
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

EMBEDDING THE VIRTUAL SUBSTITUTION IN THE

MCSAT FRAMEWORK

Jasper Nalbach

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Aachen, 11th August, 2017

Abstract

Satis�ability modulo theories (SMT) is a technology for checking the satis�ability of logical

formulas over some theories. Recently the novel framework model-constructing satis�ability
calculus (mcSAT) was introduced showing promising results for solving formulas from the

theory of non-linear arithmetic in combination with the cylindrical algebraic decomposition
(CAD) method. This thesis proposes an embedding of the incomplete virtual substitution
(VS) method for checking the satis�ability of quanti�er-free non-linear arithmetic formulas in

the mcSAT framework.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

vii

Acknowledgements

I am grateful for the opportunity to work on this fruitful topic and for the insights given to me
into scienti�c work. Special thanks to Erika Ábrahám for supervising this thesis and for her time
to discuss arising issues. Also thanks to the additional examiner Jürgen Giesl.

Thanks to my family for encouraging and supporting me.

viii

Contents

1 Introduction 9

2 Preliminaries 11

2.1 Non-linear real arithmetic . 11
2.2 Model-constructing satis�ability calculus (mcSAT) 12
2.3 Virtual substitution . 13

3 Using virtual substitution for explanations for mcSAT 21

3.1 Elimination rules . 23
3.2 Explanation function . 34

4 Comparison 45

5 Future work 51

5.1 Enforcing conjunctions in nodes . 51
5.2 Determining constraints relevant to a con�ict . 51
5.3 Allowing square root expressions as input . 52
5.4 Allowing constraints obtained by di�erent elimination orders as input 52
5.5 Combination of the VS and the CAD for generating explanations 53

6 Conclusion 55

Bibliography 57

x Contents

Chapter 1

Introduction

Despite the hardness of the propositional satis�ability (SAT) problem, there has been intensive
research over the past decades resulting in reasonably fast SAT solvers. The most widespread
class are con�ict-driven clause-learning (CDCL) solvers, which build on the DPLL [DP60, DLL62]
framework. Furthermore, the problem statement has been extended for �rst-order logic, namely
satis�ability modulo theories (SMT) solving. These formulas are in most cases quanti�er-free, e.g.
they are Boolean combinations of constraints from some theories.

A successful technique for checking such formulas for satis�ability is the DPLL(T) framework,
which is a modular procedure switching between a SAT solver and one or more theory solvers. The
SAT solver is responsible for the satisfaction of the Boolean structure of the formula whereas the
theory solver is consulted to assure satisfaction also in the underlying theory. In this framework, the
theory solver checks a conjunction of theory constraints for consistency. In case of an inconsistent
input, it generates a theory lemma explaining the inconsistency.

Various methods for solving non-linear arithmetic have been implemented as theory solvers for
DPLL(T), namely the cylindrical algebraic decomposition (CAD) [Col75] and incomplete methods
such as interval constraint propagation [GGI+10, HR97] or the virtual substitution (VS) method
[Wei97, CA11, Cor16].

Lately, the model-constructing satis�ability calculus (mcSAT) [DMJ13] has been introduced
as an alternative approach to DPLL(T). Various decision procedures have been implemented for
mcSAT. For quanti�er-free linear real arithmetic, the Fourier-Motzkin variable elimination has
been implemented [DMJ13], and the implementation of the CAD method for solving quanti�er-
free non-linear real arithmetic shows promising results [JdM12].

In the following we embed the virtual substitution into the mcSAT framework for solving
quanti�er-free non-linear real arithmetic. In Chapter 2, a short introduction to the mcSAT frame-
work and the virtual substitution method is given. In Chapter 3, we present our embedding of the
virtual substitution method into the mcSAT framework. Then, we compare our approach with the
CAD in Chapter 4, and give some ideas for further improvements in Chapter 5.

10 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Non-linear real arithmetic

In the following let R denote the set of all real numbers and let N0 denote the set of all natural
numbers including zero. We de�ne the syntax of quanti�er-free non-linear real arithmetic formulas
as follows:

〈formula〉 ::= 〈constraint〉 | 〈formula〉 ∧ 〈formula〉 | ¬ 〈formula〉
〈constraint〉 ::= 〈term〉 〈op〉 〈term〉
〈op〉 ::= <| =

〈term〉 ::= x | c | 〈term〉 + 〈term〉 | 〈term〉 − 〈term〉 | 〈term〉 ∗ 〈term〉

where x ∈ Vars is a real-valued variable and c ∈ R. We use syntactic sugar such as the operators
>,≤,≥, 6= and logical connectives such as ∨,→. The semantics is de�ned as usual.

The terms are called polynomials. The set of all polynomials with coe�cients from R containing
variables x1, . . . ,xn ∈ Vars is denoted as R[x1, . . . ,xn]. A polynomial p is called univariate if
p ∈ R[x1] for some variable x1 ∈ Vars and is called multivariate if p ∈ R[x1, . . . ,xn] with n > 1.
A power product

∏n
i=1(xeii) where ei ∈ N0 is called a monomial. The degree of the variable xi in

the monomial M =
∏n
i=1(xeii), ei ∈ N0 is de�ned as degxi

(M) = ei whereas the total degree of the
monomial M is de�ned as deg(M) =

∑n
i=0 ei. The normal form of polynomial p ∈ R[x1, . . . ,xn] is

de�ned as the term
∑m
k=0 ak ∗Mk = p for some ak ∈ R and monomials Mk in variables x1, . . . ,xn.

The degree of a variable xi in p is de�ned as degxi
(p) = max{degxi

(Mk) | k = 1, . . . ,m}. The total
degree of p is de�ned as deg(p) = max{deg(Mk) | k = 1, . . . ,m}. A variable xxi occurs quadratically
in a polynomial p if degxi

(p) = 2. A polynomial p is called linear, if deg(p) ≤ 1, otherwise it is
called non-linear.

We de�ne the sign of a real value as the function sgn : R → {−1,0,1} where sgn(d) = −1 if
d < 0, sgn(d) = 0 if d = 0 and sgn(d) = 1 if d > 0.

We can rewrite each constraint p1 ∼ p2 to an equivalent constraint of the form p ∼ 0 where
p,p1,p2 ∈ R[x1, . . . ,xn] are multivariate polynomials and the relation symbol is ∼∈ {<,>,≤,≥,=
, 6=}. Also, we can reformulate a formula to not contain negations without introducing new atoms
by using De Morgan's law and replacing relation symbols by their respective counterparts.

We denote the set of all polynomials occurring in a formula ϕ with Pols(ϕ), the set of all
constraints in ϕ with Constraints(ϕ) and the set of all variables in ϕ with Vars(ϕ).

An assignment for a set Vars of real-valued variables is a possibly partial function α : Vars⇀ R
where⇀ denotes a partial function. If dom(α) = Vars then α is called a full assignment, otherwise

12 Chapter 2. Preliminaries

it is called a partial assignment. An assignment α′ : Vars⇀ R is called an extension of α : Vars⇀ R
if dom(α) ⊂ dom(α′) and α′(x) = α(x) for all x ∈ dom(α). We denote the set of all possible
assignments for a formula ϕ as Assigns(ϕ). Let α : Vars⇀ R be an assignment and V ⊆ dom(α)
be a set of variables, then the restriction of α to V is the assignment α ↓V : V → R.

Given a term t or a formula ϕ, we de�ne its interpretation under an assignment α as JtKα
respectively JϕKα as usual. For formulas we de�ne α |= ϕ as JϕKα ≡ true, that is ϕ is satis�ed
under α. If JϕKα ≡ false, we say ϕ is con�icting under α or inconsistent with α. If a satisfying
assignment for ϕ exists, we say ϕ is satis�able, otherwise it is unsatis�able. We will use the standard
substitution ϕ[t/x] replacing all free occurrences of x in ϕ by t. (Note that all occurrences are free
as we do not allow quanti�ers.)

Please note that in the following, we use |= to denote semantic consequence and ≡ to denote
logical equivalence of formulas. The notations =⇒ and ⇐⇒ are used in the mathematical sense
for derivation, whereas → is used as logical connective in formulas.

2.2 Model-constructing satis�ability calculus (mcSAT)

We give a brief introduction to the novel technique called model-constructing satis�ability calculus
(mcSAT). For more details, we refer to [DMJ13].

The mcSAT framework searches for satisfying solutions for the input formula. While the
satisfaction of the Boolean structure is assured in a similar way as in DPLL, in contrast to the
standard SMT approach, an assignment for the theory variables is constructed simultaneously
by "guessing" values for them. In case of a con�icting assignment, the theory solver needs to
explain the con�ict of a set of constraints under a given partial assignment to the theory variables.
Comparing to the DPLL(T) framework, the input is not only a set of constraints whose consistency
is to be checked but also an additional partial assignment. More precisely, the input to the theory
solver is a set of theory constrains in variables x1, . . . ,xn,y and an assignment α of values to
x1, . . . ,xn so that there exists no extension of α for y that satis�es all input constraints.

Explanations for theory con�icts Assume that the procedure has already assigned the vari-
ables x1, . . . ,xn ∈ Vars to real values from R. Let the assignment be denoted as α : {x1, . . . ,xn} →
R. Now assume the procedure cannot �nd a theory value for a variable y that is consistent with a
set D of constraints. Formally we have

α 6|= ∃y.
∧
l∈D

l

Then D is called a set of con�icting constraints under the assignment α. We de�ne

A ≡
∧
l∈D

l

as the conjunction of the con�icting constraints.
D is called minimal if no element can be removed from D without breaking the con�ict, thus

each constraint is part of the reason for the con�ict. Formally, D is minimal if

α |= ∃y.
∧

l∈D\{c}

l for all c ∈ D

Each explanation T needs to be valid and needs to exclude the current assignment, i.e. it
must hold that A ∧ T →

∨
i=1,...,n xi 6= α(xi). Furthermore, mcSAT requires all constraints in

2.3. Virtual substitution 13

an explanation to be from a �nite set called �nite basis B. Otherwise, the termination of the
procedure is not guaranteed.

De�nition 2.1 (Explanation). Assume a (possibly minimal) set of con�icting constraints D con-
taining variables x1, . . . ,xn,y and an assignment α : x1, . . . ,xn → R so that for each extension α′

of α for y, α′ is con�icting with A ≡
∧
l∈D l. Then explain(A,α) is a theory lemma T so that

� |= T ,

� T is of the form A→ ϕ for some formula ϕ where α |= ¬ϕ and

� l ∈ B for all constraints l in T .

Note that there are explanation functions that do not require a minimal set of con�icting
constraints.

2.3 Virtual substitution

Virtual substitution (VS) [Wei97] is a quanti�er-elimination procedure for linear and non-linear
arithmetic formulas. It can be applied to arbitrary formulas with existential and universal quanti-
�ers, but originally can only eliminate variables that appear at most quadratically in the formula.
During the elimination of a variable, the degree of some other variables may be increased so that
even those variables which appear at most quadratically in the input formula cannot be always
eliminated. Despite this restriction, the VS method works e�ciently for a number of examples.

2.3.1 Construction of test candidates

Partition into sign-invariant regions

A region in the Euclidean space is de�ned as follows:

De�nition 2.2 (Region). A region is a subset A ⊆ Rn of Rn for some n ∈ N that is open,
connected and non-empty.

Given a polynomial p and Assigns(p) as the set of possible assignments of variables in p, we
partition the solution space into regions as described in the following. Thereby we assume a total
order on the theory variables x1, . . . ,xn and view assignments also as values (α(x1), . . . ,α(xn)) in
Rn.

De�nition 2.3 (Sign-invariant region for a polynomial). A region A ⊆ Rn is called sign-invariant
for a polynomial p ∈ R[x1, . . . ,xn], if for all α1, α2 ∈ A it holds that sgn(JpKα1) = sgn(JpKα2).

In a sign-invariant region of a polynomial, the polynomial is either greater than, equal to or
smaller than zero for all values in the region. Thus, the value of p ∼ 0 where ∼∈ {<,>,≤,≥,=, 6=}
does not change in a sign invariant region regardless of the relation ∼.

This can be extended to a set of polynomials: Let Pols(ϕ) be the set of all polynomials in the
formula ϕ, we can intersect the sign invariant regions of all p ∈ Pols(ϕ):

De�nition 2.4 (Sign-invariant region for a formula). A region A ⊆ Rn is called sign-invariant for
a formula ϕ containing variables x1, . . . ,xn, if A is sign-invariant for all p ∈ Pols(ϕ).

14 Chapter 2. Preliminaries

Also, the value of ϕ does not change in a sign-invariant region for ϕ. As a consequence, it
is su�cient to check one point from each sign-invariant region of ϕ to check the satis�ability of
ϕ. As we can decompose the Euclidean space into a �nite set of sign-invariant regions for each
quanti�er-free real arithmetic formula, this leads to the main idea of the virtual substitution: To
eliminate a single variable, we generate a �nite set of sample points (test candidates) and plug
them into the formula (substitution).

Sample points for univariate formulas

First, we concentrate on the case of formulas where a single variable x occurs that we want to
eliminate.

Given a polynomial p 6= 0 (the other case is trivial) in such a formula, recall that in a sign-
invariant region for p, the polynomial p is either invariantly positive, zero or negative. This means,
that the sign-invariant regions of p are the zeros ξ0, . . . , ξn of p and the intervals between these
zeros and on the left (right) of the smallest (largest) zero, in general:

(−∞, ξ0), [ξ0, ξ0], (ξ0, ξ1), [ξ1, ξ1], . . . , [ξn, ξn], (ξn,∞)

Since we only want to consider one sample point per region, we represent each sign-invariant
region by its leftmost point. For closed intervals, this is straight forward. For left-open intervals,
we either take a su�ciently small value −∞ or a value in�nitesimally close to the left bound d
represented as d + ε where ε > 0 is an in�nitesimal value. For the polynomial p we get thus the
sample points:

−∞, ξ0, ξ0 + ε, ξ1, . . . , ξn, ξn + ε

For the open intervals, we could also search for suitable values to avoid the use of −∞ and ε.
However, this is too expensive and not possible for the multivariate case (which we will see later).

When looking at a formula ϕ, we proceed similarly as above but based on the zeros of all
polynomials p ∈ Pols(ϕ). I.e. we collect as sample points −∞ and the values ξ and ξ + ε for any
zero ξ of any polynomial p ∈ Pols(ϕ). Intuitively, the resulting sample points for ϕ are the points
where a polynomial constraint p ∼ 0 ∈ Constraints(ϕ) changes its truth value.

Because the sample points cover all sign-invariant regions for ϕ, it holds that

∃x.ϕ ≡
∨

r∈{−∞,ξ0,ξ0+ε,ξ1,...,ξn,ξn+ε}

ϕ[r/x]

Sample points for multivariate formulas

The idea from the univariate case can be generalized to multivariate polynomials in n variables to
obtain an equisatis�able formula in n − 1 variables. Given a variable x we want to eliminate, we
construct a set of test candidates similar to the sample points from the univariate case.

The main di�erence between the sample points from above and the test candidates is that the
zeros of the polynomials may be symbolic and depend on the remaining variables. Consequently,
the order of the zeros is unknown and these zeros may only exist under certain side conditions.

We circumvent this by making use of −∞ and ε instead of concrete values as representatives
for the tested intervals. Moreover, we encode the given side conditions and the given sample points
using equivalent symbolic expressions.

We de�ne symbolic expressions for zeros of a formula in a variable x only for formulas that
are quadratic in x, based on the solution equation for quadratic polynomial equations. Moreover,

2.3. Virtual substitution 15

no solution equations for zeros in cases with a degree higher than 4 are known. This causes the
restriction of this procedure, though extensions of VS to arbitrary polynomial degrees exist.

There may be doubts if we still cover all relevant sign-invariant regions to prove satis�ability
since the existence and ordering of the zeros is not known. However, if a zero does not exist,
the corresponding sign-invariant regions do not exist. Moreover, the leftmost points of the re-
sulting intervals of the intersection are the same no matter in which order they occur. Thus, the
argumentation from the univariate case is still valid for the multivariate case.

The symbolic zeros are expressed as square root expressions as follows:

De�nition 2.5 (Square root expression). A square root expression has the form

p+ q
√
r

s

where p,q,r,s are polynomials.

The zeros of a polynomial are given as:

De�nition 2.6 (Zeros of a polynomial and their side conditions). Given a quadratic equation
p = p1x

2 + p2x+ p3 = 0 where p1,p2,p3 are polynomials not containing x, if p depends on x, i.e.,
if p1 6= 0 ∨ p2 6= 0, then the solutions of p = 0 for x are:

x0 = −p3
p2
, if p1 = 0 ∧ p2 6= 0

x1 =
−p2 +

√
p22 − 4p1p3

2p1
, if p1 6= 0 ∧ p22 − 4p1p3 ≥ 0

x2 =
−p2 −

√
p22 − 4p1p3

2p1
, if p1 6= 0 ∧ p22 − 4p1p3 ≥ 0

The set of symbolic zeros of p is de�ned as

Zeros(x,p) = {x0, x1, x2}

The side condition of a zero ξ ∈ Zeros(x,p) is de�ned as

sc(ξ) =

{
p1 = 0 ∧ p2 6= 0 if ξ = x0
p1 6= 0 ∧ p22 − 4p1p3 ≥ 0 if ξ = x1 or ξ = x2

If p1 = 0 and p2 = 0, then any real value yields the same sign for p, thus we can take a single
arbitrary value for x to cover this case.

As one can see, all zeros are square root expressions. This allows the de�nition of the set of
representatives of all sign-invariant regions using square root expressions, ε and −∞:

De�nition 2.7 (Representatives and their side conditions). The set of representatives for a vari-
able x occurring at most quadratically in a constraint c of the form p ∼ 0 where ∼∈ {<,>,≤,≥
,=, 6=} is de�ned as

rs(x, c) = {−∞} ∪ Zeros(x,p) ∪ {ξ + ε | ξ ∈ Zeros(x,p)}

The set of representatives of all sign-invariant regions for a variable x occurring at most quadrat-
ically in a formula ϕ is de�ned as

rs(x, ϕ) =
⋃

c∈Constraints(ϕ)

rs(x,c)

16 Chapter 2. Preliminaries

The side condition of a representative r is de�ned as

sc(r) =

 sc(r′) if r = r′ + ε
sc(r) if r is a zero
true if r = −∞

where r′ does not contain ε.

At this point, we can make an observation: Since we are only interested in satisfying assignments
for a given constraint p ∼ 0, we only need to consider sign-invariant regions that are solutions of
a constraint. This means that based on the relation symbol ∼ in p ∼ 0, some test candidates
representing sign-invariant regions that cannot contain a solution can be excluded. Thus it is
su�cient to choose the test candidates from rs(x, p ∼ 0) as follows:

� For ∼∈ {<,>, 6=}, we can ignore all zeros and take only the open intervals −∞, ξ0+ε, . . . , ξn+
ε.

� For ∼∈ {=}, we can ignore the intervals between the zeros and take only the zeros ξ0, . . . , ξn
and −∞ for the case that all values are solutions.

� For ∼∈ {≤,≥}, we know that if the constraint p ∼ 0 is satis�ed between two zeros, then it
is also satis�ed at a zero. Thus we take only the zeros ξ0, . . . , ξn and −∞.

We obtain a general de�nition for the set of test candidates:

De�nition 2.8 (Test candidates). The set of test candidates for a variable x in a constraint of
the form p ∼ 0 where ∼∈ {<,>,≤,≥,=, 6=} is de�ned as

tcs(x, p ∼ 0) =

{
{−∞} ∪ Zeros(x, p) ∼∈ {≤,≥,=}
{−∞} ∪ {ξ + ε | ξ ∈ Zeros(x,p)} ∼∈ {<,>, 6=}

The set of test candidates for a variable x occurring at most quadratically in a formula ϕ is
de�ned as

tcs(x, ϕ) =
⋃

c∈Constraints(ϕ)

tcs(x,c)

We formulate our observation which is proven in [Wei97]. In the following theorem, we make
use of the usual semantics for division, square root and non-standard reals including in�nitesimals
and in�nity:

Theorem 2.1. Given some r ∈ rs(x,ϕ)\tcs(x,ϕ) and an α : Vars(ϕ)\{x} → R such that ϕ[α(r)/x]
is satis�able, then there exists some t ∈ tcs(x,ϕ) such that ϕ[α(t)/x] is satis�able.

Thus, given a formula ϕ containing a variable x at most quadratically is satis�able (valid) if
and only if for one (each) test candidate t ∈ tcs(x, ϕ) its side condition sc(t) holds and given x = t,
ϕ is satis�able.

2.3.2 Virtual substitution

To eliminate a variable x in a formula ϕ, all occurrences of x in ϕ have to be substituted by its test
candidates. However, the generated test candidates contain expressions that are not part of our
theory and thus, naive replacement would lead to a formula which cannot be further evaluated.

2.3. Virtual substitution 17

Let x be a variable that occurs at most quadratically in a constraint c and given a test candidate
t, virtual substitution de�nes rules to create an equisatis�able formula ϕ′ ∧ sc(t) to c ∧ ”x = t”
which does not contain x and does not add any new variables. Such a formula ϕ′ is denoted as

c[t//x]

We de�ne ϕ[t//x] for a formula ϕ analogously, where we replace each constraint c in ϕ by
c[t//x].

The choice of the rule used to compute c[t//x] depends on the relation symbol used in c and
the form of t:

� −∞

� contains ε

� square root expression p+q
√
r

s with r = 1 (fractions)

� square root expression p+q
√
r

s with r 6= 1.

The substitution rules are given in [Wei97] and ful�ll the following requirement:

Theorem 2.2 (Virtual substitution). Let ϕ be a formula, x ∈ Vars(ϕ) appears at most quadrati-
cally in ϕ and t ∈ rs(x,ϕ). Then it is valid that Vars(ϕ[t//x] ∧ sc(t)) ⊆ Vars(ϕ) \ {x} and

α |= ϕ[t//x] ∧ sc(t) ⇐⇒ α |= ϕ[α(t)/x] ∧ sc(t)

for all α : Vars(ϕ)→ R.

2.3.3 Quanti�er elimination procedure

To eliminate a variable, we use the following theorem:

Theorem 2.3 (Variable elimination). Let ϕ be a quanti�er-free formula in which x occurs at most
quadratically, then:

∃x.ϕ ≡
∨

t∈tcs(x,ϕ)

(ϕ[t//x] ∧ sc(t))

Universally quanti�ed variables can be eliminated similarly.
The complexity of the resulting formula can be estimated as follows:

Theorem 2.4 (Complexity). Let deg(p) denote total degree of a polynomial p and for a formula
ϕ let D(ϕ) = max(1,max{deg(p) | p ∈ Pols(ϕ)}). Let at(ϕ) denote the number of constraints in
ϕ.

Assume a formula ϕ and a variable x which occurs at most quadratically in ϕ. Let ϕ′ be the
formula that results from the application of Theorem 2.3 to eliminate x in ϕ. Then

D(ϕ′) ≤6D(ϕ)− 8 for D(ϕ) ≥ 2

at(ϕ′) ≤16at(ϕ) + 63at(ϕ)2 for D(ϕ) = 1

If x occurs only linearly in ϕ, the bounds can be improved:

D(ϕ′) ≤2D(ϕ)− 1

at(ϕ′) ≤7at(ϕ) + 6at(ϕ)2

18 Chapter 2. Preliminaries

By repeatedly applying Theorem 2.3, all variables that ful�ll the requirement can be eliminated.
Note that due to Theorem 2.4, when eliminating a variable, the degree of the remaining variables
may be increased. Thus, the applicability of the procedure to an example depends on the structure
of the formula, among others on the ordering of the eliminated variables.

Given the number of added constraints in Theorem 2.4, the overall complexity of eliminating
multiple variables is bounded from above by a single exponential bound in the number of quanti�ers.

2.3.4 Search tree

We visualize the virtual substitution using a search tree:

De�nition 2.9 (Virtual substitution tree). Given a quanti�er-free formula ϕ containing vari-
ables x1, . . . , xn and w.l.o.g. we assume the elimination order x1 < x2 < · · · < xn, the virtual
substitution tree T (ϕ, x1, . . . , xn) is generated as follows:

� The root node contains the input formula ϕ.

� If ϕ /∈ {true, false}, for each test candidate t ∈ tcs(x1, ϕ) a child node is generated. Each
child node for a test candidate t contains the subtree T (ϕ[t//x1] ∧ sc(t), x2, . . . , xn).

A formula ϕ with variables x1, . . . , xn is satis�able if and only if a leaf node of T (ϕ, x1, . . . , xn)
contains the formula true.

Example 2.1. Let ϕ be de�ned as

ϕ ≡ (x− 2)2 + (y − 2)2 − 1 < 0︸ ︷︷ ︸
c1

∧x− y = 0︸ ︷︷ ︸
c2

The gray line in Figure 2.1 denotes the solutions for this problem, whereas the virtual substitution
tree is shown in Figure 2.2.

x

y

c1

c2

Figure 2.1: Satis�able regions

2.3. Virtual substitution 19

ϕ ≡ (x− 2)2 + (y − 2)2 − 1 < 0︸ ︷︷ ︸
c1

∧x− y = 0︸ ︷︷ ︸
c2

y

t0 = −∞
t1 =

−
√

1− (x− 2)2 + 2 + ε
if 1 − (x − 2)2 ≥ 0

t2 =
√

1− (x− 2)2 +2+ε
if 1 − (x − 2)2 ≥ 0

t3 = x

c1 c1 c2

ϕ[−∞//y] ≡ false ϕ[t1//y] ≡ false ϕ[t2//y] ≡ false
ϕ[x//y] ≡ 2(x− 2)2 − 1 < 0︸ ︷︷ ︸

c′1

x

t′0 = −∞ t′1 = 2−
√
2
2 + ε t′2 = 2 +

√
2
2 + ε

c′1 c′1

false true false

Figure 2.2: Virtual substitution tree

20 Chapter 2. Preliminaries

Chapter 3

Using virtual substitution for

explanations for mcSAT

To integrate the virtual substitution method into the mcSAT framework, we have to provide
an explanation function according to De�nition 2.1. Given the conjunction of the con�icting
constraints A and the current (partial) assignment α as input, it is known that ∃y.A is con�icting
with α.

The �rst step is to eliminate the only unassigned variable y in A using Theorem 2.3. At this
point, the lemma

A→
∨

t∈tcs(y,A)

(A[t//y] ∧ sc(t))

could already be returned as an explanation lemma, since it is a tautology based on the correctness
of the virtual substitution method. However, this does not only explain the current con�ict, but is
a general condition for the existence of a value for y satisfying A. In theory, a general explanation
excludes bigger regions, but in practice, it may be desirable to generate an explanation that
is speci�c to the current assignment in order to obtain a formula that is probably shorter and
computationally easier to be used by the framework, e.g. for assigning values to theory variables.

Instead of eliminating the assigned variables x1, . . . , xn from A by substituting all test candi-
dates for each variable, which could also be used to generate an explanation but too expensive, we
aim for the following: We �rst use the VS to eliminate y from the input formula, which gives us
a tree consisting of a root node (representing the input formula) and k children of the root (the
ith child node representing ϕ[ti//y] where ti is the ith test candidate for y). For each of these
child nodes, instead of computing the complete VS tree below it, we compute just a single (full
or partial) path rooted in it that represents the current assignment α. Finally, we de�ne a logical
description of the paths in this partial VS tree to replace the right-hand side of the implication
above by a formula that is more speci�c to α. A schematic illustration of such a tree is given
in Figure 3.1. This idea has something in common with the generation of explanations via the
CAD method as proposed in [JdM12], as it also describes a sign-invariant region where the current
assignment lays in.

The procedure can be sketched as follows: Because y is not in the domain dom(α) of α, we
substitute each test candidate t1, . . . ,tk for y in ϕ. For each of the resulting child nodes corre-
sponding to ϕi,0 ≡ ϕ[ti//y] of the root where i = 1, . . . ,k, we only substitute the test candidates
that represent the current assignment α, as long as the virtual substitution is feasible. If we could
de�ne a formula ψi for each of those paths, we could then state in our explanation, that each

22 Chapter 3. Using virtual substitution for explanations for mcSAT

ϕ

y

t0,0 t1,0 . . . tk,0

ϕ0,0 ≡ ϕ[t0,0//y] ϕ[t1,0//y] ϕk,0 ≡ ϕ[tk,0//y]

x1

−∞ t0,1 ...

ϕ0,1 ≡ ϕ0,0[t0,1//x1]

...

ϕ0,n−1

xn

−∞ t0,n ...

ϕ0,n

...
x1 x1

−∞ tk,1 ...

ϕk,1 ≡ ϕk,0[tk,1//x1]

...

ϕk,n−1

xn

−∞ tk,n ...

ϕk,n

Figure 3.1: Schematic illustration of a partial virtual substitution tree

of those path descriptions implies the formula ϕi,si in the leaf node of the corresponding path.
Moreover, such a description would allow us to break the procedure at any point, so that we can
choose any grade between the general variant and the specialization to the con�ict.

To do so, we need to tackle some challenges: First, during the generation of the virtual sub-
stitution tree, a representing test candidate tj,i for an assignment α(xi) may not be in the set of
generated test candidates tcs(x,ϕj,i−1), since mcSAT assigns theory variables independently from
our procedure. Thus we need to consider the whole set of all representatives rs(x,ϕj,i−1). Second,
the choice of such representatives is not unique as the representatives are symbolic and may lay on
each other. Third, de�ning the generated path is not trivial since the regions represented by a test
candidate are not cylindrically ordered. As a consequence, some more e�ort is needed to obtain a
formula de�ning a sign-invariant region.

After those problems are solved, we can give an explanation lemma of the form

A→
∨

i=1,...,k

(ψi → ϕi,si)

We �rst justify our procedure by giving theorems analogous to Theorem 2.3 that plug in a single
representative and use these results afterwards to give a description of our explanation function.

3.1. Elimination rules 23

Example 3.1. We consider the formula ϕ and its virtual substitution tree from Example 2.1 again.

Let the partial assignment α be given as α(x) = 3. Then, no extension of α for y exists
without making the formula con�icting. For demonstration purposes we omit computing a minimal
con�icting subset of the constraints.

To eliminate y, we substitute each test candidate for y. For each of the resulting child nodes
of the root, we only substitute one test candidate that represents the current assignment. In the

case of the rightmost subtree, we have that α(x) = 3 > 2 +
√
2
2 and therefore we substitute only

t′2 = 2 +
√
2
2 + ε for the variable x, as shown in Figure 3.2.

ϕ ≡ (x− 2)2 + (y − 2)2 − 1 < 0︸ ︷︷ ︸
c1

∧x− y = 0︸ ︷︷ ︸
c2

y

t0 = −∞
t1 =

−
√

1− (x− 2)2 + 2 + ε
if 1 − (x − 2)2 ≥ 0

t2 =
√

1− (x− 2)2 +2+ε
if 1 − (x − 2)2 ≥ 0

t3 = x

c1 c1 c2

ϕ[−∞//y] ≡ false ϕ[t1//y] ≡ false ϕ[t2//y] ≡ false
ϕ[x//y] ≡ 2(x− 2)2 − 1 < 0︸ ︷︷ ︸

c′1

x

t′0 = −∞ t′1 = 2−
√
2
2 + ε t′2 = 2 +

√
2
2 + ε

c′1 c′1

false

Figure 3.2: Partial virtual substitution tree

3.1 Elimination rules

Our goal is it to substitute for each variable xi, i = 1, . . . ,n only one representative for α(xi).
First, we need to determine this representative (as described in Section 3.1.1), then we see the
relation to the pure quanti�er elimination approach (in Section 3.1.2) and then we deduce the
desired statements (see Section 3.1.3).

3.1.1 Determining the representative

Given a quanti�er-free formula ϕ and a complete assignment α : Vars(ϕ) → R, we need to deter-
mine a representative of the sign-invariant region in the virtual substitution tree for ϕ where the

24 Chapter 3. Using virtual substitution for explanations for mcSAT

current assignment α(x) for a variable x lays in. To do so, we order all zeros occurring in ϕ under
the current assignment:

De�nition 3.1 (Order of zeros under an assignment). Given a quanti�er-free formula ϕ, a com-
plete assignment α : Vars(ϕ)→ R and a variable x ∈ Vars(ϕ) which appears at most quadratically
in ϕ.

Let Zeros(x,ϕ) = ∪p∈Pols(ϕ)Zeros(x,p) be the set of all symbolic zeros of all polynomials of ϕ
in x (see De�nition 2.6 for the de�nition of Zeros(x,p)). Furthermore, we de�ne

Zerosval(x,ϕ,α) = {ξ ∈ Zeros(x,ϕ) | α |= sc(ξ)} = {ξ1, . . . , ξm}

as the set of the zeros with valid side conditions under α and analogously

Zerosinval(x,ϕ,α) = {ξ ∈ Zeros(x,ϕ) | α 6|= sc(ξ)}

as the set of the zeros with invalid side conditions under α.
If Zerosval(x,ϕ,α) 6= ∅, we assume w.l.o.g. the order as one of the following cases:

α(x) < Jξ1Kα ∼1 Jξ2Kα ∼2 · · · ∼m−1 JξmKα (3.1)

Jξ1Kα ∼1 Jξ2Kα ∼2 · · · ∼l−1 JξlKα ∼l α(x) < Jξl+1Kα ∼l+1 · · · ∼m−1 JξmKα (3.2)

Jξ1Kα ∼1 Jξ2Kα ∼2 · · · ∼m−1 JξmKα ∼m α(x) (3.3)

where ∼i∈ {<,=} for all i = 1, . . . ,m.

In the �rst case, the sign-invariant region of α(x) is the open interval (−∞, ξ1). In the second
and third cases, ξl respectively ξm is a left bound of the desired region. If ∼l is =, then it is a closed
point interval, otherwise it is an open interval. More precisely, the set of possible representatives
for an assignment is de�ned as follows:

De�nition 3.2 (Representative of an assignment). Given a quanti�er-free formula ϕ, a variable
x which appears at most quadratically in ϕ and a complete assignment α ∈ Assigns(ϕ). Let
Zerosval(x,ϕ,α) be the set of all zeros of polynomials occurring in ϕ with valid side condition under
α. A representative of the assignment α(x) in x is given as

t ∈ Repr(x, ϕ, α) ⇐⇒ t =


−∞ if α(x) < JξKα for all ξ ∈ Zerosval(x,ϕ,α)
ξ if α(x) = JξKα for ξ ∈ Zerosval(x,ϕ,α)
ξ + ε if JξKα < α(x) for ξ ∈ Zerosval(x,ϕ,α) and there exists no

ξ′ ∈ Zerosval(x,ϕ,α) with JξKα < Jξ′Kα ≤ α(x)

Note that the choice of the representative is not unique. We will see that it does not matter
which one is picked. Furthermore, the ξl (2nd case) respectively ξm (3rd case) from De�nition 3.1
are contained in Repr(x, ϕ, α), either of the form ξ or of the form ξ + ε.

We justify that for each assignment such a representative is found and that it lays indeed in
the same sign-invariant region.

Theorem 3.1. Let ϕ be a quanti�er-free formula and let x ∈ Vars(ϕ) be a variable which occurs
at most quadratically in ϕ.

Given an assignment β : Vars(ϕ) \ {x} → R and extensions α,α′ : Vars(ϕ)→ R of β, then

Repr(x, ϕ, α) = Repr(x, ϕ, α′) =⇒ sgn(JpKα) = sgn(JpKα
′
)

3.1. Elimination rules 25

for all p ∈ Pols(ϕ).

Let α : Vars(ϕ) → R be an assignment. For each value α(x) for a variable x there exists such
a representative t ∈ Repr(x, ϕ, α) ⊆ rs(x, ϕ).

Notably, given an assignment α : Vars(ϕ)→ R, then

t ∈ Repr(x,ϕ,α) and α |= ϕ ⇐⇒ α |= ∃x.sc(t) ∧ x = α(t) ∧ ϕ

Proof. The correctness of the �rst two statements follows directly from the correctness of the
virtual substitution.

To prove the third statement, we de�ne α̂ : Vars(ϕ)→ R so that

α̂(y) =

{
α(x) x 6= y
α(t) x = y

By comparing the cases, it can be seen that t ∈ Repr(x,ϕ,α) ⇐⇒ t ∈ Repr(x,ϕ,α̂). Finally, the
third statement can be proven as follows:

t ∈ Repr(x,ϕ,α) and α |= ϕ

⇐⇒ t ∈ Repr(x,ϕ,α̂) and α̂ |= ϕ

⇐⇒ α̂ |= sc(t) ∧ x = α(t) and α̂ |= ϕ

⇐⇒ α |= ∃x.sc(t) ∧ x = α(t) ∧ ϕ

3.1.2 Pure quanti�er elimination revisited

The usual use case for virtual substitution is to eliminate a variable from a formula as given in
Theorem 2.3. To show the dualities between this theorem and our extensions, we sketch how this
theorem is justi�ed.

Given a quanti�er-free formula ϕ, we have that

∃x.ϕ ≡
∨

t∈rs(x,ϕ)

(ψx,ϕ,t ∧ sc(t) ∧ ϕ[t//x])

where α |= ψx,ϕ,t ⇐⇒ t ∈ Repr(x,ϕ,α).
From Theorem 3.1 it follows that for each assignment for x there exists a test candidate that

represents this value, thus ∨
t∈rs(x,ϕ)

ψx,ϕ,t

where α |= ψx,ϕ,t ⇐⇒ t ∈ Repr(x,ϕ,α) is a tautology and we can write

∃x.ϕ ≡
∨

t∈rs(x,ϕ)

(ϕ[t//x] ∧ sc(t))

By applying Theorem 2.1, this results in Theorem 2.3:

∃x.ϕ ≡
∨

t∈tcs(x,ϕ)

(ϕ[t//x] ∧ sc(t))

26 Chapter 3. Using virtual substitution for explanations for mcSAT

3.1.3 Elimination of single representatives

The observation above leads to the idea to eliminate only one test candidate according to a given
assignment. Our goal is to obtain statements of the form

∃x.(ϕ ∧ ψ) ≡ sc(t) ∧ ϕ[t//x] for all t ∈ rs(x,ϕ)

where α |= ψ ⇐⇒ t ∈ Repr(x,ϕ,α) or weaker statements of the form

∃x.(ϕ ∧ ψ) |= sc(t) ∧ ϕ[t//x] for all t ∈ rs(x,ϕ)

where α |= ψ =⇒ t ∈ Repr(x,ϕ,α).
The challenge is to �nd such a formula ψ that describes the region that is represented by a

given representative.

Decomposition induced by the set of representatives

To describe a path generated by some representatives, one considers all orderings of zeros in
each variable according to De�nition 3.1 seen during the generation of the path. Each of those
orderings induces a decomposition of the space that is made implicitly in each elimination step.
As a consequence, to describe a path, one has to assure that the value of each variable lays in the
same subspace according to this decomposition. In the following example, we study the properties
of this decomposition.

Example 3.2. Let ϕ be de�ned as

ϕ ≡ x1 > −2︸ ︷︷ ︸
c1

∧x1 < −x2 + 2︸ ︷︷ ︸
c2

∧(x1 > x2 + 2︸ ︷︷ ︸
c3

∨x22 + x21 < 1︸ ︷︷ ︸
c4

))

The gray area in Figure 3.3 denotes the solutions for this problem.

x2

x1

c1

c2

c3

c4

Figure 3.3: Satis�able regions

For instance, we choose α(x2) = 3
2 and α(x1) = 0. The partial virtual substitution tree resulting

from this assignment is shown in Figure 3.4. Our goal is to de�ne the path representing this
assignment in the partial virtual substitution tree.

3.1. Elimination rules 27

ϕ ≡ x1 > −2︸ ︷︷ ︸
c1

∧x1 < −x2 + 2︸ ︷︷ ︸
c2

∧(x1 > x2 + 2︸ ︷︷ ︸
c3

∨x22 + x21 < 1︸ ︷︷ ︸
c4

)

x1

−∞ −2 −2 + ε −x2 + 2(+ε) x2 + 2(+ε) ±
√

1− x22(+ε)
if 1 ≤ x22

c1 c1 c2 c3 c4

ϕ′ ≡ ϕ[−2 + ε/x1] ≡ x2 < 4︸ ︷︷ ︸
c′2

∧(x2 ≤ −4︸ ︷︷ ︸
c′3

∨x22 ≤ −3︸ ︷︷ ︸
c′4

)

x2

−∞ −4 −4 + ε 4(+ε)
±
√
−3(+ε)

if false

c′2 c′2 c′3
c′4

ϕ′′ ≡ ϕ′[−4 + ε/x2] ≡ false

Figure 3.4: Partial virtual substitution tree

The �rst naive approach is to de�ne the symbolic intervals for the eliminated variables for each
step, considering only the left and right endpoints according to the current ordering of representa-
tives:

−2 < x1 < −x2 + 2 ∧ −4 < x2 < 4

Figure 3.5 shows that this region is not sign-invariant for ϕ.
The reasons for this are clear: When eliminating x2, only intersection points of the polyno-

mial c1 with other polynomials are considered for partitioning the space (see Figure 3.6), as the
representative that was substituted for x1 originated from c1. The intersection point of c2 with c3
is ignored as we are only interested in generating sign-invariant regions, which do not need to be
cylindrically ordered as in a CAD. Furthermore, since the zeros of c4 do not exist at α, it is simply
ignored for de�ning the region in which α lays in.

The crucial consequence is that for a path de�ned by its representatives t1, . . . ts, there might
exist two (di�erent) assignments α,α′ represented by the path that do not induce the same order and
existence of zeros in a variable. Thus the symbolic description of the path is not straight-forward.

Please note that this problem also exists if the formula is a conjunction of constraints. This
can be seen by considering the similar problem

x1 > −2︸ ︷︷ ︸
c1

∧x1 < −x2 + 2︸ ︷︷ ︸
c2

∧x1 > x2 + 2︸ ︷︷ ︸
c3

28 Chapter 3. Using virtual substitution for explanations for mcSAT

x2

x1

c1

c2

c3

c4

Figure 3.5: Naive de�nition

x2

x1

c1

c2

c3

c4

Figure 3.6: Partition into regions

respectively

x1 > −2︸ ︷︷ ︸
c1

∧x1 < −x2 + 2︸ ︷︷ ︸
c2

∧x22 + x21 < 1︸ ︷︷ ︸
c4

The main conclusion is that the decomposition induced by the zeros in a variable is not cylin-
drical and thus, de�ning the region of a given assignment is not trivial. We propose three di�erent
formulas describing a region enclosing the current assignment α(x) for the current variable x in ϕ.

General description of the represented region

The most general form describes exactly the region represented by a representative. To make sure
that the described region contains only assignments represented by the same representative t, for
the case that t is of the form ξ+ ε, we require that the value of x is greater than the value of ξ and
lower than the lowest value of the possible right endpoints, or equivalently, the value of all other
representatives are either lower or equal than the value of ξ or greater than the value of x:

3.1. Elimination rules 29

De�nition 3.3 (Ψ1(x,ϕ,t)). Let ϕ be a formula and x a variable appearing at most quadratically
in ϕ. Let Zeros(x,ϕ) be the set of all symbolic zeros of all polynomials in ϕ, and let t ∈ rs(x,ϕ).
We de�ne

Ψ1(x,ϕ,t) =



∧
ξ∈Zeros(x,ϕ)(sc(ξ)→ x < ξ) if t = −∞

sc(ξr) ∧ x = ξr if t = ξr with ξr ∈ Zeros(x,ϕ)

sc(ξr) ∧ ξr < x∧ if t = ξr + ε∧
ξ∈Zeros(x,ϕ)\{ξr}(sc(ξ)→ (ξ ≤ ξr ∨ x < ξ)) with ξr ∈ Zeros(x,ϕ)

Theorem 3.2. Given a quanti�er-free formula ϕ, a variable x occurring at most quadratically in
ϕ, α : Vars(ϕ)→ R and t ∈ Repr(x,ϕ,α). Then

α |= Ψ1(x,ϕ,t)

and

α′ |= Ψ1(x,ϕ,t) ⇐⇒ t ∈ Repr(x,ϕ,α′)

for all α′ : Vars(ϕ)→ R.

In other words, this means that α : Vars(ϕ) → R lays in the same maximal sign-invariant
region as any α′ ∈ Assigns(ϕ) that satis�es Ψ1(x,ϕ,t).

Proof. The second statement follows by comparing De�nition 3.2 with the de�nition of Ψ1.
From Theorem 3.1 and the second statement it follows the �rst statement.

Example 3.3. Let us consider Example 3.2 from above again. If we would choose α(x2) =
1
2 , α(x1) = − 3

2 , we would obtain the formula

− 2 < x1

∧(−x2 + 2 ≤ −2 ∨ x1 < −x2 + 2)

∧(x2 + 2 ≤ −2 ∨ x1 < x2 + 2)

∧1 ≤ x22 → (−
√

1− x22 ≤ −2 ∨ x1 < −
√

1− x22)

∧1 ≤ x22 → (
√

1− x22 ≤ −2 ∨ x1 <
√

1− x22)

∧ − 4 < x2 < 4

The result is the dashed region shown in Figure 3.7.

Describing the lower and upper bounds of the current interval

So far we only �xed the lower bound of the (symbolic) interval the current assignment lays in. In
this variant, we also determine the upper bound for the case that the current assignment lays in
an open interval.

30 Chapter 3. Using virtual substitution for explanations for mcSAT

x2

x1

c1

c2

c3

c4

Figure 3.7: First variant

De�nition 3.4 (Ψ2(x,ϕ,t,α)). Let ϕ be a formula and x a variable appearing at most quadratically
in ϕ. Let the order of all zeros be de�ned as in De�nition 3.1, and let t ∈ rs(x,ϕ). For the second
case (see Equation 3.2), we set r = l and for the third case (see Equation 3.3), we set r = m. In
both of these cases, for ∼r equals ” = ”, we assume t = ξr, for ∼r equals <, we assume t = ξr + ε.
We de�ne

Ψ2(x,ϕ,t,α) =



∧
ξ∈Zeros(x,ϕ) ¬sc(ξ) if t = −∞ and

Zerosval(x,ϕ,α) = ∅

sc(ξ1) ∧ x < ξ1∧∧
ξ∈Zeros(x,ϕ)\{ξ1}(sc(ξ)→ ξ1 ≤ ξ) if t = −∞ and

Zerosval(x,ϕ,α) 6= ∅

sc(ξr) ∧ x = ξr if t = ξr in the 2nd (Eq. 3.2)
or 3rd case (Eq. 3.3)

sc(ξr) ∧ ξr < x ∧ sc(ξr+1) ∧ x < ξr+1∧ if t = ξr + ε∧
ξ∈Zeros(x,ϕ)\{ξr,ξr+1}(in the 2nd case (Eq. 3.2)

sc(ξ)→ (ξ ≤ ξr ∨ ξr+1 ≤ ξ))

sc(ξr) ∧ ξr < x∧ if t = ξr + ε∧
ξ∈Zeros(x,ϕ)\{ξr}(sc(ξ)→ (ξ ≤ ξr)) in the 3rd case (Eq. 3.3)

Theorem 3.3. Given a quanti�er-free formula ϕ, a variable x occurring at most quadratically in
ϕ, α : Vars(ϕ)→ R and t ∈ Repr(x,ϕ,α). Then

α |= Ψ2(x,ϕ,t,α)

and
α′ |= Ψ2(x,ϕ,t,α) =⇒ t ∈ Repr(x,ϕ,α′)

for all α′ : Vars(ϕ)→ R.

3.1. Elimination rules 31

Proof. The validity of the �rst statement can be seen by comparing the region de�ned in each case
with the assignments generating the formula.

By comparing each case, it follows that Ψ2(x,ϕ,t,α) =⇒ Ψ1(x,ϕ,t,α) and therefore by the
correctness of Ψ1(x,ϕ,t,α) it follows the second statement.

Example 3.4. As for the preceding formula, we consider the assignment α(x2) = 1
2 , α(x1) = − 3

2
in Example 3.2:

− 2 < x1 ∧ x1 < −
√

1− x22 ∧ 1 ≤ x22

∧(−x2 + 2 ≤ −2 ∨ −
√

1− x22 ≤ −x2 + 2)

∧(x2 + 2 ≤ −2 ∨ −
√

1− x22 ≤ x2 + 2)

∧1 ≤ x22 → (
√

1− x22 ≤ −2 ∨ −
√

1− x22 ≤
√

1− x22)

∧ − 4 < x2 < 4

The result is the dashed region shown in Figure 3.8.

x2

x1

c1

c2

c3

c4

Figure 3.8: Second variant

Describing the order of all zeros

In the strongest formula we propose, we de�ne the total order of all zeros in the variable x.

De�nition 3.5 (Ψ3(x,ϕ,t,α)). Let ϕ be a formula and x a variable appearing at most quadratically
in ϕ. Let the order of all zeros be de�ned as in De�nition 3.1, and let t ∈ rs(x,ϕ). For the second
case (see Equation 3.2), we set r = l and for the third case (see Equation 3.3), we set r = m. In
both of these cases, for ∼r equals ” = ”, we assume t = ξr, for ∼r equals <, we assume t = ξr + ε.
We de�ne

scs ≡
∧

ξ∈Zerosval(x,ϕ,α)

sc(ξ) ∧
∧

ξ∈Zerosinval(x,ϕ,α)

¬sc(ξ)

32 Chapter 3. Using virtual substitution for explanations for mcSAT

and

Ψ3(x,ϕ,t,α) =



scs if t = −∞ and Zerosval(x,ϕ,α) = ∅

x < ξ1
∧
∧
i∈{1,...,m−1}(ξi ∼i ξi+1) ∧ scs if t = −∞ and Zerosval(x,ϕ,α) 6= ∅

x = ξr if t = ξr in the 2nd (Eq. 3.2) or
∧
∧
i∈{1,...,m−1}(ξi ∼i ξi+1) ∧ scs 3rd case (Eq. 3.3)

ξr < x ∧ x < ξr+1∧ if t = ξr + ε in the 2nd case∧
i∈{1,...,m−1}\{r}(ξi ∼i ξi+1) ∧ scs (Eq. 3.2)

ξr < x∧ if t = ξr + ε in the 3rd case∧
i∈{1,...,m−1}(ξi ∼i ξi+1) ∧ scs (Eq. 3.3)

Theorem 3.4. Given a quanti�er-free formula ϕ, a variable x occurring at most quadratically in
ϕ, α : Vars(ϕ)→ R and t ∈ Repr(x,ϕ,α). Then

α |= Ψ3(x,ϕ,t,α)

and

α′ |= Ψ3(x,ϕ,t,α) =⇒ t ∈ Repr(x,ϕ,α′)

for all α′ : Vars(ϕ)→ R.

Proof. The validity of the �rst statement can be seen by comparing the region de�ned in each case
with the assignments generating the formula.

By comparing each case, it follows that Ψ3(x,ϕ,t,α) =⇒ Ψ1(x,ϕ,t,α) and therefore by the
correctness of Ψ1(x,ϕ,t,α) follows the second statement.

Example 3.5. Again, we consider Example 3.2 and the assignment α(x2) = 1
2 , α(x1) = − 3

2 :

− 2 < x1 ∧ x1 < −
√

1− x22 ∧ 1 ≤ x22

∧ −
√

1− x22 <
√

1− x22 < −x2 + 2 < x2 + 2

∧ − 4 < x2 < 4

The result is the dashed region shown in Figure 3.9. Interestingly, all intersection points of all
polynomials are considered, as well as the existence of the zeros is �xed. As a result, the described
regions are cylindrically ordered.

Substituting single test candidates

The proposed formulas allow us to substitute single test candidates as given by the following
theorem:

3.1. Elimination rules 33

x2

x1

c1

c2

c3

c4

Figure 3.9: Third variant

Theorem 3.5. Given a quanti�er-free formula ϕ and a variable x occurring at most quadratically
in ϕ. Then

∃x.ϕ ∧Ψ1(x,ϕ,t) ≡ sc(t) ∧ ϕ[t//x]

∃x.ϕ ∧Ψ2(x,ϕ,t,α) |= sc(t) ∧ ϕ[t//x]

∃x.ϕ ∧Ψ3(x,ϕ,t,α) |= sc(t) ∧ ϕ[t//x]

for all α : Vars(ϕ)→ R and t ∈ Repr(x,ϕ,α).

Proof. The �rst statement is proven as follows:
Let α : Vars(ϕ)→ R and t ∈ Repr(x,ϕ,α). Let α′ : Vars(ϕ) \ {x} → R. Then

α′ |= ∃x.ϕ ∧Ψ1(x,ϕ,t)

⇐⇒ there exists an extension α′x : Vars(ϕ)→ R of α′ with α′x |= ϕ ∧Ψ1(x,ϕ,t)

Theorem 3.2⇐⇒ there exists an extension α′x : Vars(ϕ)→ R of α′ with t ∈ Repr(x,ϕ,α′x) and α′x |= ϕ

Theorem 3.1⇐⇒ there exists an extension α′x : Vars(ϕ)→ R of α′ with α′x |= sc(t) ∧ x = α′(t) and α′x |= ϕ

⇐⇒ α′ |= sc(t) ∧ ϕ[α′(t)/x]

Theorem 2.2⇐⇒ α′ |= sc(t) ∧ ϕ[t//x]

From Theorem 3.2, 3.3 and 3.4 it follows that

Ψ2(x,ϕ,t,α) |= Ψ1(x,ϕ,t)

respectively
Ψ3(x,ϕ,t,α) |= Ψ1(x,ϕ,t)

for each t ∈ Repr(x,ϕ,α) and α : Vars(ϕ) → R. The validity of the second and third statements
follows.

Representation of zeros

Note that the symbolic representation of a zero of a polynomial is only given as a square root
expression as speci�ed in De�nition 2.5, which is in general not an arithmetic expression. We will
examine the resulting requirements on the solver later.

34 Chapter 3. Using virtual substitution for explanations for mcSAT

3.2 Explanation function

Given a conjunction A of constraints from R[x1, . . . ,xn,y] such that y occurs at most quadratically
in each constraint, assigned variables x1, . . . , xn with assignment α so that every extension of α
for y makes A con�icting, we construct the virtual substitution tree as follows:

� The root node contains ϕ ≡ A where y occurs at most quadratically in ϕ.

� Let t̃1, . . . , t̃k ∈ tcs(y,ϕ) be the test candidates for y. For each test candidate t̃i, a child node
is created containing the formula ϕi,0 ≡ ϕ[t̃i//y] ∧ sc(t̃i).

� For each of these child nodes, only one path representing α is generated as follows:

� Starting with j = 0, as long as there exists a variable in ϕi,j , it is eliminated:

* Let xi,j+1 ∈ Vars(ϕi,j) be the variable that has been assigned last.

* If the degree of xi,j+1 in ϕi,j is greater than 2, then stop here.

* Let {ξ1, . . . , ξm} = Zeros(ϕi,j) be all symbolic zeros of all polynomials in ϕi,j . They
are ordered w.l.o.g. according to α:

Jξ1Kα ≤ · · · ≤ JξmKα

A representative ti,j+1 ∈ Repr(xi,j+1, ϕi,j ,α) is determined using this order.

* A child node is created containing the formula

ϕi,j+1 ≡ ϕi,j [ti,j+1//xi,j+1] ∧ sc(ti,j+1)

� Let ni denote the number of elimination steps for t̃i, i.e. the maximal value considered
for j above. Note that ni is less or equal the number of variables in ϕi,0, but in general
not equal.

For each test candidate t̃i for y we de�ne the formula

ωi ≡

 ∧
j=1,...,si

Ψ(xi,j ,ϕi,j−1,ti,j ,α)

→ ϕi,si

where Ψ ∈ {Ψ1,Ψ2,Ψ3} (for Ψ1 we omit the last argument α) and 0 ≤ si ≤ ni. For si = 0
the conjunction on the left-hand side of the implication is de�ned as true. Then the formula ωi
describes the path de�ned by α and the choice ”y = t̃i”.

As a result, the explanation clause is de�ned as

explain(A,α) ≡ A→
∨

i=1,...,k

ωi

A pseudo-code algorithm for computing explain(A,α) is given in Figure 3.10.
In the following, we denote the order on the variables in which they are eliminated as elimination

order.

3.2. Explanation function 35

explain(A,α)
1 for t̃i ∈ tcs(y,A)
2 do ωi ← constructPath(A[t̃i//y] ∧ sc(t̃i), α)
3 return

∨
t̃i∈tcs(y,A) ωi

constructPath(ϕ, α)
1 R← true
2 while existsV arIn(ϕ)
3 do x← lastAssignedV ariableIn(ϕ)
4 if degree of ϕ in x is greater than 2
5 then break

6 t← chose one from Repr(x, ϕ, α)
7 if breakHeuristic(x,ϕ,t,α)
8 then break

9 R← R ∧Ψ(x, ϕ, t, α)
10 ϕ← ϕ[t//x] ∧ sc(t)
11 return R→ ϕ

where Ψ ∈ {Ψ1,Ψ2,Ψ3}.

Figure 3.10: Basic algorithm

3.2.1 Requirements on the mcSAT solver

As we express zeros of polynomials as square root expressions in explain(A,α), the solver needs to
be able to handle them for evaluating constraints.

Moreover, we require the solver to make sure that constraints containing a square root expres-
sion do not occur as part of an input to explain for several reasons. First, we did not de�ne yet
how we handle square root expressions. And more important, to prove termination, we assume
that all constraints in the input are either from the original formula ϕ or have been generated by
virtual substitution using the same elimination order as induced by the current order in which the
variables have been assigned. If we also allow the latter, a consequence is that the solver needs
to assign all variables in a �xed order. Nevertheless, it is possible to perform theory assignments,
decisions and propagations in such a way that ful�lls this requirement.

Furthermore, the generated lemma is not a clause in general. However, the mcSAT implemen-
tation of SMT-RAT [Cor16] can handle these expressions.

We do not go into details how these issues are solved as it goes beyond the scope of this thesis.

3.2.2 Correctness

Theorem 3.6. The explanation lemma explain(A,α) ful�lls the requirement |= explain(A,α).

Proof. From Theorem 3.5 it follows

ϕi,0 |= ∃xi,1 . . . ∃xi,si .ϕi,0 |=

 ∧
j=1,...,si

Ψ(xi,j ,ϕi,j−1,ti,j ,α)

→ ϕi,si

for Ψ ∈ {Ψ1,Ψ2,Ψ3}, all i = 1, . . . ,k and all 0 ≤ si ≤ ni.

36 Chapter 3. Using virtual substitution for explanations for mcSAT

By applying Theorem 2.3 we get

A |= ∃y.A ≡
∨

i=1,...,k

(
A[t̃i//y] ∧ sc(t̃i)

)
|=

∨
i=1,...,k

ωi

Thus, explain(A,α) is a tautology.

Theorem 3.7. The explanation lemma explain(A,α) of the form A → ϕ̂ for some formula ϕ̂
excludes the current assignment under the assumption of A, e.g. α 6|= ϕ̂.

Proof. To be proven is that α 6|= (
∨
i=1,...,k ωi), or equivalently,

α 6|= ωi ≡ (

 ∧
j=1,...,si

Ψ(xi,j ,ϕi,j−1,ti,j ,α)

→ ϕi,si)

for all i = 1, . . . ,k.
From Theorem 3.2, 3.3 and 3.4 it follows that α |= Ψ(xi,j ,ϕi,j−1,ti,j ,α) for Ψ ∈ {Ψ1,Ψ2,Ψ3}

and all 0 ≤ j ≤ ni.
From α 6|= ∃y.ϕ and Theorem 2.3 it follows that α 6|= ϕi,0. Because ti,j ∈ Repr(xi,j ,ϕi,j−1,α)

for 0 ≤ j ≤ ni, we have that

∃xi,j .ϕi,j−1 ∧ xi,j = α(xi,j)

Theorem 3.1≡ ∃xi,j .ϕi,j−1 ∧ xi,j = α(ti,j)

≡ϕi,j−1[α(ti,j)/xi,j] ∧ sc(ti,j)
Theorem 2.2≡ ϕi,j−1[ti,j//xi,j] ∧ sc(ti,j)

≡ϕi,j

for 0 ≤ j ≤ ni. Per induction follows that α 6|= ϕi,j for 0 ≤ j ≤ ni.
Thus, α 6|= ωi for all i = 1, . . . ,k.

Assuming the restriction to the solver from above, we can guarantee termination by giving a
�nite basis:

Theorem 3.8. The explanation lemma explain(A,α) only contains constraints from a �nite basis
B under the assumption that only constraints from the original formula and constraints obtained
by virtual substitution using the same elimination order are contained in A.

Proof. Given the initial input formula ϕ with variables Vars(C) = {x1, . . . ,xn} and an elimination
order on the variables x1 < · · · < xn, we generate the closure C under virtual substitution:

� C0 := Constraints(ϕ)

� Ci := Ci−1 ∪ Subst(Ci−1)

� C := Ci where i is the smallest index such that Ci = Cj for all j > i

A substitution step Subst(S) for a set of constraints S is the substitution of one representative
from a constraint in S into a constraint in S. More precisely, it is de�ned as follows:

� Let l1, l2 ∈ S with xi ∈ Vars(l1) ∩ Vars(l2) occurring at most quadratically in l1 and l2 and
Vars(l1),Vars(l2) ⊆ Vars(S) \ {x1, . . . ,xi−1} and t ∈ rs(xi,l1) (where xi, l1, l2, t have not
been chosen together before)

3.2. Explanation function 37

� s := l2[t//xi] ∧ sc(t)

� Subst(S) := Constraints(s)

We proof that C indeed exists. Observe that:

1. Given a set of constraints S, then Vars(Subst(S)) ⊆ Vars(S) \ {x} where x is the eliminated
variable in the substitution step Subst(S), because each virtual substitution rule results in
a formula that does not contain the eliminated variable (see correctness proof of virtual
substitution).

2. The (�nite) set of initial variables is given as Vars(C0). We have that Vars(Ci) = Vars(C0)
for all i ∈ N0.

3. From S is �nite follows Subst(S) is �nite (see correctness proof of virtual substitution). C0

is �nite, and therefore Ci for all i ∈ N0 is �nite. Let smax := max{|Subst(Ci)| | i ∈ N0}.

The set of constraints Li,k containing the variable xk in Ci is given as

Li,k := {l ∈ Ci | xk ∈ Vars(l)}

for k = 1, . . . ,n. For k = n+ 1 we set Li,n+1 := {l ∈ Ci | Vars(l) = ∅}.
An upper bound for this set can be given as

|Li,k| ≤ |L0,k|+
∑

m,n<k

|Li,m + Li,n|! ∗ smax for all i ∈ N0, k = 1, . . . ,n (3.4)

because either such a constraint l ∈ Li,k is contained in C0 or is part of an elimination result.
Because of the choice of l1 and l2 in a substitution step and Observation 1, those are the constraints
containing a variable with lower elimination order.

We proof the hypothesis

there exists an i ≥ 0 so that|Li,k| = |Lj,k| for all j ≥ i (3.5)

for all k = 1, . . . ,n+ 1 by induction over k.
Basis: From Observation 2 and the bound given in Equation 3.4 it follows

Lj,0 = L0,0 for all j ≥ 0 (3.6)

Inductive step: Let Equation 3.5 be valid for all k < l. Let h := max{i | |Li,k| = |Lj,k| for all j ≥
i, k < l}. Then

|Lh,l| ≤ |L0,l|+
∑
m,n<l

|Lh,m + Lh,n|! ∗ smax

Because Observation 3 says that the substitution gives a �nite set of new constraints, there exists
an i so that |Li,l| = |Lj,l| for all j > i.

We proved that Equation 3.5 is valid for k = 1, . . . ,n+1 and thus |Li,k| is �nite for k = 1, . . . ,n+1
and for an i ∈ N0. Because all constraints in |Li,n+1| do not contain any variables, they cannot
generate new constraints and thus we have C = ∪k=1,...,n+1Li,k. It follows that C is �nite.

Let C ′ denote the union of all closures obtained with each possible elimination order. Then
the explanations contain constraints from C ′ and equations over the zeros of polynomials from C ′.
Altogether, the �nite basis is given as:

38 Chapter 3. Using virtual substitution for explanations for mcSAT

B = C ′

∪ {p1 ∼ p2 | p1, p2 ∈ Vars(C ′) ∪
⋃

x∈Vars(C′)

Zeros(x,C ′),∼∈ {=, 6=, <,>,≤,≥}}

3.2.3 Dealing with representatives left out by virtual substitution

One strength of the virtual substitution to test a formula for satis�ability is that some representa-
tives can be left out as shown by Theorem 2.1. Unfortunately, we cannot exploit this observation
in the same way in our method. Substituting a representative that is not a test candidate into its
originating constraint gives false (if the relation symbol is one of 6=,=, <,>). However, because
we assume an arbitrary structure of the formula containing ∧ and ∨, the whole formula may not
become false and thus, we have to proceed with our procedure as with any other representative.

However, substituting such a representative into the formula is not desirable, as such a repre-
sentative would never be considered by virtual substitution. So we decide that if we detect that ti,j
can be chosen so that ti,j /∈ tcs(xi,j , ϕi,j−1), we stop the procedure at the node containing ϕi,j−1,
e.g. we set si = j − 1. The corresponding break heuristic is shown in Figure 3.11.

breakHeuristic(x, ϕ, t, α)
1 return ¬(Repr(x, ϕ, α) ⊆ tcs(x,ϕ))

Figure 3.11: Break heuristic

Furthermore, from the observation above we conclude:

Theorem 3.9. Let ϕ be a conjunction of constraints. Given a representative t ∈ rs(x, p ∼ 0) \
tcs(x,ϕ) for a constraint p ∼ 0 ∈ Constraints(ϕ) with ∼∈ {< , > , = , 6=}, then

ϕ[t//x] ≡ false

Proof. (p ∼ 0)[t//x] ≡ false can be seen by plugging in the respective representatives into the
formula and applying the corresponding rules.

3.2.4 Choice of representatives is not unique

As already mentioned, the choice of the generated path in the virtual substitution tree is not
unique, i.e. an assignment can be represented by multiple representatives. This is caused by the
fact that two or more symbolic zeros may lay on each other under a given assignment. In these
cases, we can pick any representative representing the assignment, because we did not assume a
speci�c representative in the proofs of the Theorems 3.2, 3.3, 3.4 and 3.5.

Example 3.6. Let the substitution tree in Figure 3.12 be a subtree of an input after eliminating
the unassigned variable y. Assume the assignment α(x1) = 1, α(x2) = 0, α(x3) = 0.

We can observe that all possible representatives behave the same:

� All possible paths representing the current assignment lead to a leaf containing false.

3.2. Explanation function 39

� The structure is the same: Let x be a variable with |Repr(x,ϕ,α)| > 1. Let x′ be a variable
eliminated after x has been eliminated. Then α(x′) falls either into a point interval (i.e. all
of its possible representatives are zeros ξ) or into an open interval (i.e. all of its possible
representatives are zeros plus an in�nitesimal ξ + ε) independently from the choice of the
representative t ∈ Repr(x,ϕ,α).

Note that some choices t ∈ Repr(x,ϕ,α) may result in shorter subtrees than other choices,
because the substitution results are syntactically di�erent.

3.2.5 Elimination order

Although the elimination order is not relevant to the correctness of the method, it has an in�uence
on the e�ectiveness of the generated explanation.

To understand the e�ect of an explanation, consider how the framework resolves con�icts: The
returned explanation de�ects the current con�ict, which means that after receiving an explanation,
the mcSAT solver reverts at least one theory variable assignment to �x the infeasible solver state.
This is also called backtracking. After backtracking, the solver continues searching for solutions,
i.e. performing Boolean search and assigning values to theory variables.

In the following let i ∈ {1, . . . ,k}. Let the variables xi,1, . . . ,xi,n be eliminated according to the
order xi,1 < xi,2 < · · · < xi,n when constructing the partial virtual substitution tree. The formula
Ψ ∈ {Ψ1,Ψ2,Ψ3} de�ning the region of a variable xi,k depends on the variables xi,k+1, . . . ,xi,n
eliminated later and xi,k itself. Likewise the formula in the corresponding node ϕi,k depends on
xi,k+1, . . . ,xi,n, hence ωi is of the form:

Ψ(xi,1,ϕi,0,ti,1,α)︸ ︷︷ ︸
in xi,1, . . . ,xi,n

∧Ψ(xi,2,ϕi,1,ti,2,α)︸ ︷︷ ︸
in xi,2, . . . ,xi,n

∧Ψ(xi,si ,ϕi,si−1,ti,si ,α)︸ ︷︷ ︸
in xi,si , . . . ,xi,n

→ ϕi,si︸︷︷︸
in xi,si+1, . . . ,xi,n

where xi,si is the variable eliminated last.
It is desirable that the generated explanation keeps con�ict resolution simple. If we would elim-

inate the variables in the same order as mcSAT assigns it, then the �rst variable to be backtracked
would be xi,n. Backtracking and �nding a suiting value for xi,n is expensive because all constraints
in ωi become univariate. The reason for this is clear: The dependencies between the variables are
destroyed, since the de�nition ψ(xi,1, . . . ,xi,n) of xi,1 being the �rst assigned variable depends on
all other variables, but the framework assigned a value to xi,1 independently from all other vari-
ables. We need to preserve the dependencies between the variables, this is why we eliminate the
variables in the reverse order in which they have been assigned. This way, when backtracking x1,n,
only a single constraint in ωi becomes univariate and allows much more lightweight "guessing" of
values for theory variables.

3.2.6 Variables involved in a con�ict

Note that if all variables xi,j+1, j = 0, . . . ,ni occur at most quadratically in ϕi,j , then ϕi,ni ≡ false
for i = 1, . . . ,k, because the given assignment α is con�icting with A. As we eliminate all variables
occurring in the input formula ϕ, all constraints in ϕi,ni

for i = 1, . . . ,k are constants and we get
indeed syntactically �false�.

Furthermore, it is possible that not all variables occurring in ϕi,0 are eliminated as they may
disappear during elimination of another variable. This is caused by the fact that when selecting
a test candidate t̃i for y, only a few variables may cause unsatis�ability for ϕi,0 ≡ ϕ[t̃i//y]. The
infeasibility tells us only that for each assigned variable x = x1, . . . , xn there exists a test candidate
t̃i so that x is part of the reason for the unsatis�ability of ϕ[t̃i//y].

40 Chapter 3. Using virtual substitution for explanations for mcSAT

Example 3.7. Consider the formula

ϕ ≡ c1 : x1 < y ∧ c2 : x22 < y2 ∧ c3 : y < x3

together with the assignment
x1 7→ −1, x2 7→ 1, x3 7→ 1

The resulting situation after plugging in the assignments into the formula is given in Figure
3.13. One can see that all constraints are necessary to produce the con�ict, and that given a value
for y, not all constraints cause the unsatis�ability for this value.

The virtual substitution tree in Figure 3.14 shows that the fourth subtree depends only on vari-
ables x2 and x3, because they are the only variables substituted or appearing in a chosen repre-
sentative. For the second and third subtree, it can be shown that it is su�cient to eliminate only
variables x1 and x2 to obtain a leaf node containing false. Thus, which variables are skipped during
elimination depends also on the order in which they are eliminated.

3.2.7 Generation of partial paths

As already seen, we can stop the generation of the partial substitution tree at any node and
generate a formula describing the partial path and the formula at the end of this path. This allows
us to vary between generality and specialization to the con�ict. For example, for si = 0 for all
i = 1, . . . ,k, we get pure quanti�er elimination. For si = ni for all i = 1, . . . ,k, we get closer to the
CAD cells (especially if we chose Ψ3).

Example 3.8. We consider the virtual substitution tree from Example 3.1.
Let us consider the subtree for the test candidate x3 in the tree from Figure 3.2. If we eliminate

x, we would get the partial explanation (using Ψ1)

2 +

√
2

2
< x→ false

which excludes the dashed region as shown in Figure 3.15
Compare this to the result that we obtain when stopping after eliminating y:

true→ 2(x− 2)2 < 1

which excludes the dashed region as shown in Figure 3.16 being much more general as it excludes
not only the region enclosing the current assignment but also other regions.

As mentioned, choosing Ψ3, eliminating all variables and also �xing the order of zeros of ϕ in
y, we obtain a CAD cell.

x = y ∧ 2 +

√
2

2
< x→ false

which excludes the dashed region as shown in Figure 3.17. Note that without adding an interval
description for y, we get cylindrically ordered regions.

3.2. Explanation function 41

x1 > 0 ∧ x1 > x2 ∧ x1 < x23

x1

−∞ 0 + ε x2 + ε x3 + ε0 x2 x3

x2 ≤ 0 ∧ 0 < x23 x2 ≤ 0 ∧ x2 < x23 false

x2

−∞ 0 0 + ε

x2

−∞ 0 0 + ε x23 x23 + ε

false0 < x23

x3

−∞ 0 0 + ε

false

Figure 3.12: Virtual substitution tree: ambiguous representatives behave the same

y
c1

c2 c2
c3

Figure 3.13: Solution intervals for each constraint in y

42 Chapter 3. Using virtual substitution for explanations for mcSAT

x1 < y︸ ︷︷ ︸
c1

∧x22 < y2︸ ︷︷ ︸
c2

∧ y < x3︸ ︷︷ ︸
c3

y

−∞ x1 + ε −x2 + ε x2 + ε x3 + ε

c1 c2 c2 c3

false
(x21 − x22 > 0

∨(x21 − x22 = 0 ∧ 2x1 ≥ 0))
∧x1 − x3 < 0

x1 ≤ −x2
∧x2 ≤ 0
∧ − x2 < x3

x1 ≤ x2
∧x2 ≥ 0
∧x2 < x3

false

x3

−∞ x2 x2 + ε

false

. . .

x3x3

−∞ x1 x1 + ε

x21 − x22 > 0 ∨ (x21 − x22 = 0 ∧ 2x1 ≥ 0)

x2

−∞ −x1 x1

x1 ≥ 0

. . .
x1

Figure 3.14: Partial virtual substitution tree: Nodes containing false can be obtained before elim-
inating all variables

3.2. Explanation function 43

x

y

c1

c2

Figure 3.15: Region excluded when eliminating all variables

x

y

c1

c2

Figure 3.16: Region excluded when stopping at the �rst node

x

y

c1

c2

Figure 3.17: De�ning all variable intervals with Ψ3 results in a CAD cell

44 Chapter 3. Using virtual substitution for explanations for mcSAT

Chapter 4

Comparison

To show the bene�ts of our method, we compare it with the cylindrical algebraic decomposition
for mcSAT as described in [JdM12]. We examine the methods by the formula given in Example
2.1.

For our example, we denote the state of the mcSAT solver as a sequence 〈. . . 〉 of constraints
(of the form p ∼ 0) and variable assignments (of the form x 7→ α(x)). We assume that all literals
contained in the sequence are consistent with the assignments in the trail (i.e. they do not evaluate
to false). If we �nd that there exists no assignment for a variable y without violating this property,
we denote a call to the explanation function with 〈. . . 〉 ` explain(D,α) where D is a minimal subset
of the sequence's constraints causing the con�ict.

Furthermore, the CAD procedure uses the notation zerox(i,p) to represent the ith zero of the
polynomial p with possibly polynomial coe�cients in the variable x.

We �rst examine how the problem is solved using the CAD:

Example 4.1 (CAD for mcSAT). Let the input formula be de�ned as:

ϕ ≡ (x− 2)2 + (y − 2)2 − 1 < 0︸ ︷︷ ︸
c1

∧x− y = 0︸ ︷︷ ︸
c2

We initialize the solver and try to �nd satisfying variable assignments:

〈c1, c2〉
assign x−−−−−→〈c1, c2,x 7→ 0.5〉

no ext. for y exists−−−−−−−−−−−−→〈c1, c2,x 7→ 0.5〉 ` explain(c1,α)

We obtain the explanation lemma

c1 → ¬(x < zero(1, x2 − 4x+ 3))

resulting in the dashed region as in Figure 4.1.
Thus, the explanation is con�icting with the current assignment and we have to backtrack before

adding the description of the excluded cell to the sequence.

. . .
backtrack−−−−−−→〈c1, c2, c3 : ¬(x < zerox(1, x2 − 4x+ 3))〉
assign x−−−−−→〈c1, c2, c3 : ¬(x < zerox(1, x2 − 4x+ 3)), x 7→ 1.2〉

no ext. for y exists−−−−−−−−−−−−→〈c1, c2, c3, x 7→ 1.2〉 ` explain(c1 ∧ c2,α)

46 Chapter 4. Comparison

x

y

c1

c2

Figure 4.1: Excluded regions

We obtain the explanation

c1 ∧ c2 → ¬(zerox(1, x2 − 4x+ 3) < x < zerox(1,2x2 − 8x+ 7))

adding the dashed region as shown in Figure 4.2.

x

y

c1

c2

Figure 4.2: Excluded regions

And continue search:

. . .
backtrack−−−−−−→〈c1, c2, c3, c4 : ¬(zerox(1, x2 − 4x+ 3) < x < zerox(1,2x2 − 8x+ 7))〉
assign x−−−−−→〈c1, c2, c3, c4, x 7→ 2〉
assign y−−−−−→〈c1, c2, c3, c4, x 7→ 2, y 7→ 2〉

assignment complete−−−−−−−−−−−−−→SAT

In the following we see how our method can be modi�ed to emulate the CAD.

47

Example 4.2 (VS for mcSAT). We generate the �rst explanation from the previous example
explain(c1,α) using our procedure as shown in Figure 4.3:

c1 → ¬(x < 1)

resulting in the same excluded region as the CAD shown in Figure 4.1.

(x− 2)2 + (y − 2)2 − 1 < 0

y

−∞ −
√

1− (x− 2)2 + 2 + ε
if 1 − (x − 2)2 ≥ 0

√
1− (x− 2)2 + 2 + ε
if 1 − (x − 2)2 ≥ 0

false x2 − 4x+ 3 < 0 false

x

−∞ 1 + ε 3 + ε

false

Figure 4.3: Partial virtual substitution tree

The second explanation explain({c1,c2},α) can be generated using the tree in Figure 2.2.
Again, we obtain a similar explanation.

c1 ∧ c2 → ¬(x < 2−
√

2

2
)

But because the order of the zeros of ϕ in y has not been �xed, we obtain a larger region as shown
dashed in Figure 4.4.

So far, we generated complete paths, being speci�c to the current con�ict. In the following we
see more general explanations generated by the pure quanti�er elimination approach:

Example 4.3 (VS for mcSAT). If we would abort the procedure shown in Figure 4.3 after elimi-
nating y, we would obtain the explanation

c1 → x2 − 4x+ 3 < 0

48 Chapter 4. Comparison

x

y

c1

c2

Figure 4.4: Excluded regions

x

y

c1

c2

Figure 4.5: Excluded regions

resulting in the dashed region as in Figure 4.5.
We do the same for the second explanation explain({c1,c2},α) using the tree in Figure 2.2:

c1 ∧ c2 → 2x2 − 8x+ 7 < 0

excluding the dashed region as shown in Figure 4.6.

We saw, that when eliminating all variables, we obtain explanations similar to the CAD. But
even then, we have the chance to get a better explanation, because �rst, virtual substitution does
not require the decomposition to be cylindrical but only sign-invariant and second, as observed in
Section 3.2.6, it is possible that virtual substitution can detect unsatis�ability earlier and variables
that do not cause the con�ict for a subtree may be skipped. Aside from that, the CAD is more
expensive than the VS.

Furthermore, the last example shows us, that stopping our procedure earlier may exclude even
bigger regions. This is possible, because virtual substitution keeps the sign of the polynomials due
to its symbolic computations. Those explanations may be computational harder to use for theory
decision as those where all variables have been eliminated, but they are more general. Moreover,
as seen in Section 3.2.7, we can vary between these two extremes as we can stop our procedure at
any time. This �exibility allows us to decide by a heuristic where it is best to stop.

49

x

y

c1

c2

Figure 4.6: Excluded regions

50 Chapter 4. Comparison

Chapter 5

Future work

5.1 Enforcing conjunctions in nodes

The current approach allows arbitrary formulas in the nodes of the virtual substitution tree. Al-
though the input of the explanation function is given as a conjunction of constraints, disjunctions
are introduced by the substitution rules, because each of them consists of a case distinction. One
can observe for each rule, that given a full assignment, at most one of these cases evaluates to true.

It is tempting to enforce conjunctions in each node because this has an advantage: Theorem
3.9 says that substituting representatives that are not in the set of test candidates into the formula
obtains false. This would potentially lead to smaller partial virtual substitution trees and also,
since we know the substitution result for those representatives, we can save one substitution step.
However, note that the regions still have to be de�ned using Ψ1, Ψ2 or Ψ3 as the order or existence
of the zeros is still not implied as stated in Example 3.2.

One idea is to add a new node for each case introduced by a substitution rule and handle each
subtree separately. This would lead to less constraints in one node and therefore less substitutions.
It is still to be �gured out how a formula can be generated and which parts of the tree can be left
out.

5.2 Determining constraints relevant to a con�ict

It is already pointed out in Section 3.2.6 that some variables are not part of the reason for a con�ict
in the subtree for all choices of the test candidate for the unassigned variable. Or more precise,
not all constraints are part of the reason for a con�ict in such a subtree.

We can determine those constraints by evaluating each constraint cj occurring in the input
formula ϕ ≡ c1 ∧ · · · ∧ cm under the choice of a test candidate t ∈ tcs(y,ϕ) for the unassigned
variable y and the current assignment α:

Jcj [t//y]Kα

If the constraint does not evaluate to false, it is not part of the con�ict in the subtree corresponding
to ϕ[t//y].

The basic idea is now to take only one of these constraints for further subtree generation, which
is justi�ed as follows:

ϕ[t//y] ≡
∧

j=1,...,m

cj [t//y] |= ck[t//y]

52 Chapter 5. Future work

for each k = 1, . . . ,m.

Example 5.1. Consider Example 3.7 again. Applying our idea to ϕ[x1+ε//y] results in (x21−x22 >
0 ∨ (x21 − x22 = 0 ∧ 2x1 ≥ 0)), application to ϕ[−x2 + ε//y] results in x2 ≤ 0 and application to
ϕ[x2 + ε//y] results in x2 < x3.

This approach would not only reduce the number of variables in each subtree, but also reduce
the number of possible representatives in each elimination step resulting in smaller path descriptions
and bigger regions that can be excluded.

However, it is still to be �gured out if and how this observation can be combined with our
procedure regarding correctness and completeness.

5.3 Allowing square root expressions as input

It is desirable to obtain a much more �exible and universal procedure by lifting the restrictions to
the solver mentioned in Section 3.2.1. One restriction on the solver is that we do not allow square
root expressions as input.

Input constraints can be transformed to an input formula without square root expressions as
follows: Let c be a constraint containing a square root expression t. Then let c′ be the constraint
obtained by replacing each occurrence of t in c by the variable x. Then

c′[t//x] ≡ c

is a formula that does not contain t. Applying the same procedure on each constraint and square
root expression results in an equivalent formula without square root expressions.

What is to be proven is

� that this procedure is possible for each constraint containing (multiple) square root expres-
sions (i.e. virtual substitution rules are applicable for all square root expressions in a con-
straint) and

� that we still obtain a �nite basis.

5.4 Allowing constraints obtained by di�erent elimination or-
ders as input

Without any restrictions to the mcSAT solver, the assignment order of the variables can change
and thus, constraints generated using di�erent elimination orders (and di�erent to the current
elimination order) may be passed as input to the explanation function. Thus, we cannot assume
a �xed elimination order and have to alter the de�nition of an elimination step in the proof of
Theorem 3.8:

� Let l1, l2 ∈ S with x ∈ Vars(l1) ∩ Vars(l2) occurring at most quadratically in l1 and l2 and
t ∈ rs(x,l1) (where x,l1,l2,t have not been chosen together before)

� s := l2[t//xi] ∧ sc(t)

� Subst(S) := Constraints(s)

5.5. Combination of the VS and the CAD for generating explanations 53

This has a crucial consequence: The bound given in Equation 3.4 is not valid anymore because
we do not have a �xed elimination order anymore. Thus constraints where a variable x has been
eliminated can produce a new constraint containing x when doing a substituting step with another
constraint containing x.

Moreover, we can give a counterexample, i.e. the closure of virtual substitution is in�nite:

Example 5.2. � C0 := {x1 = 2︸ ︷︷ ︸
c1

, x1 = 2x2︸ ︷︷ ︸
c2

, x2 = 2x1︸ ︷︷ ︸
c3

}

� Substituting x1 = 2 from c1 into c2 gives c4 : x2 = 1

� Substituting x2 = 2x1 from c3 into c4 gives c5 : 2x1 = 1

� Substituting c2 into c5 gives c6 : 4x1 = 1

� Substituting c3 into c6 gives c7 : 8x2 = 1

� ...

The intuitive cause for the in�nite set of constraints in the example above is that those con-
straints are unsatis�able together. If they would be eliminated altogether in a conjunction, we
would get false as result not later than after a few steps.

In our setting, the input is a conjunction of constraints, and we can assume a minimal set of
con�icting constraints. Perhaps, we do not need to rely on the closure of virtual substitution and
get the desired statement somehow else. It is still open if any restrictions (weaker than assuming
a �xed variable order) to the constraints used in a substitution step can be made to obtain a �nite
basis.

5.5 Combination of the VS and the CAD for generating ex-
planations

We think that the most e�cient and e�ective explanation methods can be obtained by combining
multiple decision procedures. This way each procedure can be applied to (sub)problems where
it performs best. Here, our goal is it to combine the CAD with the VS, by applying the VS on
problems where a variable occurs at most quadratically in the input formula and switch to the
CAD whenever the VS becomes infeasible. This way, we would get a complete method with the
bene�ts of the VS for those cases where it is applicable.

One issue that is to be solved is the di�erent representation of zeros of a polynomial in a variable:
While our procedure makes use of square root expressions, the CAD for mcSAT as described in
[JdM12] employs the following notation:

De�nition 5.1 (Zero expression). Let p be a (possibly multivariate) polynomial containing a vari-
able x, then the ith zero of p in x is denoted as zerox(i,p).

The CAD adaption always eliminates all variables and de�nes cylindrically ordered regions. As
this adaption also assumes a �xed order on the variables in which they are assigned, the assignment
passed to the explanation function always implies the same ordering of the zeros in a given variable,
and thus zerox(i,p) refers always to the same zero of p in x.

In contrast, the VS embedding cannot make this assumption: Even with a �xed order of variable
assignments, in general only the symbolic representation (given as a square root expression) of a
zero is known. It is possible that two assignments given as input to the procedure imply di�erent

54 Chapter 5. Future work

orderings of the zeros in a variable, because the decomposition induced by Ψ1, Ψ2 and Ψ3 is not
cylindrical, and at the latest because not all variables are eliminated in each case.

Because of the di�erent semantics of the zero representations, we cannot unify them directly.
However, we could convert them to the appropriate representation if they occur in an input to
explain:

� If a square root expression t occurs in the input to the CAD adaption, we can order all zeros
of the originating polynomial p in the variable x under the current assignment and determine
the position i of t in the resulting ordering. Thus we can use zerox(i,p) as representation.

� If a zerox(i,p) occurs in the input to the VS embedding, we can order all zeros of p and take
the symbolic description (given as a square root expression t) of the ith zero according to
the resulting ordering.

However, we do not know if this approach is correct.
An alternative approach to that would be to transform constraints containing zero expressions

to equisatis�able formulas that are part of the logic:

� Square root expressions could be transformed as described in Section 5.3 when generating
the explanation.

� If an expression of the form zerox(i,p) occurs in the input to the virtual substitution, its
semantics could be encoded using a non-linear arithmetic formula by making a case distinction
between i = 1 and i = 2 and between the symbolic zeros of constant, linear and quadratic
polynomials respecting their side conditions.

Chapter 6

Conclusion

As the CAD implementation for mcSAT already showed promising results in the Z3 solver [JdM12]
for solving non-linear arithmetic, we think that our embedding of the virtual substitution method
can improve these results for cases where the virtual substitution is applicable, based on our
observations in Section 4.

Once this embedding is implemented, the di�erent variants of our method for generating expla-
nations can be compared: First, the depth of the generated virtual substitution tree, and second,
the formula used to de�ne the path in the generated tree representing the current assignment.
Using these results, we can develop and evaluate ideas for designing a heuristic regarding their
e�ectiveness and e�ciency.

The CAD adaption for mcSAT is currently being implemented as part of the SMT-RAT [Cor16]
solver. By implementing also the VS embedding as a module for SMT-RAT, the theory modules,
e.g. the ones responsible for assigning theory values to variables, can be shared between the
CAD and VS implementation. This common base will also allow the combination of the two
decision procedures to obtain a complete explanation function with advantages from the virtual
substitution.

56 Chapter 6. Conclusion

Bibliography

[CA11] Florian Corzilius and Erika Abraham. Virtual substitution for smt solving. In 18th
Int. Symp. on Fundamentals of Computation Theory (FCT'11), volume 6914 of LNCS,
pages 360�371. Springer Berlin Heidelberg, 2011.

[Col75] G. E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraic de-
composition. In Automata Theory and Formal Languages, volume 33 of LNCS, pages
134�183. Springer, 1975.

[Cor16] Florian Corzilius. Integrating Virtual Substitution into Strategic SMT Solving. PhD
thesis, RWTH Aachen University, 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394�397, 1962.

[DMJ13] Leonardo De Moura and Dejan Jovanovi¢. A model-constructing satis�ability calculus.
In International Workshop on Veri�cation, Model Checking, and Abstract Interpretation,
pages 1�12. Springer, 2013.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quanti�cation theory. J.
ACM, 7(3):201�215, 1960.

[GGI+10] S. Gao, M. K. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and E. M. Clarke.
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems. In
Proc. of FMCAD'10, pages 81�89. IEEE, 2010.

[HR97] S. Herbort and D. Ratz. Improving the e�ciency of a nonlinear-system-solver using
a componentwise Newton method. Technical Report 2/1997, Inst. für Angewandte
Mathematik, University of Karlsruhe, 1997.

[JdM12] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In Proc. of IJCAR'12,
volume 7364 of LNAI, pages 339�354. Springer, 2012.

[Wei97] V. Weispfenning. Quanti�er elimination for real algebra � the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing, 8(2):85�
101, 1997.

	Introduction
	Preliminaries
	Non-linear real arithmetic
	Model-constructing satisfiability calculus (mcSAT)
	Virtual substitution

	Using virtual substitution for explanations for mcSAT
	Elimination rules
	Explanation function

	Comparison
	Future work
	Enforcing conjunctions in nodes
	Determining constraints relevant to a conflict
	Allowing square root expressions as input
	Allowing constraints obtained by different elimination orders as input
	Combination of the VS and the CAD for generating explanations

	Conclusion
	Bibliography

