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Abstract

This thesis presents the theory needed to implement a quantifier
elimination method for non-linear real arithmetic in order to extend
the Satisfiability Modulo Theories Real Arithmetic Toolbox (SMT-
RAT) by the capability of quantifier elimination. A quantifier elimi-
nation method for non-linear real arithmetic constructs an equivalent
quantifier-free formula for a given quantified formula. The described
quantifier elimination method is based on the concept of the cylin-
drical algebraic decomposition (CAD). A cylindrical algebraic decom-
position decomposes Rn into sign-invariant regions with respect to
a set of multivariate polynomials. The idea to use cylindrical alge-
braic decomposition in order to eliminate quantifiers was originally
introduced by Collins. Several improvements, proposed by Hong and
Brown, are used by the described quantifier elimination method in or-
der to construct preferably simple equivalent quantifier-free formulas.
Experimental results for the behavior of the implemented quantifier
elimination method on a collection of exemplary quantified formulas
are presented.
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Chapter 1

Introduction

A question which already arose in school, is the question asking under which
conditions a quadratic polynomial has a real root. This question can be
formalized by the quantified non-linear real arithmetic formula shown below.

∃x (a 6= 0 ∧ ax2 + bx+ c = 0)

An answer to this question was provided in school as well. A quadratic poly-
nomial has a real root if, and only if, its discriminant is non-negative. This
condition can be formalized by the quantifier-free non-linear real arithmetic
formula given below.

a 6= 0 ∧ b2 − 4ac ≥ 0

In more general, a quantifier elimination problem for non-linear real arith-
metic is a problem where a quantified non-linear real arithmetic formula is
given and an equivalent quantifier-free formula needs to be found.
In 1948, Tarski introduced a quantifier elimination method for non-linear real
arithmetic [17]. However, the time complexity of Tarski’s method causes the
impracticability of the method for all but the most trivial quantifier elimina-
tion problems. In 1973, Collins discovered a more efficient quantifier elim-
ination method for non-linear real arithmetic based on cylindrical algebraic
decomposition [7]. Collins’ method has a time complexity doubly exponential
in the number of variables and polynomially in the number of polynomials,
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the maximum degree of the polynomials, the maximum length of the coeffi-
cients of the polynomials as well as the number of atomic formulas. In 1988,
Davenport and Heintz proved, that quantifier elimination for non-linear real
arithmetic is doubly exponential [11]. Several refinements of Collins’ method
were proposed, e.g. by Hong [13] or Brown [2], with an aim to find simpler
equivalent quantifier-free formulas.
This thesis presents the theory needed to implement a quantifier elimination
method for non-linear real arithmetic in order to extend the Satisfiability
Modulo Theories Real Arithmetic Toolbox (SMT-RAT) by the capability of
quantifier elimination. To begin with, in chapter 2, the preliminary con-
cepts, such as the cylindrical algebraic decomposition or the non-linear real
arithmetic, are introduced. In chapter 3, a quantifier elimination method for
non-linear real arithmetic is described, including a method to determine the
truth values of a quantified formula, a method to assure the for quantifier
elimination important property of projection-definability and a method to
construct an equivalent quantifier-free formula. Finally, in chapter 4, some
remarks on the implementation are made as well as experimental results are
presented.



Chapter 2

Preliminaries

2.1 Non-Linear Real Arithmetic

In 1951, Tarski [17] proved, that for any quantified first-order formula in the
signature (+, ·, 0, 1, <) there exists an equivalent quantifier-free formula in
the same signature. The theory of (R,+, ·, 0, 1, <) is called the theory of
the real numbers or the non-linear real arithmetic (NRA). Formulas over the
signature (+, ·, 0, 1, <) with real-valued variables are called non-linear real
arithmetic formulas. The terms of non-linear real arithmetic formulas, build
upon +, ·, 0, 1 and variables in R, are real-valued multivariate polynomials.
If p is a multivariate polynomial in n variables x1, . . . , xn and i is the largest
index between 1 and n such that the degree of p with respect to xi is greater
than zero, then p will be called an i-level polynomial. The atomic formulas of
non-linear real arithmetic formulas are polynomial equations and inequalities.
The atomic formulas will also be called constraints. If a non-linear real
arithmetic formula has n free variables x1, . . . , xn, an interpretation of the
variables can be considered a vector (a1, . . . , an) in Rn. In the following, the
set Rn will also be referred to as n-space and a vector in n-space will also
be called a point.
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2.2 Cylindrical Algebraic Decompositions

In 1973, Collins [7] introduced a more efficient method to eliminate quan-
tifiers based on cylindrical algebraic decompositions. Therefore, an under-
standing of the term is crucial in order to examine the method. A detailed
overview on cylindrical algebraic decomposition as well as the underlying the-
ory can be found in [15]. A decomposition is a partition with the additional
property that each part is a so called region. A region in Rn is a connected
subset of Rn.

Definition 2.2.1. Let S be a subset of Rn. A decomposition of S is a finite
partition into regions.

The parts of a decomposition are called cells. A decomposition can be
algebraic. In order to define this property, the term semi-algebraic set is
needed. The definition of semi-algebraic sets given below is slightly more
general than needed for this work. It deals with so called real closed fields.
A real closed field is a field that has the same first-order properties as the
field of real numbers. For this work, the only real closed field which will be
considered is the field of real numbers.

Definition 2.2.2. Let R be a real closed field. A semi-algebraic set is a
subset S of Rn defined by finitely many polynomial equations and inequali-
ties.

Semi-algebraic sets have an important property, they are closed under set-
theoretic projection. A set-theoretic projection maps a set in n-space to a
set of some lower dimension m, such that the last n −m components are
simply cut off. An interesting property of semi-algebraic sets is, that the
set-theoretic projection of a semi-algebraic set in n-space onto m-space is a
semi-algebraic set. With that being said, algebraic decompositions can be
defined.
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Definition 2.2.3. A decomposition is called algebraic, if every cell is a semi-
algebraic set.

A decomposition can have the property of being cylindrical. The term cylin-
der is defined below.

Definition 2.2.4. Let A be a region in Rn. The set A × R is called the
cylinder over A.

In order to define cylindrical decompositions, the term stack is needed. A
stack is a decomposition of a cylinder that meets certain criteria. For the
purpose of formalizing these criteria, the terms section and sector need to
be defined.

Definition 2.2.5. Let A be a region in Rn and let p ∈ R[x1, . . . , xn]. The
set {(a, p(a)) | a ∈ A} is called a p-section or just a section if the polynomial
is not of interest.

A sector is the set of elements between two sections. A formal definition is
given below.

Definition 2.2.6. Let A be a region in Rn and let p1, p2 ∈ R[x1, . . . , xn].
The set {(a, b) | p1(a) < b < p2(a), a ∈ A} is called a (p1, p2)-sector or
just a sector if the polynomials are not of interest.

Thereby, the criteria a decomposition has to meet in order to be a stack are
given below.

Definition 2.2.7. LetA be a region in Rn and let p1, . . . , pm ∈ R[x1, . . . , xn],
such that for all a ∈ A it holds that p1(a) < . . . < pm(a). Furthermore,
let p0 = −∞ and pm+1 = +∞. A stack over A is a decomposition of the
cylinder A× R such that the cells are pi-sections or (pi, pi+1)-sectors.
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With that being said, a cylindrical decomposition can be defined.

Definition 2.2.8. A decomposition D of Rn is called cylindrical if the fol-
lowing inductively defined property holds for D.

n = 1 D is a decomposition of R1 such that the cells are sections and
sectors.

n > 1 There exists a decomposition D′ of Rn−1 such that each cell of D
is an element of the stack over a cell of D′.

A decomposition that fulfills both properties will be called a cylindrical alge-
braic decomposition, as seen in the definition below.

Definition 2.2.9. A cylindrical algebraic decomposition (CAD) is a decom-
position which is algebraic and cylindrical.

Due to the inductive nature of cylindrical decompositions and the property of
semi-algebraic sets being closed under set-theoretic projection, a cylindrical
algebraic decomposition of n-space defines so called induced cylindrical al-
gebraic decompositions of lower dimensions. If D′ is the cylindrical algebraic
decomposition of i-space induced by a cylindrical algebraic decomposition D
of n-space, the cells of D′ are called i-level cells of D.
For a given set of multivariate polynomials in n variables a cylindrical alge-
braic decomposition of n-space, such that sign-invariance is achieved, can
be computed.

Definition 2.2.10. Let A be a region in Rn and let p ∈ R[x1, . . . , xn]. The
region A is called sign-invariant with respect to p, if for any a, b ∈ A the
signs of p in a and b agree.

A cylindrical algebraic decomposition defined by a set of multivariate polyno-
mials is called sign-invariant, if each cell is sign-invariant with respect to each
element of the given set of multivariate polynomials. A method to construct
a sign-invariant cylindrical algebraic decomposition was originally introduced
by Collins [7]. Over the years, several improvements were made, e.g. by
McCallum [16], Hong [14] or Brown [3]. Rigorous proofs on the correctness
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of the method can be found in their work, which will be omitted here. A
description of the method will suffice to build a solid understanding for the
next chapters.
The construction is done in two phases, projection and lifting. In the pro-
jection phase, a projection operator is used to map multivariate polynomials
to multivariate polynomials of lower level by computing the discriminants,
the resultants and the leading coefficients of the polynomials, such that the
zero set of the resulting polynomial is the set-theoretic projection of the set
of relevant points of the projected polynomials, e.g. the point of a vertical
tangent for a single projected polynomial or the point of an intersection for
two projected polynomials.
Starting from the given set of multivariate polynomials, a projection oper-
ator is applied repeatedly to the result of the previous application until the
obtained set is closed under projection. The obtained set of multivariate
polynomials will be called the projection factor set and its elements will be
called projection factors. The projection factor set is finite and can be parti-
tioned by the level of the projection factors. If P is the projection factor set,
the set Pi will denote the set of i-level projection factors. The projection
factor set needs to be defined, such that an important property is assured.
Assume the projection factors of level i+1 and above are already computed.
Then, the set of i-level projection factors, resulting from the application of
a projection operator, describe the maximal regions over which the projec-
tion factors of level i and above have a constant number of real roots. The
following definition formalizes this property.

Definition 2.2.11. Let A be a region in Ri−1 and let p1, . . . , pm be multi-
variate polynomials in R[x1, . . . , xn]. The pi’s are called delinable over A, if
for any a ∈ A it holds that

• the number of roots of pi(a) is constant,

• the number of different roots of pi(a) is constant,

• the number of common roots of pi(a) and pj(a) is constant.
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There exist several projection operators to choose from. The original pro-
jection operator was introduced by Collins [7]. Improvements to the original
projection operator were made by e.g McCallum [16], Hong [14] or Brown
[3]. In detail, the four projection operators were examined in [18]. Collins’
and Hong’s projection operator ensure the correctness of the constructed
cylindrical algebraic decomposition, while McCallums’s and Brown’s projec-
tion operators might define a smaller, thus possibly incomplete, projection
factor set. However, the usage of Brown’s projection operator and the re-
sulting smaller projection factor set are still desirable. The hope is, that a
simpler equivalent quantifier-free formula can be constructed using a pro-
jection operator producing less projection factors. The possible incomplete
projection factor set can be fixed later on, in order to ensure the construction
of an actual equivalent quantifier-free formula. Thus, in this work, Brown’s
projection operator will be considered.
The relevant information for quantifier elimination, a cylindrical algebraic
decomposition holds, is the sign of any projection factor in any cell. Thus,
for a sign-invariant cylindrical algebraic decomposition, a single point per cell
suffices to represent the respective cell. A point that represents a cell will
be called a sample point. In the lifting phase, sample points representing
a sign-invariant cylindrical algebraic decomposition are constructed succes-
sively. Beginning with sample points representing the induced sign-invariant
cylindrical algebraic decomposition of 1-space, i-level sample points are ex-
tended to sample points for level i + 1 until a representation of the sign-
invariant cylindrical algebraic decomposition of n-space is obtained.
The sectors and sections defined by the 1-level projection factors decompose
1-space. The resulting cylindrical algebraic decomposition is sign-invariant
since the sign of an univariate polynomial only changes at its roots. The
sample points are chosen as the union of the set of roots, representing the
sectors, and a set consisting of an arbitrary intermediate point for each open
interval between two roots, representing the sections. Once a sample point
representing an i-level cell is already computed, a set of sample points repre-
senting the stack over the considered cell can be constructed. The projection
factors of level i + 1 and above are delinable over the considered cell, since
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the projection operator has to assure this property. Then, the sample point
representing the considered i-level cell can be substituted in the projection
factors of level i + 1 to obtain a set of univariate polynomials. The sec-
tors and sections defined by these polynomials decompose the cylinder over
the considered cell. The resulting stack is sign-invariant since the induced
cylindrical algebraic decomposition of i-space was sign-invariant and because
the sign of an univariate polynomial only changes at its roots. The sample
points representing the stack over the considered cell are chosen similarly to
the case of a decomposition of 1-space. Successively extending each sample
point representing the induced cylindrical algebraic decomposition of i-space
to a set of sample points of level i+ 1 as described above, results eventually
in a representation of the sign-invariant cylindrical algebraic decomposition
of n-space.

2.3 Minimal Hitting Sets

In 1992, Hong introduced a refinement of Collins’ method which produces
simpler equivalent quantifier-free formulas based on minimization [13]. In
1999, Brown took up on Hong’s idea but used minimal hitting sets to simplify
the constructed equivalent quantifier-free formula in multiple steps for his
refinement of the quantifier elimination method [2]. The hitting set problem
is one of Karp’s 21 NP-complete problems.

Definition 2.3.1. Let T be a set and {S1, . . . , Sn} be a collection of subsets
of T . Let k ≤ |T |. The hitting set problem asks if there is a subset H of T ,
such that |H| ≤ k and H ∩ Si 6= ∅ for all i = 1, . . . , n.

A set H that satisfies the second property is called a hitting set. The cor-
responding optimization problem asks for a hitting set H such that k is
minimal. A hitting set H, such that k is minimal, is called a minimal hitting
set.
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Chapter 3

Quantifier Elimination

3.1 Assumptions on the Quantified Formulas

This thesis is about a quantifier elimination method for non-linear real arith-
metic formulas and non-linear real arithmetic formulas only. For convenience,
non-linear real arithmetic formulas will also be referred to as formulas. The
quantified formulas are assumed to be in prenex normal form. A quantified
formula φ in n variables x1, . . . xn, of which the first k variables are free and
the remaining n− k variables are quantified, is said to be in prenex normal
form if the formula is of the form shown below.

Q1xn Q2xn−1 . . . Qn−kxk+1 φ
′(x1, . . . , xn)

Where Q1, . . . Qn−k ∈ {∃, ∀} and where the subformula φ′ is a quantifier-free
formula in the n variables x1, . . . , xn. In the following, the subformula φ′ will
also be referred to as the quantifier-free part. The considered quantified for-
mulas can be assumed to be in prenex normal form without loss of generality
since it can be shown, that for every first-order formula there exists an equiv-
alent first-order formula that is in prenex normal form. As stated in section
2.1, the terms of non-linear real arithmetic formulas are multivariate poly-
nomials and the atomic formulas are polynomial equations and inequalities,
called constraints. For two multivariate polynomials p1 and p2 the equation
p1 = p2 is equal to the normalized equation p = 0 with p := p1 − p2. An
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analogous results also holds for inequalities. The constraints in a quanti-
fied formula are assumed to only occur normalized. Consider the exemplary
quantified formula given below.

φ := ∃y (x2 + y2 − 1 < 0) ∧ (x+ y < 0)

The formula has two variables x and y, whereby y is existential quantified
and x is free. The quantifier-free part is given as shown below.

φ′ := (x2 + y2 − 1 < 0) ∧ (x+ y < 0)

Both the variables x and y occur free in φ′. The set of constraints occurring
in φ is given as {x2 + y2 − 1 < 0, x + y < 0}. The corresponding set of
multivariate polynomials is given as Pφ := {x2 + y2− 1, x+ y}. The set of
multivariate polynomials Pφ defines a cylindrical algebraic decomposition of
2-space, which is shown in the figure below. See section 2.2 on cylindrical
algebraic decompositions.

x

y

−1 1−1√
2

1√
2

Figure 3.1: the cylindrical algebraic decomposition
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The projection factor set computed by Brown’s projection operator is P =
{x2 + y2 − 1, x + y, x2 − 1, 2x2 − 1}. The cylindrical algebraic decom-
position has 9 cells of level 1 and 47 cells of level 2. The 1-level cells are
represented by the sample points {−2, −1, −7/8, −1/

√
2, 0, 1/

√
2, 7/8, 1, 2}.

The enumeration of the set of sample points representing the 2-level cells is
omitted.

3.2 Determine Truth Values

In order to eliminate quantifiers, a method to determine the truth values of
a quantified formula φ depending on the interpretation of the free variables
x1, . . . , xk needs to be refined. Originally, Collins refined such a method in
[7].
As a first step, the truth values of the quantifier-free part φ′ depending on
the interpretation of all the variables x1, . . . , xn need to be determined. The
sign-invariant cylindrical algebraic decomposition, defined by the set Pφ of
multivariate polynomials occurring in φ, can be used to determine the truth
values of the quantifier-free part φ′. The theorem shown below states, that
the truth value of φ′ is invariant in each cell of the cylindrical algebraic de-
composition defined by Pφ. Thus, the theorem allows to reduce the problem
of considering the uncountable set of all possible variable interpretations to
considering a finite set of variable interpretations. The theorem was originally
proved by Collins [7].

Theorem 3.2.1. Let D be a sign-invariant cylindrical algebraic decomposi-
tion of n-space defined by the set Pφ of multivariate polynomials occurring
in a quantified formula φ. Then, D is truth-invariant with respect to the
quantifier-free part φ′.

Proof. Let D = (c1, . . . , cm). Let 1 ≤ l ≤ m be arbitrary and choose a :=
(a1, . . . , an) ∈ cl. Let p ∈ Pφ be arbitrary and let Cp be the corresponding
constraint occurring in φ′. Assume Cp is true in a. Let b := (b1, . . . , bn) ∈ cl
be arbitrary. Since D is sign-invariant, p has the same sign in b as in a.
Thus, Cp is true in b. Analogous, one can see that Cp would be false in
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b, if assumed Cp is false in a. Since b was arbitrary, cl is truth-invariant
with respect to Cp. Since p was arbitrary, cl is truth-invariant with respect
to any constraint occurring in φ. Since φ′ is a Boolean combination of the
constraints, cl is truth-invariant with respect to φ′. Since 1 ≤ l ≤ m was
arbitrary, D is truth-invariant with respect to φ′.

In consequence of theorem 3.2.1 it suffices to determine the truth value of φ′

in a sample point representing the cell. The following definition formalizes
the idea of assigning truth values to cells.

Definition 3.2.2. Let D be a truth-invariant cylindrical algebraic decompo-
sition with respect to a formula ψ. A mapping

ν : D 7→ {true, false}

will be called an evaluation. Let c ∈ D be arbitrary and a ∈ c a sample point.
An evaluation ν is called the evaluation of ψ if, and only if, ν(c) = ψ(a).
An evaluation of ψ will be denoted as νψ.

So far, an evaluation νφ′ of the quantifier-free part φ′ can be defined. Be-
cause of theorem 3.2.1, the mapping is well-defined. However, in a quantified
formula, the last n − k of the n variables x1, . . . , xn are quantified. Thus,
the truth values of the quantified formula only depends on the interpretation
of the free variables x1, . . . , xk. In the following, the truth values of the
quantifier-free part φ′, depending on the interpretation of all the variables
x1, . . . , xn, will be used to determine the truth values of the quantified for-
mula φ. In order to illustrate the idea how the truth values of φ can be
determined using the truth values of φ′, i.e. the evaluation of k-level cells
can be defined using the evaluation of n-level cells, consider the exemplary
quantified formula introduced in section 3.1.

φ := ∃y (x2 + y2 − 1 < 0) ∧ (x+ y < 0)

The cylindrical algebraic decomposition defined by Pφ is shown in the figure
below. The 2-level cells in which φ′ evaluates to true are hatched in red.



3.2. Determine Truth Values 23

x

y

−1 1−1√
2

1√
2

Figure 3.2: the cylindrical algebraic decomposition

Let c denote the 1-level cell (− 1/
√

2, 1/
√

2). The truth value of c can be
determined considering all 2-level cells in the stack over c. The stack over c
is hatched in black. Since the variable y is existential quantified, the truth
value of the quantified formula φ in c is true. That is because there exists a
2-level cell in the stack over c in which the quantifier-free part φ′ is true.
The idea used in the example can be generalized. Beginning with the eval-
uation νφ′ of the quantifier-free part φ′, the evaluation of the cells of level
i+1 will be used to define the evaluation on the induced cylindrical algebraic
decomposition of i-space, until level k is reached and the evaluation νφ of
the quantified formula φ is obtained. Let k ≤ i < n. In order to obtain the
evaluation νφ as described, a method to define the evaluation on the induced
cylindrical algebraic decomposition of i-space, provided the evaluation of the
cells of level i+1, needs to be refined. In more general, let D′ be a cylindrical
algebraic decomposition of (i+1)-space and letD be the cylindrical algebraic
decomposition of i-space induced by D′. The theorem shown below states,
that the induced cylindrical algebraic decomposition inherits the property of
truth-invariance.
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Theorem 3.2.3. Let ψ(x1, . . . , xi) := Qxi+1 ψ
′(x1, . . . , xi, xi+1) be a quan-

tified formula. LetD′ be a truth-invariant cylindrical algebraic decomposition
of (i + 1)-space with respect to ψ′. Let D be the cylindrical algebraic de-
composition of i-space induced by D′. Then, D is truth-invariant regarding
ψ.

Proof. The theorem will be proved for Q = ∃. The prove for Q = ∀ is similar
and can be found in [7]. Let D′ = (c1,1, . . . c1,m1 , . . . , cm,1, . . . , cm,mm) and
D = (c1, . . . , cm), such that (cl,1, . . . , cl,ml

) is the stack over cl. Let 1 ≤
l ≤ m be arbitrary and let (a1, . . . , ai) ∈ cl. Assume ψ(a1, . . . , ai) is false.
Let (b1, . . . , bi) ∈ cl and bi+1 ∈ R be arbitrary. Then, for some 1 ≤ j ≤ ml,
(b1, . . . , bi+1) ∈ cl,j. Since ψ(a1, . . . , ai) is false, ψ(a1, . . . , ai, ai+1) is false
for all ai+1 ∈ R. That is because Q = ∃. Choose ai+1 ∈ R such that
(a1, . . . , ai+1) ∈ cl,j. Since D is truth-invariant regarding ψ, ψ(b1, . . . , bi+1)
is false. Since bi+1 was arbitrary, ψ(b1, . . . , bi) is false. Since (b1, . . . , bi)
was arbitrary in cl, cl is truth-invariant regarding ψ. Since 1 ≤ l ≤ m was
arbitrary, D′ is truth-invariant regarding ψ.

In consequence of theorem 3.2.3, the mapping, defined by a method that
defines the evaluation on the induced cylindrical algebraic decomposition of
i-space using the evaluation of the cells of level i + 1, is well defined. It
remains to refine such a method. The idea is, that the truth value of a cell
c ∈ D can be determined considering each cell c′ ∈ D′ in the stack over c. In
the example, the variable y was existential quantified. Thus, the considered
1-level cell c was assigned to be true, since there existed a true cell in the
stack over c. Analogous, if y would have been universal quantified, it would
have been required for all cells in the stack over c to be true in order to
assign c to be true as well. The theorem shown below formalizes this idea.

Theorem 3.2.4. Let ψ(x1, . . . , xi) := Qxi+1 ψ
′(x1, . . . , xi, xi+1) be a quan-

tified formula. Let D′ be a truth-invariant cylindrical algebraic decomposi-
tion of (i+1)-space regarding ψ′ and let D be the truth-invariant cylindrical
algebraic decomposition of i-space induced by D′. Denote D and D′ as
in the proof of Theorem 3.2.3. Furthermore, let νψ′ : D′ 7→ {true, false}
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be the evaluation of ψ′. Then νψ : D 7→ {true, false} can be defined as
νψ(cl) = ∨ml

j=1νψ′(cl,j), if Q = ∃ and as νψ(cl) = ∧ml
j=1νψ′(cl,j), if Q = ∀.

Proof. The theorem will be proved for Q = ∃. The prove for Q = ∀ is
similar and can be found in [7]. Let 1 ≤ l ≤ m. Choose (a1, . . . , ai) ∈ cl.
First, assume ψ(a1, . . . , ai) is false. Then, ψ′(a1, . . . , ai, ai+1) is false for all
ai+1 ∈ R. That is because Q = ∃. Thus, for all 1 ≤ j ≤ ml it is, that
νψ′(cl,j) = false, since νψ′ is the evaluation of ψ′. Therefore, ∨ml

j=1νψ′(cl,j) is
false and thus νψ(cl) = false. Now, assume ψ(a1, . . . , ai) is true. Then, since
Q = ∃, there exists an ai+1 ∈ R such that ψ′(a1, . . . , ai, ai+1) is true. Thus,
there is 1 ≤ j ≤ ml such that (a1, . . . , ai, ai+1) ∈ cl,j and νψ′(cl,j) = true.
That is because νψ′ is the evaluation of ψ′. Therefore, ∨ml

j=1νψ′(cl,j) is true
and thus νψ(cl) = true.

In consequence of theorem 3.2.4, a method to define an evaluation on the
induced cylindrical algebraic decomposition of i-space, provided the evalua-
tion of the cells of level i+ 1, is refined. In order to assign a truth value to a
i-level cell c of D, simply consider the conjunction or disjunction of the truth
values assigned to all (i+1)-level cells c′ of D′ in the stack over c depending
whether the (n − i)’th variable is universal quantified or existential quanti-
fied. The algorithm given below determines the truth value of a quantified
formula φ depending on the interpretation of the free variables x1, . . . , xk by
successively applying the method described above, beginning with the evalu-
ation of the quantifier-free part φ′ on the cylindrical algebraic decomposition
of n-space, defined by the set of multivariate polynomials occurring in φ and
until an evaluation of φ on the induced cylindrical algebraic decomposition
of k-space, is obtained.
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Algorithm 3.2.1 Determining Truth Values
Input: A quantified formula φ
Output: The evaluation νφ of φ
1: Pφ ← set of multivariate polynomials occurring in φ
2: D ← sign-invariant cylindrical algebraic decomposition defined by Pφ
3:
4: for c ∈ D do
5: for p ∈ Pφ do
6: evaluate the sign of p in c
7: end for
8: νn(c)← evaluate the truth of φ′ in c using the signs of the p’s
9: end for
10:
11: for i = n down to k do
12: Di ← induced cylindrical algebraic decomposition of i-space
13: for c ∈ Di do
14: if Qi = ∃ then
15: νi(c)← false
16: for c′ in the stack over c do
17: if νi+1(c′) = true then
18: νi(c)← true
19: end if
20: end for
21: else
22: νi(c)← true
23: for c′ in the stack over c do
24: if νi+1(c′) = false then
25: νi(c)← false
26: end if
27: end for
28: end if
29: end for
30: end for
31:
32: return νφ ← νk
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3.3 Simplifications

In the following, a method to simplify the cylindrical algebraic decompositions
of k-space and below, induced by a cylindrical algebraic decomposition, de-
fined by the set of multivariate polynomials occurring in a quantified formula,
is refined. The hope is, that a simpler equivalent quantifier-free formula can
be constructed from a simpler cylindrical algebraic decomposition. Originally,
Brown refined such a method [2].
A cylindrical algebraic decomposition D′ is called simpler than a cylindri-
cal algebraic decomposition D, if D′ results from a merge of cells in D,
i.e. each cell of D′ is a union of cells of D. The removal of a section re-
sults in the merge of the considered section and its two adjacent sectors.
A section is removed by the removal of the projection factors defining the
considered section, i.e. the projection factors being zero in the considered
section. Therefore, a cylindrical algebraic decomposition is simplified by the
removal of projection factors.
A result from section 3.2 was, that the cylindrical algebraic decomposition
of k-space, induced by a cylindrical algebraic decomposition, defined by the
set of multivariate polynomials occurring in a quantified formula φ, is truth-
invariant with respect to φ. A simpler cylindrical algebraic decomposition
still needs to assure the truth-invariance with respect to φ. The definition
shown below introduces a type of cell which must not be removed in order
to assure truth-invariance.

Definition 3.3.1. A k-level section is called a truth-boundary cell, if the
truth values of the considered k-level section and its two adjacent k-level
sectors do not agree.

Since a section is removed by the removal of the projection factors defining
the considered section, each k-level truth-boundary cell defines a set of k-
level projection factors of which at least one must be kept in order to keep
the considered truth-boundary cell. Therefore, a minimal hitting set of the
collection of these sets defines a set of k-level projection factors which, if
kept, assure truth-invariance. Any other k-level projection factor can be
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safely removed in order to simplify the cylindrical algebraic decomposition
without consequently violating truth-invariance.
The induced cylindrical algebraic decompositions of (k − 1)-space or below
may be simplified as well, hoping for the possibility to construct an even
simpler equivalent quantifier-free formula. For level k − 1 or below, besides
assuring truth-invariance, it must be assured that the projection factor set will
still be closed under projection after the simplifications are done. Additionally,
truth-boundary cells of level k−1 or below can not be as easily defined as for
level k. That is because only k-level cells have truth values assigned to them.
In order to still provide a definition of truth-boundary cells of level k − 1 or
below, a k-level cell c is said to be above a cell c′ of level k − 1 or below, if
the set-theoretic projection of c onto the respective level is c′. Furthermore,
the k-level cells above a section of level k− 1 or below and its two adjacent
sectors of the respective level are said to correspond, if the projection factors
of higher level are delinable over the union of the considered section and its
two adjacent sectors.

Definition 3.3.2. A section of level k−1 or below is called a truth-boundary
cell, if there are corresponding k-level cells above the considered section and
its two adjacent sectors, such that their truth values do not agree.

The same as for level k, each truth-boundary cell of level k − 1 or below
defines a set of projection factors of the respective level of which at least one
must be kept in order to keep the considered truth-boundary cell. A minimal
hitting set of the collection of these sets defines a set of projection factors of
the respective level which, if kept, assure truth-invariance. In addition, each
projection factor of the respective level, being the result of the application
of the projection operator on projection factors of higher level, need to be
kept in order to assure, that the projection factor set will still be closed un-
der projection. The algorithm shown below simplifies a cylindrical algebraic
decomposition, defined by the set of multivariate polynomials occurring in
a quantified formula, beginning with level k, by successively simplifying the
induced cylindrical algebraic decompositions, until level 1 is reached.
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Algorithm 3.3.1 Simplify Cylindrical Algebraic Decompositions
Input: A cylindrical algebraic decomposition D
Output: A simpler cylindrical algebraic decomposition D′
1: D′ ← D
2: for i = k down to 1 do
3: C ← the set of i-level truth-boundary cells in D′
4: S1, S2 ← ∅
5: for c in C do
6: S1 ← S1 ∪ {p ∈ Pi | p is zero in c}
7: end for
8: H ← a minimal hitting set for S1
9: if i 6= k then
10: S2 ← {p ∈ Pi | p is in the closure under projection of P ′i+1∪. . .∪P ′k}
11: end if
12: P ′i ← H ∪ S2
13: P ′ ← P1 ∪ . . . ∪ Pi−1 ∪ P ′i ∪ . . . ∪ P ′k
14: D′ ← the cylindrical algebraic decomposition defined by P ′
15: end for
16:
17: return D′

The obtained decomposition is still cylindrical as well as algebraic, thus is
a cylindrical algebraic decomposition. That is because it was assured that
the set of multivariate polynomials resulting from the removal of projection
factors is still closed under projection. The obtained cylindrical algebraic
decomposition is still truth-invariant, since no truth-boundary cells were re-
moved. The obtained truth-invariant cylindrical algebraic decomposition is
simpler or unaltered, since projection factors were possibly removed, resulting
in the possible merge of a section defined by the removed projection factor
and its two adjacent sectors.
Consider the slightly modified exemplary quantified formula introduced in
section 3.1 given below.

φ := ∃y (x2 + y2 − 1 < 0) ∧ (x+ y < 0) ∧ (y − x− 1 < 0)
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The cylindrical algebraic decomposition defined by the multivariate polyno-
mials occurring in φ is shown below. Adding the multivariate polynomial
y − x − 1 results in two additional 1-level projection factors 2x + 1 and
x2 + x. The additional 1-level projection factors define additional 1-level
sections and sectors. The 1-level cell (−1/

√
2, 1/

√
2) in the cylindrical alge-

braic decomposition, defined by the multivariate polynomials occurring in
the exemplary quantified formula introduced in section 3.1, is the union of
the 1-level cells (−1/

√
2,−1/2), {−1/2}, (−1/2, 0), {0} and (0, 1/

√
2) in the

cylindrical algebraic decomposition shown below.

x

y

−1
1−1√

2 −1
2

1√
2

Figure 3.3: the cylindrical algebraic decomposition

The 1-level truth-boundary cells {−1} and {1/
√

2} are marked. The sets of
1-level projection factors defining the sections {−1} and {1/

√
2} are {x2 −

1, x2 + x} respectively {2x2 − 1}. A hitting set is {x2 − 1, 2x2 − 1}. As
a result, the two additional 1-level projection factors 2x+ 1 and x2 + x can
be safely removed without consequently violating truth-invariance.
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3.4 Signatures

Section 3.2 refined a method to determine the truth values of a quantified
formula φ depending on the interpretation of the free variables x1, . . . , xk.
This information is necessary in order to eliminate quantifiers. The present
section introduces a crucial term in order to talk about a method determining
whether this information already suffices to eliminate quantifiers, which is to
be refined in the next section, or if additional work needs to be done.
The projection factor set P for a set of multivariate polynomials Pφ occurring
in a quantified formula φ is finite and can be partitioned by the level of the
projection factors. Therefore, the projection factor set P can be written as
P = P1 ∪ · · · ∪ Pn, where the set Pi denotes the set of i-level projection
factors. Since P is finite, the set Pi is finite and can be written as Pi =
{pi,1, . . . , pi,mi

}. Accordingly, the set of projection factors of level at most k
can be written as shown below.

P1 ∪ · · · ∪ Pk = {p1,1, . . . , p1,m1 , . . . , pk,1, . . . , pk,mk
}

Given a point in k-space, a projection factor p of level at most k is either
negative, positive or zero in that point, depending whether the result is
negative, positive or zero when substituting the point for the variables of the
projection factor. Since sign-invariant cylindrical algebraic decompositions
are considered, a pair of a k-level cell c and a projection factor p of level at
most k can be assigned a sign. If the context clearly states which k-level cell
c is considered, sgn(p) denotes the sign p has in c.

Definition 3.4.1. Let c be a k-level cell. The tuple of signs sgn(p), any
projection factor p of level at most k has in c, is called the signature of the
cell c.

(sgn(p1,1), . . . , sgn(p1,m1), . . . , sgn(pk,1), . . . , sgn(pk,mk
))

For the example introduced in section 3.1 the set of projection factors of
level at most 1 is {x2− 1, 2x2− 1}. The signature of the exemplary 1-level
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cell (−1, − 1/
√

2) is (−,+). That is because − and + are the signs of the
values obtained by substituting the sample point − 7/8 for x. The calculation
is shown below.

(−,+) =
(
sgn

(
−15

64

)
, sgn

(17
32

))
=
(
sgn

((
−7

8

)2
− 1

)
, sgn

(
2 ·
(
−7

8

)2
− 1

))
=
(
sgn

(
x2 − 1

)∣∣∣− 7/8, sgn
(
2x2 − 1

)∣∣∣− 7/8

)
Likewise, the signatures for each 1-level cell can be computed. The signatures
of the 1-level cells are shown in the table given below.

1-level cell sample point signature
(−∞,−1) −2 (+,+)
{−1} −1 (0,+)

(−1, − 1/
√

2) − 7/8 (−,+)
{− 1/

√
2} − 1/

√
2 (−, 0)

(− 1/
√

2, 1/
√

2) 0 (−,−)
{1/
√

2} 1/
√

2 (−, 0)
(1/
√

2, 1) 7/8 (−,+)
{1} 1 (0,+)

(1,∞) 2 (+,+)

As one can easily see, the signatures of k-level cells are in general not unique.
For example, consider the two distinct 1-level cells (−1, − 1/

√
2) and (1/

√
2, 1)

from the table shown above, both have the signature (−,+).

3.5 Projection-Definability Test

The quantifier elimination method by cylindrical algebraic decomposition in-
troduced by Collins [7] guaranteed to define an equivalent quantifier-free
formula solely by using the projection factors and the information provided
by the truth values of the considered quantified formula depending on the



3.5. Projection-Definability Test 33

interpretation of the free variables. This is due to the so called augmented-
projection used by Collin’s method. In this work, Brown’s projection op-
erator [3] is considered. The usage of Brown’s projection operator results
in a smaller projection factor set. The hope is, that a simpler equivalent
quantifier-free formula can be constructed using a projection operator pro-
ducing less projection factors. However, a smaller projection factor set may
lack some projection factors needed to construct an equivalent quantifier-free
formula solely from the projection factors. Below, a property a cylindrical
algebraic decomposition can have, formalizing the idea described above, is
defined.

Definition 3.5.1. Let φ be a quantified formula. The cylindrical algebraic
decomposition, defined by the set Pφ of the multivariate polynomials occur-
ring in φ, is called projection-definable if an equivalent quantifier-free formula
for φ can be constructed solely from the projection factors.

In order to understand projection-definability better, the definition is rephrased
in the theorem shown below. In section 3.4 it was already stated that, in gen-
eral, the signatures of k-level cells are not unique. Furthermore, k-level cells
which agree in their signature do, in general, not even need to agree in their
truth value. For example, consider the two distinct 1-level cells (−1, − 1/

√
2)

and (1/
√

2, 1) in the cylindrical algebraic decomposition introduced with the
exemplary quantified formula φ from section 3.1. Both cells have the signa-
ture (−,+), as seen in section 3.4. Yet it was seen in section 3.2, that φ
is true in (−1, − 1/

√
2) but false in (1/

√
2, 1). The existence of two distinct

k-level cells agreeing in their signature but disagreeing in their truth value
cause a cylindrical algebraic decomposition to be projection-undefinable, as
the following theorem, originally proved by Brown [2], shows.

Theorem 3.5.2. Let φ be a quantified formula. The cylindrical algebraic
decomposition D, defined by the set Pφ of the multivariate polynomials
occurring in φ, is projection-definable if there are no k-level cells c and c′

agreeing in their signature but disagreeing in their truth values.

Proof. Assume D is projection-definable. By the definition of projection-
definability, there exists an equivalent quantifier-free formula ψ constructed
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solely from the projection factors. Assume, for the sake of contradiction,
there exist two distinct k-level cells c and c′ agreeing in their signature but
disagreeing in their truth values. In particular, the signs of all projection
factors of level at most k are the same in c and c′. Thus, the truth values of
any formula constructed solely from the projection factors of level at most
k are the same in c and c′. Without loss of generality, assume φ is true in
c and false in c′. Since the truth values of ψ are the same in c and c′, ψ is
either false in c or true in c, a contradiction.
Now, assume there are no k-level cells c and c′ agreeing in their signature but
disagreeing in their truth values. Below, a quantifier-free formula ψ, which
is true if φ is true for any interpretation of the free variables x1, . . . , xk, will
be constructed. Let c be a k-level cell and let p be a projection factor of
level at most k. An atomic formula ψc,p describing which sign p has in c can
be defined as below.

ψc,p :=


p < 0 if sgn(p) is negative in c

p = 0 if sgn(p) is zero in c

p > 0 if sgn(p) is positive in c

A formula ψc describing the signature of c can be defined using the atomic
formulas ψc,p describing which signs the projection factors of level at most k
have in c.

ψc :=
∧

p∈P1∪···∪Pk

ψc,p

Clearly, ψc is true in c. Therefore, the formula ψ, defined as the disjunction
of the formulas ψc for all k-level cells c in which φ is true, is a quantifier-free
formula which is true if φ is true. It remains to be shown, that ψ is true
only if φ is true. Since there is no k-level cell c in which φ is true and which
agrees in its signature with any k-level cell c′ in which φ is false, there is
no disjunct ψc in ψ such that ψc is satisfied by any point in any cell c′ in
which φ is false. Thus, ψ is true if, and only if, φ is true. Therefore, ψ is an
equivalent quantifier-free formula.

As a consequence of theorem 3.5.2, a cylindrical algebraic decomposition,
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defined by the set Pφ of the multivariate polynomials occurring in a quanti-
fied formula φ, can be tested for projection-definability.

Algorithm 3.5.1 Projection Definability Test
Input: A cylindrical algebraic decomposition D
Output: An answer whether D is projection definable or not
1: L← list of all k-level cells, sorted by signature
2: for i = 1 up to |L| do
3: if signatures for L[i], L[i+ 1] agree then
4: if truth values for L[i], L[i+ 1] disagree then
5: return false
6: end if
7: end if
8: end for
9:
10: return true

As it was already seen above, the cylindrical algebraic decomposition intro-
duced with the exemplary quantified formula φ from section 3.1 is projection-
undefinable. That is because the distinct 1-level cells (−1, − 1/

√
2) and

(1/
√

2, 1) agree in their signatures but disagree in their truth values. In fact,
there are even more 1-level cells causing the cylindrical algebraic decompo-
sition to be projection-undefinable.

3.6 Assure Projection-Definablility

If the method refined in section 3.5 determines a cylindrical algebraic de-
composition, defined by a set of multivariate polynomials occurring in a
quantified formula φ, to be projection-undefinable, the cylindrical algebraic
decomposition needs to be modified such that projection-definability can be
assured after the modifications are done. Originally, Brown refined such a
method [2]. In section 3.2 it was shown, that a cylindrical algebraic de-
composition, defined by the set of multivariate polynomials occurring in a
quantified formula φ, is truth-invariant with respect to φ. Thus, the truth
values of cells can not be altered in order to achieve projection-definability.
Instead, the approach of adding new polynomials in order to distinguish the
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problem-causing cells by the signs of the newly added polynomials will be
taken, such that cells former causing the cylindrical algebraic decomposition
to be projection-undefinable will not agree in their signature anymore.
The generalized Thom’s Lemma [10] gives a hint on which polynomials to
add. It introduces so called stratisfying families of multivariate polynomi-
als. A stratisfying family is a family (pi,j) of multivariate polynomials, for
i = 1, . . . ,m and j = 1, . . . , li, such that the family is closed under projec-
tion and for any fixed i the subfamily pi,j for j = 1, . . . , li is closed under
partial derivation with respect to xi. Consider the semi-algebraic set c for a
family(≺i,j) of relation symbols in {=, <,>} given below.

c =
m⋂
i=1

li⋂
j=1
{x ∈ Rn | sgn(pi,j) ≺i,j 0}

The generalized Thom’s Lemma states, that c is either empty or connected.
Furthermore, the decomposition given by the semi-algebraic sets for the fam-
ilies of relation symbols resulting in a non-empty set yield a cylindrical alge-
braic decomposition of n-space. As a consequence, the cells of the resulting
cylindrical algebraic decomposition are distinguishable by the signs of the
multivariate polynomials pi,j in the stratisfying family. That is because the
semi-algebraic sets above are defined as connected sets fulfilling conjunc-
tions of sign conditions. Thus, there can not exist cells which agree in their
signatures but disagree in their truth values, since there are no distinct cells
agreeing in their signature. With Thom’s Lemma in mind, a simple algo-
rithm to make a cylindrical algebraic decomposition projection-definable can
be given. Simply construct the closure under derivation and projection of
the set of multivariate polynomials occurring in a quantified formula φ. The
resulting cylindrical algebraic decomposition defined by the obtained set of
multivariate polynomials will be projection-definable.
In section 3.5 it was already shown, that the cylindrical algebraic decomposi-
tion introduced with the exemplary quantified formula φ from section 3.1 is
projection-undefinable. Adding the polynomial x, the normalized first deriva-
tive of the projection factor 2x2 − 1, respectively x2 − 1, already suffices to
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distinguish all the cells causing the cylindrical algebraic decomposition to be
projection-undefinable by the sign of the additional polynomial. The table
given below shows, that after adding the normalized first derivative of the
projection factor 2x2 − 1, respectively x2 − 1, there are no cells agreeing in
their signature but disagreeing in their truth values anymore.

1-level cell sample point signature Truth Value
(−∞,−1) −2 (+,+,−) false
{−1} −1 (+, 0,−) false

(−1, − 1/
√

2) − 7/8 (+,−,−) true
{− 1/

√
2} − 1/

√
2 (0,−,−) true

(− 1/
√

2, 0) −1/4 (−,−,−) true
{0} 0 (−,−, 0) true

(0, 1/
√

2) 1/4 (−,−,+) true
{1/
√

2} 1/
√

2 (0,−,+) false
(1/
√

2, 1) 7/8 (+,−,+) false
{1} 1 (+, 0,+) false

(1,∞) 2 (+,+,+) false
In practice, the closure under derivation and projection can be rather large,
resulting in the practical impossibility of constructing the cylindrical algebraic
decomposition. Below, a method to determine a preferably small set of
polynomials to add in order to achieve projection-definability is refined as well
as the underlying theory is introduced. The definition given below introduces
a term that will help to do so.

Definition 3.6.1. Let D be the cylindrical algebraic decomposition defined
by the set Pφ of the multivariate polynomials occurring in a quantified formula
φ. Let there be two k-level cells c and d agreeing in their signatures but
disagreeing in their truth values. Let 1 ≤ i ≤ k. Two distinct i-level cells c′

and d′ are called a conflicting pair for c and d if they are the result of the
projection of c and d onto i-space and if they are in the same stack.

The theorem given below shows, that there is always a unique conflicting
pair for two distinct k-level cells agreeing in their signatures but disagreeing
in their truth values. The theorem was originally proved by Brown [2].
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Theorem 3.6.2. LetD be the cylindrical algebraic decomposition defined by
the set Pφ of the multivariate polynomials occurring in a quantified formula
φ. If there are two k-level cells c and d agreeing in their signature but
disagreeing in their truth values, then there is a unique conflicting pair for c
and d.

Proof. All cells in 1-space are in the same stack. Therefore, the projection
of c and d onto 1-space must be in the same stack. Let 1 ≤ i ≤ k be the
greatest level such that the projection of c and d onto i-space are in the
same stack. Let c′ and d′ be the result of the projection of c and d onto
i-space, then c′ and d′ are distinct. For the sake of contradiction, assume
they are not distinct. Since c′ and d′ are in the same stack but not distinct,
they are equal. Thus, the resulting cells of the projection of c and d onto
(i+ 1)-space are in the same stack, a contradiction.

The next theorem, originally proved by Brown [2], assures that no new con-
flicting pairs are created by adding new polynomials.

Theorem 3.6.3. Let D1 be the cylindrical algebraic decomposition defined
by the set P1,φ of all multivariate polynomials occurring in a quantified for-
mula φ. Let P2,φ be a superset of P1,φ and D2 the cylindrical algebraic
decomposition defined by P2,φ. If c′2 and d′2 are an i-level conflicting pair in
D2, then there are c′1 and d′1, a j-level conflicting pair in D1 for a i ≤ j ≤ k.
Furthermore, c′2 and d′2 are subsets of the projections of c′1 and d′1 onto
i-space.

Proof. Since c′2 and d′2 are a conflicting pair, there are k-level cells c2 and
d2 agreeing in their signature but disagreeing in their truth values. Recall
that P2 is the closure under the projection operator of P2,φ. With that said,
it is that each element in P2 of level at most k has the same sign in c2 as
in d2. Without loss of generality, let φ be true in c2 and false in d2. Since
P1,φ ⊆ P2,φ, it is that P1 ⊆ P2 as well. Therefore, each cell of D1 is a union
of cells from D2. In particular, it is that each k-level cell of D1 is the union of
k-level cells from D2. Thus, there is a k-level cell c1 that is a superset of c2

and a k-level cell d1 that is a superset of d2. Since sign-invariant cylindrical
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algebraic decomposition are considered and P1 is a subset of P2, it is that
each element in P1 of level at most k has the same sign in c1 as in d1. Since
truth-invariant cylindrical algebraic decompositions are considered, φ is true
in c1 and false in d1. Thus, c1 and d1 are k-level cells agreeing in their
signature but disagreeing in their truth values. Therefore, there is a unique
j-level conflicting pair c′1 and d′1 for c1 and d1, by theorem 3.6.2. Since c1

is a superset of c2, it is that for any 1 ≤ l ≤ j the projection onto l-space
of c1 is a superset of the projection onto l-space of c2. Analogous, the same
result applies for d1 and d2. In particular, this statement holds for level i.
Therefore, since c2 and d2 are in the same stack, the projection of c1 and d1

onto i-space are in the same stack. The projections of c1 and d1 onto i-space
might not be distinct, but there is a i ≤ j ≤ k such that the projection of
c1 and d1 onto j-space is distinct, as seen in theorem 3.6.2.

It remains to find an answer to the question which polynomials to add in
order to remove a conflicting pair. The definition given below will help to
answer this question.

Definition 3.6.4. Let P be a set of multivariate polynomials of level at
most i. The set P ∗ denotes the closure under derivation with respect to xi.
For an i-level polynomial p the set {p}∗ is denoted as p∗.

The application of the lemma shown below will be useful to prove the fol-
lowing theorem.

Lemma 3.6.5. Let A be a region in Ri−1 and let P be a set of multivariate
polynomials of level at most i. If P is delinable over A, the cells in the
decomposition of the cylinder A×R defined by P are distinguishable by the
signs of the elements of P .

Proof. The lemma will be proved by induction on d, the maximal degree
with respect to xi. The case d = 1 is trivial, thus consider d > 1. Assume,
for the sake of contradiction, the lemma does not hold. Then, there exist
two distinct cells c and d in which the signs of all elements of P agree.
Let P ′ = {p ∈ P | the degree of p with respect to xi is smaller than d}.
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Furthermore, let D′ be the decomposition of the cylinder A× R defined by
P ′. Note that P ′ ⊆ P . Thus, there exist two cells c′ and d′ in D′, such that
c is a subset of c′ and d is a subset of d′. By induction, there is a p′ ∈ P ′

such that the sign of p′ disagrees in c′ and d′, if c′ and d′ are distinct. Since
P ′ ⊆ P and c is a subset of c′ as well as d is a subset of d′, a contradiction.
It remains to be shown that c′ and d′ are distinct. It suffices to show that
there is an element in P ′ which is zero in some cell between c′ and d′. Since
c and d are distinct cells, there is a p ∈ P such that p is either zero in both
c and d or zero in at least one cell between c and d. In the following, it will
be shown that the first derivative of p with respect to xi is an element in
P ′ which is zero in some cell between c′ and d′. If p is zero in exactly one
cell between c and d and not zero in neither c nor d, the multiplicity of the
respective root is at least 2. Thus, the first derivative of p with respect to
xi is zero in at least one cell between c and d. If p is zero in at least two
cells between c and d or zero in both c and d, Rolle’s theorem implies that
the first derivative of p with respect to xi is zero in at least one cell between
c and d. In either case, there is an element in P ′ which is zero in some cell
between c′ and d′. That is because the first derivative of p with respect to xi
is an element of P ′ and c is a subset of c′ as well as d is a subset of d′.

Finally, the following theorem shows which polynomials to add in order to
remove a conflicting pair. The theorem was originally proved by Brown [2].

Theorem 3.6.6. Let D1 be the cylindrical algebraic decomposition defined
by the set P1,φ of the multivariate polynomials occurring in a quantified
formula φ. Let 1 ≤ i ≤ k. Furthermore, let c′1 and d′1 be an i-level conflicting
pair in D1 and let p be an i-level projection factor, such that p is zero in
c′1 and d′1 or in some cell between c′1 and d′1, but not identically zero in the
stack between c′1 and d′1. Let P2,φ = P1,φ ∪ p∗ and let D2 be the cylindrical
algebraic decomposition defined by P2,φ. Then, there is no conflicting pair
c′2 and d′2 in D2 such that c′2 is a subset of c′1 and d′2 is a subset of d′1.

Proof. Assume there is a conflicting pair c′2 and d′2 in D2 such that c′2 is a
subset of c′1 and d′2 is a subset of d′1. Note that c′2 and d′2 are an i-level
conflicting pair, since c′1 and d′1 are. Let A be the union of the set-theoretic
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projections of c′2 and d′2 onto (i − 1)-space. Since, by the definition of a
conflicting pair, c′2 and d′2 are i-level cells and in the same stack, the set-
theoretic projection of c′2 and the set-theoretic projection of d′2 onto (i− 1)-
space are equal. Thus, A is an (i − 1)-level cell of D2. Note that A is a
region of Ri−1. Let D be the decomposition of the cylinder A × R defined
by p∗. Note that p∗ is delinable over A, since A is an (i− 1)-level cell of D2

and p∗ is a subset of P2,φ. By lemma 3.6.5, the cells of D are distinguishable
by the signs of the elements of p∗. Since p∗ is a subset of P2,φ there are cells
c′ and d′ in D such that c′2 is a subset of c′ and d′2 is a subset of d′. Note
that by the assumptions on p, p is zero in c′1 and d′1 or in some cell between
c′1 and d′1, but not identically zero in the stack between c′1 and d′1. Thus,
p is zero in c′ and d′ or in some cell between c′ and d′, but not identically
zero in the stack between c′ and d′. Since p is in p∗, c′ and d′ are distinct.
Therefore, there is an element in p∗ having different signs in c′ and d′ and
thus different signs in c′2 and d′2. Since all elements of p∗ are of level at
most k by the assumptions on p, c′2 and d′2 disagree in their signature, a
contradiction.

The theory introduced above can be used to refine a method that is capable
of modifying a given cylindrical algebraic decomposition such that projection-
definablility can be assured after the modifications are done. The method
successively eliminates i-level conflicting pairs, beginning with level k down
to level 1. Such that, after the i’th iteration, there are no conflicting pairs of
level i or higher left. The absence of conflicting pairs is equal to projection-
definability, as theorem 3.5.2 stated. In the i’th iteration, polynomials are
added in order to remove the i-level conflicting pairs. Theorem 3.6.3 assured
that no new conflicting pairs are created by adding new polynomials. For
an i-level conflicting pair, theorem 3.6.6 gave an answer to the question
which polynomials to add, in order to remove the considered conflicting pair.
The algorithm shown below realises the method described above in order to
modify a cylindrical algebraic decomposition, such that projection-definability
can be assured after the modifications are done.
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Algorithm 3.6.1 Assure Projection-Definability
Input: A cylindrical algebraic decomposition D
Output: A projection-definable cylindrical algebraic decomposition D′
1: D′ ← D
2: for l = k down to 1 do
3: C ← set of all i-level conflicting pairs c and d in D′
4: S ← ∅
5: for each conflicting pair c and d in C do
6: Pc,d ← set of i-level projection factors to add for c and d
7: S ← S ∪ {Pc,d}
8: end for
9: H ← a hitting set for S
10: D′ ← the cylindrical algebraic decomposition defined by P ∪H∗
11: end for
12:
13: return D′

3.7 Equivalent Quantifier-Free Formulas

In the following, a method to construct an equivalent quantifier-free formula
is refined. Originally, Collins introduced such a method [7]. Hong described a
refinement of Collins’ method which produces simpler equivalent quantifier-
free formulas based on minimization [13]. Brown took up on Hong’s idea but
used minimal hitting sets to simplify the constructed equivalent quantifier-
free formulas [2].
Let φ be a quantified formula in n variables x1, . . . , xn, of which the first
k variables are free and the remaining n − k variables are quantified. Fur-
thermore, let D be the cylindrical algebraic decomposition defined by Pφ,
the set of the multivariate polynomials occurring in φ. Let a be a point in
k-space, i.e. an interpretation of the free variables x1, . . . , xk. A formula ψ
is equivalent to φ, if a satisfies ψ if, and only if, a satisfies φ. The point
a satisfies φ if, and only if, there is a k-level cell c, which is determined
to be true by the method refined in section 3.2, such that a is in c. As a
consequence, a formula ψ is equivalent to φ, if a satisfies ψ if, and only if,
there is a true k-level cell c, such that a is in c. Thus, a formula ψ de-
scribing exactly the true k-level cells is equivalent to φ. If D is determined
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to be projection-definable by the method refined in section 3.5 or, if not, is
modified to be projection-definable by the method refined in section 3.6, the
true and false k-level cells can be distinguished by the signs of the projection
factors. Thus, a formula ψ describing exactly the true k-level cells can be
constructed solely from the atomic formulas in the set A, defined as below.
The atomic formulas in the set A are sign conditions.

A :=


p = 0

p < 0

p > 0

∣∣∣∣∣∣∣∣∣∣
p ∈ P1 ∪ · · · ∪ Pk


For the projection factor set introduced with the exemplary quantified formula
φ from section 3.1, the set of atomic formulas A is shown below.

A = {2x2 − 1 = 0, 2x2 − 1 < 0, 2x2 − 1 > 0, x2 − 1 = 0,

x2 − 1 < 0, x2 − 1 > 0, x = 0, x < 0, x > 0}

The definition given below introduces a type of formula, which are con-
structed from the atomic formulas in A and which describe true k-level
cells.

Definition 3.7.1. Let A be the set of sign conditions on the projection
factors of level at most k. An implicant is a conjunction of atomic formulas
in A, such that at least one true k-level cell satisfies the conjunction but no
false k-level cell does. A prime implicant is an implicant such that removing
any conjunct, the resulting formula would not be an implicant anymore.

The definition shown below introduces a term describing an implicant con-
structed such that a given k-level cell satisfies it.

Definition 3.7.2. Let c be a true k-level cell and let I be an implicant. The
implicant I is said to capture c, if c satisfies I.

Since any cylindrical algebraic decompositions, defined by the set of mul-
tivariate polynomials occurring in a quantified formula, can be modified to
be projection-definable, there exists an implicant for all true k-level cells
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capturing it. That is because there are projection factors of level at most
k distinguishing the considered true k-level cell from all false k-level cells.
Thus, a method that constructs an implicant capturing a given true k-level
cell c can be refined. At first, the set of atomic formulas in A which hold in
c is build. Then, for each false k-cell c′, the subset of the atomic formulas
in A which hold in c but do not hold in c′ is determined. Finally, construct-
ing a minimal hitting set for the obtained collection of subsets results in a
set of atomic formulas which conjunction is a prime implicant capturing c.
The algorithm shown below, originally introduced by Brown [2], realises the
method described above in order to construct a prime implicant capturing a
given k-level cell.

Algorithm 3.7.1 Construct an implicant capturing a cell
Input: A cylindrical algebraic decomposition D, a k-level cell c
Output: An Implicant I capturing c
1: Ac ← all atomic formulas in A that evaluate to true in c
2:
3: S ← ∅
4: for each false cell c′ do
5: Sc′ ← all atomic formulas in Ac that evaluate to false in c′
6: S ← S ∪ {Sc′}
7: end for
8:
9: H ← a minimal hitting set for S
10: I ← the conjunction of the elements of H
11: return I

The obtained conjunction of atomic formulas in A is an implicant because
c satisfies all conjuncts, but for any false k-level cell there is at least one
conjunct that is not satisfied by c. The implicant is prime since a minimal
hitting set was constructed.
Consider the true 1-level cell (−1,−1/

√
2) in the cylindrical algebraic decom-

position introduced with the exemplary formula φ from section 3.1. The set
of atomic formulas in A, that evaluate to true in the 1-level cell (−1,−1/

√
2),

can be determined by substituting the sample point for x. The set described
above is {2x2 − 1 > 0, x2 − 1 < 0, x < 0}. The collection of subsets of
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atomic formulas in the set above, which do not hold in the false k-level cells
(−∞, 1), {−1}, {1/

√
2}, (1/

√
2, 1), {1} respectively (1,∞), is shown below.

{{x2 − 1 < 0}, {x2 − 1 < 0}, {2x2 − 1 > 0, x < 0},

{x < 0}, {x2 − 1 < 0, x < 0}, {x2 − 1 < 0, x < 0}}

The set {x2−1 < 0, x < 0} is a hitting set for the collection of subsets given
above. Therefore, a prime implicant capturing the 1-level cell (−1,−1/

√
2)

is x2 − 1 < 0 ∧ x < 0. The implicant x2 − 1 < 0 ∧ x < 0 also captures the
1-level cells {−1/

√
2} and (−1/

√
2, 0).

The algorithm above can be used to refine a method that constructs an
equivalent quantifier-free formula for a given quantified formula. If a true k-
level cell is not captured yet, a prime implicant capturing the considered cell is
constructed. Since an implicant could possibly capture multiple true k-level
cells at once, a minimal subset of the set of constructed implicants, such that
all true cells are captured, is determined. The disjunction of the elements of
such a subset is an equivalent quantifier-free formula. The construction of
such a minimal subset can be implemented as a minimal hitting set problem.
The algorithm shown below, originally introduced by Brown [2], realises the
method described above.

Algorithm 3.7.2 Construct an equivalent quantifier-free formula
Input: A cylindrical algebraic decomposition D, a quantified formula φ
Output: An equivalent quantifier-free formula ψ
1: S ← ∅
2: for each true cell c do
3: if c is not captured by any implicant in S then
4: I ← an implicant capturing the cell c
5: S ← S ∪ {I}
6: end if
7: end for
8:
9: H ← a minimal subset of S (in terms of capturing true cells)
10: ψ ← the disjunction of the elements of H
11: return ψ
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The obtained formula is quantifier-free, since it is in disjunctive normal form.
Let a be a point in k-space, i.e. an interpretation of the free variables
x1, . . . , xk. If a satisfies the quantified formula, there is at least one implicant
capturing the true k-level cell c, in which a is. Thus, a satisfies the obtained
formula. If a does not satisfy the quantified formula, a does not satisfy at
least one atomic formula in A for each implicant. Thus, a does not satisfy
the obtained formula. Therefore, the obtained formula is equivalent to the
given quantified formula.
Above it was described how a prime implicant capturing the 1-level cell
(−1,−1/

√
2) in the cylindrical algebraic decomposition introduced with the

exemplary formula φ from section 3.1 is constructed. The formula x2 −
1 < 0 ∧ x < 0 is a prime implicant capturing the 1-level cell (−1,−1/

√
2).

The implicant also captures the true 1-level cells {−1/
√

2} and (−1/
√

2, 0).
Analogous, the prime implicant 2x2 − 1 < 0 capturing the true 1-level cell
{0} can be constructed. The implicant 2x2 − 1 < 0 also captures the true
1-level cell (0, 1/

√
2). Thus, all true 1-level cells are captured by these two

implicants. Therefore, the formula shown below is an equivalent quantifier-
free formula for the exemplary formula φ introduced in section 3.1.

ψ := (x2 − 1 < 0 ∧ x < 0) ∨ (2x2 − 1 < 0)



Chapter 4

Implementation & Experimental
Results

4.1 Implementation

The purpose of this thesis was to extend the Satisfiability Modulo The-
ories Real Arithmetic Toolbox (SMT-RAT) by the capability to eliminate
quantifiers for NRA-formulas. The toolbox is an open source C++ project
maintained by the Theory of Hybrid Systems research group at RWTH
Aachen University [9]. It consists of implementations of methods for solving
quantifier-free (non-)linear real and integer arithmetic formulas, called mod-
ules. In particular, SMT-RAT already provides a CAD module.
However, for this thesis, a slightly modified version of the existing CAD mod-
ule was implemented providing two methods void project() and void
lift() implementing the projection and lifting phase for the construction
of a cylindrical algebraic decomposition. In addition, the modified implemen-
tation provides a method to remove a single projection factor, a feature not
supported by the existing implementation but needed for the simplification
of cylindrical algebraic decompositions. In order to extend SMT-RAT by the
capability to eliminate quantifiers for non-linear real arithmetic formulas, a
QE class was implemented providing a collection of methods implementing
the algorithms described in chapter 3 as well as several datastructures stor-
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ing important information. An example is a std::map implementing the
assignment of truth values to k-level cells. The class also provides a method
implementing a greedy algorithm capable of computing a hitting set for a
given collection of sets. In order to speed up the computation, the greedy
approach to approximate a minimal hitting set is chosen instead of the com-
putation of an actual minimal hitting set.
In order to describe an input formula, SMT-RAT accepts .smt2-files, as
specified as in the SMT-LIB [1]. For this thesis, SMT-RAT was extended by
a new SMT-LIB command to describe a list of the to be eliminated quanti-
fiers along with the variables quantified by them. Furthermore, the command
invokes the execution of the implemented quantifier elimination method.

4.2 Experimental Results

The implementation of the quantifier elimination method described in chap-
ter 3 was tested on a collection of exemplary quantified formulas, carried
together by John Wilson [19]. Overall, the implementation was tested on
30 exemplary quantified formulas. The results for 10 of them are presented
below. Out of 10, 2 of the quantified formulas are sentences. Thus, for
these 2, the result simply is whether the considered sentence is either true
or false, i.e. equivalent to either the constant true formula > or the con-
stant false formula ⊥. For the other 8, equivalent quantifier-free formulas
are constructed. In addition, 2 out of these 8 formulas were determined to
be equivalent to either > or ⊥ as well. The formulas constructed by the im-
plemented quantifier elimination method are compared to those constructed
by QEPCAD [4]. QEPCAD is an implementation of a quantifier elimination
method by partial cylindrical algebraic decomposition. It is originally due to
Hong, but extended by many others e.g. Brown. An examination of the con-
structed equivalent quantifier-free formulas shows, that the results produced
by QEPCAD are slightly better for some of the examples. Additionally, the
formulas constructed by the implemented quantifier elimination method are
compared to those constructed by the original quantifier elimination method
by cylindrical algebraic decomposition, introduced by Collins [7].
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Real Implicitization
The quantified formula considered by the real implicitization problem [12] is
shown below.

∃u ∃v (−x+ uv = 0 ∧ −y + uv2 = 0 ∧ −z + u2 = 0)

The equivalent quantifier-free formula constructed by the implemented quan-
tifier elimination method is shown below. The formula was constructed in 1
second.

(z = 0 ∧ y = 0 ∧ −y2z + x4 = 0) ∨ (−z < 0 ∧ −y2z + x4 = 0))

The atomic formula −y2z + x4 = 0 occurs in both disjuncts, it could be
factored out in order to obtain a formula similar to the equivalent quantifier-
free formula constructed by QEPCAD shown below.

z ≥ 0 ∧ y2z − x4 = 0 ∧ (y = 0 ∨ z > 0)

The equivalent quantifier-free formula constructed by the original quantifier
elimination method is shown below.

(z = 0 ∧ y = 0 ∧ x = 0 ∧ −y2z + x4 = 0) ∨ (−y2z + x4 = 0 ∧ −z < 0 ∧ y < 0 ∧ x < 0) ∨

(−y2z + x4 = 0 ∧ −z < 0 ∧ y < 0 ∧ −x < 0) ∨ (y = 0 ∧ x = 0 ∧ −y2z + x4 = 0 ∧ −z < 0) ∨

(−y2z + x4 = 0 ∧ −z < 0 ∧ x < 0 ∧ −y < 0) ∨ (−y2z + x4 = 0 ∧ −z < 0 ∧ −x < 0 ∧ −y < 0)

Termination of Term Rewrite Systems
The quantified formula considered by the termination of term rewrite systems
problem [8] is given below. Note that the formula shown below is a sentence.

∃r ∀x ∀y ((r − x < 0) ∧ ((r − y < 0)⇒ (y2 − x2 − 4x2y − 2x2y2 < 0))

The sentence was determined to be false. The sentence was determined to
be false in 5 seconds. QEPCAD determined the sentence to be false as well.
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Parametric Parabola
The quantified formula considered by the parametric parabola problem [6] is
shown below.

∃x (c+ bx+ ax2 = 0)

The equivalent quantifier-free formula constructed by the implemented quan-
tifier elimination method is shown below. The formula was constructed in
less than a second.

(c = 0) ∨ (c < 0 ∧ b < 0 ∧ b2 − 4ac = 0) ∨ (c < 0 ∧ 4ac− b2 < 0) ∨

(c < 0 ∧ −b < 0 ∧ b2 − 4ac = 0) ∨ (−c ≤ 0 ∧ b < 0 ∧ b2 − 4ac = 0)

(−c ≤ 0 ∧ 4ac− b2 < 0) ∨ (−c ≤ 0 ∧ −b < 0 ∧ b2 − 4ac = 0)

The equivalent quantifier-free formula constructed by QEPCAD is shown
below.

ac− b2 ≤ 0 ∧ (c = 0 ∨ a 6= 0 ∨ 4ac− b2 < 0)
The equivalent quantifier-free formula constructed by the original quantifier
elimination method is shown below.

(c < 0 ∧ b < 0 ∧ a < 0 ∧ −4ac+ b2 = 0) ∨ (c < 0 ∧ b < 0 ∧ a < 0 ∧ 4ac− b2 < 0) ∨

(c < 0 ∧ b < 0 ∧ 4ac− b2 < 0 ∧ a = 0) ∨ (c < 0 ∧ b < 0 ∧ 4ac− b2 < 0 ∧ −a < 0) ∨

(c < 0 ∧ 4ac− b2 < 0 ∧ −a < 0 ∧ b = 0) ∨ (c < 0 ∧ a < 0 ∧ −4ac+ b2 = 0 ∧ −b < 0) ∨

(c < 0 ∧ a < 0 ∧ 4ac− b2 < 0 ∧ −b < 0) ∨ (c < 0 ∧ 4ac− b2 < 0 ∧ a = 0 ∧ −b < 0) ∨

(c < 0 ∧ 4ac− b2 < 0 ∧ −a < 0 ∧ −b < 0) ∨ (b < 0 ∧ a < 0 ∧ 4ac− b2 < 0 ∧ c = 0) ∨

(b < 0 ∧ 4ac− b2 < 0 ∧ a = 0 ∧ c = 0) ∨ (b < 0 ∧ 4ac− b2 < 0 ∧ −a < 0 ∧ c = 0) ∨

(a < 0 ∧ −4ac+ b2 = 0 ∧ b = 0 ∧ c = 0) ∨ (−4ac+ b2 = 0 ∧ a = 0 ∧ b = 0 ∧ c = 0) ∨

(−4ac+ b2 = 0 ∧ −a < 0 ∧ b = 0 ∧ c = 0) ∨ (a < 0 ∧ 4ac− b2 < 0 ∧ −b < 0 ∧ c = 0) ∨

(4ac− b2 < 0 ∧ a = 0 ∧ −b < 0 ∧ c = 0) ∨ (4ac− b2 < 0 ∧ −a < 0 ∧ −b < 0 ∧ c = 0) ∨

(b < 0 ∧ a < 0 ∧ 4ac− b2 < 0 ∧ −c < 0) ∨ (b < 0 ∧ 4ac− b2 < 0 ∧ a = 0 ∧ −c < 0) ∨

(b < 0 ∧ 4ac− b2 < 0 ∧ −a < 0 ∧ −c < 0) ∨ (b < 0 ∧ −4ac+ b2 = 0 ∧ −a < 0 ∧ −c < 0) ∨

(a < 0 ∧ 4ac− b2 < 0 ∧ b = 0 ∧ −c < 0) ∨ (a < 0 ∧ 4ac− b2 < 0 ∧ −b < 0 ∧ −c < 0) ∨

(4ac− b2 < 0 ∧ a = 0 ∧ −b < 0 ∧ −c < 0) ∨ (4ac− b2 < 0 ∧ −a < 0 ∧ −b < 0 ∧ −c < 0) ∨

(−4ac+ b2 = 0 ∧ −a < 0 ∧ −b < 0 ∧ −c < 0)
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Whitney umbrella
The quantified formula considered by the whitney umbrella problem [6] is
shown below.

∃u ∃v (−x+ uv = 0 ∧ −v + y = 0 ∧ −z + u2 = 0)

The equivalent quantifier-free formula constructed by the implemented quan-
tifier elimination method is shown below. The formula was constructed in 1
second.

(z = 0 ∧ −x2 + y2z = 0) ∨ (−z < 0 ∧ −x2 + y2z = 0)

The atomic formulas z = 0 and −z < 0 could be merged into −z ≤ 0 in
order to obtain a formula similar to the equivalent quantifier-free formula
constructed by QEPCAD shown below.

z ≥ 0 ∧ y2z − x2 = 0

The equivalent quantifier-free formula constructed by the original quantifier
elimination method is shown below.

(z = 0 ∧ y < 0 ∧ x = 0 ∧ −x2 + y2z = 0) ∨ (z = 0 ∧ x = 0 ∧ −x2 + y2z = 0 ∧ y = 0) ∨

(z = 0 ∧ x = 0 ∧ −x2 + y2z = 0 ∧ −y < 0) ∨ (y < 0 ∧ −x2 + y2z = 0 ∧ −z < 0 ∧ x < 0) ∨

(y < 0 ∧ −x2 + y2z = 0 ∧ −z < 0 ∧ −x < 0) ∨ (x = 0 ∧ −x2 + y2z = 0 ∧ y = 0 ∧ −z < 0) ∨

(−x2 + y2z = 0 ∧ −y < 0 ∧ −z < 0 ∧ x < 0) ∨ (−x2 + y2z = 0 ∧ −y < 0 ∧ −z < 0 ∧ −x < 0)

Davenport and Heintz
The quantified formula considered by the Davenport and Heintz problem [8]
is given below.

∃c ∀b ∀a ((−a+ d = 0 ∧ −b+ c = 0) ∨

((−a+ c = 0 ∧ −1 + b = 0)⇒ (−b+ a2 = 0)))

The formula was determined to be equivalent to >. The result was obtained
in 3 seconds. The formula constructed by QEPCAD is the same.
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Range of Lower Bounds
The quantified formula considered by the range of lower bounds problem [12]
is given below.

∀x ∀a ∀b ∀c ∃z ((−a < 0 ∧ c+ bz+az2 6= 0)⇒ (−bx+y− c−ax2 < 0))

The equivalent quantifier-free formula constructed by the implemented quan-
tifier elimination method is shown below. The formula was constructed in
1 second. The formula constructed by the original quantifier elimination
method is the same.

y = 0 ∨ y < 0

The equivalent quantifier-free formula constructed by QEPCAD is shown
below.

y ≤ 0

Collision
The quantified formula considered by the collision problem [8] is given below.
Note that the formula shown below is a sentence.

∃t ∃x ∃y (96− 17t ≤ 0 ∧ −160 + 17t ≤ 0 ∧ −16 + 17t− 16x ≤ 0 ∧

− 16− 17t+ 16x ≤ 0 ∧ −144 + 17t− 16y ≤ 0 ∧

112− 17t+ 16y ≤ 0 ∧ −1 + x2 + t2 − 2tx+ y2 ≤ 0)

The sentence was determined to be true. The sentence was determined to
be true in 23 seconds. QEPCAD determined the sentence to be true as well.

Hong-90
The quantified formula considered by the Hong-90 problem [14] is shown
below.

∃a ∃b (s+ r + t = 0 ∧ −a+ rt+ rs+ st = 0 ∧ −b+ rst = 0)

The equivalent quantifier-free formula constructed by the implemented quan-
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tifier elimination method is shown below. The formula was constructed in
less than a second. The formula constructed by QEPCAD is the same.

s+ r + t = 0

The equivalent quantifier-free formula constructed by the original quantifier
elimination method is shown below.

(s+ r + t = 0 ∧ t < 0 ∧ s+ t < 0 ∧ s < 0 ∧ −s2 +−st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −r < 0)∨

(s+ r + t = 0 ∧ t < 0 ∧ s+ t < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −r < 0 ∧ s = 0)∨

(s+ r + t = 0 ∧ t < 0 ∧ s+ t < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −r < 0 ∧ −s < 0)∨

(s+ r + t = 0 ∧ t < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −s < 0 ∧ s+ t = 0 ∧ r = 0)∨

(s+ r + t = 0 ∧ t < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −s < 0 ∧ −s− t < 0 ∧ r < 0)∨

(s+ r + t = 0 ∧ s+ t < 0 ∧ s < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −r < 0 ∧ t = 0)∨

(s+ r + t = 0 ∧ s = 0 ∧ s+ t = 0 ∧ r = 0 ∧ t = 0 ∧ s2 + st+ t2 = 0 ∧ rt+ rs+ st = 0)∨

(s+ r + t = 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −s < 0 ∧ −s− t < 0 ∧ r < 0 ∧ t = 0)∨

(s+ r + t = 0 ∧ s+ t < 0 ∧ s < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −r < 0 ∧ −t < 0)∨

(s+ r + t = 0 ∧ s < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ s+ t = 0 ∧ r = 0 ∧ −t < 0)∨

(s+ r + t = 0 ∧ s < 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −s− t < 0 ∧ r < 0 ∧ −t < 0)∨

(s+ r + t = 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ s = 0 ∧ −s− t < 0 ∧ r < 0 ∧ −t < 0)∨

(s+ r + t = 0 ∧ −s2 − st− t2 < 0 ∧ rt+ rs+ st < 0 ∧ −s < 0 ∧ −s− t < 0 ∧ r < 0 ∧ −t < 0)

Simplified YangXia
The quantified formula considered by the simplified YangXia problem [5] is
shown below.

∃b (b 6= 0 ∧ −R < 0 ∧ −b < 0 ∧ −h < 0 ∧

16h4R4 + a4b4 − 8h2R2b4 − 2a2b6 − 8a2h2R2b2 + 4a2h2b4 + b8 = 0 ∧

2hRb− ab2 − b3 < 0 ∧ −hRb < 0 ∧ −2hRb− ab2 + b3 < 0 ∧

ab2 − 2hRb− b3 < 0)

The equivalent quantifier-free formula constructed by the implemented quan-
tifier elimination method is shown below. The formula was constructed in 2
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minutes and 8 seconds.

(−R < 0 ∧ −a < 0 ∧ a2 + 4h2 − 8hR < 0) ∨

(−R < 0 ∧ −a < 0 ∧ −a2 − 4h2 + 8hR = 0) ∨

(−R < 0 ∧ −h < 0 ∧ h−R < 0 ∧ −a+ 2R = 0) ∨

(−R < 0 ∧ −h < 0 ∧ h−R < 0 ∧ −a < 0 ∧ a− 2R < 0))

The equivalent quantifier-free formula constructed by QEPCAD is shown
below.

a > 0 ∧ h > 0 ∧ 2R− a ≥ 0 ∧ (2h− a < 0 ∨ 8hR− 4h2 − a2 ≥ 0)

The execution of the original quantifier elimination method timed out.

Cyclic-3
The quantified formula considered by the collision problem [19] is given be-
low.

∃b ∃a (b+ a+ c = 0 ∧ ac+ ab+ bc = 0 ∧ −1 + abc = 0)

The formula was determined to be equivalent to ⊥. The result was obtained
in 38 seconds. The formula constructed by QEPCAD is the same.

For 20 out of the 30 considered exemplary quantified formulas, the exe-
cution of the implemented quantifier elimination method timed out. An
examination of these examples revealed, that large multivariate polynomials
occurred in these exemplary formulas, which imply costly computations in the
projection and lifting phase for the construction of the cylindrical algebraic
decomposition defined by these multivariate polynomials.
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Conclusion

In this thesis, at first, the preliminaries for quantifier elimination by cylindrical
algebraic decomposition were provided. The non-linear real arithmetic was
introduced, the fragment of the first-order logic for which quantifier elim-
ination was considered. The term cylindrical algebraic decomposition was
defined, the concept the presented quantifier elimination method is based
on. Furthermore, a method to construct a cylindrical algebraic decomposi-
tion for a given set of multivariate polynomials was described. The hitting
set problem was presented, the concept used in several steps of the presented
quantifier elimination method in the hope of constructing a simpler equiva-
lent quantifier-free formula. Subsequently, a quantifier elimination method
was described. A method to determine the truth values of a quantified
formula, using the cylindrical algebraic decomposition defined by the mul-
tivariate polynomials occuring in the formula, was refined. Based on the
assignment of truth values to cells, a method to simplify a cylindrical alge-
braic decomposition was presented. Furthermore, the concept of signatures
was introduced as well as a method using the signatures and the truth values
to test whether a cylindrical algebraic decomposition is projection-definable,
a property necessary to construct an actual equivalent quantifier-free for-
mula based on cylindrical algebraic decomposition. In addition, a method
was refined to assure projection-definability. Finally, a method to construct
an equivalent quantifier-free formula, using the cylindrical algebraic decom-
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position, defined by the multivariate polynomials occurring in a quantified
formula, was described.
For this thesis, the described quantifier elimination method was implemented
in order to extend SMT-RAT by the capability to eliminate quantifiers. Some
remarks on the implementation were made as well as experimental results
were presented. Significant improvements in terms of the simplicity of the
constructed equivalent quantifier-free formulas, compared to the formulas
constructed by the original quantifier elimination method, were observed.
However, the equivalent quantifier-free formulas constructed by the imple-
mented quantifier elimination method were observed to be slightly inferior
to those constructed by other modern implementations such as QEPCAD.
For future work, additional simplifications on the constructed equivalent
quantifier-free formulas could be considered in order to improve the sim-
plicity of the formulas even more.
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