
Masterarbeit im Studiengang Informatik

Using Single CAD Cells as
Explanations in MCSAT-style

SMT Solving

von
Heinrich-Malte Neuß

Matrikelnummer 307877
malte.neuss@rwth-aachen.de

vorgelegt der Fakultät für
Mathematik, Informatik und Naturwissenschaften der

Rheinisch-Westfälischen Technischen Hochschule
Aachen

im September 2018

Erst- und Zweitprüfer:
Prof. Dr. Erika Ábrahám
Prof. Dr. Viktor Levandovskyy

Betreuer:
M.Sc. Gereon Kremer

angefertigt am
Lehr- und Forschungsgebiet Informatik 2

Theory of Hybrid Systems
Universitätsprofessorin Erika Ábrahám

Contents

1 Introduction 2

2 Cylindric Algebraic Decomposition 6
2.1 Intuitive Geometric CAD . 7
2.2 Formal Analytic CAD . 16
2.3 Projection Phase for a full CAD 19
2.4 Lifting Phase for a full CAD . 30
2.5 Single Cylindric Algebraic Cells 49

3 Model Constructing Satisfiability Calculus 56
3.1 SMT formulas over Non-linear Real Arithmetic 56
3.2 SMT solving techniques . 64
3.3 MCSAT . 66
3.4 Single Cylindric-Algebraic-Cells in Explanations 71

4 Benchmarks 76

5 Related Work 81
5.1 CAD Foundations . 81
5.2 Satisfiability and Satisfiability Modulo Theories 83

6 Conclusion 84

1

1 Introduction

Satisfiability Modulo Theories (SMT) comprises a family of low level problem
modelling languages that vary in degrees of expressiveness and in theoretical
solving efficiency. SMT solving is used to formally describe and solve problems in
a variety of domains and can be summarized as either finding suitable values for
variables to satisfy a combination of constraints—formally called a “formula”—
or returning a proof that the given combination of constraints is unsatisfiable.
This is the “Satisfiability”-part in SMT, while the “Modulo Theories”-part de-
fines the shape and expressiveness of the constraints. In this thesis we focus
on solving formulas from the theory of “Non-Linear Real Arithmetic” (NRA).
Examples of such formulas are

x2 − 1 < y ∧ y ≥ 4, (1)

and
x = 3 =⇒ (x2y − y2 + 2 < xy ∨ ¬(y2 − 3 ≥ 0)). (2)

In NRA the constraints have the shape of equalities and inequalities between
polynomials—the “Non-Linear”-part in NRA—and the variables accept real
numbers R—the “Real”-part in NRA. These polynomial constraints are com-
bined with the usual logical operators ¬ (logical NOT), ∧ (logical AND), ∨
(logical OR) and =⇒ (logical IMPLIES). Solving such formulas is of great
interest because they arise in important domains such as automated program
analysis and verification [Con+05]. Having a NRA-formula, “solving” consists
of either finding a satisfying assignment, which is a mapping for each of the
formula’s variables to a real number that makes the formula “true”, or proving
that there exists no satisfying assignment. For example, a satisfying assignment
for Eq. 1 is {x → 0, y → 4}, because it satisfies each of its two constraints,
while a formula like

x < 1 ∧ x ≥ 2,

is unsatisfiable, because the second constraint implies x ≥ 1, which is the exact
opposite of the first constraint.

To search for a satisfying assignment, not knowing whether there exists one,
we use a guided ”Guess-And-Check” strategy called MCSAT, which roughly
works as follows: We incrementally guess and assign a value to a yet-unassigned
variable, and check whether this assignment comes into conflict with previous
variable assignments in some constraint. If this indeed creates a conflict, we
take back one or more variable assignments and guess other values instead.
Once we have exhausted all possible assignments, we have proven that there is
no satisfying assignment and the formula in question is unsatisfiable.

The main problem in guessing real values is the infinite number of them,
which can get us stuck in guessing and taking back different but useless values
indefinitely. For example, let’s assume that we guessed {x→ 0} for the formula
in Eq. 1 and checked that there was no conflict. Afterwards we could guess and
assign {y → 0}. However, the combined assignment

{x→ 0, y → 0}

would satisfy the first constraint but lead us to a conflict in the second. This
second contraint would force us to take back our decision for y and guess again.

2

Unfortunately, we could continue to guess useless values for y such as 0.1, 0.11,
0.111 and so on. These values behave identically in not satisfying the second
constraint and could keep us stuck. In this formula suitable values for y are
obvious, but in a more complicated formula they are not.

3 2 1 0 1 2 3
x

1

0

1

2

3

4

5

y

not ok

y = 4ok

y = x2 1

Figure 1.1: Graph of points (x, y) that satisfy the polynomial equalities x2−1 =
y and y = 4. We see the geometrically-connected region—not including the
solid lines—around point (0, 0). This point and all points in the region behave
similarly in not satisfying the formula in Eq. 1.

The main focus of this thesis is a technique to reduce the number of guesses to
a finite amount by computing similar-behaving, geometrically-connected regions
that exclude a great number of useless assignments at once. As depicted in
Fig. 1.1, every assignment of variables x, y for the formula in Eq. 1 corresponds
to a point on the x-y-plane, formally the two-dimensional real space R2. Given
an assignment-point, we want to compute a connected, “sign-invariant” region—
a concept, that is introduced in Sec. 2.1—which contains that point and as many
other points as possible that behave similarly: the points all simultaneously
satisfy a formula or they all simultaneously don’t.

For example, if we compute the region around point (0, 0) as in Fig. 1.1 and
check that this point does not satisfy the formula in Eq. 1, we can ignore all
other points in that region as well. So, sign-invariant regions guide us away from
many useless assignments. As it turns out, for every formula there exists a de-
composition of its variable-assignment space—one of which is called CAD—into
at most finitely many sign-invariant regions and such a decomposition enables
us to make at most finitely many guesses.

A performant SMT solving framework, that facilitates the interplay between
guessing and checking real values for variables, is called ”Model Constructing
Satisfiability Calculus” (MCSAT); a “model” is the mathematical-logic word
for a satisfying assignment we intend to find. It has been established by de

3

Moura and Jovanović [MJ13] and its efficiency greatly depends on the quality
of our sign-invariant regions: To reduce the number of guesses and get the
best possible performance, these regions should be as large and as efficient to
compute as possible.

One of the best algorithms to compute invariant regions in multidimensional
real space is called “Cylindrical Algebraic Decomposition” (CAD) [ACM84]. It
decomposes the whole space into so-called “cylindric algebraic cells”, which are
approximations of the actual sign-invariant regions: A cell may be smaller than
the real sign-invariant region. Furtheremore, a cell looks like a cylinder, in a
way that we present in Sec. 2.1; this is the “Cylindric”-part in CAD. Finally,
the cell’s boundaries are represented by roots of polynomials, which is the semi-
“Algebraic”-part in CAD.

CAD is one of the few effective methods to compute sign-invariant regions.
However, computing a full decomposition of the whole multidimensional real
space is computationally expensive and is often unacceptably slow even though
we always end up with finitely many cells. One reason is that the finite number
of computed cells can be an unacceptably large amount. Also, CAD scales
computationally bad in the number of processed polynomials and scales even
worse in the number of variables that appear in those polynomials—doubly-
exponential to be precise [BD07]. Fortunately, we can ease many of these pain
points with MCSAT in the context of SMT

First, we don’t need a full decomposition at once. Instead we construct single
CAD-cells iteratively on demand. Once we find the first satisfying assignment-
point in an invariant region, we ignore the invariant regions in the remaining,
unexplored real space, which saves us computation time.

Second, since we have disjunctions and negations (∨- and ¬-combinations)
in a formula, not all constraints will be ”active” at all times. In Eq. 2 for
example, once we assign a value other than 3 to x, the left-hand side of the
implication =⇒ is false and thus none of the constraints of the right-hand
side will matter. Therefore, in the context of SMT we can use CAD with a
subset of polynomials—those from the “active” constraints— and this subset
may mention only a subset of all variables—not every polynomial mentions every
variable. This also saves us computation time.

In the context of SMT a logical formula that is a representation of a con-
flicting assignment is called a “conflict-explanation”, or simply “explanation”;
it “explains” a previously unkown, implicit conflict by making it explicit. In
MCSAT this formula includes a representation of a sign-invariant region around
this conflicting assignment, which can be represented as a point in the real
space. In our implementation we use a CAD-cell as an approximation of such
a region—the cell “explains” and generalizes the conflicting point as being part
of more general conflicting region.

The MCSAT framework by Jovanović and de Moura has already been suc-
cessfully implemented and combined with CAD in the context of non-linear
formulas [JM13]. They were the first to create a more efficient CAD-variant to
construct single cells instead of a full decomposition and to use it in SMT expla-
nations. We want to improve their approach by using a novel, even more efficent,
single-cell constructing CAD-variant, which theoretically produces larger cells
in less time.

4

The contributions of this thesis can be summarized as follows:

• We summarize the background information that is necessary to understand
the popular CAD and MCSAT publications (see Sec. 2 and Sec. 3). We
target the knowledge level of a typical computer science student.

• We implement a novel single-CAD-cell constructing algorithm called “One-
Cell” by Brown and Košta [BK15] in C++ (see Sect. 2.5). This CAD-
variant is in theory more efficient than Jovanović and de Moura’s CAD-
variant.

• We embed our “OneCell” implementation into the SMT-RAT1 framework
as an “explanation” backend for solving formulas with NRA constraints
(see Sect. 3.4). SMT-RAT is a competitive SMT solving framework that
belongs to the RWTH Aachen University and includes an MCSAT imple-
mentation based on [MJ13].

• We evaluate the performance of the embedding of our “OneCell” im-
plementation into SMT-RAT against several other SMT solvers, espe-
cially against an existing single-cell CAD algorithm already embedded into
SMT-RAT (see Sect. 4). For the evaluation we use the popular QF NRA
benchmark set that belongs to the SMT-LIB initiative2.

1https://smtrat.github.io/
2http://smtlib.org/

5

https://smtrat.github.io/
http://smtlib.org/

2 Cylindric Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) is the focus of this thesis and the
main tool to deal with the polynomials inside the constraints of a formula from
the theory of Non-linear Real Arithmetic such as

x2 < −y2 + 2︸ ︷︷ ︸
constraint

∧ xy > 1︸ ︷︷ ︸
constraint

,

which can always be rewritten as constraints against zero:

x2 + y2 − 2︸ ︷︷ ︸
poly

< 0︸︷︷︸
∗︸ ︷︷ ︸

constraint

∧ xy − 1︸ ︷︷ ︸
poly

> 0︸︷︷︸
∗︸ ︷︷ ︸

constraint

. (3)

Our goal is to find values over the reals R for the formula’s variables such that
all constraints are satisfied. The assignments for the variables can be seen as
points in the multi-dimensional real space. In the notation from Eq. 3 we can see
that every constraint basically contains one polynomial. Also, whether a (multi-
dimensional) point satisfies a constraint solely depends on the sign—negative
below zero, zero itself or positive above zero—of the constraint’s polynomial at
that point. This is exactly where CAD comes into play.

Most importantly, a CAD algorithm works solely on polynomials and uses
their signs; It has no notion of constraints or “sign-conditions”, which are
marked with ∗ in Eq. 3. However, this is no problem, because we already made
the link from a polynomial’s sign to a constraint’s satisfication above. So, CAD
takes a set of polynomials and decomposes the space of their variables into
connected, regions called “cells”, where the polynomials are “sign-invariant”.
This is the “Decomposition”-part in CAD. These cells happen to look a lot like
cylinders—the “Cylindrical”-part—, and are represented by polynomials—the
“Algebraic”-part in CAD. If we take a point from such a region and plug it
into the polynomials, we can compute signs, one for each polynomial. Sign-
invariance for this region means that if we take another point from the same
region and plug it into the polynomials, we will compute the same sign for the
same polynomial as before.

So in order to use CAD on a formula, we need to extract the polynomials
from its constraints. The polynomials in Eq. 3 are:

{x2 + y2 − 2, xy − 1}. (4)

CAD then constructs sign-invariant regions with the following property: If we
take one point from a region, plug it into one constraint and see that it does not
satisfy it—the constraint’s polynomial gets the wrong sign—, then we can avoid
all other points in that region, because they also won’t satisfy the constraint.
And as a result of the region being invariant in all the formula’s polynomials,
this property holds for the formulas as well: If we check one point on a formula,
we don’t need to check any other point from that region. This makes CAD
tremendously powerful!

6

2.1 Intuitive Geometric CAD

Since CAD is formally quite complicated, we begin with an intuitive introduction
before we apply more mathematical rigour. Fortunately, sign-invariant cells have
a nice geometric interpretation.

2.1.1 Sign-invariant regions in visualizations

x2 1 0 1 2y
2

1
0

1
2

Z

-1.0
0.2
1.4
2.7
3.9
5.1
6.3
7.6
8.8

10.0

4 2 0 2 4
x

3

2

1

0

1

2

3

y

x2 + y2 2 = 0

+

Figure 2.1: Polynomial x2 + y2 − 2 = Z (left) and its root plot x2 + y2 − 2
!
= 0

with its 3 sign-invariant regions (right).

First of all, we have to get a feeling for how we show a polynomial’s sign-
invariant regions visually. Take for example the polynomial x2 + y2 − 1 from
Eq. 4. in Fig. 2.1. On the left we see that it’s a scalar function from (x, y) values
to a Z value. Therefore we need a 3D image to show the Z values. However,
considering only being interested in the signs of those Z values, a 2D image, as
on the right, for the (x, y) values is sufficient. This 2D image is the cut through
the 3D plot at Z = 0: We see the polynomial’s roots—the (x, y) values where
the polynomial becomes zero—in solid lines. This is why we call this a “root
plot”. Also, the regions between and outside of the roots are marked with +
and − to represent the sign of the Z values. We can see that these regions
are connected, sign-invariant—within each region we have the same Z sign—
and always separated by roots, which form connected, sign-invariant regions
themselves: We get three regions in total.

In general a polynomial with n variables requires an n-dimensional root plot,
which is why we will present polynomials with at most 3 variables. You can
find another root plot example for the other polynomial in Eq. 4 in Fig. 2.2.

2.1.2 Cylindric regions

Now we can get an intuition for what regions a CAD algorithm computes and
how these are cylindrical. In Fig. 2.3 we see a CAD decomposition for poly-
nomial x2 + y2 − 2 from Eq. 4 into 13 regions, which is much more than opti-
mally necessary, because there are only three actual invariant regions as seen in
Fig. 2.1. The reason is that CAD can’t do better because it can only construct
“cylindrical” regions. As such, CAD produces only an approximation. Never-
theless, we may agree that regions 2, 3, and 9 look somewhat cylindrical, but it
is less obvious why regions 1 and 6 are considered cylindrical.

7

x3 2 1 0 1 2 3y
4

2
0

2
4

Z

-5.0
-3.3
-1.7
0.0
1.7
3.3
5.0
6.7
8.3

10.0

6 4 2 0 2 4 6
x

4

2

0

2

4

y

xy 1 = 0

+

+

Figure 2.2: Graph of polynomial xy − 1 = Z (left) and its root plot xy − 1
!
= 0

with its 5 sign-invariant regions (right).

4 3 2 1 0 1 2 3 4
x

2

1

0

1

2

y 1 137

5

9

6

8

2

3

4

10

11

12

Figure 2.3: Root plot of polynomial x2 + y2 − 2
!
= 0 (solid circle) and a CAD

decomposition with numbered cells.

4 3 2 1 0 1 2 3 4
x

2

1

0

1

2

y

)[]()[](
1 2 3 4 5

Figure 2.4: Root plot of polynomial x2+y2−1. We see 5 1-dimensional cylinders
along the x-axis and their extensions along the y-axis to 2-dimensional cylinders.

8

Intuitively, these regions are cylindrical because they emerge from cylin-
ders: We first create 1-dimensional cylinders on the x-axis. These are either
open intervals or closed, single-point intervals as in Fig. 2.4. Then from each
1-dimensional cylinder we create a 2-dimensional one by extending it along the
y-axis, which is called “extension” or “lifting”. Then each 2-dimensional cylin-
der is separated into fragments by the polynomial’s roots that cross it. These
fragments are the regions—called CAD-cells—we see in Fig. 2.3. In short, we
call these regions cylindrical, because they are fragments of cylinders. Another
more formal characterization of cylindric is that the projection of all the cells
within a cylinder—by dropping the y–coordinate of the points within them—is
the same 1-dimensional region along the x-axis.

Each cylindrical region has two “components”: The 1-dimenional cylinder
that constraints it on the x-axis, and the root-segments of the 2-dimensional
polynomial that constraints it on the y-axis (see regions 9 in Fig. 2.3 and
Fig. 2.4). A CAD algorithm constructs a 1-dimensional cylinder on the x-axis in
the following way: whatever point x on this cylinder we select, we will cross the
same number of the polynomials’ roots in the same order as we move this point
along the y axis. This property is called “delineability” and ensures that we
will be able to formally represent a cell as a sequence of separate components,
which is necessary for a compact and efficient representation. A cell’s first two
components along the x and y-axis will have the form

(constant < x < constant) and (f(x) < y < g(x)),

To find the 1-dimensional cylinders in the example above, a CAD-algorithm
uses a clever recursive scheme: From 2-dimensional polynomials—with x and
y variables—it creates a set of 1-dimensional polynomials—with only the x
variable. It creates these polynomials in such a way that their roots—real values
on the x-axis—will become the bounds of these 1-dimensional interval-cylinders
as in Fig. 2.4. This poly-set creation is called a “projection”. As we will see in
the following, creating those 1-dimensional intervals is actually a decomposition
of the 1-dimensional real space into cylindrical, sign-invariant regions.

2.1.3 Decomposition of the 1-dimensional real space

Let’s assume that we have a set of 1-dimensional polynomials like

{x2 − 2}

with a single polynomial for simplicity. In Fig. 2.5 the right graph shows that
the root plot only needs to be 1D and that the polynomial’s roots at ±

√
2

separate the real line along the x-axis into connected, sign-invariant regions. So
by computing all the roots, which is known as “root isolation”, we can construct
these regions as follows: Each root makes up a single-point, closed interval
region, a “section”, and each interval between two consecutive roots makes up an
open regions, a “sector”. We consider them cylindrical by definition. However,
more intuitively they emerge as fragments from the 1-dimensional cylinder along
the x-axis—from −∞ to +∞. Finally, the set of all those open and single-point
intervals, our 1-dimensional CAD-cells, is a CAD of R1.

9

3 2 1 0 1 2 3
x

2

1

0

1

2

3

Z

Z = x2 2

+ +

3 2 1 0 1 2 3
x

)[]()[](
+ +

Figure 2.5: Graph of polynomial x2 − 2 = Z (left) and its root plot x2 − 2
!
= 0

with its 5 sign-invariant regions (right).

3 2 1 0 1 2 3
x

2

1

0

1

2

3

Z

Z = x2 2Z = 2x

3 2 1 0 1 2 3
x

)[]()[]()[](

+
0 0

+
0 +

+ +

Figure 2.6: Graph of polynomials x2 − 2 = Z and 2x = Z (left) and their root

plots x2 − 2
!
= 0 and 2x

!
= 0, and 7 sign-invariant regions (right); The first sign

in each region belongs to the first polynomial, the second sign to the second
polynomial.

10

6 4 2 0 2 4 6
x

4

2

0

2

4

y

xy 1 = 0

xy 1 = 0 x2 + y2 2 = 0

Figure 2.7: Root plot of polynomials x2 + y2 − 2
!
= 0 and xy − 1

!
= 0.

In the right graph of Fig. 2.6 we can see another CAD when there is a second,
1-dimensional polynomial: We see how the regions are sign-invariant for both
polynomials simultaneously and that the sign-pairs always and only change at
one of the polynomial’s roots. To construct these regions we isolate all the roots
of each polynomial, ignore that the roots came from different polynomials, and
use them as before.

2.1.4 Decomposition of the 2-dimensional real space

Knowing how to construct a CAD for R1 allows us to construct a CAD of R2.
In Fig. 2.7 we see a root plot of the set

{x2 + y2 − 2, xy − 1}

of two 2-dimensional polynomials, which we already introduced in Sec. 2.1.1.
Recall that to construct a CAD, we first must compute 1-dimensional regions
along the x-axis such that for each point within it, as we move along the y-
axis, the number and order of the polynomials’ roots we cross doesn’t change—
compared to any other point of the same region. As it turns out, the number
and order of roots change at the x-coordinates of the following special points:
double roots along the y-axis, intersections of two polynomials and singularities,
which we see in Fig. 2.8. A CAD algorithm will therefore transform the set of
2-dimensional polynomials into a set of 1-dimensional ones, whose roots will
precisely be the x-coordinates of those special points.By isolating the roots of
these 1-dimensional polynomials, we get 1-dimensional sign-invariant, cylindric
regions—called cells from now on. We extend these cells into 2-dimensional
cylinders along the y-axis into ±∞, which we then separate by the polynomials’
roots that cross these 2-dimensional cylinders.

11

6 4 2 0 2 4 6
x

4

3

2

1

0

1

2

3

4

y

intersect

intersect double root

double root

singularity

Figure 2.8: Root plot and special points—double roots, singularities and

intersections—of polynomials x2 + y2 − 2
!
= 0 and xy − 1

!
= 0.

3 2 1 0 1 2 3
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y)(

Figure 2.9: Extending the single, 1-dimensional cell (0, 1) into a cylinder along
the y-axis.

12

4 3 2 1 0 1 2 3 4
x

2

1

0

1

2

y

13

5

7

2

4
6

)(

Figure 2.10: Cylinder over 1-dimensional cell (0, 1) separated by polynomials’
roots into 7 2-dimensional cylinder fragments we call CAD-cells.

In Fig. 2.9 we see an example of such an extension into a cylinder, which
we then separate into cylinder fragments as in Fig. 2.10. The “open” fragments
between two root-segments are called sectors and “closed” fragments on the
root-segments are called sections. These fragments are our 2-dimensional CAD-
cells, and the set of all these cells—emerging from all 2-dimensional cylinders—is
a CAD of R2.

13

x3 2 1 0 1 2 3

y
4

2
0

2
4

Z

-5.0
-3.3
-1.7
0.0
1.7
3.3
5.0
6.7
8.3

10.0

4 2 0 2 4
x

3

2

1

0

1

2

3

y + +

x2 + 0y 2 = 0

Figure 2.11: Graph of polynomial x2 + 0 · y − 2 = Z (left) and its root plot

x2 + 0 · y − 2
!
= 0 (right).

If we want to visualize polynomials with different numbers of variables to-
gether in one root plot, it is useful to know that we can reinterpret a 1-variable
polynomial such as x2 − 2 from Sec. 2.1.3 as the 2-variable polynomial

x2 + 0 · y − 2 < 0 (5)

by adding the term 0 · y. In Fig. 2.11 we can see how to visualize it as a regular
2-variable polynomial.

2.1.5 Section and sectors

At this point it is useful to come back to the terms “section” and “sector”. Just
as a 2-dimensional vector like (

1
2

)
has 2 components, one for each axis, a 2-dimensional cell has 2 components,
either a section or a sector for each axis—an n-dimensional cell will therefore
have n components. So far we used the word “dimension” for the real space
R2 a cell is embedded in—we call it the “universe”. However, since a cell is
a space itself, it can have a dimension of its own—possibly lower than 2 as in
Fig. 2.12. For a vector we can count the number of components to compute
its dimension; for a cell we count the number of sectors, because only sectors
are “open” along an axis and therefore contribute to the dimension. As such,
the cell in Fig. 2.12a has dimension 2, because it is open (and therefore has a
sector) along the x and and y-axis. In contrast, the cell in Fig. 2.12b is open
along the x-axis but closed along the y-axis. Reversly, the cell in Fig. 2.12c has
a closed section along the x-axis, but an open sector along the y-axis. Finally,
the single-point cell in Fig. 2.12d has two section components: its dimension is
0.

14

x

y

(a) 2-dim cell with x-sector and y-sector

x

y

(b) 1-dim cell with x-sector and y-section

x

y

(c) 1-dim cell with x-section and y-sector

x

y

(d) 0-dim cell with x-section and y-section

Figure 2.12: Different dimensional cells in a 2-dimensional R2 universe.

15

2.2 Formal Analytic CAD

Cylindric Algebraic Decomposition (CAD) decomposes a real-valued multidi-
mensional space into regions that are sign-invariant to a given set of multi-
variable polynomials. If those polynomials mention variables x1, . . . , xn, CAD
decomposes the real space Rn by working in 2 phases, which roughly act as
follows:

1. Projection:
Stepwise eliminate variables from the polynomials in the backward order
xn, xn−1, . . . , x2 until we only have polynomials that only mention variable
x1. During each step i = n, . . . , 2 new polynomials with at most variables
x1, . . . , xi are created, which are processed in the next elimination-step as
well.

2. Lifting:
From the set of polynomials with only variable x1 isolate the roots of
each polynomial to compute 1-dimensional cells. Next, stepwise extend
lower-dimensional cells into the next-higher dimensional cells until we have
n-dimensional cells. During each step i = 2, . . . n lift the cells of dimension
i−1 into i-dimensional cells by using all polynomials from the projection-
phase that precisely mention the variables x1, . . . , xi .

In order to describe in more detail how the ”projection” and ”lifting” phases
work, we first have to introduce some notation.

2.2.1 Basic vocabulary about polynomials

Formally we look at polynomials with integer coefficients and real-valued vari-
ables, known as the integral polynomial ring Z[x1, . . . , xn].

Definition 2.1 (Range Notation). For a shorter notation we define ranges

an1 := a1, . . . , an,

αn1 := α1, . . . , αn,

xn1 := x1, . . . , xn and

Z[xn1] := Z[x1, . . . , xn]

Definition 2.2 (Monomial). A monomial over variables xn1 is any term of
the form

xc11 · x
c2
2 · . . . · xcnn ,

where each ci ∈ N0 is a non-negative integer.

In this thesis all polynomials are represented and constructed with monomials.
For example, the following are all monomials over variables [x, y, z]:

1 := x0y0z0 x := x1y0z0 y z xy xz yz xyz xy2z3.

As we can see, a monomial is the product of variables with a non-negative
exponent, where we leave out variables with the exponent 0 whenever we do not
need to emphasize that it is an important part of the monomial.

16

Definition 2.3 (Polynomial). A polynomial of Z[xn1], which we also refer
to as an xn1 -polynomial, has the form

a1 ·m1 + a2 ·m2 + . . .+ ak ·mk,

where each coefficient ai ∈ Z is an integer and each mi is a distinct mono-
mial over variables xn1 .

Polynomials are sums of monomials that use the same set of variables and
where each monomial may be further multiplied with an integer coefficient. For
example, the following are polynomials of Z[x, y, z]:

1x+ 2y + 3z 4xy + 5yz + 6xyz 7xy2z3 + 8 9 0

Definition 2.4 (Type of Polynomial). We categorize polynomials of Z[xn
1]

into the following types:

• Zero-Polynomial: 0

• Constant-Polynomial: 0, . . . , 9 without any variable.

• Non-zero-Polynomial: Any polynomial not equal to zero.

• Non-constant-Polynomial: E.g. x+1, y2−2, with some variable, i.e.,
every polynomial that is not a single constant.

As we can see, Z[x, y, z] includes polynomials with fewer than those three vari-
ables, even constant polynomials like 9 and the zero-polynomial that do not
mention any variable. This allows us to reinterpret a [x, y]-polynomial such as
xy as a [x, y, z]-polynomial and vice versa.

In the sections to come we use names for polynomials like p and q, which we
use as macros to be replaced by their definition. In order to reason more clearly
about these macros we define 4 kinds of equality in the style of mathematical
logic.

Definition 2.5 (Equality). We define four types of equality:

• := (Macro) Definition

• = (Semantics) ”Normal” Equality

• ≡ (Syntax) Identical Equality

• !
= (Shall-be) Imperative Equality

The symbol ”:=” introduces new macros for a polynomials such as

p := x2 − 4 q := x− x,

which are to be substituted immediately by their right-hand side. Thus, when-
ever we write an equation such as

p = q

17

we mean the macro-expanded equation

x2 − 4 = x− x

Furthermore, q is not syntactically equal to the zero-polynomial (q 6≡ 0 but
semantically equal q = 0, because it represent the same function as the zero-
polynomial, i.e., it maps all its inputs to zero. Both p and q are neither syntac-
tically equal (p 6≡ q) nor semantically equal (p 6= q). Instead p is semantically
equal to e.g. (x− 2) · (x+ 2). Also, whenever we write

p
!
= 0

we mean that we want p to be equal to 0, although it’s not by itself. In genereal,
this is a notation for the set of all of p’s roots. Notably, the subtle difference

between q
!
= 0 and q = 0 is crucial for subsequent polynomial operations,

because in the first case we ask for its roots and in the second we state that q
is (semantically) the zero-polynomial.

In all polynomial operations that are neceassary for a CAD algorithm we will
need to categorize polynomials based on the variables that actually appear. For
example, a polynomial of Z[x, y, z]\Z[x, y] cannot be interpreted as a polynomial
of Z[x, y] alone, because it indeed mentions the variable z. To distinguish such
polynomial sets, we define the “level” of a polynomial.

Definition 2.6 (Level Of Polynomial). Given a variable order x1 ≺ x2 ≺
. . . ≺ xn, the level of a polynomial p ∈ Z[xn1] is the highest index i—
in that order—of a variable xi that appears with non-zero exponent and
with a non-zero coefficient. If p mentions no variable—it’s a constant-
polynomial—, then its level is 0.

Unless stated otherwise, we implicitly assume the natural, upward variable order
of x1, . . . , xn. For example, the following [x, y, z]-polynomials have the following
levels:

Polynomial 2 0 · x+ 2 x+ 2 y2 z3 + x xy + 2 yz + xy
Level 0 0 1 2 3 2 3

In our implicit x ≺ y ≺ z variable order x gets index 1, y the index 2 and z gets
index 3—the determining variable is marked in boldface.

18

This notion of a polynomial’s level allows us to specify the phases of a CAD
algorithm with more detail: Given a set of polynomials of Z[xn1] and a variable

Pn level-n cells
↓ project ↑ lift
Pn−1 level-n− 1 cells
↓ project ↑ lift
.
↓ project ↑ lift
P2 level-2 cells
↓ project ↑ lift

P1
base case−→ level-1 cells

P0 discard

Figure 2.13: High-level CAD algorithm.

order x1 ≺ x2 ≺ . . . ≺ xn, do the following three steps:

1. Projection:
Categorize the polynomials according to their level into polynomial buck-
ets P0, P1, P2, . . . , Pn−1, Pn, where bucket Pi contains only polynomials of
level i. For i = n, n − 1, . . . , 2 in that backward order iteratively com-
pute the “projection” of Pi, which creates polynomials of smaller levels
1, . . . , i—we explain “projection” in the next section. Add these polyno-
mials according to their level into the buckets for the next iteration i− 1.
Finally, delete the constant-polynomials in P0.

2. Base case:
Using polynomials in P1 isolate their roots to construct level-1 cells—along
the x1 axis.

3. Lifting:
For i = 2, . . . , n− 1, n in that upward order iteratively extend each level-
i− 1 cells into level-i cells by using polynomials in Pi.

This high-level overview of a CAD algorithm is visualized in Fig. 2.13. The
CAD-algorithm we choose for this thesis is by Brown [Bro01] and in the following
sections we explain how to project and how to lift according to this algorithm.

2.3 Projection Phase for a full CAD

A projection in the CAD algorithm has one purpose: It eliminates a variable
from a set of polynomials by creating another set —using some polynomial
operations to come—of polynomials that don’t mention that variable anymore.
Thus, it creates a subproblem that is easier to solve, that is, a polynomial-
set that is easier to construct CAD-cells for. While doing so, a projection
ensures that the subproblem’s CAD-cells can be extended into cells for the
main problem.

Brown’s CAD algorithm [Bro01] defines that, for the projection of a polynomial-
set, we need to compute the leading coefficient and the discriminant of each
polynomial, as well as the resultant between any two distinct polynomials.

19

We first describe how these operations are computed and then show how
they are used and why they are needed.

2.3.1 Operations on integral, real polynomials

Computing the leading coefficient and a discriminant are operations on a single
polynomial, while computing a resultant is an operation on a pair of polynomi-
als. All three operations are technically defined for single-variable polynomials
only. We therefore first show how to compute these for polynomials in Z[x] and
afterwards show how and why these also work for multi-variable polynomials in
Z[xn1].

The first and simplest operation is computing the leading coefficient. For
example, a polynomial of Z[x] like

1x2 + 2x+ 3

has the coefficients 1, 2, 3 and the leading coefficient 1. Notice how in our no-
tation for the class of polynomials the second part [x] determines the variables
to appear in the monomials and the first part Z determines the type of coeffi-
cients.

Definition 2.7 (Coefficients of a Single-Variable Polynomial). Given a
polynomial

p := an · xn + an−1 · xn−1 + . . .+ a1 · x1 + a0

of R[x], where R is any algebraic structure, ai ∈ R and an 6= 0, then
coeffsx(p) = {an, an−1, . . . , a1, a0} are the coefficients and leadCoeffx(p) =
an is called the leading coefficient. Furthermore, coeffs6=0

x (p) contains only
those coefficients that are not identically 0.

Definition 2.8 (Degree of a Single-Variable Polynomial). Given a poly-
nomial

p := an · xn + an−1 · xn−1 + . . .+ a1 · x1 + a0

of R[x], where R is any algebraic structure, ai ∈ R and an 6= 0, then

deg(p) := n

is called the ”degree of p”.

In Def.2.7 we define the word “coefficent” for a single-variable polynomial. How-
ever, when dealing with a multi-variable polynomial, there are two possible in-
terpretations: On one hand, in Def. 2.3 from a previous section we used the
word “coefficient” to refer to the integer in front of a monomial. On the other
hand, we can reinterpret a multi-variable polynomial of Z[xn1] with integer co-
efficients as a single-variable polynomials Z[xn−11][xn] with respect to variable
xn—it has polynomials of Z[xn−11] as coefficients. This is the interpretation we
need when we compute the leading coefficient.

20

For example, a multi-variable polynomial of Z[x, y, z] such as

q := yz + x2yz + x2y2 + xz + 3,

which has coefficients 1, 1, 1, 1, 3, can be rearranged and reinterpreted—our de-
sired variable x is marked in boldface—as the Z[y, z][x] polynomial

q = (yz + y2) · x2 + (z) · x + (yz + 3). (6)

In this reinterpretation the polynomials yz+y2, z and yz+3 are the coefficients
and leadCoeffx(q) := yz + y2 is the leading coefficient with respect to variable
x. To avoid any confusion, we use a subscript to denote the variable x.

The discriminant is our second operation on a single polynomial. It’s an
indicator whether a quadratic polynomial equation of the form

ax2 + bx+ c
!
= 0

has two roots collapsing into one. Normally the closed-form solution of the roots
is given as

r1,2 := x1,2 :=
−b±

√
b2 − 4ac

2a
.

Here the two roots collapse into one whenever the discriminant—the term b2 −
4ac in this case—becomes zero. However, this is a special case for polynomials
of degree 2. In general, when we have single-variable polynomial of a higher
degree

p := an · xn + an−1 · xn−1 + . . .+ a1 · x1 + a0 ∈ Z[x], an 6= 0

with its roots r1, . . . , rk, then the discriminant is defined as the product

discr(p) := a2n−2n ·
∏
i<j

(ri − rj)2︸ ︷︷ ︸
∗

,

where the whole product becomes zero if two roots overlap—marked with ∗.
When we have multi-variable polynomials, the operation is only slightly

different.

Definition 2.9 (Discriminant). Let

p := an · xn + an−1 · xn−1 + . . .+ a1 · x1 + a0 ∈ Z[xn1], an 6= 0

be a polynomial of Z[xn−11][x], and let

p′ := n · an · xn−1 + (n− 1) · an−1 · xn−2 + . . .+ a1

be the derivative of p with respect to x. Then we call

an·︸︷︷︸
∗

discr(p) := (−1)n(n−1)/2︸ ︷︷ ︸
∗

· resx(p, p′).

the discriminant of p [McC84, p. 30f].
However, in practice we use

discr(p) := resx(p, p′).

21

without the factors marked with ∗, because we are only interested in doing
root computations of the form

discr(p)
!
= 0.

Furthermore, discr(p) is a polynomial of Z[xn−11] [McC88, Thm. 3.0].

To compute the discriminant of a multi-variable polynomial, we need the resul-
tant operation to come. Since the discriminant is itself a polynomial discr(p)(x1, . . . , xn−1)
of Z[xn−11] and not necessarily the zero-polynomial, whether it becomes zero de-
pends on the specific values αn−11 for variables xn−11 , that is, we check if

discr(p)(α1, . . . , αn−1) = 0.

Thus, the specific values determine—when we plug them in—whether the result-
ing 1-variable polynomial p(αn−11 , xn) of Z[xn] has two collapsing roots along
the xn axis.

The resultant is our third and last polynomial operation and an indicator
whether and where two polynomials have a common root. It is strongly related
to the “Greatest Common Divisor” (GCD) operation for integers and polyno-
mials. For example, the GCD of the two integers

30 = 2 · 3 · 5 and 42 = 2 · 3 · 7 (7)

is the integer
gcd(30, 42) = 2 · 3 = 6.

The GCD of the two polynomials

p := x2−1 = (x+1) · (x−1) and q := x2 +3x+2 = (x+1) · (x+2) (8)

is the non-constant polynomial

gcd(p, q) = (x+ 1).

We can check whether two integers a and b have a common (integer) divisor by
computing their GCD and check if it is 1 or not, i.e., whether gcd(a, b) = 1 or not.
We can check whether two polynomials p and q have a common (non-constant
polynomial) divisor by computing their GCD and check whether gcd(p, q) is
a constant-polynomial or not. In that sense the GCD operation computes the
GCD and is an indicator for common divisors at the same time. In contrast, the
resultant of two polynomials is only an indicator for a common (polynomial)
divisor without computing the GCD. The important difference for us and a
CAD-algorithm is that the resultant eliminates a variable.

Definition 2.10 (Resultant). Assume that we have two polynomials

p := an · xn + . . .+ a1 · x1 + a0 and q := bm · xm + . . .+ b1 · x1 + b0

of Z[xn−11][x] with n = deg(p) ≥ 1, m = deg(q) ≥ 1. Let the Sylvester

22

Matrix [Coh03, p. 267] of p and q over variable x be

S(p, q, x) =

1 an an−1 . . . a0
2 an an−1 . . . a0
...

. . .
. . .

m an an−1 . . . a0
1 bm bm−1 . . . b0
2 bm bm−1 . . . b0
...

. . .
. . .

n bm bm−1 . . . b0

.

Then the resultant is defined as

resx(p, q) := det(S(p, q, x))

Furthermore, S(p, q, x) ∈ D(m+n) × (m+n) and resx(p, q) is a polynomial of
Z[xn−11].

So, we use the resultant to indicate whether two polynomials p and q have a
common (non-constant polynomial) divisor. If they have such a divisor and this
divisor has roots, then we know that p and q have this root in common. Note
that the divisor may be a polynomial like x2 + 1 that has no real roots, thus p
and q may not have a common root, even though they have a common divisor.
Therefore the resultant is an over-approximation of common roots, which is not
optimal but acceptable in CAD.

The definition of the resultant through the determinant of a matrix with
that specific coefficient arrangement is a concise, convenient notation for the
resultant polynomial. Conceptually, in order to compute the resultant we con-
struct the Sylvester matrix and compute the determinant of it. In the Sylvester
matrix we copy and shift the coefficients of polynomial p, which are polynomials
themselves, into subsequent rows as often as the degree m of the other poly-
nomial q. Then we copy and shift the coefficients of q into subsequent rows as
often as the degree n of p. We end up with a square matrix with m + n rows
and columns that we can compute the determinant for. For example, using the
two single-variable polynomials

p := 1x2 + 2x+ 3 and q := 4x3 + 5x2 + 6x+ 7,

with degree 2 and 3, the Sylvester matrix S(p, q, x) is the 5× 5 matrix
1 2 3 0 0
0 1 2 3 0
0 0 1 2 3
4 5 6 7 0
0 4 5 6 0

 .
See [Coh03, p. 265ff.] for an understandable derivation of the resultant operation,
especially to see why we arrange the coefficients in that particular way and why
we then take the determinant.

23

In general the resultant is defined for arbitrary non-constant polynomials of
Z[xn−11][xn], and indicates that two polynomials have a common (non-constant
polynomial) divisor with respect to xn if and only if the resultant becomes zero.
If p and q are polynomials of Z[xn1], then the resultant itself is a polynomial
of Z[xn−11]—not necessarily the zero-polynomial. So, like the discriminant the
resultant is actually a function of variables xn−11 and whether it becomes zero
depends on the specific values for these variables, that is,

(resxn
(p, q))(x1, . . . , xn−1)

!
= 0.

In other words, the resulting constant number

(resxn(p, q))(α, · · · , αn−1),

after plugging in specific values αn−11 for the variables xn−11 , tells us whether the
resulting single-variable polynomials p(αn−11 , xn) and q(αn−11 , xn) of Z[xn] have
a common (non-constant polynomial) divisor in xn. If they do, they potentially
have a common root along the xn axis.

In practice, the resultant is not computed as in Def. 2.10, because there are
more efficient algorithms [Duc00].

While computing the coefficients with respect to a certain variable did not de-
pend on any specific property of an algebraic structure, this is different for com-
puting the discriminant and the resultant. Actually, these only work for poly-
nomials U [x], where U is a “Unique Factorization Domain” (UFD), a slightly
more concrete, mathematical structure than a ring.

As a quick reminder: The relation between the more widely known mathe-
matical structures fields and rings, and the less widely known UFDs is as follows:

rings ⊃ UFDs ⊃ fields.

Thus, every field is automatically a UFD and every UFD is a ring. On the other
hand, a ring is a generalization of a UFD, and a UFD is generalization of a field,
so if we prove some property for rings, then these automatically hold for UFDs
and fields as well. See Geddes et al. [GCL92] for the precise definitions.

Lemma 2.1 (Polynomial Ring). Let F be a field. Then the set of single-
variable polynomials F [x] is a ring.

It is a well-known fact from Lemma 2.1 that the polynomials Q[x] with rational
coefficients form a ring, because Q is a field. However, it’s less well-known why
the polynomials Z[x] form a ring, since Z is not a field.

Lemma 2.2 (Unique Factorization Domain). Let U be a UFD. Then the
set of single-variable polynomials U [x] is a UFD.

Instead the set Z of integers is a UFD, which by Lemma 2.2 carries over into
Z[x], which also makes it a ring due to rings ⊃ UFDs. This is why the desired
discriminant and resultant operations are well-defined for the single-variable
polynomials of Z[x].

24

Corollary 2.1. Z[xn−1
1] is a UFD.

Proof 2.1. Since Z is a UFD, this follows by induction by repeatedly
applying Lemma 2.2 on

((((Z[x1])[x2]) . . .)[xn−2])[xn−1].

From Corollary 2.1 it follows that the discriminant and resultant operations are
well-defined for polynomials of Z[xn

1] as well.
For the following operations, it is necessary to define the notion of a ”prime”

polynomial. Just as any integer can be decomposed into its prime factors
[Coh03, Thm.2.17,p. 27] as in Eq. 7, which is unique up to the order of the
factors, any polynomial of Z[xn

1] can be decomposed into its unique ”prime”
polynomial factors [Coh03, Thm.4.40,p. 139,205], called irreducible polynomi-
als, as in Eq. 8. This is one of the characterisitic properties of Z[xn

1] being a
UFD.

Definition 2.11 (Irreducible Polynomial). Let p, q, r ∈ Z[xn
1]. A poly-

nomial p is called reducible if there are non-constant polynomials q and r
such that

p = q · r.

A polynomial p is called irreducible if there are no such q and r [Coh03,
p. 118,204].

Definition 2.12 (Irreducible Decomposition of Polynomials). Given a
polynomial p and a polyset P of Z[xn1], let

irred(p) := {p1, . . . , pk}

be the irreducible decomposition of p with p1, . . . , pk ∈ Z[xn1] being irre-
ducible polynomials such that

p = c · p1 · p2 . . . pk for some c ∈ Z

and let
irred(P) :=

⋃
p∈P

irred(p)

be the elementwise decomposition of the polyset P .

2.3.2 The McCallum-Brown CAD projection

Having defined the notion of a irreducible polynomial, polynomial level as well
as the leading coefficient, discriminant and the resultant operations, we can
define the the projection operator, called “projector”, that the McCallum-CAD
algorithm uses in the ”projection” phase.

25

Definition 2.13 (McCallum-Brown-Full-Projector [BK15]). Assume we
have a finite set P of irreducible polynomials of Z[xn

1], each of the same
level k with 1 ≤ k ≤ n and let

leadCoeff(P) :=
⋃
p∈P

leadCoeffxk
(p), res(P) :=

⋃
p,q∈P,p6=q

resxk
(p, q),

discr(P) :=
⋃
p∈P

degxk
(p)≥2

discrxk
(p),

then the set of polynomials

P(P) := leadCoeff(P) ∪ discr(P) ∪ res(P),

is called the ”projection of P .” It contains only polynomials of at most level
k − 1.

The metaphor of a “projector” or “projection-step” used in the name of the
operation in Def. 5.2 is accurate, because P(P) only contains polynomials of
a smaller level, i.e., with fewer variables for a lower-dimensional space, just as
the shadow on the ground surface of a stick in 3-dimensional space is a lower,
2-dimensional projection.

We only compute the discriminant for polynomials that have a degree of
at least 2 in the variable xk, because otherwise there are no “double roots”,
which the discriminant is computed for. Additionally, this projector is defined
for irreducible polynomials of the same level only. This restriction is not abso-
lutely necessary, but it eases the presentation and understanding compared to
presentations where the projector is defined for polynomials of any level.

Finally, the name to describe the projector in Def. 5.2 is used to distinguish it
from other projection variants. Since there are multiple variants of projections,
there are two aspects, foundation and cell coverage, to take into account when
we compare projection operators:

First, there is a coarse separation of projection operators in their theoretical
foundation. A foundation prescribes what polynomials have to be computed
to construct a valid cylindric decomposition. In Def. 5.2 we use Scott McCal-
lum’s foundation [McC84] with improvements by Brown [Bro01]: Brown proved
that computing leading coefficients, discriminants and pairwise resultants are
sufficient for a CAD. The other famous foundation by Collins is compared in
Sec. 5.1.

The second aspect to consider for the projection is the cell coverage. Nor-
mally we want to compute a “full” decomposition into multiple non-overlapping
CAD cells that cover the whole space as in Def. 5.2. However, there are also
“single cell” or a “partial” CAD variants that vary in the way of projection or
lifting. Since a “single cell” variant , as covered in Sec. 2.5, is the main topic of
this thesis, we will see how such a variant called “OneCell” modifies the CAD
projection by Brown. Most notably, it reduces set of polynomials that we need
to compute.

Let us take a closer look on what the projector in Def. 5.2 does by looking
analytically at the example we have previously looked at intuitively in Sect. 2.1.4

26

about decomposing the real x-y-space. Recall that we want to construct x-cells
which we extend into cylinders along the y-axis with the property that no matter
which x-value we chose within an x-cell, the number of roots and their ordering
along the y-axis stays the same, because this is the necessary property to extend
the x-cells into x-y-cells. And as it turns out, the coefficients, the discriminants
and resultants of x-y polynomials are the x-polynomials whose roots tell us
which x-cells to construct.

6 4 2 0 2 4 6
x

4

3

2

1

0

1

2

3

4

y

intersect

intersect double root

double root

singularity

Figure 2.14: Root plot and special points—double roots, singularities and

intersections—of polynomials x2 + y2 − 2
!
= 0 and xy − 1

!
= 0.

We start with an inital set of two x-y-polynomials

p := x2 + y2 − 2 and q := xy − 1

of Z[x, y], which we reintpret as the Z[x][y] polynomials

p := (1) · y2 + (0) · y + (x2 − 2) and q := (x) · y + (−1)

whose roots
p

!
= 0 and q

!
= 0

are visualized in the root plot in Fig. 2.14.
First, we compute the leading coefficients with respect to variable y

coeffs({p, q}) = {1, x}.

These are the x-polynomials whose roots tell us the x-coordinate of a singularity
on the x-y-plane and where we thefore have to create a separate x-cell. For
example, the leading coefficient x of polynomial q has the root 0 and therefore
tells us that there is singularity at x = 0.

27

Second, we compute the discriminants with respect to variable y

discr({p, q}) = {x2 − 2}.

These discriminants are the x-polynomials whose roots tell us the x-coordinate
of a point on the x-y-plane where two roots along the y-axis collapse into one—
we call this a double root. There again we have to create a separate x-cell. In
this example we only compute the discriminant for p, because q has only degree
1 in variable y and therefore has no possibility of a double root. along y. This
discriminant x2− 2 of p has the roots −

√
2 and

√
2, which precisely correspond

to the x-coordinates of the double root points of the circle in Fig. 2.14. At each
of these points two roots, which exist for x ∈ (−

√
2,
√

2) in the upper and lower
circle halfs, collapse.

Third, we compute the resultant with respect to variable y between any two
polynomials of our set.

res({p, q}) = {(x+ 1)2 · (x− 1)2}

The resultants are the x-polynomials whose roots tell us the x-coordinate of
an intersection between two x-y-polynomials and where we have to create a
separate x-cell. Since we only have two polynomials, there is just one resultant
to compute. This resultant has the roots −1 and 1 which corresponds precisely
to the x-values of the left and right intersection points of the circle with the two
curves in Fig. 2.14.

The McCallum-Brown projector in Def. 5.2 alone is not sufficient to create
a CAD; it has to be applied repeatedly.

Definition 2.14 (McCallum-Brown-Full-Projection). Given a polyset P
of Z[xn1] of arbitrary mixed levels, categorize the irreducible decomposition
of its polynomials

irred(P)
!
= Pn ∪ Pn−1 ∪ . . . ∪ P1 ∪ P0

into buckets Pn, . . . P0 where bucket Pi contains and only contains the
polynomials of level i. Then for i = n, n − 1, . . . , 2 in that order compute
after Def. 5.2 and Def. 2.12

irred(P(Pi))

and add/categorize the resulting polynomials into buckets Pi, Pi−1, . . . , P0.
The final set of resulting buckets Pn, . . . , P1 without P0 is called

PROJ(P),

the “McCallum-Brown-Full-Projection of P”.

In this thesis we use a definition adapted from the projector given by Brown
and Košta [BK15], which applies the projector only to polynomials of the same
level.

28

2.3.3 Another view on projection

The CAD projection as in Def. 2.14, does an irreducible decomposition initially
and after each projection step. Thereby it ensures that a projector only has
to deal with irreducible polynomials of the same level, which simplifies the
projector operation.

This projection applies the McCallum-Brown-Full-Projector (Def. 5.2) once
on each “bucket”. A bucket is the current collection of all polynomials of that
level, and categorizes the resulting polynomials into the lower-level buckets. It
is useful to visualize this filling of lower-level buckets to get a better understand-
ing of the single-cell variant in Sec. 2.5 and how it differs from this projection.
In Fig. 2.15 we see that initially we start with polynomials p, q, r, s, t on several

→ P3: p q

P2: r discr(p) leadCoeff(q)

P1: s discr(q) res(p, q)

P0: t leadCoeff(p)

Figure 2.15: Qualititative initial categorization of input polynomials p, q, r, s, t
into level buckets as well as a categorization of polynomials from the first
projection-step.

levels, the highest level being 3. Thus, the first projector operation works on
the bucket of polynomials of the highest level n, P3 in this case, and creates
polynomials of a smaller level which are categorized accordingly. For exam-
ple, the discriminant of p, discrx3(p) may end up in P2, the leading coefficient
leadCoeff(p) may end up in P0, and the resultant resx3

(p, q) may end up in
P1. Normally, these polynomial operations take a variable as a subscript. Here,
for simplicity we assume that they work on the correct, third variable for some
variable order. In order to further simplify the visualization we assume that the
initial and all resulting polynomials are irreducible, which is not necessarily the
case in general. In general, a single resulting polynomial like discr(p) may be
split into several irreducible polynomials. The next projection operation works

P3: p q

→ P2: r discr(p) leadCoeff(q)

P1: s discr(q) res(p, q) discr(r) discr(discr(p)) . . .

P0: t leadCoeff(p) leadCoeff(r) res(r, discr(p)) . . .

Figure 2.16: Categorization of polynomials into level buckets (continued) after
the second projection-step.

on the bucket of polynomials of level n − 1, P2 in this case, and again creates
polynomials of smaller levels, which are categorized accordingly. All the result-
ing polynomials like discrx3

(p) from the previous step are being treated as if

29

they belonged to the initial set of polynomials. This is why we also compute
polynomials like

leadCoeffx2
(discrx3

(p)), discrx2
(discrx3

(p)), resx2
(r, discrx3

(p)).

This process is repeated until the last bucket P2 is projected. Afterwards the
bucket P0 is discarded, because we are interested in roots, which the constant-
polynomials of P0 do not have.

Summarizing, in constrast to the single-level projector from Def. 5.2, the full
projection from Def. 2.14 ensures that the polynomials of even the highest levels
are projected down to bucket P1 and are taken into account when we create the
initial, lowest-dimensional cells.

2.3.4 Projection factor set

Since there is no uniform vocabulary in the literature to separate the repeated
application of a projector from a single application, we call the repeated application—
on all levels of polynomials—a “projection”, and the single application—on a
single level of polynomials—a “projection step”.

Furthermore and to the best of our knowledge, Brown [Bro01, p. 448] intro-
duced the term “projection factor set” to refer to all polynomials that are the
result of the projection phase.

Definition 2.15 (Projection factor and projection factor set). Let Pn, . . . , P1

be the final set of buckets (without P0) of the projection of Def. 2.14

PROJ(P).

Then the union of those buckets

n⋃
i=1

Pi

is called the projection factor set and every polynomial in that set is a
projection factor.

The projection factor set by definition (see Def. 2.15) does not necessarily include
in the initial input polynomials, but their irreducible factorizations.

This projection factor set then “provides an implicit representation of the
CAD” and the subsequent phases converts it in “an explicit representation of
this CAD” [Bro01, p. 447].

2.4 Lifting Phase for a full CAD

The lifting-phase, as the name suggests, deals with “lifting” a level-k−1 cell into
a level-k cell, that is, creating a higher-dimensional cell from a lower-dimensional
one. The end result of the lifting-phase is a decomposition of whole universe
into cells of the highest level, that is, of all dimensions. This phase is actually
known under “extension“ or “lifting” depending on whether we look at the cell
construction geometrically or algebraically. If we look geometrically then the
word “extending” is appropiate, because we extend a cell along a new axis. If we

30

look algebraically, then the term “lifting” is more appropiate, because we “lift”
a level-k− 1 cell—using polynomials of level-k− 1 and lower—by one level into
a level-k cell. These polynomials come from the buckets that are created during
the projection-phase (see Sec. 2.3). Each bucket contains all polynomials of a
certain level and these buckets are hierarchically created sorted top-down from
highest to lowest level. In contrast, during the lifting-phase we work through
these buckets from the bottom to the top so that this bottom-up metaphor of
lifting is more appropriate.

“Lifting” in CAD starts with a “base case”. The “base case” deals with level-
1 bucket P1, which contains all 1-variable polinomials of the projection factor
set (see Def. 2.15, which is the final result of the projection phase (see Sec. 2.3.
The variable in all those polynomials, called x1 without loss of generality, is the
first one in the variable order

x1 < x2 < . . . < xn

and the last one in the order in which the projection-phase eliminates variables
from polynomials. This variable however is not eliminated itself.

2.4.1 Basic root isolation

As we intuitively described in Sec. 2.1.3, we compute all the roots of all polyno-
mials in P1 to construct what we call level-1 CAD-cells or x1-cells. This process
of computing a root or all the roots is called “root isolation”. The level-1 cells
are the basic, 1-dimensional cells that are either closed single-point intervals of
a root, or open intervals between two consecutive roots. Let

r1, . . . , rk ∈ R with ri < ri+1, i = 1, . . . , k − 1

be the pairwise distinct, increasingly-ordered roots of polynomials in P1. Then

{(−∞, r1), [r1, r1], (r1, r2), [r2, r2], . . . , [rk, rk], (rk,∞)}

are the x1-CAD-cells. These cells are sign-invariant on the polynomials in P1

by construction. For example, if we have the bucket

P1 := {x21 − 1, 2x1}, (9)

then the roots of these polynomials are

{−1, 0, 1},

and we construct the following x1-cells:

{(−∞,−1)︸ ︷︷ ︸
sector

, [−1,−1]︸ ︷︷ ︸
section

, (−1, 0)︸ ︷︷ ︸
sector

, [0, 0]︸︷︷︸
section

, (0, 1)︸ ︷︷ ︸
sector

, [1, 1]︸︷︷︸
section

, (1,+∞)︸ ︷︷ ︸
sector

}

We call those closed invervals a “section” and those open intervals a “sector”,
and represent them formally as (in)equalities:

x1 = constant (section)

or

constant < x1 < constant (sector)

As we move into higher dimensions, a cell will be represented by sequence of
sections and sectors, which is why we also call these “cell components”.

31

2.4.2 Root expressions for real algebraic numbers

In CAD one of the vital operations on polynomials is root isolation of 1-variable
polynomials. However, a real root cannot always be adequately represented in
finite memory, since it may have infinitely many decimal places, and approxi-
mating it with a float, rational or any other finite-precision representation may
introduce rouding errors, which we cannot accept.

Instead, we represent potentially problematic real numbers such as roots
implicitly by a so-called “root-expression”.

Definition 2.16 (Single-variable Root-Expression). Given an integral, single-
variable polynomial p(x) ∈ Z[x] with real roots

r1 < r2 < . . . < rk with 1 ≤ k ≤ degx(p)

and an integer idx ∈ {1, . . . , k}, we call the pair

root(p(x), idx) := ridx ∈ R

a root-expression to represent a specific, isolated real root value.

A root-expression as in Def. 2.16 is a pair containing a polynomial and a so-called
“root number” or “root index”. The index refers to one of the polynomial’s
roots: We order all the roots from smallest to highest and the first one gets index
1, the next one gets index 2 and so on. If we need the real number explicitly,
we can compute it on demand and up to an appropiate decimal place.

A real number for which such an implict representation exists, is called an
“algebraic real”.

Definition 2.17 (Real algebraic numbers). A real number r ∈ R is called
algebraic if and only if there is a p(x) ∈ Z[x] such that

p(r) = 0,

that is, if it’s the root of some single-variable polynomial with integer co-
efficients.

The set of all real algebraic numbers—often abbreviated to “algebraic real” or
“RAN”—is Ralg (R is a proper subset of the reals. They are called algebraic,
because they can be represented as roots of integral, 1-variable polynomials.For
example, the real number

√
2 is algebraic, because it is a root of a polynomial

x2 − 2: It can be represented by the root-expression

root(x2 − 2, 2),

because
√

2 is the second root of the polynomial x2 − 2. However, there is no
polynomial with integer coefficients whose roots include π or e; these numbers
belong to the complement set of “transcendental numbers”.

Alternatively and in order to avoid enumerating roots, we can replace a root-
index with an “isolating interval”. This interval encloses a single root and its

32

bounds are rational numbers with a finite representation. So,
√

2 can also be
represented by

(x2 − 2, [
7

5
,

8

5
]),

because it’s the only root of this polynomial within the interval [75 ,
8
5] = [1.4, 1.6].

Summarizing, there is always an implicit, finite, representation for algebraic
reals. One huge advantage is that Ralg is closed under arithmetic, that is, it’s
possible to add and multiply algbraic reals in their implicit form and always get
another algebraic real in an implicit form back—without rounding errors. This
is invaluable when we need to evaluate polynomials, as we will need for root
isolation with multi-variable polynomials later on. As such, for any practical
purposes we work on Ralg instead of R.

Coming back to CAD: Because the boundaries of a 1-dimensional cell are
real numbers that come from isolating roots—potentially problematic—, we
would first create the cell [−1,−1]—constructed from the polynomial x21 − 1 in
Eq. 9—as the section

x1 = root(z2 − 1, 1)︸ ︷︷ ︸
→1

(section),

because the first root of z2 − 1 is −1. Afterwards we would simplify it to

x1 = 1 (section).

In the same manner we would first create the cell (0, 1)—constructed from the
x2 − 1 and 2x1 in Eq. 9—as the sector

root(2z, 1)︸ ︷︷ ︸
→0

< x1 < root(z2 − 1, 2)︸ ︷︷ ︸
→1

(sector),

because the first and only root of 2z is 0 and the second root of z2 − 1 is 1.
Afterwards we would simplify it to

0 < x1 < 1 (sector).

Notice that we replaced the variable x1 with z in the root-expressions. The
choice of z is arbitrary—it just shouldn’t appear anywhere else—and by con-
vention this is done to highlight that z in the root-expression has nothing to do
with x1 anymore. In practice, we

33

2.4.3 Delineability of lower-level cells

Before we present the actual lifting procedure, it is useful to know what property
lifted cells have to satisfy. The main property that we want to have satisfied
by the final constructed cells is this: Each cell must be sign-invariant for the
initial input polynomials; for each input polynomial every point in a cell must
produce the same sign, when plugged into the polynomial.

However, before we start to explain the lifting formally, we need the defini-
tion of delineability, that will ensure, that lifting a cylindric level-k-1 cell in to
several cylindric level-k cells is possible, and the formal definition of a section
and sector, which will allow us to algebraically represent a cell.

For the definition of “delineability” we need the notion of a cylinder. We
use the definition of a cylinder from [McC84, p.50].

Definition 2.18 (Cylinder over lower-dimensional space). Given a con-
nected space S ⊆ Rn−1, we call

Z(S) := S × R

the cylinder over S.

A cylinder as defined in Def. 2.18 takes a given level-n− 1 CAD-cell, involving
only the first n−1 axes, and stretches it into positive and negative infinity along
a new, n-th axis as we have intuitively described in Fig. 2.9 from Sec. 2.1.4.

We use the definition of delineability of a function from McCallum’s Phd
thesis [McC84, p.37] that is restated in Brown’s improvement paper [Bro01,
p.448]:

Definition 2.19 (Delineability of a function over lower-dimensional space).
A real polynomial p ∈ Z[xn1] is delineable over a space S ⊆ Rn−1 if the two
following properties hold:

1. The set of real roots of p lying in the cylinder over S can be defined
by the range of k continuous real functions

f1, f2, . . . , fk : S → R,

which map from S to R, with k ≥ 0 and

∀αn−11 ∈ S : f1(αn−11) < f2(αn−11) < . . . < fk(αn−11),

where point αn−11 := α1, . . . , αn−1.

2. For each fi there is an integer mi ≥ 1 such that we have the same
multiplicity mi of the root fi(α

n−1
1) at p(αn−11 , xn) for every point

αn−11 ∈ S.

34

4 3 2 1 0 1 2 3 4
x, level-1

2

1

0

1

2

y,
 le

ve
l-2

f1

f2

f3

)(

Figure 2.17: Qualitative root plot of level-2 polynomials x2 + y2− 2 and xy− 1,
that are delineable over a level-1 cell (0, 1). We see a cylinder over this cell and
three continuous real functions f1, f2, f3 that map the points of the cell to the
real roots of the polynomials lying in the cylinder.

The definition of delineability in Def. 2.19 is a formal way to state the condi-
tions under which we will be able cut the cylinder over a level-n−1 CAD-cell S
(formally S×R) into a stack of level-n cells. It describes a relationship between
this level-n − 1 cell S and a level-n polynomial p that makes this construction
possible. It states that there must exist functions, called fi which map from
the cell S to the roots of p inside the cylinder over S. These functions are not
allowed to overlap in their range. It also states that for each function fi all the
points in its range, correspond to roots of p with the same multiplicity. Another
way to phrase these delineable conditions is that no matter which level-n − 1
point we choose from the cell, the (1-variable) poly p at that point has the same
number of roots in the same order and each root has the same multiplicity.

A qualititative example can be found in Fig. 2.17. There we have a level-
k − 1 cell and the functions f1 to f3, which map points of this cell to the roots
of a polynomial without overlap; actually, we look at the roots of two delineable
polynomials, but this doesn’t change the the first property of Def. 2.19. For
example, if we look at the segment of all the points the function f1 maps to—
this set of point is called the range of f1—, then the multiplicity of the root of
the polynomial at each of these points is 1. The same holds true for functions
f2 and f3, and refers to the second property of Def. 2.19.

35

4 2 0 2 4
x, level-1

3

2

1

0

1

2

3

y,
 le

ve
l-2

)(

Figure 2.18: Qualitative root plot of level-2 polynomial x2 + y2 − 2, that is not
delineable over a level-1 cell (−2, 0).

An example for a polynomial that is not delineable on a cell can be found in
Fig. 2.18. There cannot exist any real, continuous function to map the points
within the level-1 cell to the roots of the polynomial, because in the interval
(−2,−

√
2) on the x-axis there are no roots along the y-axis to point to. Also,

the multiplicity of the root at coordinate x = −
√

2 is 2—a double root—whereas
the roots with an x-coordinate within (−

√
2, 0) would have a multiplicity of 1.

Furtheremore, the required functions f1 and f2 would overlap at x-coordinate
−
√

2.

2.4.4 Sections and sectors analytically

The notion of delineability lets us define—now precisely—what sections and
sectors [McC84, p.37] are:

Definition 2.20 (Section/Sector over a space). Given a real polynomial
p ∈ Z[xn1] that is delineable over a space S ⊆ Rn−1, then for each fi of the
k defining, continuous functions from Def. 2.19

f1, f2, . . . , fk : S → R,

the graph of fi is called an p-section, or simply section, and the region
between two consecutive sections is called a p-sector, or simply sector.

The definition Section in Def. 2.20 is the formal way to define what will become
the boundaries of our CAD cells.

We use these functions fi—for a section—and conscutive pairs (fi, fj)—for
sectors—for our representation of the CAD-cells. In Fig. 2.17 we see that we can

36

extend the level-k−1 cell into an cylinder. The roots of the involved polynomials
cut this cylinder into sections and the spaces inbetween become sectors. Each of
these sections and sectors—called “cell components”–appended to the level-k−1
cell makes up a new level-k cell. So, a section is defined by a single function
and a sector is defined by two—although a sector can also have −∞ and +∞
bounds. For example, if we start with a level-1 cell

[0 < x1 < 1︸ ︷︷ ︸
sector

]

as in Fig. 2.17, we can formally represent the level-2 cell that corresponds to
the segment at the range of f1 with

[0 < x1 < 1︸ ︷︷ ︸
sector

, x2 = f1(x1)︸ ︷︷ ︸
section

]

and the level-2 cell that lies in between the segments of f1 and f2 with

[0 < x1 < 1︸ ︷︷ ︸
sector

, f1(x1) < x2 < f2(x1)︸ ︷︷ ︸
sector

].

Similarly, we represent the level-2 cell that lies above the segment of f3 with

[0 < x1 < 1︸ ︷︷ ︸
sector

, f3(x1) < x2 < +∞︸ ︷︷ ︸
sector

].

An interesting trick is used to find such functions f1 to f3, that map points
within a cell into points that are roots of polynomials: Use the polynomials
themselves; they already contain an suitable—although implicit— mapping to
their roots.

2.4.5 Full root expressions

In Fig. 2.17 we see that p(x, y) := x2 + y2 − 2—whose root plot is the circle—is
a suitable representation for the circle segments which f1 and f2 are pointing
to. Once we plug in and fix a value for the x variable, we get a polynomial in
y with two roots. The first root—hypothetically root index 1—always lies on
the lower segment of the circle and the second—hypothetically with root index
2—always lies on the upper segment.

This suggest to represent mappings like f1 or f2 by a so-called (multi-
variable) “root-expression”, an extension of the single-variable-root-expressions.

Definition 2.21 (Root-Expression). Given an integral, multi-variable poly-
nomial p(x1, . . . , xn) ∈ Z[xn1] and a positive integer idx ∈ {1, . . . , degxn

(p)},
we call the pair

root(p(x1, . . . , xn), idx)

a (multi-variable) root-expression.
It is evaluated by plugging a point (α1, . . . , αn−1) ∈ Rn−1, into the poly-
nomial p:

q(xn) := p(α1, . . . , αn−1, xn) ∈ Z[xn].

Then the evaluation result is either the real number represented by the

37

single-variable root-expression (see Def. 2.16)

root(q(xn), idx),

or “undef” if q(xn) has no root with index idx.

A root-expression with a single variable is used to represent a single real number—
an algebraic real to be precise—while a (multi-variable) root-expression as in
Def. 2.21 is used to represent a function

f : Rn−1 → R, f(x1, . . . , xn−1) 7→ root(p(x1, . . . , xn−1, xn), idx)),

from a point to an algebraic real. function of the first variables x1, . . . , xn−1.
In the context of CAD we use a multi-variable root-expression to represent

sections and the boundaries of sectors, which are also sections. This works
because by construction a level-n polynomial p is delineable over any level-n−1
cell. If p is delineable, it has the same number of roots in the same order “on
top of” every point within the level-n − 1 cell. In Fig. 2.19 for example, the

3 2 1 0 1 2 3
x, level-1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y,
 le

ve
l-2

root 1

root 2

)(

Figure 2.19: Qualitative root plot of level-2 polynomial x2 + y2 − 2, which is
delineable over a level-1 cell (0, 1). At coordinate x = 0.5 this polynomial has
two roots along the level-2 y-axis.

polynomial p(x, y) := x2 + y2 − 2 has two roots in the same order on top of
every point within the visualized level-1 cell (0, 1). Analytically, if we plug in a
point from this cell, say 0.5, we get the single-variable polynomial

p(0.5, y) = 0.52 + y2 − 2 = y2 − 1.75, (10)

whose first root −
√

1.75—think root-index 1—lies on the lower circle segment
and its second root

√
1.75—with root-index 2—lies on the upper segment. So,

38

the root-expression
root(p(x, y), 1)

will refer to the lower circle segment and we can represent, for example, the
level-2 cell within those two circle segments by the sequence

[0 < x < 1︸ ︷︷ ︸
level-1 sector

, root(p(x, y), 1)︸ ︷︷ ︸
f low(x)

< y < root(p(x, y), 2)︸ ︷︷ ︸
fhigh(x)︸ ︷︷ ︸

new level-2 sector

].

Summarizing and ignoring the fact that we use root-expressions as implicit
representation for functions, a cell is represented as a sequence of section or
sector constraints, one for each variable xi:

constant < x1 < constant (sector)

f low2 (x1) < x2 < fhigh2 (x1) (sector)

x3 = f3(x1, x2) (section)

f low4 (x1, x2, x3) < x4 < fhigh4 (x1, x2, x3) (sector)

. . .

xn = fn(x1, . . . , xn−1) (section)

Here the (dynamic) bounds of variable xi depend on functions of variables
x1, x2, . . . , xi−1.

2.4.6 A cell represented by a logical formula

As an aside: We want to use a cell as a logical formula in the context of Satis-
fiability Modulo Theories (SMT) (see Sec. 3), so we need to convert this cell’s
representation into a one.

Definition 2.22 (Defining formula). Given a CAD-cell as a sequence of
cell components

[Comp1, Comp2, . . . , Compn],

each a section or a sector, we call

n∧
i=1

Compi

the defining formula of the cell. If Compi is a section, we have

Compi := xi = fi(x1, . . . , xi−1),

and if Compi is a sector, we have

Compi := f lowi (x1, . . . , xi−1) < xi ∧ xi < fhighi (x1, . . . , xi−1)

Fortunately, the translation is quite simple: We just have to separate out each
(in-)equality and combine these with the logical AND-operator ∧, expressing
that all these constraints have to hold simultaneously.

39

2.4.7 A single lifting-step

A “lifting-step” creates the next section or sector components of a cell. In
other words, if we have a level-k − 1 cell, which has constraints for variables
x1, . . . , xk−1, we create the constraint for the next variable xk.

In order to define lifting formally, we first need the notion of a lifting-basis,
a term introduced by Brown [Bro05, p. 4].

Definition 2.23 (Lifting-basis). Given a level-k − 1 CAD-cell S ⊂ Rk−1,
a point (α1, . . . , αk−1) ∈ S within that cell, and the bucket Pk of level-
k polynomials from the projection (Def. 2.14), we call the set of single-
variable polynomials

{p(α1, . . . , αk−1, xk) | p(x1, . . . , xk) ∈ Pk}

the lifting-basis for cell S.

A lifting-basis as in Def. 2.23 is a preparation to isolate and compare roots—
that’s what lifting does. To construct it we select a level-k − 1 cell and an
arbitrary k − 1 dimensional point within it. Then we take all the projection
factor polynomials from the next level k and plug that point into every of those
polynomials. The result is a set single-variable polynomials that only mention
the last variable xk.

For example, given the level-1 cell (0, 1), a point α = 0.5 ∈ (0, 1) within it,
and the level-2 polynomials

P2 = {x2 + y2 − 2, xy − 1 },

we get the following lifting basis:

{(0.5)2 + y2 − 2, 0.5 · y − 1 }

Analogous to difference between a projection-step and the projection as the
final result, we define a single-lifting step in a notation more formal than Mc-
Callum [McC84, p. 43].

Definition 2.24 (Lifting-step). Suppose we have a level-k − 1 CAD-cell
S ⊆ Rk−1 as a sequence

[Comp1, Comp2, . . . , Compk−1]

of section or sector cell components and point (α1, . . . , αk−1) ∈ S within
that cell. Let that cell S be order-invariant on level-k− 1 projection factor
bucket Pk−1 and let the projection factor bucket of level-k be

Pk = {p1, . . . , pl},

containing l many level-k polynomials.
A lifting-step works as follows:

40

• Compute lifting-basis of S with respect to Pk.

{p1(αk−11 , xk), . . . , pl(α
k−1
1 , xk)}.

• Isolate all the real roots of each polynomial in the lifting basis and
represent them as (single-variable) root-expressions. Let

root(pi1(αk−11 , xk), idxi1) < . . . < root(pir (αk−11 , xk), idxir),

be those roots, ordered from smallest to highest, where i1, i2, . . . , ir ∈
{1, . . . , l} identifies the polynomial a root belongs to.

Then the cell components for level-k are

Componentsk := {
−∞ < xk < root(pi1(xk1), idxi1), (sector)

xk = root(pi1(xk1), idxi1), (section)

root(pi1(xk1), idxi1) < xk < root(pi2(xk1), idxi2), (sector)

xk = root(pi2(xk1), idxi2), (section)

. . .

xk = root(pir (xk1), idxir), (section)

root(pir (xk1), idxir) < xk < +∞, (sector)

},

and the lifted, level-k CAD cells—the lifting-step result—are

{ [Comp1, Comp2, . . . , Compk−1, Compk] | Compk ∈ Componentsk}.

The lifting-step as in Def. 2.24 is formally complicated but conceptually simple.
We select point within a level-k − 1 cell and plug it into the polynomials of
the level-k projection factor bucket Pk (see Def. 2.15), our lifting-basis. Then
we isolate the real roots of those resulting single-variable polynomials and sort
them from lowest to highest. The result of root isolation are algebraic reals
represented by singl-variable root-expressions of the form

root(pi1(αk−11 , xk), idxi1).

The reason, why we use these indexes i1, is to keep track of the multi-variable
polynomial a root belongs to. We do this to restore the original polynomial in
the root-expression after sorting, like

root(pi1(xk1), idxi1),

where the point α is not plugged in. Each of those multi-variable root-expressions
becomes a section and two consective ones become bounds of a sector. So, the
result of lifting a single level-k − 1 cell are several level-k cells. Notice that
the root-isolation of the lifting basis is only needed to compute the consecutive
order among the polynomials in Pk with all their root indexes.

41

ak 1
level-k 1

3

2

1

0

1

2

3
le

ve
l-k

Figure 2.20: Qualitative root isolation. We plug a level-k − 1 point into all
level-k polynomials and isolate and compare their roots at that point—along
the vertical line through αk−1.

2.4.8 The full lifting

The full lifting, that creates a full decompostion of Rn, is then obtained by
applying the lifting step on each level from the bottom to the top.

Definition 2.25 (Lifting). Given a projection factor set separated into
buckets P1 to Pn of same-level irreducible polynomials, construct the fol-
lowing sequence of CAD-decompositions:

1. D1—ord-inv on R1 by base-case-construction using P1

2. D2—ord-inv on R2 by lifting each cell in D1 using P2

3. . . .

4. Dn−1—ord-inv on Rn−1 by lifting each cell in Dn−2 using Pn−1

5. Dn—sign-inv on Rn by lifting each cell in Dn−1 using Pn

Then Dn is the final full decomposition of Rn that is sign-invariant with
respect to P1 to Pn. Furthermore, the decompositions D1 to Dn−1 contain
the “intermediate cells”.

The notation in Def. 2.25 is adapted from Brown’s improvement paper [Bro01,
p. 451]. In using the projection by Collins [Col75] it suffices to repeat the
lifting-step as in Def. 2.24 for each bucket P2 to Pn in that order, because all
the intermediate cells only need to be sign-invariant.

42

2.4.9 Order-invariance for McCallum-Brown CAD

However, when using the smaller and faster projection by McCallum [McC84]
and its improvement by Brown [Bro01], the intermediate cells need to be what is
called “order-invariant”. This is a stronger property in the sense that if a CAD-
cell is order-invariant, it will automatically be sign-invariant. Before defining
“order” (see Def. 2.26) it is useful to make the following observations when using
the McCallum-Brown-projection as in Def. 2.14:

• If a cell S ∈ Dk−1 is ord-inv on Pk−1, then applying the lifting step
guarantees that Dk is sign-inv but not necessarily ord-inv on Pk.

• If a cell S ∈ Dk−1 is only sign-inv on Pk−1, then applying the lifting step
does not guarantee that Dk is ord-inv or sign-inv on Pk.

The problem with the “normal” lifting-step is as follows: A sign-invariant de-
composition D1 of P1 is order-invariant on P1 [McC84, Assertion 1, p. 50]. But
applying a “normal” lifting-step only guarantees that D2 is sign-invariant on P2

but not necessarily order-invariant—the first observation. So—by the second
observation—the next lifting-step is not applicable, because it would produce
a decomposition D3 that is neither order-invariant nor sign-invariant, a useless
decomposition. “At lower levels we need order-invariance to ensure that sub-
sequent lifting steps are valid, but at the highest level there are no subsequent
lifting steps, and thus sign-invariance is sufficient.” [Bro05, p. 9].

As we have written, for the lifting to work correctly and to produce final
CAD cells that are are guaranteed to be sign-invariant, the intermediate cells
during the lifting phase must be “order-invariant”, which is a stronger property
than being sign-invariant.

Definition 2.26 (Order of a polynomial at a point). Given a real poly-
nomial p ∈ Z[xn1] and a point αn1 ∈ S from an open space S ⊂ Rn, and
let k be the smallest, non-negative (k ≥ 0) integer such that some k-th
derivative g of p does not become zero at αn1 , that is,

g(αn1) 6= 0.

Then we say that “polynomial p has order k at point αn1”

In earlier times the term “order” was used to refer to the degree of a polynomial
(Def. 2.8). Today it is used to count the number of derivative operations: when
we say that “g is a (partial) derivative of p of order k” or more concise “g is a
k-order partial”, we mean that g was obtained from p by successively applying
the (partial) derivative operation k times. For example, the polynomial

p(x, y) := x2 + y2 − 2, (11)

43

has the following partial derivatives of order k = 0, 1, 2:

p(0) : p(x, y) = x2 + y2 − 2

p(1) :
∂p

∂x
(x, y) = 2x

∂p

∂y
(x, y) = 2y

p(2) :
∂p

∂xx
(x, y) = 2

∂p

∂yy
(x, y) = 2

∂p

∂xy/yx
(x, y) = 0

Here, p(k) is called the set of all k-order partials.
Similarly, the definition of “order at a point” in Def. 2.26, adapted from

McCallum [McC84] also counts a number of (partial) derivative operations.
However, it refers to the smallest integer at which the polynomial’s derivatives
do not become zero, when we plug in the point in question. In other words, it
counts the smallest order of derivatives at which a point is not a root anymore.

For example, the polynomial p of Eq. 11 has order 0 on point (0, 0), because
already on order 0, that is p(0), we have

p(0, 0) = 12 + 12 − 2 = −2 6= 0.

Note that the 0-th (partial) derivative of p is p itself. So 0 is the smallest order
of derivatives at which the point in question is not a root.

Similarly, p has order 1 at point (1, 1): On order 0 we have

p(1, 1) = 12 + 12 − 2 = 0,

that is, it is a root of all polynomials of order 0. But because of

∂p

∂x
(1, 1) = 2 · 1 = 2 6= 0

there is a derivative of order 1 (in p(1)) at which the point in question is not a
root anymore.

As an important summary:

• A polynomial has order 0 at each point which is not a root and it has
order of at least 1 at each root.

2.4.10 Nullifying cells’ interference with order-invariance

The problem is that D1 can contain a so-called “nullifying cell”; a term intro-
duced by Brown and Košta [BK15].

Definition 2.27 (Nullifying cell). A level-k − 1 CAD-cell S ⊆ Rk−1 is
called a nullifying cell if there is a level-k polynomial p(x1, . . . , xk) ∈ Pk
such that

p(α1, . . . , αk−1, xk) = 0 for all αk−11 ∈ S

44

[0]
x, level-1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y,
 le

ve
l-2

xy = 0

Figure 2.21: Qualitative root plot of level-2 polynomial xy
!
= 0, which is nullified

over level-1 cell [0].

A nullifying cell of level-k − 1 is one where every of its points makes the
level-k polynomial zero, even though we haven’t plugged in a value for its last
variable xk. For example, plugging in the only point 0 from the level-1 cell [0, 0]
into the level-2 polynomial p(x, y) := xy yields p(0, y) = 0, that is, the resulting
polynomial is zero along the whole y-axis as shown in Fig. 2.21.

The problem with a level-k − 1 cell which nullifies a level-k polynomial is
that the polynomial is sign-invariant over this cell—it is nullfied and therefore
zero along the k-th axis—but is not necessarily order-invariant, which we need
for subsequent lifting-steps [Bro05, p. 2].

As we will see, we can restore order-invariance in many situations by adding
so-called “delineating polynomials” to the next-level bucket Pk. Whether this
is possible will greatly depend on the “dimension of the cell”.

Definition 2.28 (Dimension of CAD-cell). Given a CAD-cell S ⊆ Rn

given as the sequence

[Comp1, Comp2, . . . , Compn]

of sections or sectors. Then the number of sectors in that sequence is called
the dimension of the cell.

There is a difference between the dimension of a cell and the dimension of the
universe it lies in. In the extreme we have a single-point cell of dimension 0
that lies in the universe Rn of dimension n. We define the dimension of a cell
as the number of sectors it contains, as in Def. 2.28. Intuitively, every section
is a closed and every sector is an open inteveral along an axis so that only a

45

Pn: (i, sign)∗ (i, sign)∗ . . .

Pn−1: (i, ord) (c, sign)∗ (r, ord) . . .

. . .

P2: (r, ord) (c(c), sign)∗ (d, ord) . . .
P1: (i, ord) (d, ord) (c(c), sign)∗ (r, ord) . . .

Figure 2.22: Qualitative projection factors together with their invariance re-
quirement: i = irreducible factor of an input polynomial, c = coefficient of a
polynomial at some higher level, c(c) = coefficient of a derivative chain of only
coefficients of other higher level projection factors, c(d) = coefficient of higher
level discriminant or resultant polynomial, d = discriminant of a polynomial at
some higher level, r = resultant of two polynomials of the same higher level,
sign = sign-invariance, ord = order-invariance

sector “adds” to the dimension count. This definition works, because “cells are
analytic submanifolds and thus homeomorphic to an open ball of the appropriate
dimension” [BK15, p. 16].

Having the notion of a nullifying cell allows us to restate the difficulties with
McCallum’s lifting algorithm and the relationship between order-invariance and
nullifying cells with more clarity. Recall that by Def. 2.25 we want to lift a an
intermediate level-k−1 cell Sk−1, that is order-invariant to Pk−1 by construction,
into several level-k cells—let’s call one such cell Sk—by using the next-level
polynomials Pk. Our requirement is that these cells need to be order-invariant
to Pk for subsequent lifting-steps, unless we lift into the final level (k = n, then
sign-invarance is enough). So a lifted cell Sk, needs to be order-invariant to
each p ∈ Pk. However, here we have an exception. As Brown points out [Bro01,
p. 452] [Bro05, p. 10]: For the subsequent liftings-steps to be valid,

• order-invariance is only needed for p, if p has “a derivation as a resultant
or discriminant of other projection factors”.

This means that sign-invariance is enough for p if

• p belongs to the highest level of projection factors (k = n) or

• p has only a derivation of only coefficients of other projection factors.

These points are with ∗ in Fig. 2.22, where we see full—but only qualitative—
projection factor set separated into all levels. The level-n cells need only to
be sign-invariant to the projection factors of Pn, because these are all input
polynomials— polynomials from projecting these polynomials all have a smaller
level. On the lower levels there are discriminants, resultants and coefficients of
other discriminants or resultants. These polynomials require order-invariance
of the intermediate cells at the corresponding level. Most notably there are
also some (leading) coefficients that are derived as a chain of only (leading)
coefficients from the input polynomials. Intermediate cells need only to be sign-
invariant to these polynomials.

46

So, if pk needs only sign-invariance on Sk, then lifting a nullifying cell Sk−1—
which are by definition of the next-lower level—into a level-k cell Sk is no
problem. Then

p(α1, . . . , αk−1, xk) = 0 for all (αk−11) ∈ Sk−1,

which is then also true for all points in the cylinder over Sk−1

p(α1, . . . , αk−1, r) = 0 for all (αk−11 , r) ∈ Sk−1 × R.

So that no matter into what cells the cylinder is sliced into, every cell that
decomposition will produce a zero-sign in that polynomial p and therefore be
sign-invariant.

2.4.11 Delineating polynomials to ensure order-invariance

The situation changes when the same nullifying cell Sk−1 has to be lifted into an
order-invariant cell, because while producing zero in a polynomial makes a cell
sign-invariant, but not necessarily order-invariant. We summarize the following
remarks by McCallum and Brown:

• If the nullifying cell has dimension 0 (see Def. 2.28), that is, if it is a single
point, then we replace p by a “delineating polynomial” [Bro05, p. 3] in the
projection factor bucket Pk to restore and guarantee order-invariance;

• If the nullifying cell has a positive dimension, we check if every point in
the cylinder over that cell is already order-invariant on p. If not, then the
lifting fails and abort the McCallum-Brown CAD construction [Bro05,
p. 6].

• If a cell is not nullifying for any polynomial of the next-higher level,
then lifting automatically produces order-invariant cells of the next level.
(See McCallum’s “Lifting Theorem” [McC84, Thm. 3.2.1, p. 45] [McC84,
Thm. 3.2.3, p. 47]).

We will discuss the first two situations in more detail. First, if the nullifying cell
has dimension 0 and order-invariance for the lifted cell, then we can correct the
situation and guarantee order-invariance by introducing a so-called “delineating
polynomial” [Bro05, p. 3].

Definition 2.29 (Delineating polynomial). Given a nullifying, level-k −
1, single-point cell αk−11 ∈ Rk−1 (of dimension 0) and a nullified, level-k
polynomial

p(x1, . . . , xk) ∈ Pk with p(α1, . . . , αk−1, xk) = 0,

which has order t on α, that is, t is the smallest order of derivatives at
which α is not a root anymore. Let p(t) be set of all t-order partials and

p(t)α = { q(α1, . . . , αk−1, xk) | q(x1, . . . , xk) ∈ p(t) }

47

be these partials at point α. Then

dp(xk) := gcd(p(t)α)

is called a delineating polynomial. Furthermore dp is a level-k polynomial
that only mentions the variable xk.

The purpose of the level-k, single-variable delineating polynomial dp in Def. 2.29
is to replace the nullified polynomial p ∈ Pk of the same level and to ensure that
the cylinder (α×R) over the nullifying cell of dimension 0, that is, the line along
the k-axis in Fig. 2.21, is cut at the points, where the order of p at α is not t.

[0]
x, level-1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y,
 le

ve
l-2 order = t

order > t

order > t -1
1

y,
 le

ve
l-2

2.
0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Z

de
lin

ea
tin

g

Figure 2.23: Qualitive root plot (left) of a level-2 polynomial (vertical line)
that is nullified by a level-1 cell [0], and a qualitative, regular graph of a single-
variable, delineating polynomial (right). The polynomial one the left has order t
for all points along the vertical line except for the two marked ones. Notice that
the level-2 coordinates of the roots on the right are the same level-2 coordinates
of the points on the left where the order is greater than t.

This is shown in Fig. 2.23. We know that p has order t at almost all points
of that cylinder, but at finitely points it may have a higher order [Bro05, p. 3].

Each of such points is a common root of the t-order partials p
(t)
α —otherwise

such a point would have order t—and because dp(xk) is the greatest common
divisor polynomial of these partial derivatives has precisely those common roots
as its roots. And because dp replaces p in Pk and the lifted level-k cells are split
according to the roots of polynomials in Pk, they will be split at those points,
where the order is higher. Thus, the order will be the same in each lifted cell,
and order-invariance of these level-k cells to Pk can be guaranteed.

Second, if the nullifying cell has a positive dimension and there is a possibility
that the lifted cells may not be order-invariant, then there is nothing we can
do but to check more rigorously and hope that the whole cylinder over the
nullifying cell is already order-invariant. If that’s the case, any decomposition of
that cylinder and thus any the resulting lifted cells will also be order-invariant.
This test however is costly and would require another computation intensive
invocation of a CAD algorithm [Bro05, p. 6]. Brown suggests to use a faster, but

48

incomplete test algorithm that may sometimes fail to prove that the cylinder is
order-invariant even though it is [Bro05, p. 7]. For our purposes, we simply abort
the CAD construction when we encounter nullifying cell of positive dimension.

As an important summary:

• After using McCallum projection, or McCallum-Brown projection, the
lifting can fail when there is a nullifying cell of positive dimension.

2.4.12 When order-invariance can always be ensured

McCallum noticed that there are no nullifying cells of positive dimension when
the input polynomials are “well-oriented” [McC84, p. 92].

Definition 2.30 (Well-oriented polynomial). A polynomial p ∈ Z[xn1] with

p(xn−11 , xn) := pk(xn−11) · xkn + . . .+ p1(xn−11) · x1n + p0(xn−11) · x0n,

where the solution space of the system of zero-equations with the coeffi-
cients

pk(xn−11) = . . . = p1(xn−11) = p0(xn−11) = 0

has dimension 0, is called well-oriented.

So for the subset of well-oriented polynomials his CAD algorithm is complete
and does not fail. The formulation of the well-oriented-definition in Def. 2.30 is
adapted from Brown [Bro05, p. 453]. McCallum noted that all polynomials up
to level 3, that is, with three or less variables, are automatically well-oriented
[McC84, p. 92].

This concludes our description of a full Cylindrical Algebraic Decomposition.

2.5 Single Cylindric Algebraic Cells

The SMT solving framework NLSat—for the “Non-linear theory over the reals”—
by Jovanović and de Moura [JM13] was created to check if a Boolean combina-
tion of polynomial (in-)equalities is satisfiable. It inspired a special application
of CAD, namely, to construct a single cell around a point. Roughly, the main
idea is to guess a potentially satisfying point and if it turns out to be an infeasi-
ble point—one that does not satisfy all polynomial constraints—, to generalize
that to a region of infeasible points, so that one may not guess any point within
that region again.

While Jovanović and de Moura provided the first single-cell-construction-
algorithm, the problem and the benefits of a single cell construction have been
further and more intensively studied by Brown. One of his results was a more
efficient algorithm to construct “open CAD-cells” [Bro13], which have the same
dimension (see Def. 2.28) as the universe they lie in. He later, generalized his
improved construction with Košta, to arbitrary, regular CAD-cells [BK15] and
called this algorithm “OneCell”. In the following we discuss this “OneCell”
construction.

49

2.5.1 Construct a single cell around a single point

Roughly, the main task of OneCell is the following: Given a (finite) set of real
polynomials P ⊂ Z[xn1] of mixed levels and a point α ∈ Rn, construct of a
single CAD-cell S, that is sign-invariant on P , around α, that is, the point
α ∈ S should be included in S. Furthermore, because returning the single-point
cell S = {α} would be a trivial solution to the stated problem—because such
a cell is a valid CAD-cell—, there is another requirement that this cell should
be as big as possible, namely, at least as big as the corresponding cell around
the same point in a full McCallum-CAD-decomposition [BK15, Item 2,p. 16].

Even though we can use CAD without SMT to find solutions for the input
constraints, mixing SMT with CAD has one main advantage:

• Normal SMT solvers are highly optimized to find and use only the rele-
vant input constraints through reasoning in the Boolean abstraction. They
would use CAD mostly on a subset of the input constraints to check if a
subset is satisfiable. In contrast, NLSat uses CAD to explain and gener-
alize an unsatisfiable subset of constraints. Nevertheless, using CAD with
as few constraints as possible can save a lot of computation time, because
fewer constraints mean fewer polynomials and possibly fewer polynomial
variables to process. This is important, because a full CAD’s computa-
tion time grows doubly-exponential—and therefore scales badly—in the
number of variables [BD07].

So we can replace computing one large CAD instance with computing several
but much smaller instances.

And even though we can use SMT with a full decomposition CAD algorithm
that simply selects the single cell around the point in question, mixing SMT
with a specialized single-cell-construction has two main advantages:

• Compared to a full composition, constructing a single cell requires less pro-
jection factors to be computed in the projection-phase—as we will explain
further in this section—and therefore much less computation time. And
it only ever needs to lift a single cell in the lifting-phase. Actually, instead
of extending a lower-level cell into a higher-level cell through lifting, we
will use a highest-level, all-encompassing cell and make it appropriately
smaller and smaller.

• Compared to a full decomposition, constructing a single cell can result
in a larger cell—as we will see further in this section—and a“larger cell
means a stronger generalization” of an infeasible point [Bro13, p. 1].

2.5.2 The OneCell algorithm

We implemented the OneCell algorithm as presented by Brown and Košta
[BK15]. Because the pseudocode for this algorithm is several pages long, we
refrain from restating it here in full detail and refer to their publication. In
brief, OneCell works as follows: We start with a large, all-encompassing, sin-
gle CAD-cell that covers the whole real space Rn. We then process the input
polynomials one by one and “merge” them into cell, while we ensure that our
single cell stays sign-invariant to the polynomials processed so far and contains
the point α. Notice that the initial Rn-covering cell ensures this: It can be

50

seen as sign-invariant to the empty poly-set and it contains—since it contains
all points—the point α. To “merge” a polynomial we check whether its roots
cross through our cell. If they do, we shrink our cell appropriately along several
dimensions so that these roots become the new cell’s bounds—recall that the
roots of polynomials make up the bounds of a CAD-cell—and sign-invariance
is ensured. Brown and Košta call this a “refinement”. The result is a single
CAD-cell around point α that is sign-invariant to all input polynomials.

The advantages of this OneCell algorithm can be conveyed both algebraically
and geomtrically. First, we present the advantages algebraically: OneCell uses
a McCallum-Brown projection operator as for a normal CAD (see Def. 5.2),
which computes leading coefficients, discriminants and resultant, and builds up
a projection factor set separated into level buckets (see Def. 2.15. However,
because this algorithm processes and projects the input polynomials not all at
once but one after the other, we can avoid a lot of resultant computations—
this is the major reason in the computation time reduction. Recall that in
a normal CAD projection-step we take all polynomials of a certain level and
compute—among the coefficients and discriminants of each polynomial—the
resultant between any two pairs of those polynomials. This means that if we
have k polynomials in that level, we will compute O(k2) many resultants for
that level. In later projection-steps we compute the pairwise resultants of those
resultant and so forth, which is particularly costly.

Pn: p∗1

. . .:

Pk: q∗1 q∗2 i

P2: r1 r∗2 res(q1, i)
1.,∗ res(q2, i)

3.

P1: s∗1 res(r2, res(q1, i))
2. . . .4.

Figure 2.24: Qualitative resultant computation order of the projection factor set
for a new input polynomial i of level k. We compute the resultant of i —and its
descendents—against the marked polynomials on the same level in a depth-first
manner. At each level there are at most two marked polynomials—representing
the cell bounds at that level—to compute the resultant against—except for P1,
where no further resultant computation is needed.

In the OneCell context, we also compute a projection factor set level by
level, which we visualize in Fig. 2.24. However, we don’t start at the highest
level, but at the level k of the next input polynomial—named i in the figure. At
each level, we have at most two polynomials that are part of the cell’s bounds—
marked with ∗ in the figure—,assuming that we already processed some input
polynomials like p1, q1, q2, r1, r2, s1. We then compute the resultant of the next
input polynomial i only against the marked polynomials of the same level in a
depth-first search manner.

51

ak 1
level-k 1

ak

le
ve

l-k main point

old upper
input poly

old lower

Figure 2.25: Qualitative root isolation when we process a a new input polyno-
mial of level k, but already have existing level-k cell bounds. This polynomial
becomes a new bound if one of its roots, isolated at level-k (along the vertical
line), lies closer to αk than the existing bounds.

In more detail: We assume that we already have processed some input poly-
nomials, created an intermediate projection factor set and have marked those
polynomials at each level that are involved in the representation of our sin-
gle cell. When we process the next input polynomial i of level k, we add it
to our projection factor set at level k. We compute its leading coefficient, its
discriminant—we ignore those two for in Fig. 2.24 for simplicity—and the re-
sultant against the marked polynomials q1 and q2, but we don’t add them to
projection factor set just yet. We first check if we have to “refine” the cell at
level k, that is, we check if the current input polynomial becomes one of the
cell’s bounds. Let’s assume that cell’s component at level k is a sector so that
the two marked polynomials are used to represent the sector’s lower and upper
bounds as

root(q1(x1, . . . , xk−1, z), idxq1)) < xk < root(q2(x1, . . . , xk−1, z), idxq2).

Recall that this is our way (see Multi-variable root-expression in Def. 2.21) to
represent a cell’s bounds for the k-th variable. These bounds are more intuitively
written in the form

f low(x1, . . . , xk−1) < xk < fhigh(x1, . . . , xk−1).

We do this refinement check by isolating the roots of the bound polynomials
and input polynomials along the xk-axis. In Fig. 2.25 we see how this works:
We plug the first k− 1 components of our point α into the polynomials, isolate
their roots—visually where they cross the vertical line over αk−1—and check

52

if any of the input-polynomial’s roots lies closer to the k-th component of α
than the cell’s existing bounds. These existing bounds are isolated roots of the
marked polynomials and correspond to the evaluated root-expressions

root(q1(α1, . . . , αk−1, z), idxq1)︸ ︷︷ ︸
∈R

) < αk︸︷︷︸
∈R

< root(q2(α1, . . . , αk−1, z), idxq2)︸ ︷︷ ︸
∈R

.

If a root of the input polyomial i indeed lies closer, this i becomes a new bound.
In Fig. 2.25 one root of the input polynomial i lies closer to αk than the upper
bound q2, so this i replaces the q2 as the new upper bound; and the cell becomes
smaller. This is called a “refinement”.

We finish our explanation of Fig. 2.24: After this refinement, the resultants
we computed—and the leading coefficient and the discriminant for that matter—
is processed as if it was an input polynomial. But since the resultant has always
a lower level, we repeat the process at a lower level. This why we can view this
form of processing input polynomials as a depth-first search variant to construct
the projection factor set.

In total we will compute at most two resultants for each input polynomial
at a certain level. So, if we have k polynomials in that level, we only compute
O(2 · k) many resultants.

• Computing the resultant of a new input polynomial against the (at most
two) cell bound polynomials of the same level, is sufficient only because
we construct a single cell.

For a full CAD we would still have to compute the resultant between any two
pairs of polynomials at the same level, even if we processed the input polyno-
mials one by one.

To understand why at most two polynomials at each level are necessary to
represent a cell’s bounds, recall that a cell is a sequence of cell components—
each a section or a sector (see Def. 2.20). The bounds of a level-k component
are always represented by polynomials of the projection factor set at level k.
So these bounds involve the following number of polynomials in the following
cases:

• 0 polynomials if the component is a sector

−∞ < xk < ∞

with only infinity bounds.

• 1 polynomial if the component is either

– a sector

−∞ < xk < root(p(xk1), idx), or

root(p(xk1), idx), < xk < +∞

with one polynomial bound and one infinity bound, or

– a section
xk = root(p(xk1), idx),

which always has only one polynomial bound, or

53

– a sector

root(p(xk1), idx1) < xk < root(p(xk1), idx2),

with the same polynomial in both bounds but with different root
indices.

• 2 polynomials if the component is a sector

root(p(xk1), idx) < xk < root(q(xk1), idx),

with two polynomial bounds.

3 2 1 0 1 2 3
x, level-1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 le

ve
l-2

a

P1

P2
P3 P4

)(

(a) We see the small, constructed cell
around point α when the resultants are
computed between all pairs of polynomi-
als p1 to p4 (marked points). Here, (0, 1)
is the level-1 bound.

3 2 1 0 1 2 3
x, level-1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 le

ve
l-2

a

P1

P2
P3 P4

)(

(b) The construced cell around α when
the polynomials p1 to p2 are processed in
that order. The cell is now larger, because
res(p3, p4) is not computed. Here, (−1, 1)
is the level-1 bound.

Figure 2.26: Qualtitive root plot of 4 polynomials p1 to p4. We compare the cell
size when computing all pairwise resultants (regular CAD) versus computing
resultants against cell bound polynomials (OneCell). In both cases P1 and P2

are the cell’s level-2 bounds.

As we mentioned before, the advantages of the subsequent processing of the
input polynomials, and the fact that we compute the resultants only against
the two marked polynomials that represent our single cell bounds, can also be
shown geometrically. This is visualized in Fig. 2.26, where we assume to have
polynomials named p1 to p4 of level-2. On the left we compute the resultants
like in a full CAD algorithm (see Sec. 2.2). Recall that resultant between two
polynomials of level-k is a polynomial of level-k− 1 whose roots indicate where
the two intersect (see Def. 2.10) and forces us to create more but smaller in-
termediate level-k − 1 cells to ensure a valid full CAD. We can see that the
polynomials p1 and p2 represent the bounds at level-2, that is, along the y-axis.
We can also see that the resultant between p3 and p4 makes up the lower bound
to the left of the cell at level-1, that is, along the x-axis, and that the resultant
between p1 and p2 makes up the upper bound to the right. In the case of a full
CAD the resultant between p3 and p4 is necessary to ensure that all cells in the
cylinder over the level-1 cell are sign-invariant. However, the main requirement

54

for a cell is that it should be sign-invariant to all input polynomials and be-
cause p3 and p4 do not cross the cell, the cell can actually be larger and still be
sign-invariant. Actually it can be as large as on the right of Fig. 2.26. There we
process p1 first, which becomes the lower bound at level-2. Then we process p2,
which becomes the upper bound at level-2. We compute the resultant of those
two, which shrinks the cell at level-1 to the highlighted intervall. Afterwards we
process p3 and compute its resultant against p1 and p2. However, the bounds
inflicted by the resultant on level-1 lie outside of the cell. So they have no effect
on our cell. And because p3 lies outside of the cell on level-2 as well, it does not
become part of the level-2 bounds. This is why when we process p4, we only
compute the resultants against the still active cell bounds p1 and p2, but not
against p3. And finally because p4 and the bounds inflicted by its resultants lie
outside of the cell on level-2 and level-1, they have no effect on our cell. So p4
does not become part of the level-2 bounds as well. The main improvement of
OneCell is the following:

• Some resultants may not be computed and the constructed cell can be
larger compared to a full CAD.

55

3 Model Constructing Satisfiability Calculus

The Model Constructing Satisfiability Calculus (MCSAT) by Jovanović and
de Moura [MJ13] is a relatively new approach to tackle Satisfiability Modulo
Theories (SMT) problems in a more efficient manner than previous ones.

3.1 SMT formulas over Non-linear Real Arithmetic

Solving SMT problems is concerned with checking if a Boolean combination of
constraints is satisfiable. When the constraints are polynomial (in)equalities,
such a combination looks as follows:

x = 2︸ ︷︷ ︸
constraint

∧ (x2y + 2︸ ︷︷ ︸
poly

< xy︸︷︷︸
poly︸ ︷︷ ︸

constraint

∨ ¬(y2 ≥ 3︸ ︷︷ ︸
constraint

)). (12)

SMT solving is related to mathematical logic and theorem proving, and
therefore uses a lot of vocabulary from that field. It also helps us to describe
the construct in Eq. 12 with more precision. In mathematical logic terms: In
SMT solving we check if a first-order, quantifier-free formula over a specific
theory has a model.

3.1.1 Non-linear polynomial formulas

The construct in Eq. 12 is a formula over the theory of Non-linear Real
Arithmetic (NRA)—our theory of choice for this thesis. However, to simplify
the presentation and processing of such a formula, we assume for the rest of
this thesis that it is transformed into an equivalent formula that only contains
polynomial (in)equalities against zero as in:

F (x, y)︸ ︷︷ ︸
Name + free variables

:= x− 2 = 0︸ ︷︷ ︸
atom

∧ (x2y + 2− xy︸ ︷︷ ︸
term

< 0︸︷︷︸
term︸ ︷︷ ︸

atom

∨ ¬(y2 − 3 ≥ 0︸ ︷︷ ︸
atom

)).

(13)
Using vocabulary from mathematical logic, an SMT-formula like the one in

Eq. 13 has the following characteristics:

• It is a “formula”, that is, it is built using logical/Boolean connectives like
∧,∨,¬ if it contains more than one atom. We represent a formula by a
capital letter F or G.

• It is “quantifier-free”, that is, it mentions no quantifier like ∃ or ∀; all its
variables like x and y are unbounded and free. We call these “theory vari-
ables”, because the values they accept depend on the underlying theory.
We use names like x, y and z.

• It is first-order, which means:

– Its smallest parts that can evaluate to truth values, called atomic
formulas or “atoms” for short, can have structure and may not merely
be Boolean variables.

56

– Its free variables like x and y only accept values from the “domain
of discourse” from the specified theory.

• It has a specific theory, which specifies the allowed logical Boolean connec-
tives, the allowed relational symbols like < or = and their interpretations,
the allowed functional symbols like + or · and their interpretations, and
the domain for the free variables x and y, usually called the “domain of
discourse”. It also specifies the syntactic structure of the terms in the
atoms. These are all things that can normally be interpreted arbitrarily
in regular first-order logic. In our SMT case we fix and use the theory of
Non-linear Real Arithmetic (NRA), which means:

– We can use any logical Boolean connectives, because there are no
restrictions here.

– The domain of discourse is the real numbers R and so the free vari-
ables in F only accept real numbers; So, they are “real variables”.

– The allowed relational symbols are =, 6=, <, ≤, > and ≥, and their
intepretation is fixed to usual interpretation with real numbers like
=R and <R. For example, 1 =R 1 and 1 <R 2 are true, and 1 =R 2
and 2 <R 1 are false as usual.

– The allowed functional symbols are +, −, · and exponentiation ·n
with a natural number, and their intepretation is fixed to usual in-
terpretation with real numbers like +R and ·R. For example, 1 +R 1
is 2 and 1 ·R 1 is 1 as usual. So, the theory prescribes the usual
arithmetic.

– The syntactic structure of the terms are fixed to polynomials with
several variables. So the theory allows to build and use (the poly-
nomial fragment of) “non-linear” functions—it could also be called
“Polynomial Real Arithmetic”.

• It has interpretations and can have a model. An interpretation contains a
domain of discourse, an assignment of the free variables in F to values of
that domain, and an assignment of the abstract relational and functional
symbols to concrete relations and functions. One interpretation can be
completely different from another in all those points.

– If an interpretation makes F true, this interpretation is called a
model. And F is called satisfiable.

– If all possible interpretations make F false, F has no model and is
called unsatisfiable.

However in our case, because the theory of NRA fixes everything except
the assignment of the free variables x and y, an interpretation—and hence
also a model—of F reduces to a variable assignment of the free variables
to real numbers. So, an interpretation of F is only different from another
in the real numbers it assigns to x and y.

SMT solving in its essence is theory agnostic and can be used with almost any
theory, even a mixture of several theories [BHM09, p. 849f]. In the abstract set-
ting we call an atomic formula an “atom”, or “constraint”. But because in this

57

thesis we restrict ourselves to the theory of Non-linear Real Arithmetic (NRA)
with the implications described previously, a particular computation time inte-
sive problem, those constraints are polynomial equalities and inequalities, which
we simply call “polynomial constraints”. Thus more precisely, we work on what
is also known as the Quantifier-Free Non-Linear Arithmetic fragment of first-
order logic (QF NRA).

3.1.2 Basic SMT vocabulary from mathematical logic

In its relation to theorem proving, SMT solving is equivalent to proving existentially-
only-quantified formulas, called the existential fragment of NRA, because

F (x1, . . . , xn) has a model if and only if ∃x1 . . . ∃xn : F (x1, . . . , xn) is valid.

In the SMT context we are guaranteed to get satisfying values for these variables
x1 to xn if the formula has a model, whereas in the theorem proving context
we may be able to prove that such satisfying values for the x’s exist without
knowing what values specifically. As an aside: In Philosophy this is known as
“knowing that” without “knowing what”.

For many theories there are “decision procedures”, that is, algorithms that
tell us, always in a finite amount of time, whether a problem has a solution or
not, or—in mathematical logic terms—whether a formula is valid or not. For
many theories there are even efficient—polynomial time—decision procedures,
although sometimes only when we restrict ourselves to constraints connected
by logical AND ∧, thereby losing some of the expressiveness. For the theory
of NRA there also exist decision procedures but to the best of our knowledge
no efficient ones. Cylindrical Algebraic Decomposition (see Sec. 2.2) is part of
many of such procedures. It was invented as part of a Quantifier-Elimination
(QE) procedure [Col75] to remove quantifiers from formulas of the form

∃x1 . . . ∃xn : F (x1, . . . , xn),

as described before, although it also works with ∀ quantifiers. As a QE method
it can be used to eliminate all quantifiers and to check such a formula for validity.
However, it is computationally quite slow. If we use it on formulas that are only
constraints connected with the logical AND, it is more efficient but still quite
slow. As described later in this section, instead of one large invocation of an
CAD decision procedure on the whole formula, we use CAD in its “raw” form
for multiple small invocations on parts of the formula, which in practice is a lot
more efficient as Jovanović and de Moura have shown in [JM13].

The main focus SMT is to extend ”ordinary” Satisfiability solving (SAT) in
its expressiveness while reusing its highly-efficient solving techniques. Ordinary
SAT solving only works on propositional, Boolean formulas. In propositional
formulas the atoms are plain propositional, Boolean variables—to be assigned
true and false—with no further inner structure. We obtain a propositional
formula from an SMT-formula like

F (x, y) := (xy < 3) ∧ ¬(xy < 3) ∧ 3x2 + 3y3 = 4 (14)

by replacing the same atoms by the same Boolean variable and different atoms
by different Boolean variables:

G(b, c) := b ∧ ¬b ∧ c. (15)

58

• This is called the Boolean abstraction of an SMT-formula.

Both have different variable assignments.

Definition 3.1 ((Propositional) Variable assignment). Given a prositional
formula G(b1, . . . , bn) with Boolean variables bi, then a (Boolean) variable
assignment is a function

ϑ : {b1, . . . , bn} → {true, false},

where the evaluation of G under this assignment

ϑ(G) = G(ϑ(b1), . . . , ϑ(bn))

is the result of replacing the Boolean variables by the assigned truth values.

We can represent a Boolean variable assignment by a sequence of the variables
or their negation. For example

[b1, b2,¬b3]

represents the variable assignment that maps b1 and b2 to true and b3 to false.

Definition 3.2 ((Real) variable assignment). Given a QF NRA-formula
F (x1, . . . , xn) with real variables xi, then a variable assignment is a function

ϑ : {x1, . . . , xn} → R,

where the evaluation of F under this assignment

ϑ(F) = F (ϑ(x1), . . . , ϑ(xn))

is the result of replacing the variables by the assigned real numbers.

We can represent a variable assignment by a sequence of real number mappings
like

[x1 → 0, x2 → 0, x3 → 1.1].

Definition 3.3 (Partial assignment). Given a QF NRA-formula F (x1, . . . , xn)
with real variables xi, then a partial assignment is a variable assignment
where some of the xi are unassigned.

As we will see, MCSAT is going to create larger and larger partial assignments
that, if the formula in question is satisfiable, will ultimately become a (full)
satisfying assignment.

Coming back to the Boolean abstraction, we can say reasoning on the Boolean
abstraction is often much faster than in the theory and sometimes sufficient to
derive unsatisfiability of the SMT-formula. With “reasoning” we mean to derive
entailed formulas—those that follow logically from the given formula—such as
the constant formula false. With

F (x, y) |= false

59

state that the left part entails the right part, that is, for every variable assign-
ment that satisfies the left part it also satisfies the right part. If we are able
to derive false, we have proven that F (x, y) is unsatisfiable, because false by
definition has no satisfying assignment. For example, in the Boolean abstrac-
tion in Eq. 15 we cannot satisfy b and ¬b at the same time. So, we derive false
by its Boolean structure alone and so prove that the SMT-formula in Eq. 14 is
unsatisfiable without every having to use real arithmetic.

The subtle difference between the entailment symbol |= and the logical
implication operator =⇒ is that the first describes a semantic relationship—
think of variable assignments—between two formulas, and the second is only a
syntactic representation of this relationship inside a formula. We also use the
|= symbol to express that a formula is valid.

Definition 3.4 (Validity of a formula). A QF NRA-formula F (x1, . . . , xn)
is valid and written

|= F (x1, . . . , xn)

if the following holds:

true |= F (x1, . . . , xn),

that is, if F evaluates to true under every variable assignment—because
the formula true is by definition true under every assignment.

In other words, a valid formula like

(x > 0) ∨ (x ≤ 0)

is “universally true”. The following insight will be used in MCSAT:

• If a formula F (x1, . . . , xn) is valid, then it logically follows from every
other formula, that is, for every formula G we can write

G(x1, . . . , xn) |= F (x1, . . . , xn).

Furthermore, because of

F (x, y) |= false if and only if |= (F (x, y) =⇒ false)

we can rephrase a question of entailment into a question of validity. So, when
you syntactically create and manipulate a formula, you use =⇒ . When you
state some semantic property of a formula like validity, you use |= .

In mathematical logic there are widely-known and used so-called normal
forms, which describe a certain syntactical shape which a formula can be trans-
formed into and from which some properties are more easily visible. A formula
is in Disjunctive Normal Form (DNF) if it has the syntactic shape of

(L ∧ L ∧ . . . ∧ L)
∨

(L ∧ L ∧ . . . ∧ L)
∨

. . .
∨

(L ∧ L ∧ . . . ∧ L),

where the big logical connectives are disjunctions—logical OR operator ∨—
and each L is a distinct literal and the number of literals in each “min-term”
(L∧L∧ . . .∧L) and the literals themselves inside it can be completely different
from another min-term. If there are zero min-terms, the formula stands for
false.

60

Definition 3.5 (Literal). A literal is either an atomic formula A or the
negation ¬A of one.

In a propositional formula an atomic formula is simply a Boolean variable and
this Boolean variable or its negation are both called a “literal”. In the context
of the theory of NRA an atom is a single polynomial equality or inequality so
that the (in-)equality

(xy < 3) and its negation ¬(xy < 3)

are both called “literals”. If a formula in DNF it is rather easy to check if it is
satisfiable. Go through each min-term and check if it is satisfiable: If we find a
single satisfiable min-term, then the whole formula is satisfiable. And checking a
min-term is much easier, because only conjunctions—logical AND operator ∧—
of literals are involved. However, converting an arbitraily syntactically shaped
formula into DNF is hard. It must be, otherwise SAT and SMT would obviously
be much easier to solve.

It the context of SAT and SMT a formula to check is usually given and
processed in a Conjunctive Normal Form—or it can be easily transformed into
this form.

Definition 3.6 (Conjunctive Normal Form (CNF)). A formula is in Dis-
junctive Normal Form (DNF) or clause-form if it has the syntactic shape
of

(L∨L∨ . . .∨L)
∧

(L∨L∨ . . .∨L)
∧

. . .
∧

(L∨L∨ . . .∨L),

where the big logical connectives are conjunctions—logical AND operator
∧—and each L is a literal and the number of literals in each “clause”
(L ∨ L ∨ . . . ∨ L) and the literals themselves inside it can be completely
different from another clause. If there are zero clauses, the formula stands
for true.

Definition 3.7 (Clause). A formula is a clause if it has the syntactic shape
of

(L ∨ L ∨ . . . ∨ L),

where each L is a distinct literal, that is, an atom A or the negation ¬A of
one. The empty clause, containing zero literals, stands for false.

A clause is satisfied if one of the literals is satisfied by a variable assignment. We
have to satisfy all the clauses at the same time in a CNF formula, which means
that we have to find a variable assignment that satisfies at least one literal in
every clause. If a formula is given in CNF, it is not easy to see and find such
a satisfying assignment. However, it is easy to see assignments which do not
satisfy this formual. Indeed

• for every single clause it is easy to see an unsatisfying, propositional partial
assignment, unless it contains an atom A and its negation ¬A, because
containing A ∨ ¬A makes the clause is universally true. Nevertheless, an
unsatisfying, partial assignment forbids possibly more (full) assignments.

61

For example, the clause

. . .
∧

(a ∨ ¬b ∨ c)
∧

. . .

inside a larger formula—with possibly more Boolean variables than a, b and
c—forbids the partial assignment {a → false, b → true, c → false}. In other
words, this clause forbids all (full) assignments that contain this specific partial
assignment. Similary, in the context of the theory of NRA, a clause like

. . .
∧

((x = 0) ∨ (y = 0))
∧

. . .

forbids all (full) assignments that contain a forbidden partial assignment that
satisfies (x 6= 0) and (y 6= 0).

Because normally we have multiple clauses inside a formula, the question of
satisfiability can be turned around to one of unsatisfiability :

• Do the combined forbidden partial assignments of the clauses forbid all
assignments?

As we will need to analyze the literals in a clause, when we have a clause

C := (a ∨ ¬b)

of Boolean variables, we say that it contains the following

lits(C) = {a,¬b}

literals. An interesting case appears when the atoms are from NRA. Then we a
clause like

C := ((xy < 3) ∨ ¬(y2 = 4)

contains the literals

lits(C) = {(xy < 3), ¬(xy ≥ 3), ¬(y2 = 4), (y2 6= 4)},

because the negation in front of an atom can be merged into the polynomial or
pulled out. That’s why for example the atom (xy < 3) represents the literal of
itself and ¬(xy ≥ 3) at the same time.

3.1.3 Resolution

A common way to generate new logically entailed formulas is called resolution.

Definition 3.8 (Resolution-step). Given two propositional input clauses

(L1
1 ∨ . . . ∨ L1

1∨︸ ︷︷ ︸
may be empty

A) and (¬A∨L2
1 ∨ . . . ∨ L2

m︸ ︷︷ ︸
may be empty

),

where one contains an atom and the other contains the negation of the
same atom, then the clause

(L1
1 ∨ . . . ∨ L1

n ∨ L2
1 ∨ . . . ∨ L2

m)

is called the resolvent, that is, the output of a resolution-step. This clause

62

does contain neither A nor ¬A, but all the remaining literals of both input
clauses.

A resolution-step combines two forbidden partial assignments. For example, the
resolution of propositional input clauses

(b ∨ a) and (¬a ∨ ¬c),

where the first forbids the partial assignment [¬b,¬a] and the second forbids
[a, c], produces the resolvent output clause

(b ∨ ¬c),

which forbids the partial assignment [¬b, c]. Intuitively, if ¬b and ¬a are forbid-
den at the same time by the first input clause, and a and c as well by the second
clause, then ¬b and c are forbidden at the same time by the resolvent clause—
with no mention of a anymore. In this last forbidden partial assignment a does
not need to be mentioned, because no matter how a is assigned, the enlarged
assignment will be forbidden by one of the input clauses: If a is assigned false,
then the enlarged partial assignment [¬b, c,¬a] is forbidden by the first input
clause; similarly, it a is assigned true it is forbidden by the second input clause.

The important part about resolution is that if C is a clause that was con-
structed by one or more resolution-steps from the clauses in a CNF-formula
F (x1, . . . , xn), then

F (x1, . . . , xn) |= C

and
|= F (x1, . . . , xn)⇔ (F (x1, . . . , xn) ∧ C) (16)

hold. In other words, the resolvent clauses follow logically from the input for-
mula and if we add these clauses to the formula, the resulting formula is still
equivalent to the original one.

Definition 3.9 (Singleton clause). A clause that contains only a single
literal

(L),

that is, a single atom A or the negation ¬A of one, is called a singleton
clause

Definition 3.10 (Empty clause). A clause that contains no single literal

()

is called the empty clause. It represents “false”.

If we have two singleton clauses either from the input formula F or derived from
one or more resolution-steps,

(a) and (¬a),

63

one with an atom and other one with its negation, then using another resolution-
step yields the empty clause (), which stands for
false (see Def. 3.7), and we have thus proven

F (x1, . . . , xn) |= false,

which means that the input formula F is unsatisfiable.

3.2 SMT solving techniques

Modern SAT solvers use a variety of sophisticated techniques and heuristics to
explore the solution search space of a propositional formula, that is, where the
variables accept the Boolean values true and false. The search space consists
of the huge but finite number of all possible Boolean variable assignments and
those techniques help to avoid enumerating them all. MCSAT enhances some of
those techniques to SMT-formulas like QF NRA-formulas, where the variables
accept real number values and thus the search space of all possible real variable
assignments becomes infinite.

The main techniques of SAT solvers on propositional formulas, which can
be summarized as ”guess-and-check”, are:

• Decide (a variable’s value).*

• Propagate (a variable’s value).*

• Analyze (a conflict).*

• (Un)Learn (a lemma).

• Backtrack—take back decisions.

The starred items are points where MCSAT particularly improves existing tech-
niques. We first select a yet-unassigned variable and guess and assign a value
for it. This is called a “decision”, and there are many heuristics to select the
next variable and its value to metaphorically have the highest impact. For ex-
ample, we can select a variable with the most occurences in clauses so that we
can satisfy many clauses with one decision.

Next, we check if a decision implies values for other variables. This is called a
“propagation”. For example, if we guess and assign a to false for the clause-form
formula

(a ∨ ¬b)︸ ︷︷ ︸
1

∧ (b ∨ a)︸ ︷︷ ︸
2

, (17)

then the first clause forces us to propagate and to assign b to false; we have no
choice, otherwise this clause would become false.

Next, after each decision and propagation we check if the currently assigned
variables lead to a conflict in some of the clauses, that is, if it makes a clause false.
If it does, we determine the decided variables and their values that are actually
involved in the conflict, because propagated variables are—by the definition of
propagation—assigned values because of our decisions on other variables. We
then determine what current (partial) variable assignment is actually forbidden.
This is a “conflict analysis”. This is another example where the clause structure

64

is useful, because we can easily recognize a conflict and the forbidden assign-
ment: If our current assignment makes all literals in a clause false, we have a
conflict and the clause itself represents the forbidden assignment. However, this
assignment could contain propagated variables and there are clever ways to use
resolution to find the decided variable culprits and their forbidden asignment.
Continuing our example from Eq. 17, having decided a to be false and propa-
gated b to false, leads to a conflict in the second clause: All literals b and a are
made false, that is, setting b to false and a to false is a forbidden partial assign-
ment. However, “analyzing” this conflict through resolution would reveal that
the actually involved decided variable is a alone and the only actually forbidden
partial assignment is setting a to false.

Next, through “analyzing” a conflict we have detected an implicitly forbid-
den partial assignment that was not directly obvious from the input formula
clauses. By using “lemma learning”, that is, adding the clause that represent
this forbidden assignment to the input formula we can make this implicit as-
signment explicit. The goal is to not to guess and try any forbidden partial
assignment ever again. Intuitively, we can view a clause as an alarm that sig-
nals when our decisions have made all of its literals false and we are in conflict.
If we have few large clauses with many literals, the signal could come very late
after having made lots of decision. The conflict may actually involve only some
of our first decisions. Thus, if we add more and shorter clauses, we can detect
earlier when we are in conflict. However, there is a trade-off because adding
clauses increases the “bookkeeping overhead” and worsens performance, and
there are many heuristics when to add a lemma clause but also when to remove
one. The added clause C is called a “lemma” because it is a formula that is
always logically entailed like a lemma in a mathematical proof:

F (x1, . . . , xn) |= C,

They don’t change the set of satisfying assignments as in Eq. 16. Three types
of clauses, that are logically entailed and that we can safely add, are:

• Any clause from the input formula. We normally guess variables and
realize that a certain clause from the input formula evaluates to false.
Thus all variables that appear in this clause form a forbidden partial
assignment and the clause represents it. However, this clause is already
part of the input formula.

• Any resolvent clause that was derived through one or more resolution-steps
(sef Def. 3.8) from input formula clauses.

• Any valid clause, that is, one that is universally true.

The final technique of modern SAT solvers is called “backtracking”. It ver-
balizes the fact that when we encounter a conflict, we have to take back some of
our (guessed) decisions on variable values. There are many heuristics on what
decisions to take back.

• If we only ever take back the last decision, this is known as “chronological
backtrack”.

• If we allow to take back two or more of our last decisions, this is known as
“non-chronological backtrack” or more appropiately “backjump”, because
we “jump back” over many decisions.

65

• If we take back one or more of our last decisions, but immediately replace
them with other decisions, this has—to the best of our knowledge—no
name yet.

3.3 MCSAT

MCSAT by Jovanović and de Moura [MJ13] enhances the following previously
discussed points from SAT and propositional formulas to SMT-formulas.

• Decide (a variable’s value).

• Propagate (a variable’s value).

• Analyze (a conflict).

First, in the context of QF NRA-formulas, MCSAT has two forms of variables:

(x2 + y2 − 1 > 0)︸ ︷︷ ︸
Boolean variable

∨ (xy − 1 = 0)︸ ︷︷ ︸
Boolean variable

On the one hand we have so-called theory variables—Jovanović and de Moura
call them model-variables—that depend on the theory in use. In our case we
use the theory of NRA and so our theory variables are real variables like x and
y that accept real numbers. On the other hand and independent of any theory,
we treat theory atoms like (xy − 1 = 0) as Boolean variables. This means that
we can guess and decide values for theory variables like x → 0, and at the
same time decide and assert that a theory atom—which we now call a Boolean
variable—like (xy − 1 = 0)→ true shall be true.

Second, having Boolean and theory variables allows us to have propaga-
tions for the Boolean variables through reasoning on the clause structure—as
in SAT—but also through reasoning in the underlying theory.

Third, having Boolean- and theory variables allows us to analyze and resolve
conflicts for the Boolean variables through reasoning on the clause structure—as
in SAT—but also through reasoning in the underlying theory.

3.3.1 A trail as an ordered, mixed-variable assignment

Jovanović and de Moura call a (partial) mixed-variable assignment, that is, an
assignment function that simultaneously assigns values to theory variables and
theory atoms (our Boolean variables), a trail.

Definition 3.11 (Trail). A trail is a sequence of Boolean decisions, Boolean
propagations, and theory decisions, and has a syntactic form like

[LD, (CE, LP), LD, x→ theory value, (CE, LP)].

If an element of the trail is a literal L, it represents a Boolean assignment:
If L is a theory atom A, we assign A to true; If L is ¬A, we assign A
to false. For literals, we use subscripts D and P to indicate whether a
literal got its value trough a decision of ours or a propagation. In case of
a propagation we also store the “explanation”, which is a clause C of the
input formula—or a logically entailed clause—that forced us to assign the

66

atom A its value. Finally, if an element of the trail is a theory assignment,
well, we have an explicit theory assignment like x→ 0.

With a trail M we can evaluate theory atoms, because it represents
three assignment functions: First, the Boolean assignment function

ϑB(A) =

true if L = A and LD/P ∈M
false if L = ¬A and LD/P ∈M
undef otherwise

that can only evaluate theory atoms that appear as decided or propagated
Boolean literals in M .

Second, the theory assignment function

ϑT (A) =

true if A evaluates to true after using the theory-assignments

to replace the free variables in A

false if A evaluates to false after using the theory-assignments

to replace the free variables in A

undef otherwise

that only uses the theory assignments in M .
Third, the combined assignment function

ϑM (A) =

{
ϑB(A) if ϑB(A) 6= undef

ϑT (A) otherwise

that first evaluates with respect to the Boolean literals in M and only if
that is not possible, does it use the theory assignments.

The name “trail” is appropriate, because its represents an assignment as a
chronological sequence of our decisions and propagations, where the order is
important, for example for backjumps.

For example, a trail like

[¬(x > 0)D, ((x > 0) ∨ (x ≤ −1)E, (x ≤ −1)P), x→ −1)]

represents the mixed-variable assignment that assigns (x > 0) to false, (x ≤ −1)
to true and x to −1.

There is an interesting case where we can fully evaluate an atom with only
the theory assignments even though not all theory variables are assigned. For
example with a trail

[x→ 0]

alone we can evaluate the atom (x · (y2−3y)z = 0 to true even though we don’t
have assigned values to y and z yet.

A trail M can be:

• consistent—For every literal L ∈ M—which implies ϑB(L) = true—the
evaluation of ϑT (L) is either true or undef but not false.

• feasible—The literals in M are satisfiable. This implies that if they contain
theory variables that are yet unassigned, then there satisfying values for
them.

67

• stable—For every literal L ∈ M we have ϑT (L) = true, that is, every
literal is “supported” or “justified” by the theory assignments. Jovanović
and de Moura call such a trail “complete”, but the term “stable” is already
in widespread use for a similar concept in an SAT variant called Answer
Set Programming (ASP).

• complete—There is a theory assignment for every free variable xi in the
input formula F (x1, . . . , xn). Jovanović and de Moura don’t use this con-
cept.

Thus, an inconsistent trail M has a literal L ∈ M where ϑT (L) = false, an
infeasible trail has literals in M that taken together are unsatisfiable, an un-
stable trail has a literal that is not justified by the theory assignments and an
incomplete, and in an incomplete trail a theory variable is still unsassigned. The
final result of the MCSAT algorithm is then a consistent, feasible, stable and
complete trail that satisfies the input formula.

The main task during the construction of this trail is to keep the theory
variables and the Boolean variables consistent and feasible in that they don’t
contradict each other. For example, the trail

[(x > 0), x→ 0]

is inconsistent and contradicts itself in that the Boolean literal asserts that x is
positive, but the theory assignment asserts that x is zero. However, as Jovanović
and de Moura point out, consistency on the Boolean variables in a trail does not
mean that the trail literals together are satisfiable [JM13, p. 2]. For example,
the trail

[(x ≤ 0), x→ 0, (y ≤ 0), (x+ y > 0)]

is consistent in every literal—because y is yet unassigned—,but the literals to-
gether are unsatisfiable, because x and y cannot be both smaller than zero
and have a sum that is above zero. A satisfiable trail is called “feasible” to
distinguish it in the wording from the satisfiability of the input formula.

68

3.3.2 The MCSAT algorithm

The MCSAT algorithm by Jovanović and de Moura [MJ13, p. 4,5,6] is given in
the form of a transition system:

Boolean-Decide
M ‖ F −→ M, L ‖ F if L ∈ B, ϑM (L) = undef

Boolean-Propagate

M ‖ F −→ M, (E,L) ‖ F if
E := (L1 ∨ . . . ∨ Ln ∨ L) ∈ F ,
∀i : ϑM (Li) = false,
ϑM (L) = undef

Conflict-Detect
M ‖ F −→ 〈M ‖ F 〉 ` C if C ∈ F , ϑM (C) = false

Formula-Satisfiable
M ‖ F −→ SAT if M satisfies F

Clause-Forget/Unlearn
M ‖ F −→ M ‖ F \ {C} if C ∈ F , C is learned

Conflict-Resolution-Step

〈M, (E,L) ‖ F 〉 ` C −→ 〈M ‖ F 〉 ` R if
¬L ∈ C,
R := resolve-step(E,C)
removing L

Literal-Consume
〈M, (E,L) ‖ F 〉 ` C −→ 〈M ‖ F 〉 ` C if ¬L /∈ C
〈M, L ‖ F 〉 ` C −→ 〈M ‖ F 〉 ` C if ¬L /∈ C

Trail-Backjump

〈M, N ‖ F 〉 ` C −→ M, (E,L) ‖ F if

E := C = (L1 ∨ . . . ∨ Ln ∨ L),
∀i : ϑM (Li) = false,
ϑM (L) = undef,
N starts with a Boolean
or theory decision,

Formula-Unsat
〈M ‖ F 〉 ` false −→ UNSAT

Clause-Learn
〈M ‖ F 〉 ` C −→ 〈M ‖ F ∪ {C}〉 ` C if C /∈ F

Figure 3.1: MCSAT algorithm as a transition system. It transitions from a
state M ‖ F , which contains a trail M which tries to satisfy formula F in
clause-form, to another state. Initially F is the input formula, later it includes
learned clauses. B is a finite basis, ` C indicates that a clause C is in conflict,
that is, it has been derived and is logically entailed by F but is currently made
false by M .

69

Theory-Propagate

M ‖ F −→ M, (E,L) ‖ F if

L ∈ B,
ϑM (L) = undef,
infeasible(JM, ¬LK),
E := explain(JM,¬LK)

Theory-Decide

M ‖ F −→ M, x→ α ‖ F if
x appears in F ,
x is unassigned in M ,
consistent(JM, x→ αK)

Theory-Conflict-Detect

M ‖ F −→ 〈M, x→ α ‖ F 〉 ` E if
infeasible(M),
E := explain(M)

Theory-Assignment-Consume
〈M, x→ α ‖ F 〉 ` E −→ 〈M ‖ F 〉 ` E if ϑM (C) = false,

Theory-Assignment-Backjump + Decide

〈M, x→ α, N ‖ F 〉 ` C −→ M, L ‖ F if
C = (L1 ∨ . . . ∨ Lm ∨ L),
∀i : ϑM (Li) = undef,
ϑM (L) = undef

Figure 3.2: MCSAT algorithm as a transition system continued.

The transition system that we see in Fig. 3.1 is adapted from Jovanović
and de Moura [MJ13, p. 4-6], where you can find an more detailed explanation
of all the transition rules. Presenting the MCSAT algorithm as a transition
system is useful to hide much of the implementation details but still highlight
the development of the trail M , the set of clauses F currently to satisfy, and a
possible clause C in conflict.

Among other things, it leaves open:

• Wether to make a theory decision or a Boolean decision.

• Which Boolean variable/theory atom to decide and what value to use.

• Which theory variable to decide and what value.

• When to learn and unlearn a clause.

• What literal to choose from the finite basis B.

These are all points where existing techniques and heuristics can be “plugged
in” and that can be adjusted according to experience and depending on the
problem domain.

Most notably, an explanation-clause E—when it is generated—is added to
the trail but not automatically added to the set of formula clauses F . This
is reasonable because for “Boolean Propagate” the clause E is already a part
of F , for “Theory Propagate” is may not be that useful yet, and for “Theory-
Conflict-Detect” as a conflict-explanations ` E we may first have to check if
we can further simplify it through resolution-steps.

70

3.4 Single Cylindric-Algebraic-Cells in Explanations

For this thesis our main point of interest in the MCSAT algorithm is the conflict-
generalizing function explain(M) that appears in the transition rule “Theory-
Propagate” and “Theory-Conflict-Detect”. Notice Jovanovićs and de Moura’s
actually use a variant explain(M,L) with two arguments in [MJ13], which we
can translate to explain(JM,LK)—the authors actually do this in “T-Propagate”
[MJ13, p. 6].

In short, this function accepts as input a consistent, but infeasible trail M
and returns a clause that is universally true.

We will first present what this formally means for NRA and how CAD can
help, and afterwards present a geometrical, more intuitive view.

The fact that a given trail is consistent, but infeasible means that the theory-
assignments don’t contradict the literals in M , but the literals together are
unsatisfiable. Such a trail can exist, when the literals mention a variable that
is not assigned yet. Let

FLits := LM1 ∧ LM2 ∧ . . . ∧ LMt (18)

represents the literals in M—say t many—combined with logical AND (∧), and
let x1, . . . , xk be the variables that have a theory assignment in M and are
assigned to real values α1, . . . , αk. Then formally this trail M represents the
valid logical formula

|= FLits(α1, . . . , αk, xk+1, . . . , xn) =⇒ false (19)

is valid. Here we highlight the free variables of FLits. The reason why we
present this formula with an implication will become apparent when we explain
the use of CAD in this context. Notice how α1 to αk are plugged into the first k
variables, so that these variables disappear, and that the fact that this formula
is valid implies that whatever values we plug in for the remaining variables xk+1,
the formula FLits will evaluate to “false”. In other words, the literals of M are
currently infeasible under the theory assignments.

We can rewrite this implication formula into an equivalent formula that again
mentions all variables x1, . . . , xk, . . . xn, including x1 to xk:

|= (

k∧
i=1

xi = αi) ∧ FLits(x1, . . . , xn) =⇒ false; (20)

these variables had disappeared in the implication formula before. Here (
∧k
i=1 xi =

αi) contraints the first k variables to be point α, and FLits contraints the re-
maining variables xk+1 to xn as before. The reason for this rewrite becomes
apparent when we continue to analyze the explain function.

3.4.1 Formal requirements on the explanation function’s output

The explain-function formally constructs a valid theory formula of the form

|= E := (L1 ∨ . . . ∨ Ln), (21)

that is, a clause that is univerally true. The validity requirement of the functions
output is used to be applicable with any theory, however not all valid theory
formulas are useful. It could simply return FLits from Eq. 20 in clause-form.
Instead, the main idea is that

71

• the explain-function should “generalize” the theory assignments in conflict—
geometrically a point in NRA. In NRA this means to extend the conflicting
point to a larger set of conflicting points, which in our case will be cylindric
algebraic regions called CAD-cells.

3.4.2 Cells for Non-linear Real Arithmetic explanations

In the context of NRA we construct a formula

|= Fcell(x1, . . . , xk) ∧ FLits(x1, . . . , xn) =⇒ false (22)

where Fcell is the defining formula (see Def. 2.22) of a CAD-cell around point α ∈
Rk. This formula Fcell(β1, . . . , βk) evaluates to true for every point (β1, . . . , βk, . . . , βn) ∈
Rn whose first k components lie inside the cell. Notice that

• the formula Fcell in Eq. 22 replaces (
∧k
i=1 xi = αi) in Eq. 20. Herein lies

the “generalization”.

• Fcell constraints the first k variables—x1 to xk—to points in the cell S ⊂
Rk around point α ∈ Rk.

• We still need to add FLits to constraint the remaining variables xk+1 to
xn.

Recall that Fcell (see Def. 2.22) represents a cell as boundaries for variables
xi, i = 1, . . . , k as either

(xi = f(x1, . . . , xi−1))︸ ︷︷ ︸
atom

or (flow(x1, . . . , xi−1) ≤ xi) ∧ (xi ≤ fhigh(x1, . . . , xi−1))︸ ︷︷ ︸
atom ∧ atom

Thus, it is a series of atoms in the shape of

Fcell := A1 ∧A2 ∧ . . . ∧Ad. (23)

Using the definitions of Fcell (Eq. 23) and FLits (Eq. 18), the formula we con-
struct and return in the explain function is

|= (¬A1 ∨ ¬A2 ∨ . . . ∨ ¬Ad ∨ ¬LM1 ∨ . . . ∨ ¬LMt), (24)

which is the clause-form of the formula in Eq. 22.
The CAD-cell represented in this formula has an intuitive geometric interpre-

tation. If the variables in the literals of the trail M all have theory assignments,
then a CAD-cell is the connected, sign-invariant region around the conflicting
point represented by the theory assignments. This cell only contains conflicting
points. We have already seen a visual example in Fig. 2.26b of Sec. 2.5.2.

72

In contrast, we have a new situation when one of the polynomial’s variables
has no theory-assignement. Let’s assume that we have the trail

M := [(−x2 − y + 3︸ ︷︷ ︸
p1

< 0)

︸ ︷︷ ︸
L1

, x→ 0︸︷︷︸
α1

, (x2 − y + 1︸ ︷︷ ︸
p2

> 0)

︸ ︷︷ ︸
L2

],

that has two polynomials inside two literals and one theory assignment for x.
Most notably, y is not assigned. So, we make the following observations:

• In Fig. 3.3a we see the region of (x, y) points that satisfies L1 and in
Fig. 3.3b we see the region that satisfies L2.

• In Fig. 3.3c we see that L1, L2 are satisfiable, but there is no satisfying
point along the vertical line through α1. This point α1 lies on the x-axis.

• In Fig. 3.3d we see a CAD-cell (only) along the x-axis that behaves like
α1. There is no satisfying point along the y for any point inside the cell.

So, visually we create a CAD-cell only along the axes of those variables that
have theory assignments. And the CAD-cell keeps the invariant that every point
inside the cell behaves like the conflicting point: there is no point along the axes
for the unassigned variables which satisfies the trail literals.

3.4.3 OneCell embedding

To generalize an infeasible point in the explain-function, the main subtask is to
construct a CAD-cell around that point. For this thesis we implemented and
use the “OneCell” algorithm by Brown and Košta [BK15], that is decribed in
detail Sec. 2.5. This algorithm only accepts polynomials p(x1, . . . , xk) whose
free variables have all an assignment represented a point α := (α1, . . . , αk).
However the polynomials given by explain(M) in the literals of M may contain
additional, unassigned variables xk+1, . . . , xn as explained before.

• So, this point α has a lower dimension than the polynomials in M .

So, OneCell is not directly applicable and the explain-function’s main job is
to transform its input into a suitable input for the “OneCell” algorithm by
removing the unassigned variables. We implemented the explain-function as
given in Alg. 1 on top of OneCell. First, it extracts the polynomials from
the literals in M into a poly-set PM . Second, it uses a generic “full” CAD-
projection—not OneCell yet— to remove the unassigned variables xk+1, . . . , xn.
In the implementation we use the full the McCallum-Brown projection from
Sec. 2.2. A small detail is that we need a variable order for CAD to know the
order in which to project and eliminate variables. So, we make sure that we
have a variable order like this

x1 ≺ x2 ≺ . . . ≺ xk︸ ︷︷ ︸
assigned block

≺ xk+1 ≺ . . . ≺ xn−1 ≺ xn︸ ︷︷ ︸
unassigned block

,

where some variables are assigned in a consecutive block, and some are unassigned—
also in a consecutive block. So, a “full” CAD will first remove variables in the
“unassigned block” from the polynomials PM and “OneCell” will construct a
cell using the resulting polynomials—these only mention variables from the “as-
signed block”.

73

3 2 1 0 1 2 3
x, assigned variable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 u

na
ss

ig
ne

d
va

ri
ab

le

p1

satisfies
L1

(a) Sign-invariant region that satisfies the
literal from M .

3 2 1 0 1 2 3
x, assigned variable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 u

na
ss

ig
ne

d
va

ri
ab

le

p2
satisfies

L2

(b) Sign-invariant region that satisfies the
literal L.

-1 a1 1
x, assigned variable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 u

na
ss

ig
ne

d
va

ri
ab

le

p1

p2
doesn't
satisfy
L1 & L1

(c) Before: A point α1 ∈ R1 on the x-axis,
for which there exists a y-value that satis-
fies the literal in M and L.

-1 a1 1
x, assigned variable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y,
 u

na
ss

ig
ne

d
va

ri
ab

le

p1

p2
doesn't
satisfy
L1 & L1

)(

(d) After: A CAD-cell S ⊂ R1 along the
x-axis such that for every point in it, there
still exists a y-value that satisfies the literal
in M and L.

Figure 3.3: Qualitive representation of a theory propagation through the gen-
eralization of a point to a CAD-cell. We see a contrived polynomial from the
single literal in a feasible trail M ; we also see the polynomial of a literal L whose
negation ¬L would make M infeasible at point α1 if added. Note that the poly-
nomials have two variables x and y but the point has only one x-component.

74

Algorithm 1: The explain(M) function.

Input: A trail M (with literals {LM1 , . . . , LMt } and assignments
[x1 → α1, . . . , xk → αk])

Require : A variable order [x1 ≺ x2 ≺ . . . ≺ xn]
Precond: 1 ≤ k ≤ n and literals LMi are unsatisfiable under assignments

(as in Eq. 20).
Output: An explanation clause E

1 Point α← (α1, . . . , αk) given by assignments

2 Poly-set PM ← polys in literals {LM1 , . . . , LMt , L} from M and L
3 Poly-sets P1, . . . , Pn ← Nonconst-Irreducible-Factors-Of(PM) sorted

by level 1 to n wrt. variable order

4 foreach level i = n to k + 1 do
5 P1, . . . , Pi−1 ← old P1, . . . , Pi−1 buckets with polys of

Full-CAD-Projection(Pi) sorted by level

6 Formula Fcell := {A1, . . . , Ad} ← OneCell(P1 ∪ . . . ∪ Pk, α)

7 return E := (¬A1 ∨ ¬A2 ∨ . . . ∨ ¬Ad ∨ ¬LM1 ∨ . . . ∨ ¬LMt ∨ L)

75

4 Benchmarks

We implemented the “OneCell” CAD algorithm (see Sec. 2.5) as presented by
Brown and Košta [BK15] in C++ within the SMT-solving framework SMT-
RAT3, one of the main projects of the I2 institute at the RWTH Aachen uni-
versity.

This framework uses CArL4, another main project of the I2 institute, which
is an arithmetic toolbox with efficient representions of polynomials, rational
numbers and real algebraic numbers. It includes efficiently implemented poly-
nomial operations to compute discriminants, resultants, to isolate roots of a
polynomial and to evaluate a polynomial under a given assignment of its vari-
ables. The factorization of a polynomial into its irreducible factors—necessary
in CAD—is implemented as a wrapper around CoCoA5, another library with
efficient polynomial operations.

The SMT-RAT framework includes an implementation of the MCSAT frame-
work (see Sec. 3.3.2) by de Moura and Jovanović [MJ13] to be used on quantifier-
free formualas over the theory of Non-linear Real Arithmetic (QF NRA). As
such, SMT-RAT has an explanation backend that receives a set of conflicting
constraints together with a conflicting assignment-point and returns a general-
ization of the conflicting point to a conflicting region. The existing explanation
backend is based on NLSAT [JM13], a predecessor of MCSAT (see Sec. 5.1 for
more details), but constructs a single CAD-cell using a “model-based” projection
variant that is similar to the OneCell algorithm. In our OneCell implementation
we process the input polynomials into the projection factor set in a depth-first
search manner to find the smallest bounds for each level that our CAD-cell
is forced to have to ensure sign-invariance. The SMT-RAT backend, however,
processes the input polynomials into the projection factor set in a breadth-first
search manner and finds the smallest bounds level by level, beginning at the
top. Both these CAD variants use the same underlying CAD foundation by
McCallum [Bro05] that is different from the foundation by Collins [ACM84]
which is used by Jovanović and de Moura in their implementation of NLSAT.

We tested our implementation on the complete QF NRA benchmark set
from the SMT-LIB initiative6 against Z3 and several SMT solving strategies in
SMT-RAT.

3https://smtrat.github.io/
4http://smtrat.github.io/carl/
5http://cocoa.dima.unige.it/
6http://smtlib.org/

76

https://smtrat.github.io/
http://smtrat.github.io/carl/
http://cocoa.dima.unige.it/
http://smtlib.org/

The solvers we compared were:

• MCSAT-OC: The MCSAT implementation of SMT-RAT combined with
our OneCell implementation as its explanation backend. There is no pre-
processing, or other module activated.

• MCSAT-NL: The existing MCSAT implementation of SMT-RAT as de-
scribed previously. There is no preprocessing, or other module activated.

• MCSAT-PP-OC: As MCSAT-OC, but with input preprocessing to sim-
plify the input formula.

• MCSAT-PP-NL: As MCSAT-NL, but with input preprocessing.

• MCSAT-PP-FM-VS-OC: As MCSAT-OC but with input preprocessing
and other activated modules. This strategy first tries to use Fourier-
Motzkin (FM) in the explanation backend. This works only for linear
constraints. If this backend fails, it tries Virtual Substitution (VS) as
another backend. This only works for polynomials with degree of at most
2 in each free variable. If that fails, it tries our OneCell backend. We use
these backends in the order of expected performance. In general, FM is
faster than VS and VS is faster than OC.

• CAD: The regular SMT-RAT solver that uses CDCL(T)-style SMT solving
with an incremental version of CAD as its theory solver.

• Z37: The state-of-the-art solver by Microsoft Research in version 4.6.

We ran each test on a machine with 4 GB RAM and a time limit of 60
seconds. The results can be found in Fig. 4.1 and Fig. 4.2 and were as follows:

In Fig. 4.1 we that MCSAT-OC, the SMT-RAT implementation of MCSAT
with our OneCell backend, outperforms MCSAT-NL by proving 100 more in-
stances to be unsatisfiable and 70 more instances to be satisfiable. Similar to
MCSAT-NL, we see that MCSAT-OC without any preprocessing or other op-
timizations is better than CAD, the regular SMT-RAT solver that doesn’t use
MCSAT, and solves 417 more instances in the same time.

Furthermore, we see that MCSAT-OC, similar to MCSAT-NL, profits from
simplifying an input formula with preprocessing, because MCSAT-PP-OC is
able to solve 319 more instances. Finally, we see that using OneCell as a fall-
back backend when Fourier-Motzkin and Virtual Substituion fail, is a further
improvement. MCSAT-PP-FM-VS-OC solves 68 more instances than MCSAT-
PP-OC. In these instances there must have been calls to the explanation backend
where the conflicting core contained only linear constraints and FM was appli-
cable, or the core only contained non-linear polynomials with small degrees so
that VS was applicable. However, Z3 solved 10027 instances in total, which is
833 instances more than our best variant MCSAT-PP-FM-VS-OC. We assume
that this is due to more efficient code and more optimizations in Z3.

7https://github.com/Z3Prover/z3

77

https://github.com/Z3Prover/z3

Solver sat unsat solved runtime

MCSAT-OC 4327 4478 8805 76.6 % 0.82
MCSAT-NL 4257 4378 8635 75.2 % 0.96
MCSAT-PP-OC 4490 4636 9126 79.4 % 0.93
MCSAT-PP-NL 4426 4575 9001 78.3 % 1.00
CAD 4362 4026 8388 73.0 % 0.76
MCSAT-PP-FM-VS-OC 4524 4670 9194 80.0 % 1.00
Z3 v4.6 4929 5098 10027 87.3 % 0.64

Figure 4.1: Statistics of solved problem instances. SMT-LIB contains 11489
instances in total.

0s 10s 20s 30s 40s 50s 60s
55%

60%

65%

70%

75%

80%

85%

90%

MCSAT-OC MCSAT-NL
MCSAT-PP-OC MCSAT-PP-NL
MCSAT-PP-FM-VS-OC CAD
Z3

Figure 4.2: Percentage of instances solved within a given time. Note that the
y-axis does not begin at 0.

78

0 20 40 60

0

20

40

60

TO

TO

runtime of MCSAT-OC (s)

ru
n
ti

m
e

of
M

C
S

A
T

-N
L

(s
)

Figure 4.3: Comparison of runtimes between MCSAT-OC and MCSAT-NL on
individual instances.

79

We further analyzed how the existing MCSAT implementation in SMT-RAT,
called MCSAT-NL, compared to our OneCell variant MCSAT-OC. In the scatter
plot in Fig. 4.3 we see that OneCell has a similar performance on most problem
instances (the points along the diagonal line) as MCSAT-NL. There are a few
instances where MCSAT-NL is faster (points in the lower triangle), but on much
more instances (points in the upper triangle) our OneCell variant is faster; on
some instances it can be roughly 20 times as fast and more. In these cases we
assume that the larger cells we construct with OneCell exclude more unsatisfying
assignments and therefore speed up the assignment space exploration.

Most interestingly, there is a large number of instances that our variant was
able to solve very fast, but which MCSAT-NL didn’t solve at all because of
timeouts (points in the upper left corner). In contrast, there are also instances
where our variant ran out of time and where MCSAT-NL was able to solve
them quickly (lower right corner). There seems to be an inherent problem
structure where the constructed single cells by OneCell are enourmously larger
than in MCSAT-NL and therefore speed up the assignment space exploration.
However, we also assume that there are cases where a slightly larger or slightly
different cell created by OneCell may enable a completely different exploration
sequence in MCSAT and may trigger helpful heuristics, which aren’t triggered
in MCSAT-NL.

80

5 Related Work

5.1 CAD Foundations

The main two branches of CAD-algorithms are due to Collins and McCallum.
The first CAD-algorithm is due to Collins [Col75] [ACM84]. He introduced
the algorithm in three phases, projection, base-case and lifting, as described in
Sec. 2.2.

Definition 5.1 (Collins-Full-Projector). Given a set of polynomials P ⊂
Z[xn1] of mixed levels, we call

PROJCollins(P) :=
⋃
p∈P

coeffs6=0
xn

(p)

∪
⋃
p∈P

⋃
r∈red(p)

psc(r, r′)

∪
⋃

p,q∈P
p 6=q

⋃
r∈red(p)
s∈red(q)

psc(r, s)

He introduced a projection operator [ACM84, p. 18] which operates on a set of
polynomials of mixed levels, since at that time he didn’t have the notion of a
polynomial level, at least not in the projection-phase. His projection operator
computes for each polynomial the coefficients with respect to the variable xn,
and the “principal subresultant coefficient set” of every of its reducta with the
reductum’s derivative. Furthermore, for every pair of reducta of two distinct
polynomials of the input set, it computes the “principal subresultant coefficient
set” of this pair. These are a lot of polynomials.

However, his lifting is straigth-forward, once we categorize his projection
factor set into buckets P1 to Pn of same-level polynomials:

1. D1—sign-inv on R1 by base-case-construction using P1

2. D2—sign-inv on R2 by lifting D1 using P2

3. . . .

4. Dn−1—sign-inv on Rn−1 by lifting Dn−2 using Pn−1

5. Dn—sign-inv on Rn by lifting Dn−1 using Pn

This notation is adapted from [Bro01].
McCallum’s CAD algorithm—conceptually all CAD algorithms for that matter—

uses the same three phases [McC84] [McC98]. He derived a new projection
operator, that produces a much smaller projection factor set than Collin’s algo-
rithm. McCallum’s work is based on new discoveries in the area of topology by
Zariski [Zar75]. However, his algorithm is only complete for a subset of polyno-
mials, called “well-oriented” polynomials (see Def. 2.30). For arbitrary, integral
polynomials his algorithm may fail and his lifting-phase is more complicated,
because it has to look out for and modify the projection factor set based on
“nullifying cells”.

81

Definition 5.2 (McCallum-Full-Projector). Assume we have a finite set P
of irreducible polynomials of Z[xn

1], each of the same level k with 1 ≤ k ≤ n
and let

coeffs(P) :=
⋃
p∈P

coeffs6=0
xk

(p), res(P) :=
⋃

p,q∈P,p6=q

res 6=0
xk

(p, q),

discr(P) :=
⋃
p∈P

degxk
(p)≥2

discr 6=0
xk

(p),

then the set of polynomials

PROJMcCallum(P) := coeffs(P) ∪ discr(P) ∪ res(P),

is called the ”projection of P .” It contains only polynomials of at most level
k − 1.

Although the projection factor set of McCallums’ projection is much smaller,
his lifting is more complicated due to the “order-invariance” rather than sign-
invariance requirement of the intermediate cells. Furthermore, the possibility
of “nullifying cells” requires complicated checks and the modification of the
projection factor set after each lifting-step to guarantee or to restore order-
invariance.

1. D1—ord-inv on R1 by base-case-construction using P1

2. D2—ord-inv on R2 by lifting D1 using checked and modified P2

3. . . .

4. Dn−1—ord-inv on Rn−1 by lifting Dn−2 using checked and modified Pn−1

5. Dn—sign-inv on Rn by lifting Dn−1 using checked and modified Pn

Given a set of square-free polynomials, McCallum’s projector computes the
non-zero coefficients and the discriminant of each polynomial and the resul-
tant between any two distinct polynomials of that set [McC84, p. 46] [McC98]
[Bro01].

He later discovered that his projection operator could be simplified even
further for 3-variable polynomials [McC88], just as Collins [Col75] did for 2-
variable polynomials, and extended this discovery [McC98] to polynomials with
with any number of variables.

Hong [Hon90] improved Collins’s original projection operator [Col75] [ACM84]
in reducing the number of polynomials that are required to be computed, but
he didn’t reduce the number as far as McCallum [McC84] [McC98] did. How-
ever, his improvement also didn’t restrict his algorithm to certain subsets of
polynomials like McCallum’s improvements.

82

5.2 Satisfiability and Satisfiability Modulo Theories

The difference between Satisfiability (SAT) problems and Satisfiability Modulo
Theories (SMT) problems is that a problem of the first involves a propositional
formula where the atoms—the smallest parts of a formula that can have a truth
value—are plain Boolean variables, and a problem of the second involves a
quantifier-free, first-order logic formula with atoms over a certain theory like
the theory of Non-Linear Real arithmetic (NRA). Hence the part “Modulo The-
ories”.

The main difference lies in the constuction of a conflict-explanation E :=
(L1 ∨ . . . ∨ Ln). An explanation is a formula in clause-form that was derived
to be logically entailed by the input formula —so it must be made true— but
is made false by the current variable assignment. In DPPL(T) and CDCDL(T)
the atoms in the literals Li do all previously exist within the input formula.
Recall that a clause directly represents a forbidden partial variable assignment
and indirectly a set of forbidden full assignments. Roughly, the more forbidden
full assignments, the better. So CDCL(T) can’t generalize as well as MCSAT
when MCSAT is able to exploit the theory reasoning capabilities in its “explain”
function. In the case of Non-linear arithmetic, this function can construct sin-
gle CAD-cells, which generalize a conflict and therefore forbid more assignments
than CDCDL(T). However, the representation of a CAD-cell as a formula re-
quires new literals that don’t necessarily exist within the input formula.

The Non-Linear SAT framework (NLSAT) and its implementation by Jo-
vanović and de Moura [JM13] is the predecessor of MCSAT, which is basically
a specialisation of MCSAT to the theory of Non-Linear Real arithmetic. NL-
SAT is the inspiring example which we try to improve in our implementation.
NLSAT uses a modified Collins-CAD-algorithm (see [JM13, p. 347ff]), which
constructs single, generalizing CAD cells around infeasible points using what
they call a “model-based Collins projection operator” (see [JM13, p. 349]). It
exploits the fact that we only construct a single cell. The infeasible point is
represented by a real-variable assignment, which can become a “model” if we
view SMT-solving from a theorem-proving perspective, hence the name “model-
based”. Their modified CAD-algorithm produces a smaller “projection factor
set” (see Sec. 2.2) and is therefore faster than the regular Collins-CAD-algorithm
to construct a single cell.

In the same spirit as Jovanović and de Moura’s modified Collins-CAD-
algorithm, we use the modified McCallum-Brown-CAD-algorithm called “One-
Cell” by Brown and Košta [BK15]. We use the OneCell-algorithm in MCSAT
in the same way as Jovanović and de Moura used their CAD variant, that is, to
construct generalizing CAD-cells around infeasible points. Brown and Košta’s
modified CAD-algorithm also exploits the fact that we only construct a single
cell around a point, and is therefore it is equally “model-based”. However, this
modified CAD-algorithm theoretically produces a smaller projection factor set
than the one used by Jovanović and de Moura, and therefore should produce
larger cells in less time.

83

6 Conclusion

We have successfully implemented the OneCell algorithm by Brown and Košta
[BK15] and have embedded it into the MCSAT implementation of the SMT-
RAT framework to solve quantifier-free formulas over the theory of Non-linear
Real Arithmetic (NRA). This MCSAT implementation is based on a publication
by Jovanović and de Moura [MJ13].

We have shown that our OneCell embedding is not only theoretically, but
also practically better: On its own it slightly outperforms the existing SMT-
RAT variation of MCSAT that is based on de Moura and Jovanović’s initial
implementation of MCSAT for NRA, called NLSAT [JM13]. On the other hand,
it largely outperforms the SMT-RAT variant that is not based on MCSAT,
highlighting the fact that reasoning in the clause structure of a formula combined
with reasoning over the theory of NRA, as it’s done in MCSAT, can be very
beneficial.

As a possible line of future research, we would like follow the suggestion
of Brown and Košta. In one of their publications they suggest, as a possible
improvement of their OneCell CAD-algorithm, that we try to revise the algo-
rithm to merge two CAD-cells into one instead of the current way of merging
one polynomial into a single cell [BK15]. This variant would be interesting to
us, because it would enable us to parallelize the single cell construction. and
this improve the parallel SMT solving speed: We could construct a cell on one
processor core for one part of the input polynomials and another cell for the
remaing polynomials on another processor core. Afterwards we would merge
the two emerging cell into one. Finally, another interesting improvement would
be to combine OneCell with the work of McCallum on exploiting equational
constraints [McC01] to improve the solving speed of MCSAT on NRA even
further.

84

References

[Col75] George E Collins. “Quantifier elimination for real closed fields by
cylindrical algebraic decompostion”. In: Automata Theory and For-
mal Languages 2nd GI Conference Kaiserslautern, May 20–23, 1975.
Springer. 1975, pp. 134–183.

[Zar75] Oscar Zariski. “On Equimultiple Subvarieties of Algebroid Hyper-
surfaces”. In: Proceedings of the National Academy of Sciences 72.4
(1975), pp. 1425–1426. issn: 0027-8424. doi: 10.1073/pnas.72.4.
1425. eprint: http://www.pnas.org/content/72/4/1425.full.
pdf. url: http://www.pnas.org/content/72/4/1425.

[ACM84] Dennis S. Arnon, George E. Collins, and Scott McCallum. “Cylin-
drical Algebraic Decomposition I: The Basic Algorithm”. In: SIAM
Journal on Computing 13.4 (1984), pp. 865–877. doi: 10.1137/

0213054. eprint: https : / / doi . org / 10 . 1137 / 0213054. url:
https://doi.org/10.1137/0213054.

[McC84] Scott McCallum. “An Improved Projection Operation for Cylindri-
cal Algebraic Decomposition (Computer Algebra, Geometry, Algo-
rithms)”. AAI8500835. PhD thesis. 1984.

[McC88] Scott McCallum. “An improved projection operation for cylindri-
cal algebraic decomposition of three-dimensional space”. In: Jour-
nal of Symbolic Computation 5.1 (1988), pp. 141–161. issn: 0747-
7171. doi: https://doi.org/10.1016/S0747-7171(88)80010-5.
url: http://www.sciencedirect.com/science/article/pii/
S0747717188800105.

[Hon90] H. Hong. “An Improvement of the Projection Operator in Cylindri-
cal Algebraic Decomposition”. In: Proceedings of the International
Symposium on Symbolic and Algebraic Computation. ISSAC ’90.
Tokyo, Japan: ACM, 1990, pp. 261–264. isbn: 0-201-54892-5. doi:
10.1145/96877.96943. url: http://doi.acm.org/10.1145/
96877.96943.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algo-
rithms for Computer Algebra. Norwell, MA, USA: Kluwer Academic
Publishers, 1992. isbn: 0-7923-9259-0.

[McC98] Scott McCallum. “An Improved Projection Operation for Cylindri-
cal Algebraic Decomposition”. In: Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Ed. by Bob F. Caviness and Jeremy
R. Johnson. Vienna: Springer Vienna, 1998, pp. 242–268. isbn: 978-
3-7091-9459-1.

[Duc00] Lionel Ducos. “Optimizations of the subresultant algorithm”. In:
Journal of Pure and Applied Algebra 145.2 (2000), pp. 149–163.
issn: 0022-4049. doi: https://doi.org/10.1016/S0022-4049(98)
00081-4. url: http://www.sciencedirect.com/science/article/
pii/S0022404998000814.

85

http://dx.doi.org/10.1073/pnas.72.4.1425
http://dx.doi.org/10.1073/pnas.72.4.1425
http://www.pnas.org/content/72/4/1425.full.pdf
http://www.pnas.org/content/72/4/1425.full.pdf
http://www.pnas.org/content/72/4/1425
http://dx.doi.org/10.1137/0213054
http://dx.doi.org/10.1137/0213054
https://doi.org/10.1137/0213054
https://doi.org/10.1137/0213054
http://dx.doi.org/https://doi.org/10.1016/S0747-7171(88)80010-5
http://www.sciencedirect.com/science/article/pii/S0747717188800105
http://www.sciencedirect.com/science/article/pii/S0747717188800105
http://dx.doi.org/10.1145/96877.96943
http://doi.acm.org/10.1145/96877.96943
http://doi.acm.org/10.1145/96877.96943
http://dx.doi.org/https://doi.org/10.1016/S0022-4049(98)00081-4
http://dx.doi.org/https://doi.org/10.1016/S0022-4049(98)00081-4
http://www.sciencedirect.com/science/article/pii/S0022404998000814
http://www.sciencedirect.com/science/article/pii/S0022404998000814

[Bro01] Christopher W. Brown. “Improved Projection for Cylindrical Al-
gebraic Decomposition”. In: Journal of Symbolic Computation 32.5
(2001), pp. 447–465. issn: 0747-7171. doi: https://doi.org/10.
1006/jsco.2001.0463. url: http://www.sciencedirect.com/
science/article/pii/S0747717101904638.

[McC01] Scott McCallum. “On propagation of equational constraints in CAD-
based quantifier elimination”. In: Proceedings of the 2001 interna-
tional symposium on Symbolic and algebraic computation. ACM.
2001, pp. 223–231.

[Coh03] Joel S Cohen. Computer algebra and symbolic computation: Mathe-
matical methods. Universities Press, 2003.

[Bro05] Christopher W. Brown. The McCallum Projection, Lifting, and Order-
Invariance. Tech. rep. NAVAL ACADEMY ANNAPOLIS MD DEPT
OF COMPUTER SCIENCE, 2005.

[Con+05] Evelyne Contejean et al. “Mechanically proving termination using
polynomial interpretations”. In: Journal of Automated Reasoning
34.4 (2005), p. 325.

[BD07] Christopher W. Brown and James H. Davenport. “The Complex-
ity of Quantifier Elimination and Cylindrical Algebraic Decompo-
sition”. In: Proceedings of the 2007 International Symposium on
Symbolic and Algebraic Computation. ISSAC ’07. Waterloo, On-
tario, Canada: ACM, 2007, pp. 54–60. isbn: 978-1-59593-743-8. doi:
10.1145/1277548.1277557. url: http://doi.acm.org/10.1145/
1277548.1277557.

[BHM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of
satisfiability. Vol. 185. IOS press, 2009.

[Bro13] Christopher W. Brown. “Constructing a Single Open Cell in a Cylin-
drical Algebraic Decomposition”. In: Proceedings of the 38th Inter-
national Symposium on Symbolic and Algebraic Computation. IS-
SAC ’13. Boston, Maine, USA: ACM, 2013, pp. 133–140. isbn: 978-
1-4503-2059-7. doi: 10.1145/2465506.2465952. url: http://doi.
acm.org/10.1145/2465506.2465952.

[JM13] Dejan Jovanović and Leonardo de Moura. “Solving Non-linear Arith-
metic”. In: ACM Commun. Comput. Algebra 46.3/4 (Jan. 2013),
pp. 104–105. issn: 1932-2240. doi: 10.1145/2429135.2429155.
url: http://doi.acm.org/10.1145/2429135.2429155.

[MJ13] Leonardo de Moura and Dejan Jovanović. “A Model-Constructing
Satisfiability Calculus”. In: Verification, Model Checking, and Ab-
stract Interpretation. Ed. by Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–12. isbn: 978-3-642-35873-9.

[BK15] Christopher W. Brown and Marek Košta. “Constructing a single
cell in cylindrical algebraic decomposition”. In: Journal of Symbolic
Computation 70 (2015), pp. 14–48. issn: 0747-7171. doi: https:

//doi.org/10.1016/j.jsc.2014.09.024. url: http://www.
sciencedirect.com/science/article/pii/S0747717114000923.

86

http://dx.doi.org/https://doi.org/10.1006/jsco.2001.0463
http://dx.doi.org/https://doi.org/10.1006/jsco.2001.0463
http://www.sciencedirect.com/science/article/pii/S0747717101904638
http://www.sciencedirect.com/science/article/pii/S0747717101904638
http://dx.doi.org/10.1145/1277548.1277557
http://doi.acm.org/10.1145/1277548.1277557
http://doi.acm.org/10.1145/1277548.1277557
http://dx.doi.org/10.1145/2465506.2465952
http://doi.acm.org/10.1145/2465506.2465952
http://doi.acm.org/10.1145/2465506.2465952
http://dx.doi.org/10.1145/2429135.2429155
http://doi.acm.org/10.1145/2429135.2429155
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2014.09.024
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2014.09.024
http://www.sciencedirect.com/science/article/pii/S0747717114000923
http://www.sciencedirect.com/science/article/pii/S0747717114000923

	Introduction
	Cylindric Algebraic Decomposition
	Intuitive Geometric CAD
	Formal Analytic CAD
	Projection Phase for a full CAD
	Lifting Phase for a full CAD
	Single Cylindric Algebraic Cells

	Model Constructing Satisfiability Calculus
	SMT formulas over Non-linear Real Arithmetic
	SMT solving techniques
	MCSAT
	Single Cylindric-Algebraic-Cells in Explanations

	Benchmarks
	Related Work
	CAD Foundations
	Satisfiability and Satisfiability Modulo Theories

	Conclusion

