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Abstract

In the last decade, satis�ability-modulo-theories (SMT) solvers have be-
come very e�cient and are used in various real-world applications e.g. in
formal veri�cation. SMT solver are combinations of a satis�ability (SAT)
solver and a theory solver which determine the satis�ability of formulas from
�rst order logic over some theories. SMT solver for various theories exist,
e.g. the theory of linear real arithmetic, nonlinear real arithmetic or linear
integer arithmetic. In this thesis, we present a theory solver for the the-
ory of equality logic with uninterpreted functions in lazy (SMT) solving. In
our approach, we incrementally calculate the congruence closure over given
equalities and check, whether given inequalities are consistent with this clo-
sure. While equalities are given to the theory solver, we calculate every
congruence and build an equality graph, documenting every equality and
congruence in a graph structure. Through the graph structure we are able to
generate infeasible subsets in case a con�ict between the congruence closure
and given inequalities is found. We calculate infeasible subsets by �nding a
path between nodes in the equality graph. This is done with two heuristics
by means of Dijkstra's algorithm for �nding shortest paths and Kruskal's
algorithm to �nd a minimum spanning tree. Additionally, these heuristics
are used to deduce tautologies, so-called lemmas, aiming at speeding up the
solving process. We present three kinds of lemmas. Finally, we test our
implementation with a broad range of parameters on a standard benchmark
set from SMT-LIB.
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Chapter 1

Introduction

The satis�ability (SAT) problem is the problem of deciding whether a given
boolean formula is satis�able, that means, if there exists a satisfying assignment
for all its variables. SAT solving is an active research topic in computer science
that develops algorithms to solve this problem. In the last decades it has become
more and more important, as SAT solvers have become highly e�cient. Because
boolean logic is not expressive enough for many real-world problems, we combine
SAT solvers with theory solvers, decision procedures for conjunctions of theory
constraints. This extends the solving capabilities to formulas of �rst order logic.
These combinations of SAT and theory solvers are called satis�ability-modulo-
theories (SMT) solver and there exist SMT solver for several �rst order theories,
e.g. linear real arithmetic, nonlinear real arithmetic, linear integer arithmetic or
bit vectors. This bachelor thesis discusses a theory solver speci�cally for equality
logic with uninterpreted functions which is integrated into the SMT-RAT library
[CKJ+15]. We especially focus on various heuristics to generate infeasible subsets
to speed up the solving process.

First we establish a general background knowledge on the SAT and SMT prob-
lem, approaches to solve them and the basics of the theory of equality logic with
uninterpreted functions in Chapter 2. In Chapter 3, we focus on the needed cal-
culations a theory solver for this theory has to do by means of a simple solving
algorithm and explain all important procedures and heuristics of our theory solver.
In Chapter 4, we conclude this thesis with a summary, some experimental results
and an outlook on future work.

1.1 Motivation

Equality logic with uninterpreted functions is an important logic as there are sev-
eral real-world use cases. In [BGV01] and [BD94] equality logic with uninterpreted
functions is used to abstract data manipulation in a processor when verifying the
correctness of its control logic. In [PSS98] it is used to verify that the translation
from input source code to the code produced by a compiler is semantically correct.

1.2 Related Work

Historically, equality logic with uninterpreted functions was only considered from
a mathematical viewpoint until the mid 1970's. Most notably from that time is
Ackermann's work with his reduction method [Ack54]. His method transforms for-
mulas of equality logic with uninterpreted functions to formulas of equality logic
by replacing uninterpreted functions with variables and appending constraints to
maintain functional consistency. With the emergence of e�ective theorem provers,
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more approaches of solving equality logic with uninterpreted function were devel-
oped. Some approaches handle the uninterpreted function directly by calculating
the congruence closure over conjunctions of equalities. Shostak proposed a sim-
ple method for this approach in [Sho78]. By using syntactic case-splitting, more
complex formulas than just conjunctions can be solved by this procedure. But
because syntactic case-splitting leads to a much larger formula, this comes with a
great cost.

Other solvers that �rst transform formulas of equality logic with uninterpreted
functions into formulas of equality logic with Ackermann's reduction rely more
on semantic case-splitting by splitting the �nite domain of equality logic formulas
rather than the formula itself. Examples for these approaches are [HIKB96] and
[HKGB97]. Bryant's reduction [BGV99] is a very similar approach to Ackermann's
reduction and was proposed to improve these techniques. [GSZ+03] abstracted
from the problem by replacing equalities with boolean variables and building a
binary decision diagram (BDD) of this boolean abstraction. The BDD can then
be searched for satisfying paths of the boolean abstraction which do not violate
the transitivity of equalities. The Sparse method [BV02] is another notable solving
approach that also uses a boolean abstraction of equality logic. More details on
the history of equality logic with uninterpreted functions in satis�ability checking
can be found in [KS08].

The most popular SMT solving approach today combines the boolean abstrac-
tion of formulas with directly handling the uninterpreted function by calculating
congruence closure. This is done by using a SAT solver to �nd models for the
boolean abstraction and then letting a theory solver check the conjunction of con-
straints abstracted by the found boolean model for consistency. In this thesis, we
present such a theory solver.



Chapter 2

Preliminaries

This chapter introduces the basics of satis�ability solving, satis�ability modulo
theories solving and equality logic with uninterpreted functions. The former two
are needed to understand the environment in which the theory solver is integrated
and the requirements it has to ful�ll. Because it is a theory solver for equality
logic with uninterpreted functions, the syntax of formulas of equality logic with
uninterpreted functions is explained.

Section 2.1 gives an introduction of the satis�ability problem for propositional
logic formulas and a rough sketch of the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm that is used to solve the problem. Section 2.2 introduces the satis�abil-
ity modulo theories problem and di�erent approaches to solve it. The syntax of
equality logic with uninterpreted functions is explained in Section 2.3.

2.1 Satis�ability Problem

In the following, we explain the satis�ability problem for boolean formulas.

De�nition 2.1.1 (Boolean Formula). A boolean formula ϕ can be constructed as
follows:

ϕ = (ϕ ∧ ϕ) | ¬ϕ | x | c

where c ∈ {True,False} is a constant, x ∈ V ar(ϕ) where V ar(ϕ) is the set of all
variables in ϕ.

Syntactic sugar like (ϕ ∨ ϕ) or (ϕ → ϕ) can be derived from the above con-
struction.

The boolean satis�ability (SAT) problem is the problem of deciding whether
a given boolean formula is satis�able. A boolean formula is satis�able, if there
exists an assignment of its variables so that it satis�es the formula.

A SAT solver utilizes an algorithm to �nd an assignment

α : V ar(ϕ)→ {True,False}

for all variables in a boolean formula ϕ that satis�es this formula. Such an assign-
ment is called a model of the formula. The Davis-Putnam-Logemann-Loveland
(DPLL) [DLL62] algorithm is a well known SAT solving procedure. In the follow-
ing we present a simple iterative version of the DPLL algorithm (Algorithm 1).
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The algorithm expects a boolean formula in conjunctive normal form as input.

De�nition 2.1.2 (Conjunctive Normal Form (CNF)). A boolean formula varphi
is in conjunctive normal form, if it has the following form:

ϕ =
∧
i

∨
j

lij

where lij is the j-th literal in the i−th clause. ϕ is a conjunction of clauses,
where each clause is a disjunction of constraints or negated constraints. In the
following, constraints and negated constraints are called literals. A boolean formula
in conjunctive normal form is satis�able i� there exists an assignment that satis�es
every clause of the formula.

DPLL solves the SAT problem in so called decision levels. In every decision
level it assigns an unassigned literal of the boolean formula either to True or
to False. As consequence, it assigns the negation of this literal to the opposite
boolean value. If a literal is assigned to True, the assignment satis�es all clauses
the literal occurs in and these clauses are thereby resolved. A clause is called a
con�ict clause if all literals are assigned to False and the clause is not satis�ed by
the current assignment. Because an assignment that satis�es the whole formula
has to satisfy each clause, this clause causes a con�ict indicating that the current
assignment cannot be part of a model of the formula. Clauses that do not contain
a literal that is assigned to True and still contain unassigned literals are called
unresolved. If all literals in such an unresolved clause except for one are assigned
to False, this clause is called a unit clause. The only way we can satisfy a unit
clause without reversing decisions is by assigning the unassigned literal to True.
This is what the DPLL algorithm does after every decision as so called boolean
constraint propagation. Because this propagation leads to new assignments, it can
enable further propagations.

Example 2.1.1 (Boolean Constraint Propagation). Let c : (x1 ∨ x2) be an un-
resolved clause in a boolean formula ϕ and x1,x2 ∈ V ar(ϕ) be variables in ϕ. If
DPLL decides to assign x1 to False, c becomes a unit clause because x2 is the
only variable in c that is left unassigned and no other literal in c is assigned True.
DPLL propagates and assigns x2 as True to satisfy c.

Algorithm 1 An iterative version of the DPLL algorithm for solving the SAT
problem for a boolean formula in conjunctive normal form.

1: function DPLL(CNFformula)
2: if !BooleanConstraintPropagation() then return UNSAT

3: while True do
4: if !Decide() then return SAT;

5: while !BooleanConstraintPropagation() do
6: if !ResolveConflict() then return UNSAT

First the algorithm looks for unit clauses in the formula and tries to do boolean
constraint propagation (Line 2). This is also referred to as decision level 0, as the
algorithm has not yet made any decision. If the boolean constraint propagation in
decision level 0 leads to a con�ict, this con�ict cannot be resolved because there
is no decision the algorithm can reverse. The result is, that the formula is not
satis�able and the algorithm returns UNSAT (Line 2). Otherwise, the algorithm
begins the next decision level and decides the �rst assignment of a literal (Line 4).
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Various heuristics exist for choosing a literal to assign. Choosing the right
unassigned literal to assign in a decision level is crucial for the e�ciency of this
algorithm. In general, it is bene�cial, if the unassigned literal that is chosen to be
assigned, occurs frequently in unresolved clauses. Assigning a frequently occurring
literal might satisfy a lot of clauses or lead to a lot of propagations. So early on,
the more far reaching decisions are made.

After every decision, the algorithm invokes boolean constraint propagation again
and might �nd further assignments (Line 5). If a con�ict occurs on a higher deci-
sion level than decision level 0, the algorithm tries to resolve the con�ict (Line 6).
It backtracks to the source of the con�ict, reversing decisions and propagations.
By adding a con�ict clause to the formula, which explains the reason for the con-
�ict, it learns, which assignments not to make again. If the source of a con�ict
is found on decision level 0, the algorithm is not able to resolve the con�ict and
the formula is unsatis�able (Line 6). If the algorithm is not able to decide the
assignment of another literal, because all literals are already assigned, no con�ict
has occurred and the formula is satis�able. The current assignment of the literals
is a model of the formula and the algorithm returns SAT (Line 4).

2.2 Satis�ability Modulo Theories Problem

The satis�ability modulo theories (SMT) problem is the problem of deciding
whether a given logical formula, expressed in �rst order logic, is satis�able with
respect to a given theory T . We distinguish between eager SMT solving and lazy
SMT solving.

Eager SMT solving Eager SMT solving approaches solve the SMT problem
by transforming the original T -formula into an equivalent boolean formula, that
is transforming the SMT problem to a SAT problem. After that, a SAT solver is
used to decide the problem. Thus, we can re-use the already e�cient SAT solver,
but we lose the ability to make deductions with knowledge about the underlying
theory. This approach is not applicable for all theories. The theory of equality
logic with uninterpreted functions and the theory of bit vectors are two example
for which there exist eager SMT solving approaches.

Lazy SMT solving Lazy SMT solving approaches abstract the T -formula to its
boolean skeleton by substituting every T -constraint by a fresh boolean variable.
Then, we use a SAT solver to �nd a model for this boolean formula. If the SAT
solver �nds a model, the boolean literals it has assigned are mapped back to their
corresponding T -constraints. If a literal is assigned to True we map it to its T -
constraint, if it assigned to False we map it to its negated T -constraint. Then,
the SAT solver gives the T -constraints to the theory solver.

The theory solver checks whether the given T -constraints are consistent with
respect to T and returns either satis�able or unsatis�able. If it returns satis�able,
a model for the T -formula is found and the SMT problem is solved. Otherwise,
if it returns unsatis�able, the SAT solver remembers that the current assignment
of literals is not satis�able by appending a corresponding clause to the original
formula.

The theory solver can also return an explanation on the reasons why the given
T -constraints are not consistent in form of a so-called infeasible subset. An in-
feasible subset contains at least those T -constraints that are not consistent. With
this explanation, the SAT solver can append a smaller clause that speci�es more
precisely the combination of assignments it should not choose again. Generating
an infeasible subset is usually associated with a lot of computational work on the
side of the theory solver, making theory solver calls more expensive. But infeasi-
ble subsets can help reduce the boolean search space for a satisfying assignment
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signi�cantly, reducing the remaining assignments the SAT solver has to try out.
Additionally to infeasible subsets, the theory solver is allowed to generate lemmas.
Lemmas are deductions the theory solver makes with the given constraints and
knowledge about the theory. These lemmas have a similar e�ect as the infeasible
subset and are appended as clauses to the original formula.

After receiving an infeasible subset, the corresponding appended clause intro-
duces a boolean con�ict in the SAT solver. It has to backtrack and then continues
to look for other models of the boolean skeleton extended with clauses for infea-
sible subsets and lemmas. In case the SAT solver cannot �nd another model, the
SMT problem is solved as unsatis�able.

Less Lazy SMT Solving The lazy SMT solving approach described above is
called full lazy SMT solving, which invokes the theory solver only after �nding
a complete model for the boolean formula. Less lazy SMT solving approaches
additionally invoke the theory solver on partial assignments. After completing all
assignments of a decision level, the SAT solver informs the theory solver about
the newly assigned boolean literals by adding the corresponding T -constraints to
a set of constraints to check for consistency. If a con�ict arises and the SAT solver
has to backtrack and reverse assignments, it also informs the theory solver about
the reversed assignments, removing the corresponding T -constraints from the set.
With the lazy approach, a con�ict in the underlying theory of the original formula
can be found earlier, but the theory solver might be invoked much more often
than in the full lazy approach. More details on lazy SMT solving and various
approaches can be found in a survey by Roberto Sebastiani [Seb07].

2.3 Equality Logic with Uninterpreted Functions

The theory solver we present in this bachelor thesis is a theory solver for the theory
of equality logic with uninterpreted functions (EUF).

De�nition 2.3.1 (Formulas of EUF). Formulas of EUF can be constructed as
follows.

Formula ϕ := (ϕ ∧ ϕ) | ¬ϕ | C
Constraint C := (t = t)

Term t := c | x | F (t, . . . ,t)

where c ∈ D, is an uninterpreted constant, x ∈ V ar(ϕ) over D is an uninterpreted
variable and F is an uninterpreted function F : D+ → D. F (t, . . . ,t) is called
an uninterpreted function instance of the uninterpreted function symbol F . A
constraint is called an equality and a negated constraint is an inequality. In the
following, we include negated constraints in the term constraint.

We abstract every constant, variable and function in this logic from its seman-
tics to purely focus on the satis�ability of equalities and inequalities. In this way,
we do not have to care about what domain constants and variables are from or
what computations are represented by a function and only use their signatures. In
principle constants and variables can be from several di�erent domains. However,
as soon as the formula is type correct, we can safely assume that all variables and
constants are from the same domain, as equalities between variables or constants
of di�erent domains are impossible.

The library SMT-RAT that we extend with the theory solver for EUF does some
preprocessing to parse formulas of this theory. It �attens uninterpreted function
instances by introducing fresh variables for arguments that are uninterpreted func-
tion instances.



2.3. Equality Logic with Uninterpreted Functions 15

Example 2.3.1. Let C : F (F (x)) = y be a constraint of a formula from EUF,
where F is an uninterpreted function symbol and x,y are variables. We introduce
the new variable s for the uninterpreted function instance argument F (x), substi-
tute the argument and add a new equality to express this substitution. The result
is F (s) = y ∧ F (x) = s.

After �attening, we substitute constants by fresh variables and append inequal-
ities to the formula for all pairs of these introduced variables. After parsing, the
theory solver has to deal with an adjusted logic.

De�nition 2.3.2 (Formulas of EUF in SMT-RAT). Formulas of the adjusted EUF
we are dealing with in SMT-RAT can be constructed as follows.

Formula ϕ := (ϕ ∧ ϕ) | ¬ϕ | C
Constraint C := (t = t)

Term t := x | F (x, . . . ,x)

where x ∈ V ar(ϕ).

The semantic of EUF is de�ned by the following axioms of the binary con-
gruence relation =. Let t1,t2, . . . be terms and F be an uninterpreted function
symbol.

Re�exitvity t1 = t1

Symmetry t1 = t2 ↔ t2 = t1

Transitivity t1 = t2 ∧ t2 = t3 → t1 = t3

Congruence t1 = t2 ∧ t3 = t4 ∧ · · · → F (t1,t3, . . . ) = F (t2,t4, . . . )

Re�exivity and symmetry are relevant axioms of this theory, but relatively unin-
teresting. The main problem when checking a set of equalities and inequalities
for consistency is transitivity and functional congruence. In the next chapter we
present the needed calculations to calculate transitivities and congruences for a
set of EUF constraints.
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Chapter 3

Theory Solver for Equality

Logic with Uninterpreted

Functions

In this chapter, we present an overview of the theory solver for EUF. It builds onto
the simple algorithm presented by Shostak [Sho78] which we explain in Section 3.1
and has to ful�ll the following three requirements for being used e�ciently in lazy
SMT solving:

Incrementality: Equalities and inequalities can be added at any time.

Infeasible subsets: If a con�ict arises in the theory solver, it has to build an
infeasible subsets to explain the con�ict.

Backtracking: Equalities and inequalities can be removed at any time. The
theory solver has to remember its computation history and backtrack to
reverse all changes the addition of an equality or inequality made.

This solver exploits the property of the DPLL algorithm, that it removes as-
signments of literals in the reverse order in which it assigned them. To use this
property, the theory solver stores given equalities and inequalities on separate
stacks, so that the respective order is maintained. While adding an equality, its
position on the stack is used to indicate the age of the equality. In the following,
this numerical position of an equality in the stack is called its Stage, starting with
1. This Stage of every added equality is also used to mark every e�ect the addi-
tion of the equality has on various data structures to enable easy backtracking. As
equalities are always removed from the top of the stack, the equality with the cur-
rently highest Stage is removed and we can reverse every e�ect on data structures
marked with the corresponding Stage. Additionally to the given equalities we cal-
culate equalities that hold because of functional congruence. These equalities are
also assigned a Stage, the same as the equality that causes the calculation of this
congruence. Furthermore, these equalities are assigned a Sub Stage, to indicate,
that they are slightly older than the equality that caused them.

This chapter is structured as follows. First, we explain the needed calculations
for a consistency check of constraints from EUF on the basis of a simple algo-
rithm performing that task in Section 3.1. Then, we introduce the important data
structures used in the theory solver in Section 3.2. We use a union-�nd data
structure to track the equivalence classes of terms, a custom data structure called
computation graph to document changes in the equivalence classes and a graph
structure called equality graph to generate infeasible subsets. Section 3.3 describes
the actual procedures of the theory solver for adding and removing constraints
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from EUF and for checking the given constraints for consistency. In Section 3.4,
we present two heuristics to generate infeasible subsets, and in Section 3.5, we
present three kinds of lemmas this theory solver can generate.

3.1 Basic algorithm to check for consistency

In this section, we present the algorithm of Shostak [Sho78] that checks a con-
junction of EUF-constraints for consistency. Given a set of constraints from EUF,
the equalities of this set de�ne a relation =, as they have to be contained in this
relation. To check a set of constraints for consistency, we have to calculate the
congruence closure over the relation =. The congruence closure over the relation
= is the smallest congruence relation that contains =.

Algorithm 2 Simple algorithm to check a set of constraints of EUF for consistency

1: function Check(ConstraintSet)
2: EC ← {{t} | t occurs as term in an (in)equality in ConstraintSet}
3: for all t = t′ in ConstraintSet with [t] 6= [t′] do
4: EC ← (EC \ {[t],[t′]}) ∪ {[t] ∪ [t′]}
5: while exists F (t),F (t

′
) in ConstraintSet with [ti] = [t

′
i] (i ∈ {1, . . . ,n})

and [F (t)] 6= [F (t
′
)] do

6: EC ← (EC \ {[F (t)],[F (t
′
)]}) ∪ {[F (t)] ∪ [F (t

′
)]}

7: for all t 6= t′ in ConstraintSet do
8: if [t] = [t′] then return UNSAT

9: return SAT

To calculate the congruence closure, we �rst calculate the equivalence closure
over the relation =. This is the smallest equivalence relation that contains =.
To do this, we �rst de�ne a new equivalence class for every term occurring in
the constraints and EC as the set of these equivalence classes (Line 2). Initially,
every term is the only element in its equivalence class. For better readability, [t]
represents the equivalence class t is in and t a group of terms t1, . . . , tn. Now,
we iterate over every equality in the set of constraints and merge the equivalence
classes of the left hand and right hand term of every equality (Lines 3-4). By doing
this, terms that are equal by transitivity also end up in the same equivalence class.
The resulting equivalence classes represent the equivalence closure over = for the
given equalities, as every pair of elements contained in the same equivalence class
has to be contained in the equivalence closure by transitivity.

Example 3.1.1. Let a,b,c be variables and c1 : a = b, c2 : b = c be equalities from
EUF. At the beginning, every variable is in its own equivalence class {a},{b},{c}.
First, we consider c1 and merge the equivalence classes of a and b: [a] ∪ [b]. This
results in the equivalence classes {a,b},{c}. Next, we consider c2 and merge the
equivalence class of b and c: [b] ∪ [c]. This results in the equivalence class {a,b,c}.
As we can see, a and c are in the same equivalence class by transitivity.

To calculate the congruence closure over =, we need to check all pairs of terms
that are uninterpreted function instances of the same uninterpreted function sym-
bol and not in the same equivalence class. We have to check for every one of these
pairs, whether all their arguments at the same position are in the same equivalence
class (Line 5). If this is the case, this pair of uninterpreted function instances is
equal by functional congruence and we merge their equivalence classes (Line 6).
The problem is that, by merging equivalence classes, other pairs of uninterpreted
function instances now might have become congruent too. So, we have to start
again to compare all pairs of uninterpreted function instances of the same uninter-
preted function symbol. We continue doing this, until every pair of uninterpreted
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function instances with equivalent arguments at all positions are in the same equiv-
alence class. Now, the equivalence classes represent the congruence closure over
the relation = de�ned by the given equalities.

Next, we check for all inequalities if they are consistent with the equivalence
classes (Line 7). If the left hand and right hand term of an inequality are in the
same equivalence class we have found a con�ict and the given set of constraints is
not consistent (Line 8). If no con�ict is found, the set of constraints is consistent
(Line 9).

3.2 Data Structures

In the following, we will de�ne the essential data structures we use to ful�ll the
three requirements mentioned above with our algorithm.

3.2.1 Union-Find Structure

A union-�nd structure is a data structure that represents disjoint sets. Every set
is identi�ed by a representative element of the set. The data structure has three
operations:

MakeSet(x) takes one element x that is not yet contained in any other set and
creates a new set with x as its only element. Therefore, x is also the repre-
sentative of this new set.

Union(x,y) joins the sets in which x and y are contained.

Find(x) returns the representative of the set in which x is contained. By com-
paring the results of Find(x) and Find(y), we can determine whether x
and y are in the same set.

We use the union-�nd structure to represent the equivalence classes of terms of
added equalities. Each set in the union-�nd structure represents an equivalence
class. With this structure we can join whole equivalence classes and check whether
two elements are in the same equivalence class.

An e�cient way to implement this kind of data structure is using a directed
forest G = (V,E), a disjoint set of trees. Each set is represented by a tree, where
each node v ∈ V is labeled with an element and is connected to a parent node
vp ∈ V by an edge (v,vp) ∈ E. The root vr ∈ V of such a tree has an edge (vr,vr)
looping to itself and its label is the representative for the set. MakeSet(x) creates
a new tree by adding a new node V := V ∪ {vx} labeled with the element x and
adding a looping edge E := E ∪ {(vx,vx)} to mark it as the root of the new tree.
When calling Find(x), we trace the way from the node vx ∈ V labeled with x to
the root node vr ∈ V of the tree it is in and return its label as representative of
the set. Joining two sets with Union(x,y) can be done by attaching the root node
rx ∈ V of the tree the �rst parameter is in to the root node ry ∈ V of the tree the
second parameter is in. We do this by removing the looping edge from rx to itself
and adding an edge from rx to ry: E := (E \ {(rx,rx)}) ∪ {(rx,ry)}.

This tree structure additionally needs a mapping from an element to its parent.
In case of continuous integer elements, the forest can be implemented as an array
where the location of the element stores its parent element.

Example 3.2.1 (Union-Find as Forest). Let a,b,c be elements and va, vb,vc ∈ V
their respective nodes in the graph G = (V,E). After calling MakeSet on every
element to initialize the data structure, the trees of G look like Figure 3.1. First,
we join the sets containing a and b by calling Union(a,b) (Figure 3.2). Because
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va and vb are the roots of their respective tree, we just remove the looping edge
from va and add an edge from va to vb. Then, we join the sets containing a and c
by calling Union(a,c) (Figure 3.3). The root of the tree, in which va is in, is vb,
so, vb's looping edge is removed and an edge from vb to vc is added. Now, if we
call Find on any of the elements, we traverse the tree up to the root, that has an
edge to itself, and return its label as representative. In the example, every Find
call would traverse to the root node vc and return c as representative.

a b c

Figure 3.1:
After initialization

a b c

Figure 3.2:
After Union(a,b)

a b c

Figure 3.3:
After Union(a,c)

Optimizing

The naive implementation described above has a worst-case run time of O(n) per
Union and Find operation because the trees are not balanced and can deteriorate
into singly linked lists. There are two optimizations that vastly improve the run
time.

The �rst optimization is called union by rank because it considers the depth of
trees. Every node is additionally labeled with a rank that states the depth of the
sub tree of that node. When a node is created with MakeSet, it starts with a
rank of 0. In the Union operation, the smaller tree, determined by the rank of
the root, is always attached to the bigger tree and, thus, does not increase the
depth of the tree. Only if both roots of the trees have the same rank, attaching
one root to the other increases the rank of that root by one and the tree's depth
also increases by one. Thus, trees cannot deteriorate into lists and the worst-case
run time of the Union and Find operations becomes O(log n).

Example 3.2.2 (Union by Rank). We us the same procedure as in Example 3.2.1,
this time applying the optimization union by rank. The elements a,b,c are initial-
ized with MakeSet (Figure 3.4). The number below the node is its corresponding
rank. First, we join a and b (Figure 3.5). As both roots va and vb of the respective
trees have the same rank, we, again, just attach the root va of the �rst parameter
to the root vb of the second parameter, increasing its rank by 1. After that, we
join a and c (Figure 3.6). Now, the root vb of the tree containing va has a higher
rank than vc, so we just attach vc to vb, without increasing the rank of vb. The
tree is now balanced and Find and Union calls have a shorter amortized run time.

a
0

b
0

c
0

Figure 3.4:
After initialization

a
0

b
1

c
0

Figure 3.5:
After Union(a,b)

a
0

b
1

c
0

Figure 3.6:
After Union(a,c)

The second optimization is called path compression. Every time we trace the
path from a node to the root of the tree, we can attach every node that is traversed,
and thereby its sub tree, directly to the root. Thus, the tree is �attened and future
Union and Find operations are speeded up.

Example 3.2.3 (Path Compression). This example uses a similar but bigger
union-�nd structure then the resulting structure of Example 3.2.1 and only uses
path compression as optimization. We will examine what a Find call does when
called on an element deep in a tree. We begin with the tree in Figure 3.7. When
we call Find(a), we traverse the path a→ b→ c→ d→ e and attach every node
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we traverse to the root e. After the Find call, the tree is compressed (Figure 3.8)

a b c d e

Figure 3.7: Before Find(a)

a b c d e

Figure 3.8: After Find(a)

When using both optimizations together, the data structure still yields a worst-
case run time of O(log n) for Union and Find, but they achieve an amortized run
time per Union and Find of O(α(n)), where α(n) is the inverse of the Ackermann
function n = A(x,x). This was shown by R. Tarjan in 1975 [Tar75].

Due to the implementation of the union-�nd structure, optimized for a fast run
time, reversing a Union operation of the union-�nd structure cannot be done with
the structure itself. To be able to do this, we embed the union-�nd structure into
the custom data structure computation graph. This data structure has full access
to the union-�nd structure and is allowed to manipulate it.

3.2.2 Computation Graph

The computation graph is an undirected forest G = (V,E), a disjoint set of trees.
Every node of the graph is labeled with

L : V → (T,S)

where T is a set of terms from EUF and S is a numerical Stage. A node v ∈ V has
a maximum of one edge (v,vpar) ∈ E to another node vpar labeled with a higher
Stage and can have edges to multiple nodes vpre ∈ Vpre ⊂ V with a lower Stage.
vpar is called the parent of v and Vpre is the set of predecessors of v. The root of
a tree is the node labeled with the highest Stage.

The computation graph represents the computation history of the union-�nd
structure. Therefore, it represents the computation history of the equivalence
classes. A node represents an equivalence class at a speci�c Stage. So, the roots of
all trees represent the current equivalence classes, exactly the same as the union-
�nd structure. The predecessors of a node v ∈ V represent the previously disjoint
equivalence classes that were uni�ed to form the equivalent class represented by
the node v.

Initially, the graph has a node vt for every occurring term t in the given equali-
ties. Each initial node vt is labeled with L(vt) = ({t},0). The computation graph
has three main operations:

Union(t1,t2,s) calls the Union(t1,t2) operation on the union-�nd structure and
�nds the roots rt1 and rt2 of the trees which contain the nodes vt1 and vt2
in the computation graph. The roots are labeled with L(rt1) = (T1,S1) and
L(rt2) = (T2,S2).

� In case neither s = S1 nor s = S2 holds, we add a new node rnew,

V := V ∪ {rnew},

and add edges from rt1 and rt2 to this new node,

E := E ∪ {(rt1 , rnew),(rt2 ,rnew)}.

We label rnew with L(rnew) = (T1 ∪ T2, s).
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� In case only s = S1 holds and s = S2 not, we add an edge from rt2 to
rt1 ,

E := E ∪ {(rt2 ,rt1)},

and append T2 to T1,

T1 := T1 ∪ T2.

� In case both s = S1 and s = S2 hold, we merge the two nodes rt1 and
rt2 . We do this by removing the node rt2 ,

V := V \ {rt2},

unifying their labeled sets

T1 := T1 ∪ T2

and replacing all edges to rt2 with edges to rt1 .

AreEquivalent(t1,t2) compares the result of the Find(t1) and Find(t2) op-
erations on the union-�nd structure. If both operations return the same
representative it returns True, otherwise False.

Reverse(s) removes all nodes v ∈ V labeled with L(v) = (T,S) where S = s. For
every removed node v we collect the predecessor set Vpre and partition the
the corresponding equivalence class of v in the union-�nd structure into the
equivalence classes represented by the predecessors Vpre. For every prede-
cessor node vpre ∈ Vpre we call MakeSet on every element in the labeled set
and, afterwards, unify all elements of this set by calling the Union operation
on the union-�nd structure accordingly.

By documenting the computation history of the union-�nd structure, the com-
putation graph enables us to reverse Union operations, with one limitation. We
cannot reverse individual Union operations, but rather all Union operations on
the currently highest Stage. This is exactly what we want when removing an
equality from the top of the stack. We want to reverse all e�ects the addition of
this equality had on the union-�nd structure.

Example 3.2.4 (Computation Graph). We use the same procedure as in Exam-
ple 3.2.2. Let a,b,c be elements. The computation graph after initialization for
a,b,c is shown in Figure 3.9 with the internally initialized union-�nd structure un-
derneath. Similar to Example 3.2.2, we �rst join a and b on Stage 1, by calling
Union(a,b,1). Next, we join b and c with Stage 2, so, we call Union(b,c,2). As
we can see in Figure 3.10 and Figure 3.11, always choosing a higher Stage allows
us to build up the computation graph in layers. Now we reverse the last Stage
by calling Reverse(2). The �rst step shown in Figure 3.12 removes all nodes
from Stage 2 in the computation graph. The second step shown in Figure 3.13
re-initializes the elements from the predecessors of the removed node by calling
MakeSet on the union-�nd structure. The second step shown in Figure 3.14 re-
uni�es the elements of the predecessors. After these three steps, the computation
graph and the union-�nd structure are reversed to their state before Union(b,c,2)
was called.
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Reunify elements in pre-
decessors

Furthermore, the represented computation history helps us in processing the
congruence closure. It allows us to look up from which formerly disjoint equivalence
classes an equivalence class is composed of. We will elaborate on this later.

3.2.3 Equality Graph

The equality graph documents all given equalities and congruences between unin-
terpreted function instances.

De�nition 3.2.1 (Equality Graph). Given a set of equalities Φ from EUF, the
corresponding equality graph is an undirected graph G = (V,Eexplicit ∪ Eimplicit).
Each node v ∈ V is labeled with a term occurring in Φ, each edge eexplicit ∈
Eexplicit corresponds to an equality in Φ and is called an explicit edge and each edge
eimplicit ∈ Eimplicit corresponds to an equality implied by functional congruence
and is called an implicit edge.

Example 3.2.5 (Equality Graph). Let Φ = {(x = y),(F (x) = z),(F (y) = z)} be
a set of equalities. The equality graph for Φ is shown in Figure 3.15.

x

y

z

F (x) F (y)

Figure 3.15: Equality graph for Φ = {(x = y),(F (x) = z),(F (y) = z)}.
Explicit edges are shown as solid edge, implicit edges as dashed edges.

The equality graph has three operations. Let t1,t2 be terms from EUF.

AddEdge(t1,t2, IsImplicit, s) if there is no node v ∈ V that is labeled with
a term t1 or t2, we add the according node to V . Then, we add an edge
between the nodes labeled t1 and t2. If the boolean parameter IsImplicit is
True, the edge is added to Eimplicit, otherwise to Eexplicit. In both cases, we



24 Chapter 3. Theory Solver for Equality Logic with Uninterpreted Functions

label the edge with the Stage s. If the edge is implicit, we extend the Stage
label with a Sub Stage. This Sub Stage is increased for every implicit edge
added on the same Stage.

RemoveEdges(s) removes all edges labeled with a Stage equal to s.

Explain(t1,t2) uses the equality graph to explain why t1 and t2 are equivalent
by returning an explanation in form of a set of equalities occurring in Φ that
implies this equivalence.

A path in an equality graph G = (V,Eexplicit ∪ Eimplicit) from a node v1 ∈
V to a node v2 ∈ V represents such an explanation for the equivalence of the
corresponding terms of v1 and v2. By collecting all equalities represented by the
edges used in this path, we get a set of equalities explaining the equality. This set
might contain equalities that only hold because of congruence and do not occur in
Φ. Because we want to use the Explain operation to generate infeasible subsets
and infeasible subsets are subsets of the given equalities and inequalities in Φ,
we need to remove all equalities in the explanation that are not contained in Φ.
We do this by replacing them with an explanation of why their congruence holds.
Congruence can only occur between terms of uninterpreted function instances of
the same function symbol when all their pairs of i−th arguments are equivalent,
where i ∈ 1, . . . ,n and n is the number of arguments needed by the uninterpreted
function. Such a congruence can be explained by explaining the equality of each
of these pairs of arguments. When explaining a congruence, we need to make sure
not to use implicit edges in the graph that represent congruences which depend on
the congruence we currently want to explain. To avoid this circular dependency,
we restrict the graph for the following Explain operations until the congruence
is fully explained. For this, we need the label Stage s and Sub Stage t of the
corresponding implicit edge of the congruence we want to explain. We restrict the
equality graph G = (V,Eexplicit∪Eimplicit) to a graph G′ = (V,Eexplicit∪E′

implicit)
where

E′
implicit := {e ∈ Eimplicit | Stage(e) < s ∨ (Stage(e) = s ∧ Sub Stage(e) < t)}.

Example 3.2.5 (continued). [Explaining an Equality]

When we call Explain(F (x),F (y)) on the equality graph shown in Figure 3.15,
we could use the implicit edge between the two nodes labeled with F (x) and F (y) as
path. The explanation E generated from this path would be the set E := {F (x) =
F (y)}. The equality F (x) = F (y) only holds because of congruence and is not con-
tained in Φ. We now need to �nd an explanation for this congruence by explaining
the equality of x and y. The explanation generated for the equality of x and y is
the set E′ := {x = y}. We replace the congruence in the original explanation E
and append the explanation for the congruence E′:

E := (E \ {F (x) = F (y)}) ∪ E′.

The resulting explanation is E := {x = y}. As all equalities in this explanation
are contained in Φ, this explanation can be used to generate an infeasible subset.

Another possible explanation for the equality of F (x) and F (y) can be found in
the equality graph with the path from F (x) to z, and from there to F (y). This path
only contains explicit edges and, therefore, all representing equalities are contained
in Φ. E := {F (x) = z, z = F (y)} is another valid explanation for the equality of
F (x) and F (y) to be used in an infeasible subset.

Explanations for a congruence can themselves contain equalities that only hold
because of congruence. We have to recursively explain these congruences. Because
any congruence must have originated only from the equalities in Φ, we are always
able to generate an explanation only containing equalities from Φ.



3.3. Algorithm 25

With the equality graph, all equalities between terms in the same equivalence
class can be explained. Often, more than one path between two nodes exists, so
there are di�erent ways to explain an equality and we are �exible as to how we
choose an explanation e.g. by labeling the edges with weights and using various
graph algorithms to �nd paths. We use this procedure to generate infeasible
subsets and lemmas with various heuristics. In Section 3.4 we elaborate on the
heuristics we use in the Explain operation.

3.3 Algorithm

The theory solver used in lazy SMT solving has to be able to receive new equal-
ities and inequalities, remove equalities and inequalities and to check the current
equalities and inequalities for consistency at any time. This means that we need
to de�ne the methods Add, Remove and Check. Theses methods are invoked by
the SAT solver when needed. Initially, the theory solver receives some constraints
through the Add method one by one and then has to check their consistency via
the Check method. If the Check method determines the constraints to be consis-
tent, the SAT solver can continue with solving the boolean skeleton. That means
adding further constraints or removing constraints with the Remove method, in
case it encounters a boolean con�ict. If the Check method determines the con-
straints to be inconsistent, it calculates and returns an infeasible subset. The SAT
solver adds this infeasible subset as clause to the original formula which introduces
a con�ict in the boolean skeleton. This forces the SAT solver to backtrack and
remove constraints via the Remove method. After that, it continues to solve the
boolean skeleton.

In the following, we present a simpli�ed version of the algorithm for the
Add,Remove and Check methods. The global variables AddedEqualities and
AddedInequalities represent the separate stacks for added equalities and inequal-
ities, the global variable UFCounter represents a counter for every uninterpreted
function instance that counts the number of occurrences of an instance in the
added equalities.

3.3.1 Adding Constraints

In this section, we present the procedure Add that is invoked, when the SAT solver
wants to give a newly assigned constraint to the theory solver. The Algorithm 3
receives one constraint at a time.

First, we distinguish between equalities and inequalities (Line 2). Inequali-
ties are collected on the stack AddedInequalities for remembering the order in
which they were added (Line 17). Adding an equality is more di�cult. Similar
to inequalities, we �rst push an equality on the separate stack AddedEqualities

(Line 3). Then, we add the representing explicit edge for the equality in the equal-
ity graph (Line 7), labeled with the current Stage obtained from the size of the
stack AddedEqualities (Line 4).

The new equality might force us to update our current representation of the
equivalence classes or further update the equality graph of the given equalities. This
happens either if we add an equality that uni�es two equivalence classes or if we
add an equality with at least one uninterpreted function instance that has not yet
occurred in the given equalities and is congruent to at least one other uninterpreted
function instance that already occurred in another added equality. In the �rst
case (Line 8), we unify the equivalence classes of the terms and document the
computation history by calling the Union operation on the computation graph
with the terms and the Stage as arguments (Line 9). In the second case, we �rst
have to detect whether an uninterpreted function instance in the added equality
has already occurred in another added equality. We use a separate counter for
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Algorithm 3 Adds a constraint to the set of constraints the theory solver has to
check
1: function Add(Constraint)
2: if IsEquality(Constraint) then
3: AddedEqualities.push(Constraint)
4: Stage ← AddedEqualities.Size()
5: Lht ← Constraint.LeftHandTerm

6: Rht ← Constraint.RightHandTerm

7: EqualityGraph.AddEdge(Lht, Rht, False, Stage)
8: if Not ComputationGraph.AreEquivalent(Lht,Rht) then
9: ComputationGraph.Union(Lht, Rht, Stage)

10: for all t in {Lht,Rht} do
11: if IsUF(t) then
12: UfCounter.Increase(t)
13: if UfCounter.Get(t) = 1 then
14: CalculateCongruenceForUF(t,Stage)

15: CalculateAllCongruence(Stage)
16: else
17: AddedInequalities.Push(Constraint)

every uninterpreted function instance to count how often an instance occurs in
the added equalities (Line 12). This is done within the variable UFCounter. If
an instance is added for the �rst time, having a count of one (Line 13), we have
to check all other occurring uninterpreted function instances of the same function
symbol in order to see whether a congruence between them and the new instance
holds from previously added equalities (Line 14, Algorithm 4).

If any of the previous operations joins at least two equivalence classes, we further
have to check for newly formed congruences (Line 15, Algorithm 5). Not only do
we calculate the congruence closure, but we also �nd every congruence that has
formed to complete the equality graph. New congruence can only originate from
the union of equivalence classes, because this is the only way for arguments of a
pair of uninterpreted function instances to become equal.

Finding congruences for newly added uninterpreted function instances

We start by iterating over all uninterpreted function instances that occur in Added-
Equalities of the same function symbol as UF (Lines 2-3). For each of these unin-
terpreted function instances, we check, whether congruence between them and UF

holds (Lines 5-7). If such a congruence is found, we can use the found instance
CongruentUF to �nd all other congruences with UF. Because CongruentUF was
added in an earlier Add call, its congruence is already calculated and represented
by implicit edges in the equality graph. We just have to add implicit edges be-
tween UF and all other nodes connected to CongruentUF as well as between UF

and CongruentUF (Lines 11-15). Every added implicit edge is labeled with the
current Stage. Because UF is newly added and has not yet occurred in another
added equality, it cannot yet be in the same equivalence class as CongruentUF
and the other instances it is congruent to. So we update the union-�nd structure
and the computation graph accordingly (Line 16).

Calculating congruence closure and �nding all congruences

To �nd all newly formed congruences, we �rst have to �nd every pair of equiva-
lence classes that were joined this Stage and insert them into a set PairsToCheck.
Through the computation graph we can �gure out, which equivalence classes were
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Algorithm 4 Finds all congruences for a newly added uninterpreted function
instance
1: function CalculateCongruenceForUF(UF,Stage)
2: for all subexpression t in equalities of AddedEqualities do
3: if t is function and t.Symbol = UF.Symbol then
4: Equal ← True
5: for all arguments (a,b) in t,UF at the same position do
6: if !ComputationGraph.AreEqual(a,b) then
7: Equal ← False

8: if Equal then
9: CongruentUF ← t

10: Break
11: if CongruentUF then
12: Edges ← EqualityGraph.OutgoingEdges(CongruentUF)
13: for all implicit edges (t,v) in Edges do
14: EqualityGraph.AddEdge(UF, v, True, Stage)

15: EqualityGraph.AddEdge(UF, CongruentUF, True, Stage)
16: ComputationGraph.Union(UF, CongruentUF, Stage)

joined this Stage as the corresponding nodes are labeled with this Stage (Line 3).
For every one of these equivalence classes, we can also �nd the previously disjoint
equivalence classes that were joined to form this equivalence class by �nding all
predecessors of the corresponding node in the computation graph (Line 5). Because
the computation graph does not document every exact Union operation we have
to insert every possible pair of equivalence classes represented by the predecessors
of a joined equivalence class into the set PairsToCheck (Line 7).

We compute every pair (A,B) of equivalence classes in PairsToCheck(Line 8).
For each equivalence class in this pair we collect all uninterpreted function in-
stances that have at least one argument from that equivalence class in separate
sets UFA, UFB (Lines 9-10). We now check for each pair of uninterpreted function
instances (a,b) ∈ UFA × UFB if congruence between a and b holds (Lines 11-12).
If a new congruence is found, we add an implicit edge to the equality graph la-
beled with the current Stage (Line 13). In case the congruence is between terms
that are not yet in the same equivalence class, we update the union-�nd struc-
ture and the computation graph accordingly (Lines 14-15). Through new found
congruence further equivalence classes might be joined, which might again lead to
more congruences. So, for these newly joined equivalence classes, we again insert
all possible pairs with other predecessors into the set PairsToCheck(Lines 16-19).

If the set PairsToCheck is completely processed, we know that we have found all
congruence introduced through the new equality, the union-�nd structure correctly
represents the congruence closure of all added equalities and the equality graph
contains all possible implicit edges.

3.3.2 Checking for Consistency

In this section, we present the procedure Check that is invoked, when the SAT
solver wants the theory solver to check the currently assigned constraints for con-
sistency. The Algorithm 6 returns True, if the constraints are consistent, or False
otherwise. As we update our representation of the congruence closure with
each Add operation, we can assume that the union-�nd structure correctly repre-
sents the congruence closure of the given equalities. Now, we can check all added
inequalities for consistency with the equalities by iterating over the inequalities
(Line 3), checking via the union-�nd structure whether their left hand and right
hand terms are in the same equivalence class (Line 6).
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Algorithm 5 Calculates congruence closure for the current Stage and �nds all
newly formed congruences

1: function CalculateAllCongruence(Stage)
2: PairsToCheck ← {}
3: EqClasses ← ComputationGraph.FindEqClasses(Stage)
4: for all EqClass in EqClasses do
5: FormerEqClasses ← ComputationGraph.GetPre(EqClass)
6: for all (A,B) where A,B in FormerEqClasses do
7: PairsToCheck ← PairsToCheck∪{(A,B)}
8: for all (A,B) in PairsToCheck do
9: UFA ← AllUFContainingArgumentFrom(A)
10: UFB ← AllUFContainingArgumentFrom(B)
11: for all (a,b) where a in UFA, b in UFB do
12: if areCongruent(a,b) then
13: EqualityGraph.AddEdge(a, b, True, Stage)
14: if Not ComputationGraph.AreEquivalent(a,b) then
15: ComputationGraph.Union(a, b, Stage)
16: EqClass ← ComputationGraph.GetNewEqClass()
17: FormerEqClasses ← ComputationGraph.GetPre(EqClass)
18: for all (A,B) where A,B ∈ FormerEqClasses

and (A,B) /∈ PairsToCheck do
19: PairsToCheck ← PairsToCheck∪{(A,B)}

Algorithm 6 Checks the current set of constraints for consistency

1: function Check
2: IsConsistent ← True
3: for Inequality in AddedInequalities do
4: Lht ← Inequality.LeftHandTerm

5: Rht ← Inequality.RightHandTerm

6: if ComputationGraph.AreEquivalent(Lht,Rht) then
7: IsConsistent ← False
8: Explanation ← EqualityGraph.Explain(Lht, Rht)
9: InfeasibleSubset ← Explanation ∪ {Inequality}
10: InfeasibleSubsets ← InfeasibleSubsets ∪ InfeasibleSubset

11: return IsConsistent

If we �nd an inequality, whose terms are in the same equivalence class, we have
found a con�ict and generate an infeasible subset to return to the SAT solver. We
do this by �nding an explanation for the equality of the left hand and right hand
terms of the inequality in the equality graph (Line 8). The inequality is appended
to the found explanation (Line 9) and we have generated an infeasible subset
for the con�ict. Because there might be multiple con�icts, we add the infeasible
subset to a global set of infeasible subsets InfeasibleSubsets (Line 10) and continue
to iterate over the remaining inequalities in order to look for more con�icts. If we
�nd at least one con�ict, the theory solver returns False to indicate that the given
constraints are not consistent. If we �nd no con�ict, it returns True to indicate
that the given constraints are consistent.

Again the problem arises that an uninterpreted function instance in an inequality
might not occur in the added equalities and its congruence to other uninterpreted
function instances is not calculated. In this case, we need to look for congruence
between the non occurring instance and all occurring instances in the equalities.
For every not occurring instance we again only look for one congruence. If a
congruence is found, the occurring instance serves as representative for the non
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occurring instance to check for equivalence between the terms of the inequality.
If no equivalence is found, we can continue with the next inequality. Otherwise,
we have to �nd every congruence between the non occurring instance and the
occurring instances. As we have already found congruence between a non occurring
instance and a representative for it, we can use this representative to �nd every
other congruence for the non occurring instance. We temporarily add implicit
edges between a node for the non occurring instance and every node that has an
implicit edge with the node of the representative, as we already calculated every
congruence for the representative. Now, we can explain the equality, as usual, with
the equality graph and, after that, remove the temporarily added edges.

Because the Check method is always called after the SAT solver has �nished
with a decision level, only constraints added on this decision level could lead to
a con�ict. This means that probably a small set of constraints lead to all arising
con�icts. Finding enough infeasible subsets so that the SAT solver has to reverse
all constraints from this decision level that lead to con�icts, is usually better
than calculating and returning infeasible subsets for all con�icts. Calculating an
infeasible subset for every con�ict, can be expensive and slows down the SAT
solver, as it has a lot more clauses to check. This is why we limit the number of
returned infeasible subsets.

3.3.3 Removing Constraints, Backtracking

In this section, we present the procedure Remove that is invoked when the SAT
solver wants to remove a previously added constraint from the theory solver. Algo-
rithm 7 removes one constraint at a time, in the reverse order they were previously
added.

Algorithm 7 Removes a constraint

1: function Remove(Constraint)
2: if IsEquality(Constraint) then
3: Stage ← AddedEqualities.Size()
4: Lht ← Constraint.LeftHandTerm

5: Rht ← Constraint.RightHandTerm

6: AddedEqualities.Pop()
7: for all t in {Lht,Rht} do
8: if IsUF(t) then
9: UfCounter.Decrease(t)

10: EqualityGraph.RemoveEdges(Stage)
11: ComputationGraph.Reverse(Stage)
12: else
13: AddedInequalities.Pop()

Again, we �rst distinguish between equalities and inequalities (Line 2). In-
equalities are just popped from the stack AddedInequalities (Line 13). The same
thing happens with equalities, they are popped from the stack AddedEqualities

(Line 6). Just before doing that, we get the Stage from the equality we are re-
moving to use it in backtracking (Line 3). We check for both the left hand and
right hand term of the equality whether they are uninterpreted function instances.
If so, we decrease the according counter by one (Lines 7-9). Then, we remove
all implicit and explicit edges in the equality graph that are labeled with Stage

and reverse the computation graph (Line 10-11). As explained in Section 3.2.2,
when we reverse the computation graph, it automatically reverses the integrated
union-�nd structure to the state before the removed equality was added.
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Occasionally SMT-RAT does not remove the constraint in the reverse order they
were added. This is possible, because the SAT solver backtracks and completes
a decision level before notifying the theory solver about any changes. It may
happen that the SAT solver makes almost the same assignments as before with
the exception of on assignment. In this case, SMT-RAT just noti�es the theory
solver about this change, without making redundant Remove and Add calls for
the other assignments. Another factor that might play into this is, that SMT-RAT
is organized in a tree like structure of modules and the theory solver is just one
such module with the SAT solver as parent. Other modules might be added with
the SAT solver as parent and might in�uence the behavior of the SAT solver.

If this happens, we do the following: We still just remove inequalities from their
stack, but have to expect higher processing cost. When an equality is removed,
but is not on top of the stack, we have to remove every equality above it �rst,
otherwise the computation graph cannot be kept consistent. We remember the
equalities that are removed from the top of the actual removed equality on a stack
ToReassert as well as the edges that were labeled with their corresponding Stage.
If the Remove method is called with an equality that has already been removed
and added to ToReassert, we just remove it from that stack.

In the next call of the Add or the Check method, the �rst thing we do, is add
these equalities from ToReassert again in the reverse order they were removed.
When we calculate the congruences, we can rely on previous calculations. We
can look up all implicit edges that were previously calculated for such an equality
and test, whether their representing congruence still holds. As we have not added
completely new equalities between the removing and re-adding of the equality, no
new congruence can have formed. The removing of an older equality might only
have invalidated some of the congruence.

3.4 Heuristics

Now, we have a closer look at how we generate infeasible subsets. There are at
least three properties we intuitively prefer in an infeasible subset.

Minimal: An infeasible subset is called minimal, if no proper subset exists that is
also an infeasible subset. Thus, a minimal infeasible subset does not contain
any redundant constraints.

Small cardinality: The smaller the cardinality of an infeasible subset is, the
more it reduces the boolean search space for the SAT solver.

Old: An infeasible subset containing old constraints that were assigned early in
the SAT solving process enables the SAT solver to backtrack further back.

An infeasible subset, that ful�lls any of the above mentioned properties, may help
to speed up the solving process but this is not guaranteed. By using heuristics to
generate infeasible subsets that come near to ful�ll at least one of these proper-
ties, we try to �nd out whether any of these properties are really desirable in an
infeasible subset. Ful�lling both the second and third property is not always pos-
sible, as the smallest infeasible subset may contain very young constraints whereas
the infeasible subsets only containing the possibly oldest constraints may be very
large. In the following, we will present two approaches to explain the equality of
two terms in the equality graph for generating an infeasible subset.

Approach with Dijkstra's algorithm In this approach, we assign a cost to
every edge in the equality graph depending on its Stage label and whether it is
implicit or explicit. We then use Dijkstra's algorithm to �nd the shortest path
between the nodes representing the two terms whose equality we want to explain.
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We calculate the cost assigned to an edge as follows: Every edge begins with a
cost of 1. We add two di�erent penalties, one for being an implicit edge and one
for being a young edge, representing a young equality. The penalty for implicit
edges is just a constant cost of 10. The penalty for the age of an edge is calculated
through its Stage label. We calculate the relative age of the edge by dividing its
Stage label by the Stage of the equality on top of the stack of equalities. This gives
us a value between 0 and 1. Edges with an age value near 0 represent equalities
that were added very early in the solving process and thereby are very old. Edges
with age values near 1 are the opposite and very young. We can choose to punish
young edges much more than old edges by exponentiating this age value. Then,
we multiply this value with a constant cost of 10 and receive the penalty for young
edges. These two penalties are now combined through a weighted mean. The
weighted mean allows us to choose, which penalty we want to have more in�uence
on the cost of an edge and thereby on the path Dijkstra's algorithm �nds. The
formula for calculating the cost of an edge is

cost = 1 + WeightedMean(i · 10,

(
sedge
scurrent

)e

· 10),

where i is a binary value, indicating whether the edge is implicit or not, sedge is
the Stage of the edges, scurrent is the Stage of the equality on top of the stack and
e is the exponent for the age value.

If we place more importance on small infeasible subsets, we might shift the
weighted mean to the penalty for implicit edges. This way, Dijkstra's algorithm
will more likely choose a path with few implicit edges. This can lead to infeasible
subsets with a small cardinality, because we know that we only have to add one
equality to the infeasible subset for every explicit edge. For every congruence
represented by an implicit edge, we have to add the whole explanation for the
congruence to the infeasible subset, which is at least one equality. We could
calculate the number of added equalities for every implicit edge and use that
number as assigned cost, but this would be very expensive, especially as the equality
graph is very dynamic and previously calculated numbers might not be accurate
anymore.

If we place more importance on using old equalities to explain an equality be-
tween two terms, we might shift the weighted mean to the penalty for young edges.
This way, Dijkstra's algorithm will more likely choose a path with older edges.

Example 3.4.1 (Approach with Dijkstra). Let {a = F (x),F (y) = c,x = y,a =
b,b = c} be equalities that were added in this order. Figure 3.16 shows the cor-
responding equality graph where the edges are labeled with their Stage. The Sub

Stage of the implicit edge between F (x) and F (y) is noted behind the dot after the
Stage.
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Figure 3.16: Equality graph for {a = F (x),F (y) = c,x = y,a = b,b = c}.
Explicit edges are shown as solid edge, implicit edges as dashed edges.

We now want to use the approach with Dijkstra's algorithm to explain the equal-
ity between a and c. First, we calculate the cost for every edge. In this example we
only consider the penalty for implicit edges. Figure 3.17 shows the corresponding
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equality graph where each edge is labeled with its assigned cost.
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c x y
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Figure 3.17: Equality graph for {a = F (x),F (y) = c,x = y,a = b,b = c}.
Explicit edges are shown as solid edge, implicit edges as dashed edges.

Now we can use Dijkstra's algorithm to �nd a path from a to c to explain their
equality. In this example, Dijkstra chooses the shortest path from a to b to c and
returns the explanation {a = b,b = c}.

With this approach of shifting the importance of small infeasible subsets to
old infeasible subsets, we are �exible in choosing the importance we contribute
to either of these two properties. It has to be noted, that, with this approach
of explaining equality between two terms, we cannot guarantee that a generated
infeasible subset is minimal.

Example 3.4.2 (Redundant equalities in explanation). Let {a = F (a),F (a) =
b,b = F (c),F (c) = c} be the set of added equalities. The equality graph for this set
of equalities with cost labels for every edge might look like this:

a F (a)

b

F (c) c
1

2 3

44

Figure 3.18: Equality graph for {a = F (a),F (a) = b,b = F (c),F (c) = c}.
Explicit edges are shown as solid edge, implicit edges as dashed edges.

If we want to generate an infeasible subset that needs an explanation for the
equality of F (a) and F (c), Dijkstra's algorithm would just use the implicit edge
between the nodes representing these terms. Because this edge represents a con-
gruence, we need to �nd an explanation for the equality of a and c. Because we are
not allowed to use the implicit edge which congruence we are explaining, Dijkstra's
algorithm will generate the explanation {a = F (a),F (a) = b,b = F (c),F (c) = c}.
This explanation also includes an explanation {F (a) = b,b = F (c)} for the equality
of F (a) and F (c). The explanation includes redundant equalities and therefor the
infeasible subset generated from this explanation is not minimal. The reason that
the explanation contains redundancies is, that the graph formed by all found paths
is not acyclic.

Approach with Kruskal In this second approach, we use the same approach
as Kruskal's algorithm for �nding a minimum spanning tree, to �nd a tree that
connects the nodes of the terms whose equality we want to explain with only the
oldest edges. We sort all edges of the according connected component by their
Stage and Sub Stage label and use a new union-�nd structure to track connected
components. Initially, every node is in its own set. We process the sorted edges,
beginning with the edge with the lowest Stage. For each edge, we check whether
the nodes it is connecting already are in the same set. If this is not the case, we add
the edge to a set TreeSet and unify the sets of the two nodes. This is done until
the nodes representing the terms of the equality we want to have an explanation
for are in the same set. Now, we can use a breadth �rst search for �nding a path
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from one node to the other, only using the edges from the set TreeSet. This way,
we are guaranteed to only use the oldest edges and, therefore, the oldest equalities
to explain the equality between the terms.

Explanations generated by this approach never contain redundant equalities and
infeasible subsets generated with this approach are always minimal. This approach
always �nds acyclic paths between two nodes, containing the oldest edges that
connect these nodes. If the path only contains explicit edges, the explanation
cannot contain any redundant equalities. If an implicit edges is used in a path to
explain the equality of two terms a and b, it is used because it is the oldest edge
that connects the two components containing a and b. The oldest explanation
for the congruence this implicit edges represents has to be slightly older than the
implicit edge itself. It can only contain equalities that are older than the implicit
edge. Because the implicit edge is the oldest edge that connects the components
of a and b, no equality in the explanation of the congruence can also connect these
components. This also holds for every other edge used in a path. The resulting
graph formed from all found paths in the equality graph is always an acyclic graph.
Therefore, no equality is explained multiple times and explanations do not contain
any redundant equalities.

Example 3.4.3 (Approach with Kruskal). Let {a = F (x),F (y) = c,x = y,a =
b,b = c} be equalities that were added in this order. Figure 3.19 shows the cor-
responding equality graph where the edges are labeled with their Stage. The Sub

Stage of the implicit edge between F (x) and F (y) is noted behind the dot after the
Stage.
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Figure 3.19: Equality graph for {a = F (x),F (y) = c,x = y,a = b,b = c}.
Explicit edges are shown as solid edge, implicit edges as dashed edges.

We now want to use the approach with Kruskal's algorithm to explain the equal-
ity between a and c. First, we use Kruskal's algorithm to �nd a tree with only the
oldest edges i.e. the edges with the lowest Stage. Figure 3.20 shows this tree for
the connected component of a and c.
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Figure 3.20: Tree found by Kruskal's algorithm

With a breadth-�rst-search we can �nd the only path from a to F (x) to F (y)
to c between a and c. Because this path contains an implicit edge between F (x)
and F (y) we explain the equality between x and y with the same steps. With this
approach we return the explanation {a = F (x),x = y,F (y) = c}.
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3.5 Theory Propagation

As already mentioned, the theory solver is also allowed to return lemmas to the
SAT solver. These lemmas are tautologies the theory solver derives from the
current set of constraints it has to check. They are used to propagate theory
knowledge to the SAT solver with the goal of speeding up the solving process.
This is usually done by deducing lemmas that are appended to the formula as unit
clauses. This way, we force the SAT solver to directly use the lemma to assign
further literals.

Example 3.5.1 (Simple Lemma). Let l1 : a = b and l2 : b = c be assigned
constraints. As the theory solver has knowledge about the underlying theory as
opposed to the SAT solver, it can make the deduction d : (a = b∧b = c)⇒ (a = c).
Appending this deduction to the original formula, now forces the SAT solver also
to assign the literal for a = c, as the literals for a = b and b = c are already
assigned.

Usually, we want to force the SAT solver to assign literals that are already
occurring in the original formula. So, one kind of lemma can be deduced just by
iterating over all constraints which literals have not yet been assigned. If the left
hand term and the right hand term of an equality or inequality are in the same
equivalence class, we can generate an explanation from the equality graph for this
equality. With the equalities in the explanation, we can generate an implication
for this equality and return it as lemma to the SAT solver. Now, the SAT solver
is forced to assign the literal for this equality to True. In the following, we will
call this lemma transitivity lemma.

Example 3.5.2 (Transitivity Lemma). Let {a = b, b = c} be added constraints
with {a, b, c} as their equivalence class and a = c a constraint that occurs in the
formula we want to solve but whose literal is not yet assigned. When testing the
terms of this constraint a = c for equivalence, we �nd that a and c are in the
same equivalence class. Their equality can be explained with the set of constraints
{a = b, b = c}. We can now append the formula (a = b ∧ b = c) ⇒ (a = c) and
have deducted a transitivity lemma.

Another type of lemmas can be derived from already added inequalities. While
iterating over the added inequalities to �nd a con�ict, we remember inequalities
that do not con�ict with the equalities. We map the pair of representatives of the
equivalence classes in which the terms of the inequality are in to this inequality.
Then, we can again iterate over all constraints whose literals are not yet assigned.
For each of these constraints we get the pair of representatives for the left hand
and right hand term and compare it to the remembered pairs of representatives
from the added inequalities. If we �nd a matching pair of representatives, we can
deduce that the left hand and right hand term of the constraint cannot be equal,
as there is an added inequality that separates their equivalence classes. For both
terms of this constraint, we can generate an explanation for an equality to either
of the terms of the added inequality. These explanations, together with the added
inequality, implicate the inequality of the terms of the constraint. Now, the SAT
solver is forced to assign the literal for this inequality to True. In the following,
we will call this lemma inequality propagation lemma.

Example 3.5.3 (Inequality Propagation Lemma). Let {a = b,c = d,a 6= c} be
added constraints with {a,b},{c,d} as their equivalence classes and b = d a con-
straint that occurs in the formula we want to solve but whose literal is not yet
assigned. When testing the terms of this constraint b = d for equivalence, we �nd
that b and d are in di�erent equivalence classes. Furthermore, we see that there is
an added inequality a 6= c separating their equivalence classes. With explanations
for the equality of a and b, the equality of c and d and the assigned inequality
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a 6= c, we can deduce the inequality b 6= d. We combine the respective explana-
tions {a = b} ∪ {c = d} ∪ {a 6= c} to explain the inequality b 6= d in a lemma
(a = b ∧ c = d) ∧ a 6= c⇒ (b 6= d). Now, this lemma is appended to the formula.

In some cases, it might also be bene�cial to deduce lemmas that implicate a
new constraint not yet occurring in the original formula. These lemmas are called
constructive lemmas. One deduction we could return as constructive lemma is the
explanation for a congruence between two uninterpreted function instances. We
can just add an implication from this explanation to the equality of the uninter-
preted function instances. As we often already have to explain congruence while
explaining the equality of two terms, this lemma comes cheap. In the following,
we will call this lemma congruence lemma.

Example 3.5.4 (Congruence Lemma). Let {a = b,F (a) = c,F (b) = d} be added
constraints. Some operation wants to have the equality between c and d explained.
This equality only holds because of the congruence between F (a) and F (b). While
generating this explanation, we have to explain this congruence with {a = b}. This
explanation now can be used to create a congruence lemma (a = b) ⇒ (F (a) =
F (b)) that is appended to the formula. It is possible, that F (a) = F (b) is an
equality that does not occur in the original formula. Therefore, we have added a
new equality to the formula and the lemma is a constructive lemma.

As with infeasible subsets, a bene�t from generating lemmas is not guaranteed.
If we would deduce all possible lemmas at once, we would transform this lazy SMT
solving approach to an eager SMT solving approach, which the SAT solver is not
necessarily optimized for. Lemmas are usually deduced from currently assigned
literals. This means, they can only advance the SAT solving process as long as the
literals used in the lemma are assigned to True. For example, this means we should
not return congruence lemmas while generating an infeasible subset to explain a
con�ict. Due to the infeasible subset, the SAT solver will backtrack and reverse
the assignment of some literals, very likely one used in the lemma. From that
moment on, the lemma is not used to propagate assignments and might never be
used again in the rest of the solving process. Therefore, we should return lemmas
only when no con�ict is found and the lemmas are actually used to propagate the
assignment of more literals.

We only generate lemmas on every n−th Check call that does not �nd a
con�ict and also limit the number of lemmas generated per such a Check call.
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Chapter 4

Conclusion

The goal of this thesis was to present a theory solver for the theory of equality logic
with uninterpreted functions which is very �exible in ways to generate infeasible
subsets.

4.1 Summary

First, we established a general background knowledge on the SAT and SMT prob-
lem and popular approaches to solve them. Then, we presented the theory of
equality logic with uninterpreted functions and what calculations are needed to
check a set of constraints from this logic for consistency. Next, we moved on to
the actual theory solver by explaining the used data structures and procedures
it provides. We presented two heuristic for generating infeasible subsets through
the equality graph. One is based on Dijkstra's algorithm for �nding the shortest
path and has several parameters for generating infeasible subsets with di�erent
properties, the other one is based on Kruskal's algorithm for �nding a minimal
spanning tree to �nd the oldest infeasible subset. Additionally, we presented three
kinds of lemmas we can generate in an attempt to speed up the solving process.
The presented theory solver ful�lls the three named requirements for being inte-
grated in lazy SMT solving: it is incremental, as it is able to receive equalities and
inequalities at any time, can generate infeasible subset in various ways and is able
to backtrack when equalities and inequalities are removed.

4.2 Experimental Results

In the following, we will show some experimental result. We applied our SMT
solver on the QG-classi�cation benchmark set provided by [SMT] that consists of
5262 examples to test and compare the di�erent heuristics of our theory solver
with various settings. For each EUF formula, the solver has 30 seconds to decide
whether it is satis�able or not. The following graphs all show the percentage
of formulas that could be solved within 30 seconds. The graphs only show the
percentage of formulas solved above 50%, otherwise, the di�erences between the
various results would be di�cult to distinguish.

First, we wanted to �nd out, what limit l of generated infeasible subsets per
Check call works best for both heuristics. In Figure 4.1 we see the results for the
approach with Kruskal's algorithm and various limits for the generated infeasible
subsets. It solves most EUF formulas within 30 seconds with a limit of 5 infeasible
subsets per Check call. We see worse performance with higher and lower limits
than 5.

In Figure 4.2 we see the results for the approach with Dijkstra's algorithm
and various limits for the generated infeasible subsets. We �xed the settings for
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Figure 4.1: Varying limit on generated infeasible subsets per Check, Kruskal

this heuristic to calculate the arithmetic mean between the penalties and used
an exponent of 1 for the penalty for young edges. It solves most EUF formulas
within 30 seconds with a limit of 1 infeasible subset per Check call. Right from
the beginning, the results di�er slightly for each limit. The higher the limit of
infeasible subsets this approach is allowed to generate per Check call, the worse
are its results.
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Figure 4.2: Varying limit on generated infeasible subsets per Check, Dijkstra

Next, we compared di�erent settings for heuristic with Dijkstra's algorithm. We
�xed the limit of infeasible subsets to one and varied the weighted mean, shifting
the weight more to either penalty. The variable w is the factor for the penalty
for implicit edges and (1 − w) is the factor for the penalty for young edges. The
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closer w is to 1, the more we shift to the penalty for implicit edges, the closer
it is to 0, the more we shift to the penalty for young edges. As we can see in
Figure 4.3, the results do not di�er much for a w between 0 and 0.5. For w higher
than 0.5, the performance worsens drastically. Using Dijkstra's algorithm to �nd
older explanations seems to work better than �nding smaller explanations.
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Figure 4.3: Comparing di�erent settings for Dijkstra

In Figure 4.4, we compare the best settings for both heuristics with a version
of the same theory solver that does not generate any infeasible subset. We see
that both heuristics perform very similar and slightly better, especially on bigger
problems.
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Figure 4.4: Comparing Kruskal and Dijkstra
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Then, we compared the e�ects of generating di�erent kinds of lemmas on the
solving process. For both approaches, we compared the performance of the heuris-
tic without generating lemmas (N), only with generating either transitivity lemmas
(T) or inequality propagation lemmas (I), transitivity lemmas and inequality prop-
agation lemmas together and at last both lemmas combined with the congruence
lemma (C).

In Figure 4.5 we see the results for the approach with Kruskal. Generating
lemmas decreased its performance, except for the inequality propagation lemma.
Especially the congruence lemma slowed down the solver so much, that we could
not include it in this �gure. We suspect that this slowdown is due to the amount
of lemmas that are generated. Further tests have to be conducted to con�rm this.
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Figure 4.5: Kruskal with lemmas

In Figure 4.6 we see the results for the approach with Dijkstra. Both, the
transitivity lemma and the inequality propagation lemma alone worsened the per-
formance of the solver. But, when they were combined, they solved smaller prob-
lems signi�cantly faster than without lemmas. Adding congruence lemmas did not
seem to have much of an e�ect.

Especially Figure 4.6 shows that the performance of the solver depends a lot
on the speci�c settings we choose. The theory solver we presented has a lot of
parameters and �nding good parameters is crucial for the performance.

At last, we compared the best performances of both heuristics, including lem-
mas, with the theory solver that does not generate infeasible subsets in Figure 4.7.
The approach with Kruskal improves the performance on bigger problems but
shows no di�erence for smaller problems. The approach with Dijkstra improves
the performance on smaller problems considerably but looses performance on big-
ger problems.
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Figure 4.6: Dijkstra with lemmas
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Figure 4.7: Best performances of Kruskal and Dijkstra

4.3 Future work

The presented theory solver has lots of options for optimizations. First, the cur-
rently implemented heuristics and lemmas have many settings that strongly in-
�uence the performance. As it is di�cult to �nd the right settings to achieve a
better performance, more tests with di�erent settings have to be conducted. The
equality graph is a very general data structure that allows many other heuristics
to generate infeasible subsets and lemmas with various graph algorithms. As we
have seen so far, heuristics that try to �nd older infeasible subsets seem to per-
form better in the solving process. An alternative to the equality graph could be
implemented as directed acyclic graph. This approach is presented in [NO05]and
allows a very fast generation of explanations for equalities, but is limited to the
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oldest explanations only. This paper also presents an elegant method to incremen-
tally calculate congruence closure but requires some preprocessing on the original
formula. There are also many other ways how we can try to speed up the solving
process with preprocessing. For example, we could perform eager SMT solving
approaches, named in the introduction, on small subsets of the original formula.
Symmetries in the original formula can be exploited as described in [DFMP11].
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