
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

COMPARING THE EXPRESSIVITY AND USABILITY OF

HYBRID SYSTEMS’ MODELING LANGUAGES

Sabrina Kielmann

Examiners:
Prof. Dr. Erika Ábrahám
apl. Prof. Dr. Thomas Noll

Additional Advisor:
Stefan Schupp

Aachen, March 5, 2018

Abstract

The increasing usage of digital controllers to control continuous systems has
resulted in an increased demand of safety veri�cation of such hybrid systems.
Over the past two decades various tools have been developed for this purpose,
each implementing a di�erent approach. The high number of tools with dif-
ferent approaches and specialties requires a profound comparison to choose a
suitable tool. In this thesis we compare state of the art tools for safety veri�ca-
tion of hybrid systems. Our comparison focuses on tools implementing �owpipe
construction-based methods. Additionally to correctness of results we analyze
the expressivity of the model description languages as well as general usability.
Additionally a challenging "crash-test" benchmark set is developed to charac-
terize the usability of the tools. To support the communities favorite, but rarely
supported interchange format CIF3, the C++ library HyPro for state set rep-
resentations with the tool HyDRA based on it is extended to this input format.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

Contents

1 Introduction 9

2 Related Work 11

3 Preliminaries 13

3.1 Hybrid Automata and Reachability Analysis 13
3.2 State Set Representations . 17

4 Comparing Modeling Languages 21

4.1 Variables Declaration . 21
4.2 State sets . 22
4.3 A�ne Dynamics . 25
4.4 Constraints . 27
4.5 Parallel Composition . 27
4.6 Implementation of an Additional Input Format for the HyPro Library 28

5 Developing a Minimal Benchmark Set 31

6 Tool Comparison 35

6.1 Settings . 35
6.2 State Set Representation and Aggregation 36
6.3 Experimental Results . 37

7 Conclusion 47

7.1 Future Work . 48

Bibliography 49

Appendix 52

A Examples Displayed in Di�erent Input Languages 53

B Settings for Di�erent Tools 61

C Settings Used in the Benchmarks 65

viii Contents

Chapter 1

Introduction

The number of embedded systems in our everyday life increased over the last years and
decades. Embedded systems controlling physical quantities are called cyber-physical
systems (CPS). An example for a simple CPS already arrived in our lives is a self-
regulating heater, which controls the heating based upon the actual temperature. A
more experimental CPS is a collision avoiding system controlling self-driving vehicles
in a platoon.

Many CPS control safety-relevant systems and therefore have to meet high quality
standards. Due to safety reasons certain states must not be reached by the system.
To ensure a systems safety the CPS can be modeled with a transition automaton
including states describing the unsafe behavior. The physical variables are modeled
with ordinary di�erential equations. This kind of automaton is called hybrid system
and the safety of a CPS can be proven with a reachability analysis of its modeled
hybrid system.

The reachability problem of the abstracted hybrid system in general is undecid-
able. Tools for reachability analysis compute therefore over-approximations of the
set of reachable states. These are used for safety analysis, if an unsafe behavior is
not reachable in the over-approximation it will not be reachable in the systems real
behavior.

There are several tools for reachability and safety analysis of hybrid systems using
di�erent approaches and thus having di�erent strengths and abilities. For choosing a
suitable tool it is necessary to compare the di�erent tools in expressivity and usability.

In this thesis we present a selection of tools to be analyzed and other related work
in Chap. 2. Before going into detail, we de�ne in Chap. 3 hybrid automata and
introduce di�erent state set representation. In Chap. 4 we compare the expressivity
of the tools languages. Additionally we extend the input format of the C++ library
HyPro for state set representations with the tool HyDRA based on it. Chapter 5
develops a benchmark set to characterize tools in di�erent aspects. Chapter 6 contains
the tools' usability comparison with respect to their analysis parameters, their state
set representations, their aggregation methods and experimental results. In Chap.
7 we conclude with a summary of the presented results, discuss them and give an
outlook about possible future work.

10 Chapter 1. Introduction

Chapter 2

Related Work

There are several tools performing reachability analysis of hybrid systems like Ari-
adne [CBGV12], Cora [AD14], dReach [KGCC15], Flow* [CÁS13], HyCreate [Bak13],
HyDRA, HyLAA [BD17a], iSAT [Egg14], KeYmaera [PQ08] and SpaceEx [FLGD+11].

Due to the high quantity of di�erent tools there is a high demand of benchmark
suites. Actually there are only few published comparisons and benchmark suites, as
[SÁC+15] describing a wide range of tools with di�erent approaches and give their
main characteristics. The discussed tools are Ariadne, Cora, dReach, Flow*, HSolver
[RS05], iSAT, KeYmaera and SpaceEx. [CSBM+15] develops the �rst manifold bench-
mark set and covers the tools dReach, Flow* and SpaceEx.

For a profound analysis of a selection of tools we focus on tools for reachabil-
ity analysis of linear hybrid systems. Flow*, HyDRA and SpaceEx as �owpipe-
constructing tools and HyLAA as a discrete-time tool.

Flow* [CÁS13] is a well studied and established tool which introduced the Taylor
model-based �ow-pipe construction analysis for (non-)linear hybrid systems. It is the
only tool analyzed in the thesis which is also able to analyze non-linear hybrid systems.

HyDRA is a new and soon to be published �owpipe-constructing tool based on
the HyPro library [SÁMK17]. HyPro is a free and open-source C++ programming
library for linear hybrid systems and uses Flow* like syntax. It o�ers the possibility
to exchange between di�erent state set representations, geometric as well as symbolic
ones. HyDRA uses the di�erent representation and a CEGAR-like (Counterexample
Guided Abstraction Re�nement) approach to improve their reachability analysis. It
is the �rst tool which performs �owpipe construction reachability analysis using coun-
terexamples to improve their result.

HyLAA [BD17a] is a relatively new Python based tool and has a common author
with HyCreate and HyST [BBJ15]. It uses discrete time analysis for hybrid systems
and performs as �rst tool simulation-equivalent reachability for hybrid automata with
a�ne dynamics, which is a slightly weaker property than traditional reachability. Its
purpose is to be able to analyze much larger scaled benchmarks than other tools be-
fore. One of the other inventions is trace-guided set deaggregation, which reduces the
size of over-approximation from aggregation.

12 Chapter 2. Related Work

SpaceEx [FLGD+11] as a well studied and established tool, too, is specialized
for large scaled benchmarks and is able to analyze much bigger scenarios than other
tools. Its analysis algorithms are an implementation of the Le Guernic-Girard (LGG)
algorithm as well as its enhancement (STC).

Comparisons and benchmark suites need a common format to interchange their
benchmarks to test them with di�erent tools. In the community of hybrid reacha-
bility analysis there is a recommended common interchange format (CIF3) [AvBR13]
covering di�erent kinds of automata.
CIF3 is a modeling language not only for hybrid automata but also for a much wider
�eld as an automata-based modeling language for the speci�cation of discrete event,
timed, and hybrid systems. CIF3 supports synchronizing events, controllers, observers
and monitors, clocks, parallel composition and grouping of automata, and much more
specializations. It does o�er not only linear arithmetic, but also non-linear, trigono-
metric and other functions.

Chapter 3

Preliminaries

In this chapter we present the required de�nitions, three examples of hybrid automata
and an overview of possible state set representations. The de�nitions and �gures are
taken from [Á15] if not stated otherwise.

3.1 Hybrid Automata and Reachability Analysis

We use hybrid automata to model systems with mixed discrete and continuous be-
havior. The discrete behavior is modeled with a transition automaton, the continuous
behavior with linear ordinary di�erential equations (ODE). We de�ne a hybrid au-
tomaton as follows.

De�nition 3.1.1. Hybrid automaton [CÁS13]
A hybrid automaton is denoted by a tuple
A = (Loc, V ar, Inv, F low, Lab, Trans,Guard,Reset, Init) wherein

� Loc is a �nite set of discrete states which are also called locations or modes.

� V ar consists of n real-valued variables for some integer n > 0.

� Inv associates a mode l ∈ Loc an invariant Il ⊆ Rn such that the variables can
only take the values in Il while A is in the mode l.

� Flow is a function that associates a mode l ∈ Loc a continuous dynamics
ẋ = fl(x, t) for x ∈ Rn.

� Lab is the set of labels for the discrete transitions.

� Trans ⊆ Loc× Lab× Loc is the set of discrete transitions or jumps associated
with their labels among the modes.

� Guard assigns a transition α ∈ Trans a guard Gα ⊆ Rn such that the jump α
can be executed if and only if the state variables are of the values in Gα.

� Reset associates a transition α ∈ Trans a reset mapping Πα : Rn → Rn which
updates the values of the variables after the execution of α.

� Init ⊂ Loc × Rn is the initial state set of A. Every state in Init also satis�es
the mode invariants.

14 Chapter 3. Preliminaries

loc1
ẋ = x + 50
x ≤ 23

loc2
ẋ = −x
x ≥ 17

22 ≤ x ≤ 23

17 ≤ x ≤ 18

(a) Hybrid automaton.
 17

 18

 19

 20

 21

 22

 23

 0 0.2 0.4 0.6 0.8 1

te
m

p
e

ra
tu

re

time

(b) Example execution.

Figure 3.1: Hybrid automaton and example execution of a self-regulating heater.

A state of A is a pair (l, ν) wherein l denotes the current location and ν ∈ Rn is the
valuation of the variables.

Figure 3.1a shows an automaton modeling a self-regulating heater. It consists of
two locations, modeling the temperature x while heating loc1 and not heating loc2.
The temperature in both locations is limited due to the guards, x ≤ 23 and x ≥ 17.
To change the mode of the heater the automaton needs to take a transition. The
transition from loc1 to loc2 has a guard 22 ≤ x ≤ 23 which ensures that the temper-
ature is high enough before turning the heater o�.

A simulation of the behavior of a hybrid automaton includes as well the discrete
as the continuous part. Both are simulated di�erently according to the following
de�nition.

De�nition 3.1.2. Run of a hybrid automaton
An execution (run) of a hybrid automaton A is a sequence of states (l0, ν0), (l1, ν1),
(l2, ν2), . . . which can be in�nite such that (l0, ν0) ∈ Init and for two successive states
(l, ν), (l′, ν′) either of the following two evolutions holds.

� Discrete evolution (jump)
There exists a jump α = (l,a,l′) ∈ Trans such that ν ∈ Guard(α), ν′ ∈ Inv(l′),
and Reset(α) = ν′.

� Continuous evolution (time delay)
We have l = l′ and Flow(l) = f with f(0) = ν, f(t) = ν′ and for all 0 ≤ t′ ≤ t
it holds f(t′) ∈ Inv(l).

Figure 3.1b shows an example execution of the hybrid automaton from Fig. 3.1a.
We see continuous evolution of the hybrid automaton while the plots function in-
creases and decreases. Every change of direction of the plots function marks discrete
jumps.

Since we model realistic systems and some behavior is not exact describable
through ODEs, we need to add uncertainty. Uncertainty in a hybrid system can
be part as well of the a�ne dynamics of the �ow conditions as of the a�ne functions
of the resets.

3.1. Hybrid Automata and Reachability Analysis 15

ẋ = v
v̇ = −9.81

x == 0 ∧ v ≤ 0
v := −0.75 · v

Figure 3.2: Bouncing ball.

ẋ = 1
x ≥ 0

ẋ = 1
x ≤ 3

x ≥ 2

x ≤ 2

Figure 3.3: Chattering behavior.

De�nition 3.1.3. Uncertainty [FLGD+11]
A �ow condition with time-variant uncertainty is de�ned by ẋ = Ax + Bu(t) + c,
where Ax+ c is autonomous and Bu(t) time-variant, for u(t) in a bounded convex set
U .
A reset function ẋ = Rx + Sw + v is pure autonomous, but with an uncertain w for
w in a bounded convex set W.

Since a hybrid system and its execution is an abstraction from a real process and
its behavior, non realistic problems can occur, like in�nitely many jumps in �nite
time.

De�nition 3.1.4. Zenoness
An in�nite path fragment π is Zeno i� it is time-convergent and in�nitely many
discrete actions are executed within π. A path is time-convergent when the sum of its
time spend with continuous evolution is �nite and thus the execution time is �nite.

In Fig. 3.2 we see a well known example of zeno behavior. A ball drops, bounces
from the ground, changes directions and lowers its velocity. Every bounce the velocity
decreases with a given factor, but never reaches zero. This results in decreasing time
spend between two bounces.

Figure 3.3 shows an arti�cial automaton which models a second aspect of zeno
behavior. While in the bouncing ball example the time between two jumps decreases,
in this example are paths, elapsing no time between two jumps. An execution with
in�nitely many jumps between both locations in no time is non-realizable behavior,
since their execution would require in�nitely fast processors.

We model and execute a hybrid system to get insights about the systems behavior.
We want to know how the temperature changes over time in automaton 3.1a, or if the
temperature maybe increases to a life-threatening level. To obtain this information,
we compute the reachable states of a hybrid automaton.

De�nition 3.1.5. A state s is reachable in a given hybrid automaton A with initial
states Init when there exists a execution of A, starting with a state i ∈ Init and
including the state s in its sequence of states.

De�nition 3.1.6. Hybrid reachability problem
Given a hybrid automaton A, the reachability problem on A is to verify whether a
given state is reachable. A bounded version of the problem is to determine whether
the state is reachable in a bounded time interval.

Since reachability of hybrid systems is in most cases undecidable [HKPV98], reach-
ability analysis often focus on the more scalable (still undecidable) bounded case.

16 Chapter 3. Preliminaries

Additional to the above de�ned hybrid reachability problem, the presented tools
implement di�erent de�nitions of reachability. Two tools use another de�nition of
boundedness which adds a bound for number of jumps.

Figure 3.1b visualizes a subset of the computed reachable states of the self-
regulating heater. If we are not only interested in the reachable states but also
in the safety of the system, we need to specify the behavior which the system must
not reach. For this purpose there are unsafe sets in reachability analysis which are
checked to be not reachable.

De�nition 3.1.7. Unsafe set
An unsafe set is a subset of all possible states from an automaton A. If a state from
the unsafe set is reachable, a hybrid system is called unsafe, otherwise it is called safe.

For the reachability analysis performed by the analyzed tools we present a gen-
eral forward-reachability algorithm, brie�y explain two di�erent approaches and give
examples of the used state set representations.

Input : s e t Init o f i n i t i a l s t a t e s
Output : s e t R o f r eachab l e s t a t e s
Algorithm :
Rnew := Init ;
R := ∅ ;
whi l e (Rnew 6= ∅){

R:= R ∪Rnew ;
Rnew := Reach (Rnew)\ R ;

}

Listing 3.1: General forward reachability analysis algorithm.

In Listing 3.1 we see an algorithm to compute reachable states with forward anal-
ysis. It starts with the initial states and computes iterative new states from the actual
reachable states. The new states are reached due to continuous and discrete evolution.
The presented tools build upon this general algorithm. For a bounded time analysis,
a time bound veri�cation is added. The tools use di�erent approaches to implement
Reach: �ow-pipe construction reachability analysis and simulation-equivalent reach-
ability analysis.

Both approaches use a divide and conquer method with time steps to divide the
problem into smaller pieces. The �ow-pipe construction approach covers the continu-
ous evolution within one time step with one �ow-pipe. In Figure 3.4 we see an example
of �ow-pipe construction with boxes. The �ow-pipe starts in the left blue box and is
computed over time. Intersection with the transition guard displayed in red results in
two boxes intersecting with the guard. Aggregating the two intersected box segments
into one box yields the over-approximated green box. The green aggregated box is
the new actual state set and after applying the reset function it is displayed as the
right blue box.

The simulation-equivalent reachability analysis uses time-discrete analysis. The
time-variant uncertain inputs are meant to be piecewise constant, i.e. a new value
u(t) ∈ U is only chosen at multiples of the time step. Discrete transitions can only
be taken at multiples of the time step. The integrity of the invariant is only checked
at the multiples of the time step.

3.2. State Set Representations 17

Figure 3.4: Example of �ow-pipe construction and intersection with a guard.

3.2 State Set Representations

There are di�erent ways to represent the computed reachable states. They divide into
two categories, the geometric and the symbolic state set representations. For every
representation we give an example and a brief description.

The geometric state set representations used by the tools in this thesis are boxes,
generalized stars, octagons, polyhedra and zonotopes. Boxes and octagons are special
cases of polyhedra and generelized stars are a superset of zonotopes.

De�nition 3.2.1. A polyhedron in Rn is the solution set to a �nite number of linear
inequalities with real coe�cients in n real variables. A bounded polyhedron is called
polytope.

De�nition 3.2.2. A set S is called convex, if ∀x,y ∈ S : ∀λ ∈ [0,1] ⊆ R : λx+
(1− λ)y ∈ S.

De�nition 3.2.3. Given a set V ∈ Rn, the convex hull conv(V) of V is the smallest
convex set that contains V .

All polyhedra used in this thesis are convex sets. Depending on the form of the
representation we distinguish between H-polytopes, V-polytopes and zonotopes.
A H-polytope is described by its de�ning inequalities. The polytope is the intersec-
tion of all halfspaces de�ned through the inequalities.
A V-polytope is de�ned by a vertex set. The polytope is the convex hull of all vertices
contained in the vertex set.

Figure 3.5 shows the di�erence of V-polytope and H-polytope representation cov-
ering the same variable valuation.

A zonotope or parallelotope is a convex polyhedron de�ned by a center and a
�nite number of generator terms. It is always central symmetric to its center. In other
words, a zonotope is de�ned by a center c to which line segments li = βi ·gi, 1 ≤ βi ≤ 1
are added via Minkowski sum. This is illustrated in Fig. 3.6.

18 Chapter 3. Preliminaries

x

y

(a) H-polytope state set representation.

x

y

(b) V-polytope state set representation.

Figure 3.5: Comparison of H-polytope and V-polytope representation.

x

y

c

g0

g1

Figure 3.6: Example for zonotope state
set representation.

x

y

Figure 3.7: Example for support function
state set representation.

De�nition 3.2.4. Zonotope / Parallelotope [ASB08]
A Zonotope is a set

Z =

{
x ∈ Rn|x = c+

p∑
i=1

βi · gi,−1 ≤ βi ≤ 1

}
with c, g1, . . . , gp ∈ Rn. The vectors gi, . . . , gp are referred to as the generators and c
as the center of the zonotope.

A generalized star is a convex polyhedron and a superset of the class of zonotopes.
Like a zonotope a generalized star is de�ned by a center and a set of generators. But
in contrast to a zonotope the factors βi are not limited by βi ∈ [−1,1], but a de�ning
predicate can be chosen. This means in short, a generalized star is like a zonotope
but with a predicate P : Rp → >,⊥ de�ning and limiting the factors β = (βi, . . . ,βp).

The tools presented in this thesis use two di�erent symbolic state set representa-
tion, support functions and Taylor Models.
A support function is an exact representation of a state set. They were �rst used for
hybrid reachability analysis in [LGG09]. Since this representation is not e�cient for
computing intersections, some tools convert them into (over-approximated) polyhe-
dra. Figure 3.7 shows how a polyhedron can be obtained from a support function.
The inequalities for the polyhedron are computed with direction vectors li ∈ Rn with
li · x ≤ ρS(li).

De�nition 3.2.5. Support functions [LGG09]
Let S ∈ Rn be a compact convex set; the support function of S is ρS : Rn → R de�ned
by ρS(l) = maxx∈S l · x.

3.2. State Set Representations 19

Figure 3.8: Example of Taylor Models over-approximaing ex in x ∈ [−1,1].

The other used symbolic representation are Taylor Models, which uses Taylor poly-
nomials and their remainders to represent an over-approximation of a state set.

De�nition 3.2.6. Taylor polynomial
A Taylor polynomial is a k-order approximation of a smooth function f : D → R ∈ Ck

which means k times di�erentiable. It is de�ned by
∑k
n=0

f(n)(a)
n! (x− a)n.

A Taylor Model consist of a pair (p,I) where p is a Taylor polynomial and I is an
interval remainder. A Taylor Model covers and over-approximates the variable values
for a given time interval. In Fig.3.8 we see an illustration how Taylor Models can
over-approximate the function f(x) = et in the interval x ∈ [−1,1].

20 Chapter 3. Preliminaries

Chapter 4

Comparing Modeling Languages

Chapter 2 gives a short description of the di�erent tools. In this chapter we look more
closely at the underlying languages and their expressivity.
We analyze the languages of the tools Flow*, HyDRA, HyLAA and SpaceEx as well
as the Compositional Interchange Format (CIF3). We will present exemplaric code
snipplets, for the full inputs �les see appendix A.
The tools analyzed in this thesis have two di�erent approaches to store data of the
hybrid system. The tools Flow*, HyDRA and HyLAA as well as the language CIF3
store their data in a single �le. SpaceEX uses two �les to store its data, the modeling
�le in XML style with the automaton itself and the settings �le, including the initial
and unsafe sets.

4.1 Variables Declaration

The modeling languages declare the automatons variables di�erently, see Fig. 4.1 for
a syntax comparison.

In Flow*, HyDRA and HyLAA variables names are simply stated in the beginning.

In contrast to the other tools in the modeling language of SpaceEx every variable
has attributes additional to its name.

� A local variable can only be a�ected inside the given component.

� The dynamics can be constant (const), or arbitrary (any) with respect to the
conditions of Sec. 4.3.

� The attribute controlled is important for composition of two or more com-
ponents. Simpli�ed, a controlled variable x cannot be modi�ed outside of the
component that owns it, beyond what is possible in the component itself.

� The attributes d1 and d2 speci�y the variables dimensions and for all scalar
real values this equals d1="1",d2="1". The possibility of vectors seems to
be not used by the tool.

Because CIF3 has more data types than the described tools, inter alia booleans,
integer, reals, lists and tuples, variables are declared with name and data type.

22 Chapter 4. Comparing Modeling Languages

state var x, t

(a) Flow* and HyDRA.

ha.variables = ["x", "t"]

(b) HyLAA.

<param name="x" type="real" local="false" d1="1" d2="1"
dynamics="any" controlled="true" />

<param name="t" type="real" local="false" d1="1" d2="1"
dynamics="any" controlled="true" />

(c) SpaceEx.

cont x;

(d) CIF3.
Figure 4.1: Comparison of variable declaration.

4.2 State sets

In a hybrid system there are two important state sets to specify, the initial and the
unsafe set. Figures 4.2 and 4.3 show the syntax for initial and unsafe sets in the
analyzed languages. Table 4.1 summarizes the result of the following comparison in
a shortened overview.

Initial sets For initial sets in a modeling language we consider how many loca-
tions are possible in the initial set and how the set of states can be described formally.

The tools HyDRA, HyLAA and SpaceEx as well as the language CIF3 allow more
than one location in the initial set. If a tool allows no location in the initial set instan-
tiation, all locations are initial. Only Flow* is limited to one location in the initial set.

For the variable valuations in initial sets every tool has the same power in expres-
sivity, all allow bounded, convex sets and the representations are equivalent.
In Flow* syntax the variable instantiation are expressed with intervals.
In HyDRA syntax the variable instantiation are expressed with intervals and conjunc-
tions of linear constraints.
HyLAA uses conjunction of linear constraints to express the initial values. According
to [BD17b] their algorithm is only intended for bounded inputs. But in fact, HyLAA
does not abort if a model contains unbounded variables. Thus a computation of a
model containing unbounded variables may not be sound and may even not termi-
nate.
SpaceEx is the only tool which allows conjunctions and disjunctions of linear con-
straints for the variable instantiation.
The modeling language CIF3 has a wider range of possibilities compared to the de-
scribed tools, e.g. conjunction, disjunctions and negations of linear constraints and
also algebraic functions, including trigonometric ones.

4.2. State sets 23

Flow* HyDRA HyLAA SpaceEx CIF3
Number of locations in
initial set

exact
one

at least
one

at least
one

any any

Variables representa-
tion in initial sets

interval interval,
conj. of
constr.

conj.
of con-
straints

conj./disj.
of con-
straints

alg. fcts.
/ logical
formulas

Unsafe sets possible yes yes yes1 yes no
Number of locations in
unsafe set

any any any1 any -

Variables representa-
tion in unsafe sets

interval,
conj.
of con-
straints

interval,
conj.
of con-
straints

conj./disj.
of con-
straints1

conj./disj.
of con-
straints

-

Table 4.1: Comparison of state set declaration.

Unsafe sets Unwanted behavior of hybrid systems is modeled by unsafe sets. We
compare the number of locations and the valuation representations.

For Flow* we can specify multiple unsafe sets. An unsafe set consist of a loca-
tion and possibly a conjunction of linear constraints. A location without constraints
means all valuations inside this location.
For HyDRA we can specify multiple unsafe sets. Either an unsafe set is a conjunction
of linear constraints or a location with possibly conjunctions of linear constraints. A
location without constraints means all valuations inside this location.
HyLAA uses an error location concept. The hybrid system has one (or more) sink
location which is dedicated to represent the unsafe set. If a automaton must not reach
a given valuation in one location, there is a transition with this valuation as its guard
leading to the error state.
In SpaceEx there are several options to de�ne the unsafe set. All possible combi-
nations of linear constraints and locations with conjunctions and disjunctions are
allowed, including only a single location or a single linear constraint.
In contrast to the tools CIF3 does not support unsafe sets since it is not part of the
automaton model.

Conversions If a modeling language does not match the desired speci�cation for
the automaton model, the model may be converted to a appropriate one.

If the initial set contains more than one location and the tool is not able to handle
this, the automaton model has to be transformed. A new initial location init is added
to automaton and for every locations loc in the initial set new transitions init→ loc
are added. Their reset functions are the origin initial variable valuations of loc.
If the initial or unsafe set contains disjunctions of linear constraints and the tool
cannot express this, the automaton model has to be transformed. An initial or unsafe
set containing location loc with linear constraints constr1 and constr2 of the form
loc∧(constr1∨constr2) can be transformed into two sets loc∧constr1 and loc∧constr2.

1only one unsafe location, with incoming transitions modeling "unsafe" behavior

24 Chapter 4. Comparing Modeling Languages

init {
on {x in [20, 21]}

}

(a) Flow* and HyDRA.

def define_init_states(ha):
rv = []

constraints = []
constraints.append(LinearConstraint([-1, 0], -20))
constraints.append(LinearConstraint([1, 0], 21))
constraints.append(LinearConstraint([0, 1], 0))
constraints.append(LinearConstraint([-0, -1], -0))
rv.append((ha.modes[’on’], constraints))

return rv

(b) HyLAA.

initially = "20<=x & x<=21 & loc(heater)==on & t==0 & T==20"

(c) SpaceEx.

cont x;
initial x >= 20;
initial x <= 21;
[...]
location on:

initial;

(d) CIF3.
Figure 4.2: Comparison of initial sets declaration.

unsafe{
on{x>=30}
off{x>=30}

}

(a) Flow* and HyDRA.

_error = ha.new_mode(’_error’)
_error.is_error = True
trans = ha.new_transition(on, _error)
trans.condition_list.append(LinearConstraint([-1, -0], -30))
trans = ha.new_transition(off, _error)
trans.condition_list.append(LinearConstraint([-1, -0], -30))

(b) HyLAA.

forbidden = "x>=30"

(c) SpaceEx.
Figure 4.3: Comparison of unsafe sets declaration.

4.3. A�ne Dynamics 25

Flow* HyDRA HyLAA SpaceEx CIF3
Time-variant uncer-
tainty in a�. dynamics

interval
arith-
metic

- conj.
of con-
straints1

conj.
of con-
straints

conj./disj.
of con-
straints

Reset functions yes yes no2 yes yes

Table 4.2: Comparison of a�ne dynamics.

4.3 A�ne Dynamics

In a hybrid system we �nd a�ne dynamics and functions in two components, the �ow
conditions and the reset functions. As they have a high similarity, their character-
istics are analyzed together. Additionally to the a�ne dynamics, both may contain
uncertainty.

From De�nition 3.1.3: A �ow condition with time-variant uncertainty is de�ned
as ẋ = Ax+Bu(t) + c, where Ax+ c is autonomous and Bu(t) time-variant, for u(t)
in a bounded convex set U . A reset function ẋ = Rx + Sw + v is pure autonomous,
but with an uncertain w for w in a bounded convex set W.

Time-variant uncertainty is a part of �ows and conditions. All tools except Hy-
DRA have the same expressivity, they can handle bounded, convex sets representing
uncertainty. CIF3 is able to express unbounded, non-convex sets. Figure 4.4 shows
an example for a simple a�ne dynamic �ow condition with time-variant uncertainty.
The represented ODE is x′ = 2 · x+ 2 · u(t) + 3 with u ∈ [−1,1].

In Flow* the time-variant uncertainty is expressed by interval arithmetic. It is not
possible to multiply the interval with a scalar in the input �le. The multiplication
has to be done pre-model and stated in interval form.
HyDRA does not support time-variant uncertainty at the moment.
HyLAA syntax uses matrices and vectors to express the a�ne dynamics and functions.
For the bounds of the uncertainty set it uses conjunctions of linear constraints. At
the moment time-variant uncertainty is only permitted when there are no invariants
in the locations and no discrete transitions.
SpaceEx uses conjunction of linear constraints in the invariants to specify the bounds
of a time-variant uncertain variable. The uncertain variables were de�ned in the com-
ponents with arbitrary dynamics.
CIF3 uses conjunctions and disjunctions of linear constraints to specify the bounds
of a time-variant uncertain variable. The uncertain variables are initialized as nor-
mal continuous variables without constraints. The specifying constraints are localized
outside the locations with the keyword invariant.

1only in models with a single location without invariant
2resets are not supported yet, but will be in the future

26 Chapter 4. Comparing Modeling Languages

x’ = 2.0 * x + [-2.0, 2.0] + 3.0

(a) Flow*.

a_matrix = np.array([\
[2], \
], dtype=float)

c_vector = np.array([3], dtype=float)
location.set_dynamics(a_matrix, c_vector)

u_constraints_a = np.array([[1], [-1]], dtype=float)
u_constraints_b = np.array([1, 1], dtype=float)
b_matrix = np.array([[2]], dtype=float)
location.set_inputs(u_constraints_a,u_constraints_b,b_matrix)

(b) HyLAA.

<param name="u" type="real" d1="1" d2="1" local="false"
dynamics="any" controlled="true"/>

[...]
<invariant> [...] u<=1 & u>=-1 </invariant>
<flow> x’ == 2*x + 2*u + 3</flow>

(c) SpaceEx.

cont u;
invariant -1<=u, u<=1;
[...]
equation x’=2*x + 2*u +3;

(d) CIF3.
Figure 4.4: Comparison of time-variant uncertainty.

4.4. Constraints 27

inv {x<=23 t<=20}

(a) Flow* and HyDRA.

on.inv_list.append(LinearConstraint([1, 0], 23))
on.inv_list.append(LinearConstraint([0, 1], 20))

(b) HyLAA.

<invariant> x <= 23 & t<=20 </invariant>

(c) SpaceEx.

invariant x <= 23, t <= 20;

(d) CIF3.
Figure 4.5: Comparison of invariant declaration.

guard {x >= 22}

(a) Flow* and HyDRA.

trans.condition_list.append(LinearConstraint([-1, -0], -22))

(b) HyLAA.

<guard> x >= 22 </guard>

(c) SpaceEx.

edge when x>=22 goto off;

(d) CIF3.
Figure 4.6: Comparison of guard declaration.

4.4 Constraints

In a hybrid system apart from the de�nition of initial and unsafe sets, there are two
di�erent kinds of constraints. Invariants specifying valid behavior for each location
and guards attached to the transitions. Guards have to be satis�ed before taking a
transition to another location.
Continuous evolution at locations is limited by invariants, guards are associated to
discrete evolution.

All tools use conjunctions of linear constraints to represent their invariants and
guards. The tools di�er in the used syntax, see Figs. 4.5 and 4.6.
CIF3 has the ability to express constraints with conjunction, disjunctions and nega-
tions of various kinds of functions including algebraic and trigonometric ones.

4.5 Parallel Composition

Only SpaceEx and CIF3 are able to express parallel composition. If a tool does not
support parallel compositional systems, the hybrid system can be converted into a
�at one with only one automaton.

28 Chapter 4. Comparing Modeling Languages

4.6 Implementation of an Additional Input Format

for the HyPro Library

The HyPro library and the tool HyDRA based on it use Flow* like syntax as their
input formats. With Flow* syntax it is not possible to use disjunctions in state set
declarations and parallel composition directly1. Since many other tools do not use
Flow* syntax, benchmarks have to be transformed into Flow* syntax with possible
negative bloating e�ects.

To solve this issue, a CIF3 parser was added to HyPro. CIF3 outperforms other
alternatives, since

� its powerful expressivity, as shown in the previous sections,

� the developers of the transformation tool HyST "would prefer tool developers
use standardized interchange formats for their input models like the Composi-
tional Interchange Format (CIF)"2,

� other tools, e.g. SpaceEx, also supports CIF3 as a possible input format, [GF11]

� its syntax is less complex without losing expressivity.

The alternative to use the de facto standard interchange format, the SpaceEx lan-
guage34, was discarded due to the immense advantages of a CIF3 implementation.
Two disadvantages of the SpaceEx input format compared to CIF3 are: unnecessary
variable attributes like dimensions, and the usage of XML compatible math symbols
like <= instead of ≤.

Since CIF3 is a very powerful language which covers a wide range of automata
and systems, we implemented only a subset. For the �rst implementation we started
with the exact subset recognized by our actual parser.
For the implementation of the CIF3 parser we use ANTLR4 [Par13] as a parser gen-
erating tool. The generated parser converts given inputs automatically into abstract
syntax trees (AST). From ASTs we compute and derive the hybrid system in the
HyPro datastructure.

Additionally the original CIF3 grammar had to be changed due to technical reasons
without e�ect to the language.

� For better usability and maintenance we divided the CIF3 grammar into three
subgrammars, hybrid automaton, locations and expressions.

� ANTLR4 builds the AST using the �rst matching rule. Therefore we changed
the order of alternatives for some rules to preserve the language. We also added
annotations to some rules' alternatives for simpler identi�cation in the AST.

� Since we uses a subset of the CIF3 language, there are rules without meaning.
To handle an input �le with one of those rules, the parser aborts and gives a
meaningful error message with detailed information.

1see Secs. 4.2 and 4.5
2from "http://verivital.com/hyst/", 20.01.2018
3The ARCH17 workshop, which connects di�erent developers, delivered the benchmark set "Con-

tinuous and Hybrid Systems with Linear Continuous Dynamics" [ABC+17] in SpaceEx format.
4The benchmarks of continuous and hybrid systems [THS], which are part of the HyPro project,

are provided in Flow* and SpaceEx syntax. Even non-linear benchmarks has SpaceEx �les.

4.6. Implementation of an Additional Input Format for the HyPro Library 29

Besides the advantages of CIF3 as a new input format for HyPro, there are also
two aspects not matching the requirements.
CIF3 does only support modeling the hybrid automaton itself and cannot express
settings or unsafe sets. Therefore the parser reads a second input �le containing this
information.
HyPro uses interval arithmetic in the initial states, but CIF3 is not able to use this
kind of arithmetic. The required conversion uses conjunctions of linear constraints.
This is equivalent to the interval input.

30 Chapter 4. Comparing Modeling Languages

Chapter 5

Developing a Minimal

Benchmark Set

Chapter 4 shows di�erences and similarities in expressivity and syntax of the
presented languages. In this chapter we present the �rst step to compare the tools
with experimental results.

Since the considered tools were developed with di�erent theoretical approaches,
the tools di�er also in their performance. We developed a minimal "crash-test" bench-
mark set, to test the tools in di�erent situations. With this benchmark set tools can
be categorized by their ability to prove safety of the benchmarks. Additional purposes
are a forecast from the results to actual performance in other benchmarks and help
tool developers improve their tools with respect to the tested aspects.

The benchmarks splits up into three categories: over-approximation due to the
dynamics, over-approximation due to jumps and arti�cial abstraction problems. The
benchmarks LargeInitialSet, LargeTV uncertainty and ManyV ariables cover dif-
ferent aspects of over-approximation due to the dynamics. ParallelEdges andMany
Jumps cover di�erent aspects of over-approximation due to the jumps. The bench-
marks Chattering and ZenoBehavior cover non-realistic problems occurring due to
abstractions.

LargeInitialSet Figure 5.1
The automaton has simple linear a�ne dynamics, but a large initial set. With larger
initial sets, the over-approximation increases. The time-horizon is T = 5 with initial
valuation x ∈ [−10,10], t = 0 and unsafe set x ≥ 1700.

ẋ = x+ 1
ṫ = 1

ẋ = x+ 1
ṫ = 1

t ≥ 3

Figure 5.1: Benchmark LargeInitialSet.

32 Chapter 5. Developing a Minimal Benchmark Set

ẋ = 1 + u(t)
ṫ = 1

ẋ = 1 + u(t)
ṫ = 1

t ≥ 3

Figure 5.2: Benchmark LargeTV uncertainty.

ẋ1 = 0.1 · x1
ẋ2 = 0.1 · (x1 + x2)

. . .
ẋ20 = 0.1 · (x1 + x20)

ṫ = 1

ẋ1 = 0.1 · x1
ẋ2 = 0.1 · (x1 + x2)

. . .
ẋ20 = 0.1 · (x1 + x20)

ṫ = 1

t ≥ 3

Figure 5.3: Benchmark ManyV ariables.

LargeTVuncertainty Figure 5.2
This benchmark has a small initial valuation (x = 0 and t = 0), but a large time-
variant uncertainty in the a�ne dynamics u(t) ∈ [−10,10]. With larger time-variant
uncertainty the over-apprimation increases. The time-horizon is T = 5 and the unsafe
set x ≥ 80.

ManyVariables Figure 5.3
This benchmark tests a tools capability to handle models with many variables. More
variables results in higher computation time and may worsen the over-approximation.
The time-horizon is T = 5 with initial valuation x1 = 1, . . . ,x20 = 1, t = 0 and unsafe
set x1 ≥ 2.05.

ParallelEdges Figure 5.4
This benchmark tests the capability of a tool to handle parallel edges. Proving the
safety of this benchmark reveals a smaller over-approximation due to aggregation.
The time-horizon is T = 5 with initial valuation x = 1, t = 0 and unsafe set x ≥ 2.

ẋ = 0.1 · x
ṫ = 1

ẋ = 0.1 · x
ṫ = 1

1 ≤ t ≤ 2

2 ≤ t ≤ 3

3 ≤ t ≤ 4

Figure 5.4: Benchmark ParallelEdges.

33

loc1
ẋ = 0.1 · x
ṫ = 1

. . .
loc9

ẋ = 0.1 · x
ṫ = 1

loc10
ẋ = 0.1 · x
ṫ = 1

1 ≤ t ≤ 2 8 ≤ t ≤ 9 9 ≤ t

Figure 5.5: Benchmark ManyJumps.

ManyJumps Figure 5.5
This benchmark is an automaton with ten locations with the same dynamics. The
di�culty to beat in this benchmark is the increasingly over-approximation with every
jump. The time-horizon is T = 11 with initial valuation x = 1, t = 0 and unsafe set
x ≥ 8.

Chattering and Zeno Figures 5.6 and 5.7
Some models of physical problems lead to chattering or zeno behavior. In reality this
is not possible, therefore it is helpful to detect this unwanted behavior.
The benchmark Chattering models chattering behavior around x = 2 with time hori-
zon T = 5, initial valuation x = 0, t = 0 and unsafe set x ≥ 6. The problem to be
solved in this benchmark is to detect the chattering behavior to terminate and prove
safety within time or reaching a given bound within time, e.g. number of jumps or
iterations.
The benchmark ZenoBehavior is the bouncing ball example and models the typical
zeno behavior. The problem to be solved in this benchmark is to detect the zeno
behavior for two reasons: to be able to terminate and prove safety within time or
reach a given bound within time, e.g. number of jumps or iterations; with decreas-
ingly value of x the probability increases to run into trouble with the chosen number
representation. The time-horizon is T = 20 with initial valuation x = 10, v = 0 and
unsafe set x ≥ 11.

ẋ = 1
ṫ = 1
x ≥ 0

ẋ = 1
ṫ = 1
x ≤ 4

x ≥ 2

x ≤ 2

Figure 5.6: Benchmark Chattering.

ẋ = v
v̇ = −9.81

x = 0 ∧ v ≤ 0
v := −0.75 · v

Figure 5.7: Benchmark ZenoBehavior.

34 Chapter 5. Developing a Minimal Benchmark Set

Chapter 6

Tool Comparison

In this chapter we compare the tools Flow*, HyDRA, HyLAA and SpaceEx with
respect to as well theoretical aspects as experimental results on a selected set of
benchmarks. The analyzed theoretical aspects are the tools settings, the di�erent
state set representations and aggregation methods.
Additionally we give experimental results for three benchmark sets, one with arti�cial
benchmarks covering single aspects, e.g. a large initial set or a large number of
variables, one with well known small benchmarks and �nally one containing very
complex, realistic models.

6.1 Settings

Besides an automaton model for a hybrid system we also need analysis parameter
given as settings to perform a reachability analysis for the system. Settings describe
how and in which limits an analysis computation runs. Some are identical for every
tool, but most options are speci�c to one tool. In Appendix B we present and explain
a selection of the most important settings for every tool.

Figure B.1 shows a selection of the possible settings for Flow*. The options fixed
and adaptive for steps and orders are mutually exclusive. The output �les are
written into the directory outputs.
HyDRA uses a subset of the Flow* settings syntax, shown in Fig. B.2.
Since HyDRA has additional functionalities compared to Flow*, the additional set-
tings are added to the command line. These functionalities are clustering, multi
threading and the option to choose the state set representation. A description is
shown in Fig. B.3
The HyLAA settings are composed of two parts, the settings for the computation, see
Fig. B.4, and the plotting settings, see Fig. B.5. For the computational setting, most
options have default values thus the user only needs to specify time step size and a
time bound.
Figures B.6 describes a selection of possible SpaceEx settings. The STC scenario
is a enhancement of the LGG scneario. It "produces fewer convex sets for a given
accuracy and computes more precise images of discrete transitions" [Fre12].
For a time bounded computation, the user has to use a clock component or a variable
representing the time.

36 Chapter 6. Tool Comparison

Comparing the settings for the di�erent tools there are the following similarities
and di�erences.
Time steps and time bounds All tools have a time step option. Flow*, HyDRA
and HyLAA need a global time bound, SpaceEx has an optional local time bound. A
global time bound de�nes a time bounded computation in terms of Def 3.1.6. A local
time bound is an upper bound on the time span considered for each �ow-pipe.
Additional computation bounds Flow* and HyDRA need a bounded number of
jumps. SpaceEx o�ers the option to bound the number of iterations. The iteration
bound is the total number of discrete jumps in the computation. These options are
not equal since Flow* and HyDRA compute until paths' number of jumps reach the
jump bound whereas SpaceEx computes until it reaches in total the iteration bound.
State set aggregation and clustering HyDRA, HyLAA and SpaceEx o�ers option
to turn o� aggregation. Flow* and SpaceEx o�ers choice of aggregation method. Only
HyDRA and SpaceEx provide optional clustering before aggregation.
Output options HyLAA is as the only tool able to produce images and videos
directly. Flow*, HyDRA and SpaceEx are able to produce vertices list output for
further advanced plot generation. Whereas HyLAA does not provide a vertices list
output.
Multi-threading Only HyDRA and HyLAA provide multi-threading. SpaceEx has
a multi-threated version XSpeed [RGD+15], but does not provide the feature itself.

6.2 State Set Representation and Aggregation

The choice of the state set representation is crucial for the overall result of reachability
analysis of hybrid systems, see the de�nitions and examples in Chap. 3. This and the
used aggregation method have great impact on a computations time e�ciency and
precision.

State Set Representation

Chapter 3 presents and describes the possible state set representations. They
divide into two categories, the geometric and the symbolic representations. Boxes,
generalized stars, polyhedra and zonotopes are geometric while Taylor Models and
support functions are symbolic state set representations.

In the following we present the state set representations used by the di�erent tools.
Flow* uses the symbolic approach of Taylor Models as its state set representation.
HyDRA o�ers boxes, V-polyhedra, H-polyhedra, zonotopes and support functions as
state set representations. The user is free to choose from this representations.
HyLAA uses generalized stars as state set representation. At the moment the de�ning
predicates are limited to conjunctions of linear constraints.
SpaceEx changes it state set representation autonomous operation-depended between
support functions and H-polyhedra. SpaceEx uses support functions for computing
linear mapping, minkowski sum and convex hulls. For intersection and checking con-
tainment, SpaceEx switches to H-polyhedra. The options for polyhedra are boxes,
octagons and arbitrary numbered facet polyhedra with given facet bound or facet
directions.

6.3. Experimental Results 37

State Set Aggregation

Aggregating two (or more) state sets has both good and bad impact on e�ciency.
In Fig. 3.4 we see an example aggregation of two interseting boxes with a transition
guard. Positive for the computation time is the reduced number of state sets. The
unavoidable over-approximation during the aggregation is negative for the precision.

Flow* provides two possible approaches for aggregating several Taylor Models.
The approaches are interval aggregation and parallelotope aggregation. Interval ag-
gregation computes an interval enclosure for all intersections. For the parallelotope
aggregation approach one can specify critical directions. Parallelotopes have the ad-
vantage to be easily convertible into a Taylor Model. The aggregation method can be
chosen di�erently for every jump.

HyDRA uses the convex hull as aggregation method for the state sets.
It also o�ers an optional clustering step before aggregation. The possibilities are no
clustering (-1), cluster all state sets into one (0) and to choose a maximal number of
segments which are clustered together. Smaller number indicates higher accuracy.

HyLAA performs an aggregate and deaggregate approach. It does aggregation at
every jump, but reaching a new guard, it tries to generate a concrete path to this
guard from the initial states. If there is no such path, the actual state set is computed
from a too large over-approximated aggregated star. This star will be searched with
backtracking and deaggregated into smaller stars from which it was aggregated. The
computation continues with the smaller stars. By this approach the tool tries to get
the advantages of aggregation, but with less precision loss.

SpaceEx performs a combination of clustering and aggregation for state sets. At
�rst the sets are clustered due to a given clustering percentage. Zero means no
clustering at all, 100 that all sets are clustered into one single set. Everything in
between reduces the number of groups to be aggregated, smaller values indicate higher
accuracy. The aggregation computes the convex hull of each (clustered) group of state
sets.

6.3 Experimental Results

In this section we present experimental results benchmarking the di�erent tools. We
start with the arti�cial benchmark set from Chap. 5; followed by the well known
benchmarks from [CSBM+15]. Finally we evaluate the benchmark set from the
Applied Veri�cation for Continuous and Hybrid Systems workshop 2017 (ARCH17
[ARC17]).

All examples in this section are transformed with HyST [BBJ15], a source trans-
formation and translation tool for hybrid automaton models.
Since we perform benchmarks with tools using di�erent approaches of reachability
analysis, the results may not be comparable. Flow*, HyDRA and SpaceEx use
�ow-pipe construction based reachability analysis whereas HyLAA uses time-discrete
simulation-equivalent reachability analysis.

38 Chapter 6. Tool Comparison

Flow* HyDRA HyLAA SpaceEx
STC

SpaceEx
LGG

LargeInitialSet fail 2.14 fail fail fail
LargeTVuncertainty 0.31 - - 0.01 fail
ManyVariables fail 63.44 6.29 0.22 fail
ParallelEdges 1.12 11.43 fail 0.05 0.11
ManyJumps fail 84.80 timeout fail fail
Chattering 370.40 timeout timeout 0.04 fail
ZenoBehavior 47.27 timeout - fail timeout

Table 6.1: Minimal benchmark set results, running time in seconds. Legend: -: tool
is not able to participate, fail : fail to prove safety, timeout : running time > 10 min.

6.3.1 Minimal Benchmark Set

In this section we present the experimental results of the minimal benchmark set
introduced in Chap. 5. The used settings are shown in Appendix C.

From Table 6.1 we derive the tools performance and usability in di�erent
aspects of reachability analysis. The fastest time for each benchmark is marked bold.
The tools Flow*, HyDRA and SpaceEx STC are equally successful since they are
able to prove safety for the same number of benchmarks. SpaceEx STC is by far the
fastest tool in proving safety. There are three distinguishing benchmarks for which
only one tool is able to prove their safety.
HyLAA and SpaceEx LGG are least successful since both are only able to prove the
safety of one benchmark. HyLAAs timeouts are caused by overly used deaggregation.

HyDRA and HyLAA did both not participate in the LargeTVuncertainty bench-
mark, since it covers aspects the tools cannot handle at the moment. HyDRA is not
able to handle time-variant uncertainty. HyLAA is not able to handle time-variant
uncertainty with discrete jumps, but a benchmark without jumps is not hybrid but
purely dynamic.
HyLAA additionally did not participate in the ZenoBehavior benchmark since it uses
resets, which HyLAA is not capable to handle. This kind of zeno behavior can only
be modeled with resets.

6.3.2 Well Known Benchmarks

We revisit the benchmark set from [CSBM+15], which covers some well known and
used benchmarks. The bouncing ball, the two tank system [RLP98], the rod reac-
tor [AHH96], the 5-D linear switch [THS], the �ltered oscillator [FLGD+11] and the
continuous vehicle platoon benchmarks [MKA08, MA10]. The versions used in this
thesis are taken from [THS].

Two benchmarks were omitted since we already cover them in the ARCH17 bench-
mark set. In the following we give a brief description of each benchmark.

� The bouncing ball example is a well know benchmark with a single location.
A ball drops from a prede�ned height, when reaching the ground it changes

6.3. Experimental Results 39

directions and lowers its velocity. This example can lead to zeno behavior due
to the decreasing times between the jumps which never reach zero and is thus
time-convergent.

� The two tank system models liquid levels of two tanks with di�erent sources and
drains. Tank one has one constant in�ow and one with a switch. A drain at the
bottom of tank one transports liquid from tank one into tank two. The second
tank has two drains, one constantly draining and one with a switch. The model
automaton has four location for all possible combinations of the switches. The
safety property is to prove that the second tanks liquid level never drops under
a certain value.

� The rod reactor example models a reactor tank with two rods cooling it down
with di�erent dynamics. This leads to three locations, heating up and cooling
down with two di�erent speeds.

� The 5-D linear switch example is a hybrid automaton with uncertain input with
�ve variables and �ve states with randomly generated convergent dynamics. The
transitions are based on the �rst variables value.

� The �ltered oscillator example consists of a 2-dimensional oscillator circuit and
a k-dimensional �lter. The total number of variables is k + 2. The di�culty of
this example scales up with its number of variables.

� The 5 / 10 vehicle platoon example is similar to the 3 vehicle platoon benchmark
from ARCH17 but with one crucial di�erence. In this case the communication
cannot be lost and it is not a hybrid benchmark, but a pure continuous one.

The experimental results for this benchmark set are shown in Table 6.2. The
fastest time for each benchmark is marked bold. The used initial and unsafe sets as
well as the used settings are described in Appendix C.

Remarkable in the results of this benchmark set is the very good success rate in
proving safety of Flow* and SpaceEx. HyDRA can prove safety for half of the bench-
mark set. In contrast to the other tools HyLAA participate only in two benchmarks
but is the fastest in proving safety of these systems.

Comparing the results from the minimal benchmark sets to the results of the well
known benchmark set we see some di�erences. In contrast to the well known bench-
mark set, Flow*, HyDRA and SpaceEx STC are equally successful in the minimal
benchmark set. The Space LGG scenario was only able to prove safety of one mini-
mal benchmark, but in the well known benchmark set it is very successful in proving
safety.

The SpaceEx LGG scenario proves safety for the smaller benchmark as the fastest
tool while Flow* is faster in proving safety for the higher dimensioned benchmarks.
This may result from the chosen intersection representation and aggregation method
for SpaceEx.

In Figs. 6.2 and 6.3 we see very similar over-approximations of the reachable states
for the benchmarks rod reactor and the 5 vehicle platoon.

40 Chapter 6. Tool Comparison

Flow* HyDRA HyLAA SpaceEx
STC

SpaceEx
LGG

bouncing ball 0.42 1.24 - 0.26 0.11

two tank system 0.96 - - 0.35 0.11

rod reactor 2.29 10.12 - 3.16 1.53

5-D lin. switch 2.56 - - 0.61 0.26

�lt. oscillator 4 2.29 0.85 - 1.69 1.40
�lt. oscillator 8 7.06 fail - 10.66 11.86
�lt. oscillator 16 27.13 fail - 161.82 112.48
�lt. oscillator 32 116.19 timeout - timeout timeout
5 vehicle platoon 1.19 1.03 0.06 3.79 3.19
10 vehicle platoon 2.50 2.93 0.08 15.50 23.16

Table 6.2: Well known benchmarks benchmark set results, running time in seconds.
Legend: -: tool is not able to participate, fail : fail to prove safety, timeout : running
time > 10 min.

The rod reactor plots in Fig. 6.2 start at c1 = 20 with an initial temperature of
x ∈ [510,520]. Reaching a temperature 550[◦C] or 510[◦C] the automaton model
takes a discrete transition to start or end cooling down.
The benchmark plots in Fig. 6.3 show the relative distances in platoon from the �rst
vehicle to the leader (e1) and between the �rst and the second vehicle (e5). The
plots starts around (1,1) and both relative distances increase. While decreasing of
the relative distances, the possible valuation sets also decrease.

HyLAA does not participate in the �ltered oscillator benchmarks although it
should be able to prove its safety, but the produced outcome did not match the
expectations, see Fig. 6.1. Since HyLAA participates only in benchmarks without
jumps in the non-arti�cial benchmarks we can see its good performance in computing
a�ne dynamics, but cannot compare its performance for discrete transitions to the
other tools.

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

z

x

(a) Flow* (b) HyLAA

Figure 6.1: Comparison of Flow* and HyLAA for the �ltered oscillator 4 benchmark.

6.3. Experimental Results 41

 0

 10

 20

 30

 40

 50

 60

 70

 80

 510 515 520 525 530 535 540 545 550

c
1

x

(a) Flow*

 0

 10

 20

 30

 40

 50

 60

 70

 80

 510 515 520 525 530 535 540 545 550

c
1

x

(b) HyDRA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 510 515 520 525 530 535 540 545 550

c
1

x

(c) SpaceEx STC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 510 515 520 525 530 535 540 545 550

c
1

x

(d) SpaceEx LGG

Figure 6.2: Results for the rod reactor benchmark.

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

−0.5 0 0.5 1 1.5 2 2.5

e
5

e1

(a) Flow*

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

−0.5 0 0.5 1 1.5 2 2.5

e
5

e1

(b) HyDRA

(c) HyLAA

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

−0.5 0 0.5 1 1.5 2 2.5

e
5

e1

(d) SpaceEx STC

Figure 6.3: Results for the 5 vehicle platoon benchmark.

42 Chapter 6. Tool Comparison

6.3.3 ARCH17 Benchmark

This benchmark set was part of the ARCH17 workshop, as a friendly competition
for tools with di�erent areas of applications. We choose the suitable benchmark set
for our application area: Continuous and Hybrid Systems with Linear Continuous
Dynamics.
There are three scenarios with di�erent models and speci�cations.
Some of the most di�cult benchmarks were not solved by any of the tools correctly
and in time, we omit these in our results. Instead we will present the results of six
benchmarks for which at least one tool got a correct result in time.

In the following the benchmarks are described brie�y, for further information see
[ABC+17].

The building benchmark is a large scaled simulation of movement in the Los
Angeles University Hospital which has eight �oors each with three degrees of freedom,
namely displacements in x and y directions and rotation. This results in 24 variables,
but due to practical problems the a�ne dynamics has to be transformed into a model
with 48 variables.
The description of the concrete a�ne dynamics and the uncertain part can be found
in [TNJ16]. This benchmark has only one location without jumps and can be thus
modeled purely linear continuous.
There are two models, one in which the uncertain inputs can change arbitrarily over
time (BLDF01). In the other model the inputs are only uncertain in their initial
value and constant over time: u(0)U , u̇(t) = 0, modeled with an additional constant
variable in the initial set (BLDC01).
There are three unsafe set speci�cations used in both models. We show only the
results for the one safe speci�cation (BDS01): For all t ∈ [0, 20], x25(t) ≤ 5.1 · 10−3.
The other two provided speci�cations are only indented as sanity checks. They should
be computed with the same settings as the safety property.

The platoon benchmark [MK14] simulates the distance of three vehicles driving
in a platoon. It is modeled with two locations and time-varying input variables
describing the leaders behavior. The variables describe for every vehicle the relative
distance to its predecessor, its relative velocity, and the acceleration of the vehicle.
The vehicles communicate among each other. There are three models describing the
communication loss:

� PLAA01: loss is arbitrary over time,

� PLADxy: loss occurs at �xed times with counters for loss and reestablishment,

� PLANxy: loss occurs at non-deterministic times in de�ned delimiters.

In PLAD01 counters c1 and c2 for loss and reestablishing of the communication
are both set to 5; in PLAN01 the loss occurs in t ∈ [tb,tc] for tb = 10 and tc = 20, the
communication is reestablished not later than tr = 20 after loss.
For a abstraction of the communication loss models see Fig. 6.4.

The given speci�cations are safety properties for the distance between the vehicles,
which should be at least a given minimum. There are two classes of speci�cations, the

6.3. Experimental Results 43

comm.
ẋ = Acx+BcaL

x ∈ Dc

no comm.
ẋ = Anx+BnaL

x ∈ Dn

(a) Arbitary communication loss (PLAA01).

comm.
ẋ = Acx+BcaL

ṫ = 1
x ∈ Dc

no comm.
ẋ = Anx+BnaL

ṫ = 1
x ∈ Dn

t ≥ c1 t := 0

t ≥ c2 t := 0

(b) Communication loss at deterministic
times (PLAD01).

comm.
ẋ = Acx+BcaL

ṫ = 1
t ≤ tc
x ∈ Dc

no comm.
ẋ = Anx+BnaL

ṫ = 1
t ≤ tr
x ∈ Dn

t ≥ tb t := 0

(c) Communication loss at nondeterministic
times (PLAN01).

Figure 6.4: Communication loss for the platoon benchmark.

bounded (BNDxy) case with time horizon T = 20 and the unbounded case (UNBxy)
with no time horizon.
Every speci�cation sets their minimum dmin distance with xy= dmin. The safety
property is de�ned as: every distance between the following vehicles is greater than
or equal to the minimal distance given. In the benchmark set there are minimal
distances of 50, 42 and 30 for both the bounded as well the unbounded case cho-
sen. The formal safety property is to prove for the relative distances x1, x4 and x7:
xi ≥ −dmin. The choice of the coordinate system is such that the minimum distance
is a negative value.
We present for every benchmark model only the smallest veri�ed bound.

The gearbox benchmark [CMT15] models the motion of two meshing gears.
Shifting gears in a motor consists of a sleeve-gear disengaging from the actual gear
and meshing with the new gear. This benchmark models the sleeves meshing.

Meshing two gears can lead to di�erent problems. If the gears are in a bad position,
the meshing process can be too slow. During the meshing process the cumulated
impulse can gets to high and one gear may break.

The benchmark model (GRBX01) simulates trajectory of the sleeve relative to the
new gear during the meshing process. The position of the �rst gear is modeled as
time-invariant uncertain input.

The safety speci�cation (MES01) checks two aspects. First, whether the meshing
process is fast enough and reaches the meshed location within t < 0.2 seconds. Sec-
ondly it checks whether the cumulated impulse is less than 20[Nm] over the whole
time.

The results of all benchmarks with their models and speci�cations are shown in
Table 6.3. In contrast to the results from [ABC+17], in this thesis the computation
times are much higher in the building benchmark. Therefore we decided to split both

44 Chapter 6. Tool Comparison

Flow* HyDRA HyLAA SpaceEx
STC

SpaceEx
LGG

BLDC01-BDS01 T=1 487.92 5.89 0.19 5.22 3.61
BLDC01-BDS01 T=20 timeout 135.17 3.47 23.51 26.76
BLDF01-BDS01 T=1 430.06 - 0.23 5.27 4.70
BLDF01-BDS01 T=20 timeout - 4.25 33.99 59.62
PLAD01-BND42 9.52 - - 5.70 5.11
PLAN01-BND50 168.26 - - 30.90 78.42
PLAD01-UNB50 - - - 10.96 16.91
GRBX01-MES01 7.14 - - 0.14 timeout

Table 6.3: ARCH17 benchmark set results, running time in seconds. Legend: -: tool
is not able to participate, fail : fail to prove safety, timeout : running time > 10 min.

building benchmarks into two benchmarks with di�erent time horizons. The fastest
time for each benchmark is marked bold. The used settings are described in Appendix
C.

Flow* is the slowest tool for this benchmark set since it has worse running times
than all other successful tools.1 This may results from the tools design to analyze
non-linear dynamics.
HyDRA is the most limited tool in this benchmark set with respect to the coverage.
HyLAA only participated in one scenario with two benchmark models, but
performed with the best running times.
SpaceEx is the most versatile tool since it computes the most results for this bench-
mark set, but with a lack of speed in the building scenario2. The STC scenario seems
to be the better choice, since it �nishes in every but one benchmark faster than the
LGG scenario.

The tools results match the forecast from the results of the minimal benchmark
set.
HyDRAs and HyLAAs limited number of participated benchmarks in the ARCH17
benchmark set corresponds to not participating in LargeTV uncertainty. The dif-
ference in computational time between Flow* and SpaceEx are apparent in both
benchmark sets. Flow*s inability to compute the building benchmark with time hori-
zon T = 20 are foreseen in the inability to prove the safety of the ManyV ariables
benchmark.

From Figs. 6.5 and 6.6 we conclude that all tools have a similar level of precision.
In Fig. 6.5 we see for the building benchmark the movement in direction x25 over
time. Figure 6.6 displays the relative distance e1 over time with communication loss
at deterministic times. We see the distance rapidly increasing at the beginning of
every communication loss and reestablishment.

1In contrast to results from [ABC+17], the author of this thesis was not able to compute the
building benchmark with Flow* for T = 20 within time (for a continuous model the memory of 8GB
plus 8GB swap was not su�cient, for hybrid model the computation had a timeout).

2In the original ARCH17 paper the much faster single direction option was used for the building
benchmark, but it computes an unbounded set which cannot be printed.

6.3. Experimental Results 45

−0.008

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0 0.2 0.4 0.6 0.8 1

x
2

5

Time

(a) Flow*

−0.008

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0 0.2 0.4 0.6 0.8 1

x
2

5

Time

(b) HyDRA

(c) HyLAA

−0.008

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0 0.2 0.4 0.6 0.8 1

x
2

5

Time

(d) SpaceEx

Figure 6.5: Results for the BDC01 benchmark, movement in direction x25 over time.

−50

−40

−30

−20

−10

 0

 10

 20

 0 5 10 15 20

e
1

t

(a) Flow*

−50

−40

−30

−20

−10

 0

 10

 20

 0 5 10 15 20

e
1

t

(b) SpaceEx

Figure 6.6: Results for the PLAD01 benchmark, relative distance e1 over time.

46 Chapter 6. Tool Comparison

Chapter 7

Conclusion

The goal of this thesis was to compare expressivity and usability of hybrid systems
modeling languages. Besides theoretical aspects also practical application of reacha-
bility analysis was taken into account.

As presented in Chap. 4-6 we did a profound analysis of the input languages of
Flow*, HyDRA, HyLAA, SpaceEx and CIF3, implemented a CIF3 parser for HyPro,
developed a minimal "crash-test" benchmark set and analyzed experimental results
for di�erent benchmark sets.

We compared the input languages of said tools. Our comparison thereby focused
on how a�ne dynamics, uncertainty, state sets, constraints and parallel composition
can be expressed.
CIF3 and the speci�cation language used in SpaceEx are the most versatile and ex-
pressive languages. The other languages can obtain equivalent models with model
transformations, but with possible negative bloating e�ects. Exceptions are as well
resets and time-variant uncertainty in combination with invariants or transitions for
HyLAA as time-variant uncertainty in general for HyDRA. These are at the moment
not handleable by the tools.

The CIF3 parser implemented in this thesis for HyPro extended the possible input
formats of the library for future extensions and better interchangeability of bench-
marks.

In the developed minimal benchmark set each benchmark tests one special aspect
which may occur in real world scenarios. With the result tools can be characterized
due to their ability of proving safety of the contained benchmarks. To be versatile
in modeling realistic systems, a tool must be capable of handling large uncertainty, a
large number of variables and a large number of jumps. Additionally a tool should
detect and deal with chattering and zeno behavior.

The usability analysis splits into three parts: the possible analysis parameters, the
state set representations with aggregation methods and experimental results.
Overall all tools have similar options for their analysis parameters, but with some
special features and restrictions. SpaceEx is the only tool able to verify safety over

48 Chapter 7. Conclusion

unbounded time for systems which converge to a �xpoint. Flow* and HyDRA can
only verify safety for a bounded number of jumps. Only HyDRA and HyLAA can
speed up their computation with multi-threading (for SpaceEx exists a separate multi-
threated version).
The analysis of the o�ered state set representations and aggregation methods yields
HyDRA as the most versatile tool. It o�ers four di�erent types of geometric and one
symbolic state set representation. Additional to aggregation it o�ers the possibility of
prior clustering for discrete jump successor computation. The other tools o�er only
one state set representation, and only SpaceEx is able to cluster state sets, too.

For a profound analysis of the usability the tools are executed on di�erent bench-
mark sets.
In the minimal benchmark set Flow*, HyDRA and SpaceEx STC are equally success-
ful with di�erent strength. HyLAA and SpaceEx LGG are least successful proving
safety only for one benchmark.
In the realistic and complex benchmark set SpaceEx has the most successful com-
puted benchmarks. HyLAA participated only in two benchmarks, but was signi�cant
faster.
In a set of well known benchmarks Flow* and SpaceEx as well with STC as with LGG
outperform the other two tools. While HyLAA participate only in two benchmarks,
HyDRA is able to prove safety of half of the benchmarks.

The results from the minimal benchmark set explain the results of the ARCH17
quite good, but for the well known benchmarks the forecast fails. It is remarkable that
the established tools are most successful in the well known benchmarks. Since they
are well known, these tools had the possibility to measure and tune their performances
on them for many years.
Since in the minimal benchmark set every tool failed to prove safety for at least two
benchmarks, the in this thesis developed minimal benchmark set can be used as a
new challenging benchmark set to actual distinguish tools' performances.

7.1 Future Work

Not all challenges are addressed in detail in this thesis. We see several aspects which
could be focused on in future development.

Analyzing a wider range of tools would improve and extend the language and
tool comparison with respect to diversity. Interesting candidates for further analysis
are KeyMaera as an interactive hybrid tool combining deductive, real algebraic, and
computer-algebraic prover technologies and dReach as a bounded model checking tool
using constraint solving techniques for (non-)linear hybrid systems.

Extending the minimal benchmark set to other aspects of reachability analysis
would improve its challenging and distinguishing character. These aspect may be
non-linear dynamics, urgent transitions or include compositional hybrid systems.

A profound analysis of the relationship of traditional and simulation-equivalent
reachability analysis may improve the quality of comparing tools using di�erent kinds
of reachability analysis approaches.

Bibliography

[Á15] Erika Ábrahám. Lecture notes: Modeling and analysis of hybrid systems.
2015.

[ABC+17] Matthias Altho�, Stanley Bak, Dario Cattaruzza, Xin Chen, Goran
Frehse, Rajarshi Ray, and Stefan Schupp. Arch-comp17 category re-
port: Continuous and hybrid systems with linear continuous dynamics.
In ARCH17, volume 48 of EPiC Series in Computing, pages 143�159.
EasyChair, 2017.

[AD14] Matthias Altho� and John M Dolan. Online veri�cation of automated
road vehicles using reachability analysis. IEEE Transactions on Robotics,
30(4):903�918, 2014.

[AHH96] Rajeev Alur, Thomas A Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic veri�cation of embedded systems. IEEE Transactions on Software
Engineering, 22(3):181�201, 1996.

[ARC17] ARCH17. 4th International Workshop on Applied Veri�cation of Con-
tinuous and Hybrid Systems, volume 48 of EPiC Series in Computing.
EasyChair, 2017.

[ASB08] Matthias Altho�, Olaf Stursberg, and Martin Buss. Reachability anal-
ysis of nonlinear systems with uncertain parameters using conservative
linearization. In Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, pages 4042�4048. IEEE, 2008.

[AvBR13] DE Nadales Agut, Dirk A van Beek, and JE Rooda. Syntax and seman-
tics of the compositional interchange format for hybrid systems. The
Journal of Logic and Algebraic Programming, 82(1):1�52, 2013.

[Bak13] Stanley Bak. Hycreate: A tool for overapproximating reachability of
hybrid automata. Retrieved January, 17:2016, 2013.

[BBJ15] Stanley Bak, Sergiy Bogomolov, and Taylor T Johnson. Hyst: a source
transformation and translation tool for hybrid automaton models. In
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, pages 128�133. ACM, 2015.

[BD17a] Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for comput-
ing simulation-equivalent reachability for linear systems. In Proceedings
of the 20th International Conference on Hybrid Systems: Computation
and Control, pages 173�178. ACM, 2017.

50 Bibliography

[BD17b] Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent
reachability of large linear systems with inputs. In International Con-
ference on Computer Aided Veri�cation, pages 401�420. Springer, 2017.

[CÁS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In International Conference on
Computer Aided Veri�cation, pages 258�263. Springer, 2013.

[CBGV12] Pieter Collins, Davide Bresolin, Luca Geretti, and Tiziano Villa. Com-
puting the evolution of hybrid systems using rigorous function calculus.
IFAC Proceedings Volumes, 45(9):284�290, 2012.

[CMT15] Hongxu Chen, Sayan Mitra, and Guangyu Tian. Motor-transmission
drive system: a benchmark example for safety veri�cation. In ARCH14-
15, volume 34 of EPiC Series in Computing, pages 9�18. EasyChair,
2015.

[CSBM+15] Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Abraham,
Goran Frehse, and Stefan Kowalewski. A benchmark suite for hybrid
systems reachability analysis. In Proc. of the 7th NASA Formal Methods
Symp. (NFM'15), volume 9058 of LNCS, pages 408�414. Springer, 2015.

[Egg14] Andreas Eggers. Direct handling of ordinary di�erential equations in
constraint-solving-based analysis of hybrid systems. PhD thesis, Univer-
sität Oldenburg, 2014.

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. Spaceex: Scalable veri�cation of hybrid systems.
In Proc. 23rd International Conference on Computer Aided Veri�cation
(CAV), LNCS. Springer, 2011.

[Fre12] Goran Frehse. A brief experimental comparison of the stc and lgg analysis
algorithms in spaceex. 2012.

[GF11] Manish Goyal and Goran Frehse. Translation between cif and spaceex.
Technical report, PHAVer, Technical Report, MULTIFORM consortium,
2011.

[HKPV98] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What's decidable about hybrid automata? Journal of Computer and
System Sciences, 57(1):94�124, 1998.

[KGCC15] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: δ-
reachability analysis for hybrid systems. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 200�205. Springer, 2015.

[LGG09] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In CAV, volume 5643, pages 540�554.
Springer, 2009.

Bibliography 51

[MA10] Jan P Maschuw and Dirk Abel. Longitudinal vehicle guidance in net-
works with changing communication topology. IFAC Proceedings Vol-
umes, 43(7):785�790, 2010.

[MK14] Ibtissem Ben Makhlouf and Stefan Kowalewski. Networked cooperative
platoon of vehicles for testing methods and veri�cation tools. In Proc.
of ARCH14-15, pages 37�42, 2014.

[MKA08] Jan P Maschuw, Günter C Keÿler, and Dirk Abel. Lmi-based control
of vehicle platoons for robust longitudinal guidance. IFAC Proceedings
Volumes, 41(2):12111�12116, 2008.

[Par13] Terence Parr. The de�nitive ANTLR 4 reference. Pragmatic Bookshelf,
2013.

[PQ08] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem
prover for hybrid systems (system description). In International Joint
Conference on Automated Reasoning, pages 171�178. Springer, 2008.

[RGD+15] Rajarshi Ray, Amit Gurung, Binayak Das, Ezio Bartocci, Sergiy Bo-
gomolov, and Radu Grosu. Xspeed: Accelerating reachability analysis
on multi-core processors. In Haifa Veri�cation Conference, pages 3�18.
Springer, 2015.

[RLP98] Marcus Rubensson, Bengt Lennartson, and Stefan Pettersson. Conver-
gence to limit cycles in hybrid systems-an example. IFAC Proceedings
Volumes, 31(20):683�688, 1998.

[RS05] Stefan Ratschan and Zhikun She. Safety veri�cation of hybrid systems
by constraint propagation based abstraction re�nement. In International
Workshop on Hybrid Systems: Computation and Control, pages 573�589.
Springer, 2005.

[SÁC+15] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf,
Goran Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. Cur-
rent challenges in the veri�cation of hybrid systems. In International
Workshop on Design, Modeling, and Evaluation of Cyber Physical Sys-
tems, pages 8�24. Springer, 2015.

[SÁMK17] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan
Kowalewski. Hypro: A c++ library of state set representations for
hybrid systems reachability analysis. In NASA Formal Methods Sym-
posium, pages 288�294. Springer, 2017.

[THS] Theory of Hybrid Systems RWTH Aachen University,
Benchmarks of continuous and hybrid systems. https:
//ths.rwth-aachen.de/research/projects/hypro/
benchmarks-of-continuous-and-hybrid-systems/. [On-
line; accessed 20-February-2018].

[TNJ16] Hoang-Dung Tran, Luan Viet Nguyen, and Taylor T Johnson. Large-
scale linear systems from order-reduction (benchmark proposal). In
ARCH16, 2016.

https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/

52 Bibliography

Appendix A

Examples Displayed in Di�erent

Input Languages

Example 3.1a "Heater"

Listing A.1: Flow* and HyDRA syntax

hybrid r e a c h ab i l i t y
{
s t a t e var x , t

s e t t i n g {
f i x ed s t ep s 0 .01
time 20
remainder e s t imat i on 1e−4
QR precond i t i on
gnuplot octagon t , x
f i x ed orde r s 10
c u t o f f 1e−15
p r e c i s i o n 53
output heaterFlowStar
max jumps 1000
p r in t on

}

modes {
on {

l t i ode {x ' = 50−x t '=1}
inv {x<=23 t<=20}

}
o f f {

l t i ode {x ' = −x t '=1}
inv {x>=17 t<=20}

}
}

jumps {
on −> o f f
guard {x >= 22}
r e s e t {}
p a r a l l e l o t o p e aggregat i on {}

54 Appendix A. Examples Displayed in Di�erent Input Languages

o f f −> on
guard {x <= 18}
r e s e t {}
p a r a l l e l o t o p e aggregat i on {}

}

i n i t {
on {x in [2 0 , 21]}
}

}
unsa fe {

on{x>=30}
o f f {x>=30}

}

Listing A.2: HyLAA syntax

de f define_ha () :
ha = LinearHybridAutomaton ()
ha . v a r i a b l e s = ["x" , " t "]

on_loc1 = ha . new_mode(' on_loc1 ')
a_matrix = np . array ([\

[−1 , 0] , \
[0 , 0] , \

] , dtype=f loat)
c_vector = np . array ([5 0 , 1] , dtype=f loat)
on_loc1 . set_dynamics (a_matrix , c_vector)
on_loc1 . i n v_ l i s t .append(L inearConst ra int ([1 , 0] , 23))
on_loc1 . i n v_ l i s t .append(L inearConst ra int ([0 , 1] , 20))

o f f_ loc1 = ha . new_mode(' o f f_ loc1 ')
a_matrix = np . array ([\

[−1 , 0] , \
[0 , 0] , \

] , dtype=f loat)
c_vector = np . array ([0 , 1] , dtype=f loat)
o f f_ loc1 . set_dynamics (a_matrix , c_vector)
o f f_ loc1 . i n v_ l i s t .append(L inearConst ra int ([−1 , −0] , −17))
o f f_ loc1 . i n v_ l i s t .append(L inearConst ra int ([0 , 1] , 20))

_error = ha . new_mode(' _error ')
_error . i s_e r ro r = True

t rans = ha . new_trans it ion (on_loc1 , o f f_ loc1)
t rans . c ond i t i o n_ l i s t .append(L inearConst ra int ([−1 , −0] , −22))

t rans = ha . new_trans it ion (o f f_loc1 , on_loc1)
t rans . c ond i t i o n_ l i s t .append(L inearConst ra int ([1 , 0] , 18))

t rans = ha . new_trans it ion (on_loc1 , _error)
t rans . c ond i t i o n_ l i s t .append(L inearConst ra int ([−1 , −0] , −30))

t rans = ha . new_trans it ion (o f f_loc1 , _error)
t rans . c ond i t i o n_ l i s t .append(L inearConst ra int ([−1 , −0] , −30))

return ha

de f d e f i n e_ in i t_s ta t e s (ha) :
rv = []

c on s t r a i n t s = []

55

c on s t r a i n t s .append(L inearConst ra int ([−1 , 0] , −20))
c on s t r a i n t s .append(L inearConst ra int ([1 , 0] , 21))
c on s t r a i n t s .append(L inearConst ra int ([0 , 1] , 0))
c on s t r a i n t s .append(L inearConst ra int ([−0 , −1] , −0))
rv .append ((ha . modes [' on_loc1 '] , c o n s t r a i n t s))

return rv

de f d e f i n e_s e t t i n g s () :
p l o t_se t t i ng s = P lo tS e t t i ng s ()
p l o t_se t t i ng s . plot_mode = P lo tS e t t i ng s .PLOT_NONE
p lo t_se t t i ng s . xdim = 1
p l o t_se t t i ng s . ydim = 0

s e t t i n g s = HylaaSet t ings (s tep =0.01 , max_time=20.0 ,
p l o t_se t t i ng s=p lo t_se t t i ng s)

return s e t t i n g s

de f run_hylaa (s e t t i n g s) :
ha = define_ha ()
i n i t = de f i n e_ in i t_s ta t e s (ha)

eng ine = HylaaEngine (ha , s e t t i n g s)
eng ine . run (i n i t)

return eng ine . r e s u l t

i f __name__ == '__main__ ' :
run_hylaa (d e f i n e_s e t t i n g s ())

Listing A.3: SpaceEx syntax, model �le

<?xml ve r s i on=" 1 .0 " encoding=" i so −8859−1"?>
<sspaceex xmlns="http ://www−verimag . imag . f r /xml−namespaces/ sspaceex "

ve r s i on=" 0 .2 " math="SpaceEx">
<component id=" c l o ck ">

<param name=" t " type=" r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" />

<param name="T" type=" r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics=" const " />

<l o c a t i o n id="1" name=" loc1 ">
<invar i ant>t&l t ;=T</invar i ant>

<flow>t '==1</flow>
</loca t i on>

</component>
<component id="heate r">

<param name="x" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true " />

<param name="t " type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true " />

<param name="T" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="const " c on t r o l l e d="true " />

<l o c a t i o n id="1" name="on">
<invar i ant> x &l t ;= 23 & ; t&l t ;=T </invar i ant>
<flow> x ' == 50−x & ; t '==1</flow>

</loca t i on>
<l o c a t i o n id="2" name="o f f ">

<invar i ant> x > ;= 17 & ; t&l t ;=T </invar iant>
<flow> x ' == −x & ; t '==1</flow>

</loca t i on>

56 Appendix A. Examples Displayed in Di�erent Input Languages

<t r a n s i t i o n source="1" ta r g e t="2">
<guard> x > ;= 22 </guard>

</t r an s i t i o n >
<t r a n s i t i o n source="2" ta r g e t="1">

<guard> x &l t ;= 18 </guard>
</t r an s i t i o n >

</component>
<component id="system">

<param name="x" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true " />

<param name="t " type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true"/>

<param name="T" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="const " c on t r o l l e d="true " />

<bind component="heate r " as="heate r">
<map key="x">x</map>
<map key="t">t</map>
<map key="T">T</map>
</bind>

</component>
</sspaceex>

Listing A.4: SpaceEx syntax, con�guration �le

system = system
i n i t i a l l y = "20<=x & x<=21 & lo c (heate r)==on & t==0 & T==20"
forb idden = "x>=30"
s c ena r i o = s t c
d i r e c t i o n s = oct
set−aggregat i on = chu l l
sampling−time = 0.01
time−hor i zon = 10
i t e r−max = 1000
output−va r i a b l e s = "t , x"
output−format = GEN
re l−e r r = 1 .0E−12
abs−e r r = 1 .0E−13
f lowpipe−t o l e r an c e = 0.001

Listing A.5: CIF3 syntax

automaton heate r :
cont x ;
cont t = 0 ;
i n i t i a l x >= 20 ;
i n i t i a l x <= 21 ;

l o c a t i o n on :
i n i t i a l ;
equat ion x ' = 50−x , t ' = 1 ;
i nva r i an t x <= 23 , t <= 20 ;
edge when x>=22 goto o f f ;

l o c a t i o n o f f :
equat ion x ' = −x ;
equat ion t ' = 1 ;
i nva r i an t x >= 17 ;
i nva r i an t t <= 20 ;
edge when x<=18 goto on ;

end

57

Time-Variant Uncertain Example

An example for a simple a�ne dynamic �ow condition with time-variant uncertainty.
The represented ODE is x′ = 2 ∗ x+ 2 ∗ u+ 3 with u ∈ [−1,1].

Listing A.6: Flow* syntax

hybrid r e a c h ab i l i t y
{
s t a t e var x

s e t t i n g
{

f i x ed s t ep s 0 .01
time 10
remainder e s t imat i on 1e−4
i d e n t i t y p r e cond i t i on
f i x ed orde r s 10
c u t o f f 1e−15
p r e c i s i o n 53
output out
max jumps 1000
p r in t o f f

}

modes {
l o c a t i o n {

l t i ode {x ' = 2 .0 * x + [−2.0 , 2 . 0] + 3 .0}
inv {x <= 23.0}

}
}

jumps { }

i n i t {
l o c a t i o n {x in [0 , 0] }
}

}

Listing A.7: HyLAA syntax

de f define_ha () :
ha = LinearHybridAutomaton ()
ha . v a r i a b l e s = ["x"]

l o c a t i o n = ha . new_mode(' l o c a t i o n ')
a_matrix = np . array ([\

[2] , \
] , dtype=f loat)
c_vector = np . array ([3] , dtype=f loat)
l o c a t i o n . set_dynamics (a_matrix , c_vector)

u_constraints_a = np . array ([[1] , [−1]] , dtype=f loat)
u_constraints_b = np . array ([1 , 1] , dtype=f loat)
b_matrix = np . array ([[2]] , dtype=f loat)
l o c a t i o n . set_inputs (u_constraints_a , u_constraints_b , b_matrix)
l o c a t i o n . i n v_ l i s t .append(L inearConst ra int ([1] , 23))

return ha

58 Appendix A. Examples Displayed in Di�erent Input Languages

de f d e f i n e_ in i t_s ta t e s (ha) :
rv = []

c on s t r a i n t s = []
c on s t r a i n t s .append(L inearConst ra int ([1] , 0))
c on s t r a i n t s .append(L inearConst ra int ([−1] , −0))
rv .append ((ha . modes [' l o c a t i o n '] , c o n s t r a i n t s))

return rv

de f d e f i n e_s e t t i n g s () :
p l o t_se t t i ng s = P lo tS e t t i ng s ()
p l o t_se t t i ng s . plot_mode = P lo tS e t t i ng s .PLOT_NONE

s e t t i n g s = HylaaSet t ings (s tep =0.01 , max_time=10.0 ,
p l o t_se t t i ng s=p lo t_se t t i ng s)

return s e t t i n g s

de f run_hylaa (s e t t i n g s) :
ha = define_ha ()
i n i t = de f i n e_ in i t_s ta t e s (ha)

eng ine = HylaaEngine (ha , s e t t i n g s)
eng ine . run (i n i t)

return eng ine . r e s u l t

i f __name__ == '__main__ ' :
run_hylaa (d e f i n e_s e t t i n g s ())

Listing A.8: SpaceEx syntax, model �le

<?xml ve r s i on=" 1 .0 " encoding=" i so −8859−1"?>
<sspaceex xmlns="http ://www−verimag . imag . f r /xml−namespaces/ sspaceex "

ve r s i on=" 0 .2 " math="SpaceEx">
<component id=" uncer ta in ">

<param name="x" type=" r e a l " d1="1" d2="1"
l o c a l=" f a l s e " dynamics="any" c on t r o l l e d=" true "/>

<param name="u" type=" r e a l " d1="1" d2="1"
l o c a l=" f a l s e " dynamics="any" c on t r o l l e d=" true "/>

<l o c a t i o n id="1" name=" l o c a t i o n ">
<invar i ant> x &l t ;= 23 & ; u&l t ;=1 & ; u> ;=−1 </invar i ant>
<flow> x ' == 2*x + 2*u + 3</flow>

</loca t i on>
</component>
<component id="system">

<param name="x" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true " />

<param name="u" type="r e a l " l o c a l=" f a l s e " d1="1"
d2="1" dynamics="any" c on t r o l l e d="true " />

<bind component="uncer ta in " as="uncer ta in">
<map key="x">x</map>
<map key="u">u</map>

</bind>
</component>
</sspaceex>

59

Listing A.9: SpaceEx syntax, con�guration �le

system = system
i n i t i a l l y = "x==0 & lo c (uncer ta in)==l o c a t i o n "
fo rb idden = ""
s c ena r i o = s t c
d i r e c t i o n s = oct
set−aggregat i on = chu l l
sampling−time = 0.01
time−hor i zon = 10
i t e r−max = 1000
r e l−e r r = 1 .0E−12
abs−e r r = 1 .0E−13
f lowpipe−t o l e r an c e = 0.001

Listing A.10: CIF3 syntax

automaton uncer ta in :
cont x =0;
cont u ;
i nva r i an t −1<=u , u<=1;

l o c a t i o n l o c :
i n i t i a l ;
equat ion x '=2*x + 2*u +3;
i nva r i an t x<=23

end

60 Appendix A. Examples Displayed in Di�erent Input Languages

Appendix B

Settings for Di�erent Tools

fixed steps time steps
adaptive steps adaptive time steps in a range, e.g.

{ min 0.1 , max 0.2}
time time bound
remainder estimation remainder estimation in each integration step and

in each dimension, use a single value for all dimen-
sion, e.g. 1e-5 or di�erent for every dimension, e.g.
{x :[0.1 ,0.101], y :[-0.01 ,0.06]}

* precondition preconditioning method, use identity or QR. For
more imformation see [CÁS13].

gnuplot plot options. Use octagon, matlab or grid x
with x the number of grids paving. Followed by the
variables to be plotted.

fixed orders Taylor Models order, higher values indicates higher
accuracy

adaptive orders range of the Taylor Models order, e.g.
{min 3, max 8}, higher values indicates higher
accuracy

cutoff the cuto� threshold, e.g. 1e-15
precision the precision used by MPFR library, higher values

indicates higher accuracy
output name of the output �le
max jumps bound for jumps depth of the computation
print enable (on) or disable (off) printing

Figure B.1: Selection of Flow* setting

62 Appendix B. Settings for Di�erent Tools

fixed steps time steps
time time bound
identity precondition preconditioning method, see [CÁS13].
gnuplot octagon plot option followed by the variables to be

plotted.
output name of the output �le
max jumps bound for jumps depth of the computation
print enable (on) or disable (off) printing

Figure B.2: Selection of HyDRA settings (inside �le)

clustering clustering method, see 6.2
representation state set representation initially used. Use

box, support_function, zonotope,
polytope_h, polytope_v

threads number of threads to be used as as worker
threads. Default is 1

plotoutput path to the output �le
plotoutputformat plot output format. Use tex or gnuplot

Figure B.3: Selection of HyDRA settings (command line)

step step size
max_time time bound
_settings name of the plot settings object, see Fig. B.5
process_urgent_guards enabled (True) urgent transitions
counter_example_filename if we want to print counterexamples, e.g.

"counter_examples.py"
simulation.threads auto-detect number of system cores (default)

or specify a number
simulation.sim_mode use SIMULATION for full time range simula-

tion (default) or MATRIX_EXP for matrix ex-
ponential(expm) for �rst step then do matrix
multiplication

Figure B.4: Selection of HyLAA settings

63

plot_mode general plot mode, use
PlotSettings.PLOT_NONE,
PlotSettings.PLOT_IMAGE or
PlotSettings.PLOT_MATLAB

xdim variable for x-dimension
ydim variable for y-dimension
label.x_label label for x-dimension
label.y_label label for y-dimension
label.title titel for the plot
label.axes_limits axes limites of the form

(x_min, x_max, y_min, y_max)
make_video computes a video of the computed states, e.g.

("building.mp4", frames=220, fps=40)

Figure B.5: Selection of HyLAA plot settings

system name of the component to be analyzed
initially initial set, see Fig. 4.2
forbidden unsafe set, see Fig. 4.3
scenario Le Guernic-Girard (supp) or STC scenario (stc)
directions polyhedra used for intersections, use box, oct or

constraints e.g. x>=25
set-aggregation Aggregation method, use chull or none
clustering clustering method, see 6.2
sampling-time time step size
time-horizon only local
iter-max maximal number of iterations, negative values results

in computation until a �xpoint is found
output-variables variables to be written into the output �le
output-format use textual TXT, vertice list GEN or JavaView JVX

format JVX
rel-err used when comparing �oating point values and de-

ciding whether they are considered equal. This im-
pacts mainly tests for containment and emptiness of
objects. Smaller values inidcates highter accuracy

abs-err see rel-err

Figure B.6: Selection of SpaceEx settings

64 Appendix B. Settings for Di�erent Tools

Appendix C

Settings Used in the

Benchmarks

Minimal Benchmark Set

For all benchmarks the tools ran with the following settings. The values for Flow*,
HyDRA and HyLAA are derived from transformation with HyST. Time bound can
be found in the benchmark descriptions and time step size is 0.01.
Flow*: �xed order 5, remainder estimation 1e-4, identity precondition, cuto� 1e-15,
precision 53, max jumps 999
HyDRA: max jumps 999, r = support_function, t=4
HyLAA: standard setting
SpaceEx: directions = box, set-aggregation = chull, iter-max = 1000, rel-err = 1.0E-
12, abs-err = 1.0E-13, �owpipe-tolerance = 0.001

Well Known Benchmarks Set

For all benchmarks the tools ran with the following settings. The values for Flow*,
HyDRA and HyLAA are derived from transformation with HyST. For the used time
bounds, time step sizes, initial and unsafe sets, number of jumps or iterations, see
Table C.1.
Flow*: �xed order 5, remainder estimation 1e-5, identity precondition, cuto� 1e-15,
precision 128
HyDRA: r = support_function, t=4
HyLAA: standard setting
SpaceEx: directions = oct, set-aggregation = none, iter-max = 1000, rel-err = 1.0E-
12, abs-err = 1.0E-13, �owpipe-tolerance = 0.05

66 Appendix C. Settings Used in the Benchmarks

T t init unsafe j i
bouncing ball 10 0.1 10 ≤ x ≤ 10.2 x ≥ 10.7 20 20
two tank system 5 0.01 x ∈ [1.5,2.5],

x2 = 1
x2 ≤ −0.7 50 50

rod reactor 50 0.1 x ∈ [510,520] shutdown 20 50
5-D lin. switch 1 0.1 x1 = 3.1, x2 = 4,

x3 = x4 = x5 = 0
x1 ≤ −1.5 5 5

�lt. oscillator
4, 8, 16, 32

4 0.05 x ∈ [0.2,0.3], y ∈
[−0.1,0.1], a = 0 for
all a ∈ V ar\{x,y}

y ≥ 0.5 20 20

5 / 10 vehicle platoon 20 0.01 x ∈ [0.9,1.1] for all
x ∈ V ar

x1 ∈ [−0.5,0.2] 1 -1

Table C.1: Settings for the well known benchmark set. Legend: T: time horizon, t:
time step size, init: initial variable valuation, unsafe: unsafe set, j: jump bound for
Flow* and HyDRA, i: value of iter-max for SpaceEx.

ARCH17 benchmark set

Building benchmark

Initial and unsafe sets are taken from [TNJ16]. Further settings are:
Flow*: �xed steps 0.008, remainder estimation 1e-4, QR precondition, �xed orders
25, cuto� 1e-15, precision 100, max jumps 100
HyDRA: �xed steps = 0.04, r = support_function, t = 4, max jumps 100
HyLAA: step = 0.04
SpaceEx: directions = box, sampling-time = 0.004, rel-err = 1.0e-9, abs-err = 1.0e-12,
�owpipe-tolerance=1e-3

Platoon benchmark

Initial and unsafe sets are taken from [MK14]. Further settings are:
Flow*: �xed steps 0.01, remainder estimation 1e-4, identity precondition, �xed orders
3, cuto� 1e-12, precision 100, max jumps 999
SpaceEx: directions = box, set-aggregation = chull, �owpipe-tolerance = 1, �owpipe-
tolerance-rel = 0, simu-init-sampling-points = 0, iter-max = 200, verbosity = m,
output-error = 0, rel-err = 1.0E-9, abs-err = 1.0E-12

Gear benchmark

The initial set is 0× 0× [0.0168, 0.0166]× [0.0029, 0.0031]× 0 and the unsafe sets
are free ∧ t ≥ 0.2 and x5 ≥ 20. Further settings are:
Flow*: �xed steps 0.001, time 0.2, remainder estimation 1e-4, identity precondition,
�xed orders 3, cuto� 1e-15, precision 100, max jumps 4
SpaceEx: directions = oct, set-aggregation = none, sampling-time = 1, �owpipe-
tolerance = 0.001, �owpipe-tolerance-rel = 0, time-horizon = 0.2, iter-max = 200,ver-
bosity = m, output-error = 0, rel-err = 1.0E-12, abs-err = 1.0E-15

	Introduction
	Related Work
	Preliminaries
	Hybrid Automata and Reachability Analysis
	State Set Representations

	Comparing Modeling Languages
	Variables Declaration
	State sets
	Affine Dynamics
	Constraints
	Parallel Composition
	Implementation of an Additional Input Format for the HyPro Library

	Developing a Minimal Benchmark Set
	Tool Comparison
	Settings
	State Set Representation and Aggregation
	Experimental Results

	Conclusion
	Future Work

	Bibliography
	Appendix
	Examples Displayed in Different Input Languages
	Settings for Different Tools
	Settings Used in the Benchmarks

