
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

DEVELOPMENT OF A MODULAR APPROACH FOR

HYBRID SYSTEMS REACHABILITY ANALYSIS

Johannes Neuhaus

Examiners:
Prof. Dr. Erika Ábrahám

Additional Advisor:
Prof. Dr. Jürgen Giesl Aachen,

September 16, 2016





Abstract

Current methods for hybrid systems reachability analysis and verification,
like bounded flowpipe-based reachability analysis, have been well-developed over
the years resulting in various tool implementations. Optimization of those meth-
ods has been manifold. However, an exploitation of the discrete structure of a
given system towards a parallel approach has been neglected so far. We present a
parallelized implementation of a flowpipe-based reachability analysis algorithm
as well as strategies for parallelized verification of hybrid systems. The imple-
mentation aims for extensibility by providing a library layer, which can act as
an execution framework for parallel hybrid systems verification. The introduced
improvements show a speedup of 65% in common benchmarks and runtime im-
provements of up to 360% in variants of those benchmarks whose structure has
been optimized for this setup.



iv



Eidesstattliche Versicherung 

 

___________________________   ___________________________ 
Name, Vorname     Matrikelnummer (freiwillige Angabe) 
 

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ 
Masterarbeit* mit dem Titel 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als 
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf 
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische 
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner 
Prüfungsbehörde vorgelegen. 
 

___________________________    ___________________________ 

Ort, Datum       Unterschrift 

        *Nichtzutreffendes bitte streichen 
 

 

 

 

 

Belehrung: 

§ 156 StGB: Falsche Versicherung an Eides Statt 

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung 
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei 
Jahren oder mit Geldstrafe bestraft. 

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt 

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so 
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein. 

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 
Abs. 2 und 3 gelten entsprechend.  

 
Die vorstehende Belehrung habe ich zur Kenntnis genommen: 
 

___________________________    ___________________________ 
Ort, Datum       Unterschrift 



vi

Acknowledgements
I am grateful for the opportunity to write this bachelor thesis. Starting in the process
of planning a new tool, I became part of a procedure which was incredibly interesting.
Creating a new tool for hybrid systems reachability analysis required creativity, many
discussions, as well as an in-depth understanding of hybrid systems. These fruitful
discussions highly influenced what HyDRA is now. Additionally, it has been a great
experience to try out new ideas like the multithreading approach. After all, the formal
specification and proving of ideas, as well as the empirical examination of these ideas,
was as new as interesting to me.

Many people supported me on the road to and during the writing of this thesis. First
of all, I want to thank my parents for giving me the opportunity to study computer
science. I also thank my friends, especially Simon, who proofread every single word,
being nearly as precise as a commercial spell checker. By discussing the content of
the thesis he also pointed out many potential improvements. I want to thank Fabian
for many hours of fruitful discussion about multithreading and scaling problems.

Most important, I want to thank the people at the i2 chair. Thank you for hav-
ing a look at dubious segmentation faults and all the explanations and discussions
during the last five month! I especially want to thank Stefan Schupp, my advisor, who
answered every single question I had during the last months, discussed and provided
many ideas and supported me during the implementation in so many ways. I also
want to thank Erika Ábrahám who made this work possible, as well as Jürgen Giesl,
my additional advisor.



Contents

1 Introduction 9

2 Preliminaries 11
2.1 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 State Set Representations . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Dynamic Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Modularization of Reachability Analysis 21
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Technical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Strategies for Multithreaded Verification . . . . . . . . . . . . . . . . . 31

4 Evaluation 37
4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 43
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

Appendix 47

A Examples 47

B Benchmarks 49
B.1 Benchmark Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



viii Contents



Chapter 1

Introduction

Many models in computer science like finite automata, Petri nets, and pushdown
automata focus on the modeling of discrete models. These models are suitable for
problems like parsing abstract languages or in the case of the Petri nets, they have
been used as a tool for workflow management as well as a model for concurrency
[VDA98, Mur89]. However, these can naturally not be used to represent processes
which involve physics like the billiard game or the fall of a ball, without abstracting
continuity. Being surrounded by physical processes, we are particularly interested in
combining both - discrete and continuous behavior. Hybrid systems model exactly
this class of problems. They can be used to describe physical processes like falling
balls, the heating of a radiator or the way a billiard ball takes on a billiard table while
combining it with discrete changes like the change of the direction of a billiard ball.
Being able to model such a physical process using a hybrid system, we are interested

x

y

l1 l2

l1

x

y

l2

x

y

Figure 1.1: Depiction of the components of a hybrid system. A discrete system on the
right and a continuous system on the left. Combined we get a hybrid system [AC15].

in the property of safety. We call a system safe when there is no possibility that a
bad state occurs. For example, we will specify a model of a nuclear reactor, and we



10 Chapter 1. Introduction

call the system safe when there is no possibility that the temperature in the reactor
rises to a specified value x. In this case, without knowing any details, a state of the
system is intuitively described by the temperature of the reactor at time t. Then the
system is safe when for no time t the temperature at time t is higher than x. However,
testing for safety is not applicable for a reactor. Even if we were able to have test
runs, we would never be completely sure whether we did not miss a test case reveal-
ing a modeling mistake. Thus, we are interested in proving safety of a model using
formal methods. For the course of the thesis, we will model hybrid systems using a hy-
brid automaton and will call the computation of reachable states reachability analysis.

Before we introduce a new tool for hybrid systems reachability analysis in Chap-
ter 3, we will study hybrid systems, especially hybrid automata, in Chapter 2 in more
depth. As a new approach, this tool provides multithreading abilities which improve
the runtime of common benchmarks by 60 percent, and 360 percent for benchmarks
whose model has been optimized for this purpose, as we will show in Chapter 4. As
currently most common benchmarks for hybrid systems reachability analysis and ver-
ification do not reveal much potential for the usage of multiple threads, we introduce
strategies for these types of models in Chapter 3.4.



Chapter 2

Preliminaries

To understand the requirements for a modular verification task of hybrid systems, we
need a formal model of hybrid systems. There are several ways to do verification and
reachability analysis. Currently there exist several approaches towards the verification
of a hybrid system. However, there are classes of hybrid systems which are known to be
undecidable [HKPV98] which makes a computation of all reachable states impossible.
For the class of linear hybrid systems - where all constraints and activities can be
expressed as linear predicates - this problem is semi-decidable for overapproximated
state sets and well-studied [LG09].

2.1 Hybrid Systems
Hybrid systems are systems which combine discrete and continuous behavior. The
continuous behavior gives the opportunity to express physical processes which are for
example continuous in time. Hybrid systems can be modeled using hybrid automata.

Definition 2.1.1 (Hybrid Automaton [ACH+95, LG09, ACHH93, AC15]). A hybrid
automaton H is a tuple

H = (Loc, V ar, Lab, Inv,Act, T rans, Init)

Locations: Loc is a finite set of locations. Locations are the nodes of a directed
graph. The edges are given by Trans.

Variables: V ar is a finite set of real-valued variables. A valuation v for a variable
assigns a real-value v(x) to a variable x ∈ V ar. The set of valuations is given
by V . A state of H consists of a location and a valuation v ∈ V . Σ is the set of
states. A subset of Σ is called a region.

Labels: Lab is a finite set of synchronization labels. τ ∈ Lab is called the stutter
label.

Invariants: Inv : Loc→ V is a function which assigns each location an invariant.

Activities: Act assigns a location l ∈ Loc a set of activities. Each activity is a
function f : R≥0 → V ∈ Act(l). It is required that the activities are time-
invariant: for all locations l ∈ Loc, activities f ∈ Act(l) and t ∈ R≥0

, (f + t) ∈
Act(l) must hold where (f + t)(t′) = f(t+ t′) for all t′ ∈ R.



12 Chapter 2. Preliminaries

Transitions: Trans ⊆ Loc×Lab× 2V×V ×Loc is a finite set of discrete transitions
which are also called jumps. A transition is a tuple (l,a,µ, l′) where the transi-
tion is said to be enabled in a state (l,v) if for some valuation v′ ∈ V , (v,v′) ∈ µ
holds. Each location has a stutter transition given by (l, τ, {(v,v) ∈ V 2}, l). In
literature, a single edge from the transition relation is also called jump. The set
of valuations V ′ enabling a transition is called the guard of the transition. The
set of valuations defining the valuation after a jump is called the reset of the
transition.

Initial States: Init ⊆ Σ a set of initial states.

H is called time-deterministic if for every location l ∈ Loc and valuation v ∈ V , there
is at most one activity f ∈ Act(l) with f(0) = v. The activity f is denoted by ϕl[v].

In order to further reason about the reachability analysis of hybrid automata, se-
mantics need to be defined. As a hybrid system defines both - discrete and continuous
- behavior, a distinction between discrete transitions and time progress in a location
is needed. The inference rule[ACH+95] for a discrete jump is defined as

e = (l, a, µ, l′) ∈ Trans v,v′ ∈ µ v ∈ Inv(l) v′ ∈ Inv(l′)

(l,v)
e−→ (l′,v′)

A jump can only be taken if the values of the variables meet certain criteria. The
valuations after a reset must satisfy the invariant of the target location, the current
valuations must satisfy the guard and v as well as v′ must satisfy the reset. The rule
[ACH+95] for continuous behavior is more complex.

f ∈ Act(l) δ ≥ 0 f(0) = v f(δ) = v′ ∀0 ≤ ε ≤ δ.f(ε) ∈ Inv(l)

(l,v)
δ−→ (l,v′)

Given a time step δ a time transition can be intuitively taken if the continuous be-
havior in location l does not violate the invariant in l in the interval [0,δ]. The
time-can-progress predicate can be used as an abbreviation and simplification of the
continuous rule.

tcpl[v](δ) iff ∀0 ≤ ε ≤ δ.ϕl[v](ε)

The inference rule is then
tcpl[v](δ) δ ≥ 0

(l,v)
δ−→ (l,ϕl[v](δ))

We can now define a path of a hybrid automaton.

Definition 2.1.2 (Path [AC15]). A path of a hybrid automaton H is a sequence
σ0 → σ1 → ... where → is an execution step, consisting of a discrete step and a time
step in H and σi ∈ Σ. A state σ in H is reachable iff there is a path of H starting in
an initial state σ0 of H such that σ0 →∗ σ. →∗ depicts that there is a path starting
in σ0 leading to σ.

A good example for hybrid automata is given by a bouncing ball model. A ball is
dropped from a height y0. Due to the influence of gravitational force, it accelerates
towards the ground with 9.81ms2 . When it reaches the ground, the ball bounces back,
is dampened, but is still attracted by gravity. Thus the ball will at some height fall



2.2. Reachability Analysis 13

l1

ẏ = v
v̇ = −9.81
y ≥ 0

y = 0 ∧ v < 0

v := −c · v

y := y0
v := 0

Figure 2.1: Hybrid automaton model of the bouncing ball.

back to the ground. The respective illustration of the hybrid automaton is given in
Figure 2.1. A reset is depicted by :=, while guards are directly given as a predicate.
Formally the automaton of the bouncing ball is expressed as follows:

Example 2.1.1 (Bouncing Ball [LG09, AC15]). The model of a bouncing ball has
two variables - y and v - and only one location: l1. v describes the velocity of the ball
and y is the height of the ball. The dynamic within the location and thus the activities
are described by two ordinary differential equations (ODE):

Act(l1) = {f : R≥0
→ V | ∃cy,cv ∈ R.∀t ∈ R≥0

.

f(t)(v) = −9.81t+ cv∧
f(t)(y) = v · t+ cy}

The height of the ball is naturally never negative, which can be formulated as an
invariant for y:

Inv(l1) = {val ∈ V | val(y) ≥ 0}
As soon as the ball touches the ground its velocity is inverted while losing little of its
energy. The last fact is illustrated by the dampening factor 1 > c > 0. Thus the set
of jumps is defined as

Trans =

{(l1, a, {(val,val′) ∈ V 2 | val(y) = 0 ∧ val(v) < 0 ∧ val′(v) = −c · val(v)}, l1),

(l1, τ, {(val,val′) ∈ V 2 | val = val′}, l1)}

The condition v < 0 assures that if y = 0 ∧ v = 0 holds, and thus the ball is lying on
the ground, the jump can not be taken. If we allowed this condition, we could take
the jump infinitely often without letting time progress. This is called Zeno behavior.
Lastly, the initial states are needed. The ball is initially dropped from a height y0 and
has no initial velocity.

Init = {(l1, val(y) = y0 ∧ val(v) = 0)}

where val ∈ V .

Now, as we have introduced hybrid automata as a formal model for hybrid systems,
we can advance towards their verification by using reachability analysis.

2.2 Reachability Analysis
Hybrid systems verification is used to reason about the question whether there is a
path in a hybrid automaton starting in an initial state leading to a state from a set of



14 Chapter 2. Preliminaries

bad states. We consider a system safe when there is no path in the hybrid automaton
such that σinit →∗ σbad. Thus R ∩Bad = ∅ holds where R is the set of all reachable
states and Bad is a set of bad states. The computation of all reachable states is called
reachability analysis. Later on, due to the undecidability of the reachability problem
of hybrid automata [HKPV98], we are interested in overapproximated state sets as
when R ⊆ R̄ holds and R̄ is considered safe, then R can also be considered safe.
The previously defined semantics of the hybrid automaton state that we can find the
set of reachable states by computing two parts - discrete and continuous steps. The
first is defined by jumps within the hybrid automaton, the latter by the dynamics
of the system within a location. This leads to the definition and computation of the
reachable state set of a hybrid system. However, before discussing the algorithmic
part of reachability analysis, a formalism is needed.

Definition 2.2.1 (Forward Time Closure [ACH+95]). Let l ∈ Loc and P ⊆ V . The
forward-time-closure FTC(P )l of P in l is the set of valuations that are reachable
from some v ∈ P by letting time progress.

v′ ∈ FTC(P )l iff. ∃v ∈ P, t ∈ R≥0 .tcpl[v](t) ∧ v′ = ϕl[v](t)

The reachable states obtained by taking a discrete transition are still undefined.
We call this postcondition of a set of valuations.

Definition 2.2.2 (Postcondition [ACH+95]). Let P ⊆ V . The valuations reachable
from v ∈ P are gained by executing an enabled transition e = (l, a, µ, l′).

v′ ∈ poste[P ] iff. ∃v ∈ P.(v,v′) ∈ µ.

FTC and poste can be extended to regions in order to reason about all states
within one location and after a jump. A region is denoted by Rl = (l, P ) := {(l,v) | v ∈
P} where P ⊆ V . Then FTC and post [ACH+95] are defined as

FTC(R) =
⋃

l∈Loc

(l, FTC(Rl)l)

post[R] =
⋃

(l,l′)∈Loc×Loc
e=(l,a,b,l′)∈Trans

(l′, poste[Rl])

where R =
⋃
l∈Loc(l, Rl) and Rl denotes the set of valuations of the region Rl.

A symbolic run of the linear hybrid automaton is a sequence (l0, P0)(l1,P1)...(li,Pi)...
of regions such that Pi+1 = postei [FTC(Pi)li ] where ei is a transition from li to li+1.
This corresponds to a set of runs of H (l0, v0) → (l1,v1) → ... where vi ∈ Pi. Due to
the stutter label, the transition relation is reflexive and ei can always jump from li
to li. This finally gives the notion of reachability. A state is in the reachable region
(I →∗) of I if there is a symbolic run of H [ACH+95]:

σ ∈ (I →∗) iff. ∃σ′ ∈ I.σ′ →∗ σ

The backward reachability can be defined similarly. The idea is to start in a bad
state σbad and compute the set of predecessor states pred = {σpre |σpre →∗ σbad}.
When no initial state is an element of pred, we consider the system safe. In the course



2.3. State Set Representations 15

of the thesis, we concentrate on the forward reachability analysis as a fixed-point
search. The class of (linear) hybrid automata is undecidable[HKPV98] in general but
the previous definitions yield a semi-decision procedure for the reachability problem
in linear hybrid systems. We give the general structure of the fixed-point search in
Algorithm 1. The function ForwardReachability computes the successor region of
Rnew as a combination of continuous behavior by letting time elapse and computing
the jump successor. As Ri ⊆ Ri+1 holds, we must check whether we already calculated
the newly computed set. The algorithm terminates when there are no new sets, and
thus a fixed-point has been reached. In the case of the bouncing ball, we see that a
fixed-point will not be reached due to the dampening factor. The previous definitions

1 Set RInput ; // s e t o f input s t a t e s
2 Set R ; // s e t o f r eachab l e s t a t e s
3 Rnew = RInput ;
4 R = ∅ ;
5 while ( Rnew != ∅)
6 {
7 R = R ∪Rnew ;
8 Rnew = ForwardReachabi l i ty (Rnew )\R ;
9 }
10 return R ;

Algorithm 1: General Reachability.

yield linear predicates for linear hybrid systems. For example the initial region R0

of the bouncing ball could be represented by the predicate (v = 0 ∧ y = 10). A full
example of the forward reachability using predicates with the previous definitions is
given in [ACH+95]. So far we abstracted all set representations. In the following we
will describe several ways to represent sets along with their properties.

2.3 State Set Representations

State set representations provide a convenient way to represent and overapproximate
the geometric state set of hybrid systems. These representations are suitable as the
exactly reachable set can be very hard or even impossible to compute. As previously
indicated, we use overapproximation for proving the safety of a hybrid system. Of
course, there is the overapproximation Rn which is capturing the whole state space.
However, this overapproximation would always result in insignificant results as it
always intersects the set of bad states if they have been defined. If we intersect bad
states, we can not conclude unsafety due to the overapproximating character of the
computation. Thus one is interested in finding a tight approximation of a state set.
As the class of convex sets is easy to represent and efficient methods are known for
different operations, we only consider convex sets for the course of this thesis.

Definition 2.3.1 (Box [Moo66, LG09]). A set B is a box iff it can be expressed as a
product of intervals

B = [l1, u1]× ...× [ln, un]

B is a set of points x whose ith coordinate lies between the interval bounds, such that
li ≤ xi ≤ ui, where xi denotes the ith coordinate of a point x.



16 Chapter 2. Preliminaries

Boxes are fast and memory efficient but may introduce big overapproximations by
default. For example consider an object whose width is much bigger than its height
similar to one given in Figure 2.2. Another common geometric representation for a

x

y

l1 u1

l2

u2

(a) A box overapproximation of a set.

x

y

(b) A polytope overapproximation of a set.

Figure 2.2: Representations approximating an object.

set is a convex polytope.

Definition 2.3.2 (Polytope [LG09]). A polytope P is the bounded intersection of a
finite set H of halfspaces:

P =
⋂
h∈H

h

A halfspace is a set defined by a normal vector n 6= 0 and a value b:

{x | x · n ≤ b}

Equivalently a bounded polytope P is the convex hull of a finite set of points V which
is called the set of vertices of P:

P =

{∑
v∈V

αvv | ∀v ∈ V, αv ≥ 0 and
∑
v∈V

αv = 1

}

Both definitions lead to complementary representations: a polytope can either be
represented by its vertices or by a set of halfspaces. The first is called a V-polytope,
the latter is called a H-polytope. As depicted in Figure 2.2 polytopes can have a
higher precision than boxes but with every new half space more memory is consumed
and more computational time is needed to perform operations on the representation.
Support functions are another common way of representing a convex set by a function.

Definition 2.3.3 (Support function [LG09]). The support function of a set S ρS is
defined by

ρS : Rd → R ∪ {−∞,∞}
l 7→ sup

x∈S
x · l

A point x of S such that x · l = ρS(l) is called a support vector of S in direction l.

The support vector ρS(l) intuitively represents the supporting hyperplane in di-
rection l of S as depicted in Figure 2.3



2.3. State Set Representations 17

l

x

y

Hl

Figure 2.3: Depiction of the supporting hyperplane in direction l [LG09].

2.3.1 Operations

We need several operations on sets for representing behavior like time elapse, guard
intersection and resetting variables. The activities in a linear autonomous hybrid
system can be expressed as a system of linear ordinary differential equations of the
form

ẋ(t) = Ax(t)

and solutions have the form

x(t) = etAx0

The idea is to compute the time successor R[0,t](I) = etAI where I is a set of initial
states. However, we do not know how the state set excluding 0 and t is evolving. Thus
we need an overapproximation of the dynamics between 0 and t as the actual state set
might not be accurately representable. To obtain an as accurate as possible flowpipe,
we discretize the time horizon. The smaller we choose the discretization parameter,
the more precise the flow becomes. Now, for a initial set I, we can compute the
reachable set in discretized time δ using eδAI. This is done iteratively to obtain the
reachable states Ωi+1 from Ωi

Ωi+1 = eδAΩi

We call a set of reachable states which are obtained by letting time progress a flow-
pipe [LG09]. An example for five flowpipes is given in Figure 2.5. As eδA is a matrix
defining a linear transformation, we must be able to compute it on a state set repre-
sentation to let time progress. Before we can compute the flowpipe an initial segment,
Ω0 must be created from the initial state. This is due to the problem that we do not
know how the dynamics evolve between time 0 and δ. We give an illustration of the
computation of the first segment in Figure 2.4. One computes R[0,δ](I), the time
successor of the initial state, and computes the convex hull CH(I ∪ R[0,δ](I)) = Ω′

which captures most of the reachable states but probably not all of the system dy-
namics. The procedure, which obtains an overapproximation of Ω′, that captures the
dynamics, is called bloating. This requires a Minkowski Sum of a ball of a radius,
which depends on the dynamics and the time step. The radius is subject to an op-
timization problem to guarantee a small error while all dynamics of the system are
covered. The set which we obtained from the convex hull is then bloated using this
ball. However, there are more sophisticated ways to compute a bloating. We refer
the reader to [LG09].



18 Chapter 2. Preliminaries

Definition 2.3.4. Minkowski Sum [Zie12, LG09] The Minkowski Sum of two sets X
and Y is defined as

X ⊕ Y = {x+ y | x ∈ X and y ∈ Y}

(a) The initial set I. (b) The initial set I in red and eδAI in
yellow.

(c) The set Ω′ obtained by computing the
convex hull of the previous segments.

(d) The first segment Ω0 after bloating
the previous set.

Figure 2.4: Creation of the first segment Ω0.

After covering the dynamics of the current location which is part of the reach-
ability analysis, we may take a jump. We represent by linear constraints, and thus
we need to decide the question whether a state set intersects a jump guard. The
reset of a jump can be computed using a linear transformation. In general, multiple
representations can intersect the same guard and introduce more than one flowpipe.
These segments can be aggregated to avoid similar computations. Aggregation is a
union of the segments, which intersect the same jump guard.

Thus there are four basic operations which are needed: intersection with halfspaces,
convex union, Minkowski Sum and linear transformation Unfortunately, none of the
state set representations perform well on all operations as depicted in Table 2.1 and
the conversion between them is neither an easy task and therefore we can not have all
advantages of all representation types. Table 2.1 shows whether a computation can
be done efficiently or not. While H-polytopes perform fast on halfspace intersections,
all other operations are hard to compute. On the other hand, V-polytopes perform
well in every operation except halfspace intersection. Conversions between the rep-
resentations need sophisticated algorithms like convex hull and vertex enumeration,
and thus one cannot easily use the best of both representations.

2.4 Dynamic Search Strategies
Dynamic search strategies try to recover from a bad state intersection using back-
tracking to avoid spurious counterexamples. The strategies itself are out of scope
for this thesis, but we try to give an intuition to have an understanding of the im-
plementation requirements. Using over-approximating state set representations, we



2.4. Dynamic Search Strategies 19

A(·) · ⊕ · · ∩ H CH(· ∪ ·)
H-polytope - - + +
V-Polytope + + - +

Box +
Support function + + - +

Table 2.1: Illustration of the different state set representations and their complexity
by operation. H is a halfspace. Empty fields indicate that the representation is not
closed under the respective operation [LG09].

can prove the safety of a hybrid system when a fixed-point is reached, and there is
no intersection with a bad state. This is due to the definition of safety. R ∩ B = ∅
implies safety. Then for R̄ ⊆ R, R̄ ∩ B is also empty and the system safe. This can
not prove unsafety as there might be a computation with a smaller time step and a
better or no overapproximation of the representation such that the bad states will
never be intersected. At this point a dynamic search which refines the computation
and thus reduces the error introduced by overapproximation might lead to a state
set which does not intersect the set of bad states anymore. There are two intuitive
ways to get a more precise representation. First of all the time step can be reduced
further. This leads to a more accurate set, as the smaller time discretization yields
smaller flowpipes. The other possibility is to change the representation. For example
instead of using boxes as a fast but very rough representation, polytopes may provide
a more accurate result. Changing the representation is expensive in general as rather
complex algorithms might be needed like vertex enumeration or convex hull. Next,
we must choose the set where the backtracking will start to try to recompute. This
backtracking point is not intuitive to choose as the system could be indeed unsafe, and
the strategies are not able to recover the bad state intersection. The recomputation
of the intersecting flowpipe might not be enough as well as the overapproximation of
the last flowpipe introduced an error which will always cause the successor flowpipe
to intersect the bad states. Thus an implementation must choose a clever backtrack-
ing point in order to limit the needed computational steps. Backtracking points can
be states on a path to the current state, where branching off paths do not need to
be recomputed. Such an example is given in Figure 2.5. The initial segment starts
at (0,0) and is linear-transformed along the vertical axis. There are multiple guard
intersections which introduce new flowpipes. We will give the example automaton
later in Chapter 3 in Figure 3.3.



20 Chapter 2. Preliminaries

 0

 5

 10

 15

 20

-15 -10 -5  0

Figure 2.5: One flowpipe starting in (0,0) and introducing four new flowpipes. Ele-
vator example as modeled in Figure 3.3 using H-polytopes. One jump with time step
0.01s and a time horizon of 3s.



Chapter 3

Modularization of Reachability
Analysis

The goal of this thesis is to implement a generic approach to hybrid systems reach-
ability analysis. To do so, we need to investigate points of modularization and find
a software architecture which supports these points. For this purpose, this chapter
discusses general technical requirements to hybrid systems reachability analysis and
does a synthesis of modules which are needed for proper analysis. As to the best
of our knowledge state of the art, software does not use a parallelized approach for
investigating hybrid systems. This chapter introduces a parallelization module and
lastly strategies for parallel verification.

3.1 Requirements

The main goal is to provide a modular reachability analysis. For this purpose recon-
sider the general reachability algorithm from Chapter 2. Given a set of input states
this algorithm computes all reachable states until a given condition for termination
is reached - like a jump limit or a time horizon - or no new reachable states are
found and thus a fixed-point is found. This formulation does not yield paralleliza-
tion at first sight. When augmenting the previously presented reachability analysis
algorithm with concrete datastructures, possible parallelization points become more
visible.

1 Set<Representat ion> RInput ; // s e t o f input s t a t e s
2 Queue<Representat ion> R ; // s e t o f r eachab l e s t a t e s
3 Queue<Representat ion> Rnew // not yet i n v e s t i g a t e d s t a t e s
4

5 Rnew . push (RInput ) ;
6 R = ∅ ;
7 while ( Rnew != ∅ && ! terminat ion_condi t ion )
8 {
9 R′ = Rnew . pop ( ) ; // pop ge t s an element and d e l e t e s i t from queue

10 Rnew . append ( ForwardReachabi l i ty (R′ )\R ) ; // expens ive check
11 R . push (Rnew ) ;
12 }
13 return R ;



22 Chapter 3. Modularization of Reachability Analysis

This version computes the reachable states incrementally using two queues. Rnew
is responsible for holding all states for that the forward reachability has not been
computed, yet. R holds all states that have been explored to check whether a set
has already been computed. The last check is expensive regarding computational
effort and should be disabled if not needed or heuristics should be implemented.
Reconsider the bouncing ball model. The forward reachability method will never
return a set which has already been computed as there is a dampening factor c which
is reducing the velocity at a jump. Thus the ball will not reach the same height
again. To disable the check, an implementation must decide how, where and if the
checks are made. However, it is not always possible to determine whether a fixed-
point exists. Another advantage of the reformulation is the possibility to compute the
forward reachability in parallel. Given an initial state I, we can compute the flowpipe
starting in I without the access to global data structures and therefore in a separate
thread. The fixed-point check can be done in the respective thread by reading from
R. Thus there are two data structures to be shared - Rnew and R. These can be
changed incrementally without overriding. Additional data can be stored in a thread
local storage. The implementation should thus provide multithreading functionality
on demand by computing flowpipes in parallel.

An implementation should divide into a layered architecture to force modularity,
which leads to better separation of concerns. A library layer should provide abstract
classes, thread management, and an execution framework. The execution framework
is responsible for executing the forward reachability procedure and thus the flowpipe
computation as long as needed. The forward reachability computation, as well as the
state set representation, must be interchangeable for the purpose of rapid prototyp-
ing. This way new ideas can be tested quickly without making changes in the tool
itself. The interchangeability of the state set representation must be implemented as
dynamic search strategies might require a different representation. A fast run using
boxes as representation might not be enough for proving the safety of a system and a
backtracker system decides to redo the computation with a much more precise state
set representation or a smaller timestep. Since alongside this thesis dynamic search
strategies are implemented, the library layer must provide easy extensibility. As a
basis for hybrid systems data structures and reachability analysis, we will use and
reuse code from HyPro [SÁC+16]. HyPro is a toolbox for the reachability analy-
sis of hybrid systems providing state set representations. HyPro also implements a
reachability algorithm but not in a separate tool.

Another long-term goal is the adaptability of foreign tools. The library part should
be sufficiently generic to use other tools for computing forward reachability. As a long-
term goal, this could become beneficial for comparing different tools in their runtime
by providing a basic measurement layer. For example, this layer may evaluate time
consumption of single computations and memory consumption of different tools on
equivalent benchmarks.

In a nutshell, the tool to be implemented shall:

1. Provide a reusable library and a command line interface and thus have a clear
separation of concerns

2. Provide multi-threading abilities

3. Provide a basic execution framework for hybrid reachability analysis



3.2. Implementation 23

4. Be easily extensible

5. Be developer and user-friendly for the purpose of rapid prototyping

6. Provide basic measurement methods

7. Reuse existing code from HyPro

3.2 Implementation

In the context of this thesis we implemented a tool. It is called HyDRA which stands
for Hybrid Dynamic Reachability Analysis. It implements several concepts for a mod-
ular hybrid system reachability analysis. It divides into two parts: libHyDRA - or just
HyDRA - and HyDRA-cli which is an example usage of libHyDRA using predefined
forward reachability implementations taken from HyPro. Thus the implementation
reuses much code from HyPro and restructure it into components. We will introduce
new components as well if necessary and features which make the development of
algorithms for reachability analysis easier.

3.2.1 Worker System

HyDRA defines an abstraction to the forward reachability computation. A worker
is the specialization of the IWorker interface which is depicted in Figure 3.6 and
a worker instance is the concrete instantiated object of a Worker. The IWorker
interface is the entry point to the execution framework provided by HyDRA. It takes
care of the correct execution of all worker instances. In order to work correctly, a
worker implementation must guarantee reentrancy of the computeForwardReachability
function and must be stateless. Reentrancy means that a function does not manipulate
data structures which are available to multiple threads but only manipulates memory
which is passed to the function or is locally available. We need the stateless property
for the case that multiple threads are running. One cannot make any assumptions
about the order of state set representations which a worker instance may receive.
However, HyDRA does not force stateless objects. Doing so could prevent developers
from trying out ideas which are making use of the state. Every worker implementation
is responsible for the computation of exactly one flowpipe.

At the current state of development, HyDRA makes some assumptions about the
data structures a worker may use as currently the dynamic search strategies need a
special data structure - Reachtree Nodes. These extend a State class which contains
all necessary information about the used state set representation, the location in the
hybrid automaton and the current timestamp. Reachtree Nodes extend this data by
several attributes like whether we can use a node as a backtracking point and the kind
of representation it holds. The advantage of this approach is that one can easily adapt
the used HyPro representations to internal data structures without losing dynamic
search strategies. Another method would be using compile time polymorphism for
the state set representation - templates in the context of C++. This would result
in templating all possible state set representations within the ReachTreeNode class
beforehand and affect the ReachTreeNode class which we did not develop in the
context of this thesis. If we can forgo dynamic search strategies, we can extend the
ReachTreeNode class by a user specific class holding the necessary representations.



24 Chapter 3. Modularization of Reachability Analysis

3.2.2 Event System

An event system gives the opportunity to react to a set of predefined signals dynami-
cally. This gives the notion of asynchronism by introducing a singleton Eventmanager
which can be accessed to dispatch previously registered events. The Manager itself
takes care of the correct Eventhandler execution. For more readable code in the
particular reachability worker implementation, the Eventhandlers are executed in the
context of its calling thread. This way events are not truly asynchronous. In a single
threaded environment, the event system is more of a generic operation dispatcher as
it gives the opportunity to run a set of methods synchronously using a single entry
point.

There is a distinction between user-defined events and system events. System
events are predefined within HyDRA and often necessary for internal processing.
As shown in Figure 3.1 there is a set of predefined events but for the purpose of
rapid prototyping one can easily add custom events which are named by an arbitrary
string. This can be useful when synchronization between multiple workers is needed,
and there is no predefined event for the respective purpose. Only ADD_NODE is

Event name Description internal mandatory
ADD_NODE add a new ReachTreeNode 7 3

FINISH_TH time horizon reached 7 7

FINISH_FP fixpoint reached 7 7

FINISH_BS signal: bad states are reached 7 7

PLOT_SEG add segment to plotter 7 7

PLOT plot all added segments 7 7

HYDRA_STOP_WORKERS signal: stop worker threads 7 7

HYDRA_TERMINATE signal: hydra shall terminate 7 7

HYDRA_WORKER_IDLE signal: a worker is idling 3 7

Figure 3.1: List of events used in HyDRA.

mandatory as there is an implementation of this event type that is used internally for
adding new nodes to a queue - recall Rnew in the reachability algorithm. One could
still register own implementations of this event in order to attach more logic to node
adding. The events which are prefixed with HYDRA are currently only used internally
for a proper tear down of HyDRA and for solving synchronization problems. It might
be beneficial to a user to register own implementations of these events in order to
clean up allocated memory or provide log output.

In general, it is not clear when to exit a run. HyDRA uses the fact that there can
not be any more work to process when all workers are idling and the queue Rnew is
empty. Thus worker instances register themselves idling when the internal work queue
is empty, and they did not receive a new initial state. This gives the responsibility
of checking for fixed-points, bad states and a reached time horizon to the worker
implementations.

Figure 3.6 shows the how the event system is implemented. The EventHandler
class is a Singleton object and can be accessed all across the application. In general,
all events are specializations of the IEvent interface and for convenience there are
operations for C++ lambda functions and the support for custom events which are



3.2. Implementation 25

specific to the respective application. This makes small and events easy to define
inline without creating a new class.

3.2.3 Multithreading
We model the reachability analysis algorithm as Producer-Consumer-Problem (PCP)
to solve synchronization problems [Hil92]. The producer is the worker instance, and
the consumer is a dispatcher, which is responsible for coordinating the worker in-
stances. PCP can be solved efficiently using a buffer data structure. For the specific
case of hybrid systems verification, we use a queue as previously indicated. At the
beginning of the analysis, the initial states are placed in the queue. The dispatcher
dequeues and hands them over to the worker instance. This way the worker instance
does not need to take care of selecting the correct element from the buffer and a clear
separation of concerns is guaranteed. The worker cannot manipulate the queue di-
rectly. Using a dispatcher has the advantage that specialized worker implementations
can be used. The dispatcher decides for a given state set representation type which
worker instance is suitable. For now, only the state set representation type a worker
consumes is important to the dispatcher.

This approach only needs mutual exclusion when enqueueing and dequeueing ele-
ments from the queue and is sufficiently efficient. In the following we call the concept
of mutual exclusion also locking. In case a worker instance is idle, we can put it
to sleep to free more computational power for parallel matrix computations or other
running processes. The exact number of CPU cycles to sleep should not be too high
as the respective worker instance might be idling although a state set representation
is available in the priority queue. The time to sleep should not be too short as well
because valuable CPU time will be wasted when no queue element is available. The
first version of multithreading in libHyDRA used at least 50µs. We used a random
time between 0µs and 100µs to wait additionally. This property should ensure that a
process which has just woken up has not to wait again to access the queue as the other
processes are trying to access the queue, too. However, this can still be inefficient as
the queue is repeatedly accessed although it is empty and unnecessary locking hap-
pens. We solve the problem by using a system feature - so called condition variables
as defined in the C++11 standard. Condition variables are similar to semaphores.
They also use signaling to wake up waiting threads but add functionality. Every time
an element is enqueued or dequeued in the queue, we must acquire a lock for the
reason of thread safety. If no elements are available during a dequeue, we can put the
respective thread to sleep until a new element is added or we detect a timeout. To do
so, it must first release the lock, must then sleep for some time and wake up when a
new element arrives. This technique needs less locking and is thus more efficient.

There are still a few open problems when talking about synchronization in the
context of multithreading:

1. Termination of reachability analysis

2. Pausing worker instances

3. Signaling arbitrary behavior (e.g. reaching bad states)

4. Plotting

These problems can be solved best using the Event System introduced in Section 3.2.2.
Consider plotting and termination as examples. We should decouple plotting from



26 Chapter 3. Modularization of Reachability Analysis

the worker. The plotting step is divided into two parts - collecting segments and
converting into an output format. Collecting the segments can only be done by
the worker but later on, we must call a function, which takes care of the segment
processing when the reachability analysis is done. We implement this using two events.
First of all the worker instance registers all segments for the actual plot. Next, right
after the reachability analysis, the set of segments can be processed by the Plotter.
This also has a performance impact on how the plotting should be implemented.
For example, if we use support functions, the segments must be preprocessed which
takes more time than boxes need. If this is done during the reachability analysis, the
runtime will increase dramatically. This multiplies when multiple threads are running
as adding a segment to the plotter is an atomic operation. If the preprocessing is
done within the event handler, it gets even slower as other threads have to wait for
another process to finish. Thus preprocessing and plotting should be done after the
reachability analysis so time measurements can be done as precise as possible. The
next interesting event takes care of the termination. An empty queue is not a sufficient
criterion for termination anymore as a worker instance could be still running although
the queue is empty for another thread. To solve this problem every worker instance
must register idling when there is no element to process left and working when there is
again an element in the queue. Only if all workers are idling the reachability analysis
may terminate. Again, we solve this using two events. One for registering the workers
state and another for the actual termination indicator.

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

Figure 3.2: Bouncing ball example plot using support functions with the following
settings: jump depth: 5, threads: 4, timestep: 0.005s, timehorizon 3s. Each thread is
illustrated by a unique color. Velocity is depicted on the horizontal axis, the height
of the ball is depicted on the vertical axis.

Figure 3.2 shows a plot of the bouncing ball example reachability analysis run.
Four threads were part of the computation. We represent each thread a unique color.
Velocity is plotted on the horizontal axis, and the height of the ball is on the vertical



3.2. Implementation 27

axis. We can see very well that every thread is computing exactly one flowpipe and
passes another initial state to the queue using the Eventhandler. It is important
to notice that we reuse the different worker instances for another computation. For
example, this is illustrated by the two green colored flowpipes. The non-modified
bouncing ball example is not suitable for performance improvement measurements
when using multiple threads as there is only one jump which we aggregate before
passing it to the queue. So there will always be only one thread computing at a
time. We extend the bouncing ball example by a lift which is carrying balls up and
dropping them from some specified height, to overcome this problem. We give the
model in Figure 3.3. This model can be partially computed in parallel. Only the very

falling

ẏ = v
v̇ = −9.81

elevating

ẏ = 1

y = 12 y = 10
y = 15 y = 8

y = 0 ∧ v ≤ 0

v := −c · v

Figure 3.3: Bouncing ball model extended by an elevator which is dropping balls from
a specified height. The initial state is (elevating, v = 0 ∧ y = 0).

first flowpipe is computed in a single thread but as there occur four intersections with
guards, four new initial states will be added to the queue. A plot for this is given in
figure 3.4. The plot shows well which thread computed which flowpipe. This is just
a short example for the speedup of the multithreading approach. Further examples
are discussed in more detail in Chapter 4.

It remains the question what the best case speedup of a multithreaded reacha-
bility analysis run will be. We would expect the best case speedup when we start a
computational run with multiple initial states as the same model can be investigated
at the same time using multiple threads. If there were no cost of synchronization, we
would expect a speedup factor which is equal to the number of processors which we
use for the computation. As a reference for all measurements, we make one compu-
tational run using only one CPU core. The speedup factor is computed as follows:
solvetime1
solvetimei

where i stands for the number of processors used. Thus one would expect
solvetime1
solvetime2

= 2 as when using two CPU cores the computation should be twice as
fast. However, in a real-world environment the operating system, the locking tech-
niques, and even memory allocations will reduce this ratio by a value which can hardly



28 Chapter 3. Modularization of Reachability Analysis

 0

 5

 10

 15

 20

-20 -15 -10 -5  0  5  10  15

Figure 3.4: Plot of the elevator model using support functions, jump depth 2, a time
horizon of 20s, 4 threads and a time step of 0.001s.

number of threads 1 2 3 4
runtime 21.1757s 15.3478s 15.1523s 14.5368s

Figure 3.5: Runtime comparison by thread count of the extended bouncing ball model
usind support functions, a jump depth of 6, a time horizon of 20s and a time step of
0.01s.

be estimated. For the elevator example, we already get an idea of the speed up, a
parallelized approach can achieve as depicted in Table 3.5.

3.2.4 Library Approach
Our library for reachability analysis aims for easy to use prototype creation, a strict
separation of concerns, low overhead and convenience operations for measurements.
The strict separation must be done carefully as it has impacts on the usability and
the limits of the library. As HyDRA should be usable as a framework and thus not
only as a collection of operations, classes and measurement tools for hybrid systems
verification, it must provide clear entry points to the framework. We give a minimal
application layer example in Chapter A. Three steps are needed to use libHyDRA as
an execution framework for hybrid systems verification. First of all, HyDRA must get
the worker implementations to know. For this purpose, the IWorker interface must
be implemented. It forces the existence of the computeForwardReachability method
which computes the forward time closure of a passed ReachTreeNode object. The
ReachTreeNode class is the state abstraction containing most importantly the state set
representation and its metadata. Next, we register workers with the WorkerProvider



3.2. Implementation 29

F
ig
ur
e
3.
6:

H
yD

R
A

cl
as
s
di
ag
ra
m



30 Chapter 3. Modularization of Reachability Analysis

by the type of representation it can handle. After all workers are known to the system,
some settings are still missing. First of all, we need the ReachabilitySettings which
contain information about for example the time horizon or the number of jumps to be
taken. Next, we need the HybridAutomaton for e.g. the bad states, transitions and
dynamics within the system. These are stored in the HybridAutomaton data structure.
When all parameters are set within the respective singleton classes, we can HyDRA
run in a framework like way. For usability purposes, we waive a context object. Using
a context object would have the advantage of running multiple HyDRA instances
in parallel. This use case should in general not be necessary as it only provides a
framework for executing reachability analysis. In case that different models should
be checked for safety, the recommended way would be using a shell script instead of
parallelizing the analysis within the user application which is using HyDRA.

HyDRA provides multithreading abilities. Thus it is possible to set a number of
worker threads to be dispatched. The WorkerDispatcher is the central component
dispatching threads which then access the work queue and pass ReachTreeNodes if
existing to the respective worker instance. Every thread is a consumer, executing a
producer - the worker instance. The consumer thread does not know the computa-
tional result of the executed worker. This is because different kinds of signaling must
be done - bad state intersection, adding new states to Rnew and the Reachtree. By
design decision, we decided that it is more in the sense of a framework when the
signaling is left to the application developer, as it gives her or him more power. The
EventHandler singleton class takes implementations of the IEvent interface and is
executed when dispatchEvent is called. The TerminateEvent forces HyDRA to ter-
minate. This is for example used by the WorkerIdleEvent. It watches the state of all
consumer threads.

3.3 Technical challenges

Most difficult when implementing HyDRA was the dependency management and
which dependencies might be picked to develop a tool with multithreading abilities.
The dependencies must guarantee thread safety or at least reentrancy. HyPro as a
library for state set representations was planned for the tool as it is developed at
the chair, thus support is fast and much code can be reused and placed into a new
tool. However, this means that all dependencies from HyPro have to be reentrant or
thread-safe as well. After developing the core structure in HyDRA first tests showed
that this is not the case. The test runs even demonstrated that the verification be-
comes slower when we use multiple threads. As it seemed faster to try out other
tools instead of finding the bug in the foreign tool, two other tools (z3 [WHdM09]
and Soplex [Wun96]) were introduced to the Optimizer class in HyPro as this class
is the bottleneck, using about 60 percent of all computational effort. z3 advertises
thread safety [WHdM09]. The Optimizer is responsible for several tasks like checking
a set for consistency and checking for redundant constraints. The setup of z3 is a very
time-consuming task, and it seems like z3 is not thread-safe as memory access errors
occur in some rare cases. Soplex is a thread-safe simplex solver. After a patch by the
Soplex team, the code was thread safe for exact number types, too. This gives the
opportunity for future implementations and tests to use different simplex and SMT
solvers.



3.4. Strategies for Multithreaded Verification 31

We faced another problem by using the C++ language. For performance and
compatibility reasons C++ was chosen as language. C++ provides different concepts
for polymorphism. On the one hand inheritance for runtime-polymorphism and on
the other hand templates for compile-time polymorphism. HyPro uses templates to
abstract the number type. This way a user can choose between several number types
- exact and non-exact ones. All information specific to the template instantiation
must be known ahead of the compilation. As we planned HyDRd as a dynamic and
modular tool which uses multiple state set representations within one run, we had to
make assumptions about the template instantiation. One of the assumptions is that
mpq_class - an arbitrary precision floating point number type - is always used and
we only pass ReachTreeNodes to the Worker processes. The last decision is due to
the ease of development and is subject to change. The EventHandler class even uses
type erasure to provide a dynamic event system. This technique makes it easier to
divide responsibilities and made it possible to develop dynamic search strategies in
parallel in another thesis project.

3.4 Strategies for Multithreaded Verification

Parallel computations can lead to great performance improvements if the model intro-
duces more than one flowpipe at one jump or when the verification starts with multiple
initial states. Both is currently implemented in HyDRA. Additionally, there are more
possibilities to make use of modern hardware and parallelization. An easy way which
may lead to better performance are specialized threads which only compute guard
and invariant intersections since we need to repeat both operations often. These are
basic and rather technical approaches to improve performance. Multithreading can
also be used to speed up theoretical concepts.

A naive strategy makes use of the fact that safety can only be guaranteed when
there is no intersection with the bad states. When we know that a problem does not
scale well across multiple threads, we can check the same problem for safety using
another representation in parallel. When one representation can prove safety, we can
abort the still running verification task. This is useful when one representation is
much more precise than the other one - for example, boxes and H-polytopes. The
box representation will be faster but less accurate while the polytopes are much more
accurate but slower. When the usage of boxes suffices to show safety, we can abort
a parallel verification run which is, for example, using polytopes. The disadvantage
of this approach is that we ignore the information provided by the boxes. Every box
checks for guard and invariant intersection. Another state set representation might
be able to use this information.

First of all, it is necessary to understand that a flowpipe is the result of the
time discretization, the guard intersection, and the invariant intersection. It is not
essential to the verification run whether the representation is very precise or very
rough as we are interested in proving safety as fast as possible. If we were able to skip
these intersections by computing them cheaply, it would be possible to skip successor
segments and directly compute the time successor of some later point in time of a
given state. This is only valid if all points of one representation are contained by the
other one to guarantee that the intersection with the more precise representation has
already been tested. For this purpose, a bounding box is introduced.



32 Chapter 3. Modularization of Reachability Analysis

Definition 3.4.1 (Bounding Box). A bounding box B of a representation R is a box
such that R ⊆ B holds.

Operations on boxes are known to be fast. The evaluation results confirm this
assumption for the tested examples. To formulate a strategy based on the previous
idea, we need to prove that the first segment in a box representation is a bounding box
of a polytope representation based on a given initial state I with the same settings. If
this holds the guard and invariant intersections can be computed cheaply in the box
representation. These intersections are only necessary for a polytope representation
when the bounding box intersects the bad states, a guard or an invariant. Thus,
if the bounding box does not intersect any of them, we can skip the intersection
computations in the polytope representation.

Lemma 3.4.1. Given an initial state I, which is representable by a finite number of
linear constraints, and a time step δ the box representation of the first segment in a
hybrid system obtained from I and δ is a bounding box of the first segment in a polytope
representation. Further on the n-th successor segment of the box representation is a
bounding box of the polytope segment at time n · δ.

Proof. Let ẋ(t) = Ax(t) be the differential equation describing the dynamics of a
given hybrid system H in its initial location, I be an initial state of H and δ ∈ R an
arbitrary but fixed time step. To compute the first segment, we must transform I into
a representation. Polytopes can represent I exactly as there are only finitely many
linear constraints. Boxes will introduce an error as it needs to capture all content of
the initial state without being able to use all constraints of I. Thus P ⊆ B holds. Now
we show that under the assumption that B ⊆ P holds, that the operations Minkowski
Sum (· ⊕ ·), linear transformation (A·), convex union (CH(· ∪ ·)) and intersection
(·∩ ·) are closed under this property. Thus we obtain after application of an operation
a representation P ′ and B′ such that P ′ ⊆ B′ holds. In the following we assume
that P is a V-polytope and we reference an arbitrary but concrete V-polytope by
V. As V-polytopes are complementary to H-polytopes, the results are also valid for
H-polytopes. We denote that a set is in V-polytope or box representation by V(·) or
B(·).

A · We apply the linear transformation to V by applying it to its vertices. This
is similar to B where we first apply the transformation to every point of the
intervals of B and then search for the smallest and the largest point as boxes
are not closed under linear transformation. These points define a new box.
Thus, this new box B′ is an overapproximation of the linear transformed object.
As for every point x ∈ V, x ∈ B holds, we get that if Ax ∈ V ′ then Ax ∈ B′.

· ⊕ · Given two representations A and C represented as boxes or as V-polytopes, the
Minkowski Sum for boxes and V-polytopes is computed similarly by calculat-
ing the sum of every point or respectively vertex of A and C. As V(A) ⊆
B(A),V(C) ⊆ B(C) holds, we get for the sum a+b of every point a ∈ V(A), b ∈
V(C) that a+ b ∈ V(A⊕C) and a+ b ∈ B(A⊕C). Thus V(A⊕C) ⊆ B(A⊕C).

CH(· ∪ ·) Given two representations A and C represented as boxes or as V-polytopes,
the convex union is computed by uniting all points of A and C and calculating
the convex hull. We get that for every x ∈ V(A), x ∈ V(A ∪ C) holds. As
V(A) ⊆ B(A) and V(C) ⊆ B(C) hold, we get that V(A ∪ C) ⊆ B(A ∪ C).



3.4. Strategies for Multithreaded Verification 33

· ∩ · Given two representations A and C represented as boxes or as V-polytopes. V ′
denotes V(A ∩ C) and B′ denotes B(A ∩ C). Assume, there is a point x ∈ V ′
such that x /∈ B′, then x /∈ B(A) or x /∈ B(C) as x must be in A and in C.
Then x /∈ V(A) or x /∈ V(C) as V(A) ⊆ B(A) and V(C) ⊆ B(C) holds. This is
a contradiction to x ∈ V ′ and thus V ′ ⊆ B′ holds.

Hence, the box representation stays larger than the respective polytope representa-
tion.

This result gives the opportunity to compute a flowpipe using boxes while guaran-
teeing that every box contains the respective segment when the computation is done
using polytopes. Combined with the thoughts from the beginning the guard and in-
variant intersections can be computed using boxes. A box registers whether there is
no intersection at time n · δ in a globally accessible data structure. In parallel the
same initial state is verified using polytopes. Before computing the successor segment,
the polytope thread checks whether it is possible to skip the intersection computa-
tions. Combined with the naive strategy the verification can be aborted when the
boxes prove safety. This strategy could also lead to major improvements in a single
threaded environment. For this purpose, every polytope keeps track of its bounding
box and first checks whether the bounding box intersects invariant or guard. If not,
the polytope thread can skip these steps. This strategy can be advanced easily. When
a box thread is much ahead of the respective polytope thread, it is possible to skip
the computation of some time successors and directly compute the time successor at
n · δ, assuming that the box thread registered that at time (n− 1) · δ no intersections
occur using this correlation:

Ωn = eδAΩn−1 = eδA · ... · eδAI︸ ︷︷ ︸
n−1 times

= e(n−1)δAI

This is particularly interesting as it might be possible to skip the whole flowpipe com-
putation as safety is guaranteed by the box representation while keeping the precision
of the polytopes. When boxes are not able to prove safety anymore, the polytope
representation can carry on. Algorithms 2 and 3 illustrate the ideas in algorithms
which need to be implemented. The code starting in line 19 is executed by multiple
threads. The algorithms also show what is happening during the ForwardReachability
function which was introduced in Chapter 2. It is assumed that the algorithms work
on global data structures and the names of the functions are chosen to be intuitive
for convenience reasons. The algorithms as they are provided are not suitable to be
used right away and only provide an idea of how an implementation of the concepts
roughly has to look like. The technical details are up to the developer. The algorithm
as depicted in Algorithm 3 is easy to adapt for skipping only a few segments and not
the whole flowpipe.



34 Chapter 3. Modularization of Reachability Analysis

1 while ( Rnew != ∅ && ! terminat ion_condi t ion )
2 {
3 R′ = Rnew . pop ( ) ; // pop d e l e t e s from queue
4 Flowpipe f l owp ipe ;
5 Segment f i r s tSegment = ComputeFirstSegment (R′ ) ;
6 f l owp ipe . add ( f i r s tSegment ) ;
7 Segment lastSegment = f i r s tSegment ;
8 while ( ContinueFlowpipeComputation ( ) ) {
9 i f (R′ . Type == "polytope " ) {

10 // compute eδAlastSegment
11 Segment newSegment = lastSegment . ComputeSuccessorSegment ( ) ;
12

13 i f ( ! I s I n t e r s e c t i o nSk i ppab l e ( newSegment . TimeStamp ) ) {
14 // must compute i n t e r s e c t i o n s
15 ComputeIntersect ions ( newSegment ) ;
16

17 i f ( I n t e r s e c tBad s t a t e s ( newSegment ) ) {
18 // abort as the p r e c i s e r ep r e s en t a t i on i n t e r s e c t s bad s t a t e s
19 abort ( ) ;
20 }
21 }
22 f l owp ipe . add ( newSegment ) ;
23 lastSegment = newSegment ;
24 } else { // r ep r e s en t a t i on i s box now
25 // compute eδAlastSegment
26 Segment newSegment = lastSegment . ComputeSuccessorSegment ( ) ;
27

28 ComputeIntersect ions ( newSegment ) ;
29

30 i f ( NoIntersect ionOccured ( ) ) {
31 AddSkippableTimestamp (newSegment . TimeStamp)
32 }
33

34 f l owp ipe . add ( newSegment ) ;
35 lastSegment = newSegment ;
36 }
37 }
38 }
39 return R ;

Algorithm 2: Algorithm sketch of the first idea. Skip intersection computations of
the polytope intersection by computing them cheap using its bounding box.



3.4. Strategies for Multithreaded Verification 35

1 while ( Rnew != ∅ && ! terminat ion_condi t ion )
2 {
3 R′ = Rnew . pop ( ) ; // pop d e l e t e s from queue
4 Flowpipe f l owp ipe ;
5 Segment f i r s tSegment = ComputeFirstSegment (R′ ) ;
6 f l owp ipe . add ( f i r s tSegment ) ;
7 Segment lastSegment = f i r s tSegment ;
8 while ( ContinueFlowpipeComputation ( ) ) {
9 i f (R′ . Type == "polytope " ) {

10 // compute enδAlastSegment − t h i s c a l l may block un t i l
11 // a timestamp comes in but only i f we are not computing
12 // more nece s sa ry segments u n t i l a guard/ inv i s h i t
13 TimeStamp boxInte r sec tedHere = GetIntersectingTimeStamp ( ) ;
14 Segment newSegment =
15 lastSegment . ComputeSuccessorSegment ( boxInte r sec tedHere ) ;
16

17 ComputeIntersect ions ( newSegment ) ;
18

19 i f ( I n t e r s e c tBad s t a t e s ( newSegment ) ) {
20 // abort as the p r e c i s e r ep r e s en t a t i on i n t e r s e c t s bad s t a t e s
21 abort ( ) ;
22 }
23 f l owp ipe . add ( newSegment ) ;
24 lastSegment = newSegment ;
25 } else { // r ep r e s en t a t i on i s box now
26 // compute eδAlastSegment
27 Segment newSegment = lastSegment . ComputeSuccessorSegment ( ) ;
28

29 ComputeIntersect ions ( newSegment ) ;
30

31 i f ( In t e r s e c t i onOccured ( ) ) {
32 AddTimestamp(newSegment . TimeStamp)
33 }
34

35 f l owp ipe . add ( newSegment ) ;
36 lastSegment = newSegment ;
37 }
38 }
39 }
40 return R ;

Algorithm 3: Algorithm sketch of the second idea. Skip segment computations of the
polytope by computing how far the box gets without intersection.



36 Chapter 3. Modularization of Reachability Analysis



Chapter 4

Evaluation

The previous chapter already showed a small example for the speed up a multithreaded
approach can achieve. For further investigation how the multithreaded approach is
performing, we compute the set of reachable states of a given model seven times to
eliminate variances from multithreading. Then the best and the worst runtime are
erased from the set of measurements to remove outliers introduced by the operating
system’s scheduler. The result of one benchmark is the arithmetic mean of the re-
maining five measurements. We show significant runtime improvements in two of the
used benchmarks without verifying multiple initial states and reduces the overhead
of parallelization to a minimum such that there is no practical need to determine an
optimal amount of threads.

4.1 Benchmarks

In a multithreaded environment is particularly interesting to find out the computa-
tional overhead introduced by multiple threads - in small and large benchmarks - and
the maximum speedup we can achieve by using multiple threads. We measure the first
by computing the set of reachable states of a benchmark which introduces exactly one
new flowpipe by taking a jump and call this type of benchmark single-pathed at it only
has a single path. The speedup is calculated in real-world benchmarks like controller
models and in artificially enlarged benchmarks by using either multiple transitions
- like it has been done previously - or multiple initial states. In the following, we
reference different benchmarks according to their model name. Table 4.1 gives an
overview on which settings we use.

Bouncing Ball

We investigate four bouncing ball examples. First of all, a small single-pathed bounc-
ing ball example which is fast to compute by using a larger time step and a little
jump depth. We compute the set of reachable states in the same benchmark with
eight initial states, too. Its purpose is to investigate how big the multithreading over-
head is. As the termination of the implementation is only triggered when the set of
new states is empty, we expect a big relative cost. To be precise, the worst case is



38 Chapter 4. Evaluation

model time step time horizon jump depth
bouncing_ball_8_init 0.004s 5s 15
bouncing_ball_8_small 0.02s 5s 3
bouncing_ball 0.01s 3s 6
bouncing_ball_small 0.01s 3s 3
cruise_control 0.05s 100s 20
filtered_oscillator 0.01s 4s 15
rod_reactor 0.1s 50s 20
rod_reactor_large 0.01s 50s 30

Table 4.1: Overview of the used benchmark models and the settings used for reacha-
bility computation.

 0

 5

 10

 15

 20

-20 -15 -10 -5  0  5  10  15

Figure 4.1: Bouncing ball with eight different initial states. H-Polytopes with time
step 0.005s, jump depth 1 and local time horizon 5s.

that all threads are registering idling and waiting for a new state. Thus the worst
case overhead during termination is

O

(∑
T

stimeout

)

where T is the set of worker threads and stimeout is the maximum waiting time for
a new state. This is, of course, constant and thus insignificant for long computation
times. However, it is the maximum overhead introduced by this kind of implementa-
tion of the termination condition. The minimum cost of synchronization we expect is
0. This is the case when the last segment has been computed, the worker returns and
looks for a new segment. If all worker threads are idling, the last thread registering



4.1. Benchmarks 39

itself idling can initiate termination. The timeout in the queue is set to 100ms. Thus
we expect a maximum overhead of 800ms for eight threads. This numbers will dif-
fer as this estimation ignores context switching and function calls and asynchronous
data structure access. The operating system can also have an impact on the runtime,
especially in benchmarks whose set of reachable states is fast to compute. However,
by taking multiple measurements, this error is reduced to a minimum. For peak per-
formance improvement measurements, we use the bouncing_ball_8_init model. It
uses a small time step, eight initial states and a jump depth of 15. These constraints
make the computation last longer and result in a high number of segments and new
initial states. We give an example plot in Figure 4.1. The plot shows nicely how the
different flowpipes are computed in parallel as each thread is depicted by its unique
color.

Rod Reactor

rod 1

ẋ = 0.1 · x− 56
ċ1 = 1
ċ2 = 1

x ≥ 510

no rods

ẋ = 0.1 · x− 50
ċ1 = 1
ċ2 = 1

x ≤ 550

rod 2

ẋ = 0.1 · x− 60
ċ1 = 1
ċ2 = 1

x ≥ 510

shut down

x = 510

c1 := 0

x = 550
c1 ≥ 20

x = 510

c2 := 0

x = 550
c2 ≥ 20

x = 550
c1 < 20
c2 < 20

Figure 4.2: Hybrid automaton modeling a rod reactor. x is the temperature variable,
c1 and c2 are clock variables, measuring the time since the last insertion of rodi.

The rod reactor is a model of a reactor control system. A reactor consists of a
tank and two control rods which differ in their influence on the temperature dynamics
of the tank. The water in the tank heats up when no rods are in the water. When the
temperature is up to xupper = 550°C and rodi has not been used for 20 time units it
can be inserted into the tank. The tank is cooled down to xlower = 510°C by rodi and
resets its timer to wait again for 20 time units. When the temperature reaches 550°C
but there is no rod available the system must be shut down. This is a benchmark
which is not deterministic as either rod1 or rod2 can be chosen and thus a speed up
by using parallelization is expected. Figure 4.3 illustrates well how the system heats
up, and is cooled down again by either rod1 or rod2.



40 Chapter 4. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 510  515  520  525  530  535  540  545  550

Figure 4.3: Rod reactor example plot using boxes, a time step of 0.1s, jump depth
20 and local time horizon 50. horizontal axis: temperature, vertical axis: time. The
initial state is (no rods, x ∈ [510,520] ∧ c1 = 20 ∧ c2 = 20).

Cruise Control

In contrast to the other systems, the cruise control system is a relatively complex
hybrid system which models a cruise control. A cruise control is a device which
controls the speed of a car. The target speed is set by the driver of the vehicle. To
avoid Zeno behavior when the target velocity is reached, an additional state models a
waiting time before the car can accelerate or deaccelerate again. For deacceleration,
the system is equipped with two kinds of brakes: service and emergency brakes.
The service brakes are for small differences between the target and the actual speed
while the emergency brakes will only be triggered when a large difference is detected
[SÁC+16]. Due to its size, we give the hybrid automaton in Chapter B in Figure B.2.

4.2 Results

The tables in this section show the average runtime and the achieved speedup by
the number of threads. Speed up values larger than one mean that multiple threads
have been fast in the computation while a value smaller than 1 indicates that more
threads have been slower than the reference computation using only one thread. All
calculations are done on a single, octa-core Intel Core i7 CPU at 2.8GHz. We do not
measure memory consumption as the implementation uses shared memory and thus
every thread allocates only memory it needs locally. Every benchmark has about seven
gigabytes of RAM available. We give the full measurement results in Chapter B.2.

The results are slightly better than the previously formulated expectations. How-
ever, the speed up factor is always near to 1 and the results in Table 4.2 show a positive
impact on the performance for all state set representations. The overhead is minimal



4.2. Results 41

Box H-Polytope Support function
i � t1

ti
� t1

ti
� t1

ti

1 0.347s 1 2.981s 1 2.589s 1
2 0.342s 1.015 2.938s 1.015 2.491s 1.039
4 0.341s 1.018 2.911s 1.024 2.469s 1.049
8 0.340s 1.021 2.905s 1.026 2.491 1.039

Table 4.2: Results of the bouncing_ball benchmark. i is the number of threads being
used. Each row gives the average runtime of all measurements using i threads. ti is
the average computation time using i threads. t1

ti
is the speedup factor.

Box H-Polytope Support function
i � t1

ti
� t1

ti
� t1

ti

1 21.829s 1 79.975s 1 193.027s 1
2 12.147s 1.797 43.535s 1.837 104.829s 1.841
4 8.302s 2.629 30.423s 2.629 65.613s 2.942
8 6.000s 3.638 22.578s 3.542 51.391s 3.756

Table 4.3: Results of the bouncing_ball_8_init benchmark. i is the number of
threads being used. Each row gives the average runtime of all measurements using i
threads. ti is the average computation time using i threads. t1

ti
is the speedup factor.

due to the high probability that almost all threads in single-pathed benchmarks are
sleeping. The thread which computes the flowpipe to the last initial segment initiates
the termination. If all other threads are sleeping, they registered idling before and
thus there is no overhead. The results indicate a small speedup of 1 to 4 percent. This
speedup is due to the relatively small amount of segments to compute. When multi-
ple threads listen for changes in the queue, a second thread can dequeue an element
before the enqueueing worker process returns. However, as soon as the computation
time and the number of newly introduced initial states grow, the results get to a
factor of close to 1. Thus the impact of the termination condition implementation
is even below the expectations. Summarizing, it is possible to run the HyDRA tool
with all available threads a system provides without caring about performance loss.
Even more impressive is the performance in examples which reveal potential for mul-
tithreaded computations. The artificial best case is the reachable state set calculation
of a single-pathed system with as many initial states as a system provides CPU cores.

For benchmarking the best case performance improvement we use the bounc-
ing_ball_8_init example. The results are given in Table 4.3. Although they show
major improvements in runtime and an average speedup factor of 3.6, using eight
threads, the results are behind the expectations. As the results for small examples
show practically no overhead for multiple threads, a speedup factor which is nearly
equal to the number of used threads would be desirable. Analyzing this problem us-
ing the Valgrind [NS07] tool Cachegrind shows that much time seems to be spent in
functions provided by GMP. GMP [Gt12] is a C library for fixed-point and arbitrary
precision arithmetic. For the bouncing_ball_8_small - the cut-down derivative of
the previous benchmark - GMP allocates memory nearly 106 million times and takes
30 percent of the overall time. Memory allocation must be thread safe and lock-
ing at a low level is needed as the memory must not be provided to two threads at



42 Chapter 4. Evaluation

i � t1
ti

1 1.664s 1
8 1.007s 1.652

(a) Cruise Control results (cruise_control).

i � t1
ti

1 11.048s 1
2 6.223s 1.775
4 7.094s 1.557
8 6.714s 1.646

(b) Rod Reactor results (rod_reactor_large).

Table 4.4: Results of the real-world benchmarks using boxes as representation. i
is the number of threads being used. Each row gives the average runtime of all
measurements using i threads. ti is the average computation time using i threads. t1

ti
is the speedup factor.

once. This locking could be the cause of the problem, but further investigation is
required. Ordinary double numbers should solve the problem. However, we can not
work with 64bit floating point numbers easily as numerical issues appear fast, and
over-approximation might not be guaranteed anymore. Lastly, we give the results for
the real world benchmarks in Table 4.4. They show an improvement of 65 percent in
runtime. The rod reactor benchmark illustrates well that the termination condition
for multiple threads introduces a small overhead. However, it is roughly within the
expected limits. In a nutshell, the HyDRA tool can speed up the computation of
common benchmarks by 60 percent and more if it applies to the model. Especially
when the verification of multiple initial states is needed, the problem scales well across
multiple processors and performance increases by roughly 360 percent.



Chapter 5

Conclusion

The approach of parallelizing the verification of hybrid systems is new and to the best
of our knowledge, it has not been done before. To improve the performance on bench-
marks which do not scale well on modern computer hardware with multiple cores, it
is still possible to make use of other approaches to speed up computations. These
methods still require more research in the future. However, parallelization speeds
up standard benchmarks and improves the runtime by a magnitude when multiple
initial states are subject of the verification task. The developed tool is a good and
modular starting point for future researchers who want to try out new ideas quickly.
We can extend HyDRA easily by using the event system if needed. Additionally, the
library approach provides a simple way to implement so-called workers for reachabil-
ity analysis. For this purpose, the library provides simple measurement tools, default
implementations for the reachability analysis and data structures like a hybrid au-
tomaton needed for reachability analysis.

5.1 Summary

Chapter 3 introduces the HyDRA tool which aims to be a modular hybrid systems
verifier, building upon much code from HyPro as it ships its own reachability algo-
rithm. After applying minor changes, we integrated it into HyDRA, as well as a
parser suitable for Flow* input syntax [CAS13] and some data structures like the
hybrid automaton. To make use of modern hardware and provide a forward-looking
approach to hybrid systems verification multithreading is part of HyDRA. Along with
the producer-consumer problem, we presented three strategies for verification. The
simple approach in Chapter 4 shows that the implementation introduces a minimal or
even no overhead by multithreading. For common benchmarks, the runtime improves
by roughly 60 percent. The results become better when multiple initial states are sub-
ject of verification. Then - for eight cores - the improvement rises to up to 360 percent.
The reader may review all measurements in the appendix. Although the results for
multithreading seem to be promising, they only apply to a small class of current hy-
brid systems benchmarks. Most benchmarks will not introduce more than one new
initial state at once, which makes a naive approach useless. For this purpose, more
sophisticated strategies are needed. We presented two promising approaches which
may lead to speedups for polytopes as the state set representations. The ideas should
be easily extensible to other representations, like for example support functions.



44 Chapter 5. Conclusion

5.2 Future work
There are multiple points of improvements which are still open for discussion.

• HyDRA could become even more generic in its approach by not making any
assumptions about the state object. Due to the lack of time and for the ease
of development this has not been done, yet. Dynamic search strategies require
of course particular information like the time stamp, the settings used for the
reachability analysis and the information from the hybrid automaton like invari-
ants, locations, and guards. If we can to abstract this information and provide
specific adapters, it would be possible to use HyDRA as a framework for reach-
ability analysis using multithreading while using a custom state implementation
and state set representation. The workers are already abstracted. Some similar
approach using a state super class throughout the whole code without making
assumptions about the kind of representation could make this possible. Cur-
rently, there exists a Variant data structure which holds all HyPro implemen-
tations for different state set representations. This generalization could make
different tools for reachability analysis more comparable as HyDRA already
provides basic measurement mechanisms. As a motivation for other tool devel-
opers, the multithreading ability should be kept as an essential component of
HyDRA.

• There have been problems scaling models across multiple threads. This problem
can not be solved completely as one must be able to modify the model such that
there are multiple paths. Of course one could waive parallelotope aggregation,
but this leads to high runtimes due to an explosion of initial states. Even if
there are enough cores available to compute all the new initial states perfectly
parallel, the analysis would not be faster than the analysis using aggregation.
For this purpose, we introduced three strategies for a faster analysis of these
models. Due to the lack of time, we did not implement or test these techniques.

• Another point of investigation regarding the multithreading module is the over-
head introduced by GMP and GLPK. Both allocate lots of heap memory which
causes the operation system to lock. Double precision numbers would speed up
the whole computation but introduce new numerical issues which need to be
solved. If these problems are solved a faster analysis is expected. We would
also assume that the runtime improvement of multithreading gets closer to the
expected factor. Another approach minimizing the memory allocations might
be the usage of SoPlex. A comparison of SoPlex and GLPK looks promis-
ing as SoPlex advertises itself as one of the fastest open-source simplex solver
[ABKW08].

• A fixed-point check is currently not implemented. As a future point for research,
this could be done asynchronously by a thread which can abort the computation
at any time when a fixed-point is detected. This would decouple this task from
the worker threads and maybe it is possible to develop an algorithm which makes
use of the information it gets incrementally.

I am curious what HyDRA will become in the future and which ideas will be imple-
mented.



Bibliography

[ABKW08] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.
Constraint Integer Programming: A New Approach to Integrate CP and
MIP, pages 6–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[AC15] Prof. Dr. Erika Ábrahám and Xin Chen. Modeling and analysis of
hybrid systems. https://ths.rwth-aachen.de/wp-content/
uploads/sites/4/teaching/vorlesung_hybride_systeme/
handout.pdf, 2015.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. Hybrid systems the
algorithmic analysis of hybrid systems. Theoretical Computer Science,
138(1):3 – 34, 1995.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems, pages 209–229. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1993.

[CAS13] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In International Conference on
Computer Aided Verification (CAV), 2013.

[Gt12] Torbjörn Granlund and the GMP development team. GNU MP: The
GNU Multiple Precision Arithmetic Library, 5.0.5 edition, 2012. http:
//gmplib.org/.

[Hil92] Ralph C. Hilzer, Jr. Synchronization of the producer/consumer problem
using semaphores, monitors, and the ada rendezvous. SIGOPS Oper.
Syst. Rev., 26(3):31–39, July 1992.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94 – 124, 1998.

[LG09] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics. Theses, Université Joseph-Fourier - Grenoble I,
October 2009.

[Moo66] Ramon E Moore. Interval analysis, volume 4. 1966.

https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/vorlesung_hybride_systeme/handout.pdf
http://gmplib.org/
http://gmplib.org/


46 Bibliography

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, Apr 1989.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. SIGPLAN Not., 42(6):89–
100, June 2007.

[SÁC+16] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Sri-
ram Sankaranarayanan, and Stefan Kowalewski. A Toolbox for the
Reachability Analysis of Hybrid Systems using Geometric Approxima-
tions - HyPro project website. https://ths.rwth-aachen.de/
research/projects/hypro/, 2016. last access: 30.08.2016.

[VDA98] W. M. P. VAN DER AALST. The application of petri nets to workflow
management. Journal of Circuits, Systems and Computers, 08(01):21–66,
1998.

[WHdM09] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. A
Concurrent Portfolio Approach to SMT Solving, pages 715–720. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Wun96] Roland Wunderling. Paralleler und objektorientierter Simplex-
Algorithmus. PhD thesis, Technische Universität Berlin, 1996. http:
//www.zib.de/Publications/abstracts/TR-96-09/.

[Zie12] G.M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics.
Springer New York, 2012.

https://ths.rwth-aachen.de/research/projects/hypro/
https://ths.rwth-aachen.de/research/projects/hypro/
http://www.zib.de/Publications/abstracts/TR-96-09/
http://www.zib.de/Publications/abstracts/TR-96-09/


Appendix A

Examples

Minimal Application Layer Example

1 #include " l i b /libHyDRA . h"
2 #include <st r ing >
3

4 int main ( int argc , const char∗∗ argv )
5 {
6 // s t a r t par s ing
7 hydra : : pa r s e r : : f l ows t a rPa r s e r par s e r ;
8 hydra : : HybridAutomaton ha = par s e r . parseInput ( f i l ename ) ;
9

10 hydra : : S e t t i ng sProv ide r : : g e t In s tance ( )
11 . setHybridAutomaton ( ha ) ;
12 hydra : : S e t t i ng sProv ide r : : g e t In s tance ( )
13 . s e tRea chab i l i t yS e t t i n g s ( par s e r . mSett ings ) ;
14

15 hydra : : Reachabi l i tyWorkerProvider : : g e t In s tance ( ) . r eg i s t e rWorker (
16 hypro : : representation_name : : box ,
17 new hydra : : r e a c h ab i l i t y : : Reachabi l i tyWorker
18 <hypro : : Box<hydra : : Number>>(par s e r . mSettings , ha )
19 ) ;
20 hydra : : Reachabi l i tyWorkerProvider : : g e t In s tance ( ) . r eg i s t e rWorker (
21 hypro : : representation_name : : polytope_h ,
22 new hydra : : r e a c h ab i l i t y : : Reachabi l i tyWorker
23 <hypro : : HPolytope<hydra : : Number>>(par s e r . mSettings , ha )
24 ) ;
25 hydra : : Reachabi l i tyWorkerProvider : : g e t In s tance ( ) . r eg i s t e rWorker (
26 hypro : : representation_name : : support_function ,
27 new hydra : : r e a c h ab i l i t y : : Reachabi l i tyWorker
28 <hypro : : SupportFunction<hydra : : Number>>(par s e r . mSettings , ha )
29 ) ;
30

31 hydra : : run ( ) ;
32

33 return 0 ;
34 }



48 Appendix A. Examples



Appendix B

Benchmarks

B.1 Benchmark Automata

All large automata that have been used for benchmarking are listed here as their
full appearance in the main part of the thesis would not have been helpful for un-
derstanding what is modeled. The model files are available on the HyPro website
[SÁC+16].

loc1

ẋ = −2 · x+ 1.4
ẏ = −y − 0.7

ẋ1 = 5 · x− 5 · x1
ẋ2 = 5 · x1 − 5 · x2
ẋ3 = 5 · x2 − 5 · x3
ż = 5 · x3 − 5 · z

x ≤ 0
y + 0.714286 · x ≥ 0

loc2

ẋ = −2 · x− 1.4
ẏ = −y + 0.7

ẋ1 = 5 · x− 5 · x1
ẋ2 = 5 · x1 − 5 · x2
ẋ3 = 5 · x2 − 5 · x3
ż = 5 · x3 − 5 · z

x ≤ 0
y + 0.714286 · x ≤ 0

loc3

ẋ = −2 · x+ 1.4
ẏ = −y − 0.7

ẋ1 = 5 · x− 5 · x1
ẋ2 = 5 · x1 − 5 · x2
ẋ3 = 5 · x2 − 5 · x3
ż = 5 · x3 − 5 · z

x ≥ 0
y + 0.714286 · x ≥ 0

loc4

ẋ = −2 · x− 1.4
ẏ = −y + 0.7

ẋ1 = 5 · x− 5 · x1
ẋ2 = 5 · x1 − 5 · x2
ẋ3 = 5 · x2 − 5 · x3
ż = 5 · x3 − 5 · z

x ≥ 0
y + 0.714286 · x ≤ 0

y + 0.714286 · x = 0
x ≥ 0

x = 0
0.714286 · x+ y ≤ 0

y + 0.714286 · x = 0
x ≤ 0

x = 0
0.714286 · x+ y ≥ 0

Figure B.1: Hybrid automaton modeling a filtered oscillator [SÁC+16].



50 Appendix B. Benchmarks

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 21.168 21.802 21.243 22.715 21.443 22.250 22.405 21.861 21.829 1
2 12.535 12.846 11.203 14.327 11.508 11.979 11.867 12.324 12.147 1.797
4 8.257 9.258 7.374 9.125 7.496 9.479 7.350 8.334 8.302 2.629
8 6.089 6.080 5.971 5.941 5.904 6.040 5.968 5.999 6.000 3.638

Table B.1: Results for bouncing_ball_8_init benchmark with representation box. n
is the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.

B.2 Benchmark Results
The following tables provide the full measurement results as discussed in Chapter 4.
The tables were generated from HyDRA log output using a specialized tool written
for this purpose in Go. The source code is provided in the HyDRA git repository.
Each table shows the following information:

Columns: Iteration n - each benchmark was repeated seven times. The average �
is computed from all values while �clean was computed from the values after
deleting the best and the worst value of all measurements for a representation
using a specified amount of threads.

Rows: Threads i - each benchmark was executed using a set of i worker threads. A
benchmark was usually executed using either 1, 2, 4 or 8 threads.

All measured values are given in seconds, except the speed up factor of course, which
has no unit. The different benchmark settings are defined as

model time step time horizon jump depth
bouncing_ball_8_init 0.004s 5s 15
bouncing_ball_8_small 0.02s 5s 3
bouncing_ball 0.01s 3s 6
bouncing_ball_small 0.01s 3s 3
parallel_example 0.005s 20s 10
cruise_control 0.05s 100s 20
filtered_oscillator 0.01s 4s 15
rod_reactor 0.1s 50s 20
rod_reactor_large 0.01s 50s 30



B.2. Benchmark Results 51

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 78.150 78.374 78.788 87.873 81.630 80.745 80.339 80.843 79.975 1
2 44.700 44.679 41.477 47.681 41.534 42.977 43.784 43.833 43.535 1.837
4 30.404 32.788 28.494 32.515 27.403 29.183 31.520 30.330 30.423 2.629
8 23.198 22.666 22.835 21.403 22.505 22.723 22.161 22.499 22.578 3.542

Table B.2: Results for bouncing_ball_8_init benchmark with representation poly-
tope_h. n is the measurement repetition, i is the number of threads being used. Each
row gives the runtime of measurement n using i threads. ti is the average computation
time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 196.806 195.091 185.390 229.326 185.761 196.078 191.398 197.121 193.027 1
2 106.844 108.719 97.599 183.489 99.391 106.619 102.574 115.034 104.829 1.841
4 67.210 67.600 66.442 65.445 60.562 70.632 61.369 65.609 65.613 2.942
8 53.542 52.388 52.315 49.798 50.194 52.033 50.026 51.471 51.391 3.756

Table B.3: Results for bouncing_ball_8_init benchmark with representation sup-
port_function. n is the measurement repetition, i is the number of threads being
used. Each row gives the runtime of measurement n using i threads. ti is the average
computation time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 0.476 0.524 0.489 0.461 0.485 0.524 0.469 0.490 0.489 1
2 0.354 0.351 0.347 0.339 0.344 0.353 0.340 0.347 0.347 1.409
4 0.289 0.322 0.313 0.322 0.289 0.323 0.289 0.307 0.307 1.593
8 0.285 0.280 0.283 0.278 0.282 0.282 0.281 0.282 0.282 1.734

Table B.4: Results for bouncing_ball_8_small benchmark with representation box.
n is the measurement repetition, i is the number of threads being used. Each row
gives the runtime of measurement n using i threads. ti is the average computation
time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 9.745 10.390 10.251 9.313 9.386 9.733 9.368 9.741 9.697 1
2 5.642 5.838 5.493 5.066 5.304 5.467 5.312 5.446 5.444 1.781
4 3.565 3.545 3.985 3.209 3.352 3.506 3.175 3.477 3.435 2.823
8 2.818 3.015 2.967 2.729 2.805 3.029 2.749 2.873 2.871 3.378

Table B.5: Results for bouncing_ball_8_small benchmark with representation poly-
tope_h. n is the measurement repetition, i is the number of threads being used. Each
row gives the runtime of measurement n using i threads. ti is the average computation
time using i threads. t1

ti
is the speed up factor.



52 Appendix B. Benchmarks

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 7.497 8.966 7.800 7.359 7.267 7.491 7.255 7.662 7.483 1
2 4.028 3.916 3.943 3.642 3.623 4.008 3.691 3.836 3.840 1.949
4 2.533 2.424 2.621 2.312 2.182 2.470 2.531 2.439 2.454 3.049
8 1.947 1.973 2.255 1.998 2.122 2.089 1.992 2.054 2.035 3.677

Table B.6: Results for bouncing_ball_8_small benchmark with representation sup-
port_function. n is the measurement repetition, i is the number of threads being
used. Each row gives the runtime of measurement n using i threads. ti is the average
computation time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 0.348 0.345 0.344 0.347 0.346 0.357 0.348 0.348 0.347 1
2 0.342 0.343 0.343 0.341 0.341 0.353 0.341 0.343 0.342 1.015
4 0.342 0.339 0.340 0.348 0.341 0.340 0.342 0.342 0.341 1.018
8 0.340 0.342 0.341 0.390 0.340 0.339 0.339 0.347 0.340 1.021

Table B.7: Results for bouncing_ball benchmark with representation box. n is the
measurement repetition, i is the number of threads being used. Each row gives the
runtime of measurement n using i threads. ti is the average computation time using
i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 2.974 2.990 2.987 2.970 2.959 2.999 2.986 2.981 2.981 1
2 2.925 2.955 2.927 2.950 2.942 2.933 2.936 2.938 2.938 1.015
4 2.928 2.898 2.922 3.407 2.892 2.913 2.894 2.979 2.911 1.024
8 2.930 2.885 2.909 3.385 2.886 2.909 2.889 2.970 2.905 1.026

Table B.8: Results for bouncing_ball benchmark with representation polytope_h. n
is the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 0.253 0.255 0.253 0.255 0.255 0.255 0.254 0.254 0.254 1
2 0.255 0.252 0.253 0.254 0.254 0.254 0.254 0.254 0.254 1.000
4 0.254 0.254 0.254 0.253 0.254 0.259 0.254 0.255 0.254 1.000
8 0.254 0.261 0.255 0.254 0.254 0.254 0.254 0.255 0.254 1.000

Table B.9: Results for bouncing_ball_small benchmark with representation box. n
is the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.



B.2. Benchmark Results 53

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 2.195 2.219 2.200 2.226 2.262 2.224 2.201 2.218 2.214 1
2 2.163 2.154 2.163 2.186 2.151 2.172 2.162 2.164 2.163 1.024
4 2.147 2.131 2.129 2.111 2.440 2.138 2.126 2.175 2.134 1.037
8 2.177 2.145 2.199 2.142 2.132 2.138 2.131 2.152 2.147 1.031

Table B.10: Results for bouncing_ball_small benchmark with representation poly-
tope_h. n is the measurement repetition, i is the number of threads being used. Each
row gives the runtime of measurement n using i threads. ti is the average computation
time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 1.642 1.654 1.636 1.672 1.650 1.658 1.625 1.648 1.648 1
2 1.599 1.608 1.610 1.688 1.601 1.598 1.600 1.615 1.604 1.027
4 1.599 1.594 1.602 1.589 1.599 1.605 1.617 1.601 1.600 1.030
8 1.606 1.620 1.666 1.605 1.607 1.628 1.599 1.619 1.613 1.022

Table B.11: Results for bouncing_ball_small benchmark with representation sup-
port_function. n is the measurement repetition, i is the number of threads being
used. Each row gives the runtime of measurement n using i threads. ti is the average
computation time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 2.593 2.557 2.591 2.580 2.586 2.597 2.599 2.586 2.589 1
2 2.484 2.490 2.482 2.500 2.492 2.513 2.491 2.493 2.491 1.039
4 2.480 2.457 2.467 2.643 2.466 2.476 2.443 2.490 2.469 1.049
8 2.498 2.498 2.477 2.535 2.451 2.498 2.486 2.492 2.491 1.039

Table B.12: Results for bouncing_ball benchmark with representation sup-
port_function. n is the measurement repetition, i is the number of threads being
used. Each row gives the runtime of measurement n using i threads. ti is the average
computation time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 3.586 3.771 3.825 3.579 3.493 3.703 3.551 3.644 3.638 1
2 2.224 2.374 2.325 2.219 2.177 2.346 2.182 2.264 2.259 1.610
4 1.561 1.680 1.543 1.933 1.532 2.090 2.000 1.763 1.743 2.087
8 1.886 1.971 1.846 1.818 1.821 1.875 1.834 1.864 1.852 1.964

Table B.13: Results for parallel_example benchmark with representation box. n is
the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.



54 Appendix B. Benchmarks

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 39.929 40.675 39.882 39.778 39.816 39.990 40.486 40.079 40.021 1
2 24.436 24.725 24.382 24.291 24.150 24.219 24.314 24.360 24.328 1.645
4 17.870 18.055 17.736 18.023 17.784 17.645 18.799 17.987 17.894 2.237
8 20.344 19.170 20.374 19.825 20.414 19.636 19.107 19.839 19.870 2.014

Table B.14: Results for parallel_example benchmark with representation polytope_h.
n is the measurement repetition, i is the number of threads being used. Each row
gives the runtime of measurement n using i threads. ti is the average computation
time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 48.278 49.786 47.891 48.017 47.751 49.665 48.449 48.548 48.460 1
2 33.475 33.158 34.452 32.135 32.500 35.212 32.843 33.396 33.286 1.456
4 26.970 27.000 29.659 26.061 26.241 29.157 30.593 27.954 27.805 1.743
8 27.500 28.650 26.939 27.566 27.726 29.310 27.016 27.815 27.692 1.750

Table B.15: Results for parallel_example benchmark with representation sup-
port_function. n is the measurement repetition, i is the number of threads being
used. Each row gives the runtime of measurement n using i threads. ti is the average
computation time using i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 1.609 1.698 1.731 1.628 1.650 1.693 1.649 1.665 1.664 1
8 1.017 0.725 1.016 1.004 0.996 1.014 1.003 0.968 1.007 1.652

Table B.16: Results for cruise_control benchmark with representation box. n is the
measurement repetition, i is the number of threads being used. Each row gives the
runtime of measurement n using i threads. ti is the average computation time using
i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 7.874 7.888 7.869 7.932 7.887 7.910 7.907 7.895 7.893 1
8 7.845 7.888 7.864 7.860 7.860 7.884 7.855 7.865 7.865 1.004

Table B.17: Results for filtered_oscillator benchmark with representation box. n is
the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.



B.2. Benchmark Results 55

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 1.013 1.021 1.044 1.081 1.028 1.059 1.031 1.040 1.037 1
2 0.654 0.677 0.661 0.679 0.660 0.684 0.655 0.667 0.666 1.557
4 0.659 0.682 0.658 0.930 0.761 0.799 0.653 0.735 0.712 1.456
8 0.702 0.904 0.889 0.737 0.866 0.728 0.828 0.808 0.810 1.280

Table B.18: Results for rod_reactor benchmark with representation box. n is the
measurement repetition, i is the number of threads being used. Each row gives the
runtime of measurement n using i threads. ti is the average computation time using
i threads. t1

ti
is the speed up factor.

i
n 1 2 3 4 5 6 7 � �clean

t1
ti

1 10.844 11.325 10.871 10.973 11.169 11.074 11.151 11.058 11.048 1
2 6.353 6.117 6.207 6.936 6.236 6.202 6.060 6.302 6.223 1.775
4 6.757 6.723 7.664 7.722 7.435 6.377 6.893 7.082 7.094 1.557
8 6.905 6.806 6.824 6.571 6.962 6.466 6.334 6.695 6.714 1.646

Table B.19: Results for rod_reactor_large benchmark with representation box. n is
the measurement repetition, i is the number of threads being used. Each row gives
the runtime of measurement n using i threads. ti is the average computation time
using i threads. t1

ti
is the speed up factor.



56 Appendix B. Benchmarks

loc_1

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

v ≥ 15 ∧ v ≤ 40
t ≥ 0 ∧ t ≤ 2.5

loc_2

v̇ = −5
ẋ = 0
ṫ = 0

v ≥ 15 ∧ v ≤ 40

loc_4

v̇ = −t− 1.2
ẋ = 0
ṫ = 0

v ≥ 5 ∧ v ≤ 20
t ≥ 0 ∧ t ≤ 1.3

loc_3

v̇ = −2.5
ẋ = 0
ṫ = 0

v ≥ 5 ∧ v ≤ 20

loc_5

v̇ = −0.001 · x− 0.052 · v
ẋ = v
ṫ = 0

v ≥ −15 ∧ v ≤ 15
x ≥ −500 ∧ x ≤ 500

loc_6

v̇ = 1.5
ẋ = 0
ṫ = 0

v ≥ −20 ∧ v ≤ −5

t = 2.5
15 ≤ v ≤ 40

0 ≤ t ≤ 2.5
15 ≤ v ≤ 16

t := 0 t = 2.5
15 ≤ v ≤ 16

t := 0

t = 1.3
18 ≤ v ≤ 20

t := 0

x1 = −1

0 ≤ t ≤ 1.3
18 ≤ v ≤ 20

t := 0

0 ≤ t ≤ 1.3
5 ≤ v ≤ 11

x := 0

13 ≤ v ≤ 15
−500 ≤ x ≤ 500

t := 0

−15 ≤ v ≤ −14
−500 ≤ x ≤ 500

−6 ≤ v ≤ −5
−500 ≤ x ≤ 500

x := 0

Figure B.2: Hybrid automaton modeling a cruise control [SÁC+16].


	Introduction
	Preliminaries
	Hybrid Systems
	Reachability Analysis
	State Set Representations
	Dynamic Search Strategies

	Modularization of Reachability Analysis
	Requirements
	Implementation
	Technical challenges
	Strategies for Multithreaded Verification

	Evaluation
	Benchmarks
	Results

	Conclusion
	Summary
	Future work

	Bibliography
	Appendix
	Examples
	Benchmarks
	Benchmark Automata
	Benchmark Results


