example concurrency, mul-
tiple variable types, different probability distributions, a reward function and logical and arith-
metic expressions [San10, pp. 3–4]. As partial observability will not be considered here, all
presented instances could be represented by factored MDPs as well [San10, p. 1]. Because
Section 2.5 suffices for the explanation of RDDL and the algorithm in Section 5.1, the concept
of factored MDPs will not be introduced.

In RDDL, domains, non-fluents and instances of domains can be declared in different
blocks [San10, p. 17]. A domain is initially given a name and requirements [San10, p. 6], for
example that the reward is deterministic. It also defines variables, conditional probabilistic
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1 types {
2 robot: object;
3 };

(a) Object definitions

1 objects {
2 robot : {robot1, robot2, robot3};
3 };

(b) Object instantiations

Figure 2.5: User-defined objects in RDDL

functions (cpfs), state-action constraints, action-preconditions, types and a reward function
[San10, pp. 18–20].

Variables, which are called pvariables, are parameterized [San10, p. 3] and can have one
of the ranges bool, int, real, or are an object or enumerated [San10, p. 18]. Objects are
defined by the user as shown in Figure 2.5. The only pvariable types of interest are state-
fluent and interm-fluent (of level 1), which describe a property of the system that can
dynamically change in each step, non-fluent, which describes a property of a system that
does not change, and action-fluent, which describes actions that can be made by agents in
the domain. These variables are usually declared including default values [San10, p. 18],
which are, if not specified otherwise in a non-fluent or instance block, where non-fluents
can be instantiated or initial states can be set [San10, p. 20], their initial values. The latter
blocks also define objects, specify the planning horizon in horizon, the maximum amount
of (concurrent) actions that are allowed to be taken in a time step in max-nondef-actions
and the discount on the reward function in discount [San10, see p. 20].

The block cpfs is used to specify transitions for state-fluents and intermediate-fluents
[San10, p. 18]. Primed pvariables represent values of the state-fluent in the next state of the
system, unprimed pvariables the value in the current state [San10, see p. 18]. They can be as-
signed constants like true or false, integers, reals and enums and be used as part of basic log-
ical expressions including existential and universal quantifiers, basic arithmetic expressions
including sum and prod for ∑ and ∏, (in)equality comparisons and conditional expressions
[San10, pp. 18–19]. To support probabilistic domains, probability distributions are part of the
syntax as well [San10, p. 19]. Four of these distributions are of interest: KronDelta(val)
and DiracDelta(val) state, for discrete or continuous domains, that the probability that the
given argument val in an assignment will become the next value of a pvariable is 1.0 [San10,
see p. 19]. For convenience, they are omitted and val will be written instead. Bernoulli(p),
on the other hand, represents a function that becomes true with a probability given by the
statement p, where p can have values in [0,1], and that is false otherwise [San10, see p. 19].
Discrete describes a discrete distribution between different values, for which probabilities
that sum up to 1.0 are given [San10, see p. 19].

State-action constraints and action-preconditions provide an option to specify additional
constraints in the domain that are independent of the transition functions. The reward expres-
sion is a function that, as the performance metric indicates [CCO+12, see p. 87], is supposed
to be used for optimization. Goal states are not defined explicitly.

An example of a translation of the simple MDP in Figure 2.3 into a similar RDDL file
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is shown in Figure 2.6 and Figure 2.7. Parts irrelevant for the understanding of the RDDL
syntax were omitted, indicated by “...”.

All planning problems considered in this thesis are written in and translated from RDDL
files. Apart from finding a most probable path in an MDP represented by an RDDL problem,
it was thus also relevant to elaborate a straightforward translation of the most important parts
of the language to Z3. Due to the expressiveness of RDDL, anomalous models can be ruled
out in the planning language itself.

2.7.1 Used Tools

RDDL files are parsed with the parser provided by Scott Sanner on GitHub, which is a part
of RDDLSim [rdd]. The parser object is used in the project to translate the RDDL file to Z3.
The RDDL instances can be simulated using RDDLsim [rdd], which is used in Chapter 6 to
evaluate the proposed algorithms and planners of the IPPC 2018.

Z3 was chosen as SMT solver for this project because it is open source, has a good
documentation and is easy to use. The solver can be downloaded at [z3G]. Its basic usage is
described in Section 2.2. More documents on Z3 can be found in [z3M].
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1 domain simple_mdp {
2 ...
3 types {
4 box : object;
5 };
6

7 pvariables {
8 //non−fluent, the default probability of success for picking up a box is 80%
9 PROB−PICKUP : { non−fluent, real, default = 0.8 };

10

11 //state−fluents, the default position of a box is unspecified
12 on−ground(box) : { state−fluent, bool, default = false };
13 picked−up(box) : { state−fluent, bool, default = false };
14 pick−up−action(box) : { interm−fluent, bool, level = 1 };
15

16 //action−fluents
17 do−nothing(box) : { action−fluent, bool, default = false };
18 pick−up(box) : { action−fluent, bool, default = false };
19 put−down(box) : { action−fluent, bool, default = false };
20 drive−around(box) : { action−fluent, bool, default = false };
21 };
22

23 cpfs {
24 on−gound(?b)’ = if (pick−up−action(?b))
25 then false
26 else if (put_down(?b))
27 then true
28 else on−ground(?b);
29

30 picked−up’(?b)= if (pick−up−action(?b))
31 then true
32 else if (put_down(?b))
33 then false
34 else picked−up(?b);
35

36 pick−up−action(?b)= if (pick−up(?b))
37 then Bernoulli(PROB−PICKUP)
38 else false;
39 };
40

41 reward = ... //Some reward function
42

43 state−action−constraints {
44 //Some actions are not allowed to be taken in certain situations
45 forall_{?b : box} picked−up(?b) => ~do−nothing(?b) ^ ~pick−up(?b);
46 forall_{?b : box} on−ground(?b) => ~drive−around(?b) ^ ~put−down(?b);
47 };
48 }

Figure 2.6: RDDL file extract for Figure 2.3, domain. This example includes the action pick-
up, which is made probabilistic and applied in the following step through the interm-fluent
pick-up-action.
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1 non−fluents simple_mdp_nf {
2 domain = simple_mdp;
3 objects {
4 box: { box1 };
5 };
6 non−fluents {
7 PROB−PICKUP = 0.9;
8 }
9 }

10

11 instance simple_mpd_inst {
12 domain = simple_mdp;
13 non−fluents = simple_mdp_nf;
14 init−state {
15 on−ground(box1);
16 }
17 max−nondef−actions = 1;
18 horizon = 10;
19 discount = 0.8;
20 }

Figure 2.7: RDDL file extract for Figure 2.3, instance



Chapter 3

Problem Statement

The topic of this thesis is to contribute to the discussion of probabilistic planning using SMT
by finding a method to combine an SMT solver with a procedure that allows for representing
and solving probabilistic planning problems. While planning as satisfiability as well as plan-
ning with SMT already have been investigated in other papers, there is yet not much to be
found concerning probabilistic planning with SMT (see Chapter 4). Thus, a basic algorithm
to solve a certain subset of probabilistic planning problems using SMT solving is elaborated.
It is compared to other planners that operate on domains which are specified in RDDL. Thus,
a translation from RDDL to Z3’s SMT representation is implemented as well.

3.1 The Problem

Probabilistic planning problems describe domains where certain actions, state transitions or
decisions are of probabilistic nature, for example because actions might fail or because un-
foreseeable state transitions like a coin flip might be observed. The set of probabilistic plan-
ning domains that is of interest in this thesis can be described by MDPs (see Section 2.5).

Only plans that fulfill three criteria are of interest: A plan is only valid or successful if an
agent that executes it reaches a goal state. The goal state does not need to be the final state,
if not specified otherwise in the domain. Furthermore, all nondeterministic behavior must be
resolved by the plan, similar to a scheduler, but with the option to remain in a state - if allowed
by the domain - by choosing no action at all. Finally, the taken path from the initial to the goal
state should be the most probable path of all paths from the initial to any goal state. Thus, a
path in the MDP with maximum probability of success is desired. As nondeterminism needs
to be resolved first, the most probable path of all finite paths within the search horizon of all
Markov chains that are induced by any scheduler S inM is searched for.
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1 state−var−1 : { state−fluent, int, default = 0 };
2 ...
3 action : { action−fluent, bool, default = false };
4 perform−action : { interm−fluent, bool, level = 1 };
5 ...
6 perform−action = if (action)
7 then Bernoulli(0.7)
8 else false;
9

10 state−var−1’ = if (perform−action)
11 then state−var−1 + 1
12 else state−var−1;
13 state−var−2’ = if (action ^ Bernoulli(0.7))
14 then state−var−1 + 1
15 else state−var−1;
16 ...

Figure 3.1: RDDL: simulation of probabilistic actions

3.2 Restrictions

The set of domains that are of interest in this thesis is restricted. Only discrete probability
distributions are considered: Coin flips or dice rolls can be encoded but generating a real
valued random variable between 0 and 1 is not possible.

In RDDL, the representation of actions with probabilistic outcome is not intuitive. Only
state transitions can be probabilistic. All probabilistic changes of variables can be interpreted
as concrete actions that are executed by the environment if the precondition of the transition
is satisfied. They might not depend on decisions made by the agent but can also be related
to properties of the environment only. Still, actions with probabilistic outcomes can be sim-
ulated, if desired, as shown in Figure 3.1, where an action with success probability of 0.7 is
defined: The action can either influence the value of an intermediate fluent with the given
probability and thus have an effect on the state variable in the next step, or a Bernoulli con-
straint is used in conjunction with the action-fluent in the same step - the latter only works if
the action is used only once in all constraints.

The planner will always consider all probabilistic state changes that are part of a time
step to calculate the success probability of that step. The probability of success of a time
step in the domain is the product of all probabilities of all state changes that are made in
this step. This means that for example probabilities specified on state variables that do not
influence whether a goal state can be reached are still part of the calculation of the algorithm
that searches for a most probable path. This interpretation can be problematic depending on
the domain, as shown in Figure 3.2a: Here, every single state transition could depend on the
outcome of the Bernoulli variable, but the transition probability would be 1.0 as soon as state-
var-1 becomes true. These statements are thus not properly supported. Figure 3.2b shows an
encoding of the same transition that is unproblematic regarding the proposed interpretation
of probabilities. There, the transition is only considered to be probabilistic if a precondition
is satisfied.
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1 state−var−1’ = state−var−1 | Bernoulli(0.5);

(a) Problematic Bernoulli statement

1 state−var−1’ = if (state−var−1)
2 then true
3 else Bernoulli (0.5);

(b) Statement with same semantics, but differ-
ent interpretation

Figure 3.2: Problematic Bernoulli statements and possible solutions

Probabilities are also interpreted incorrectly if the effect of the transition can be reverted
by another action with another probability of success. If “state-var-1” needs to be false to
reach a goal state, but an action can always change its value to false if it became true, then
the probability given in the else-clause in Figure 3.2b would become meaningless.

The most probable path regards neither the semantics of actions nor alternatives if these
actions fail. Whether the presented solution is useful is thus highly dependent on the domain.
Therefore, only in domains where probabilities directly influence whether a goal state might
be reached or not, and where probabilistic outcomes cannot be reverted by other actions, the
presented solution makes sense semantically as well. Still, it might be interesting to see how
good such a planner performs compared to planners that regard these issues, so this loose
restriction does not apply to all RDDL domains tested in Chapter 6. While this approach
is sufficient to introduce new ideas for treating probabilistic planning problems in SMT, it
should be examined further in future work so that more domains can be supported.

For the sake of simplicity, the initial state is supposed to be unique. If more than one
initial state exists, the algorithm can be applied to each one individually and a plan for each
outcome can be calculated.

Other restrictions that are connected to RDDL syntax or semantics will be discussed in
Chapter 5.

3.3 Formal Problem Definition

Definition 3.3.1 (Plan)
Let S be a scheduler for an MDPM and h be the horizon for the planning problem. Any
finite S-path π in M that is within h is a plan for M. The set of all plans in M will be
denoted as Plans(M).

Definition 3.3.2 (Probability of Success of a Plan)
Let π = s0

α1−→ s1 . . .
αn−1−−−→ sn be a plan for an MDPM=(S,Act,P, ιinit,AP,L). The probability

of success of π is p(π) = ∏(s,α,s′)∈π P(s,α,s′) iff there exist i, j ∈ [0,n], i≤ j so that si is an
initial state and s j is a goal state, else p(π) = 0.

Definition 3.3.3 (Maximum Plan / Plan with Maximum Probability of Success)
LetM be an MDP. π is a maximum plan inM iff ∀π ′∈Plans(M)p(π ′)≤ p(π).



26 Chapter 3. Problem Statement

The problem to be solved is to think of and implement a translation of probabilistic plan-
ning problems to SMT, to develop an algorithm that finds a maximum plan in an MDP, to use
it to solve RDDL domain instances under the restrictions mentioned above, and to compare
its performance with other RDDL planners to elaborate its use for planning in probabilistic
domains.



Chapter 4

Related Work

A lot of research has already been conducted in the field of probabilistic planning and plan-
ning using SAT or SMT solvers. This chapter considers four topics related to the problem
specified in Chapter 3: Planners of the IPPC for RDDL domains are described and compared,
examples are given of how probabilities are integrated in SAT solving, other approaches of
planning using SMT solvers are discussed and a solution is mentioned that could have been
implemented instead of the algorithm proposed in Chapter 5.

4.1 Planning Systems of the IPPC

There already exist planners for the RDDL language, made by participants of the IPPC.
Most of them use heuristics and approaches based on some form of graph representation or
neural networks. The variety of solutions shows that there is an interest in solving planning
problems similar to those representable in RDDL. They provide a comparison to the problem
considered in this thesis and to the chosen approach to solve it.

The winner of the IPPC 2018 for discrete MDP tracks is the planner Prost-DD-1 [ippc].
It uses a tree search called THTS [GS, p. 1] (for more information see [KH13]) with two
competing heuristics that are combined to solve more domains [GS, see p. 3]. In THTS,
values of nodes in the search tree are being calculated in so-called trials until either a timeout
occurred [KH13, p. 137] or an optimal value for the root node has been found [GS, p. 1]. In
each trial, the tree can be expanded, using the chosen heuristic function to award values to
new nodes, and a backup function is used in another phase of the trial to update the values of
old nodes [KH13, p. 137]. The calculated values are used to choose actions [GS, see p. 1].
Additional information on the planning method can be found in the Prost-DD paper [GS] and
in [KH13].

Prost-DD considers the planning problem as a search problem and tries to optimize the
value for the initial state, ideally without the need to explore the whole problem graph. Due to
the timeout, this optimization might not be completed - then again, only a part of the problem
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was explored, with an estimate of the optimal value. The calculated values are used to create
a plan.

The algorithm in Chapter 5 does not rely on the construction of a graph representation
or on value calculations for graph nodes. Any form of optimization or path search can be
handled by the SMT solver. The returned solution, if one exists, is always optimal regarding
its probability. Prost-DD performed well in the IPPC 2018, meaning that it received a reward
that was on average better than the rewards received by other planners. The reward is depen-
dent on the reward function, but also on actual probabilistic outcomes in the simulation of
the domain. The approach of the algorithm presented in this thesis is slightly different, as it
maximizes the probability of success instead of the reward, given a threshold for the desired
reward.

The participants A2C-Plan and Imitation-Net rely on neural networks and learning algo-
rithms (see [AFTc] and [AFTa]). A2C-Plan is “an offline planner that trains a policy network
through Reinforcement Learning” [AFTc, p. 1]. Imitation-Net works similarly but uses su-
pervised learning on a deep neural network [AFTa, see p. 1]. Random-Bandit works online
and uses an ε-greedy algorithm that returns, within a time-limit, an action in each planning
step, given a state [AFTb, p. 1]. The two variants of CONFORMANT-SOGBOFA, which are
also online algorithms [CK, p. 4], are based on a computation graph and conformant planning
and rely on estimation and optimization [CK, p. 1].

All of these solutions either depend on a graph representation or do not guarantee to
calculate an optimal solution. In the context of the IPPC, the planners do not need to find a
maximum plan. Still, they will be compared to the presented algorithm, because the runtime
of the SMT planner in comparison with the other planners as well as the comparison of
the success of the generated plan, especially with the online planners, might be of interest:
It could indicate whether applying SMT to solve RDDL domains is useful, and whether a
maximum plan can - on average - compete with solutions that take failure into account.

4.2 Probabilities in SAT Solving

Apart from the interest in the field of probabilistic planning in the IPPC, the current inter-
pretation and implementation of probabilities in the context of SAT solving and SMT needs
to be examined as well. There might already exist methods that could be applied to RDDL
problems, or approaches on how to treat probabilities in SAT solving or SMT encodings.
Other ideas might not be connected to planning but could give examples for problems where
probabilities in combination with SAT solving or SMT need to be considered.

In [JÁZ+12], counterexamples for properties specified for Markov chains (discrete-time
Markov chains, DTMC) are generated symbolically [JÁZ+12, p. 134] using binary decision
diagrams, as states and transitions of a system might not be representable explicitly due to
its potentially large size [JÁZ+12, p. 135]. Both a SAT solving and a symbolic graph search
approach are introduced [JÁZ+12, p. 136]. The latter is based on an algorithm discussed in
Section 4.4. The properties for which counterexamples need to be generated include a thresh-
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old for the probability of reaching undesired states that should not be exceeded [JÁZ+12,
p. 138]. Thus, a counterexample consists of a set of paths to undesired states whose probabil-
ity is in total higher than the specification in the system allows. Finding a most probable path
is not required in the SAT solving approach, but the choice of which values are set during
the search of a solution is tried to be changed so that more probable paths are found first, to
increase the speed of the algorithm [JÁZ+12, p. 144].

SAT solving can thus be used to falsify specifications of a system that include probabilistic
statements. The example shows that there exist problems where probabilities are encoded to a
SAT solving formula, or where SAT solving is used to find a path or sets of paths that exceed
a certain probability. Although the most probable path might not be of particular interest
here, it could be used to speed up the search for a counterexample.

Probabilistic planning problems have been encoded in SAT as well: In [ML99], two
solvers based on E-MAJSAT and S-SAT are presented, which solve partially observable
“probabilistic propositional planning problems” [ML99, p. 549]. Here, state variables are
Boolean [ML99, p. 549], so the proposed planners, MAXPLAN and ZANDER, do not re-
gard domains where variables can be real or integer valued. The solvers distinguish between
choice and chance variables [ML99, p. 549], where choice variables are given by existen-
tial quantifiers of the formula, and chance variables by random quantifiers [ML99, p. 552].
These quantifiers are a part of S-SAT or stochastic SAT, where they alternate and are fol-
lowed by a Boolean formula and a threshold for its expected value [ML99, p. 551] (based
on [Pap85]). E-MAJSAT is a subset of S-SAT [ML99, p. 551]. Both languages can be used
to encode probabilities directly into a modified version of SAT. They work differently from
the proposed integration of probabilities in SMT, as the evaluation of a formula with an ex-
pected value is unlike probabilistic statements in RDDL, where transition probabilities and
the reward function are not directly connected.

MAXPLAN and ZANDER consider the probability of a solution as well, but not the
probability of a single path. MAXPLAN uses a procedure called DPLL, and a solution to a
E-MAJSAT problem is the assignment to all choice variables where, over all chance variables,
the sum of the probability values of all satisfiable assignments is maximal [ML99, p. 552].
It does not search for a most probable path in the domain, where only one evaluation of
all chance variables is considered, but for a set of actions where the overall probability of
reaching a goal state is maximal, considering all possible outcomes of the chance variables.

ZANDER solves problems based on S-SAT by interpreting them as a tree and performing
a depth-first search [ML99, p. 554]. The generated plan here is a tree itself, where every
possible outcome of the chance variables is covered and choice variables are assigned so that
the probability is maximized [ML99, see pp. 554-555]. ZANDER thus returns more than a
maximum path in the planning domain, as the generated plan is complete in a way that it
offers a set of actions for any outcome of the chance variables. For the proposed algorithm,
calculating a maximum plan was deemed to be sufficient because it was developed with a
focus on planning problems where an undesired probabilistic outcome implies that the goal
state becomes unreachable. In any other case, a new plan can be generated by invoking the
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algorithm again.
Overall, [ML99] shows that there already exist tools for defining and solving probabilistic

planning problems that are based on a probabilistic language extension of SAT. Still, solving
planning problems with success probabilities using SMT might be interesting as well, due to
the higher expressiveness of the underlying language, which also allows to translate RDDL
domains more easily.

4.3 Using SMT for Planning

Deterministic (see Section 2.4) as well as probabilistic domains have already been examined
in planning using SMT, but this planning method has not been used for the IPPC 2018 (see
[ippc] and Section 4.1), and methods for finding a most probable path like the solution in this
thesis could not be found, especially including the translation and handling of RDDL files.

Using an SMT solver is not undisputed: [HGSK07] shows how numeric variables in
planning problems can be translated so that SAT solving can still be used to obtain a solution,
at least if the domains of the variables are not too large, and compares the performance of
the SAT approach with an SMT solver, which was mostly slower [HGSK07, pp. 1918–1919].
Still, some RDDL problems might use statements that are harder to translate, or that might
not be solvable within reasonable amounts of main memory. Thus, it is still reasonable to use
an SMT solver for RDDL domains.

An algorithm comparable to the solution in this thesis, based on MDPs and Z3, is pre-
sented in [LSTZ15]. It deals with probabilistic preference planning problems and uses prob-
abilities to simulate the uncertainty of effects of actions [LSTZ15, p. 3313]. Preferences
and the goal condition are expressed in an LTL-style notation [LSTZ15, p. 3313] that al-
lows for statements like “the goal states are eventually reached with probability at least 0.95”
[LSTZ15, p. 3313], which can be used to set constraints on a plan. An optimal solution for
a planning problem that includes an MDP, a goal formula and the ordered preferences is a
scheduler where the goal formula must be fulfilled in combination with the first satisfiable
preference, starting from the initial state [LSTZ15, p. 3315]. The treatment of preferences
is similar to the iteration through possible probabilities for a maximum plan presented in the
next chapter. The planning problem is specified in P4 and translated to quadratic equations by
PolFinder, which are then being solved by Z3 [LSTZ15, p. 3316]. The paper also mentions
RDDL, but because that language neither supports temporal statements nor preferences, an
encoding to it was left open [LSTZ15, p. 3318].

There is still active research in the field of SMT and probabilistic planning. Even though
no approach to find a maximum plan is presented in this chapter, the work in [LSTZ15], where
the goal and the underlying language differ from the strategy presented in this thesis, but an
implementation of probabilistic preference planning problems in SMT is shown, indicates
that such an algorithm might already exists. Nonetheless, combined with the translation of
RDDL and its Bernoulli statements, the solution presented in this thesis might still introduce
interesting ideas for future research, which do not necessitate an interpretation of a planning
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problem as a graph and which is not related to temporal logic.

4.4 Symbolic Graph Search

A procedure that can be used to find a maximum plan in an MDP is shown in [GSS10]. It was
utilized in [JÁZ+12, p. 136] and can be used to find most probable paths [GSS10, p. 13]. The
algorithm relies on a symbolic approach, uses a “symbolic variant of Dijkstra’s algorithm”
[GSS10, p. 13] and is not based on SAT or SMT solving: Given a symbolic representation of
a graph, it first calculates a set of edges similar to a spanning tree [GSS10, p. 14]. These edges
are chosen iteratively using the set of formerly discovered states, which initially only contains
state 0 [GSS10, see p. 14]. In each iteration, edges are chosen between the discovered set of
states and all states reachable from it so that the probability calculated for each state is the
maximum possible [GSS10, see p. 14]. A most probable path in the graph is then determined
in the second step, by traversing backwards through the spanning tree from the goal to the
initial state [GSS10, p. 14].

The procedure of finding a most probable path in an MDP, which is a key aspect of the
algorithm that determines a maximum plan, could have been implemented using some form
of symbolic Dijkstra algorithm. But it would have required to interpret the RDDL translation
as a graph first. Also, an SMT version of Dijkstra would have to be elaborated. There also
exist symbolic heuristic search procedures as in [FH02, p. 455] for MDPs, but these were not
considered for an SMT approach as well. Instead, the solution translates RDDL problems to
SMT directly. The algorithm uses the Bernoulli-statements in the RDDL problem description
only to influence which plans are generated by the SMT solver, and thus a graph search
was not implemented. The translation itself is simpler and possibly better to understand, as
any statement excluding probabilistic ones can be translated without making any significant
changes compared to the RDDL file. The solution takes advantage of this translation, by
manipulating variables of the SMT encoding, while the underlying MDP must neither be
constructed nor analyzed.
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Chapter 5

The Solution

In order to solve an instance of an RDDL domain of the specified problem class using Z3,
it must be translated to an SMT problem with some additional treatment of the probabilistic
information, as these cannot directly be expressed in SMT syntax. The approach that is
presented in this chapter includes an abstracted version of the algorithm that is introduced
on an MDP, an explanation of the translation of RDDL files and the more complex actual
implementation of the algorithm for RDDL which utilizes Z3.

In between, the algorithm is also compared with Dijkstra’s algorithm.

5.1 The Algorithm

5.1.1 Finding a Most Probable Path

The basic concept of the method that will be presented later can be visualized using the MDP
M in Figure 5.1 with use_M1,use_M2,use_M3,α,β ∈ Act. Only the states with actions that
lead to the goal state are shown. For each transition from one state to another with a success
probability of p there is also a transition leading from the state to itself with probability
1− p. These transitions are omitted for better readability. They will not be considered in the
examples for the sake of simplicity but would be treated similarly. As they cannot be used to
get closer to the goal state, they cannot be part of a maximum path.

The only initial state inM is “raw materials”. The goal state is “final product”. The path
of interest to the goal is the finite path with the highest probability of success, the maximum
plan. Only three plans lead to the goal:

π f in,1 = raw mat.
use_M3−−−−→ final prod.

π f in,2 = raw mat.
use_M1−−−−→ A1

use_M1−−−−→ final prod.

π f in,3 = raw mat.
use_M2−−−−→ B1

use_M2−−−−→ B2
use_M2−−−−→ B3

use_M2−−−−→ B4
use_M2−−−−→ final prod.
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rawmat. B1 B2 B3 B4

A1

final
prod.

... ... ... ...

...

. . .

use_M1, 0.8

use_M2, 0.9

use_M3, 0.1

use_M1, 0.8

use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 use_M2, 0.9
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Figure 5.1: MDP: Construction of a final product from raw materials using different machines

The probabilities of success of these plans are:

p(π f in,1) = 0.1 (5.1)

p(π f in,2) = 0.8 ·0.8 = 0.64 (5.2)

p(π f in,3) = 0.9 ·0.9 ·0.9 ·0.9 ·0.9 = 0.59049 (5.3)

Neither the shortest plan, nor the plan that only contains actions with the highest proba-
bility of success are a maximum plan. These criteria cannot solely be relied on. A distance
metric can be used to search for a maximum plan using a search graph instead. The weights
for the presented search scheme will be used for the actual algorithm as well, to restrict the
set of edges that can be taken to reach a goal state.

Definition 5.1.1 (Search Graph for an MDP)
LetM= (S,Act,P, ιinit,AP,L) be an MDP with ιinit = 1 for some s0 ∈ S. A search graph for
M with horizon h ∈ N and goal states G⊆ S is the tuple GM = (V,E,d,m, i,VG) with

• V = S×{0, . . . ,h}

• E = {((s,i),(s′,i+1)) ∈V |P(s,α,s′)> 0 for some α ∈ Act}

• d : E→ R,((s,i),(s′,i+1)) 7→ maxα∈Act lnP(s,α,s′)

• m : E→ Act,((s,i),(s′,i+1)) 7→ a for some a ∈ {α ∈ Act| lnP(s,α,s′)≥ lnP(s,α ′,s′),
∀α ′ ∈ Act}

• i = (s0,0)

• VG = {(s,i) ∈V |s ∈ G}.
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rawmat. B1

A1

final
prod.

...

B2
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B3
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B4

...

final
prod.

...

final
prod.ln(0.8)

ln(0.9)

ln(0.1)
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ln(0.9) ln(1.0)

ln(0.9) ln(1.0)

ln(0.9)

Figure 5.2: Graph for the MDP in Figure 5.1. Transitions from the states to themselves were
left out in the translation for the sake of better readability. Initial states are blue, goal states
are green.

Note that for d the maximum over all α is considered, as several actions with different
positive probabilities may lead from s to s′. The mapping from actions inM to the weights
of edges d in GM, m, is not unique as several transitions from a state s ∈ S can have the same
probability.

An example translation is shown in Figure 5.2: A path

pπ,GM = (s0,0)e0(s1,1)e1 . . .en−1(sn,n),n ∈ N,0≤ n≤ h

in GM corresponds to a finite path (and thus to a plan) inM,

π = s0
m(e0)−−−→ s1

m(e1)−−−→ . . .
m(en−1)−−−−→ sn

Definition 5.1.2 (Path Length in a Search Graph)
The length of a path p = v0e0 . . .en−1vn in GM = (V,E,d,m, i,VG) is defined as:

D(p) := ∑
(v,e,v′)∈p

d(v,v′)

Corollary 5.1.1
For a,b ∈ (0,1], iff a > b then ln(a)> ln(b) and iff a = b then ln(a) = ln(b) .
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Lemma 5.1.2
The longest path from the initial state to any goal state in GM corresponds to a maximum
plan inM.

Proof. A path with the highest distance in GM should correspond to a maximum plan in
M. For the translation from probabilities to a distance metric, the relation ≥ and = thus
need to stay the same on all paths regarding the maximum path and corresponding paths in
GM. As transitions with probabilities of success of 0 are treated like they would not exist, all
probabilistic values are in (0,1] and thus Corollary 5.1.1 holds:

Let π = v0
α0−→ . . .

αn−1−−−→ vn be a maximum plan inM, then, for all plans in the MDP with

π ′ = v′0
α ′0−→ . . .

α ′m−1−−−→ v′m:

P(v0,α0,v1) · . . . ·P(vn−1,αn−1,vn)≥ P(v′0,α
′
0,v
′
1) · . . . ·P(v′m−1,α

′
m−1,v

′
m)

⇔ ln(P(v0,α0,v1) · . . . ·P(vn−1,αn−1,vn))≥ ln(P(v′0,α
′
0,v
′
1) · . . . ·P(v′m−1,α

′
m−1,v

′
m))

⇔ ln(P(v0,α0,v1))+ . . .+ ln(P(vn−1,αn−1,vn))≥ ln(P(v′0,α
′
0,v
′
1))+ . . .

+ ln(P(v′m−1,α
′
m−1,v

′
m))

The latter corresponds to the distance metric in GM. Paths in GM can be mapped to
paths within the planning horizon inM and vice versa: States can be mapped using the state
definition in Definition 5.1.1. Edges can be mapped to actions using m. Transitions with
actions inM can be mapped to edges in GM using the definiton of edges in Definition 5.1.1.
The transitions of a maximum plan must be maximal regarding all transitions that could be
made between the states of the plan, or else it would not be a maximum plan. The weights
of the edges of the corresponding path g in GM must thus use the values of the transition
probabilites of π . Any other path in GM cannot have a higher distance, or else the path in
M it could be mapped to would have a higher probability of success than π . So, for all plans
π,π ′ inM and all finite paths g,g′ in GM, where g corresponds to π and g′ to π ′, if π is a
maximum plan:

p(π)≥ p(π ′)⇔ D(g)≥ D(g′)

p(π) = p(π ′)⇔ D(g) = D(g′)

Only exactly those finite paths within the horizon that lead from the initial to a goal state
in the MDP also lead from the initial to a goal state in their representation in the search graph
due to its definition. All finite paths inM up to the horizon are represented in GM, and there
is no path in GM that cannot be mapped to a finite path in the MDP.

Thus, for any path corresponding to π ′ in GM and therefore for all paths in the search
graph from the initial to a goal state, a path with maximum distance in the graph corresponds
to π , and if such a path exists, π must exist as well.

A longest path in a search graph can be found easily using Dijkstra’s algorithm: If an
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inversed distance metric is used as weights for all edges, the shortest path of the set of shortest
paths from i to all goal states vg ∈VG found by Dijkstra is the longest path from the initial state
to any goal state in GM. As the mapping of edges in GM to actions inM is saved, the path
found by that algorithm could be translated to a set of actions that need to be taken from each
of the visited states to obtain the most probable path to a goal state. That information suffices
to generate a plan. Nonetheless, Dijkstra’s algorithm will not be used to solve instances
of RDDL domains. In Subsection 5.1.3, the advantages of the algorithm presented in this
chapter compared to Dijkstra’s algorithm are being discussed.

5.1.2 Formalization of the Algorithm

Instead of using a search graph to find a most probable path from an initial state to a goal
state in an MDP, the search proposed in this thesis is symbolic and utilizes the possibility
of defining further constraints in addition to the translation of an RDDL domain instance in
SMT.

For now, specific properties of RDDL and SMT are being ignored, and the algorithm is
explained without describing the details of its implementation. The discussion takes place on
the level of abstraction of graphs and MDPs, like in Subsection 5.1.1. It is assumed that an
algorithm is given that decides whether a specific search problem is solvable given a set of
constraints on the amount of transitions that can be taken, where solvable means that a path
from an initial to a goal state can be found using these transitions. Edges with a probability
of success of 0 are being omitted. That algorithm is called IS_SATISFIABLE. Later, Z3 will
fulfill that purpose.

Any transition with a probability of success of 1.0 can be taken anytime and will not be
restricted by a constraint. The set of transitions that can be chosen from with a probability
lower than 1.0 is empty in the beginning of the search. It is expanded step by step, until a
solution can be found. The set of allowed transitions at that point can then be used to find a
maximum plan for the given instance.

Definition 5.1.3 (Probabilities, Occurrences, Weights)
Given an MDPM= (S,Act,P, ιinit,AP,L) and

P′ = {P(s,α,s′)|s,s′ ∈ S,α ∈ Act,P(s,α,s′) ∈ (0,1)}

all distinct values p1, . . . , pn ∈ P′,n ∈ N, sorted from highest to lowest, are the probabilities
of success inM.

The frequencies of occurrence x1, . . . ,xn ∈ R, given a plan π inM, are defined as:

xi = |{(s,α,s′)|(s,α,s′) ∈ π,P(s,α,s′) = pi}|
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Weights g1, . . . ,gn ∈R correspond to the probabilities of success and are always positive:

gi =
ln pi

ln p1
, pi ∈ (0,1), i ∈ {1, · · · ,n}

These variables pi,xi,gi for i∈ {1, . . . ,n} will be used to determine a set of frequencies of
occurrence that corresponds to a maximum plan. Constraints on transitions with a probability
of 1.0 are not required - these transitions always succeed. Transitions with a probability of
0.0 are omitted.

Figure 5.1 contains three different probabilities of success, p1 = 0.9, p2 = 0.8, p3 = 0.1.
Any plan with x1 = 5,x2 = 0,x3 = 0 must contain the longest path in the middle. The probabil-
ity of success of this path is 0.95 ·0.80 ·0.10 = px1

1 px2
2 px3

3 . Constraints using xi, i ∈ {1, · · · ,n}
can be defined to set how often transitions with probability pi must be taken in a valid plan.
Due to Definition 5.1.3, it follows that:

Corollary 5.1.3 (Probability of a plan using frequencies of occurrence)
If a plan can be found with x1, . . . ,xn for p1, . . . , pn, the probability of success is ∏

n
i=1 pxi

i .

The search for a set of values for xi that corresponds to a maximum plan is performed in
steps. In each step, the value of a search variable s is incremented by 1. Constraints on the
SMT formula are used to set bounds for the values of x1, · · · ,xn so that no plan can be found
with a probability below a certain threshold.

The search is terminated as soon as the set of constraints in a step is satisfiable, or else
after xi = horizon · amount-of-state-variables, i ∈ N has been tried out, where horizon is the
planning horizon of the problem. This guarantees that the algorithm terminates, given that
Z3 terminates if the problem is undecidable. Also, no solution is left out because no more
than horizon · amount-of-state-variables =: max_length potentially probabilistic state transi-
tions can be performed (if each transition function of a state variable is considered to be
represented by a single transition in the MDP). It is important to note that all used parameter
interpretations need to be considered for the upper bound: Transitions are defined for func-
tions that represent state- or interm-fluents, and probabilistic transitions in each step of the
plan could be made for all parameter interpretations of these functions.

The value of max_length is h in Definition 5.1.1.

The frequencies of occurrence for a step j ∈ N will be denoted as x j,1, . . . ,x j,n, where the
second index corresponds to the probability value with the same index. In the encoding a
variable s is used which is incremented as follows:

s0 = 0 (5.4)

s j = s j−1 +1, j ∈ N>0 (5.5)

The linear equations that limit the set of plans that can be found in step j ∈ N>0 are:
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x0,i = 0, i ∈ {1, · · · ,n} (5.6)
n

∑
i=1

x j,igi ≤ s j (5.7)

n

∑
i=1

x j,igi > s j−1 (5.8)

0≤ x j,igi ≤ s j, i ∈ {1, · · · ,n} (5.9)
n

∑
i=1

x j,i ≤max_length, i ∈ {1, · · · ,n} (5.10)

The right part of Equation (5.9) is redundant, because it is implicitly contained in Equa-
tion (5.7). However, as stated in Chapter 2, it can be beneficial to explicitly use additional de-
ducible constraints in SMT because they can reduce the runtime. Note that in Equation (5.8)
s j−1 = s j−1.

Lemma 5.1.4
In step j, j ∈N>0, the least probable plan that can be constructed using transitions that satisfy
the constraints specified above has a probability of success of p

s j
1 .

Proof. For n ∈ N, i ∈ {1, · · · ,n}, j ∈ N>0, given any set of frequencies of occurrence x j,i that
satisfy the constraints above in step j for the probabilities pi, the probability of any plan with
these frequencies x j,i is ∏

n
i=1 p

x j,i
i due to Corollary 5.1.3.

As pi ∈ (0,1), ln(pi) < 0 holds. Because the constraints must be fulfilled, it can be fol-
lowed that:

n

∑
i=1

x j,igi ≤ s j

⇔
n

∑
i=1

x j,i
ln pi

ln p1
≤ s j

⇔
n

∑
i=1

x j,i ln pi ≥ s j ln p1

⇔
n

∏
i=1

p
x j,i
i ≥ p

s j
1

Thus, p
s j
1 is the lowest probability of success for a path that satisfies the constraints.

Theorem 5.1.5
If a solution is found in step j, j ∈N>0, then that solution has a higher probability of success
than any solution found in any following step j+m,m ∈ N>0.

Proof. Lemma 5.1.4 states that the lowest probability of success of a solution that was found
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in step j is p
s j
1 . If all plans found in step j+1 have a lower probability than any possible plan

in step j, then the theorem is proven.
Assume that a plan exists for some x j+1,i, i ∈ {1, · · · ,n},n ∈ N where its probability is

higher than the probability of a plan in step j. Then, according to Lemma 5.1.4:

n

∏
i=1

p
x j+1,i
i ≥ p

s j
1

⇔
n

∑
i=1

x j+1,i ln pi ≥ s j ln p1

⇔
n

∑
i=1

x j+1,i
ln pi

ln p1
≤ s j

⇔
n

∑
i=1

x j+1,igi ≤ s j

This would contradict Equation (5.8). Also, solutions using this bound could have already
been found in the former iteration.

Algorithm 1 The Search Algorithm, Step 1

1: procedure ALGORITHM1(problem, p1, . . . , pn, x1, . . . ,xn) . The translation of the
problem "problem" (which includes the planning horizon), the extraction of probability
values and the definition of xi will be given by the RDDL translation

2: s← 0
3: for i← 1,n do
4: gi← ln pi

p1
5: end for
6: solvable← false
7: repeat
8: problem’← problem
9: ADD_ADDITIONAL_CONSTRAINT(problem’, ∑

n
i=1 xigi ≤ s)

10: ADD_ADDITIONAL_CONSTRAINT(problem’, ∑
n
i=1 xigi > s−1)

11: ADD_ADDITIONAL_CONSTRAINT(problem’, ∀i∈1,...,n0≤ xigi ≤ s)
12: ADD_ADDITIONAL_CONSTRAINT(problem’, ∑

n
i=1 xi ≤max_length) . No plan

can be longer than the planning horizon allows - this is already implicitly encoded in the
RDDL translation (see Subsection 5.2.1)

13: solvable← IS_SATISFIABLE(problem’)
14: s← s+1
15: until solvable or s > gn ·max_length . Until xn > max_length is possible
16: if not solvable then
17: additional_constraints← null
18: end if
19: return additional_constraints,s
20: end procedure

Algorithm 1 uses the search constraints mentioned above to search for the range of prob-
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abilities that includes the probability of a maximum plan. The parameters of the algorithm
were either explained before or are mentioned in the comments. The problem translation is
copied, and the additional constraints are added to it. The search is performed until either the
program terminates because all paths within the planning horizon do not lead from the initial
to a goal state or because a satisfying set of search constraints has been found. The satisfiabil-
ity is checked with IS_SATISFIABLE, which here represents a procedure of an SMT solver
like Z3 that checks whether the problem together with additional constraints is satisfiable.

Theorem 5.1.6
There exists a finite path in an MDPM of a given RDDL domain instance that leads from
the initial to a goal state with no more transitions than allowed by the planning horizon if and
only if Algorithm 1 returns a set of constraints that is satisfied by a maximum plan inM.

Proof. Assume such a plan π exists. As it would be a possible solution to the problem,
IS_SATISFIABLE must return true if it fulfills all additional constraints (Equation (5.6),
Equation (5.7), Equation (5.8), Equation (5.9), Equation (5.10)). Equation (5.6) defines
the initial values for the search procedure and is not used explicitly in Algorithm 1. Equa-
tion (5.10) is fulfilled by definition. Due to the planning horizon and if all state changes are
encoded as separate transitions, no more than max_length transitions can be made, therefore:

∑
i∈{1,...,n}

xi ≤max_length (5.11)

gn>0
==⇒ ∑

i∈{1,...,n}
xign ≤max_length ·gn (5.12)

s≤max_length·gn
=========⇒ ∑

i∈{1,...,n}
xign ≤ s (for s in some iteration) (5.13)

gi≤gn
===⇒ ∑

i∈{1,...,n}
xigi ≤ s (5.14)

(5.15)

Thus, Equation (5.7) and the right part of Equation (5.9) must be satisfied by π . It is
also not possible for x1, . . . ,xn to be smaller than 0 due to their definition. As 0 ≤ s ≤
max_length · gn and 0 ≤ ∑i∈{1,...,n} xigi ≤ s, in the first iteration where Equation (5.7) is sat-
isfied, Equation (5.8) is satisfied as well, and such an iteration must exist. Thus, π can be
found, as the according set of search constraints is satisfiable. Because of Theorem 5.1.5, the
first satisfiable set of constraints must therefore include a maximum plan.

Assume the algorithm returns a set of constraints for a maximum plan. This means that a
solution for the problem encoded by the MDP was found by the procedure IS_SATISFIABLE
where all constraints are satisfied. Even if this solution would contain additional transitions
with a probability of success of 1, the problem translation prevents the construction of any
plan that is longer than max_length (see Subsection 5.2.1). Assuming that IS_SATISFIABLE
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works correctly - which should be the case for the used SMT solver Z3 - there must therefore
exist a finite path within the planning horizon from the initial to a goal state in the MDP.

The main purpose of the first algorithm is to give a range in which to search for the
maximum plan. As stated in Lemma 5.1.4, the least probable plan in step s has a probability
of success of ps

1. Any plan π that satisfies the conditions returned by Algorithm 1 for some s∈
N≥0, if one exists, must satisfy the condition ps

1 ≤ p(π)< ps−1
1 , because Equation (5.7) and

Equation (5.8) must hold. As could be seen in Corollary 5.1.3, the frequencies of occurrence
can be used to calculate the probability of a plan. They can be used as constraints on the
actual problem translation to search for a plan with that probability. This idea is used by
Algorithm 2.

Algorithm 2 The Search Algorithm, Step 2

1: procedure ALGORITHM2(problem, p1, . . . , pn, x1, . . . ,xn, s)
2: [x1, . . . ,xn]← x1, . . . ,xn
3: all_combinations← CREATE_ALL_COMBINATIONS([x1, . . . ,xn],s)
4: all_combinations← SORT_BY_PROBABILITY(all_combinations, p1, . . . , pn)
5: for [x1, . . . ,xn]← all_combinations do
6: if ps

1 ≤ p([x1, . . . ,xn])< ps−1
1 then

7: if IS_SATISFIABLE(problem, [x1, . . . ,xn]) then
8: return [x1, . . . ,xn]
9: end if

10: end if
11: end for
12: return null
13: end procedure

The algorithm takes the value for s found by Algorithm 1, if a value could be found, and
else is not invoked. It uses CREATE_ALL_COMBINATIONS to determine the finite distinct
set of all arrays of size n where each entry can have a value in 0, . . . ,s. The resulting values
for xi, i ∈ 1, . . . ,n can be used to calculate a success probability for each array according
to Corollary 5.1.3, and can be sorted in descending order using these probabilities, which
is performed by SORT_BY_PROBABILITY. The first satisfiable set is returned. Else, the
algorithm terminates when all combinations have been tried out. In the implementation, due
to the size of all_combinations, the combinations are not stored but calculated again in each
iteration to find the subset with the highest probability of success to save main memory.

Theorem 5.1.7
If Algorithm 2 uses the values given by Algorithm 1 as input values and the latter found a
solution, then Algorithm 2 returns frequencies of occurrences of a maximum plan.

Proof. Only combinations within the bound determined by Algorithm 1 are considered in the
for-loop. The first satisfiable array, which corresponds to a maximum plan within all_combi-
nations, is returned.
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The algorithm must return frequencies of occurrence of a valid plan, because it iterates
through all values of possible paths allowed by the constraints set in Algorithm 1, of which
at least one must exist if Algorithm 1 found that there exists a solution, and else no plan can
be found. These constraints must include a maximum plan due to Theorem 5.1.6. That path
is found first because of the sorting operation.

Given concrete values [x1, . . . ,xn], the probability of the maximum plan is already known
after Algorithm 2 returns. Using these values as a constraint, an SMT solver can find a model
from which the maximum plan can be extracted. An abbreviated example run of the algorithm
can be found in Appendix A.2.

5.1.3 Comparison to Dijkstra

The algorithm is different than the k-shortest path Dijkstra algorithm that was briefly de-
scribed in Section 4.4. Instead of performing a search in the graph and calculating weights
for nodes using the probability of a path from the initial state to them, it iterates through all
possible combinations of transitions that lower the probability of success within the planning
horizon in descending order. Edges in the search graph are not being traversed, but in each
iteration the SMT solver is used to determine whether there exists a path from the initial to the
goal state that uses exactly xi transitions with probability pi. To speed up the search, the set
of combinations which need to be enumerated is restricted using a minimum and maximum
bound for their probability of success. A graph representation is not required.

The model for a non-symbolic Dijkstra algorithm would grow exponentially in the length
of a path. There exist symbolic concepts which partially avoid this problem, but the presented
approach was implemented instead.

5.2 RDDL Plan Translation

A correct translation of RDDL domain instances as well as the actual implementation of the
algorithm that depends on the translation of the Bernoulli statements need to be elaborated.
After some other strategies were tried out, where the transitions that are decoded as state
changes in RDDL were decoded as action-based transitions in Z3 like in Section 2.3, it was
decided that, due to the expressiveness of RDDL, anomalous models need to be ruled out
by the RDDL domain description instead, so the translation is now state-based. Apart from
Bernoulli statements, quantifiers, sums and products, all constraints are translated similar to
their representation in the RDDL files.

5.2.1 Variable Translation

All variable definitions are part of the pvariables section in an RDDL domain description
[San10, see p. 18]. They are interpreted as n-ary functions. Their range and their domain
are specified together with default values and the information of what they represent - a
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1 domain ... {
2 types { car : object; ... };
3 pvariables {
4 PROB_FLATTIRE : { non−fluent, real, default = 0.1 };
5 onHighway(car) : { state−fluent, bool, default = true };
6 relativeSpeed(car, car) : { state−fluent, int, default = 0 };
7 };
8 }
9 non−fluents ... {

10 objects { car : {c1, c2, c3}; ... };
11 }

(a) RDDL variables and types

1 (declare−datatypes () ((car c1 c2 c3)))
2 ...
3 (declare−fun PROB_FLATTIRE () Real)
4 (declare−fun onHighway (car) Bool)
5 (declare−fun relativeSpeed (car, car) Int)

(b) Translation

Figure 5.3: RDDL variables / types example and translation to Z3

state property, an action or a property of the modeled system that does not change over time
[San10, see pp. 15, 18]. The parameter types of the variables supported by this translation
are objects or enums.

Variables, objects and enumerated types can directly be translated into their Z3 equiva-
lents. An example translation is shown in Figure 5.3. The function declarations are saved
dependent on the information they represent - for example, action-fluents need to be accessed
after the translation of the RDDL file was finished, because additional concurrency con-
straints are only given implicitly by the keyword max-nondef-actions but must be included
explicitly.

In order to get an expression for which initial values and constraints can be defined,
parameters need to be applied to function declarations. These parameters can either be un-
interpreted or represent a concrete value in the domain, for example c1 in Figure 5.3a. If the
range of all parameters in the domain of a function declaration is finite, constraints can be
translated for every set of parameter interpretation (parameters can be enumerated), as shown
in Figure 5.4a. Alternatively, parameters remain uninterpreted, as shown in Figure 5.4b. If
possible, the performance of both approaches will be compared in Chapter 6. In all following
examples, parameters are uninterpreted, and the definition of the parameter variables will be
omitted. This allows for shorter example code.

The planning horizon of an RDDL domain instance is always finite [San10, p. 4]. The
value of the keyword horizon is used to determine how many time steps can be made in a
domain. This property is translated to all variables that do not represent non-fluents, as only
non-fluents do not change over time [San10, see p. 15]. The variables are defined indepen-
dently for each step, as shown in Figure 5.5. With each time step another state in the system
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1 (assert (= (relativeSpeed c1 c1) 0))
2 (assert (= (relativeSpeed c1 c2) 0))
3 (assert (= (relativeSpeed c1 c3) 0))
4 (assert (= (relativeSpeed c2 c1) 0))
5 ...

(a) Using concrete parameter values

1 (declare−const _x_1 car)
2 (declare−const _x_2 car)
3 (assert (= (relativeSpeed _x_1 _x_2) 0))

(b) Using uninterpreted parameters

Figure 5.4: Usage of parameters in a constraint

1 (declare−fun onHighway_0 (car) Bool)
2 (declare−fun onHighway_1 (car) Bool)
3 (declare−fun onHighway_2 (car) Bool)

Figure 5.5: All variable definitions for onHighway with horizon = 2

can be reached. Due to the initial values, there are horizon+ 1 definitions of each variable
that is not a non-fluent. The maximum length of a path is thus already encoded in the RDDL
translation.

State-fluents and non-fluents are given default values [San10, p. 18] - values for action-
fluents are chosen by the SMT solver, and the values of intermediate fluents are determined
by their state transition function. The intial values might differ from the default values in
the domain definition if they are specified in a non-fluents or init-state block [San10, see
p. 20], see Figure 5.6 (using pvariables as defined in Figure 5.3a).

5.2.2 Constraint Translation

Most of the RDDL operators are supported by the RDDL translation. The parsed object of the
RDDL domain file provides a nested representation of state-action-constraints, action-
preconditions and cpfs. They can be translated recursively. If a state variable is primed,
then all other variables referred to in the constraint are variables of a former time step, else
the same time step is referred to [San10, see p. 6]. Every single constraint is added to the
SMT solver, and thus the resulting formula is a conjunction of all constraints translated from
the RDDL file. An example translation is shown in Figure 5.7.

There are RDDL statements which require a function interpretation for all possible func-
tion values, like negated existential quantifiers, universal quantifiers or sum or product ex-
pressions. To support these statements, the functions involved in these statements are defined
over the range of all parameter values that are being quantified. Thus, even if uninterpreted
parameters are chosen in general, constraint translations need to be made for all parameter
interpretations for quantified parameters, see Figure 5.8.

As quantified functions are defined with more than one set of parameters, an additional
set of constraints must be introduced: If the function parameters are the same, then the inter-
pretation of the function must be the same as well.

Another constraint that needs to be passed to the solver considers concurrency. No more
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1 non−fluents {
2 PROB_FLATTIRE = 0.05;
3 };
4 init−values {
5 ~onHighway(c1);
6 };

(a) Initial values in RDDL

1 (assert (= (PROB_FLATTIRE 0.05))
2 (assert (=> (= _x_1 c1) (= (onHighway_0 _x_1) false)))
3 (assert (=> (not (= _x_1 c1)) (= (onHighway_0 _x_1) true)))

(b) Translation

Figure 5.6: Translation of initial values

1 //Usually, only interm−fluents (intermediate) are unprimed, while state−fluents are primed
2 relativeSpeed(?c1, ?c2) = if (onHighway(?c1) ^ ~onHighway(?c2)) then 1
3 else 0;
4 //start−drive here is an action−fluent
5 onHighway’(?c) = start−drive(?c) | onHighway(?c);

(a) Some constraints in a cpfs block

1 //ite means if−then−else; the same constraints need to be translated for step 2, 3, ...
2 (assert (ite (and (onHighway_1 _x_1) (not (onHighway_1 _x_2)))
3 (= (relativeSpeed_1 _x_1 _x_2) 1)
4 (= (relativeSpeed_1 _x_1 _x_2) 0)))
5 (assert (= (onHighway_1 _x_3) (or (start−drive_0 _x_3) (onHighway_0 _x_3))))

(b) Translation

Figure 5.7: Translation of cpfs, primed and unprimed

than max-nondef-actions actions can have non default values in each time step [San10, see
p. 7].

5.2.3 Determining Goal States

Instead of defining specific objectives or goal states, RDDL domain files just define a reward
function that may use any metric that can be expressed using the RDDL language [San10,
see p. 19]. The equation specifying the reward value is an unprimed expression [San10, see
p. 19] and is translated like cpfs, using the variable “reward_i” in time step i.

The algorithm expects the goal states to be explicitly defined. As the reward statement is
problem-specific, desired minimal values for the overall reward need to be passed to the pro-
gram manually. An optimizer is used to determine the highest reward value “max_reward”,
and a value relative to that maximum needs to be passed, e.g. 0.8, meaning that the overall
reward must at least be 0.8 ·max_reward, and that all states with this value are goal states.

Using the planner without such a reward approximation would not suffice. As no goal
states are defined, any solution where any arbitrary number of actions is taken would be
a valid plan. In some of the domains in Chapter 6, every maximum plan would have a
probability of success of 1, as not taking any action could be considered a solution. Thus, a
set of desirable final states must be known before the algorithm is run. A solution will most
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1 fastestCar’(?c) = ~exists_{?c2 : car}[relativeSpeed(?c2, ?c) > 0];

(a) Some cpf with quantifier

1 (assert (= (fastestCar_1 _x_1) (not (or (
2 (relativeSpeed_0 c1 _x_1)
3 (relativeSpeed_0 c2 _x_1)
4 (relativeSpeed_0 c3 _x_1)
5 )))))

(b) Translation

Figure 5.8: Translation of cpfs with quantifier

likely be obtained for a domain that the user is familiar with, and thus a lower threshold for the
reward can coincide with the desired minimal quality of the plan in the context of the domain.
Due to the highly domain-dependent reward definition, the trade-off between computation
time, reward, probability and manual procedures was deemed to be an acceptable first step of
integrating the reward function.

5.2.4 Algorithm Implementation

Only the probabilistic statements Bernoulli, Discrete (partially), DiracDelta and Kron-
Delta are being supported. The restricted set of statements is sufficient to translate most
IPPC RDDL domains. Furthermore, the algorithm only works with discrete probability dis-
tributions.

KronDelta and DiracDelta can be translated with a success probability of 1.
Discrete is only partially supported, for simple probabilistic statements that are not dy-

namic, i.e. that do not rely on other variables than nonfluents, and not for uninterpreted
parameters. Discrete could be fully supported with an implementation similar to Bernoulli
statements.

The expression “prob-statement” in a Bernoulli statement “Bernoulli(prob-statement)”
can either refer to constants and non-fluents only, or to other fluents as well. The former
case will be called static probability, the latter dynamic probability. Both are supported by
the algorithm, but its implementation does not consider all dynamic probability expressions:
Only Bernoulli statements and state-fluents that have a finite range are supported. Further
implementation was not required in the context of the evaluation.

All possible interpretations of all variables that are part of a dynamic statement are evalu-
ated by checking whether they are satisfiable, and then combined to a list of all probabilities
that can be expressed by the statement. Placeholder variables for all possible outcomes in
[0,1] are created, and they are used similarly to static probability variables, which are ex-
plained in the following paragraph. Figure 5.9 shows examples for both variants.

When an RDDL statement is translated that includes a Bernoulli expression, it is re-
placed by a placeholder variable. Discrete expressions are treated similarly. The value
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1 //Statement with static probability, every car has a different probability of having a flat
2 has−flat−tire’(?c) =if (moved(?c))
3 then Bernoulli(PROB_FLATTIRE(?c));
4 else false;
5 //Statement with dynamic probability
6 road−is−intact’ = Bernoulli(1 / (1 + sum_{?c : car}[onHighway(?c)]));

Figure 5.9: Bernoulli statements (here without actions involved)

1 (assert (ite (= (moved_0 _x_1) true)
2 (= (has−flat−tire_1 _x_1) (or _Bernoulli_1 _Bernoulli_2))
3 (= (has−flat−tire_1 _x_1) false)))
4 x1 = [(and _Bernoulli_2 (= (PROB_FLATTIRE _x_1) 0.98) (= (moved_0 _x_1) true)), (and (not _Bernoulli_1)

(= (PROB_FLATTIRE _x_1) 0.02) (= (moved_0 _x_1) true))]
5 x2 = [(and _Bernoulli_1 (= (PROB_FLATTIRE _x_1) 0.02) (= (moved_0 _x_1) true)), (and (not _Bernoulli_2)

(= (PROB_FLATTIRE _x_1) 0.98) (= (moved_0 _x_1) true))]

Figure 5.10: Bernoulli statement translation for Figure 5.9

of the probabilistic statement is evaluated for each possible interpretation of the parameters.
Both the Boolean variables created for the expression and the probabilities they are connected
with are used by the algorithm.

In Figure 5.10, two new placeholder variables are introduced. The state fluent can only
become true if one of the Bernoulli variables and the condition “moved” is true. Each possible
outcome is covered by the statements in x1 and x2. They are used to count the frequencies
of occurrence: If the condition is true, one of the four statements must be satisfied. The first
Bernoulli variable becomes true with a probability of 0.02 and false with a probability of
0.98 and the second Bernoulli variable becomes true with a probability of 0.98 and false with
a probability of 0.02. Which of the statements is satisfied depends on the interpretation of
“_x_1”.

Each Bernoulli variable is unique only to the RDDL expression, the current step and the
actual interpretation of the parameters used. If “has-flat-tire” was quantified and constraints
for e.g. “has-flat-tire_1(c1)” would need to be defined, the above approach might not be
sufficient. This is because, in an interpretation where “_x_1 = c1”, both constraints represent
the same function in the same step, but their frequency of occurrence would be counted twice.
Thus, additional constraints are used that refer to the value of already translated functions in
the same step to prevent this.

It is important to note that the algorithm itself determines whether a Bernoulli statement
should become true or false, even if that decision is made by the simulator of the environ-
ment. By setting upper and lower bounds for xi, only some state changes with the according
probability can be made. The Bernoulli variables can be used to determine the probabilities of
success as well as the frequencies of occurrence, which need to be passed to the algorithm. In
Figure 5.10, the frequencies of occurrence can be counted using x1 and x2 as in Figure 5.11.
In general, a plan cannot recover from any deviation from the anticipated probabilistic out-
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1 p1 = 0.98, p2 = 0.02
2 x1 = (and (moved_0 _x_1) (= (PROB_FLATTIRE _x_1) 0.02) (not _Bernoulli_1))
3 + (and (moved_0 _x_1) (= (PROB_FLATTIRE _x_1) 0.98) _Bernoulli_2 true)
4 x2 = (and (moved_0 _x_1) (= (PROB_FLATTIRE _x_1) 0.02) _Bernoulli_1 true)
5 + (and (moved_0 _x_1) (= (PROB_FLATTIRE _x_1) 0.98) (not _Bernoulli_2))

Figure 5.11: Algorithm interpretations of Figure 5.10

comes, as it might depend on the state of the variables affected by this change.

Definition 5.2.1 (x1, . . . ,xn in the RDDL Translation)
Let Bernoulli(prob-statement) be a statement in an RDDL domain that is used under a
condition “condition”, which is either always true or given by an if expression. In the transla-
tion of the probabilistic statement, each probability value p∈ (0,1) is connected to a set Sp of
all statements “condition ∧ prob-statement” for state transitions where the probability of the
Bernoulli variable taking the value of “prob-statement” is p under the condition “condition”.

If p1, . . . , pn ∈ (0,1) are all probability values occurring in the RDDL file that are not 0 or
1, sorted from highest to lowest, then xi := ∑s∈Spi

s, i ∈ {1, . . . ,n}, where satisfied statements
are identified as 1, and unsatisfied statements as 0.

For more detailed information about the implementation of the algorithm, commented
code snippets can be found in Appendix A.7.

5.2.5 Extracting a Plan

Like the planners in Section 4.1, the algorithm returns actions that need to be performed upon
request. If no alternative is supposed to be calculated if the plan fails, a plan is only calculated
once, and the states received by the RDDLsim simulator are being ignored. In this case, the
precalculated set of actions for each step is being returned, and if they cannot be applied in
the current state, then the plan might fail. Else, the received states are translated, and a new
plan is calculated if the new problem is still satisfiable.

Actions are extracted using the interpretation of all action fluents in each step in the
RDDL domain given by the model returned from Z3. All action fluents of the current step
that are true for any interpretation of the parameters are being returned. The details of this
implementation will not be mentioned, as they only depend on the syntax specified by the
RDDL simulator that is used for the evaluation and by Z3.

If no simulator is used, the plan can also alternatively just be returned as a set of action
and state variable interpretations for each step. The expected received reward if the plan
succeeds and its probability can be returned as well.

5.2.6 Further Restrictions

In addition to Section 3.2 and Subsection 5.2.4, the implementation includes further rules and
restrictions that need to be mentioned.
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Some of these are of syntactical nature: Underscores, besides those used for RDDL key-
words, are not allowed to be used in the RDDL files. The names of parameters, if quantified,
need to be unique. Actions are only allowed to be Boolean if max-nondef-actions is used,
but support for other types could be added easily. The names of the definition blocks are ig-
nored - it is assumed that the instance block passed to the program is supposed to be applied to
the received domain block. Requirements are ignored as well - full observability is assumed.
The reward must be deterministic. Maximum and minimum statements, TVAR_EXPR and
FUN_EXPR are not supported, as well as switch statements - if statements can be used in-
stead. All functions are ranged over Boolean, real or integer values or enumerated or object
types. Parameters can only be ranged over enumerated or object types.

Reward and discount need to be defined. Intermediate fluents are only supported on level
1 for the sake of simplicity - most of the domains did not require deeper levels.

Dynamic probability and Discrete statements and the RDDL2 syntax are only partially
supported. Discrete statements have been used in some IPPC 2018 domains (see [ippc]), but
none of these domains were solvable by all proposed algorithms within the timeout, so their
translation remains untested. Probabilistic statements in if expressions can currently not be
used due to the fact that the condition is a part of the probabilistic constraint, but this could
be resolved in a future implementation.

Furthermore, the number precision is potentially problematic. The usage of the natural
logarithm and divisions is assumed to work fine in most of the problems. For file translations,
probability values are translated with a precision of up to 40 decimal places, using Javas
BigDecimal class, but they are casted to doubles before they are being used by the algorithm.
Values extracted from a Z3 model are read with a number precision of 20 decimal places. Due
to the potentially inexact translation, probability value constraints for probabilistic statements
like (= (- 1.0 PROB_FLATTIRE) pi) might not work because Z3 might calculate a slightly
different value. Thus, a small ε value is added and subtracted to/from pi and it is instead
checked if the probabilistic statement is within that range. To support at least ten decimal
places, ε = 10−11 was chosen. The distance between probabilistic values of an expression
should thus be at least ε . While these precautions should be sufficient for simple domains, a
more sophisticated approach should be taken if the algorithm needs to be used in praxis.

Overall, most probabilistic planning problems of the IPPC are supported and can be eval-
uated. The translation can thus be considered essential to discuss the problem statement.
Exact calculations might not be possible due to rounding errors, but the solution could be
verified exactly if desired, using the values of the RDDL domain.

5.3 Other Algorithms and Algorithm Names

Two simple algorithms are used to test alternative approaches to solving RDDL domains.
The algorithm presented before will be called “search algorithm”, the other two “reward op-
timizer” and “probability optimizer”. All three can easily be analyzed regarding their prob-
abilities, whereas for the other RDDL planners the probabilities would have to be calculated
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manually. They operate on the same RDDL translation.

5.3.1 Reward Optimizer

As stated in Subsection 5.2.3, an optimization procedure in Z3 is used to determine the max-
imum reward. Its solution can be used as a plan, although its probability can be arbitrarily
bad. It can be configured using all parameters specified in Subsection 6.2.2 except the reward
approximation.

5.3.2 Probability Optimizer

Instead of searching for a probability range and then for the frequencies of occurrence with
maximum success probability, the product

n

∏
i=1

p
x j,i
i

as in Corollary 5.1.3 could be maximized using Z3’s optimization procedure. As Z3 pre-
sumably only supports linear equations for its optimization (see Section 2.2), the equivalent
sum

n

∑
i=1

x j,igi

(as shown in Subsection 5.1.2) is minimized, although it suffers from the same problem
regarding the number precision as the search algorithm.

5.3.3 Failed Algorithm Idea

An earlier approach did not rely on log-statements, but could not be used instead of Algo-
rithm 1, because it would not always return correct upper and lower bounds for the frequen-
cies of occurrence. The original idea for the algorithm is mentioned in Appendix A.3. It was
based on a search table: Whenever the step count of the search was incremented, the next row
of the search table was computed. The columns referred to the probabilities in the domain,
in descending order, and the numbers in one column were the maximum allowed frequencies
of occurrence of all probabilities up to the probability of that column. In each step, the SAT
solver would have been used to determine whether the given problem is solvable under the
constraints of a cell in the current row, which were gone through from right to left. As soon
as a cell ni, j delivered a solvable constraint, it was used to determine the set of transitions
that make up the maximum path inM. The table alone could not be used to cover all possi-
ble combinations within a probability range, so it was decided to perform that calculation in
SMT, by using the weighted sum as in Equation (5.7).
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Chapter 6

Final Implementation and
Evaluation

The presented algorithms are evaluated by applying them in practice using RDDLsim and
comparing their performance to other RDDL planners. Especially the usefulness and perfor-
mance of the computed solution, concluded from the received reward, the probability and the
runtime, is analyzed in different RDDL domains from the IPPC 2011, 2014 and 2018.

6.1 Method

The IPPC 2018 uses RDDLsim to evaluate the solutions computed by the different planners
[ippc]. Domains are simulated with RDDLsim and plans are requested multiple times, 75
times in [ippc]. This makes it possible to e.g. evaluate the average reward obtained by a
planner. A similar approach is also used in this chapter.

Following the PROTOCOL.txt file and the client and server implementation in [rdd], a
client was implemented to communicate with the RDDL simulator. It translates the model
returned by Z3 so that actions taken in the current step of the simulation can be transmitted
to the server and receives the current state by the server so that, if desired, these states can
be used as constraints and another plan considering the new set of states can be calculated as
well. The decision between domains and domain instances is made by changing configuration
variables in the main file, but these settings could also be taken as command line parameters.

Each planning domain instance is evaluated in 30 (instead of 75) rounds for each planner,
with a timeout of 60 minutes. This is due to the time that the computation of a solution can
take. If at least one solution can be found in time, but if not all rounds can be evaluated, the
results are not discarded, but instead used to estimate the expected performance for a higher
timeout.

In comparison to other planners, the received rewards and the time left are being observed.
Furthermore, different configurations of the presented solutions and similar approaches are
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being compared regarding the expected reward, the highest possible reward according to the
reward optimization, the probabilities and the time taken for the RDDL translation as well.

The expected reward rexp - the reward the program expects to receive in case of success
- and the mean probability p can be used to assess whether the implementation treats the
probabilistic statements correctly: If either the expected reward is received in case of success,
or else the worst reward in the domain rworst is received in case of failure, then the expected
value calculated as shown below should be close to the mean reward.

rexp p+ rworst(1− p) = rexpectation

This will be called reward expectation. The probabilistic nature of the problem and the
few runs do not allow for any form of verification, but they can indicate whether the imple-
mentation works as desired. In domains where more than two rewards are received, the mean
expected reward is used for rexp and the worst received reward for rworst . The deviation from
the mean received reward can be greater because this estimation is rather inaccurate, but it
can indicate wrong results if the deviation is very high compared to the received reward. The
value is not calculated if a new plan is generated in each step, but for Academic Advising,
because then different plans might be calculated.

The evaluation was performed on a computer with 16GB of main memory and an Intel
Core i5-8600K CPU (3,60GHz x 6) using Ubuntu 18.10 installed on a SSD.

6.2 Planner Options

The planner created for this thesis can use three different algorithms and takes four configu-
ration parameters.

6.2.1 Planners

The search algorithm, the reward optimizer and the probability optimizer are compared.

The output of the reward optimizer allows for a valuation of the reward received by the
other planners. Its probability can also be used to measure the minimum probability of suc-
cess that the plan calculated by the search algorithm should have.

The correctness of the probability of the maximum plan returned by the search algorithm
can be estimated using the output of the probability optimizer, although not verified: The
benchmarks show that the weighted sum is not always optimized correctly. Furthermore, the
comparison allows to assess the speed of the solution. As Z3 probably uses highly optimized
procedures, the results of the probability optimizer will show that the translation can be used
to obtain a goal much faster than possible with the presented solution.
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6.2.2 Parameters

All planners can operate differently depending on their configuration. The translation can
either use only uninterpreted parameters, if that is possible in the domain, partly uninterpreted
parameters, where only quantifiers require interpretations, or interpreted parameters only.

The most important parameter is the reward approximation. It needs to be set carefully: If
the approximation is set too high, the probability of success of the plans found by the planner
might be too low in comparison to the maximum probability that could be obtained with
lower values, resulting in a worse reward expectation. If the approximation is too low, and
the domain definition allows for invalid or “noop” actions, then a plan with high likelihood but
low reward might be found, even if a plan with higher reward and the same probability might
exist. Therefore, to obtain proper results, often different values for the reward approximation
need to be tried out first before the actual computation can begin. This process could be
automated, but it would take up additional computation time. Whenever it was reasonable,
the author decided that an approximation of at least 25% would be sufficient.

In some domains, like the “triangle-tireworld” domain, undesired outcomes of actions,
which might lead to not reaching the goal state, can be repaired, e.g. by fixing a flat tire. It
might be possible in these domains that, if a maximum plan fails after some steps because it
does not match the RDDL simulation after a probabilistic outcome different than expected,
another plan from this state on might still lead to the goal. The “planEveryStep” parameter
can be set to true if the planner is supposed to be invoked each time the former plan failed,
to try to find a new solution according to the current and former states. This might make the
planner more competitive in comparison to RDDL online planners. As better values than the
reward approximation could be obtained, planning will not stop when a goal is reached.

6.2.3 Code Changes

Two small errors have been detected in the code shortly before the submission of the thesis.
The first error prevented the search algorithm from being able to plan again properly. It was
resolved, including a check for the satisfiability of a problem before the search procedure is
started to prevent it from going through all constraints up to the planning horizon. The search
algorithm has only been used twice with this parameter in the Triangle Tireworld domain.
The change should not have affected other runs, so only there two additional benchmarks for
the fixed version were made.

The second error was caused by the class that is responsible for printing the results of
a benchmark. It failed whenever no probabilities of a plan could be calculated. This never
happened in the tested domains. It was fixed as well in the submitted code.

6.3 Other Planners

None of the other planners consider the probability of a solution only (see Section 4.1). Still,
a comparison of the received rewards allows for an assessment of the usefulness of plans with
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maximum probability in probabilistic planning.

The overall performance is only partially comparable. The RDDL planners use Singular-
ity and thus a container and might run a little bit slower than the presented algorithms. It is
also likely that the planners have been optimized performance-wise, whereas the presented
solution is not. The received rewards are thus of higher interest than the time left.

Of all IPPC 2018 planners, only PROST and Imitation-Net were able to correctly handle
max-nondef-actions, which is used in all domains but in those of the 2018 competition.
Because of the bad performance of Imitation-Net in the IPPC (see [ippc]), also when tested
in the first navigation instance where its runtime was high as well, only PROST was used for
those instances. For Academic Advising and Cooperative Recon, domains of the IPPC 2018,
the planner Random Bandit was used as well. It was chosen because it performed mediocre,
about 30% worse than PROST in the competition regarding its overall score (see [ippc]).

6.4 Results

Seven domains of the IPPC were used to analyze the performance of the planner. All do-
mains are described briefly, and the expected outcome and most important results are being
discussed. The analyzed data that is referred to in each subsection can be found in Ap-
pendix A.5. All data refers to the value of the initially calculated plan only, so if “planEv-
eryStep” is true the values for the expected reward and the probability might differ for plans
generated in later steps. Domain and instance descriptions are in Appendix A.4.

Not all parameter combinations were used for all planners. Depending on the domain,
some settings are pointless, for example planning in every step in the navigation domain. The
choice of parameters is either justified by a short domain analysis or by the result of applying
the parameters for one domain instance.

Because the domain instances grow in complexity, they were tested in ascending order.
Whenever a procedure failed on an instance, it was usually not used on the following instances
again.

The reward optimizer was mostly used with one setting only: In most of the domains,
it was faster with interpreted parameters. Furthermore, due to the low amount of time for
finding an optimal solution, planning again was also mostly turned on.

6.4.1 Navigation Domain (IPPC 2011)

In this domain, as stated in Appendix A.4.5, a robot must navigate in a 2D world. Each coor-
dinate next to the robot’s current position can be reached with a possibly different probability.
The robot disappears in case the transition to another coordinate fails. A plan is successful if
the robot reaches the goal state, which is the case if the reward is higher than −horizon. In
all tested instances, the planning horizon is 40.
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Expectation

Only the state transition of the robot can fail. Any failed action makes it impossible to get
to the goal state. Thus, the most successful plan to reach the goal state must be the maxi-
mum plan, because all probabilistic statements in the domain affect the overall probability of
success and negative outcome cannot be repaired.

Given a proper reward approximation, the planner should thus be competitive. The ex-
pected and actual reward and the outcome of the probability optimizer should allow to esti-
mate the correctness of the calculated probability.

Results

In all tested instances, the probability of the probability optimizer and the search algorithm
was, if a solution could be computed in time, at least 10 times higher than the probability
of the plans given by the reward optimizer. The values of the probability optimizer did not
change per round in all instances except in instance 2 and 10, with only little deviation in the
former instance. Up to instance 7, the probability was higher than 85%, but then decreased
from 60% in instance 8 down to 36% in instance 10. The mean probabilities of the search
algorithm and the probability optimizer were always similar, with the same maximum value.

The reward expectation in this domain was mostly within a range of 10% of the received
reward.

The reward optimization failed to receive a better reward than the worst reward in in-
stances 3, 4, 7 and 10. Its best mean received reward was −36. In instance 9, the reward
optimizer was successful once even though the probability of success was only 0.2%. The
expected reward of the other algorithms mostly was equal to the worst reward that still satis-
fied the reward constraint, and in some steps no actions or actions without any effect on the
state transitions were taken. The received reward of the probability optimizer was better than
the one received by the search algorithm in 2 and 6, but the expected reward of the latter was
better than the one of the former in 3, 4 and 6. In instance 6, with the same probability of
success, only the search algorithm received the minimum reward of −40. In instance 9 and
10, the received reward of the probability optimizer was close to the worst reward.

The approximation in all instances was chosen so that the worst possible reward of a
maximum path would be up to −24, except for instances 9 and 10 where it was up to −32.

Only in instance 1 and 2, the time taken by the algorithms was comparable, depending on
the program parameters. From instance 3 on, the reward optimizer was faster than the proba-
bility optimizer, which in turn was faster than the search algorithm. The search algorithm got
slower by over 20 minutes in instance 4 and 6, timed out after 4 runs in instance 7 and failed
to obtain a solution in instance 8. It was not used afterwards.

In the first instance, planning again and using uninterpreted parameters took longer than
the other approaches. The former seemed to result in a better reward, the latter did not have
any effect on the reward or the probability. They were not used in the other instances, except
for the reward optimizer in the second instance, which used planning again.
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PROST only received significantly better rewards than the algorithms that calculated a
maximum path in instance 3 and 4. It was always faster than the other algorithms - in instance
10, it took about 20 minutes, whereas the probability optimizer took twice as long. The
planner usually got faster in each round, and seemed to learn from previous mistakes, so that
sometimes the reward improved in each round as well.

Analysis

The most successful plan in the navigation domain is, as expected, the maximum plan. Its
reward is much higher than the reward received by the reward optimizer due to the high prob-
ability of success. The probability algorithms perform very well, although the deviations of
the probability optimizer show that the probabilities are not always calculated correctly when
Z3’s optimization procedure is used. This might be due to rounding problems. In domains
where the search algorithm fails because of a timeout, the results of the probability optimizer
can still be used to estimate how the search algorithm could perform if it had more time or
were optimized. The comparable results regarding the probability and the reward expecta-
tions also indicate that, in this domain, the probability is considered correctly and that the
calculated plans are maximum plans for the chosen reward approximation. Small deviations
regarding the reward expectation can be explained by the small sample of 30 rounds and the
stochastic nature of the problem which can cause similar plans to have different results in
praxis. Thus, all results of the evaluation need to be treated with care.

Due to the lower probabilities, the reward that the reward optimizer received is lower.
Especially in instances with probabilities of success lower than 1%, the plans calculated by
the latter are mostly unsuccessful in all rounds. The rewards received by the other algorithms
indicate that the reward approximation is very important, because the plans tend to have the
lowest possible reward as no action or actions without an effect can be taken in any round.
With the same probability, plans with a higher reward might have been found with a higher
reward approximation. This is especially relevant in the last two domains, where the expected
reward is already close to the worst reward. Lower approximations were chosen there so that
the probability of a maximum plan would be at least 33%.

The differences in time could be expected, as the probability optimizer and search algo-
rithm depend on the reward optimizer. They indicate that the Z3 optimization procedure is
much faster than the search algorithm, but it is, with the chosen translation, also less exact,
as the deviations show.

Uninterpreted parameters were not beneficial because all parameters were quantified in
the domain. Planning again also should not be advantageous, as the robot vanishes as soon
as an action fails. Thus, the slightly better results should be negligible.

Finally, PROST outperformed the Z3 optimization procedure regarding the runtime and
performed comparably well or even better in some instances regarding the reward. As the
IPPC planner improves over time, it has a clear advantage over the chosen method for the
other algorithms, where each run is treated separate.
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la1a1, no spare la1a2, no spare la1a3, no spare

la2a1, has spare la2a2, has spare

la3a1, has spare

1 1, flat prob 0.4 1, flat prob 0.4

1, flat prob 0.4 1, flat prob 0.41, flat prob 0.4 1, flat prob 0.4

1, flat prob 0.4 1, flat prob 0.4

Figure 6.1: Instance 1 of Triangle Tireworld as a(n) (incomplete) graph (only actions that
allow the car to move are shown)

The navigation domain proved to be a good testing domain for the algorithm. The pro-
grams calculated acceptable solutions but were less robust than the winner of the IPPC 2018:
The search algorithm could not handle more complex instances, and the probability opti-
mizer’s runtime in the last instance indicates a similar disadvantage compared to PROST.

6.4.2 Triangle Tireworld Domain (IPPC 2014)

In the triangle tireworld (see Appendix A.4.7), a car is supposed to move from an initial state
to a goal state by traversing differently connected locations. It can or cannot have a spare tire
in the initial state and can collect other spare tires in certain locations. After each movement,
the car can have a flat, and it can only continue if it has a spare and repairs the flat tire.

Due to the reward definition and the planning horizon, the reward is either −40 in case of
failure or else at least 61.

Expectation

Like in the navigation domain, only the movement is probabilistic, but this time undesired
outcomes of actions can be repaired, and a goal state can be reached even if the car got a flat.
The maximum plan can be less successful than a plan that takes advantage of the possibility to
change tires. It can therefore be expected that the algorithm will underperform in comparison
to PROST.

The domain itself uses quantifiers or sums over all variables, so all parameters need to
be interpreted - thus, the runtime of the uninterpreted approach is probably worse, as more
constraints are generated.

Example Run for Instance 1

In the first instance, the car must navigate from position “la1a1” to “la1a3”, and the probabil-
ity to get a flat tire is 40% whenever it moves. A flat tire can be repaired if a spare has been
picked up before at a state where a spare was available. Thus, when traversing the orange
path, the car will always reach the goal state.
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But the blue path takes less steps, so the product of all transition probabilities is lower
there. The maximum plan therefore is the blue path. It is found by the search algorithm with
the same settings as for the search algorithm in Appendix A.5 for this domain instance. The
probability for not getting a flat is, despite the name, FLAT-PROB. The car can get a flat
in the second transition and still reach the goal, so the maximum probability of success is
0.6 ·0.4 = 0.24. Because the resulting plan is also successful if the car does not get a flat after
the second movement, the actual probability of success is 0.24+0.4 ·0.4 = 0.4.

After a test run, the actions of a maximum plan were stored. They are depicted in Ap-
pendix A.6. Most of the chosen actions do not have any effect - they could have been ruled
out using state-action-constraints. The plan complies with the blue path.

Results

Only 5 out of 10 domain instances could be checked, and the search algorithm could only be
used in the first two instances and timed out in the third one - it only got to s=5 using the search
scheme in the first round, because Z3 took too long for the tested reward approximations. In
these first instances, the reward optimizer found very likely paths as well.

The probability optimizer failed in the fifth instance, so no further instances were tested.
From the third to the fifth instance, it could not finish all 30 rounds in time.

The probability of the paths found by the search algorithm for one instance did not change,
but the expected reward was not always the same. The probabilities did deviate sometimes
when Z3’s optimization was used, but no probabilities were higher than the value of the paths
found by the search algorithm.

The probabilities depended on the instance: The first two had maximum probabilities
higher than 24%, the second two not much more than 5%. The mean reward was much
higher in the first two instances as well.

When the translation time grew by the factor 8, the search algorithm stopped delivering
results. When it grew again by 10, the same happened to the probability optimizer.

Using uninterpreted parameters mostly had a negative effect on the time left. Adjusting
the plan had a similar effect, but always had a positive effect on the received reward. It was
not used anymore when the algorithms started to time out even with the feature turned off.

The mean reward of the probability optimizer and the search algorithm were always better
than the worst reward. The reward varied widely.

Only the reward optimizer was faster than PROST in instances 3 to 5. PROST always
received better rewards.

The fixed version of the search algorithm did not deviate significantly from the previous
version but was faster than before.

Analysis

The possible combination of parameters in the domain grows quadratically per instance. This
property probably started to become relevant in the third instance. The instance translation
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grew too large to allow for fast solving, so the time left declined until the search algorithm
and the probability optimizer started to time out.

The optimization procedure did not always return a path with the same probability be-
cause it could not always minimize the weighted sum that it was given. The optimization
problem might not be a linear optimization problem because of the usage of Boolean for-
mulas to determine the frequencies of occurrence and thus might be unsupported by Z3 (see
Section 2.2). Still, its results for the maximum path were close to and never higher than the
results obtained by the search algorithm. It is thus likely that, given that the weighted sum
was formulated correctly, the search for a maximum path succeeded in the first two instances.

The sample standard deviation of the expected reward for the search algorithm shows that
there was more than one set of actions that could be used to reach a goal state.

As expected, uninterpreted parameters increased the time to search for a solution, as ad-
ditionally all parameters also had to be quantified. The received reward using uninterpreted
parameters was mostly higher, but that might be due to the higher expected reward. In the
more complex translation, a shorter path to the goal with less “noops” might be found earlier
than in the interpreted translation. Furthermore, 30 runs might not be enough to reflect possi-
ble changes in the translation when using uninterpreted parameters due to the behavior of Z3
in optimization and the stochastic nature of the domain simulation.

The collected data is not sufficient to make a statement about the correctness of the im-
plementation, but the results in the first two instances seem to be promising, as paths with
a rather high probability of success have been found. The example run for the first instance
shows that the search algorithm works correctly there, but also calculates useless actions due
to the low reward approximation. The overall reward would have been better with additional
constraints that prevent this behavior. It also shows that the calculated probability does not
take deviations from the plan into account: The actual success probability of the plan is 0.4,
as the plan succeeds regardless of the outcome of the final transition. Thus, values for the
reward expectation with 0.24 are lower than the actual mean reward. This shows that the re-
ward expectation can only be used as an estimate in domains where the plan does not succeed
if any transition fails.

Due to the higher complexity of the later instances, the runtime of the SMT-based ap-
proach was faster than PROST for the task of maximizing the reward. But as the algorithms
did not consider the change-tire actions properly, PROST was more successful overall.

6.4.3 Academic Advising Domain (IPPC 2018)

As stated in the domain description (see Appendix A.4.1), a student is required to pass a
given set of courses and gets a penalty for every step in which they did not pass all of them.
Courses can be taken in any step and are passed with a certain probability, which is higher if
courses marked as prerequisites have been completed in a former time step - the domain uses
dynamic probabilities. In the examined domain instance, the reward only takes the penalty
into account, which is−5. The worst reward in the chosen domain instance is -100 due to the
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penalty.
In this domain, uninterpreted parameters were not used, as the constraints quantify all

parameters.

Expectation

A plan with maximum probability should consist of the most likely order and combination of
mandatory courses and their prerequisites, where courses that are prerequisites are only taken
if the probability of passing them and the mandatory courses that rely on them is higher than
passing the mandatory courses alone. The plan should take each course into account only
once, as otherwise the probability of success could be higher if the course is not taken again.
Thus, the plan should not be able to deal with failure.

With low probabilities, planning in every step should give a much better result. The do-
main fits the problem description and therefore the algorithm should perform well compared
to IPPC planners.

Results

The probability of a plan calculated by the probability optimizer was higher with a lower
approximation. The sample standard deviation for the probability was 0, meaning that, in
this domain, the optimization procedure does not show unexpected changes in its outcome.
The expected reward of the reward optimizer as well as the actual reward were higher than
the rewards of the probability optimizer, the reward expectation for the former procedure was
lower than the received reward. Planning again did not improve the reward of the latter with
an approximation of 1/2, but it improved with 1/3. The search algorithm failed to calculate
any solution in time - it got stuck at s = 35.

PROST was slower than the other algorithms that could generate a plan, which operated
similarly, but it got faster in every round and calculated better plans. It received the best mean
reward, only the reward optimizer performed comparable. Random Bandit was slower than
PROST and received a mean reward that lies between the reward optimizer and PROST.

Analysis

If more plans can be generated, because of a lower reward constraint, then more likely plans
can be obtained. The better performance of the reward optimizer is caused by using plan-
ning again, which improved the result, as the deviation of the reward expectation for the first
plan from the received reward shows. The low probabilities of success and the performance
of PROST indicate this as well. The results of the probability optimizer show that only the
reward optimizer could plan again properly. This was due to the reward constraint for the
higher approximation, as the mean reward received by the reward optimizer was lower than
the reward constraint of −50 for the probability optimizer, and because of the low approx-
imation value for the second run, where a plan with a higher reward value could have been
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computed in the first step. In a future approach, it might be advisable to compute a maximum
plan with maximum reward regarding all maximum plans.

The search algorithm failed to obtain a plan because the satisfiability check made by Z3
took too long for each constraint on s. This behavior is domain dependent and shows that the
presented idea is not ideal for all planning problems.

PROST and Random Bandit outperformed the other approaches. But they also operated
more slowly, meaning that in this domain the algorithms using SMT had an advantage re-
garding their computation time.

6.4.4 Cooperative Recon Domain (IPPC 2018)

According to the file description in Appendix A.4.2, this domain models planetary rovers.
They can be moved, use tools, repair these tools and support other rovers, to increase the
probability of successfully using the tools or because all rovers are equipped with different
sets of tools. Thus, probabilities can be dynamic in this domain. They are rewarded for taking
pictures of life in different cells of the 2D grid they navigate in, and the tools can be used
to take pictures and to detect water or life if water was detected. Bad pictures with a broken
camera give a lower reward and broken tools contaminate the examined object. Tools can get
broken based on the cell where they are used.

The worst reward in this domain is 0, if no picture of life was taken.

Expectation

The planner should only consider repairing a tool if in some part of the plan it is more likely
that a tool breaks than not. So, without planning in every step, life might get contaminated
quickly and thus less pictures of life are expected to be taken.

If it is likely that a tool fails to detect life even with the support of another rover, or that a
tool gets damaged, then the results should be much better if a new plan is generated whenever
the old plan failed. The online RDDL planners should therefore perform better in the chosen
instance.

Plans could possibly fail often in this domain, as constraints that depend on the outcome
of probabilistic actions are part of the action-preconditions.

Results

As expected, plans often fail due to the action preconditions.

The probability optimizer only worked with an approximation lower than 0.25, although
the received reward was sometimes higher than that with the 0.1-approximation. It calculated
plans where sometimes a picture of the first object was taken with a reward of 11.63, and
sometimes of the second object with 1.5. The search algorithm did not compute similar plans
and was able to calculate the same probability in each of the 5 runs that could be performed
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before a timeout occurred, whereas the probability optimizer at least once calculated a plan
with very low probability of success.

When planning again, the results were better for the reward as well as the probability op-
timizer. The plan generated by the reward optimizer without planning again was much more
successful than the associated probability would have implied. Also, the reward expectation
deviated from the received reward.

PROST got a maximum reward equal to the reward calculated by the reward optimizer. It
took much longer than any other method that terminated in time, but the average reward was
more than twice as high compared to the highest received reward by the other algorithms.
Random Bandit was not able to obtain a higher reward than 0 in two trials (only one run is
shown in the table).

Analysis

The reward function seems to be too complex to be easily predictable by using the expected
reward and the probability of a plan. One good picture of the first object already receives a
reward of 11.63, and even though a less likely plan contains many probabilistic actions where
grid cells are investigated and pictures are taken, the probability to take a good picture once
is high - tools can only get broken after their first use, and the probabilities that occur in total
make the success of the solution seem less probable than it actually is. A maximum plan in
this domain does thus not correlate to a useful plan, because the probabilities are independent
for each cell and a plan with a high probability of success should consider all cells with the
highest possible probability of success individually. Therefore, the reward optimizer was
much more successful than the other approaches, also because it always preferred the first
object, which resulted in a higher reward.

The problematic behavior of the probability optimizer could again be explained by a
wrong optimization in Z3 or a translation error. The reward optimizer showed a similar be-
havior. As the search algorithm did not calculate different paths regarding the probability and
the expected reward, the problem could be related to Z3 more than to the implementation.
This is also indicated by the 0.1-approximation: A 0.25-approximation was evaluated as be-
ing true for the model of the 0.1-approximation. But if the former was added as constraint
and the satisfiability of the same problem was checked again, no model could be found and
the problem was considered to be unsatisfiable. The reason for this behavior of Z3 could not
be explained.

The maximum reward PROST received indicates that the value calculated by the reward
optimizer could be maximal. Overall, the domain is not suitable to examine the correctness of
the results obtained by the algorithms and shows that there are domains where the maximum
path is not desirable. Still, considering the performance of Random Bandit, the algorithms
performed acceptable.



6.4. Results 65

6.4.5 Crossing Traffic Domain (IPPC 2014)

Following the domain description in Appendix A.4.3, a robot navigates a 2D grid with a goal
and an initial state. The domain is deterministic but for the obstacles that can randomly spawn
at the rightmost side of the grid, except in the top or bottom row, and that move to the left.
The robot needs to reach the goal and avoid the obstacles. It disappears after a collision with
an obstacle.

A reward of -1 is assigned in each step if the robot did not reach the goal, else the reward
is 0.

Expectation

None of the algorithms presented in this thesis can take the obstacles into account properly.
The reward optimizer should calculate the shortest route to the goal state, and the other two
planners should either assume that an object always spawns if that is more likely than the
probability that it does not spawn, making it, depending on the domain and the initial position,
impossible to reach the goal, or they will never consider that an object might appear.

If the goal or the initial position is in the rightmost state, all planners should fail whenever
an object spawns. Otherwise, only planning in every step should work properly. Even then,
the reward optimizer should calculate a more successful solution within the planning horizon,
as the reward is higher for shorter paths. The other planners do not optimize the reward and
might even fail because of the reward constraint. They should perform worse than the reward
optimizer and the RDDL planners.

Results

The probabilities calculated by all algorithms were very low, but higher when uninterpreted
parameters were chosen. The values did not change within 30 rounds. The rewards received
by all algorithms except for the reward optimizer were low as well. The reward optimizer
received its expected maximum reward at least once. The probability optimizer was run with
the same settings twice but received different results although the expected reward was similar
and the probabilities of success were equal.

With respect to the range of possible reward values from −1 to −40, the sample standard
deviation of the reward was high with over 11. The reward expectation values deviated from
the received reward.

The translation and calculation time increased when using the uninterpreted planning
approach. The search algorithm took too long to obtain any path.

PROST was slower than most but performed better than all of the other algorithms.

Analysis

Because of the spawning property, the probabilities of all plans were close to zero. While
the reward optimizer did not seem to produce errors, the different behavior for interpreted
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and uninterpreted parameters could indicate an error in the translation or treatment of prob-
abilistic statements. On the other hand, the Z3 optimization procedure did not produce stable
results in most of the domains. The different values could be related to the different set of
variables in the uninterpreted problem translation. Due to the higher number of variables, the
uninterpreted approach took longer.

As expected, planning again and using the reward optimizer was much more useful than
considering the probabilities. As the probabilities did not regard the success of an action,
PROST could handle the domain better than the proposed algorithms.

The high deviation shows that the cars were either able to reach their goal if nothing hap-
pened, or else were unable to do so in case of failure, as described in the problem description.

6.4.6 Prop DBN Domain

This domain is taken from [rdd] and modified regarding its second instance. It was not part
of the IPPC 2011/2014/2018. According to the domain description (see Appendix A.4.4), it
represents a simple Dynamic Bayes Network with three state fluents and one action fluent.

Expectation

This is the only domain where no quantifiers are used. Therefore, the algorithms should be
faster when uninterpreted parameters are used. The domain should work well with proba-
bilistic planning due to the simple Bernoulli statements.

Results

In the first instance, down to a reward approximation of 12.5%, the expected reward and the
probabilities of all calculated plans were equal, and the reward was similar as well, except
for one deviation due to a timeout. No actions were taken in any step. For the probability
optimizer and search algorithm, not choosing uninterpreted variables caused a timeout, with
21 successful rounds for the former and 3 successful rounds for the latter approach. The
search algorithm also timed out when uninterpreted variables were used, with 8 completed
rounds. The reward expectation value was calculated for the first entry only because devia-
tions from the original plan are likely but their effect on the reward depends on when the plan
failed. Thus, no conclusions regarding the correctness of the algorithms can be drawn from
this value.

Since no actions needed to be taken, a second instance with different initial values for
the variables was created. There, differences between the uninterpreted and the interpreted
approach can be observed: The reward optimizer was run multiple times and delivered the
same expected reward but different probabilities depending on these parameters. The proba-
bilities were also different for the probability optimizer, with a higher maximum path found
when using uninterpreted parameters, but a lower mean probability. The expected reward was
different as well.
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This time, actions were taken, and the time left was similar for all algorithms. PROST
took a similar amount of time but got a higher minimum reward. Only the search algorithm
was terminated manually at s = 101 after over an hour.

Analysis

The first instance is not suitable for evaluating the planners, because its optimal plan seems to
include no actions. But it indicates that the translation and handling of the domain is similar
for all planners, and the problems that arise in other domains do not appear. Furthermore,
this is the only domain where no quantifiers, sums or products are used. Thus, as expected,
the uninterpreted approach is faster than enumerating all parameters. This property could be
advantageous in large domains without quantifiers - or with existential quantifiers that are not
negated - in comparison to other IPPC planners, because the whole state in a time step, given
by all interpretations of all functions with all possible combinations of their parameters, does
not need to be considered in SMT solving then, but might be required in the other solving
methods.

The search procedure was too slow because two probabilistic actions need to be taken
in all steps and the time taken to solve each step was high. Still, the probabilistic values
for all algorithms show that the search algorithm worked as expected. Due to the initial
values, a transition with a probability of success of 0.8 needs to be taken at least once, else
0.9-transitions can be chosen. The highest probability of success thus is 0.939 ·0.8, which is
equal to the probability of all plans calculated by the planners.

In the second instance, an optimal plan regarding the received reward was harder to de-
termine. Thus, PROST performed better than the other, simpler approaches, but they were
not far behind. The decision between interpreted and uninterpreted parameters again has an
impact on the solution found by Z3. The differences regarding the probabilities of the paths
when using the probability optimizer are similar to the other problems shown before in other
domains.

Overall, the proposed algorithms are less suitable for this domain, where, after a transition
failed, a high reward can still be earned, and where thus a high probability alone is not enough
to calculate a competitive plan.

6.4.7 Skill Teaching Domain (IPPC 2014)

The skill teaching domain is similar to the academic advising domain (see Appendix A.4.6):
As explained in the RDDL file, a student is taught skills. Each skill can be improved by the
agent by giving hints, which can improve a skill up to a medium proficiency, or by asking
multiple choice questions. Skills can have “prerequisites” in form of other skills, which
increase the probability of answering a question about it correctly. This property is encoded
using if expressions, so no dynamic probabilities are used. Prerequisites must be known for
hints to work. If questions are answered correctly, the proficiency of a skill increases, else it
decreases, which might also happen randomly if the proficiency is high.
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The reward is positive for each high proficiency level and negative for low levels, and
dependent on the weight of each skill.

Expectation

As a high proficiency level can be lost anytime with some probability, it might be beneficial
for the planner not to obtain a high level due to the probability optimization, depending on the
combination of probabilities for losing the high proficiency level, answering questions cor-
rectly with the different levels and obtaining a higher level. But due to the reward constraint,
high proficiency levels should still be preferred over lower levels.

A high reward should correlate with higher probabilities because of the changed likeli-
hood of answering questions correctly for a high proficiency. Thus, both the reward optimizer
and the algorithms that consider the probability should perform acceptable.

The approach of planning again should also have an advantage, because it can be used for
correction if a higher proficiency level was not reached.

In comparison to the other planners, it is unclear how the solution performs.

Results

The results of the search algorithm, the probability optimizer and the reward optimizer (with-
out uninterpreted parameters) did not deviate in the first instance.

For different approximation values - 0.15,0.25,0.35,0.45,0.55 - the probability of a plan
found by the probability optimizer did not decrease except for the last approximation value,
where a timeout occurred after 10 rounds. In the third instance, only 3 rounds could be
completed by the probability optimizer in time.

Plan rewards were higher when planning again was enabled. The reward optimizer ob-
tained the highest rewards in all instances except for PROST.

The search algorithm terminated in time with an approximation of 0.25 but timed out
after 25 steps with 0.45. The latter obtained a mean reward that was twice as good compared
to the first. The probability value of the plans was equal to the highest probability in case a
question was asked on a skill with medium proficiency. The reward expectation was mostly
within a range of 10% of the received reward. The highest deviation occurred in the second
instance, where the reward of the search algorithm should have been 5 times as high. The
algorithm was less than half as fast compared to the other planners.

PROST could calculate a solution quickly in all instances and received the highest re-
wards.

Analysis

It seems that, with rising complexity, the optimization values for the probabilities begin to
scatter. Either the translation or the optimization procedure of Z3 then begin to cause inexact
results.
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The different values for the approximation show that, when choosing an approximation
value, probability and desired reward need to be weighed to obtain a maximum path with
high probability of success when using the proposed algorithm. Also, restricting the amount
of possible interpretations using the reward constraint seems to increase the time required to
calculate a satisfying plan.

As expected, planning again was advantageous in this domain. Also, the reward optimizer
obtained better results, and the difference regarding the probabilities indicates why: A plan is
more likely to succeed if no questions are asked and a high proficiency level is not reached.
Although a path with high probability of success could be found, and although the algorithm
seems to work as required, that path is not desirable in the context of the domain, for teaching
a student, and the approach that determines a plan with maximum reward is more successful
when planning again.

The bad search result in the second instance was similar in a second trial. No explanation
could be found for the high deviation from the reward expectation, especially because the
problem did not arise with similar solutions of the other algorithms.

Again, PROST performed better due to its focus on the reward as well.

6.5 Summary

All algorithms introduced in this thesis proved to be able to handle RDDL domains for plan-
ning. In some domains, calculating a maximum plan or a plan with maximum reward was
beneficial and lead to results that were comparable to the winner of the IPPC 2018, although
the solving time was mostly higher.

Nonetheless, the current solution for the search algorithm is not performant enough to
deal with complex planning problems and cannot benefit from the speed of the SMT solver,
which was comparable to or faster than PROST when the reward optimization was chosen.
The optimization procedures could handle more domains, but did not always calculate re-
liable results, either due to an implementation error, a translation or rounding problem or
some problem with Z3’s optimization procedure. For both approaches, the results regarding
the probability of the plans were not unexpected, which indicates that the calculation of a
maximum path could be implemented successfully, although not necessarily efficiently. Only
the results of the search algorithm in Skill Teaching could not be explained.

From all maximum plans, a plan with maximum reward should be obtained to improve the
results. Both the reward and the probability optimization alone only lead to a good reward in
domains where a most probable plan or high rewards were encouraged. Else, as the different
results for the reward approximation show, it is overall more advantageous in the context of
the IPPC RDDL domains to maximize the reward expectation.

The Prop DBN domain indicates that the usage of uninterpreted parameters, if possible,
can be beneficial regarding the runtime. Another positive effect on the runtime could be noted
when the reward approximation was lower.
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The evaluation also allows for conclusions regarding the initial problem statement. These
will be discussed in the final chapter.



Chapter 7

Conclusion

7.1 Summary

In this thesis, a novel approach to solving planning problems with success probabilities using
SMT was presented. Based on the domain definition language RDDL, 3 simple algorithms
were elaborated that exploit different properties of the underlying planning problem: One
algorithm optimizes the reward function only, the other two calculate a plan with maximum
probability of success. They consider the product of all probabilities of the transitions made
in all planning steps of a plan to be equal to its success probability. This product can be
reformulated as a sum using the natural logarithm and can either be optimized directly or be
translated in form of constraints. These constraints can be used to iteratively search for a
maximum plan by calling the SMT solver in each iteration to evaluate their satisfiability. A
former approach based on a similar idea that did not rely on the natural logarithm, but it did
not work correctly. It would have been more numerically stable.

Subsequently, the different algorithms were evaluated on different IPPC planning do-
mains, in comparison to participants of the IPPC 2018. On average, they took more time
than PROST, the only planner they could be compared with in all domains, but were able to
calculate solutions that complied with the expectations regarding their probability. The prob-
ability optimizer proved to be able to deal with more complex domains and operated faster
than the search algorithm, but it was also less reliable. In domains where a high probability is
important to receive a good average reward, the algorithms that determine a plan with max-
imum probability perfom well. The search for a maximum path was most successful when
probabilities were directly connected to the possibility to reach a goal state, and a failed tran-
sition made any goal state unreachable. In other domains, especially when the probabilities
were low or planning again with focus on a maximum reward was more successful because
failure did not prevent to reach a goal state, the reward optimization performed better. Using
uninterpreted function parameters was only useful in domains where most parameters were
not quantified. In some domains, the rewards were close to the results of PROST, but overall
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PROST obtained higher rewards. Random Bandit also obtained higher rewards but operated
slower in Academic Advising, whereas in Cooperative Recon it could not calculate a useful
solution.

Some of the results, for example in the Skill Teaching domain, and the deviations regard-
ing the results of the probability optimizer show that the current solution might need to be
revised. Explanations for this behavior could be related to numeric stability problems and the
optimization behavior of Z3.

7.2 Discussion

An essential question for solving probabilistic planning problems with an SMT solver was
how to encode probabilities in a language that does not explicitly support probabilistic ex-
pressions. The authors of [LSTZ15] decided to perform an intermediate step by expressing
the problem in P4 and then translating this problem to quadratic equations that were solved
by Z3. In this thesis, the problems are first expressed in another language as well, in RDDL.
Probabilities are translated in form of constraints, as a weighted sum, but their semantic is
omitted. They are treated similarly to a reward function that is either optimized using a
search procedure that is based on the satisfiability of iteratively changing constraints or using
Z3’s optimization procedure. The actual reward function is ignored but for an approximation
constraint.

This translation allows to calculate the probability of any plan that is found by the SMT
solver. The treatment of these probabilities affects the runtime and the stability of the pro-
gram. The implementation was not numerically stable, although floating point precision
could be guaranteed to some degree except for the natural logarithm, so that most problems
with simpler probabilistic statements should be solved correctly. The deviations of the reward
and probability values indicate that the numeric stability of the problem or the formulation of
the weighted sum caused a nondeterministic behavior in Z3’s optimization procedure. Thus,
the implementation is still improvable. The RDDL translation itself was likely correct, as
generated plans always complied to all RDDL constraints that were not related to probabilis-
tic outcomes. The proposed solution worked as desired but could not handle large domains
and proved to be too slow or to provide plans that were not competitive to other approaches
in some instances as well. Most probable solutions do not seem to be sufficient in domains
that include a reward function. The search algorithm might be more useful in other areas than
planning, for example for counterexample generation as in Section 4.2.

Although the reward function was not ignored by any algorithm, the reward approxima-
tion constraint was not always enough to define goal states. In a goal-based language, without
any reward function, the algorithms should perform better, as the length of the path or similar
properties that could be rewarded would not be relevant. The trade-off between runtime, high
probabilities and a high reward as with the reward approximation could then be avoided.

As the translation was mostly much faster than the solving time, the constraints used to
translate probabilistic RDDL statements might need to be improved further, or the statements
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should be translated differently. Another solver than Z3 might also perform better for this
problem class. As shown in Section 4.2, a direct translation to a SAT solver could also be
beneficial. The solution leaves room for improvement, and some ideas will be discussed in
the next section.

The results show that SMT solvers can be used to solve planning problems with success
probabilities. Although the presented approach was rather naive, the performance of the
implementation was not far off from the winner of the IPPC 2018 in some domains. Yet,
the runtime in other domain instances indicates that it might not be suitable for all planning
problems. Nonetheless, especially the performance in the navigation domain and the speed
of the probability optimizer in most domains motivates further examinations of SMT solving
in probabilistic planning for discrete probability distributions.

The translation of continuous distributions, on the other hand, is not covered by this thesis,
cannot be performed with the introduced approach and might prove to be difficult, as the set
of possible outcomes of a planning step might be infinite. Thus, for those planning problems,
other methods than SMT solving might be preferable.

All in all, the presented work proposes a working translation of probabilistic expression
to an SMT language, identifies use cases for most probable solutions and indicates that, at
least for a subset of probabilistic planning problems, probabilistic planning using SMT could
be an alternative to present planners.

7.3 Future Work

Based on the proposed translation of probabilistic expressions to SMT, more complex algo-
rithms can be developed that do not rely on probabilistic values only. Optimizing both the
reward and probabilities would lead to better results when the RDDL language is used as a
basis. Another language with explicit goal states could be considered for the algorithm as
well, as it was designed with goal states in mind. When using RDDL, it could be more suit-
able to define probability constraints instead of reward constraints, to generate a plan with
maximum reward that at least succeeds with the given probability, if one exists. Thresholds
for both the probability and the reward could be formulated as well.

The solutions found by PROST could improve in each round of the execution. Therefore,
additionally to a more suitable algorithm, former plans and their properties, like the expected
reward, received reward and success probability, could be stored after each run and the pro-
gram could learn from past mistakes or use the found solution in the next run. Parameters
like planning again, using interpreted or uninterpreted variables or the reward approximation
could also be changed dynamically and be adjusted depending on the effect on the received
reward.

Otherwise, another translation could be elaborated and might further improve the runtime.
Larger domains could be handled more efficiently if a symbolic approach would be used.
The presented search algorithm could also benefit from another search scheme, for example
a binary search within a given range. Alternatively, if an exact solution is not required, the
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approximate solution within the search range of Algorithm 1 could be sufficient and would
work faster. Runtime could also be saved if the reward optimization procedure would not be
used for the reward approximation, but if instead a fixed value for the minimum reward would
be required - this should be possible if the user is informed about the planning problem.

The problem of numeric stability could be addressed if an alternative to the weighted sum
could be elaborated. The former failed algorithm might indicate a solution.

All things considered, future algorithms that integrate these changes could be able to
compete with probabilistic planners of the IPPC.



Bibliography

[AFTa] Murugeswari Issakkimuthu Alan Fern and Prasad Tadepalli. Imitation-Net: A
supervised learning planner. URL: https://ipc2018-probabilistic.
bitbucket.io/planner-abstracts/imitation-net.pdf [cited
22.11.2018].

[AFTb] Murugeswari Issakkimuthu Alan Fern and Prasad Tadepalli. Random-
Bandit: An online planner. URL: https://ipc2018-probabilistic.
bitbucket.io/planner-abstracts/random-bandit.pdf [cited
22.11.2018].

[AFTc] Murugeswari Issakkimuthu Alan Fern, Anurag Koul and Prasad Tade-
palli. A2C-Plan: A reinforcement learning planner. URL: https://

ipc2018-probabilistic.bitbucket.io/planner-abstracts/

a2c-plan.pdf [cited 22.11.2018].

[BdMNW] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph
Wintersteiger. Programming Z3 - 8. optimization. URL: http:

//theory.stanford.edu/~nikolaj/programmingz3.html#

sec-optimization [cited 06.01.2019].

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Pro-
ceedings, volume 2404 of Lecture Notes in Computer Science, pages 236–
249. Springer, 2002. ISBN: 3-540-43997-8. URL: https://doi.org/10.
1007/3-540-45657-0_18, doi:10.1007/3-540-45657-0\_18.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008. ISBN: 978-0-262-02649-9.

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz - an opti-
mizing SMT solver. In Christel Baier and Cesare Tinelli, editors, Tools

https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/imitation-net.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/imitation-net.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/random-bandit.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/random-bandit.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/a2c-plan.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/a2c-plan.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/a2c-plan.pdf
http://theory.stanford.edu/~nikolaj/programmingz3.html#sec-optimization
http://theory.stanford.edu/~nikolaj/programmingz3.html#sec-optimization
http://theory.stanford.edu/~nikolaj/programmingz3.html#sec-optimization
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/3-540-45657-0_18
http://dx.doi.org/10.1007/3-540-45657-0_18


76 Bibliography

and Algorithms for the Construction and Analysis of Systems - 21st Interna-
tional Conference, TACAS 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in Com-
puter Science, pages 194–199. Springer, 2015. ISBN: 978-3-662-46680-3.
URL: https://doi.org/10.1007/978-3-662-46681-0_14, doi:
10.1007/978-3-662-46681-0\_14.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Rod-
erick Bloem, editors, Handbook of Model Checking., pages 305–343.
Springer, 2018. The page numbers might differ from the original
publication - as it could not be examined, the source that was cited
was taken from http://theory.stanford.edu/ barrett/pubs/BT18-abstract.html. It
refers to the Springer book, which was still unpublished when the com-
ments on the website regarding the publication were written. URL:
https://doi.org/10.1007/978-3-319-10575-8_11, doi:10.

1007/978-3-319-10575-8\_11.

[CCO+12] Amanda Jane Coles, Andrew Coles, Angel García Olaya, Sergio Jiménez Celor-
rio, Carlos Linares López, Scott Sanner, and Sungwook Yoon. A survey of
the seventh international planning competition. AI Magazine, 33(1):83–88,
2012. URL: http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2392.

[CFLM16] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. A
compilation of the full PDDL+ language into SMT. In Proceedings of the
Twenty-Sixth International Conference on International Conference on Auto-
mated Planning and Scheduling, ICAPS’16, pages 79–87. Association for the
Advancement of Artificial Intelligence (AAAI), 2016. ISBN: 1-57735-757-4,
978-1-57735-757-5. URL: http://dl.acm.org/citation.cfm?id=
3038594.3038605.

[CK] Hao Cui and Roni Khardon. The SOGBOFA system in IPC 2018:
Lifted BP for conformant approximation of stochastic planning.
URL: https://ipc2018-probabilistic.bitbucket.io/

planner-abstracts/conformant-sogbofa-ipc18.pdf [cited
22.11.2018].

[FH02] Zhengzhu Feng and Eric A. Hansen. Symbolic heuristic search for factored
Markov decision processes. In Rina Dechter, Michael J. Kearns, and Richard S.
Sutton, editors, Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial

https://doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2392
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2392
http://dl.acm.org/citation.cfm?id=3038594.3038605
http://dl.acm.org/citation.cfm?id=3038594.3038605
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/conformant-sogbofa-ipc18.pdf
https://ipc2018-probabilistic.bitbucket.io/planner-abstracts/conformant-sogbofa-ipc18.pdf


Bibliography 77

Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada., pages 455–
460. AAAI Press / The MIT Press, 2002. URL: http://www.aaai.org/
Library/AAAI/2002/aaai02-069.php.

[GS] Florian Geißer and David Speck. PROST-DD-utilizing symbolic classical plan-
ning in THTS. URL: http://gki.informatik.uni-freiburg.de/
papers/geisser-speck-ippc2018.pdf [cited 13.01.2019].

[GSS10] Michael Günther, Johann Schuster, and Markus Siegle. Symbolic calcula-
tion of k-shortest paths and related measures with the stochastic process al-
gebra tool CASPA. In Proceedings of the First Workshop on DYnamic As-
pects in DEpendability Models for Fault-Tolerant Systems, DYADEM-FTS ’10,
pages 13–18, New York, NY, USA, 2010. ACM. ISBN: 978-1-60558-916-
9. URL: http://doi.acm.org/10.1145/1772630.1772635, doi:
10.1145/1772630.1772635.

[HGSK07] Jörg Hoffmann, Carla P. Gomes, Bart Selman, and Henry A. Kautz. SAT encod-
ings of state-space reachability problems in numeric domains. In Manuela M.
Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007,
pages 1918–1923, 2007. URL: http://ijcai.org/Proceedings/07/
Papers/309.pdf.

[ippa] Icaps 2011 international probabilistic planning competition (IPPC). URL:
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/ [cited
07.01.2019].

[ippb] Icaps 2014 international probabilistic planning competition (IPPC) dis-
crete track. URL: https://ssanner.github.io/IPPC_2014/ [cited
07.01.2019].

[ippc] International planning competition 2018 probabilistic tracks. URL: https:
//ipc2018-probabilistic.bitbucket.io/# [cited 22.11.2018].

[JÁZ+12] Nils Jansen, Erika Ábrahám, Barna Zajzon, Ralf Wimmer, Johann Schus-
ter, Joost-Pieter Katoen, and Bernd Becker. Symbolic counterexample
generation for discrete-time Markov chains. In Corina S. Pasareanu and
Gwen Salaün, editors, Formal Aspects of Component Software, 9th Inter-
national Symposium, FACS 2012, Mountain View, CA, USA, September 12-
14, 2012. Revised Selected Papers, volume 7684 of Lecture Notes in Com-
puter Science, pages 134–151. Springer, 2012. ISBN: 978-3-642-35860-9.
URL: https://doi.org/10.1007/978-3-642-35861-6_9, doi:

10.1007/978-3-642-35861-6\_9.

http://www.aaai.org/Library/AAAI/2002/aaai02-069.php
http://www.aaai.org/Library/AAAI/2002/aaai02-069.php
http://gki.informatik.uni-freiburg.de/papers/geisser-speck-ippc2018.pdf
http://gki.informatik.uni-freiburg.de/papers/geisser-speck-ippc2018.pdf
http://doi.acm.org/10.1145/1772630.1772635
http://dx.doi.org/10.1145/1772630.1772635
http://dx.doi.org/10.1145/1772630.1772635
http://ijcai.org/Proceedings/07/Papers/309.pdf
http://ijcai.org/Proceedings/07/Papers/309.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
https://ssanner.github.io/IPPC_2014/
https://ipc2018-probabilistic.bitbucket.io/#
https://ipc2018-probabilistic.bitbucket.io/#
https://doi.org/10.1007/978-3-642-35861-6_9
http://dx.doi.org/10.1007/978-3-642-35861-6_9
http://dx.doi.org/10.1007/978-3-642-35861-6_9


78 Bibliography

[KH13] Thomas Keller and Malte Helmert. Trial-based heuristic tree search for fi-
nite horizon MDPs. In Daniel Borrajo, Subbarao Kambhampati, Angelo
Oddi, and Simone Fratini, editors, Proceedings of the Twenty-Third Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2013,
Rome, Italy, June 10-14, 2013, pages 135–143. AAAI, 2013. ISBN:
978-1-57735-609-7. URL: http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS13/paper/view/6026.

[KS92] Henry Kautz and Bart Selman. Planning as satisfiability. In ECAI 92: 10th
European Conference on Artificial Intelligence, volume 92, pages 359–363.
Wiley, 1992. The page numbers differ from the original publication - as it
could not be examined, the source that was cited was taken from CiteSeerX
in http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.3573&rank=1.
The site refers to the original document.

[LSTZ15] Meilun Li, Zhikun She, Andrea Turrini, and Lijun Zhang. Preference planning
for Markov decision processes. In Blai Bonet and Sven Koenig, editors, Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Jan-
uary 25-30, 2015, Austin, Texas, USA., pages 3313–3319. AAAI Press, 2015.
ISBN: 978-1-57735-698-1. URL: http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9730.

[ML99] Stephen M. Majercik and Michael L. Littman. Contingent planning under uncer-
tainty via stochastic satisfiability. In Jim Hendler and Devika Subramanian, edi-
tors, Proceedings of the Sixteenth National Conference on Artificial Intelligence
and Eleventh Conference on Innovative Applications of Artificial Intelligence,
July 18-22, 1999, Orlando, Florida, USA., pages 549–556. AAAI Press / The
MIT Press, 1999. ISBN: 0-262-51106-1. URL: http://www.aaai.org/
Library/AAAI/1999/aaai99-078.php.

[Pap85] Christos H. Papadimitriou. Games against nature. J. Comput. Syst.
Sci., 31(2):288–301, 1985. URL: https://doi.org/10.1016/

0022-0000(85)90045-5, doi:10.1016/0022-0000(85)

90045-5.

[rdd] ssanner/rddlsim - code. URL: https://github.com/ssanner/

rddlsim [cited 07.01.2019].

[San10] Scott Sanner. Relational dynamic influence diagram language (RDDL): Lan-
guage description. 2010. URL: http://users.cecs.anu.edu.au/
~ssanner/IPPC_2011/RDDL.pdf [cited 04.10.2018].

[Seb07] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3:141–224, 2007.

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6026
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6026
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9730
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9730
http://www.aaai.org/Library/AAAI/1999/aaai99-078.php
http://www.aaai.org/Library/AAAI/1999/aaai99-078.php
https://doi.org/10.1016/0022-0000(85)90045-5
https://doi.org/10.1016/0022-0000(85)90045-5
http://dx.doi.org/10.1016/0022-0000(85)90045-5
http://dx.doi.org/10.1016/0022-0000(85)90045-5
https://github.com/ssanner/rddlsim
https://github.com/ssanner/rddlsim
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf


Bibliography 79

[ST12] Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA(Q) cost
functions. CoRR, abs/1202.1409, 2012. URL: http://arxiv.org/abs/
1202.1409 [cited 13.01.2019], arXiv:1202.1409.

[ST14] Roberto Sebastiani and Patrick Trentin. Pushing the envelope of optimization
modulo theories with linear-arithmetic cost functions. CoRR, abs/1410.5568,
2014. URL: http://arxiv.org/abs/1410.5568 [cited 13.01.2019],
arXiv:1410.5568.

[ST17] Roberto Sebastiani and Patrick Trentin. On optimization modulo theories,
MaxSMT and sorting networks. CoRR, abs/1702.02385, 2017. URL: http:
//arxiv.org/abs/1702.02385 [cited 13.01.2019], arXiv:1702.

02385.

[YLWA05] Håkan L. S. Younes, Michael L. Littman, David Weissman, and John Asmuth.
The first probabilistic track of the international planning competition. J. Artif. In-
tell. Res., 24:851–887, 2005. URL: https://doi.org/10.1613/jair.
1880, doi:10.1613/jair.1880.

[z3G] Z3Prover/z3 - code. URL: https://github.com/Z3Prover/z3 [cited
07.01.2019].

[z3M] Z3Prover/z3 - wiki - home. URL: https://github.com/Z3Prover/z3/
wiki#background [cited 07.01.2019].

http://arxiv.org/abs/1202.1409
http://arxiv.org/abs/1202.1409
http://arxiv.org/abs/1202.1409
http://arxiv.org/abs/1410.5568
http://arxiv.org/abs/1410.5568
http://arxiv.org/abs/1702.02385
http://arxiv.org/abs/1702.02385
http://arxiv.org/abs/1702.02385
http://arxiv.org/abs/1702.02385
https://doi.org/10.1613/jair.1880
https://doi.org/10.1613/jair.1880
http://dx.doi.org/10.1613/jair.1880
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3/wiki#background
https://github.com/Z3Prover/z3/wiki#background


80 Bibliography



Appendix A

A.1 Abbreviations

IPC International Planning Competition

IPPC International Probabilistic Planning Competition

MC Markov Chain

MDP Markov Decision Process

OMT Optimization Modulo Theories

RDDL Relational Dynamic Influence Diagram Language

SMT Satisfiability Modulo Theories

A.2 Algorithm Example

The algorithm is performed on the MDP in Figure A.1 which is similar to Figure 5.1. Some
transitions were left out - additionally to transitions leading from a state to another state with
probability p, transitions with the same action lead from the state to itself with probability
1− p. These transitions will not be considered in the algorithm example for the sake of
simplicity but would be treated similarly. They are considered by the actual algorithm. As
they cannot be used to get closer to the goal state, they are not part of a maximum path. The
initial state in Figure A.1 is “raw mat.”, the goal state is “final prod.”.
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rawmat. B1 B2 B3 B4

A1

final
prod.

. . .

use_M1, 0.8

use_M2, 0.9

use_M3, 0.1

use_M1, 0.8

use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 β , 1

Figure A.1: MDP: Construction of a final product from raw materials using different ma-
chines

A.2.1 Algorithm 1

Remember: The algorithm for RDDL planning problems is not based on an actual graph
search, but rather restricts the amount of transitions with a probability lower than 1.0 that can
be taken in each step until a solution is found. The highest lower probability of success is
0.9.

The search constraints alone would normally be satisfied by subsets of the MDP that do
not include the initial or the goal state as well. All parts of the MDP that could be considered
before the consistency with the problem definition is checked could be shown here. To save
space and for reasons of simplicity, the set of reachable states in each step from the initial
state is shown instead. The latter must be part of any solution. The last figure is the first one
that is consistent with the planning problem, meaning that here a path from the initial to a
goal state was found. At this point algorithm 1 terminates, and the s value is passed to the
second algorithm.

rawmat.

Figure A.2: s = 0

rawmat. B1
use_M2, 0.9

Figure A.3: s = 1
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rawmat. B1 B2
use_M2, 0.9 use_M2, 0.9

Figure A.4: s = 2

rawmat.

A1

B1 B2 B3

use_M1, 0.8

use_M2, 0.9 use_M2, 0.9 use_M2, 0.9

Figure A.5: s = 3

rawmat.

A1

B1 B2 B3 B4

use_M1, 0.8

use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 use_M2, 0.9

Figure A.6: s = 4

rawmat. B1 B2 B3 B4

A1

final
prod.

. . .

use_M1, 0.8

use_M2, 0.9

use_M1, 0.8

use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 use_M2, 0.9 β , 1

Figure A.7: s = 5



84 Appendix A.

A.2.2 Algorithm 2

The second algorithm now iterates through all arrays with three entries where each entry can
have a value between 0 and 5. These arrays are sorted by probability and then checked for
satisfiability if their probability lies in [0.95,0.94). The first satisfiable array is returned and
can be used as frequencies of occurrence to obtain a maximum plan. In this case, these match
the upper path of Figure A.1.

1
2 ...
3 all_combinations← [[1,0,0], [2,0,0], . . . , [5,0,0], [0,1,0], [0,2,0], . . . , [2,1,0], . . .]
4 all_combinations← [[1,0,0], [2,0,0], . . . , [2,1,0], [0,2,0], [5,0,0], . . .] //after sorting them
5 ... //only the latter three arrays are within the probability range and are checked for satisfiability
6 [2, 1, 0] is not satisfiable //there is no path from the initial to the goal state with different transitions with

probabilities 0.9 and 0.8
7 [0, 2, 0] is satisfiable −> return //only satisfied by the upper path from the initial to the goal state

As Figure A.1 includes the same path from the initial to the goal state as Figure 5.1, this
is the most probable path in the MDP.

A.3 First Algorithm Idea

Definition A.3.1 (Search Table)
Let M = (S,Act,P, ιinit,AP,L) be an MDP, horizon the horizon of the search problem and
p1, . . . , pn ∈ (0,1) be the values of all probabilities that occur in M lower than 1.0, sorted
from highest to lowest. Then, Tp≥p j ⊆ P denotes the set of all transitions inM that have a
probability of success that is higher than or equal to p j, given j ∈ {1, . . . ,n}.

Given some m ∈ N, the table

step p1 . . . p j . . .

0 0 . . . 0 . . .

1 1 . . . n1, j . . .
...

...
...

...
...

i−1 i−1 . . . ni−1, j . . .

i i . . . ni, j . . .
...

...
...

...
...

m horizon . . . horizon . . .

is the search table Sn, where each row represents a step in the search, and each column
(titled with p j) represents how many transitions t j ∈ Tp≥p j can be taken in step i in M, so
that ∑t j∈Tp≥p j

transition t j was taken ≤ ni, j. The set of all sets of transitions t j ∈ Tp≥p j that
fulfill this condition is called Ti, j.

In each step, ni,1 is incremented by one, whereas ni, j is only incremented by one if

p
ni−1, j+1
j ≥ p

ni,1
1
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and else remains unchanged. As soon as ni,1 = horizon, ni,2 is incremented in each step, as
incrementing ni,1 does not make sense in a non-concurrent domain when the transition cannot
be taken more often due to the constraint given by horizon. The same behavior applies to all
following situations where ni, j = horizon for any j ∈ {1, . . . ,n}, until, in the final row of S,
ni, j = horizon for all j ∈ {1, . . . ,n}.

The initial algorithm idea was to dynamically create the search table until a solution is
found in a row. Each row would have been traversed from right to left, and Ti, j would have
been used instead of the frequencies of occurrence. As soon as one of the constraints given
by ni, j, i ∈ [1,m], j ∈ [1,n] was satisfiable, the second algorithm Algorithm 2 could have been
used with Ti, j to find a maximum path. This original idea did not always return a maximum
path. There could not be found a change to the idea of the search table that would have
allowed it to operate similarly to Algorithm 1.

A.4 IPPC RDDL Domains

These domains were taken from the domain download links in [ippc] [ippb] [ippa] or the
example domains in [rdd] and changed so that no underscores are used but for those that are
part of the RDDL syntax. Shortly after the download, the links in [ippb] and [ippa] stopped
working. Thus, all used domains and their instances are shown in this part of the appendix.

A.4.1 Academic Advising (see [ippc])

Domain

1 /////////////////////////////////////////////////////////////////////////////////
2 // //
3 // //
4 // RDDL MDP version of the IPC 2018 Academic Advising domain. //
5 // //
6 // //
7 // Created and modified for the probabilistic tracks of IPC 2014 by //
8 // //
9 // Libby Ferland (libby.knouse [at] uky.edu) and //

10 // Scott Sanner (ssanner [at] mie.utoronto.ca) //
11 // //
12 // and modified for the probabilistic tracks of IPC 2018 by //
13 // Thomas Keller (tho.keller [at] unibas.ch). //
14 // //
15 // //
16 // In this domain, a student may take courses at a given cost and passes the //
17 // course with a probability determined by how many of the prerequisites they //
18 // have successfully passed. A student also receives a penalty at each time //
19 // step if they have not yet graduated from their program (i.e., completed all //
20 // required courses). We allow multiple courses to be taken in a semester in //
21 // some instances. //
22 // //
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23 // //
24 /////////////////////////////////////////////////////////////////////////////////
25

26 domain academic−advising_mdp {
27 requirements {
28 reward−deterministic,
29 preconditions
30 };
31

32

33 types {
34 course : object;
35 };
36

37

38 pvariables {
39 //////////////////// non−fluents ////////////////////
40

41 // number of courses that can be taken in parallel, (introduced for IPC
42 // 2018, replaces max−nondef−actions of IPC 2014 domain)
43 COURSES−PER−SEMESTER : { non−fluent, int, default = 1 };
44

45 // first argument is a prerequisite of second argument
46 PREREQ(course, course) : { non−fluent, bool, default = false };
47

48 // probability of passing a course without prerequisites
49 PRIOR−PROB−PASS−NO−PREREQ(course) : { non−fluent, real, default = 0.8 };
50

51 // base probability of passing a course with prerequisites (if no
52 // prerequisite has been passed)
53 PRIOR−PROB−PASS(course) : { non−fluent, real, default = 0.2 };
54

55 // program requirements for graduation
56 PROGRAM−REQUIREMENT(course) : { non−fluent, bool, default = false };
57

58 // cost for taking a course the first time
59 COURSE−COST : { non−fluent, real, default = −1 };
60

61 // cost for taking a course except the first time
62 COURSE−RETAKE−COST : { non−fluent, real, default = −2 };
63

64 // penalty per step for incomplete program
65 PROGRAM−INCOMPLETE−PENALTY : { non−fluent, real, default = −5 };
66

67

68 //////////////////// state−fluents ////////////////////
69

70 // course has been taken successfully
71 passed(course) : { state−fluent, bool, default = false };
72

73 // course has been taken at least once
74 taken(course) : { state−fluent, bool, default = false };
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75

76

77 //////////////////// action−fluents ////////////////////
78

79 // take a course
80 take−course(course) : { action−fluent, bool, default = false };
81 };
82

83

84 cpfs {
85 passed’(?c) =
86 // if ?c is taken and has no prerequisites, it’s passed according to
87 // a prior probability
88 if ( take−course(?c) & ~( exists_{?c2 : course} [ PREREQ(?c2,?c) ] ) )
89 then Bernoulli( PRIOR−PROB−PASS−NO−PREREQ(?c) )
90

91 // if ?c is taken and has no prerequisites, it’s passed according to
92 // a prior probability and a bonus depending on passed prerequisites
93 else if ( take−course(?c) )
94 then Bernoulli( PRIOR−PROB−PASS(?c) +
95 ( (1 − PRIOR−PROB−PASS(?c) ) * ( sum_{?c2 : course} [ PREREQ(?c2,?c)

& passed(?c2) ] ) /
96 (1 + sum_{?c2 : course} [ PREREQ(?c2,?c) ] ) ) )
97

98 // otherwise, the value persists
99 else passed(?c);

100

101

102 // ?c is taken if it has been taken earlier or is taken now
103 taken’(?c) = taken(?c) | take−course(?c);
104 };
105

106

107 reward =
108 // taking a course for the first time incurs a cost
109 ( sum_{ ?c : course } [ COURSE−COST * ( take−course(?c) & ~taken(?c) ) ] ) +
110

111 // taking a course that has been taken before incurs a (usually higher) cost
112 ( sum_{ ?c : course } [ COURSE−RETAKE−COST * ( take−course(?c) & taken(?c) ) ] ) +
113

114 // as long as the program is not completed, a penalty is incurred
115 ( PROGRAM−INCOMPLETE−PENALTY * ~( forall_{ ?c : course } [ PROGRAM−REQUIREMENT

(?c) => passed(?c) ] ) );
116

117

118 action−preconditions {
119 // only take courses that haven’t been passed
120 ( forall_{ ?c : course } [ take−course(?c) => ~passed(?c) ] );
121

122 // replaces max−nondef−actions
123 ( ( sum_{ ?c : course } [take−course(?c)] ) <= COURSES−PER−SEMESTER );
124 };
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125 }

Instance

1 /////////////////////////////////////////////////////////////////////////////////
2 // //
3 // //
4 // RDDL MDP version of Academic Advising instance #01 for IPC 2018 by Thomas //
5 // Keller (tho.keller [at] unibas.ch), based on the IPC 2014 domain by Libby //
6 // Ferland (libby.knouse [at] uky.edu). //
7 // //
8 // //
9 // The naive policy that ignores all preconditions and takes courses that are //

10 // program requirements until it succeeds is expected to complete the program //
11 // after 15.00 steps with an expected reward of −75.00. //
12 // //
13 // //
14 /////////////////////////////////////////////////////////////////////////////////
15

16 instance academic−advising_inst_mdp__01 {
17 domain = academic−advising_mdp;
18 objects {
19 course : { c0000, c0001, c0002, c0003, c0004, c0100, c0101, c0102, c0103, c0200, c0201, c0202, c0300,

c0301, c0302 };
20 };
21

22 non−fluents {
23 COURSES−PER−SEMESTER = 1;
24

25 // PRIOR PROBS
26 PRIOR−PROB−PASS−NO−PREREQ(c0000) = 0.80;
27 PRIOR−PROB−PASS−NO−PREREQ(c0001) = 0.55;
28 PRIOR−PROB−PASS−NO−PREREQ(c0002) = 0.67;
29 PRIOR−PROB−PASS−NO−PREREQ(c0003) = 0.78;
30 PRIOR−PROB−PASS−NO−PREREQ(c0004) = 0.75;
31 PRIOR−PROB−PASS(c0100) = 0.22;
32 PRIOR−PROB−PASS(c0101) = 0.45;
33 PRIOR−PROB−PASS(c0102) = 0.41;
34 PRIOR−PROB−PASS(c0103) = 0.44;
35 PRIOR−PROB−PASS(c0200) = 0.14;
36 PRIOR−PROB−PASS(c0201) = 0.07;
37 PRIOR−PROB−PASS(c0202) = 0.24;
38 PRIOR−PROB−PASS(c0300) = 0.23;
39 PRIOR−PROB−PASS(c0301) = 0.08;
40 PRIOR−PROB−PASS(c0302) = 0.16;
41

42 // PREREQ
43 PREREQ(c0003, c0100);
44 PREREQ(c0000, c0100);
45 PREREQ(c0004, c0100);
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46 PREREQ(c0001, c0101);
47 PREREQ(c0002, c0101);
48 PREREQ(c0000, c0102);
49 PREREQ(c0004, c0102);
50 PREREQ(c0001, c0103);
51 PREREQ(c0001, c0200);
52 PREREQ(c0101, c0200);
53 PREREQ(c0103, c0201);
54 PREREQ(c0002, c0202);
55 PREREQ(c0200, c0300);
56 PREREQ(c0201, c0301);
57 PREREQ(c0201, c0301);
58 PREREQ(c0200, c0302);
59

60 // PROGRAM REQUIREMENT
61 PROGRAM−REQUIREMENT(c0300);
62 PROGRAM−REQUIREMENT(c0202);
63 PROGRAM−REQUIREMENT(c0101);
64 PROGRAM−REQUIREMENT(c0002);
65 PROGRAM−REQUIREMENT(c0001);
66

67 // COURSE COSTS
68 COURSE−COST = 0;
69 COURSE−RETAKE−COST = 0;
70

71 };
72

73 init−state {
74 ~passed(c0000);
75 };
76

77 horizon = 20;
78

79 discount = 1.0;
80 }

A.4.2 Cooperative Recon (see [ippc])

Domain

1 /////////////////////////////////////////////////////////////////////////////////
2 // //
3 // //
4 // RDDL MDP version of the IPC 2018 Cooperative Recon domain. //
5 // //
6 // //
7 // Based on the Recon domain that has been created for the probabilistic //
8 // tracks of IPC 2011 by //
9 // //

10 // Tom Walsh (thomasjwalsh [at] gmail.com) //
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11 // //
12 // and modified for the probabilistic tracks of IPC 2018 by //
13 // Thomas Keller (tho.keller [at] unibas.ch). //
14 // //
15 // //
16 // In the Cooperative Recon domain, the planner controls one or more planetary //
17 // rovers that examine objects of interest in order to detect life and take a //
18 // picture of it. As in the Recon domain of IPC 2011, first has to be detected //
19 // before life is detected, and negative results (one for life, two for water) //
20 // contaminate the object of interest such that no life can be detected. //
21 // //
22 // The main changes compared to the IPC 2011 Recon domain that have been //
23 // realized are as follows: //
24 // //
25 // 1. In the 2011 version, taking pictures with a damaged camera lead to a //
26 // negative reward, which is never a reasonable option (not taking a //
27 // picture at all is always better). Here, we grant a lower positive //
28 // reward instead, which makes for interesting decisions between returning //
29 // to the base to repair the camera or go with the lower reward. //
30 // //
31 // 2. Hazards are replaced by a more general mechanism where probabilities //
32 // that a tool is damaged are directly linked to the cell. However, the //
33 // instance generation script still distributed hazards over the grid to //
34 // compute these probabilities. The main difference is that hazards can //
35 // overlap in a way that the probabilities accumulate. //
36 // //
37 // 3. In the IPC 2011 instance, all rovers were equipped with a tool to detect //
38 // water, a tool to detect life and a camera. In the instances for IPC //
39 // 2018, some rovers are only partially equipped such that the rovers have //
40 // to collaborate to perform all required tests. //
41 // //
42 // 4. To emphasize colaboration even more, there is a novel support−agent //
43 // action that rovers can take to increase the probability for successfully //
44 // detecting life or water. This leads to interesting decisions between //
45 // optimizing the probability of successfully detecting life and the number //
46 // of objects of interest that can be examined within the finite horizon. //
47 // //
48 // //
49 /////////////////////////////////////////////////////////////////////////////////
50

51 domain cooperative−recon_mdp {
52 requirements {
53 reward−deterministic,
54 preconditions
55 };
56

57

58 types {
59 xpos : object;
60 ypos : object;
61 object−of−interest : object;
62 agent : object;
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63 tool : object;
64 };
65

66

67 pvariables {
68 //////////////////// non−fluents ////////////////////
69

70 // connectivity of the grid
71 ADJACENT−UP(ypos,ypos) : { non−fluent, bool, default = false };
72 ADJACENT−DOWN(ypos,ypos) : { non−fluent, bool, default = false };
73 ADJACENT−RIGHT(xpos, xpos) : { non−fluent, bool, default = false };
74 ADJACENT−LEFT(xpos,xpos) : { non−fluent, bool, default = false };
75

76 // location of object of interest
77 OBJECT−AT(object−of−interest, xpos, ypos) : { non−fluent, bool, default = false };
78

79 // probability a tool is damaged at a given grid cell
80 DAMAGE−PROB(xpos, ypos) : { non−fluent, real, default = 0.0 };
81

82 // probability water or life is detected with non−damaged tool and without support
83 DETECT−PROB : { non−fluent, real, default = 0.6 };
84

85 // probability water or life is detected with damaged tool and without support
86 DETECT−PROB−DAMAGED : { non−fluent, real, default = 0.3 };
87

88 // probability water or life is detected with non−damaged tool and with support
89 DETECT−PROB−WITH−SUPPORT : { non−fluent, real, default = 0.8 };
90

91 // probability water or life is detected with damaged tool and with support
92 DETECT−PROB−DAMAGED−WITH−SUPPORT : { non−fluent, real, default = 0.5 };
93

94 // tool is a camera
95 CAMERA−TOOL(tool) : { non−fluent, bool, default = false };
96

97 // tool is a life−detector
98 LIFE−TOOL(tool) : { non−fluent, bool, default = false };
99

100 // tool is a water−detector
101 WATER−TOOL(tool) : { non−fluent, bool, default = false };
102

103 // tool is mounted on agent
104 HAS−TOOL(agent, tool) : { non−fluent, bool, default = false };
105

106 // grid cell is a base (where tools can be repaired)
107 BASE(xpos, ypos) : { non−fluent, bool, default = false };
108

109 // reward for taking a picture with a non−damaged camera
110 GOOD−PIC−REWARD(object−of−interest) : { non−fluent, real, default = 10.0 };
111

112 // reward for taking a picture with a damaged camera
113 BAD−PIC−REWARD(object−of−interest) : { non−fluent, real, default = 5.0 };
114
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115

116 //////////////////// state−fluents ////////////////////
117

118 // tool is damaged
119 damaged(tool) : { state−fluent, bool, default = false };
120

121 // water detector has been used on this object of interest (at least once)
122 waterChecked(object−of−interest) : { state−fluent, bool, default = false };
123

124 // water has been detected at this object of interest
125 waterDetected(object−of−interest) : { state−fluent, bool, default = false };
126

127 // life detector has been used on this object of interest (at least once)
128 lifeChecked(object−of−interest) : { state−fluent, bool, default = false };
129

130 // life detector has been used on this object of interest at least twice
131 lifeChecked2(object−of−interest) : { state−fluent, bool, default = false };
132

133 // life has been detected at this object of interest
134 lifeDetected(object−of−interest) : { state−fluent, bool, default = false };
135

136 // a picture of this object of interest has been taken
137 pictureTaken(object−of−interest) : { state−fluent, bool, default = false };
138

139 // the location of an agent
140 agent−at(agent, xpos, ypos) : { state−fluent, bool, default = false };
141

142

143 //////////////////// action−fluents ////////////////////
144

145 // move an agent upwards
146 up(agent) : { action−fluent, bool, default = false };
147

148 // move an agent downwards
149 down(agent) : { action−fluent, bool, default = false };
150

151 // move an agent to the left
152 left(agent) : { action−fluent, bool, default = false };
153

154 // move an agent to the right
155 right(agent) : { action−fluent, bool, default = false };
156

157 // have an agent use a tool on an object of interest
158 use−tool−on(agent, tool, object−of−interest) : { action−fluent, bool, default = false };
159

160 // have an agent support another agent using a tool
161 support−agent(agent, agent) : { action−fluent, bool, default = false };
162

163 // repair a tool
164 repair(agent, tool) : { action−fluent, bool, default = false };
165 };
166



A.4. IPPC RDDL Domains 93

167

168 cpfs {
169 damaged’(?t) =
170 // if an agent repairs ?t, it’s not damaged
171 if ( exists_{ ?a: agent } [ repair(?a, ?t) ] )
172 then false
173 // if it was damaged and is not repaired, it remains damaged
174 else if ( damaged(?t) )
175 then true
176 // otherwise, it becomes damaged with a probability given by the location
177 // of the agent carrying the tool
178 else Bernoulli( ( sum_{ ?a: agent, ?x : xpos, ?y : ypos } [ HAS−TOOL(?a, ?t) * agent−at(?a, ?x, ?y)

* DAMAGE−PROB(?x, ?y) ] ) );
179

180 waterChecked’(?o) =
181 // remains true of becomes true if a water detector is applied now
182 waterChecked(?o) |
183 exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) & WATER−TOOL(?t) ];
184

185 waterDetected’(?o) =
186 // once water is detected, it remains this way
187 if (waterDetected(?o))
188 then true
189 // if checking for water fails once, no water is ever detected
190 else if (waterChecked(?o))
191 then false
192 // an agent checks now with a damaged tool and with support
193 else if ( exists_{?t : tool, ?a1: agent, ?a2 : agent} [ use−tool−on(?a1, ?t, ?o) & support−agent(?a2, ?

a1) & WATER−TOOL(?t) & damaged(?t) ] )
194 then Bernoulli(DETECT−PROB−DAMAGED−WITH−SUPPORT)
195 // an agent checks now with a damaged tool and without support
196 else if ( exists_{?t : tool, ?a: agent} [ use−tool−on(?a, ?t, ?o) & WATER−TOOL(?t) & damaged(?t)

] )
197 then Bernoulli(DETECT−PROB−DAMAGED)
198 // an agent checks now with a non−damaged tool and with support
199 else if ( exists_{?t : tool, ?a1: agent, ?a2 : agent} [ use−tool−on(?a1, ?t, ?o) & support−agent(?a2, ?

a1) & WATER−TOOL(?t) ] )
200 then Bernoulli(DETECT−PROB−WITH−SUPPORT)
201 // an agent checks now with a non−damaged tool and without support
202 else if ( exists_{?t : tool, ?a: agent} [ use−tool−on(?a, ?t, ?o) & WATER−TOOL(?t) ] )
203 then Bernoulli(DETECT−PROB)
204 // the value persists
205 else false;
206

207 lifeChecked’(?o) =
208 // remains true of becomes true if a life detector is applied now
209 lifeChecked(?o) |
210 exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) & LIFE−TOOL(?t) ];
211

212 lifeChecked2’(?o) =
213 // true if it was true before or if a life detector is applied now and was applied before
214 lifeChecked2(?o) |
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215 ( lifeChecked(?o) & exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) & LIFE−TOOL(?t) ] );
216

217 lifeDetected’(?o) =
218 // once life is detected, it remains this way
219 if ( lifeDetected(?o) )
220 then true
221 // if checking for life fails twice or there is no water, no life is ever detected
222 else if ( lifeChecked2(?o) | ~waterDetected(?o) ) // Never detect life after 2nd try or if no water
223 then false
224 // an agent checks now with a damaged tool and with support
225 else if ( exists_{?t : tool, ?a1: agent, ?a2 : agent} [ use−tool−on(?a1, ?t, ?o) & support−agent(?a2, ?

a1) & LIFE−TOOL(?t) & damaged(?t) ] )
226 then Bernoulli(DETECT−PROB−DAMAGED−WITH−SUPPORT)
227 // an agent checks now with a damaged tool and without support
228 else if ( exists_{?t : tool, ?a: agent} [ use−tool−on(?a, ?t, ?o) & LIFE−TOOL(?t) & damaged(?t) ] )
229 then Bernoulli(DETECT−PROB−DAMAGED)
230 // an agent checks now with a non−damaged tool and with support
231 else if ( exists_{?t : tool, ?a1: agent, ?a2 : agent} [ use−tool−on(?a1, ?t, ?o) & support−agent(?a2, ?

a1) & LIFE−TOOL(?t) ] )
232 then Bernoulli(DETECT−PROB−WITH−SUPPORT)
233 // an agent checks now with a non−damaged tool and without support
234 else if ( exists_{?t : tool, ?a: agent} [ use−tool−on(?a, ?t, ?o) & LIFE−TOOL(?t) ] )
235 then Bernoulli(DETECT−PROB)
236 // the value persists
237 else false;
238

239 pictureTaken’(?o) =
240 // remains true of becomes true if a picture os taken now
241 pictureTaken(?o) |
242 ( exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) & CAMERA−TOOL(?t) ] );
243

244 agent−at’(?a, ?x, ?y) =
245 // agent moves to the left and ends up here
246 if ( left(?a) & ( exists_{ ?x2 : xpos } [ agent−at(?a, ?x2, ?y) & ADJACENT−LEFT(?x, ?x2) ] ) )
247 then true
248 // agent moves to the right and ends up here
249 else if( right(?a) & ( exists_{ ?x2 : xpos } [ agent−at(?a, ?x2, ?y) & ADJACENT−RIGHT(?x, ?x2) ]

) )
250 then true
251 // agent moves upwards and ends up here
252 else if( up(?a) & ( exists_{ ?y2 : ypos } [ agent−at(?a, ?x, ?y2) & ADJACENT−UP(?y, ?y2) ] ) )
253 then true
254 // agent moves downwards and ends up here
255 else if( down(?a) & ( exists_{ ?y2 : ypos } [ agent−at(?a, ?x, ?y2) & ADJACENT−DOWN(?y, ?y2) ]

) )
256 then true
257 // agent moves, but it doesn’t end up here
258 else if ( left(?a) | right(?a) | up(?a) | down(?a) )
259 then false
260 // agent doesn’t move, so it is here only if it was already here
261 else agent−at(?a, ?x, ?y);
262 };
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263

264

265 reward =
266 ( sum_{?o : object−of−interest}
267 // get reward for a picture of an object of interest with life with a non−damged camera
268 [ ( GOOD−PIC−REWARD(?o) * exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) &

CAMERA−TOOL(?t) & ~damaged(?t) ] ) +
269

270 // get reward for a picture of an object of interest with life with a damged camera
271 ( BAD−PIC−REWARD(?o) * exists_{ ?a: agent, ?t: tool } [ use−tool−on(?a, ?t, ?o) & CAMERA

−TOOL(?t) & damaged(?t) ] ) ] );
272

273

274 action−preconditions {
275 // dont move outside of the grid
276 forall_{ ?a : agent } [ left(?a) => exists_{ ?x1 : xpos, ?x2 : xpos, ?y : ypos } [ agent−at(?a, ?x1, ?y) &

ADJACENT−LEFT(?x2, ?x1) ] ];
277 forall_{ ?a : agent } [ right(?a) => exists_{ ?x1 : xpos, ?x2 : xpos, ?y : ypos } [ agent−at(?a, ?x1, ?y) &

ADJACENT−RIGHT(?x2, ?x1) ] ];
278 forall_{ ?a : agent } [ up(?a) => exists_{ ?x : xpos, ?y1 : ypos, ?y2 : ypos } [ agent−at(?a, ?x, ?y1) &

ADJACENT−UP(?y2, ?y1) ] ];
279 forall_{ ?a : agent } [ down(?a) => exists_{ ?x : xpos, ?y1 : ypos, ?y2 : ypos } [ agent−at(?a, ?x, ?y1) &

ADJACENT−DOWN(?y2, ?y1) ] ];
280

281 // only use tools on this agent
282 forall_{ ?a : agent, ?t : tool, ?o : object−of−interest }
283 [ use−tool−on(?a, ?t, ?o) => HAS−TOOL(?a, ?t) ];
284

285 // only use tool on objects at the same location
286 forall_{ ?a : agent, ?t : tool, ?o : object−of−interest }
287 [ use−tool−on(?a, ?t, ?o) => ( exists_{ ?x : xpos, ?y : ypos } [ agent−at(?a, ?x, ?y) & OBJECT−AT

(?o, ?x, ?y) ] ) ];
288

289 // only take pictures of objects that have not been photographed before
290 forall_{ ?a : agent, ?t : tool, ?o : object−of−interest }
291 [ use−tool−on(?a, ?t, ?o) => ( ~CAMERA−TOOL(?t) | ~pictureTaken(?o) ) ];
292

293 // only take a picture if life was detected
294 forall_{ ?a : agent, ?t : tool, ?o : object−of−interest }
295 [ use−tool−on(?a, ?t, ?o) => ( ~CAMERA−TOOL(?t) | lifeDetected(?o) ) ];
296

297 // repair is only possible at the base
298 forall_{ ?a : agent, ?t : tool } [ repair(?a, ?t) => ( exists_{ ?x : xpos, ?y : ypos } [ agent−at(?a, ?x, ?y) &

BASE(?x, ?y) ] ) ];
299

300 // repair only damaged tool
301 forall_{ ?a : agent, ?t : tool } [ repair(?a, ?t) => damaged(?t) ];
302

303 // repair only tools on this agent
304 forall_{ ?a : agent, ?t : tool } [ repair(?a, ?t) => HAS−TOOL(?a, ?t) ];
305

306 // objects can only be investigated by one agent at a time
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307 forall_{ ?o : object−of−interest } [ ( sum_{ ?a : agent, ?t : tool } [ use−tool−on(?a, ?t, ?o) ] ) <= 1 ];
308

309 // agents can support other agents if they are in the same location
310 forall_{ ?a1 : agent, ?a2 : agent } [ support−agent(?a1, ?a2) => ( exists_{ ?x : xpos, ?y : ypos } [ agent−

at(?a1, ?x, ?y) & agent−at(?a2, ?x, ?y) ] ) ];
311

312 // agents can support other agents only if the other agent is using a tool
313 // NOTE: This one is not possible with ipc 2018 rules. As supporting doesn’t have an
314 // effect if the other agent doesn’t use a tool, it doesn’t matter if we keep it commented, though.
315 // forall_{ ?a1 : agent, ?a2 : agent } [ support−agent(?a1, ?a2) => ( exists_{ ?t : tool, ?o : object−of−

interest } [ use−tool−on(?a2, ?t, ?o) ] ) ];
316

317 // each agent may perform one action per step
318 forall_{ ?a : agent } [ ( left(?a) + right(?a) + up(?a) + down(?a) +
319 ( sum_{ ?t : tool, ?o : object−of−interest } [ use−tool−on(?a, ?t, ?o) ] ) +
320 ( sum_{ ?t : tool } [ repair(?a, ?t) ] ) +
321 ( sum_{ ?a2 : agent } [ support−agent(?a, ?a2) ] ) ) <= 1 ];
322 };
323 }

Instance

1 /////////////////////////////////////////////////////////////////////////////////
2 // //
3 // //
4 // RDDL MDP version of Cooperative Recon instance #01 for IPC 2018 by Thomas //
5 // Keller (tho.keller [at] unibas.ch), based on the IPC 2011 domain by Tom //
6 // Walsh (thomasjwalsh [at] gmail.com). //
7 // //
8 // //
9 /////////////////////////////////////////////////////////////////////////////////

10

11 instance cooperative−recon_inst_mdp__01 {
12 domain = cooperative−recon_mdp;
13

14 objects {
15 xpos : { x00, x01, x02 };
16 ypos : { y00, y01, y02 };
17 object−of−interest : { obj00, obj01 };
18 agent : { a00, a01 };
19 tool : { w00, l00, c00, w01, l01, c01 };
20 };
21

22 non−fluents {
23 // ADJACENCY
24 ADJACENT−LEFT(x00, x01);
25 ADJACENT−RIGHT(x01, x00);
26 ADJACENT−LEFT(x01, x02);
27 ADJACENT−RIGHT(x02, x01);
28 ADJACENT−DOWN(y00, y01);
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29 ADJACENT−UP(y01, y00);
30 ADJACENT−DOWN(y01, y02);
31 ADJACENT−UP(y02, y01);
32

33 // BASE
34 BASE(x00, y00);
35

36 // TOOLS
37 WATER−TOOL(w00);
38 HAS−TOOL(a00, w00);
39 LIFE−TOOL(l00);
40 HAS−TOOL(a00, l00);
41 CAMERA−TOOL(c00);
42 HAS−TOOL(a00, c00);
43 WATER−TOOL(w01);
44 HAS−TOOL(a01, w01);
45 LIFE−TOOL(l01);
46 HAS−TOOL(a01, l01);
47 CAMERA−TOOL(c01);
48 HAS−TOOL(a01, c01);
49

50 // DAMAGE−PROBS
51 DAMAGE−PROB(x01, y00) = 0.52;
52 DAMAGE−PROB(x01, y01) = 0.27;
53 DAMAGE−PROB(x02, y00) = 0.27;
54

55 // DETECT−PROBS
56 DETECT−PROB = 0.6;
57 DETECT−PROB−DAMAGED = 0.3;
58 DETECT−PROB−WITH−SUPPORT = 0.8;
59 DETECT−PROB−DAMAGED−WITH−SUPPORT = 0.4;
60

61 // OBJECT−AT
62 OBJECT−AT(obj00, x02, y01);
63 OBJECT−AT(obj01, x02, y01);
64

65 // REWARDS
66 GOOD−PIC−REWARD(obj00) = 11.63;
67 BAD−PIC−REWARD(obj00) = 8.21;
68 GOOD−PIC−REWARD(obj01) = 1.50;
69 BAD−PIC−REWARD(obj01) = 0.30;
70

71 };
72

73 init−state {
74 agent−at(a00, x01, y02);
75 agent−at(a01, x01, y02);
76

77 };
78

79 horizon = 30;
80
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81 discount = 1.0;
82 }

A.4.3 Crossing Traffic (see [ippb])

Domain

1 ////////////////////////////////////////////////////////////////////
2 //
3 // Crossing Traffic Robot Navigation
4 //
5 // Author: Sungwook Yoon (sungwook.yoon [at] gmail.com)
6 //
7 // Modified for competition and translation purposes by Scott Sanner.
8 //
9 // In a grid, a robot (R) must get to a goal (G) and avoid obstacles (O)

10 // arriving randomly and moving left. If an obstacle overlaps with the
11 // robot, the robot disappears and can no longer move around. The robot
12 // can "duck" underneath a car by deliberately moving right/east when
13 // a car is to the right of it (this can make the solution interesting...
14 // the robot should start at the left side of the screen then). The robot
15 // receives −1 for every time step it has not reached the goal. The goal
16 // state is absorbing with 0 reward.
17 //
18 // ****************
19 // * R *
20 // * <−O <−O <−O *
21 // * <−O <−O *
22 // * <−O <−O *
23 // * <−O <−O *
24 // * G *
25 // ****************
26 //
27 // You can think of this as the RDDL version of Frogger:
28 //
29 // http://en.wikipedia.org/wiki/Frogger
30 //
31 ////////////////////////////////////////////////////////////////////
32

33 domain crossing−traffic_mdp {
34 requirements = {
35 // constrained−state,
36 reward−deterministic
37 };
38

39 types {
40 xpos : object;
41 ypos : object;
42 };
43
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44 pvariables {
45

46 NORTH(ypos, ypos) : {non−fluent, bool, default = false};
47 SOUTH(ypos, ypos) : {non−fluent, bool, default = false};
48 EAST(xpos, xpos) : {non−fluent, bool, default = false};
49 WEST(xpos, xpos) : {non−fluent, bool, default = false};
50

51 MIN−XPOS(xpos) : {non−fluent, bool, default = false};
52 MAX−XPOS(xpos) : {non−fluent, bool, default = false};
53 MIN−YPOS(ypos) : {non−fluent, bool, default = false};
54 MAX−YPOS(ypos) : {non−fluent, bool, default = false};
55

56 INPUT−RATE : {non−fluent, real, default = 0.2};
57

58 GOAL(xpos,ypos) : {non−fluent, bool, default = false};
59

60 // Fluents
61 robot−at(xpos, ypos) : {state−fluent, bool, default = false};
62 obstacle−at(xpos, ypos) : {state−fluent, bool, default = false};
63

64 // Actions
65 move−north : {action−fluent, bool, default = false};
66 move−south : {action−fluent, bool, default = false};
67 move−east : {action−fluent, bool, default = false};
68 move−west : {action−fluent, bool, default = false};
69 };
70

71 cpfs {
72

73 robot−at’(?x,?y) =
74

75 // Goal is absorbing so robot stays put
76 if ( GOAL(?x,?y) ^ robot−at(?x,?y) )
77 then
78 KronDelta(true)
79 else if ( exists_{?x2 : xpos, ?y2 : ypos} [ GOAL(?x2,?y2) ^ robot−at(?x2,?y2) ] )
80 then
81 KronDelta(false) // because of fall−through we know (?x,y) != (?x2,?y2)
82

83 // Check for legal robot movement (robot disappears if at an obstacle)
84 else if ( move−north ^ exists_{?y2 : ypos} [ NORTH(?y2,?y) ^ robot−at(?x,?y2) ^ ~obstacle−at(?x,?y2) ] )
85 then
86 KronDelta(true) // robot moves to this location
87 else if ( move−north ^ exists_{?y2 : ypos} [ NORTH(?y,?y2) ^ robot−at(?x,?y) ] )
88 then
89 KronDelta(false) // robot leaves this location
90 else if ( move−south ^ exists_{?y2 : ypos} [ SOUTH(?y2,?y) ^ robot−at(?x,?y2) ^ ~obstacle−at(?x,?y2) ] )
91 then
92 KronDelta(true) // robot moves to this location
93 else if ( move−south ^ exists_{?y2 : ypos} [ SOUTH(?y,?y2) ^ robot−at(?x,?y) ] )
94 then
95 KronDelta(false) // robot leaves this location
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96 else if ( move−east ^ exists_{?x2 : xpos} [ EAST(?x2,?x) ^ robot−at(?x2,?y) ^ ~obstacle−at(?x2,?y) ] )
97 then
98 KronDelta(true) // robot moves to this location
99 else if ( move−east ^ exists_{?x2 : xpos} [ EAST(?x,?x2) ^ robot−at(?x,?y) ] )
100 then
101 KronDelta(false) // robot leaves this location
102 else if ( move−west ^ exists_{?x2 : xpos} [ WEST(?x2,?x) ^ robot−at(?x2,?y) ^ ~obstacle−at(?x2,?y) ] )
103 then
104 KronDelta(true) // robot moves to this location
105 else if ( move−west ^ exists_{?x2 : xpos} [ WEST(?x,?x2) ^ robot−at(?x,?y) ] )
106 then
107 KronDelta(false) // robot leaves this location
108

109 // A noop or illegal movement, so state unchanged
110 else
111 KronDelta( robot−at(?x,?y) ^ ~obstacle−at(?x,?y) );
112

113 obstacle−at’(?x, ?y) =
114

115 // No obstacles in top or bottom row (these rows are safe havens)
116 if ( MIN−YPOS(?y) | MAX−YPOS(?y) )
117 then KronDelta( false )
118

119 // Check for RHS border input cell
120 else if ( MAX−XPOS(?x) )
121 then Bernoulli( INPUT−RATE )
122

123 // Not a top or bottom row and not a border input cell −− inherits obstacle to east
124 else
125 KronDelta( exists_{?x2 : xpos} [EAST(?x,?x2) ^ obstacle−at(?x2,?y)] );
126

127 };
128

129 // 0 reward for reaching goal, −1 in all other cases
130 reward = [sum_{?x : xpos, ?y : ypos} −(GOAL(?x,?y) ^ ~robot−at(?x,?y))];
131

132 // state−action−constraints {
133 //
134 // // Robot at exactly one position
135 // [sum_{?x : xpos, ?y : ypos} robot−at(?x,?y)] <= 1;
136 //
137 // // EAST, WEST, NORTH, SOUTH defined properly (unique and symmetric)
138 // forall_{?x1 : xpos} [(sum_{?x2 : xpos} WEST(?x1,?x2)) <= 1];
139 // forall_{?x1 : xpos} [(sum_{?x2 : xpos} EAST(?x1,?x2)) <= 1];
140 // forall_{?y1 : ypos} [(sum_{?y2 : ypos} NORTH(?y1,?y2)) <= 1];
141 // forall_{?y1 : ypos} [(sum_{?y2 : ypos} SOUTH(?y1,?y2)) <= 1];
142 // forall_{?x1 : xpos, ?x2 : xpos} [ EAST(?x1,?x2) <=> WEST(?x2,?x1) ];
143 // forall_{?y1 : ypos, ?y2 : ypos} [ SOUTH(?y1,?y2) <=> NORTH(?y2,?y1) ];
144 //
145 // // Definition verification
146 // [ sum_{?x : xpos} MIN−XPOS(?x) ] == 1;
147 // [ sum_{?x : xpos} MAX−XPOS(?x) ] == 1;
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148 // [ sum_{?y : ypos} MIN−YPOS(?y) ] == 1;
149 // [ sum_{?y : ypos} MAX−YPOS(?y) ] == 1;
150 // [ sum_{?x : xpos, ?y : ypos} GOAL(?x,?y) ] == 1;
151 //
152 // };
153

154 }

Instance

1 non−fluents nf−crossing−traffic_inst_mdp__1 {
2 domain = crossing−traffic_mdp;
3 objects {
4 xpos : {x1,x2,x3};
5 ypos : {y1,y2,y3};
6 };
7 non−fluents {
8 NORTH(y1,y2);
9 SOUTH(y2,y1);

10 NORTH(y2,y3);
11 SOUTH(y3,y2);
12

13 EAST(x1,x2);
14 WEST(x2,x1);
15 EAST(x2,x3);
16 WEST(x3,x2);
17

18 MIN−XPOS(x1);
19 MAX−XPOS(x3);
20 MIN−YPOS(y1);
21 MAX−YPOS(y3);
22

23 GOAL(x3,y3);
24

25 INPUT−RATE = 0.3;
26 };
27 }
28

29 instance crossing−traffic_inst_mdp__1 {
30 domain = crossing−traffic_mdp;
31 non−fluents = nf−crossing−traffic_inst_mdp__1;
32 init−state {
33 robot−at(x3,y1);
34 obstacle−at(x1,y2);
35 obstacle−at(x3,y2);
36 };
37 max−nondef−actions = 1;
38 horizon = 40;
39 discount = 1.0;
40 }
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A.4.4 Prop DBN (see dbn_prop.rddl in [rdd])

Domain

1 ////////////////////////////////////////////////////////////////////////
2 // A simple propositional 2−slice DBN (variables are not parameterized).
3 //
4 // Author: Scott Sanner (ssanner [at] gmail.com)
5 ////////////////////////////////////////////////////////////////////////
6 domain prop−dbn_mdp {
7

8 requirements = { reward−deterministic };
9

10 pvariables {
11 p : { state−fluent, bool, default = false };
12 q : { state−fluent, bool, default = false };
13 r : { state−fluent, bool, default = false };
14 a : { action−fluent, bool, default = false };
15 };
16

17 cpfs {
18 // Some standard Bernoulli conditional probability tables
19 p’ = if (p ^ r) then Bernoulli(.9) else Bernoulli(.3);
20

21 q’ = if (q ^ r) then Bernoulli(.9)
22 else if (a) then Bernoulli(.3) else Bernoulli(.8);
23

24 // KronDelta is like a DiracDelta, but for discrete data (boolean or int)
25 r’ = if (~q) then KronDelta(r) else KronDelta(r <=> q);
26 };
27

28 // A boolean functions as a 0/1 integer when a numerical value is needed
29 reward = p + q − r; // a boolean functions as a 0/1 integer when a numerical value is needed
30 }

Instance 1

1 instance prop−dbn_inst_mdp {
2

3 domain = prop−dbn_mdp;
4 init−state {
5 p = true; // could also just say ’p’ by itself
6 q = false; // default so unnecessary, could also say ’~q’ by itself
7 r; // same as r = true
8 };
9

10 max−nondef−actions = 1;
11 horizon = 20;
12 discount = 0.9;
13 }
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Instance 2 - Modified Version of Instance 1

1 instance prop−dbn_inst_mdp_2 {
2

3 domain = prop−dbn_mdp;
4 init−state {
5 p = true;
6 q = true;
7 r = false;
8 };
9

10 max−nondef−actions = 1;
11 horizon = 20;
12 discount = 0.9;
13 }

A.4.5 Navigation (see [ippa])

Domain

1 ////////////////////////////////////////////////////////////////////
2 //
3 // Navigation MDP
4 //
5 // Author: Scott Sanner (ssanner [at] gmail.com)
6 //
7 // In a grid, a robot (R) must get to a goal (G). Every cell offers
8 // the robot a (different) chance of disappearing. The robot needs
9 // to choose a path which gets it to the goal most reliably within

10 // the finite horizon time.
11 //
12 // ***********************
13 // * 0 0 0 0 R *
14 // * .1 .3 .5 .7 .9 *
15 // * .1 .3 .5 .7 .9 *
16 // * .1 .3 .5 .7 .9 *
17 // * .1 .3 .5 .7 .9 *
18 // * 0 0 0 0 G *
19 // ***********************
20 //
21 // This is a good domain to test deteminized planners because
22 // one can see here that the path using the .3 chance of failure
23 // leads to a 1−step most likely outcome of survival, but
24 // a poor 4−step change of survival (.7^(.4)) whereas the path
25 // using a .1 chance of failure is much more safe.
26 //
27 // The domain generators for navigation have a flag to produce slightly
28 // obfuscated files to discourage hand−coded policies, but
29 // rddl.viz.NavigationDisplay can properly display these grids, e.g.,
30 //
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31 // ./run rddl.sim.Simulator files/final−comp/rddl rddl.policy.RandomBoolPolicy
32 // navigation−inst−mdp−−1 rddl.viz.NavigationDisplay
33 //
34 // (Movement was not made stochastic due to the lack of intermediate
35 // variables and synchronic arcs to support both the PPDDL and SPUDD
36 // translations.)
37 //
38 ////////////////////////////////////////////////////////////////////
39

40 domain navigation_mdp {
41 requirements = {
42 // constrained−state,
43 reward−deterministic
44 };
45

46 types {
47 xpos : object;
48 ypos : object;
49 };
50

51 pvariables {
52

53 NORTH(ypos, ypos) : {non−fluent, bool, default = false};
54 SOUTH(ypos, ypos) : {non−fluent, bool, default = false};
55 EAST(xpos, xpos) : {non−fluent, bool, default = false};
56 WEST(xpos, xpos) : {non−fluent, bool, default = false};
57

58 MIN−XPOS(xpos) : {non−fluent, bool, default = false};
59 MAX−XPOS(xpos) : {non−fluent, bool, default = false};
60 MIN−YPOS(ypos) : {non−fluent, bool, default = false};
61 MAX−YPOS(ypos) : {non−fluent, bool, default = false};
62

63 P(xpos, ypos) : {non−fluent, real, default = 0.0};
64

65 GOAL(xpos,ypos) : {non−fluent, bool, default = false};
66

67 // Fluents
68 robot−at(xpos, ypos) : {state−fluent, bool, default = false};
69

70 // Actions
71 move−north : {action−fluent, bool, default = false};
72 move−south : {action−fluent, bool, default = false};
73 move−east : {action−fluent, bool, default = false};
74 move−west : {action−fluent, bool, default = false};
75 };
76

77 cpfs {
78

79 robot−at’(?x,?y) =
80

81 if ( GOAL(?x,?y) ^ robot−at(?x,?y) )
82 then
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83 KronDelta(true)
84 else if (( exists_{?x2 : xpos, ?y2 : ypos} [ GOAL(?x2,?y2) ^ robot−at(?x2,?y2) ] )
85 | ( move−north ^ exists_{?y2 : ypos} [ NORTH(?y,?y2) ^ robot−at(?x,?y) ] )
86 | ( move−south ^ exists_{?y2 : ypos} [ SOUTH(?y,?y2) ^ robot−at(?x,?y) ] )
87 | ( move−east ^ exists_{?x2 : xpos} [ EAST(?x,?x2) ^ robot−at(?x,?y) ] )
88 | ( move−west ^ exists_{?x2 : xpos} [ WEST(?x,?x2) ^ robot−at(?x,?y) ] ))
89 then
90 KronDelta(false)
91 else if (( move−north ^ exists_{?y2 : ypos} [ NORTH(?y2,?y) ^ robot−at(?x,?y2) ] )
92 | ( move−south ^ exists_{?y2 : ypos} [ SOUTH(?y2,?y) ^ robot−at(?x,?y2) ] )
93 | ( move−east ^ exists_{?x2 : xpos} [ EAST(?x2,?x) ^ robot−at(?x2,?y) ] )
94 | ( move−west ^ exists_{?x2 : xpos} [ WEST(?x2,?x) ^ robot−at(?x2,?y) ] ))
95 then
96 Bernoulli( 1.0 − P(?x, ?y) )
97 else
98 KronDelta( robot−at(?x,?y) );
99

100 };
101

102 // 0 reward for reaching goal, −1 in all other cases
103 reward = [sum_{?x : xpos, ?y : ypos} −(GOAL(?x,?y) ^ ~robot−at(?x,?y))];
104

105 // state−action−constraints {
106 //
107 // // Robot at exactly one position
108 // [sum_{?x : xpos, ?y : ypos} robot−at(?x,?y)] <= 1;
109 //
110 // // EAST, WEST, NORTH, SOUTH defined properly (unique and symmetric)
111 // forall_{?x1 : xpos} [(sum_{?x2 : xpos} WEST(?x1,?x2)) <= 1];
112 // forall_{?x1 : xpos} [(sum_{?x2 : xpos} EAST(?x1,?x2)) <= 1];
113 // forall_{?y1 : ypos} [(sum_{?y2 : ypos} NORTH(?y1,?y2)) <= 1];
114 // forall_{?y1 : ypos} [(sum_{?y2 : ypos} SOUTH(?y1,?y2)) <= 1];
115 // forall_{?x1 : xpos, ?x2 : xpos} [ EAST(?x1,?x2) <=> WEST(?x2,?x1) ];
116 // forall_{?y1 : ypos, ?y2 : ypos} [ SOUTH(?y1,?y2) <=> NORTH(?y2,?y1) ];
117 //
118 // // Definition verification
119 // [ sum_{?x : xpos} MIN−XPOS(?x) ] == 1;
120 // [ sum_{?x : xpos} MAX−XPOS(?x) ] == 1;
121 // [ sum_{?y : ypos} MIN−YPOS(?y) ] == 1;
122 // [ sum_{?y : ypos} MAX−YPOS(?y) ] == 1;
123 // [ sum_{?x : xpos, ?y : ypos} GOAL(?x,?y) ] == 1;
124 //
125 // };
126

127 }

Instance 1

1 non−fluents nf−navigation_inst_mdp__1 {
2 domain = navigation_mdp;
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3 objects {
4 xpos : {x6,x14,x21,x9};
5 ypos : {y12,y20,y15};
6 };
7 non−fluents {
8 SOUTH(y15,y12);
9 GOAL(x21,y20);

10 WEST(x14,x9);
11 NORTH(y12,y15);
12 MAX−YPOS(y20);
13 P(x9,y15) = 0.34543713989357155;
14 SOUTH(y20,y15);
15 MIN−YPOS(y12);
16 EAST(x14,x21);
17 EAST(x9,x14);
18 MAX−XPOS(x21);
19 WEST(x9,x6);
20 P(x6,y15) = 0.04896671138703823;
21 P(x21,y15) = 0.928158446525534;
22 EAST(x6,x9);
23 P(x14,y15) = 0.6369951789577802;
24 WEST(x21,x14);
25 NORTH(y15,y20);
26 MIN−XPOS(x6);
27 };
28 }
29

30 instance navigation_inst_mdp__1 {
31 domain = navigation_mdp;
32 non−fluents = nf−navigation_inst_mdp__1;
33 init−state {
34 robot−at(x21,y12);
35 };
36 max−nondef−actions = 1;
37 horizon = 40;
38 discount = 1.0;
39 }

Instance 2

1 non−fluents nf−navigation_inst_mdp__2 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x14,x9,x21,x6,x30};
5 ypos : {y15,y12,y20};
6 };
7 non−fluents {
8 SOUTH(y15,y12);
9 MAX−XPOS(x30);

10 EAST(x21,x30);
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11 P(x6,y15) = 0.0360226184129715;
12 MAX−YPOS(y20);
13 MIN−YPOS(y12);
14 EAST(x9,x14);
15 GOAL(x30,y20);
16 WEST(x30,x21);
17 P(x21,y15) = 0.6909389975480735;
18 WEST(x9,x6);
19 P(x30,y15) = 0.916325646918267;
20 EAST(x6,x9);
21 NORTH(y12,y15);
22 WEST(x14,x9);
23 WEST(x21,x14);
24 P(x9,y15) = 0.23629253543913364;
25 SOUTH(y20,y15);
26 MIN−XPOS(x6);
27 P(x14,y15) = 0.48970670998096466;
28 NORTH(y15,y20);
29 EAST(x14,x21);
30 };
31 }
32

33 instance navigation_inst_mdp__2 {
34 domain = navigation_mdp;
35 non−fluents = nf−navigation_inst_mdp__2;
36 init−state {
37 robot−at(x30,y12);
38 };
39 max−nondef−actions = 1;
40 horizon = 40;
41 discount = 1.0;
42 }

Instance 3

1 non−fluents nf−navigation_inst_mdp__3 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x14,x30,x9,x21,x6};
5 ypos : {y20,y12,y27,y15};
6 };
7 non−fluents {
8 P(x9,y20) = 0.2450880827382207;
9 SOUTH(y20,y15);

10 WEST(x21,x14);
11 P(x6,y20) = 0.05156800337135792;
12 GOAL(x30,y27);
13 P(x30,y15) = 0.9280268289148808;
14 SOUTH(y27,y20);
15 WEST(x14,x9);
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16 WEST(x9,x6);
17 P(x21,y15) = 0.7021599113941193;
18 MIN−XPOS(x6);
19 EAST(x21,x30);
20 SOUTH(y15,y12);
21 P(x14,y15) = 0.5013892482966185;
22 MIN−YPOS(y12);
23 P(x30,y20) = 0.9452640172094107;
24 P(x21,y20) = 0.6855187271139584;
25 NORTH(y20,y27);
26 P(x9,y15) = 0.250524521805346;
27 EAST(x14,x21);
28 NORTH(y15,y20);
29 MAX−YPOS(y27);
30 P(x14,y20) = 0.48334174789488316;
31 EAST(x6,x9);
32 NORTH(y12,y15);
33 P(x6,y15) = 0.03749256581068039;
34 EAST(x9,x14);
35 MAX−XPOS(x30);
36 WEST(x30,x21);
37 };
38 }
39

40 instance navigation_inst_mdp__3 {
41 domain = navigation_mdp;
42 non−fluents = nf−navigation_inst_mdp__3;
43 init−state {
44 robot−at(x30,y12);
45 };
46 max−nondef−actions = 1;
47 horizon = 40;
48 discount = 1.0;
49 }

Instance 4

1 non−fluents nf_navigation_inst_mdp__4 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x21,x30,x9,x6,x14};
5 ypos : {y47,y12,y36,y15,y27,y20};
6 };
7 non−fluents {
8 SOUTH(y20,y15);
9 SOUTH(y36,y27);

10 P(x14,y27) = 0.4755020113661885;
11 P(x6,y20) = 0.024376023560762405;
12 P(x30,y36) = 0.9497081767767668;
13 MIN−YPOS(y12);
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14 P(x21,y15) = 0.7021266371011734;
15 SOUTH(y27,y20);
16 NORTH(y15,y20);
17 MAX−YPOS(y47);
18 SOUTH(y15,y12);
19 NORTH(y20,y27);
20 P(x30,y27) = 0.9107285801437683;
21 MAX−XPOS(x30);
22 P(x14,y36) = 0.4749935809522867;
23 SOUTH(y47,y36);
24 WEST(x9,x6);
25 P(x30,y20) = 0.9197213770821691;
26 P(x9,y15) = 0.23887041257694364;
27 MIN−XPOS(x6);
28 NORTH(y36,y47);
29 NORTH(y12,y15);
30 EAST(x9,x14);
31 P(x14,y15) = 0.5034075286239386;
32 WEST(x21,x14);
33 P(x30,y15) = 0.9199540922418237;
34 WEST(x30,x21);
35 P(x6,y36) = 0.05538930557668209;
36 EAST(x14,x21);
37 P(x6,y27) = 0.044584812596440315;
38 EAST(x6,x9);
39 P(x21,y27) = 0.7054883688688278;
40 P(x9,y20) = 0.27436082251369953;
41 P(x21,y36) = 0.7212282549589872;
42 GOAL(x30,y47);
43 P(x21,y20) = 0.7279216069728136;
44 P(x14,y20) = 0.49078163877129555;
45 P(x6,y15) = 0.013172781793400645;
46 NORTH(y27,y36);
47 P(x9,y27) = 0.24275896279141307;
48 WEST(x14,x9);
49 P(x9,y36) = 0.26499055325984955;
50 EAST(x21,x30);
51 };
52 }
53

54 instance navigation_inst_mdp__4 {
55 domain = navigation_mdp;
56 non−fluents = nf_navigation_inst_mdp__4;
57 init−state {
58 robot−at(x30,y12);
59 };
60 max−nondef−actions = 1;
61 horizon = 40;
62 discount = 1.0;
63 }
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Instance 5

1 non−fluents nf_navigation_inst_mdp__5 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x14,x54,x6,x86,x41,x9,x21,x30,x69,x105};
5 ypos : {y12,y15,y20};
6 };
7 non−fluents {
8 MIN−YPOS(y12);
9 SOUTH(y15,y12);

10 P(x6,y15) = 0.024014816619455814;
11 P(x30,y15) = 0.42676472498310936;
12 EAST(x9,x14);
13 WEST(x41,x30);
14 WEST(x21,x14);
15 EAST(x69,x86);
16 P(x105,y15) = 0.9336750203122696;
17 WEST(x14,x9);
18 EAST(x21,x30);
19 WEST(x69,x54);
20 GOAL(x105,y20);
21 MAX−XPOS(x105);
22 P(x54,y15) = 0.6266834967666202;
23 EAST(x54,x69);
24 P(x86,y15) = 0.8539166100737121;
25 EAST(x30,x41);
26 P(x69,y15) = 0.7261174401889244;
27 WEST(x30,x21);
28 P(x9,y15) = 0.1536506913188431;
29 MAX−YPOS(y20);
30 WEST(x105,x86);
31 NORTH(y15,y20);
32 MIN−XPOS(x6);
33 NORTH(y12,y15);
34 WEST(x9,x6);
35 WEST(x86,x69);
36 EAST(x86,x105);
37 WEST(x54,x41);
38 P(x41,y15) = 0.525113389827311;
39 P(x21,y15) = 0.34208946157660747;
40 P(x14,y15) = 0.21357332878849572;
41 EAST(x14,x21);
42 EAST(x6,x9);
43 EAST(x41,x54);
44 SOUTH(y20,y15);
45 };
46 }
47

48 instance navigation_inst_mdp__5 {
49 domain = navigation_mdp;
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50 non−fluents = nf_navigation_inst_mdp__5;
51 init−state {
52 robot−at(x105,y12);
53 };
54 max−nondef−actions = 1;
55 horizon = 40;
56 discount = 1.0;
57 }

Instance 6

1 non−fluents nf_navigation_inst_mdp__6 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x54,x9,x86,x30,x105,x14,x69,x6,x41,x21};
5 ypos : {y12,y15,y27,y20};
6 };
7 non−fluents {
8 P(x6,y20) = 0.032087743282318115;
9 P(x69,y20) = 0.7137660816467056;

10 P(x41,y15) = 0.5501891952008009;
11 P(x41,y20) = 0.5153869516216218;
12 EAST(x30,x41);
13 EAST(x21,x30);
14 MAX−XPOS(x105);
15 WEST(x86,x69);
16 WEST(x30,x21);
17 WEST(x14,x9);
18 P(x86,y20) = 0.8570238709863689;
19 NORTH(y20,y27);
20 P(x69,y15) = 0.7465580261001984;
21 SOUTH(y27,y20);
22 NORTH(y15,y20);
23 P(x6,y15) = 0.03272361308336258;
24 P(x30,y20) = 0.43298558166457546;
25 P(x30,y15) = 0.4296299742741717;
26 P(x105,y20) = 0.9116935366376614;
27 WEST(x54,x41);
28 WEST(x69,x54);
29 SOUTH(y20,y15);
30 WEST(x21,x14);
31 EAST(x14,x21);
32 WEST(x9,x6);
33 MAX−YPOS(y27);
34 EAST(x86,x105);
35 P(x86,y15) = 0.8315923180845048;
36 SOUTH(y15,y12);
37 MIN−XPOS(x6);
38 EAST(x6,x9);
39 EAST(x41,x54);
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40 P(x105,y15) = 0.9274347008516391;
41 EAST(x9,x14);
42 GOAL(x105,y27);
43 NORTH(y12,y15);
44 P(x54,y20) = 0.6428951051914029;
45 P(x14,y15) = 0.21247654371998376;
46 P(x21,y15) = 0.33662864607241416;
47 P(x14,y20) = 0.21680060737869805;
48 MIN−YPOS(y12);
49 EAST(x69,x86);
50 P(x9,y20) = 0.15484551112684938;
51 WEST(x105,x86);
52 P(x54,y15) = 0.659609689273768;
53 P(x9,y15) = 0.12321555666211578;
54 P(x21,y20) = 0.3461974025186565;
55 EAST(x54,x69);
56 WEST(x41,x30);
57 };
58 }
59

60 instance navigation_inst_mdp__6 {
61 domain = navigation_mdp;
62 non−fluents = nf_navigation_inst_mdp__6;
63 init−state {
64 robot−at(x105,y12);
65 };
66 max−nondef−actions = 1;
67 horizon = 40;
68 discount = 1.0;
69 }

Instance 7

1 non−fluents nf_navigation_inst_mdp__7 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x9,x21,x54,x69,x30,x6,x14,x41,x86,x105};
5 ypos : {y36,y27,y15,y12,y20};
6 };
7 non−fluents {
8 P(x41,y15) = 0.5383095685392618;
9 P(x54,y15) = 0.6193011131965451;

10 EAST(x30,x41);
11 SOUTH(y36,y27);
12 GOAL(x105,y36);
13 SOUTH(y20,y15);
14 P(x30,y20) = 0.44101769311560524;
15 P(x6,y15) = 0.023994946852326393;
16 P(x14,y20) = 0.21105071109357393;
17 WEST(x30,x21);
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18 EAST(x21,x30);
19 NORTH(y27,y36);
20 P(x54,y20) = 0.6595114645444684;
21 WEST(x69,x54);
22 SOUTH(y15,y12);
23 MIN−XPOS(x6);
24 MAX−XPOS(x105);
25 P(x21,y20) = 0.33060312312510276;
26 WEST(x21,x14);
27 EAST(x9,x14);
28 P(x86,y20) = 0.8134994268831279;
29 NORTH(y15,y20);
30 P(x41,y20) = 0.5119783256668597;
31 WEST(x105,x86);
32 P(x30,y27) = 0.4580075146837367;
33 WEST(x41,x30);
34 P(x6,y20) = 0.021341380663216114;
35 P(x54,y27) = 0.642808957853251;
36 P(x69,y20) = 0.7245696174601713;
37 EAST(x86,x105);
38 P(x14,y15) = 0.22739516860908932;
39 P(x9,y15) = 0.15196049358281824;
40 P(x86,y15) = 0.859581144940522;
41 WEST(x9,x6);
42 EAST(x41,x54);
43 P(x69,y15) = 0.7486556774626175;
44 P(x105,y20) = 0.9399694142242273;
45 WEST(x54,x41);
46 MAX−YPOS(y36);
47 P(x21,y15) = 0.31251017162058914;
48 P(x30,y15) = 0.43196028677953613;
49 P(x14,y27) = 0.24023324913448757;
50 P(x6,y27) = 0.011126482859253883;
51 EAST(x54,x69);
52 EAST(x14,x21);
53 P(x105,y27) = 0.9386047304918369;
54 P(x69,y27) = 0.7594633890936772;
55 P(x9,y20) = 0.1492169178608391;
56 SOUTH(y27,y20);
57 EAST(x6,x9);
58 P(x86,y27) = 0.833064128127363;
59 EAST(x69,x86);
60 P(x41,y27) = 0.5182037660852075;
61 P(x21,y27) = 0.31010614638135947;
62 WEST(x14,x9);
63 WEST(x86,x69);
64 NORTH(y20,y27);
65 NORTH(y12,y15);
66 P(x9,y27) = 0.14091320667001936;
67 P(x105,y15) = 0.926005428036054;
68 MIN−YPOS(y12);
69 };
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70 }
71

72 instance navigation_inst_mdp__7 {
73 domain = navigation_mdp;
74 non−fluents = nf_navigation_inst_mdp__7;
75 init−state {
76 robot−at(x105,y12);
77 };
78 max−nondef−actions = 1;
79 horizon = 40;
80 discount = 1.0;
81 }

Instance 8

1 non−fluents nf_navigation_inst_mdp__8 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x261,x149,x21,x69,x9,x174,x41,x86,x105,x329,x14,x366,x30,x405,x201,x294,x126,x6,x230,x54};
5 ypos : {y12,y20,y15};
6 };
7 non−fluents {
8 WEST(x14,x9);
9 P(x30,y15) = 0.2347686960312881;

10 EAST(x30,x41);
11 WEST(x149,x126);
12 WEST(x41,x30);
13 EAST(x69,x86);
14 GOAL(x405,y20);
15 EAST(x14,x21);
16 SOUTH(y15,y12);
17 MAX−YPOS(y20);
18 P(x126,y15) = 0.522427676441638;
19 MIN−XPOS(x6);
20 EAST(x9,x14);
21 EAST(x21,x30);
22 WEST(x366,x329);
23 EAST(x329,x366);
24 P(x69,y15) = 0.3703241362971695;
25 EAST(x261,x294);
26 P(x86,y15) = 0.4001688238135294;
27 WEST(x230,x201);
28 P(x329,y15) = 0.8186304341928151;
29 WEST(x30,x21);
30 NORTH(y15,y20);
31 P(x201,y15) = 0.6305554033208051;
32 P(x149,y15) = 0.5512959579692075;
33 P(x105,y15) = 0.47063784213050414;
34 P(x14,y15) = 0.12598508870915365;
35 WEST(x54,x41);
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36 EAST(x174,x201);
37 P(x21,y15) = 0.18618261039649187;
38 EAST(x201,x230);
39 MAX−XPOS(x405);
40 WEST(x174,x149);
41 EAST(x294,x329);
42 P(x6,y15) = 0.020123825408518314;
43 P(x41,y15) = 0.2575469744440756;
44 P(x261,y15) = 0.7651083509584791;
45 EAST(x6,x9);
46 WEST(x126,x105);
47 EAST(x230,x261);
48 P(x294,y15) = 0.7724588914578291;
49 EAST(x86,x105);
50 WEST(x294,x261);
51 WEST(x69,x54);
52 P(x366,y15) = 0.8710702612113795;
53 EAST(x41,x54);
54 EAST(x149,x174);
55 EAST(x126,x149);
56 EAST(x54,x69);
57 WEST(x201,x174);
58 P(x9,y15) = 0.08958914081909156;
59 WEST(x21,x14);
60 WEST(x105,x86);
61 WEST(x329,x294);
62 SOUTH(y20,y15);
63 WEST(x261,x230);
64 P(x230,y15) = 0.6802079464848104;
65 P(x54,y15) = 0.3001739060212123;
66 P(x174,y15) = 0.5920608441688513;
67 WEST(x86,x69);
68 NORTH(y12,y15);
69 EAST(x366,x405);
70 WEST(x9,x6);
71 WEST(x405,x366);
72 P(x405,y15) = 0.94463482979489;
73 MIN−YPOS(y12);
74 EAST(x105,x126);
75 };
76 }
77

78 instance navigation_inst_mdp__8 {
79 domain = navigation_mdp;
80 non−fluents = nf_navigation_inst_mdp__8;
81 init−state {
82 robot−at(x405,y12);
83 };
84 max−nondef−actions = 1;
85 horizon = 40;
86 discount = 1.0;
87 }
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Instance 9

1 non−fluents nf_navigation_inst_mdp__9 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x41,x174,x30,x294,x366,x54,x230,x105,x329,x14,x21,x126,x201,x149,x9,x6,x261,x69,x405,x86};
5 ypos : {y15,y20,y12,y27};
6 };
7 non−fluents {
8 P(x30,y20) = 0.22066297931106468;
9 WEST(x261,x230);

10 WEST(x21,x14);
11 P(x230,y15) = 0.6826771881039205;
12 WEST(x366,x329);
13 SOUTH(y27,y20);
14 P(x405,y15) = 0.9465039047951761;
15 P(x405,y20) = 0.9567379925007883;
16 MAX−YPOS(y27);
17 NORTH(y12,y15);
18 SOUTH(y20,y15);
19 P(x329,y20) = 0.845591881165379;
20 WEST(x86,x69);
21 EAST(x6,x9);
22 P(x126,y20) = 0.5255273675644083;
23 EAST(x41,x54);
24 P(x366,y15) = 0.9121467062321148;
25 P(x86,y15) = 0.39646985175970356;
26 P(x9,y20) = 0.07717571731068587;
27 EAST(x30,x41);
28 P(x174,y20) = 0.5823425541043674;
29 EAST(x86,x105);
30 P(x261,y20) = 0.7237653274236149;
31 EAST(x149,x174);
32 P(x6,y15) = 0.03873947076499462;
33 WEST(x201,x174);
34 P(x174,y15) = 0.6239512122579312;
35 P(x201,y20) = 0.6425731274250307;
36 P(x41,y15) = 0.2852499784019432;
37 MAX−XPOS(x405);
38 P(x329,y15) = 0.8237989943866667;
39 EAST(x329,x366);
40 WEST(x230,x201);
41 WEST(x149,x126);
42 P(x41,y20) = 0.24861652041344265;
43 P(x149,y20) = 0.552126179890413;
44 MIN−XPOS(x6);
45 WEST(x54,x41);
46 EAST(x126,x149);
47 P(x149,y15) = 0.5461224238143155;
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48 P(x14,y15) = 0.10511640175000618;
49 EAST(x261,x294);
50 WEST(x174,x149);
51 P(x261,y15) = 0.7466745006998903;
52 WEST(x14,x9);
53 P(x86,y20) = 0.4120094569301919;
54 MIN−YPOS(y12);
55 P(x105,y15) = 0.44468523473723937;
56 SOUTH(y15,y12);
57 P(x366,y20) = 0.8901059870657168;
58 WEST(x294,x261);
59 EAST(x54,x69);
60 WEST(x126,x105);
61 EAST(x201,x230);
62 P(x201,y15) = 0.668071996322588;
63 EAST(x69,x86);
64 P(x14,y20) = 0.11832347693607996;
65 WEST(x9,x6);
66 P(x21,y15) = 0.1869948428908461;
67 EAST(x230,x261);
68 EAST(x174,x201);
69 P(x69,y15) = 0.3620691891563566;
70 GOAL(x405,y27);
71 P(x30,y15) = 0.20788565547646662;
72 EAST(x294,x329);
73 EAST(x105,x126);
74 P(x126,y15) = 0.5183540826761408;
75 P(x54,y15) = 0.30929778271207686;
76 P(x21,y20) = 0.15904580260087786;
77 P(x294,y15) = 0.793770940582219;
78 WEST(x30,x21);
79 EAST(x14,x21);
80 P(x9,y15) = 0.0694843544379661;
81 NORTH(y20,y27);
82 P(x54,y20) = 0.29557425737699594;
83 P(x230,y20) = 0.6812154801170293;
84 WEST(x105,x86);
85 WEST(x329,x294);
86 WEST(x405,x366);
87 P(x105,y20) = 0.48526905761345435;
88 NORTH(y15,y20);
89 WEST(x69,x54);
90 EAST(x366,x405);
91 P(x6,y20) = 0.05842727981507778;
92 P(x294,y20) = 0.8174746013981732;
93 P(x69,y20) = 0.3763092361194523;
94 WEST(x41,x30);
95 EAST(x21,x30);
96 EAST(x9,x14);
97 };
98 }
99
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100 instance navigation_inst_mdp__9 {
101 domain = navigation_mdp;
102 non−fluents = nf_navigation_inst_mdp__9;
103 init−state {
104 robot−at(x405,y12);
105 };
106 max−nondef−actions = 1;
107 horizon = 40;
108 discount = 1.0;
109 }

Instance 10

1 non−fluents nf_navigation_inst_mdp__10 {
2 domain = navigation_mdp;
3 objects {
4 xpos : {x86,x9,x201,x69,x329,x126,x261,x54,x230,x30,x6,x174,x149,x366,x21,x405,x14,x294,x41,x105};
5 ypos : {y20,y36,y12,y27,y15};
6 };
7 non−fluents {
8 P(x14,y15) = 0.15249802260414552;
9 SOUTH(y15,y12);

10 WEST(x69,x54);
11 P(x294,y27) = 0.7871350846988591;
12 EAST(x54,x69);
13 P(x261,y20) = 0.7218886631920836;
14 P(x201,y20) = 0.6473250686142006;
15 EAST(x21,x30);
16 EAST(x41,x54);
17 P(x69,y20) = 0.3765070266825588;
18 MIN−YPOS(y12);
19 NORTH(y12,y15);
20 WEST(x41,x30);
21 EAST(x6,x9);
22 P(x201,y27) = 0.6546238641205587;
23 WEST(x230,x201);
24 EAST(x261,x294);
25 P(x14,y27) = 0.1155198830621023;
26 MIN−XPOS(x6);
27 P(x30,y20) = 0.20109588794385722;
28 P(x405,y27) = 0.9236670966799322;
29 P(x21,y15) = 0.17413296334837614;
30 NORTH(y20,y27);
31 P(x30,y27) = 0.2127137481185951;
32 P(x366,y20) = 0.9017004185405216;
33 SOUTH(y27,y20);
34 P(x41,y15) = 0.2896668278661213;
35 P(x126,y15) = 0.5218342786752863;
36 P(x105,y20) = 0.47504829154594946;
37 P(x105,y27) = 0.46703882240935374;
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38 P(x329,y20) = 0.8276717586834964;
39 SOUTH(y36,y27);
40 EAST(x126,x149);
41 P(x329,y15) = 0.8344797723387417;
42 P(x261,y15) = 0.743265128057254;
43 P(x230,y27) = 0.721857582365996;
44 WEST(x366,x329);
45 WEST(x86,x69);
46 GOAL(x405,y36);
47 P(x329,y27) = 0.8417070795242724;
48 P(x174,y20) = 0.57908649514368;
49 NORTH(y27,y36);
50 P(x9,y20) = 0.06489074041478729;
51 P(x30,y15) = 0.24802985405059239;
52 WEST(x14,x9);
53 P(x86,y15) = 0.4203020499921159;
54 P(x126,y27) = 0.5217572396719141;
55 P(x230,y15) = 0.6967564664388958;
56 P(x405,y20) = 0.9195293152312699;
57 MAX−XPOS(x405);
58 WEST(x405,x366);
59 EAST(x149,x174);
60 WEST(x201,x174);
61 WEST(x294,x261);
62 P(x126,y20) = 0.502970067980258;
63 EAST(x86,x105);
64 WEST(x30,x21);
65 P(x174,y27) = 0.6242552704520916;
66 P(x6,y27) = 0.05393376015126705;
67 EAST(x366,x405);
68 P(x149,y20) = 0.5566534208820054;
69 P(x105,y15) = 0.45070689548983384;
70 SOUTH(y20,y15);
71 P(x9,y27) = 0.09803082372405028;
72 P(x6,y20) = 0.05381382070481777;
73 P(x21,y20) = 0.1901519668141478;
74 P(x54,y27) = 0.30268661153355714;
75 EAST(x294,x329);
76 EAST(x69,x86);
77 P(x149,y15) = 0.5480713560000846;
78 NORTH(y15,y20);
79 WEST(x174,x149);
80 P(x261,y27) = 0.7239234615730024;
81 EAST(x174,x201);
82 P(x69,y27) = 0.3881094917458923;
83 P(x405,y15) = 0.9321193240190807;
84 WEST(x149,x126);
85 P(x294,y15) = 0.7941499553424748;
86 P(x6,y15) = 0.049380214884877205;
87 P(x230,y20) = 0.6796873716245356;
88 WEST(x261,x230);
89 WEST(x105,x86);
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90 P(x366,y15) = 0.8813777306166134;
91 P(x9,y15) = 0.09127656693913436;
92 P(x366,y27) = 0.8738803072881541;
93 P(x201,y15) = 0.6594119965049782;
94 P(x149,y27) = 0.5589389553979823;
95 WEST(x21,x14);
96 P(x54,y20) = 0.33979411550650473;
97 P(x86,y27) = 0.40163065473500054;
98 P(x14,y20) = 0.14583939402119112;
99 P(x174,y15) = 0.6133839792915081;
100 P(x54,y15) = 0.33987255149373885;
101 P(x294,y20) = 0.7689352319146948;
102 WEST(x329,x294);
103 EAST(x201,x230);
104 EAST(x230,x261);
105 WEST(x54,x41);
106 EAST(x30,x41);
107 EAST(x9,x14);
108 P(x21,y27) = 0.17168686323260007;
109 EAST(x105,x126);
110 MAX−YPOS(y36);
111 P(x69,y15) = 0.3854513592821987;
112 WEST(x126,x105);
113 P(x41,y27) = 0.2793932707097969;
114 EAST(x14,x21);
115 EAST(x329,x366);
116 P(x41,y20) = 0.25024425783684767;
117 P(x86,y20) = 0.43350079449775974;
118 WEST(x9,x6);
119 };
120 }
121

122 instance navigation_inst_mdp__10 {
123 domain = navigation_mdp;
124 non−fluents = nf_navigation_inst_mdp__10;
125 init−state {
126 robot−at(x405,y12);
127 };
128 max−nondef−actions = 1;
129 horizon = 40;
130 discount = 1.0;
131 }

A.4.6 Skill Teaching (see [ippb])

Domain

1 ////////////////////////////////////////////////////////////////////
2 // Skill Teaching Domain
3 //
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4 // Author: Tom Walsh (thomasjwalsh [at] gmail.com)
5 // Special thanks to Derek Green and Paul Cohen at
6 // University of Arizona for help with the design.
7 //
8 // In the SkillTeaching MDP domain, the agent is trying to teach a series
9 // of skills to a student through the use of hints and multiple choice

10 // questions. The student has a proficiency level for each skill, which
11 // indicates his ability to answer questions of that skill and positive
12 // reward is given for high proficiency on skills while negative reward
13 // is given for low proficiency. Each skill also has a weight on
14 // how much it is worth.
15 //
16 // Many of the skills are connected in that some are
17 // ‘‘pre−conditions’’ of others. If all of a skill’s
18 // pre−conditions are learned, the student has some probability
19 // of answering questions about it right, and each precondition
20 // that is at high proficiency adds to the probability though
21 // knowing all of them can lead to a probability higher than the sum
22 // of the components. Hints only work if all the preconditions
23 // are known and can only get you to medium proficiency.
24 //
25 // student proficiency increases with questions answered right and
26 // decreases with questions about a skill answered wrong and
27 // sometimes decreases by chance.
28 //
29 // To model the teacher−student interaction, every other step in the
30 // domain is the student’s turn, where they answer a question.
31 //
32 // The planning problems here are:
33 // 1) Whether or not to teach all the prerequisites of a skill before
34 // teaching it.
35 // 2) What skill to focus on next
36 // 3) When to give hints and when to use multiple choice problems
37 //
38 ////////////////////////////////////////////////////////////////////
39

40 domain skill−teaching_mdp {
41

42 requirements = {
43 reward−deterministic
44 };
45

46 types {
47 skill : object;
48 };
49

50 pvariables {
51

52 //how valuable is this skill?
53 SKILL−WEIGHT(skill) : { non−fluent, real, default = 1.0 };
54

55 //some skills are pre−reqs for others. Your ability to achiev a higher level skill is dependent on how
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56 //many of the pre−reqs you have mastered
57 PRE−REQ(skill, skill) : { non−fluent, bool, default = false };
58

59 //probability of getting a question right if you have all the pre−reqs
60 PROB−ALL−PRE(skill) : { non−fluent, real, default = 0.8 };
61 //if you don’t have all the pre−cons, probaility mass is summed using these individual pieces
62 PROB−PER−PRE(skill) : { non−fluent, real, default = 0.1 };
63

64 PROB−ALL−PRE−MED(skill) : { non−fluent, real, default = 1.0 };
65 //if you don’t have all the pre−cons, probaility mass is summed using these individual pieces
66 PROB−PER−PRE−MED(skill) : { non−fluent, real, default = 0.3 };
67

68 PROB−HIGH(skill) : { non−fluent, real, default = 0.9 };
69

70 LOSE−PROB(skill) : { non−fluent, real, default = 0.02 };
71

72 //proficiency values, they accumulate so low and med can be on at the same time and only high will turn off
73 proficiencyMed(skill) : { state−fluent, bool, default = false };
74 proficiencyHigh(skill) : { state−fluent, bool, default = false };
75

76 updateTurn(skill) : {state−fluent, bool, default = false};
77

78 answeredRight(skill): {state−fluent, bool, default = false};
79 hintedRight(skill): {state−fluent, bool, default = false};
80 hintDelayVar(skill) : {state−fluent, bool, default = false};
81

82 //two actions. Hint can get you directly to proficiencyMed, but only if all the pre−reqs are on
83 askProb(skill) : {action−fluent, bool, default = false};
84 giveHint(skill) : {action−fluent, bool, default = false};
85 };
86

87 cpfs {
88

89 updateTurn’(?s) =
90 KronDelta( [forall_{?s2: skill} ~updateTurn(?s2)] ^ (askProb(?s) | giveHint(?s)) );
91

92 //without intermediate nodes, we need to keep ‘‘on’’ all proficiency levels that have been attained
93

94 answeredRight’(?s) =
95 if ([forall_{?s2: skill} ~updateTurn(?s2)] ^ askProb(?s) ^ proficiencyHigh(?s))
96 then Bernoulli(PROB−HIGH(?s))
97 else if ([forall_{?s2: skill} ~updateTurn(?s2)] ^ askProb(?s) ^ proficiencyMed(?s) ^forall_{?s3: skill}[PRE

−REQ(?s3, ?s) => proficiencyHigh(?s3)])
98 then Bernoulli(PROB−ALL−PRE−MED(?s))
99 else if ([forall_{?s2: skill} ~updateTurn(?s2)] ^ askProb(?s) ^proficiencyMed(?s) ^ askProb(?s))
100 then Bernoulli(sum_{?s2: skill}[PRE−REQ(?s2, ?s) * PROB−PER−PRE−MED(?s)])
101 else if ([forall_{?s3: skill} ~updateTurn(?s3)] ^ askProb(?s) ^forall_{?s2: skill}[PRE−REQ(?s2, ?s) =>

proficiencyHigh(?s2)])
102 then Bernoulli(PROB−ALL−PRE(?s))
103 else if ([forall_{?s2: skill} ~updateTurn(?s2)] ^ askProb(?s) ^ askProb(?s))
104 then Bernoulli(sum_{?s2: skill}[PRE−REQ(?s2, ?s) * PROB−PER−PRE(?s)])
105 else
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106 KronDelta( false );
107

108 hintedRight’(?s) =
109 KronDelta( [forall_{?s3: skill} ~updateTurn(?s3)] ^ giveHint(?s) ^ forall_{?s2: skill}[PRE−REQ(?s2, ?s)

=> proficiencyHigh(?s2)] );
110

111 hintDelayVar’(?s) =
112 KronDelta( [forall_{?s2: skill} ~updateTurn(?s2)] ^ giveHint(?s) );
113

114 //proficiencyMed can be reached through a hint if all preconditions are known or by a problem answered
correctly

115 proficiencyMed’(?s) =
116 if (~updateTurn(?s) ^ proficiencyMed(?s))
117 then KronDelta( true )
118 else if (updateTurn(?s) ^ hintedRight(?s))
119 then KronDelta( true )
120 else if (updateTurn(?s) ^ answeredRight(?s))
121 then KronDelta( true )
122 else if (proficiencyHigh(?s)) //may come down
123 then KronDelta( true )
124 else if (proficiencyMed(?s) ^ updateTurn(?s) ^ hintDelayVar(?s))
125 then KronDelta( true ) //can’t lose it on a hint
126 else
127 KronDelta( false );
128

129 //high proficiency is reached by getting a question and having proficiencyMed
130 //but you can lose it too if you get questions wrong
131 proficiencyHigh’(?s) =
132 if (forall_{?s2: skill}[~updateTurn(?s2)]) //student turn
133 then KronDelta( proficiencyHigh(?s) )
134 else if (~updateTurn(?s) ^ proficiencyHigh(?s))
135 then Bernoulli(1.0 − LOSE−PROB(?s))
136 else if (proficiencyMed(?s) ^ updateTurn(?s) ^ answeredRight(?s))
137 then KronDelta( true )
138 else if (proficiencyHigh(?s) ^ updateTurn(?s) ^ (hintDelayVar(?s) | answeredRight(?s))) //can’t lose it on a

hint
139 then KronDelta( true )
140 else KronDelta( false );
141

142 };
143

144 reward = [sum_{?s : skill} [SKILL−WEIGHT(?s) * proficiencyHigh(?s)]] + [sum_{?s : skill} −[SKILL−
WEIGHT(?s) * ~proficiencyMed(?s)]];

145

146 }

Instance 1

1 non−fluents nf−skill−teaching_inst_mdp__1 {
2 domain = skill−teaching_mdp;
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3 objects {
4 skill : {s0,s1};
5

6 };
7 non−fluents {
8 PROB−ALL−PRE(s0) = 0.56987906;
9 PROB−ALL−PRE−MED(s0) = 0.71801746;

10 PROB−HIGH(s0) = 0.9066789;
11 SKILL−WEIGHT(s0) = 1.1778302;
12 LOSE−PROB(s0) = 0.04352919459342957;
13 PROB−ALL−PRE(s1) = 0.7414986;
14 PROB−ALL−PRE−MED(s1) = 0.7900833;
15 PROB−HIGH(s1) = 0.9543038;
16 SKILL−WEIGHT(s1) = 1.2346091;
17 LOSE−PROB(s1) = 0.018769168853759767;
18 };
19 }
20 instance skill−teaching_inst_mdp__1 {
21 domain = skill−teaching_mdp;
22 non−fluents = nf−skill−teaching_inst_mdp__1;
23 max−nondef−actions = 1;
24 horizon = 40;
25 discount = 1.0;
26 }

Instance 2

1 non−fluents nf−skill−teaching_inst_mdp__2 {
2 domain = skill−teaching_mdp;
3 objects {
4 skill : {s0,s1};
5

6 };
7 non−fluents {
8 PROB−ALL−PRE(s0) = 0.6266419;
9 PROB−ALL−PRE−MED(s0) = 0.78803456;

10 PROB−HIGH(s0) = 0.8867099;
11 SKILL−WEIGHT(s0) = 1.4431845;
12 LOSE−PROB(s0) = 0.034901031851768495;
13 PROB−ALL−PRE(s1) = 0.692982;
14 PROB−ALL−PRE−MED(s1) = 0.6979286;
15 PROB−HIGH(s1) = 0.882593;
16 SKILL−WEIGHT(s1) = 1.4221066;
17 LOSE−PROB(s1) = 0.028824603557586672;
18 };
19 }
20 instance skill−teaching_inst_mdp__2 {
21 domain = skill−teaching_mdp;
22 non−fluents = nf−skill−teaching_inst_mdp__2;
23 max−nondef−actions = 1;
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24 horizon = 40;
25 discount = 1.0;
26 }

Instance 3

1 non−fluents nf−skill−teaching_inst_mdp__3 {
2 domain = skill−teaching_mdp;
3 objects {
4 skill : {s0,s1,s2,s3};
5

6 };
7 non−fluents {
8 PROB−ALL−PRE(s0) = 0.66335756;
9 PROB−ALL−PRE−MED(s0) = 0.7459964;

10 PROB−HIGH(s0) = 0.99047893;
11 SKILL−WEIGHT(s0) = 1.0374055;
12 LOSE−PROB(s0) = 0.012337374687194825;
13 PROB−ALL−PRE(s1) = 0.55798024;
14 PROB−ALL−PRE−MED(s1) = 0.7089525;
15 PROB−HIGH(s1) = 0.8791513;
16 SKILL−WEIGHT(s1) = 1.1605124;
17 LOSE−PROB(s1) = 0.04907787442207337;
18 PRE−REQ(s1, s2);
19 PROB−ALL−PRE(s2) = 0.708089;
20 PROB−PER−PRE(s2) = 0.6819602966308593;
21 PROB−ALL−PRE−MED(s2) = 0.7432575;
22 PROB−PER−PRE−MED(s2) = 0.6840869665145874;
23 PROB−HIGH(s2) = 0.9442033;
24 SKILL−WEIGHT(s2) = 2.058421;
25 LOSE−PROB(s2) = 0.0229320228099823;
26 PRE−REQ(s2, s3);
27 PRE−REQ(s1, s3);
28 PROB−ALL−PRE(s3) = 0.6968088;
29 PROB−PER−PRE(s3) = 0.27056136131286623;
30 PROB−ALL−PRE−MED(s3) = 0.6968088;
31 PROB−PER−PRE−MED(s3) = 0.29863872528076174;
32 PROB−HIGH(s3) = 0.9625534;
33 SKILL−WEIGHT(s3) = 3.2540152;
34 LOSE−PROB(s3) = 0.018247979879379272;
35 };
36 }
37 instance skill−teaching_inst_mdp__3 {
38 domain = skill−teaching_mdp;
39 non−fluents = nf−skill−teaching_inst_mdp__3;
40 max−nondef−actions = 1;
41 horizon = 40;
42 discount = 1.0;
43 }
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A.4.7 Triangle Tireworld (see [ippb])

Domain

1 ///////////////////////////////////////////////////////////////
2 //
3 // Triangle Tireworld Domain from IPPC 2008
4 //
5 // This domain is taken from
6 //
7 // I. Little and S. Thiebaux.
8 // Probabilistic Planning vs Replanning.
9 // ICAPS Workshop International Planning Competition: Past, Present and Future, 2007.

10 // http://users.cecs.anu.edu.au/~thiebaux/papers/icaps07wksp.pdf
11 //
12 // who defined this as a "probabilistically interesting" problem
13 // (see Definition 1 in the above citation). In short, this problem
14 // was intended to be difficult for determinization/replanning approaches
15 // since the highest probability path to the goal is longer than other
16 // lower probability (but still possible) paths to the goal.
17 //
18 // This version is a direct translation of the version from the IPPC 2008
19 //
20 // http://ippc−2008.loria.fr/wiki/index.html
21 //
22 // run by Daniel Bryce and Olivier Buffet. See the results of IPPC 2008
23 // planners on this problem in Figure 1 here
24 //
25 // http://ippc−2008.loria.fr/wiki/images/0/03/Results.pdf
26 //
27 // taken from
28 //
29 // http://ippc−2008.loria.fr/wiki/index.php/Results.html
30 //
31 // RDDL translation by Scott Sanner (ssanner@gmail.com). The
32 // original PPDDL domain is included in comments at the end, which
33 // also provides a nice point of comparison between RDDL and PPDDL
34 // domain specification styles.
35 //
36 ///////////////////////////////////////////////////////////////
37

38 domain triangle_tireworld_mdp {
39

40 types {
41 location : object;
42 };
43

44 pvariables {
45

46 // Nonfluents: probability constants
47 FLAT−PROB : { non−fluent, real, default = 0.49 };
48
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49 // Nonfluents: topology
50 road(location,location) : { non−fluent, bool, default = false }; // Road topology
51 goal−location(location) : { non−fluent, bool, default = false }; // Additional nonfluent to specify a goal

location
52

53 // State
54 vehicle−at(location) : { state−fluent, bool, default = false };
55 spare−in(location) : { state−fluent, bool, default = false };
56 not−flattire : { state−fluent, bool, default = false }; // Not clear why negated
57 hasspare : { state−fluent, bool, default = false };
58 goal−reward−received : { state−fluent, bool, default = false }; // An additional fluent to enforce a goal

reward is only received once
59

60 // Actions
61 move−car(location,location) : { action−fluent, bool, default = false }; // Not clear why we need from location

parameter
62 loadtire(location) : { action−fluent, bool, default = false }; // Not clear to me why this requires location

parameter
63 changetire : { action−fluent, bool, default = false };
64 };
65

66 cpfs {
67

68 // Some observations on PPDDL vs. RDDL:
69 //
70 // A domain like this is where PPDDL action−centric effects are more intuitive... in RDDL,
71 // transition specifications are fluent−centric and we have to explicitly define fluent
72 // values in the next state as a function of the previous state. These are essentially
73 // successor state axioms and can be compiled from effects using Ray Reiters default solution
74 // to the situation calculus... so it could be possible to automate translation from PPDDL to
75 // RDDL. Compiling successor state axioms back into effects (RDDL−>PPDDL) would be harder.
76 //
77 // So why not use PPDDL style action−centric effects in RDDL if they are more clear? PPDDL is
78 // more clear for domains like this, but when multiple independent probabilistic exogenous
79 // events act on a fluent, the action−centric PPDDL approach is not guaranteed to provide a
80 // consistent state update or probability distribution and hence simply cannot be used, hence
81 // my motivation for RDDL.
82

83 vehicle−at’(?l) =
84 // Did it move to ?l and become true?
85 if (exists_{?from : location} (move−car(?from,?l) ^ vehicle−at(?from) ^ road(?from,?l) ^ not−flattire))
86 then true
87

88 // Did it leave ?l and become false?
89 else if (exists_{?to : location} (move−car(?l,?to) ^ vehicle−at(?l) ^ road(?l,?to) ^ not−flattire))
90 then false
91

92 // It didn’t move, so it’s current value persists (frame axiom)
93 else
94 vehicle−at(?l);
95

96 spare−in’(?l) =
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97 // Was the spare used?
98 if (loadtire(?l) ^ vehicle−at(?l) ^ spare−in(?l))
99 then false
100

101 // It was not used, so it’s current value persists (frame axiom)
102 else
103 spare−in(?l);
104

105 not−flattire’ =
106 // If the car moved there is a FLAT−PROB probability of getting a flat
107 if (exists_{?from : location, ?to : location} (move−car(?from,?to) ^ vehicle−at(?from) ^ road(?from,?to) ^ not

−flattire))
108 then Bernoulli(FLAT−PROB)
109

110 // If the tire was changed, then the flat is fixed
111 else if (changetire ^ hasspare)
112 then true
113

114 // The car didn’t move and the tire was not changed, so it’s current value persists (frame axiom)
115 else
116 not−flattire;
117

118 hasspare’ =
119 // If the tire was changed, then the spare is used
120 if (changetire ^ hasspare)
121 then false
122

123 // If the tire was loaded, then the spare is available
124 else if (exists_{?l : location} (loadtire(?l) ^ vehicle−at(?l) ^ spare−in(?l)))
125 then true
126

127 // The spare was not used or replaced, so it’s current value persists (frame axiom)
128 else
129 hasspare;
130

131 goal−reward−received’ = goal−reward−received | exists_{?l : location} (vehicle−at(?l) ^ goal−location(?l));
132

133 };
134

135 // We get a reward of 100 for reaching the goal and lose −1 on every iteration goal not reached
136 reward = if (~goal−reward−received ^ exists_{?l : location} (vehicle−at(?l) ^ goal−location(?l)))
137 then 100
138 else if (goal−reward−received) then 0
139 else −1; // Modified from IPPC 2008 to encourage shorter paths since we don’t separately evaluate

plan length
140

141 }
142

143 // Original PPDDL version of "Triangle Tireworld" domain from IPPC 2008:
144 //
145 // http://ippc−2008.loria.fr/wiki/images/6/68/Benchmarks−FOP.tgz
146 //
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147 // DOMAIN:
148 //
149 // (define (domain triangle−tire)
150 // (:requirements :typing :strips :equality :probabilistic−effects :rewards)
151 // (:types location)
152 // (:predicates (vehicle−at ?loc − location)
153 // (spare−in ?loc − location)
154 // (road ?from − location ?to − location)
155 // (not−flattire) (hasspare))
156 // (:action move−car
157 // :parameters (?from − location ?to − location)
158 // :precondition (and (vehicle−at ?from) (road ?from ?to) (not−flattire))
159 // :effect (and (vehicle−at ?to) (not (vehicle−at ?from))
160 // (probabilistic 0.5 (not (not−flattire)))))
161 // (:action loadtire
162 // :parameters (?loc − location)
163 // :precondition (and (vehicle−at ?loc) (spare−in ?loc))
164 // :effect (and (hasspare) (not (spare−in ?loc))))
165 // (:action changetire
166 // :precondition (hasspare)
167 // :effect (and (not (hasspare)) (not−flattire)))
168 //)
169 //
170 // INSTANCE OBJECTIVE EXAMPLE:
171 //
172 // (:goal (vehicle−at l−1−3)) (:goal−reward 100) (:metric maximize (reward)))

Instance 1

1 non−fluents nf_triangle_tireworld_inst_mdp__1 {
2 domain = triangle_tireworld_mdp;
3 objects {
4 location : {la1a1, la1a2, la1a3, la2a1, la2a2, la3a1};
5 };
6

7 non−fluents {
8 FLAT−PROB = 0.4;
9 road(la1a1,la1a2);

10 road(la1a2,la1a3);
11 road(la1a1,la2a1);
12 road(la1a2,la2a2);
13 road(la2a1,la1a2);
14 road(la2a2,la1a3);
15 road(la2a1,la3a1);
16 road(la3a1,la2a2);
17

18 goal−location(la1a3);
19 };
20 }
21
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22 instance triangle_tireworld_inst_mdp__1 {
23 domain = triangle_tireworld_mdp;
24 non−fluents = nf_triangle_tireworld_inst_mdp__1;
25 init−state {
26 vehicle−at(la1a1);
27 spare−in(la2a1);
28 spare−in(la2a2);
29 spare−in(la3a1);
30 spare−in(la3a1);
31 not−flattire;
32 };
33

34 max−nondef−actions = 1;
35 horizon = 40;
36 discount = 1.0;
37 }

Instance 2

1 non−fluents nf_triangle_tireworld_inst_mdp__2 {
2 domain = triangle_tireworld_mdp;
3 objects {
4 location : {la1a1, la1a2, la1a3, la2a1, la2a2, la3a1};
5 };
6

7 non−fluents {
8 FLAT−PROB = 0.499;
9 road(la1a1,la1a2);

10 road(la1a2,la1a3);
11 road(la1a1,la2a1);
12 road(la1a2,la2a2);
13 road(la2a1,la1a2);
14 road(la2a2,la1a3);
15 road(la2a1,la3a1);
16 road(la3a1,la2a2);
17

18 goal−location(la1a3);
19 };
20 }
21

22 instance triangle_tireworld_inst_mdp__2 {
23 domain = triangle_tireworld_mdp;
24 non−fluents = nf_triangle_tireworld_inst_mdp__2;
25 init−state {
26 vehicle−at(la1a1);
27 spare−in(la2a1);
28 spare−in(la2a2);
29 spare−in(la3a1);
30 spare−in(la3a1);
31 not−flattire;
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32 };
33

34 max−nondef−actions = 1;
35 horizon = 40;
36 discount = 1.0;
37 }

Instance 3

1 non−fluents nf_triangle_tireworld_inst_mdp__3 {
2 domain = triangle_tireworld_mdp;
3 objects {
4 location : {la1a1, la1a2, la1a3, la1a4, la1a5, la2a1, la2a2, la2a3, la2a4, la3a1, la3a2, la3a3, la4a1, la4a2, la5a1

};
5 };
6

7 non−fluents {
8 FLAT−PROB = 0.35;
9 road(la1a1,la1a2);

10 road(la1a2,la1a3);
11 road(la1a3,la1a4);
12 road(la1a4,la1a5);
13 road(la1a1,la2a1);
14 road(la1a2,la2a2);
15 road(la1a3,la2a3);
16 road(la1a4,la2a4);
17 road(la2a1,la1a2);
18 road(la2a2,la1a3);
19 road(la2a3,la1a4);
20 road(la2a4,la1a5);
21 road(la3a1,la3a2);
22 road(la3a2,la3a3);
23 road(la2a1,la3a1);
24 road(la2a3,la3a3);
25 road(la3a1,la2a2);
26 road(la3a3,la2a4);
27 road(la3a1,la4a1);
28 road(la3a2,la4a2);
29 road(la4a1,la3a2);
30 road(la4a2,la3a3);
31 road(la4a1,la5a1);
32 road(la5a1,la4a2);
33

34 goal−location(la1a5);
35 };
36 }
37

38 instance triangle_tireworld_inst_mdp__3 {
39 domain = triangle_tireworld_mdp;
40 non−fluents = nf_triangle_tireworld_inst_mdp__3;
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41 init−state {
42 vehicle−at(la1a1);
43 spare−in(la2a1);
44 spare−in(la2a2);
45 spare−in(la2a3);
46 spare−in(la2a4);
47 spare−in(la3a1);
48 spare−in(la3a3);
49 spare−in(la4a1);
50 spare−in(la4a2);
51 spare−in(la5a1);
52 spare−in(la5a1);
53 not−flattire;
54 };
55

56 max−nondef−actions = 1;
57 horizon = 40;
58 discount = 1.0;
59 }

Instance 4

1 non−fluents nf_triangle_tireworld_inst_mdp__4 {
2 domain = triangle_tireworld_mdp;
3 objects {
4 location : {la1a1, la1a2, la1a3, la1a4, la1a5, la2a1, la2a2, la2a3, la2a4, la3a1, la3a2, la3a3, la4a1, la4a2, la5a1

};
5 };
6

7 non−fluents {
8 FLAT−PROB = 0.45;
9 road(la1a1,la1a2);

10 road(la1a2,la1a3);
11 road(la1a3,la1a4);
12 road(la1a4,la1a5);
13 road(la1a1,la2a1);
14 road(la1a2,la2a2);
15 road(la1a3,la2a3);
16 road(la1a4,la2a4);
17 road(la2a1,la1a2);
18 road(la2a2,la1a3);
19 road(la2a3,la1a4);
20 road(la2a4,la1a5);
21 road(la3a1,la3a2);
22 road(la3a2,la3a3);
23 road(la2a1,la3a1);
24 road(la2a3,la3a3);
25 road(la3a1,la2a2);
26 road(la3a3,la2a4);
27 road(la3a1,la4a1);
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28 road(la3a2,la4a2);
29 road(la4a1,la3a2);
30 road(la4a2,la3a3);
31 road(la4a1,la5a1);
32 road(la5a1,la4a2);
33

34 goal−location(la1a5);
35 };
36 }
37

38 instance triangle_tireworld_inst_mdp__4 {
39 domain = triangle_tireworld_mdp;
40 non−fluents = nf_triangle_tireworld_inst_mdp__4;
41 init−state {
42 vehicle−at(la1a1);
43 spare−in(la2a1);
44 spare−in(la2a2);
45 spare−in(la2a3);
46 spare−in(la2a4);
47 spare−in(la3a1);
48 spare−in(la3a3);
49 spare−in(la4a1);
50 spare−in(la4a2);
51 spare−in(la5a1);
52 spare−in(la5a1);
53 not−flattire;
54 };
55

56 max−nondef−actions = 1;
57 horizon = 40;
58 discount = 1.0;
59 }

Instance 5

1 non−fluents nf_triangle_tireworld_inst_mdp__5 {
2 domain = triangle_tireworld_mdp;
3 objects {
4 location : {la1a1, la1a2, la1a3, la1a4, la1a5, la1a6, la1a7, la2a1, la2a2, la2a3, la2a4, la2a5, la2a6, la3a1, la3a2,

la3a3, la3a4, la3a5, la4a1, la4a2, la4a3, la4a4, la5a1, la5a2, la5a3, la6a1, la6a2, la7a1};
5 };
6

7 non−fluents {
8 FLAT−PROB = 0.3;
9 road(la1a1,la1a2);

10 road(la1a2,la1a3);
11 road(la1a3,la1a4);
12 road(la1a4,la1a5);
13 road(la1a5,la1a6);
14 road(la1a6,la1a7);
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15 road(la1a1,la2a1);
16 road(la1a2,la2a2);
17 road(la1a3,la2a3);
18 road(la1a4,la2a4);
19 road(la1a5,la2a5);
20 road(la1a6,la2a6);
21 road(la2a1,la1a2);
22 road(la2a2,la1a3);
23 road(la2a3,la1a4);
24 road(la2a4,la1a5);
25 road(la2a5,la1a6);
26 road(la2a6,la1a7);
27 road(la3a1,la3a2);
28 road(la3a2,la3a3);
29 road(la3a3,la3a4);
30 road(la3a4,la3a5);
31 road(la2a1,la3a1);
32 road(la2a3,la3a3);
33 road(la2a5,la3a5);
34 road(la3a1,la2a2);
35 road(la3a3,la2a4);
36 road(la3a5,la2a6);
37 road(la3a1,la4a1);
38 road(la3a2,la4a2);
39 road(la3a3,la4a3);
40 road(la3a4,la4a4);
41 road(la4a1,la3a2);
42 road(la4a2,la3a3);
43 road(la4a3,la3a4);
44 road(la4a4,la3a5);
45 road(la5a1,la5a2);
46 road(la5a2,la5a3);
47 road(la4a1,la5a1);
48 road(la4a3,la5a3);
49 road(la5a1,la4a2);
50 road(la5a3,la4a4);
51 road(la5a1,la6a1);
52 road(la5a2,la6a2);
53 road(la6a1,la5a2);
54 road(la6a2,la5a3);
55 road(la6a1,la7a1);
56 road(la7a1,la6a2);
57

58 goal−location(la1a7);
59 };
60 }
61

62 instance triangle_tireworld_inst_mdp__5 {
63 domain = triangle_tireworld_mdp;
64 non−fluents = nf_triangle_tireworld_inst_mdp__5;
65 init−state {
66 vehicle−at(la1a1);
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67 spare−in(la2a1);
68 spare−in(la2a2);
69 spare−in(la2a3);
70 spare−in(la2a4);
71 spare−in(la2a5);
72 spare−in(la2a6);
73 spare−in(la3a1);
74 spare−in(la3a5);
75 spare−in(la4a1);
76 spare−in(la4a2);
77 spare−in(la4a3);
78 spare−in(la4a4);
79 spare−in(la5a1);
80 spare−in(la5a3);
81 spare−in(la6a1);
82 spare−in(la6a2);
83 spare−in(la7a1);
84 spare−in(la7a1);
85 not−flattire;
86 };
87

88 max−nondef−actions = 1;
89 horizon = 40;
90 discount = 1.0;
91 }
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A.5 Analyzed Evaluation Results

A.5.1 Table Legend

Algorithm Algorithm: Used algorithm for the presented data (reward
[optimizer], probability [optimizer], search [algorithm],
PROST, Random Bandit).

Interpreted Parameters First Boolean value: Usage of interpreted parameters for
all variables except for quantifiers / sums / products. Sec-
ond value: Usage of interpreted parameters for all quanti-
fiers / sums / . . ..

Adjust Plan True if a new plan should be generated whenever the cur-
rent plan fails.

Approximation Approximation value for the reward approximation, see
Subsection 5.2.3.

Probability Probability value of the calculated plan for the first step.
Reward Reward received after the simulation of a plan using RD-

DLsim.
Expected Reward Expected reward, reward value of the first plan according

to the algorithm (value in case of success).
Reward Expectation Expected value, calculated using the expected reward, the

probability of a plan and the worst reward, see Section 6.1
(rounded to the first decimal place).

Translation Time Time taken to translate the domain.
Probability Translation Time Additional time taken to translate probability constraints

after the translation of the domain was finished.
Time Left Time left in milliseconds, decreasing, starting at 3600000

SSD Sample standard deviation (formula:
√

∑
n
i=0(xi−x̄)2

n−1 )

A.5.2 Academic Advising

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.03328046333333333 0.03328046333333333 0.0 0.03328046333333333 0.03328046333333333

probability true + true false 2.0 0.04291428166666667 0.04291428166666667 0.0 0.04291428166666667 0.04291428166666667
probability true + true true 2.0 0.04291428166666667 0.04291428166666667 0.0 0.04291428166666667 0.04291428166666667
probability true + true false 3.0 0.06875763525400001 0.06875763525400001 0.0 0.06875763525400001 0.06875763525400001
probability true + true true 3.0 0.0669203069304 0.06875763525400001 0.0070066935698763775 0.039481139133333336 0.06875763525400001

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -56.333333333333336 -50.0 19.953970019528192 -100.0 -25.0 -97.5

probability true + true false 2.0 -98.16666666666667 -100.0 10.041580220928045 -100.0 -45.0 -97.6
probability true + true true 2.0 -98.33333333333333 -100.0 9.128709291752768 -100.0 -50.0 -97.6
probability true + true false 3.0 -96.66666666666667 -100.0 8.64364759104401 -100.0 -75.0 -98.3
probability true + true true 3.0 -91.33333333333333 -100.0 14.793599112881344 -100.0 -40.0 -98.3

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true -25.0 0.0 532.2ms 4239.3ms 3427847

probability true + true false 2.0 -45.0 0.0 521.4ms 4132.3ms 3413522
probability true + true true 2.0 -45.0 0.0 515.6ms 4029.4ms 3337007
probability true + true false 3.0 -75.0 0.0 516.6ms 4006.1ms 3414896
probability true + true true 3.0 -74.66666666666667 1.8257418583505538 524.1ms 4090.1ms 3335883

search true + true false 3.0 -1
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Algorithm Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
PROST 442636 -45.33333333 -45 7.648904963 -60 -35

Random Bandit 76898 -54.83333333 -52.5 19.00468787 -100 -30

A.5.3 Cooperative Recon

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 8.542434412431E-8 3.644728564553E-8 2.1959148435219E-7 5.82E-18 1.13478573646297E-6
reward true + true true 3.086519264054E-8 3.644728564553E-8 1.292091328041E-8 4.11546156E-12 3.644728564553E-8

probability true + true false 0.25 null
probability true + true false 0.1 0.11855084400005148 8.127243E-14 0.23463543464588715 8.127243E-14 0.64
probability true + true true 0.1 0.08222966763715826 8.127243E-14 0.21078663430379166 8.127243E-14 0.64

search true + true false 0.8 0.64 0.64 0.0 0.64 0.64

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false 1.9300000000000002 0.0 4.028087592787974 0.0 13.13 0.0
reward true + true true 2.412 0.0 4.597774124133516 0.0 13.13 -

probability true + true false 0.25 0.0 0.0 0.0 0.0 0.0 -
probability true + true false 0.1 0.1 0.0 0.38056219755369364 0.0 1.5 0.4
probability true + true true 0.1 0.8113333333333334 0.0 2.557363584973229 0.0 11.63 -

search true + true false 0.8 1.9383333333333332 0.0 4.747927618094727 0.0 11.63 7.4

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false 13.016 0.6244037155558894 256.2ms 210.4ms 3491461
reward true + true true 13.13 0.0 257.9ms 202.6ms 3361383

probability true + true false 0.25
probability true + true false 0.1 3.7496666666666667 4.1890476930577725 274.4ms 213.7ms 3324751
probability true + true true 0.1 2.175333333333333 2.5700633741459447 270.8ms 207.1ms 753906

search true + true false 0.8 11.63 0.0 346.7ms 253.7ms -1

Algorithm Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
PROST 40971 5.071666667 1.5 5.562218661 0 13.13

Random Bandit 76703 0 0 - 0 0

A.5.4 Crossing Traffic

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 9.20529422205E-9 9.20529422205E-9 0.0 9.20529422205E-9 9.20529422205E-9

probability true + true false 6.0 6.366805760909E-7 6.366805760909E-7 0.0 6.366805760909E-7 6.366805760909E-7
probability true + true true 6.0 6.366805760909E-7 6.366805760909E-7 0.0 6.366805760909E-7 6.366805760909E-7
probability true + true true 6.0 6.366805760909E-7 6.366805760909E-7 0.0 6.366805760909E-7 6.366805760909E-7
probability false + true false 6.0 9.0954368012986E-7 9.0954368012986E-7 0.0 9.0954368012986E-7 9.0954368012986E-7
probability false + true true 6.0 9.0954368012986E-7 9.0954368012986E-7 0.0 9.0954368012986E-7 9.0954368012986E-7

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -9.6 -2.0 15.459847882554477 -40.0 -2.0 -

probability true + true false 6.0 -29.733333333333334 -40.0 13.723710499899708 -40.0 -12.0 -40
probability true + true true 6.0 -34.3 -40.0 11.600089179205359 -40.0 -10.0 -
probability true + true true 6.0 -28.8 -40.0 13.951640615428316 -40.0 -12.0 -
probability false + true false 6.0 -31.366666666666667 -40.0 13.415079866183875 -40.0 -11.0 -40
probability false + true true 6.0 -23.8 -12.0 15.586023801182728 -40.0 -2.0 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true -2.0 0.0 118.9ms 14.7ms 3552286

probability true + true false 6.0 -12.0 0.0 123.6ms 15.0ms 3565328
probability true + true true 6.0 -12.0 0.0 123.3ms 14.7ms 3556719
probability true + true true 6.0 -12.0 0.0 124.0ms 17.1ms 3552130
probability false + true false 6.0 -11.3 0.466091599699399 1721.2ms 123.4ms 3420450
probability false + true true 6.0 -11.133333333333333 1.8332810859848758 1695.2ms 119.1ms 1555663

search true + true false -1
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Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Crossing 2258920 -4.566666667 -4 0.971430986 -8 -4

A.5.5 Navigation

Instance 1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.071841553474466 0.071841553474466 0.0 0.071841553474466 0.071841553474466
reward false + true true 0.071841553474466 0.071841553474466 0.0 0.071841553474466 0.071841553474466

probability true + true false 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618
probability true + true true 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618
probability false + true false 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618
probability false + true true 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618

search true + true false 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618
search false + true false 4.0 0.9510332886129618 0.9510332886129618 0.0 0.9510332886129618 0.9510332886129618

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -38.733333333333334 -40.0 6.937819061732104 -40.0 -2.0 -
reward false + true true -38.733333333333334 -40.0 6.937819061732104 -40.0 -2.0 -

probability true + true false 4.0 -10.133333333333333 -8.0 8.118660214478798 -40.0 -8.0 -9.6
probability true + true true 4.0 -9.066666666666666 -8.0 5.8423739467217715 -40.0 -8.0 -
probability false + true false 4.0 -11.2 -8.0 9.764114452139669 -40.0 -8.0 -9.6
probability false + true true 4.0 -9.066666666666666 -8.0 5.8423739467217715 -40.0 -8.0 -

search true + true false 4.0 -9.066666666666666 -8.0 5.8423739467217715 -40.0 -8.0 -9.6
search false + true false 4.0 -10.133333333333333 -8.0 8.118660214478798 -40.0 -8.0 -9.6

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true -2.0 0.0 133.1ms 22.6ms 3563697
reward false + true true -2.0 0.0 1874.1ms 224.1ms 3474188

probability true + true false 4.0 -8.0 0.0 132.4ms 22.4ms 3560053
probability true + true true 4.0 -8.0 0.0 134.8ms 22.5ms 3559768
probability false + true false 4.0 -8.0 0.0 1871.7ms 227.5ms 3432726
probability false + true true 4.0 -8.0 0.0 1915.3ms 228.9ms 3428524

search true + true false 4.0 -8.0 0.0 135.0ms 22.8ms 3542010
search false + true false 4.0 -8.0 0.0 1882.4ms 229.0ms 3269728

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 1 3594721 -9.066666667 -8 5.842373947 -40 -8

Instance 2

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.083674353081733 0.083674353081733 0.0 0.083674353081733 0.083674353081733

probability true + true false 8.0 0.9616623822953189 0.9639773815870285 0.008810012177882725 0.9292523922113836 0.9639773815870285
search true + true false 8.0 0.9639773815870285 0.9639773815870285 0.0 0.9639773815870285 0.9639773815870285

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -37.46666666666667 -40.0 9.640909004693572 -40.0 -2.0 -

probability true + true false 8.0 -13.333333333333334 -12.0 5.181754018924835 -40.0 -12.0 -13.46
search true + true false 8.0 -17.5 -16.0 6.1405941529891175 -40.0 -13.0 -16.77

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true -2.0 0.0 188.6ms 30.1ms 3549976

probability true + true false 8.0 -12.4 1.2205143065174586 191.0ms 24.7ms 3541923
search true + true false 8.0 -15.9 0.5477225575051661 188.1ms 24.9ms 3511802

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 2 3594611 -12 -10 7.611243951 -40 -10
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Instance 3

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.003939522253899224 0.003939522253899224 0.0 0.003939522253899224 0.003939522253899224

probability true + true false 8.0 0.9128728475780877 0.9128728475780877 0.0 0.9128728475780877 0.9128728475780877
search true + true false 8.0 0.9128728475780877 0.9128728475780877 0.0 0.9128728475780877 0.9128728475780877

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -40.0 -40.0 0.0 -40.0 -40.0 -39.85

probability true + true false 8.0 -24.533333333333335 -24.0 2.9211869733608857 -40.0 -24.0 -25.39
search true + true false 8.0 -17.4 -14.0 7.204404782899283 -40.0 -14.0 -17.79

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -3.0 0.0 259.4ms 43.3ms 3528472

probability true + true false 8.0 -24.0 0.0 266.7ms 44.3ms 3489589
search true + true false 8.0 -15.666666666666666 3.790490217894517 268.1ms 40.1ms 3337505

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 3 3592722 -14.86666667 -11 10.02663121 -40 -11

Instance 4

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 2.885020282797116E-5 2.885020282797116E-5 0.0 2.885020282797116E-5 2.885020282797116E-5

probability true + true false 4.0 0.868897570701338 0.868897570701338 0.0 0.868897570701338 0.868897570701338
search true + true false 4.0 0.868897570701338 0.868897570701338 0.0 0.868897570701338 0.868897570701338

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -40.0 -40.0 0.0 -40.0 -40.0 -40.0

probability true + true false 4.0 -25.166666666666668 -20.0 9.120206188433475 -40.0 -17.0 -22.48
search true + true false 4.0 -21.533333333333335 -20.0 6.388207526552253 -40.0 -14.0 -22.22

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -5.0 0.0 504.6ms 78.2ms 3466120

probability true + true false 4.0 -19.833333333333332 0.6477192523656043 530.0ms 70.6ms 3273469
search true + true false 4.0 -19.533333333333335 1.279367659898984 515.4ms 73.4ms 1668107

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 4 3578894 -16.6 -13 9.335139398 -40 -13

Instance 5

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.0663249796877304 0.0663249796877304 0.0 0.0663249796877304 0.0663249796877304

probability true + true false 10.0 0.9759851833805442 0.9759851833805442 0.0 0.9759851833805442 0.9759851833805442
search true + true false 10.0 0.9759851833805442 0.9759851833805442 0.0 0.9759851833805442 0.9759851833805442

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -38.733333333333334 -40.0 6.937819061732104 -40.0 -2.0 -37.48

probability true + true false 10.0 -21.333333333333332 -20.0 5.074162634049249 -40.0 -20.0 -20.48
search true + true false 10.0 -20.0 -20.0 0.0 -20.0 -20.0 -20.48

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -2.0 0.0 647.0ms 47.6ms 3451148

probability true + true false 10.0 -20.0 0.0 602.0ms 48.7ms 3433072
search true + true false 10.0 -20.0 0.0 627.4ms 49.5ms 3108454
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Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 5 3527645 -20.33333333 -20 1.372973951 -27 -20

Instance 6

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.006407984930621872 0.006407984930621872 0.0 0.006407984930621872 0.006407984930621872

probability true + true false 8.0 0.9362386705302082 0.9362386705302082 0.0 0.9362386705302082 0.9362386705302082
search true + true false 8.0 0.9362386705302082 0.9362386705302082 0.0 0.9362386705302082 0.9362386705302082

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -38.766666666666666 -40.0 6.7552448758970485 -40.0 -3.0 -39.76

probability true + true false 8.0 -24.0 -24.0 0.0 -24.0 -24.0 -25.02
search true + true false 8.0 -25.033333333333335 -24.0 4.072475594925569 -40.0 -23.0 -24.99

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -3.0 0.0 916.2ms 108.9ms 3376911

probability true + true false 8.0 -24.0 0.0 940.4ms 83.0ms 3302836
search true + true false 8.0 -23.966666666666665 0.18257418583505536 940.1ms 90.7ms 1604850

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 6 3354634 -24.36666667 -21 6.77461455 -40 -21

Instance 7

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 2.727139499032272E-4 2.727139499032272E-4 0.0 2.727139499032272E-4 2.727139499032272E-4

probability true + true false 6.0 0.9445480110827212 0.9445480110827212 0.0 0.9445480110827212 0.9445480110827212
search true + true false 6.0 0.9445480110827212 0.9445480110827212 0.0 0.9445480110827212 0.9445480110827212

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -40.0 -40.0 0.0 -40.0 -40.0 -40.0

probability true + true false 6.0 -25.066666666666666 -24.0 4.059330107239399 -40.0 -24.0 -24.9
search true + true false 6.0 -24.0 -24.0 0.0 -24.0 -24.0 -24.9

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -4.0 0.0 1233.3ms 130.2ms 3292246

probability true + true false 6.0 -24.0 0.0 1267.0ms 129.3ms 3014400
search true + true false 6.0 -24.0 0.0 1737.7ms 125.9ms -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 7 3150587 -24.96666667 -22 6.065637149 -40 -22

Instance 8

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.05536517020511 0.05536517020511 0.0 0.05536517020511 0.05536517020511

probability true + true false 12.0 0.5998311761864706 0.5998311761864706 0.0 0.5998311761864706 0.5998311761864706

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -36.2 -40.0 11.594885911915856 -40.0 -2.0 -37.9

probability true + true false 12.0 -29.333333333333332 -24.0 7.671412823766146 -40.0 -24.0 -30.4

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
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reward true + true false -2.0 0.0 4062.9ms 203.3ms 2963441
probability true + true false 12.0 -24.0 0.0 4114.8ms 232.5ms 2894284

search true + true false -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 8 3267846 -32.66666667 -40 10.54819263 -40 -18

Instance 9

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.0023143484719296346 0.0023143484719296346 0.0 0.0023143484719296346 0.0023143484719296346

probability true + true false 10.0 0.48654842234440077 0.48654842234440077 0.0 0.48654842234440077 0.48654842234440077

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -38.766666666666666 -40.0 6.7552448758970485 -40.0 -3.0 -39.9

probability true + true false 10.0 -35.0 -35.0 5.0854762771560775 -40.0 -30.0 -35.1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -3.0 0.0 5084.2ms 330.5ms 2706663

probability true + true false 10.0 -29.966666666666665 0.18257418583505536 6105.6ms 218.4ms 2434293

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 9 3378752 -35.43333333 -40 6.729673525 -40 -13

Instance 10

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 4.169611929714425E-4 4.169611929714425E-4 0.0 4.169611929714425E-4 4.169611929714425E-4

probability true + true false 8.0 0.3598156253383979 0.3837781194383407 0.03722905735943247 0.3039031391051981 0.3837781194383407

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false -40.0 -40.0 0.0 -40.0 -40.0 -40.0

probability true + true false 8.0 -37.06666666666667 -40.0 3.9210601428284875 -40.0 -32.0 -37.1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false -4.0 0.0 7214.7ms 262.3ms 2387744

probability true + true false 8.0 -32.0 0.0 7859.7ms 335.7ms 1083358

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Navigation 10 2378944 -37.1 -40 4.028775804 -40 -29

A.5.6 Prop DBN

Instance 1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true false 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
reward true + true true 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
reward false + true false 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
reward false + true true 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527

probability true + true false 0.25 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
probability false + true false 0.25 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
probability false + true true 0.25 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527

search true + true false 0.25 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
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search false + true false 0.25 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527
probability false + true false 0.125 0.013138562614608527 0.013138562614608527 0.0 0.013138562614608527 0.013138562614608527

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true false 5.444506670854235 5.682113578989544 1.611348569645841 1.2483759785904076 7.784233454094309 1.3
reward true + true true 5.074510235545573 5.512533772760831 1.8893683315587637 -0.38742048900000015 7.5554655295446995 -
reward false + true false 4.876005261593708 4.820057240895148 1.5323668602841962 0.7045973939776325 7.5554655295446995 -
reward false + true true 4.707193201355985 5.302105137530716 2.1221170508916223 -0.13804005089502444 7.5554655295446995 -

probability true + true false 0.25 5.822035859588707 6.301540521466206 1.8696248270119884 0.0 7.784233454094309 -
probability false + true false 0.25 5.155046509102228 5.112556884912078 1.5116108336894651 1.1254041106560086 7.598931435209125 -
probability false + true true 0.25 5.289433288957039 5.528232711101067 1.455829028359958 1.4703877909333438 7.784233454094309 -

search true + true false 0.25 3.4857867347314517 3.742506383627403 2.6535679327616513 0.0 6.458134171671002 -
search false + true false 0.25 5.160745962519301 5.478310955094308 2.28419040392423 0.0 7.193743454094308 -

probability false + true false 0.125 5.444506670854235 5.682113578989544 1.611348569645841 1.2483759785904076 7.784233454094309 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true false 7.905810108684878 0.0 27.8ms 5.8ms 3596377
reward true + true true 7.905810108684878 0.0 28.2ms 5.8ms 3593424
reward false + true false 7.905810108684878 0.0 31.8ms 3.7ms 3596541
reward false + true true 7.905810108684878 0.0 30.4ms 3.6ms 3593185

probability true + true false 0.25 7.905810108684878 0.0 30.2ms 6.0ms -1
probability false + true false 0.25 7.905810108684878 0.0 28.2ms 3.6ms 3556013
probability false + true true 0.25 7.905810108684878 0.0 28.5ms 3.6ms 554130

search true + true false 0.25 7.905810108684878 0.0 46.7ms 9.2ms -1
search false + true false 0.25 7.905810108684878 0.0 42.3ms 4.7ms -1

probability false + true false 0.125 7.905810108684878 0.0 30.4ms 3.6ms 3549796

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Prop 3597202 5.44197083 5.693189668 1.240983065 3.18537587 7.305936554

Instance 2

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward false + true true 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward false + true true 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward false + true true 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward false + true true 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward false + true true 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward true + true true 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18

probability true + true false 0.25 2.76587798348395E-6 2.76587798348395E-6 0.0 2.76587798348395E-6 2.76587798348395E-6
probability false + true false 0.25 1.67263011131282E-6 1.62130689412719E-6 2.8110884013136E-7 1.62130689412719E-6 3.16100340969594E-6
probability true + true true 0.25 2.76587798348395E-6 2.76587798348395E-6 0.0 2.76587798348395E-6 2.76587798348395E-6
probability false + true true 0.25 1.87792298005532E-6 1.62130689412719E-6 5.8362045886004E-7 1.62130689412719E-6 3.16100340969594E-6

reward true + true false 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward false + true false 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16
reward true + true false 8.29E-18 8.29E-18 0.0 8.29E-18 8.29E-18
reward false + true false 1.572E-16 1.572E-16 0.0 1.572E-16 1.572E-16

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward false + true true 9.067621077873088 9.042742343046637 1.2813411648897732 6.478485660718657 11.63260584578822 6.5
reward true + true true 8.612570045222773 8.520312985539192 1.3177556413283003 5.785003504100652 11.171890813065476 -
reward true + true true 8.10138215662621 8.185373487990367 1.49499122032339 4.287419414992559 11.179349100095962 -
reward false + true true 8.911433385601901 8.874468077248158 1.1759697658173316 7.321225572420344 11.599221965543594 -
reward true + true true 7.9591249341063595 7.866433246958976 1.3994284892062376 5.876227171582244 11.161133171463254 -
reward true + true true 8.201160018052759 8.134350511772197 1.3052819809853335 5.334106159264298 10.852651564128537 -
reward true + true true 7.924722701773006 7.947786597015038 1.2514372072814748 5.755312413808558 10.607641379098963 -
reward true + true true 7.898249730267034 7.6779175789168415 1.2771389602348486 5.742650088934332 10.622295499981517 -
reward false + true true 8.956060779381588 8.688010132831353 1.264863346839125 6.431076334780408 13.293773857060811 -
reward false + true true 9.275487640100152 9.442926901975017 1.487520591795349 6.263250999101758 12.371639838678762 -
reward false + true true 9.03880698975411 9.190097865879428 1.3078614869617267 6.234692717924255 11.67962501044606 -
reward true + true true 8.038791754991887 8.186822181013248 1.305879420483443 4.259710950289558 10.408569231339884 -

probability true + true false 0.25 8.823963507627038 8.956323820354111 1.21463481720798 6.344131169682049 11.487584316540213 -
probability false + true false 0.25 7.775564450009903 7.449160350596753 1.5160841074592568 4.9882008684048 11.471798457083203 -
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probability true + true true 0.25 10.597890372736538 10.72033716277329 1.4081595150238555 7.895719103377343 14.025719022671472 -
probability false + true true 0.25 9.371272293148499 9.529270788497483 1.5132825225123065 6.487585851795108 12.604874089339276 -

reward true + true false 7.802990362875172 7.870189826658334 1.1594217623559373 5.379234378663185 10.101293402079495 -
reward false + true false 8.871621342776352 8.604995972247874 1.2857979648080606 6.331857149707957 11.271346265283805 -
reward true + true false 7.84731410477811 7.435187486326667 1.6237500479728002 4.9872459155742765 11.631646545903116 -
reward false + true false 8.925798458477598 8.906698739829727 1.4928420249347458 6.239200300454743 12.27280773168296 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward false + true true 17.811620217369757 0.0 30.1ms 3.6ms 3591256
reward true + true true 17.811620217369757 0.0 27.1ms 5.9ms 3591400
reward true + true true 17.811620217369757 0.0 27.3ms 5.9ms 3591285
reward false + true true 17.811620217369757 0.0 29.7ms 3.5ms 3591008
reward true + true true 17.811620217369757 0.0 27.3ms 5.8ms 3591294
reward true + true true 17.811620217369757 0.0 27.1ms 5.8ms 3591308
reward true + true true 17.811620217369757 0.0 27.7ms 5.8ms 3591178
reward true + true true 17.811620217369757 0.0 25.8ms 5.9ms 3591328
reward false + true true 17.811620217369757 0.0 29.9ms 3.6ms 3591198
reward false + true true 17.811620217369757 0.0 29.9ms 3.5ms 3591502
reward false + true true 17.811620217369757 0.0 29.7ms 3.5ms 3591462
reward true + true true 17.811620217369757 0.0 27.4ms 5.8ms 3591502

probability true + true false 0.25 7.0085222405820495 0.0 27.3ms 5.7ms 3564416
probability false + true false 0.25 4.757941102444115 0.3060086526719448 28.3ms 3.6ms 3572740
probability true + true true 0.25 7.0085222405820495 0.0 25.3ms 5.9ms 3505535
probability false + true true 0.25 4.981418224924366 0.6353158850134526 28.1ms 3.5ms 3476732

reward true + true false 17.811620217369757 0.0 28.4ms 5.9ms 3596579
reward false + true false 17.811620217369757 0.0 31.8ms 3.7ms 3596608
reward true + true false 17.811620217369757 0.0 28.6ms 6.0ms 3596573
reward false + true false 17.811620217369757 0.0 31.6ms 3.7ms 3596608
search true + true false -1
search false + true false -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Prop 2 3560079 11.05010366 11.21440429 1.349129816 7.190650229 14.40906962

A.5.7 Skill Teaching

Instance 1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.2625719262500008 0.2625719262500008 0.0 0.2625719262500008 0.2625719262500008
reward false + true true 0.1615244678431959 0.15774537202520178 0.015291242723081569 0.15774537202520178 0.23421290673440887

probability true + true false 0.25 0.7900833 0.7900833 0.0 0.7900833 0.7900833
probability true + true true 0.25 0.7900833 0.7900833 0.0 0.7900833 0.7900833
probability false + true false 0.25 0.7739098520692193 0.7752540931337643 0.01618575545007361 0.71801746 0.7900833
probability false + true true 0.25 0.7748291260492624 0.7752540931337643 0.01164167660434826 0.71801746 0.7900833
probability true + true false 0.15 0.7900833 0.7900833 0.0 0.7900833 0.7900833
probability true + true false 0.35 0.7900833 0.7900833 0.0 0.7900833 0.7900833
probability true + true false 0.45 0.7900833 0.7900833 0.0 0.7900833 0.7900833
probability true + true false 0.55 0.5556961764162444 0.5566459748065088 0.003150124886990743 0.5461981925135998 0.5566459748065088

search true + true false 0.45 0.7900833 0.7900833 0.0 0.7900833 0.7900833
search true + true false 0.25 0.7900833 0.7900833 0.0 0.7900833 0.7900833

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true 59.76652207333335 63.61735750000003 13.874946056409282 24.010835199999992 72.25962120000003 -
reward false + true true 57.93406321000002 59.41704680000002 13.653911457659675 0.7949045999999953 72.48673680000003 -

probability true + true false 0.25 9.318284043333334 17.511643 18.737202404672253 -31.872721000000002 18.6326943 8.15
probability true + true true 0.25 16.89288578 17.511643 4.772077175652397 -6.726307800000006 26.593611199999994 -
probability false + true false 0.25 9.033509623333334 17.5684219 15.282806616412959 -28.1688937 22.265216 8.4
probability false + true true 0.25 17.245750616666665 17.5684219 9.474187665635304 -28.2824515 25.415780999999992 -
probability true + true false 0.15 3.848635626666667 10.1039884 10.55066374984261 -13.3535845 10.1039884 6.2
probability true + true false 0.35 16.02632682 24.9192976 16.4865707177217 -13.3535845 26.0403489 17.9
probability true + true false 0.45 18.18383382 32.3837311 22.99755985257701 -47.9226393 32.3837311 16.5
probability true + true false 0.55 14.451589145454548 22.73397390000001 20.824747553136895 -20.4773446 39.2235967 14.4

search true + true false 0.45 23.383374642307693 33.4480035 19.067411709313827 -12.2325332 34.7961704 24.9
search true + true false 0.25 11.636136106666667 17.511643 12.544006820967656 -16.716738400000004 23.627909600000002 11.5

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 74.6720605 0.0 49.4ms 29.3ms 3583027
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reward false + true true 74.8991761 0.029821739282795603 422.2ms 225.3ms 3505619
probability true + true false 0.25 18.783620476666666 0.2046750283768304 50.6ms 29.1ms 3574111
probability true + true true 0.25 18.783620476666666 0.2046750283768304 50.1ms 29.4ms 3569835
probability false + true false 0.25 19.07121171 0.889573826810795 431.1ms 233.9ms 3325187
probability false + true true 0.25 19.243881 2.449622891601054 421.6ms 228.2ms 3290015
probability true + true false 0.15 11.3385975 0.0 49.1ms 29.0ms 3574829
probability true + true false 0.35 26.191275076666667 0.2046750283768304 48.8ms 28.8ms 3575546
probability true + true false 0.45 33.65760120666667 0.21504138981694043 50.4ms 29.7ms 3568920
probability true + true false 0.55 42.2113865 2.0833526483054334 67.4ms 33.9ms -1

search true + true false 0.45 34.78195013846154 0.3512974244039305 49.0ms 30.9ms -1
search true + true false 0.25 19.043790706666666 1.212696215937316 47.5ms 29.8ms 116723

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Skill 1 3532726 68.13017347 72.4867368 5.337630408 58.3527744 72.4867368

Instance 2

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.10603091702089174 0.1034076865279631 0.015125286682626391 0.10043643503088072 0.18605816441374595

probability true + true false 0.25 0.700932132 0.6979286 0.016451022285886067 0.6979286 0.78803456
probability true + true true 0.25 0.703935664 0.6979286 0.022860614766856812 0.6979286 0.78803456

search true + true false 0.25 0.78803456 0.78803456 0.0 0.78803456 0.78803456

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true 63.94831326000002 71.65335540000001 23.379000631028603 -11.587631800000004 85.95873300000005 -

probability true + true false 0.25 3.222652143333327 21.120819999999988 33.046992879567114 -55.67293639999999 21.732079100000007 -0.8
probability true + true true 0.25 18.84197989999999 21.120819999999988 12.869060261457507 -45.718190199999995 35.7212882 -

search true + true false 0.25 1.9197008433333331 23.13310780000001 30.413446266460134 -40.36701020000002 23.13310780000001 10.8

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 88.82964487333334 0.02139053851684533 49.7ms 28.9ms 3580911

probability true + true false 0.25 22.5640045 0.11544841294838142 49.8ms 29.0ms 3574000
probability true + true true 0.25 22.583677206666668 0.1551801591578483 49.6ms 29.0ms 3515190

search true + true false 0.25 24.529591343333333 0.25579167423404603 49.5ms 29.6ms 1437801

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Skill 2 3450090 77.53073686 77.4682492 9.191569418 60.3186584 86.0008888

Instance 3

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.005489888551797994 1.0872636315233462E-4 0.011362898426193115 1.0872636315233462E-4 0.03655883676510922

probability true + true false 0.25 0.2279681759671489 0.22040984079897502 0.01511667033634781 0.22040984079897502 0.25064318147167064

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true 52.25025824666667 84.91383800000001 103.3308295263134 -235.99939480000006 183.52541600000004 -

probability true + true false 0.25 -110.42438025 -116.23543559999997 85.23249767609903 -201.71629570000005 -7.510354100000001 -144.7

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 190.91600325333334 3.934642470227925 86.1ms 86.3ms 3072946

probability true + true false 0.25 48.2940856 0.4035072 127.1ms 112.4ms -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Skill 3 3325705 92.8994725 111.9004249 72.38114772 -46.0134138 182.262353
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A.5.8 Triangle Tireworld

Instance 1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.16 0.16 0.0 0.16 0.16

probability true + true false 0.25 0.23733333333333334 0.24 0.01460593486680443 0.16 0.24
probability true + true true 0.25 0.24 0.24 0.0 0.24 0.24
probability false + true false 0.25 0.24 0.24 0.0 0.24 0.24
probability false + true true 0.25 0.23466666666666666 0.24 0.020296650536196996 0.16 0.24

search true + true false 0.25 0.24 0.24 0.0 0.24 0.24
search true + true true 0.25 0.24 0.24 0.0 0.24 0.24
search false + true false 0.25 0.24 0.24 0.0 0.24 0.24

search (fixed) true + true true 0.25 0.24 0.24 0.0 0.24 0.24

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true 15.2 -40.0 68.7616573188967 -40.0 98.0 -

probability true + true false 0.25 -1.9666666666666666 -40.0 50.9512839223246 -40.0 81.0 -15.5
probability true + true true 0.25 11.633333333333333 11.0 52.626519690291545 -40.0 81.0 -
probability false + true false 0.25 -5.333333333333333 -40.0 58.64759355578929 -40.0 95.0 -8.4
probability false + true true 0.25 4.333333333333333 -40.0 63.82915415028018 -40.0 95.0 -

search true + true false 0.25 13.533333333333333 -40.0 62.32657778869761 -40.0 88.0 -10.3
search true + true true 0.25 14.3 -40.0 63.19272655658381 -40.0 95.0 -
search false + true false 0.25 14.482758620689655 -40.0 61.88677489095664 -40.0 92.0 -10.5

search (fixed) true + true true 0.25 -14.566666666666666 -40.0 51.96927695404696 -40.0 92.0 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 98.0 0.0 83.7ms 4.0ms 3573750

probability true + true false 0.25 63.3 4.9490507623458315 83.2ms 4.1ms 3538771
probability true + true true 0.25 63.7 5.26635383910165 82.9ms 4.1ms 3533070
probability false + true false 0.25 91.46666666666667 8.629273886955492 1573.3ms 13.1ms 3248014
probability false + true true 0.25 91.0 8.948126369092101 1576.9ms 15.2ms 3201356

search true + true false 0.25 83.56666666666666 5.144017840193586 84.0ms 4.1ms 2401832
search true + true true 0.25 83.73333333333333 5.9592485833501625 103.3ms 4.0ms 304632
search false + true false 0.25 82.82758620689656 9.215937149142555 1643.4ms 1.8ms -55881

search (fixed) true + true true 0.25 87.3 11.10808962749283 80.3ms 4.3ms 2318941

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Triangle 1 3589931 93.73333333 94.5 2.14850924 90 96

Instance 2

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.24903426666666667 0.249001 1.8220903746337611E-4 0.249001 0.249999

probability true + true false 0.25 0.249999 0.249999 0.0 0.249999 0.249999
probability true + true true 0.25 0.24993246666666666 0.249999 2.532007154390564E-4 0.249001 0.249999
probability false + true false 0.25 0.24993246666666666 0.249999 2.532007154390564E-4 0.249001 0.249999
probability false + true true 0.25 0.2498992 0.249999 3.045183194761031E-4 0.249001 0.249999

search true + true false 0.25 0.249999 0.249999 0.0 0.249999 0.249999
search true + true true 0.25 0.249999 0.249999 0.0 0.249999 0.249999
search false + true false 0.25 0.249999 0.249999 0.0 0.249999 0.249999

search (fixed) true + true true 0.25 0.249999 0.249999 0.0 0.249999 0.249999

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true 38.2 98.0 69.55295675313486 -40.0 98.0 -

probability true + true false 0.25 17.4 -40.0 62.41220039880576 -40.0 83.0 -9.3
probability true + true true 0.25 25.533333333333335 82.0 62.349810349147916 -40.0 83.0 -
probability false + true false 0.25 30.1 72.0 67.00764238451488 -40.0 95.0 -6.8
probability false + true true 0.25 36.833333333333336 69.5 64.4654857313176 -40.0 95.0 -

search true + true false 0.25 -2.966666666666667 -40.0 57.5814166222913 -40.0 95.0 -9.1
search true + true true 0.25 23.833333333333332 72.0 60.79705263576025 -40.0 82.0 -
search false + true false 0.25 21.178571428571427 11.5 62.80248495403758 -40.0 90.0 -9.0

search (fixed) true + true true 0.25 16.533333333333335 -40.0 65.85026553677949 -40.0 92.0 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
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reward true + true true 98.0 0.0 83.7ms 3.8ms 3574304
probability true + true false 0.25 82.86666666666666 2.674700541837487 84.1ms 3.9ms 3538201
probability true + true true 0.25 82.5 2.046864717663039 83.7ms 3.8ms 3521639
probability false + true false 0.25 92.76666666666667 6.831384639438334 1538.6ms 41.9ms 3252712
probability false + true true 0.25 90.56666666666666 9.884447321452763 1596.8ms 6.2ms 3218963

search true + true false 0.25 83.66666666666667 4.179864156622329 83.8ms 3.8ms 2466076
search true + true true 0.25 81.13333333333334 3.8928168449730265 92.8ms 4.0ms 529747
search false + true false 0.25 83.92857142857143 10.652520381402256 1596.9ms 6.5ms -1

search (fixed) true + true true 0.25 89.93333333333334 5.030481798638852 87.5ms 3.9ms 2292373

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Triangle 2 3589854 94.2 95 2.006884702 90 96

Instance 3

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.01500625 0.01500625 0.0 0.01500625 0.01500625

probability true + true false 0.25 0.0318644812890625 0.0318644812890625 0.0 0.0318644812890625 0.0318644812890625

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -35.46666666666667 -40.0 24.83008927356753 -40.0 96.0 -

probability true + true false 0.25 -36.0 -40.0 20.396078054371138 -40.0 64.0 -36.8

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 96.0 0.0 818.0ms 4.5ms 3447211

probability true + true false 0.25 60.15384615384615 0.7844645405527362 830.2ms 4.3ms -1
search true + true false 0.25/0.75 -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Triangle 3 1565291 86.53333333 88 3.919300899 78 93

Instance 4

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 0.04131 0.04100625 0.0016637072684219422 0.04100625 0.05011875

probability true + true false 0.25 0.04505625 0.04100625 0.004614293741274956 0.04100625 0.05011875

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -26.4 -40.0 41.49748642159359 -40.0 96.0 -

probability true + true false 0.25 -24.11111111111111 -40.0 38.88378476883028 -40.0 74.0 -35.1

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 96.0 0.0 813.6ms 4.2ms 3450895

probability true + true false 0.25 68.62962962962963 8.399396261033143 821.2ms 6.0ms -1
search true + true false -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Triangle 4 1625469 86.96666667 88 3.819038815 78 92

Instance 5

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Probability Median Probability SSD Probability Min Probability Max Probability
reward true + true true 8.262E-4 7.29E-4 2.9658497648373894E-4 7.29E-4 0.001701
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Algorithm Interpreted Parameters Adjust Plan Approximation Mean Reward Median Reward SSD Reward Min Reward Max Reward Reward Expectation
reward true + true true -40.0 -40.0 0.0 -40.0 -40.0 -

Algorithm Interpreted Parameters Adjust Plan Approximation Mean Expected Reward SSD Expected Reward Mean Translation Time Mean Probability Translation Time Time Left
reward true + true true 94.0 0.0 8577.1ms 9.9ms 2807851
prob true + true false 0.25 -1

Domain Time Left Mean Reward Median Reward SSD Reward Min Reward Max Reward
Triangle 5 199464 70.86666667 71 2.344962809 67 75

A.6 Rddlsim Output For The Example Run in Triangle Tire-
world

1 Connection from client at address localhost / 127.0.0.1
2 Client name: SMT − search
3 Instance requested: triangle_tireworld_inst_mdp__1
4 Round 1 / 1, time remaining: 3599311
5 [ Memory usage: 83,28Mb / 243,79Mb = 0,34 ]
6 ** Actions received: [loadtire(la3a1);]
7 ** Actions received: [loadtire(la1a2);]
8 ** Actions received: [move−car(la2a1, la3a1);]
9 ** Actions received: [move−car(la2a1, la3a1);]

10 ** Actions received: [move−car(la3a1, la2a1);]
11 ** Actions received: [move−car(la1a2, la3a1);]
12 ** Actions received: [loadtire(la1a2);]
13 ** Actions received: []
14 ** Actions received: [move−car(la1a1, la1a2);]
15 ** Actions received: []
16 ** Actions received: [move−car(la1a2, la1a1);]
17 ** Actions received: [move−car(la1a1, la2a1);]
18 ** Actions received: [move−car(la2a2, la2a2);]
19 ** Actions received: [move−car(la1a1, la1a3);]
20 ** Actions received: [loadtire(la2a1);]
21 ** Actions received: []
22 ** Actions received: [loadtire(la3a1);]
23 ** Actions received: [move−car(la2a2, la2a1);]
24 ** Actions received: []
25 ** Actions received: [loadtire(la1a3);]
26 ** Actions received: [loadtire(la1a3);]
27 ** Actions received: [move−car(la3a1, la2a2);]
28 ** Actions received: [loadtire(la3a1);]
29 ** Actions received: [loadtire(la1a3);]
30 ** Actions received: [move−car(la2a2, la3a1);]
31 ** Actions received: [loadtire(la2a1);]
32 ** Actions received: [move−car(la3a1, la1a1);]
33 ** Actions received: []
34 ** Actions received: [move−car(la2a2, la1a2);]
35 ** Actions received: [move−car(la1a2, la1a3);]
36 ** Actions received: [loadtire(la2a2);]
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37 ** Actions received: [loadtire(la1a1);]
38 ** Actions received: [move−car(la1a3, la2a1);]
39 ** Actions received: [move−car(la3a1, la2a2);]
40 ** Actions received: [move−car(la1a3, la1a3);]
41 ** Actions received: [move−car(la2a1, la1a1);]
42 ** Actions received: [move−car(la2a1, la2a2);]
43 ** Actions received: [move−car(la3a1, la2a1);]
44 ** Actions received: [move−car(la3a1, la1a2);]
45 ** Actions received: [loadtire(la2a2);]
46 ** Round reward: −40.0
47 Session finished successfully: SMT − search
48 Time left: 3561280
49 Number of simulations: 0
50 Number of runs: 1
51 Accumulated reward: −40.0
52 Average reward: −40.0

A.7 Code

Relevant parts of the algorithm implementation are shown in this section. Code parts that
were not essential for the understanding of the implementation, for example self-explanatory
object initializations or logging features, or simple code parts that can be replaced by a com-
ment because they are not relevant for the overall functionality, were left out and are pointed
out using “...”. Some comments were added for better understanding.

The communication with RDDLsim, the extraction of actions from a Z3 model, the main
file, storage classes, concurrency constraints and other code that is less problem-specific or
easy to reproduce was left out. It is not required to understand the implementation of the
algorithm and can either mostly be looked up in, for example, Z3’s documentation or can be
implemented intuitively.

A.7.1 Algorithm - Reward Approximation

1 //Returns false if UNSAT
2 private Boolean fulfillGoal(double approximation, Boolean firstTime) {
3 if (opt.Check() == Status.SATISFIABLE) { //opt: Z3’s optimization procedure
4 Model model = opt.getModel();
5 ...
6 BoolExpr goalExpr = context.mkGe(context.mkAdd(allRewards.toArray(new ArithExpr[allRewards.size()])),

context.mkReal(getReward(model, approximation)));
7 //Add the reward approximation constraint to the search algorithm and probability optimizer
8 solver.add(goalExpr);
9 optProb.Add(goalExpr);

10 return true;
11 }
12 else return false;
13 }
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14 ...
15 private String getReward(Model model, double approximation) {
16 ...
17 //Get the (optimal) reward value from the model
18 Expr val = model.eval(context.mkAdd(allRewards.toArray(new ArithExpr[allRewards.size()])), false);
19 //Calculate the minimum value using the approximation value
20 Double approxReward = Double.parseDouble(((RatNum) val).toDecimalString(20)) * approximation;
21 return "" + approxReward;
22 }

A.7.2 Weights, Frequencies of Occurrence, Weighted Sum

1 //Weights g_i, sorted according to the probabilities given in sortedProbabilityKeys
2 private void calculateWeights() {
3 if (sortedProbabilityKeys.size() > 0) {
4 Double maxProb = sortedProbabilityKeys.get(0);
5 sortedWeights.add(1.0);
6

7 for (int i = 1; i < sortedProbabilityKeys.size(); ++i) {
8 sortedWeights.add(Math.log(sortedProbabilityKeys.get(i))/Math.log(maxProb));
9 }

10 }
11 }
12

13 //x_i: Sum of all satisfied action conditions with likelihood p_i
14 private void calculateX_i() {
15 for (int i = 0; i < sortedProbabilityKeys.size(); ++i) {
16 Double p_i = sortedProbabilityKeys.get(i);
17 //Use sumActions to count the frequencies of occurrence (1 if true, 0 if false for each constraint)
18 ArrayList<ArithExpr> sumActions = new ArrayList<>();
19 //Get all translated Bernoulli conditions associated with the probability p_i
20 ArrayList<BoolExpr> actions = contextVars.getBernoulliExpr(p_i);
21 for (BoolExpr action : actions) {
22 sumActions.add((ArithExpr) context.mkITE(action, context.mkInt(1), context.mkInt(0)));
23 }
24 ArithExpr addExpr = context.mkAdd(sumActions.toArray(new ArithExpr[sumActions.size()]));
25

26 IntExpr x = context.mkIntConst("_b_" + i);
27 solver.add(context.mkEq(x, addExpr));
28 optProb.Add(context.mkEq(x, addExpr));
29 x_i.put(p_i, x);
30 }
31 }
32

33 //Uses x_i and g_i
34 private void calculateWeightedSum() {
35 ArrayList<ArithExpr> weightedExpr = new ArrayList<>();
36 for (int i = 0; i < sortedProbabilityKeys.size(); ++i) {
37 weightedExpr.add(context.mkMul(x_i.get(sortedProbabilityKeys.get(i)), context.mkReal("" + sortedWeights.

get(i))));
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38 }
39

40 weightedSum = context.mkAdd(weightedExpr.toArray(new ArithExpr[weightedExpr.size()]));
41 }

A.7.3 Search Constraints

1 //Search constraints for the search algorithm
2 //Here, x_1 is s in the presented algorithm
3 private void addSearchConstraints(int x_1, Solver solverClone) {
4 //Sum less than or equal to x_1
5 BoolExpr e1 = context.mkLe(weightedSum, context.mkReal(x_1));
6 solverClone.add(e1);
7

8 //Sum greater than x_1 − 1
9 if (x_1 > 0) {

10 BoolExpr e2 = context.mkGt(weightedSum, context.mkInt(x_1 − 1));
11 solverClone.add(e2);
12 }
13

14 //Third implicit condition
15 for (int i = 0; i < sortedProbabilityKeys.size(); ++i) {
16 BoolExpr e3 = context.mkLe(context.mkMul(x_i.get(sortedProbabilityKeys.get(i)), context.mkReal("" +

sortedWeights.get(i))), context.mkInt(x_1));
17 solverClone.add(e3);
18 }
19

20 //x_i >= 0
21 for (Double prob : sortedProbabilityKeys) {
22 solverClone.add(context.mkGe(x_i.get(prob), context.mkInt(0)));
23 }
24 }
25

26 //As described in the thesis: Add these constraints to search for a set of possible solutions to speed up the search
27 private void addSearchConstraints(Optimize optimize) {
28 //Sum less than or equal to x_1
29 optimize.MkMinimize(weightedSum);
30

31 //x_i >= 0
32 int maxSize = (new Double(Math.ceil(var_amount * Math.log(sortedProbabilityKeys.get(sortedProbabilityKeys.

size() − 1))/Math.log(sortedProbabilityKeys.get(0))))).intValue();
33 for (int i = 0; i < sortedProbabilityKeys.size(); ++i) {
34 BoolExpr e3 = context.mkLe(context.mkMul(x_i.get(sortedProbabilityKeys.get(i)), context.mkReal("" +

sortedWeights.get(i))), context.mkInt("" + maxSize));
35 optimize.Add(e3);
36 }
37

38 for (Double prob : sortedProbabilityKeys) {
39 optimize.Add(context.mkGe(x_i.get(prob), context.mkInt(0)));
40 optimize.Add(context.mkLe(x_i.get(prob), context.mkInt("" + maxSize)));
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41 }
42 }

A.7.4 Algorithm 1

1 //Still called binSearch because it was once a binary search
2 private int binSearchMinSATAmount() {
3 //Start with s = 0
4 int current_x_1 = 0;
5 Solver solverClone = solver.translate(context);
6

7 addSearchConstraints(current_x_1, solverClone);
8 ...
9 Status q = solverClone.check();

10

11 //Terminate when x_n > horizon * amount−of−state−variables (var_amount) or when SATISFIABLE
12 while (q != Status.SATISFIABLE && current_x_1 <= (new Double(Math.ceil(var_amount * Math.log(

sortedProbabilityKeys.get(sortedProbabilityKeys.size() − 1))/Math.log(sortedProbabilityKeys.get(0))))).
intValue()) {

13 current_x_1++;
14 solverClone = solver.translate(context);
15

16 addSearchConstraints(current_x_1, solverClone);
17 ...
18 q = solverClone.check();
19 }
20

21 ...
22 return current_x_1;
23 }

A.7.5 Algorithm 2

1 //minAmount is s in the presented algorithm
2 private ArrayList<Integer> findBestModel(int minAmount) {
3 ...
4 ArrayList<ArrayList<Integer>> nextAmounts = new ArrayList<>();
5 ...
6 if (nextAmounts != null) {
7 ...
8 while (q != Status.SATISFIABLE && nextAmounts != null) {
9 ...

10 //Get the most probable set of values that has not been tried out yet for x_i with this function (within the
range given by s)

11 nextAmounts = getNextMostProbableAmountList(minAmount, relevantIndices, nextAmounts.get(0));
12

13 if (nextAmounts != null) {
14 System.out.println("Now checking " + calculateProbability(nextAmounts.get(0)) + " − " + nextAmounts.

toString());
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15 //Check if any set of values for x_i (with the same probability) is satisfiable
16 for (ArrayList<Integer> amountList : nextAmounts) {
17 solverClone = solver.translate(context);
18 solverClone.add(allowAmountOfActionsTaken(amountList));
19

20 q = solverClone.check();
21

22 if (q == Status.SATISFIABLE) {
23 ...
24 return amountList;
25 }
26 }
27 }
28 }
29 }
30

31 ...
32 return null;
33 }

A.7.6 Finding a Model Depending on the Chosen Algorithm

1 public Model maximize(Boolean firstTime) {
2 //In case no probabilities are part of the domain
3 //1.0 − probabilities have been set to true and removed before
4 if (sortedProbabilityKeys.size() <= 0) {
5 //Use the reward optimizer
6 ...
7 }
8

9 calculateWeights();
10 calculateX_i();
11 calculateWeightedSum();
12

13 //opt: reward optimizer
14 //optProb: probability optimizer
15 //solver: search algorithm
16 if (algorithm == Main.Algorithm.rewardOptimizer) {
17 ...
18 if (opt.Check() == Status.SATISFIABLE) {
19 Model model = opt.getModel();
20 ...
21 return model;
22 }
23 else {
24 ...
25 return null;
26 }
27 }
28 else {
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29 //First, find out what states are supposed to be goal states using "fulfillGoal"−constraints
30 //States with a reward of rewardApproximation*optimalReward are considered to be goal states
31 ...
32 Boolean satisfiable = fulfillGoal(rewardApproximation, firstTime);
33

34 if (satisfiable) {
35 if (algorithm == Main.Algorithm.probabilityOptimizer) {
36 ...
37 addSearchConstraints(optProb);
38

39 Status s = optProb.Check();
40 if (s == Status.SATISFIABLE) {
41 Model model = optProb.getModel();
42 ...
43 return model;
44 }
45 else {
46 ...
47 return null;
48 }
49 }
50 else {
51 //Use the search algorithm
52 ...
53 int minAmount = binSearchMinSATAmount();
54

55 ArrayList<Integer> modelList = findBestModel(minAmount);
56 if (modelList != null) {
57 solver.add(allowAmountOfActionsTaken(modelList));
58 solver.check();
59 Model model = solver.getModel();
60 ...
61 return model;
62 }
63

64 ...
65 return null;
66 }
67 }
68 else {
69 ...
70 return null;
71 }
72 }
73 }

A.7.7 Bernoulli Statement Translation - Placeholder Variable for Con-
straint Translation
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1 //Save the Bernoulli statement and its context for later use − at this point, return a placeholder variable for the
constraint that the Bernoulli statement is part of. This variable will be part of another constraint that can be
used to control, connected to the probabilistic values, whether the placeholder variable becomes true or false.
This constraint can also be ignored − the reward optimizer, for example, does not use the search constraints
presented before.

2 public BoolExpr registerBernoulliStatement(Bernoulli bExpr, FuncDecl stateVar, ArrayList<Expr> stateParams,
ArrayList<String> stateParamNames, ArrayList<ArrayList<Pair<String, Expr>>> quantifiedParams,
Boolean isPrimed, BoolExpr conditionExpression, String conditionRDDLExpr) {

3 //Bit blast was used before the word was replaced by the less misleading phrase "using interpreted parameters"
4 if (doBitBlast) {
5 //Create the placeholder variable
6 String name = "_Bernoulli_" ... + name_addition;
7 ++name_addition;
8 BoolExpr newBernoulli = context.mkBoolConst(name);
9 //Translate the Bernoulli expression for later use

10 Expr valExpr = ConstraintTranslator.translateExpression(...);
11 //Save the statement to create constraints for the search constraints later
12 BernoulliStatements.add(new BernoulliStatement...));
13

14 return newBernoulli;
15 }
16 else {
17 //Similar behavior
18 ...
19 }
20 }

A.7.8 Bernoulli Statement Translation - Translation of Statements (In-
terpreted Case)

1 public void translateProbabilisticStatements(...) {
2 ...
3 for (BernoulliStatement BernoulliStatement : BernoulliStatements) {
4 ...
5 //Distinction between dynamic and static probability expression
6 if (containsNoDynamicValues(BernoulliStatement.bExpr)) {
7 ...
8 //Get all possible probability values of the Bernoulli statement
9 ArrayList<BigDecimal> probabilityValues = getProbabilityValues(...);

10

11 for (BigDecimal val : probabilityValues) {
12 //As described before: Values cannot be checked for equality, so use >= and <= with small epsilon
13 Double value = val.doubleValue();
14 Double valueLess = value − 0.00000000001;
15 Double valueMore = value + 0.00000000001;
16 //1.0 expressions − placeholder is always true
17 if (value == 1.0) {
18 ... .addBernoulli(BernoulliStatement.newBernoulli, (ArithExpr) BernoulliStatement.valExpr, 1.0);
19 }
20 //0.0 expressions − placeholder is always false
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21 else if (value == 0.0) {
22 ... .addBernoulli(context.mkNot(BernoulliStatement.newBernoulli), (ArithExpr) BernoulliStatement.

valExpr, 1.0);
23 }
24 //Other expressions: Add p with true placeholder and (1 − p) with false placeholder
25 else {
26 //Statements for the weighted sum, used to count statements connected to their probability
27 BoolExpr statementTrue = context.mkAnd(BernoulliStatement.newBernoulli, context.mkGe((ArithExpr

) BernoulliStatement.valExpr, context.mkReal("" + valueLess)), context.mkLe((ArithExpr)
BernoulliStatement.valExpr, context.mkReal("" + valueMore)));

28 BoolExpr statementFalse = context.mkAnd(context.mkNot(BernoulliStatement.newBernoulli), ...);
29 //Statements should only be counted if they are used − if they are only used under a certain condition,

that condition expression needs to be taken into account
30 if (BernoulliStatement.conditionExpression != null) {
31 statementTrue = context.mkAnd(BernoulliStatement.conditionExpression, BernoulliStatement.

newBernoulli, ...);
32 statementFalse = ...;
33 }
34 //Add the Bernoulli statements to an array depending on their probability (to later count x_i)
35 ... .addBernoulli(statementTrue, (ArithExpr) BernoulliStatement.valExpr, value);
36 ... .addBernoulli(statementFalse, (ArithExpr) BernoulliStatement.valExpr, (1.0 − value));
37 }
38 }
39 }
40 else {
41 ArrayList<BigDecimal> probabilityValues = getProbabilityValues(...);
42

43 for (BigDecimal _probValue : probabilityValues) {
44 //Similar behavior, only add valid probabilities (values in [0, 1] with epsilon−margin to catch at least

some rounding errors)
45 ...
46 }
47 }
48 ...
49 }
50 }

A.7.9 Bernoulli Statement Translation - Translation of Statements (Un-
interpreted Case)

1 //The uninterpreted version does not regard dynamic probabilities
2 public BoolExpr createBernoulliConstraint(...) {
3 ...
4 //If any param is an uninterpreted variable, all possible interpretations are considered
5 //Furthermore, if e.g. state(_x_1, p) and state(_x_2, _x_3) are defined, then for _x_1=_x_2 and _x_3 = p the

Bernoulli value must only count once, not twice, as both translations describe the same function for that
parameter interpretation

6 //−> If the same function is translated with different parameters, consider this special case
7 if (...) {
8 ...
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9 //Go through former translations of the same function
10 for(Expr func : ...) {
11 //Go through all function parameters and add a constraint that checks if they are equal (which will then be

checked later by the solver, with concrete interpretations)
12 ArrayList<BoolExpr> sameParams = ...
13 //If the function has parameters, store the parameter−equal expression in parameters and the constraint to

use the same function value as the one that has been translated before in useSameFunctionValue
14 if (sameParams.size() > 0) {
15 params.add(context.mkAnd(sameParams.toArray(new BoolExpr[sameParams.size()])));
16 useSameFunctionValue.add(context.mkAnd(context.mkAnd(sameParams.toArray(new BoolExpr[

sameParams.size()])), (BoolExpr) func));
17 }
18 }
19 //Two final constraints: allParams [true if another former translated function with the same parameter

interpretation exists] and otherFuncValue [the value of that function, if it exists]
20 ...
21 allParams = context.mkOr(params.toArray(new BoolExpr[params.size()]));
22 ...
23 otherFuncValue = context.mkOr(useSameFunctionValue.toArray(new BoolExpr[useSameFunctionValue.

size()]));
24 }
25 //Add the current function to the set of former translated functions
26 ...
27

28 //Get all parameter interpretations for the uninterpreted parameters of the function
29 ...
30 //Store the set of possible parameters for the function
31 ...
32 //Go through all possible parameters, store the probability values which are calculated with the same function as

in the interpreted case
33 for (ArrayList<Expr> stateParam : stateParams) {
34 ...
35 }
36 //Go through all probability values, similar to the interpreted case
37 for (Double probability : probabilityValues) {
38 //Create another placeholder variable for each probability value
39 BoolExpr currentBernoulli = context.mkBoolConst("_Bernoulli_" + name_addition);
40 ++name_addition;
41 //Store the placeholder variable in the context of its probability values for later use in this function
42 BernoulliValues.add(context.mkAnd(currentBernoulli, context.mkGe(...), context.mkLe(...)));
43 //Similar to the procedure in the interpreted case
44 if (probability == 1.0) {
45 ...
46 }
47 else if (probability == 0.0) {
48 ...
49 }
50 else {
51 //Now, do not only consider the condition expression as in the interpreted case, but also whether another

former translated function, after interpreting the parameters, has the same set of parameters with
allParams. Only if the placeholder variable refers to a function interpretation that has not referred to
before, count the usage of the probabilistic transition for x_i (if used in the model) for this placeholder
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variable.
52 if (BernoulliStatement.conditionExpr != null) {
53 if (allParams != null) {
54 ... .addBernoulli(context.mkAnd(currentBernoulli, context.mkNot(allParams), BernoulliStatement.

conditionExpr, context.mkGe(...), context.mkLe(...)), ..., probability);
55 ... .addBernoulli(... context.mkNot(currentBernoulli), ... , (1.0 − probability));
56 }
57 else {
58 ... .addBernoulli(context.mkAnd(currentBernoulli, BernoulliStatement.conditionExpr ...), ..., probability

);
59 ...
60 }
61 }
62 else {
63 ...
64 }
65 }
66 }
67 //Finally, add a constraint that determines the value of the overall placeholder variable to either be equal to the

probability placeholder variable of its probability (depending on the interpretation) that was stored before
in BernoulliValues, or to the value of a former translated same function if it got the same parameter
interpretation.

68 ...
69 return context.mkEq(BernoulliStatement.Bernoulli, context.mkOr(context.mkAnd(context.mkOr(

BernoulliValues.toArray(new BoolExpr[BernoulliValues.size()])), context.mkNot(allParams)),
otherFuncValue));

70 ...
71 }

A.7.10 Discrete Statement Translation

1 //Only simple discrete statements for the interpreted case are supported, which were used in the ‘‘original’’
encodings of the files from the IPPC 2018 (other versions without enums and discrete statements were
available as well). The code for Bernoulli expressions could be applied to discrete statements in a similar
fashion for a broader support.

2 public Expr registerDiscreteStatement(Discrete dExpr, ... BoolExpr conditionExpression) {
3 ...
4 //Get the enum definition for this discrete statement and create a placeholder variable
5 EnumSort enumSort = varTranslator.getContextVars().getEnum(enumName);
6 Expr discreteVar = context.mkConst("_discrete_" + name_addition, enumSort);
7 ++name_addition;
8

9 //Register all probability−value pairs by iterating through all possible values of the enum
10 for (int i = 0; i + 1 < dExpr._exprProbs.size(); i += 2) {
11 //Get the current enum value
12 ENUM_VAL val = (ENUM_VAL) dExpr._exprProbs.get(i);
13 //Get the probability expression for this enum
14 EXPR prob = dExpr._exprProbs.get(i + 1);
15 //Get the enum value as Z3 expression
16 Expr value = ...;
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17 ...
18 //Get the probability of the probabilistic statement (only supports one exact value in this case)
19 Double probability = getProbabilityValues(...).get(0).doubleValue();
20 //Similar behavior to Bernoulli, but assign a value to the placeholder variable instead of making it true or false
21 if (probability == 1.0) {
22 ... .addBernoulli(context.mkEq(discreteVar, value), ..., 1.0);
23 }
24 else if (probability == 0.0) {
25 ... .addBernoulli(context.mkNot(context.mkEq(discreteVar, value)), ..., 1.0);
26 }
27 else {
28 if (conditionExpression != null) {
29 ...
30 }
31 }
32

33 return discreteVar;
34 ...
35 }

A.7.11 Discrete and Bernoulli Statement Translation - getProbability-
Values and getVarValues

The function getProbabilityValues is used to get all possible probability values of a prob-
abilistic statement. It traverses the statement recursively. In each function call, the set of
possible values for the current expression is determined and returned. Expressions including
calculations are handled using Java’s BigDecimal class. If a Boolean expression is found in
a step of the recursion, it is interpreted as being either 0 or 1. Function values are determined
differently, using getVarValues. If they are not Boolean and not connected to enums, whose
values can be determined easily, but non-fluent, then the default or initial values from the
RDDL file can be used. Else, the value of the function might change over time, so, using
Z3’s solver class, all possible interpretations of the function are tried out and all satisfying
interpretations are returned. This only works for integer-valued functions with a finite range.

Due to the length of getProbabilityValues, the function is not displayed in this thesis. Its
actual implementation is less relevant than its idea.

A.7.12 Constraint Translation

The different constraint statements are translated iteratively for each step, for each set of pa-
rameters of the functions. The translation is similar for state constraints, action preconditions,
cpfs and the reward function. It also relies on some storage classes, which are not described
in the appendix. The class all translations are based on, translateExpression, which is used to
translate a single RDDL constraint, is shown partially here.

1 public static Expr translateExpression(...) {
2 ...
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3 //In each function call, one of the following expression types needs to be translated (recursively)
4 if (constraint instanceof Bernoulli) {
5 translation = BernoulliTranslator.registerBernoulliStatement(...);
6 }
7 else if (constraint instanceof PVAR_EXPR) {
8 PVAR_EXPR pExpr = (PVAR_EXPR)constraint;
9

10 String transVarName = pExpr._pName.toString();
11 //Get parameter values; some parameters might be quantified (or were part of a product or sum expression)
12 //Then, get the function expression in Z3, depending on whether its quantified or not, using a storage class
13 ...
14 }
15 else if (constraint instanceof QUANT_EXPR) {
16 //Quantifier expression
17 QUANT_EXPR qExpr = (QUANT_EXPR)constraint;
18

19 //Determine variables that are quantified
20 ArrayList<String> paramNames = ...;
21 ArrayList<String> paramTypes = ...;
22 ...
23

24 //Get all possible combinations of the quantified parameters
25 ArrayList<ArrayList<Pair<String, Expr>>> result = varTranslator.createQuantifiedParams(paramNames,

paramTypes);
26 ...
27 //Get all possible expressions for all possible parameters
28 for (ArrayList<Pair<String, Expr>> replList : result) {
29 ...
30 expressions.add(translateExpression(..., qExpr._expr, ...));
31 }
32

33 if (qExpr._sQuantType.equals("forall")) {
34 translation = context.mkAnd(expressions ...);
35 }
36 else if (qExpr._sQuantType.equals("exists")) {
37 translation = context.mkOr(expressions ...);
38 }
39 ...
40 }
41 else if (constraint instanceof CONN_EXPR) {
42 //And, or, implication etc.
43 CONN_EXPR cExpr = (CONN_EXPR)constraint;
44

45 if (cExpr._alSubNodes != null) {
46 //Get a list of all translated expressions that are part of the CONN_EXPR, by calling translateExpression on

each part again
47 ArrayList<Expr> expressions = ...;
48 ...
49

50 if(cExpr._sConn.equals("^")) {
51 translation = context.mkAnd(expressions ...);
52 }
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53 else if(cExpr._sConn.equals("|")){
54 translation = context.mkOr(expressions ...);
55 }
56 else if(cExpr._sConn.equals("=>")){
57 translation = context.mkImplies(... expressions.get(0), ... expressions.get(1));
58 }
59 else if(cExpr._sConn.equals("<=>")){
60 translation = context.mkAnd(context.mkImplies(...), context.mkImplies(...));
61 }
62 }
63 }
64 else if (constraint instanceof NEG_EXPR) {
65 NEG_EXPR nExpr = (NEG_EXPR)constraint;
66

67 Expr expression = translateExpression(...);
68 translation = context.mkNot(... expression);
69 }
70 else if (constraint instanceof COMP_EXPR) {
71 //Comparator like >, < etc.
72 COMP_EXPR cExpr = (COMP_EXPR)constraint;
73

74 Expr expression1 = translateExpression(... , cExpr._e1, ...);
75 Expr expression2 = translateExpression(... , cExpr._e2, ...);
76 ...
77

78 if (cExpr._comp.equals("~=")) {
79 translation = context.mkNot(context.mkEq(expression1, expression2));
80 }
81 else if (cExpr._comp.equals("<=")) {
82 translation = context.mkLe((ArithExpr) expression1, (ArithExpr) expression2);
83 }
84 else if (cExpr._comp.equals("<")) {
85 translation = context.mkLt((ArithExpr) expression1, (ArithExpr) expression2);
86 }
87 ...
88 } ...
89 else if (constraint instanceof LVAR) {
90 //Used to get parameter representations in Z3 for PVAR_EXPR
91 ...
92 }
93 else if (constraint instanceof LTYPED_VAR) {
94 //Used to get parameter representations in Z3 for PVAR_EXPR
95 ...
96 }
97 else if (constraint instanceof TVAR_EXPR) {
98 //Not implemented
99 }

100 else if (constraint instanceof ENUM_VAL) {
101 translation = ... .getEnumExpr(((ENUM_VAL) constraint)._sConstValue);
102 }
103 else if (constraint instanceof OBJECT_VAL) {
104 //Not tested
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105 translation = ... .getEnumExpr(((OBJECT_VAL) constraint)._sConstValue);
106 }
107 //DiracDelta and KronDelta are ‘‘ignored’’, as described in the solution chapter
108 else if (constraint instanceof DiracDelta) {
109 DiracDelta dDelta = (DiracDelta) constraint;
110 translation = translateExpression(..., dDelta._exprRealValue, ...);
111 }
112 else if (constraint instanceof KronDelta) { ...
113 KronDelta kDelta = (KronDelta) constraint;
114 translation = translateExpression(... , kDelta._exprIntValue, ...);
115 }
116 //Unsupported probability distributions
117 else if (constraint instanceof Uniform) { ...
118 else if (constraint instanceof Normal) { ...
119 else if (constraint instanceof Dirichlet) { ...
120 else if (constraint instanceof Multinomial) { ...
121 else if (constraint instanceof Discrete) {
122 translation = BernoulliTranslator.registerDiscreteStatement((Discrete) constraint, ...);
123 }
124 //Unsupported probability distributions
125 else if (constraint instanceof Exponential) { ...
126 else if (constraint instanceof Weibull) { ...
127 else if (constraint instanceof Gamma) { ...
128 else if (constraint instanceof Poisson) { ...
129 else if (constraint instanceof BOOL_CONST_EXPR) {
130 BOOL_CONST_EXPR bExpr = (BOOL_CONST_EXPR)constraint;
131 translation = context.mkBool(bExpr._bValue);
132 }
133 else if (constraint instanceof INT_CONST_EXPR) { ...
134 INT_CONST_EXPR iExpr = (INT_CONST_EXPR)constraint;
135 translation = context.mkInt(iExpr._nValue.toString());
136 }
137 else if (constraint instanceof REAL_CONST_EXPR) { ...
138 REAL_CONST_EXPR rExpr = (REAL_CONST_EXPR)constraint;
139 translation = context.mkReal(rExpr._dValue.toString());
140 }
141 //Unsupported expression
142 else if (constraint instanceof STRUCT_EXPR) { ...
143 else if (constraint instanceof OPER_EXPR) {
144 //Operator expression: *, +, /, − ...
145 OPER_EXPR oExpr = (OPER_EXPR) constraint;
146

147 Expr first = translateExpression(... , oExpr._e1, ...);
148 Expr second = translateExpression(... , oExpr._e2, ...);
149 ...
150

151 if (oExpr._op.toString().equals("+")) {
152 translation = context.mkAdd(expressions);
153 }
154 else if (oExpr._op.toString().equals("−")) {
155 translation = context.mkSub(expressions);
156 }
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157 else if (oExpr._op.toString().equals("*")) {
158 translation = context.mkMul(expressions);
159 }
160 else if (oExpr._op.toString().equals("/")) {
161 translation = context.mkDiv((ArithExpr) first, (ArithExpr) second);
162 }
163 //Unsupported expressions, but support could be implemented if required
164 else if (oExpr._op.toString().equals("min")) { ...
165 else if (oExpr._op.toString().equals("max")) { ...
166 }
167 else if (constraint instanceof AGG_EXPR) {
168 //Aggregated expressions: Sum, product....
169 AGG_EXPR aExpr = (AGG_EXPR) constraint;
170

171 //Extract variables that need to be replaced for each possible value − code similar to QUANT_EXPR
172 ...
173 ArrayList<ArrayList<Pair<String, Expr>>> result = varTranslator.createQuantifiedParams(paramNames,

paramTypes);
174 ...
175 for (ArrayList<Pair<String, Expr>> replList : result) {
176 ...
177 expressions.add(...);
178 }
179

180 if(aExpr._op == "sum") {
181 ...
182 translation = context.mkAdd(expressions.toArray(new ArithExpr[expressions.size()]));
183 }
184 else if(aExpr._op == "prod") {
185 ...
186 translation = context.mkMul(expressions.toArray(new ArithExpr[expressions.size()]));
187 }
188 //Unsupported expressions, but support could be implemented if required
189 else if(aExpr._op == "min") { ...
190 else if(aExpr._op == "max") { ...
191 }
192 //Unsupported expression
193 else if (constraint instanceof FUN_EXPR) { ...
194 else if (constraint instanceof IF_EXPR) {
195 IF_EXPR iExpr = (IF_EXPR) constraint;
196 //Condition
197 BoolExpr testExpr = (BoolExpr) translateExpression(... , iExpr._test, ...);
198 //In case it is a nested if expression: Refer to other conditions
199 ...
200 if (conditionExpression != null) {
201 conditionExprTrue = context.mkAnd(conditionExpression, testExpr);
202 conditionExprFalse = context.mkAnd(conditionExpression, context.mkNot(testExpr));
203 }
204 else {
205 conditionExprTrue = testExpr;
206 conditionExprFalse = context.mkNot(testExpr);
207 }
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208 //Result if condition is true / false
209 Expr trueExpr = translateExpression(... , iExpr._trueBranch, ... , conditionExprTrue, ...);
210 Expr falseExpr = translateExpression(... , iExpr._falseBranch, ..., conditionExprFalse, ...);
211

212 translation = context.mkITE(testExpr, trueExpr, falseExpr);
213 }
214 //Unsupported expressions
215 else if (constraint instanceof SWITCH_EXPR) { ...
216 else { ...
217

218 return translation;
219 }

A.7.13 Function Definition

1 public VarTranslator(Context context_, RDDL dom_parse, RDDL inst_parse, Boolean bitBlast, Boolean
quantifierBitBlast) {

2 instance_parse = inst_parse;
3 domain_parse = dom_parse;
4 ... mapActionVars ... mapNonFluentVars ... mapOtherVars ...
5 ...
6 horizon = instance_parse._tmInstanceNodes.firstEntry().getValue()._nHorizon;
7 ...
8 //Translate object enums to z3 sorts
9 for (Map.Entry<TYPE_NAME, OBJECTS_DEF> pVariable : instance_parse._tmNonFluentNodes.firstEntry().

getValue()._hmObjects.entrySet()) {
10 ...
11 ArrayList<String> objectVal = new ArrayList<>();
12 for(LCONST val : pVariable.getValue()._alObjects) {
13 objectVal.add(val._sConstValue.toString());
14 }
15 mapSort.put(... ._sObjectClass.toString(), context_.mkEnumSort(... ._sObjectClass.toString(), objectVal.

toArray(...)));
16 ...
17 }
18 ...
19 horizon = instance_parse._tmInstanceNodes.firstEntry().getValue()._nHorizon;
20 //Save all functions given by the RDDL domain description (pVariables) (this is not about the constraints)
21 for (PVARIABLE_DEF pvar : domain_parse._tmDomainNodes.firstEntry().getValue()._hmPVariables.values())

{
22 String name = pvar._pvarName.toString();
23

24 if (pvar instanceof PVARIABLE_STATE_DEF) {
25 if (((PVARIABLE_STATE_DEF)pvar)._bNonFluent) {
26 mapNonFluentVars.put(name, pvar);
27 }
28 else {
29 mapOtherVars.put(name, pvar);
30 }
31 }
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32 else if (pvar instanceof PVARIABLE_ACTION_DEF) {
33 mapActionVars.put(name, pvar);
34 }
35 else {
36 mapOtherVars.put(name, pvar);
37 }
38 }
39 //Add the reward
40 mapOtherVars.put("reward", new PVARIABLE_INTERM_DEF("reward", false, "real", new ArrayList<>(), 1));
41 ...
42

43 //Create the initial set of functions (either, if uninterpreted parameters were chosen, for the last step without
possible later combinations that arise from the constraint translation through quantifiers/sums/products, or
all possible combinations)

44 for (PVARIABLE_DEF pvar : domain_parse._tmDomainNodes.firstEntry().getValue()._hmPVariables.values())
{

45 String name = pvar._pvarName.toString();
46 createVar(name);
47 }
48 createVar("reward", false);
49 }
50 ...
51

52 private void createVar(...) {
53 PVARIABLE_DEF pvar = ... .getVar(originalName);
54 ...
55 //Get parameters
56 ArrayList<EnumSort> params = new ArrayList<>();
57 if (pvar._alParamTypes != null) {
58 params = ... .getEnums(originalName);
59 }
60 //Create new consts if parameter interpretation is not desired, else go through all possible combinations
61 ArrayList<ArrayList<Expr>> concreteParameters = new ArrayList<>();
62 if (doBitBlast) {
63 concreteParameters = generateCombinationArray(params);
64 }
65 else {
66 ...
67 for (EnumSort param : params) {
68 Expr uninterpretedConstant = context.mkConst("_x_" + paramCount, param);
69 concreteParameters.get(0).add(uninterpretedConstant);
70 ...
71 }
72 }
73

74 for (String name : names) {
75 //Define the function according to its return type
76 FuncDecl decl = null;
77 if (pvar._typeRange._STypeName == "bool") {
78 decl = context.mkFuncDecl(name, params.toArray(new EnumSort[params.size()]), context.mkBoolSort());
79 }
80 else if (pvar._typeRange._STypeName == "int") {
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81 ...
82 }
83 else if (pvar._typeRange._STypeName == "real") {
84 ...
85 }
86 else {
87 for (String enumName : contextVars.getAllEnumNames()) {
88 if (pvar._typeRange._STypeName.equals(enumName)) {
89 decl = context.mkFuncDecl(name, params.toArray(new EnumSort[params.size()]), contextVars.

getEnum(enumName));
90 break;
91 }
92 }
93 }
94 ...
95 ... .addVar(originalName, name, decl, concreteParameters, addParams);
96 }
97 }

A.7.14 Translation of Initial and Default Values

1 public HashMap<Expr, ArrayList<Expr>> initialiseVars(Context context, RDDL domain_parse, RDDL
instance_parse, VarTranslator varTranslator) {

2 ...
3 //Initialize all non−fluents with values given by the RDDL instance description − other non−fluents need to be

initialized using their default values given in the domain description
4 HashMap<String, ArrayList<Pair<Expr, Expr>>> nonDefaultValues = new HashMap<>(); //Stores all variables

(name = key) with the condition when to set a non−default value (pair: precond, precond−>effect)
5 ...
6 for (PVAR_INST_DEF initValue : instance_parse._tmNonFluentNodes.firstEntry().getValue()._alNonFluents) {
7 ...
8 //Get the param−z3−translation (params), use the string description of the param values given by the RDDL

file to store them as Expr in paramValues and then define the constraint for the initial value given by the
RDDL file

9 ArrayList<String> functions = ... .getAllVarsWithName(initValue._sPredName.toString(), 0);
10 for (String functionName : functions) {
11 ArrayList<ArrayList<Expr>> params = ... .getParameters(functionName);
12 ArrayList<EnumSort> enums = ... .getEnums(initValue._sPredName.toString());
13 for (ArrayList<Expr> parameters : params) { ...
14 ...
15 paramConditions.add(context.mkEq(param, paramValue));
16 }
17

18 //Translate the initial value to z3 − at this point, only booleans or integers/reals or enums are expected
19 BoolExpr exprEquals = context.mkEq(translatedVars.getFuncDecl(functionName).apply(parameters.

toArray(new Expr[parameters.size()])), getValueExpr(context, translatedVars, initValue._oValue));
20

21 //Store given initial value for later access
22 ...
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23 //Store the set of parameters for which the initial value is defined to later decide if a default value must be
assigned or not (made for the uninterpreted approach, but also used in the interpreted case)

24 if (paramConditions.size() > 0) {
25 precondition = context.mkAnd(paramConditions.toArray(new BoolExpr[paramConditions.size()]));
26 implication = context.mkImplies(precondition, exprEquals);
27 }
28 else {
29 implication = exprEquals;
30 }
31 ...
32 nonDefaultValues.get(functionName + "_" + parameters.toString()).add(new Pair<Expr, Expr>(

precondition, implication));
33 }
34 }
35 }
36 ...
37 //Use default values or the given non−default values for all defined non−fluents
38 for (Map.Entry<String, ArrayList<String>> entry : ... .getAllDefaultNonFluentVars().entrySet()) {
39 //Translate the default value to z3
40 Expr exprEqualsDefault = getValueExpr(context, translatedVars, translatedVars.getDefaultValue(entry.getKey

()));
41 ...
42 for (String functionName : entry.getValue()) {
43 ...
44 for (ArrayList<Expr> parameters : params) {
45 Expr funcExpr = translatedVars.getFuncDecl(functionName).apply(parameters.toArray(new Expr[

parameters.size()]));
46

47 //Store the default value
48 ...
49 //Only use the default value if no other initial values are given
50 if (nonDefaultValues.get(functionName + "_" + parameters.toString()) == null) { ...
51 ...
52 initialConstraints.get(funcExpr).add(context.mkEq(funcExpr, exprEqualsDefault));
53 }
54 //Else: Use the default value if no other value has been specified for the function with the actual parameter

interpretation
55 else {
56 ...
57 for (Pair<Expr, Expr> pair : nonDefaultValues.get(functionName + "_" + parameters.toString())) {
58 if (pair._o1 != null) {
59 nonDefaultConditions.add((BoolExpr) pair._o1);
60 }
61 if (initialConstraints.get(funcExpr) == null) {
62 initialConstraints.put(funcExpr, new ArrayList<>());
63 }
64 initialConstraints.get(funcExpr).add(pair._o2);
65 }
66 if (nonDefaultConditions.size() > 0) {
67 initialConstraints.get(funcExpr).add(context.mkImplies(context.mkNot(context.mkOr(

nonDefaultConditions.toArray(new BoolExpr[nonDefaultConditions.size()]))), context.mkEq(
funcExpr, exprEqualsDefault)));
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68 }
69 }
70 }
71 }
72 }
73

74 //Do the same for state−fluents
75 ...
76

77 return initialConstraints;
78 }

A.7.15 Setting Program Parameters

1 public enum Algorithm {searchConstraints, rewardOptimizer, probabilityOptimizer};
2

3 //All parameters can be set in the main file
4 public static void main(String[] args) {
5 ...
6 double rewardApproximation = ...
7 //false if uninterpreted parameters should be used
8 Boolean doBitBlast = ...
9 Boolean planEveryStep = ...

10 //Go through all possible combinations either by iterating through them "manually" (exact solution) or by using a
linear equation system to iterate from the optimal to the worst solution − this option has not been

mentioned in the thesis because it did not work as expected, so keep this false
11 Boolean final_search_with_linear_equation_system = false;
12 //Set the algorithm using an enum called Algorithm
13 Algorithm algorithm = ...
14

15 //Only set this to false for domains with only existential (no sum, for all etc) quantifiers that are NOT negated, in
combination with doBitBlast = false

16 Boolean doQuantifierBitBlast = true;
17

18 //Possible RDDL domains − set the file by commenting out the desired file variable and adding the instance
number

19 String inst_number = "__1";
20 //String file = "prop−dbn_inst_mdp"; //works
21 String file = "navigation_inst_mdp"; //works
22 //String file = "triangle_tireworld_inst_mdp"; //works
23 ...
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