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Abstract

Security systems can be insecure and may expose sensitive information. To
prevent insecurities such as the leakage of sensitive information, it is possible to
analyse a security system. In the analysis, the system is abstracted to a model
and a speci�cation language is used to describe a property to be analysed.
We use probabilistic system models to represent a system. The speci�cation
language to describe a property is a temporal logic called Probabilistic Com-
putation Tree Logic (PCTL). With PCTL, we can only describe and observe a
probability event of one execution in the system. However, in security systems,
we are interested in the probabilistic relation between individual executions
to observe similarities and di�erences. The property which allows us to draw
probabilistic relations between multiple executions to observe similarities and
di�erences is called hyperproperty. The term hyperproperty was introduced by
Clarkson and Schneider [CS10]. Hyperproperty extends PCTL which results in
HyperPCTL. In the paper from Ábrahám and Bonakdarpour [ÁB18], the tem-
poral logic HyperPCTL was �rst introduced and a HyperPCTL model checking
algorithm implemented. In this Master thesis, we improve the e�ciency of
the HyperPCTL model checking algorithm from [ÁB18] for a fragment of the
HyperPCTL logic.
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Chapter 1

Introduction

In this Master thesis, we increase the e�ciency of a model checking algorithm for a
fragment of the logic HyperPCTL. Ábrahám and Bonakdarpour [ÁB18] �rst intro-
duced the temporal logic HyperPCTL and the original HyperPCTL model checking
algorithm.

The original temporal logic behind HyperPCTL is the Computation Tree Logic
(CTL) introduced by Clarke, Emerson and Sistla [CES86]. CTL is a branching
time logic where the existential path quanti�er (denoted as ∃) and the universal
path quanti�er (denoted as ∀) are allowed. The logic is evaluated over branching
time structures such as trees. The temporal logic Probabilistic Computation Tree
Logic (PCTL) is an extension of CTL introduced by Hansson and Johnsson [HJ94]
where probability path quanti�cation is allowed as well.

Those mentioned logics are deployed successfully to specify the (probabilistic)
reachability of a system. With these logics, we can only describe a single individual
execution at a time. However, our focus is di�erent. In security systems, we are
interested in the probabilistic relation between individual executions to observe sim-
ilarities and di�erences. The temporal logics mentioned, CTL and PCTL, are not
su�cient to observe multiple individual executions. A property which allows us to
observe, compare and draw connections between independent executions is called hy-

perproperty. The term was introduced by Clarke and Schneider [CS10] and extended
various temporal logics like Linear Temporal Logic (LTL), CTL, Computation Tree
Logic* (CTL*) or PCTL which results in HyperLTL [FRS15], HyperCTL, Hyper-
CTL* [FRS15] and HyperPCTL [ÁB18].

The HyperPCTL model checking algorithm takes a discrete-time Markov Chain
(DTMC) M and a HyperPCTL formula ψ as input and checks if M |= ψ holds.
A HyperPCTL formula allows us to start in di�erent initial states. This is called
multiple state quanti�cation. As a result, we can observe di�erent executions at a
time and can draw connections and comparisons between them. Also, a HyperPCTL
formula allows an arbitrary usage of the probabilities in arithmetic constraints. A
HyperPCTL formula can be interpreted by a DTMC M. A DTMC is a stochastic
model where the next transition is selected according to a certain probability. Each
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execution runs in the same DTMC. However, to observe and compare multiple
executions we need copies of the model. The number of copies is related to the
number of quanti�ers n in the HyperPCTL formula. Building and combining them
results in one model, which is called n-ary self-composition modelMn. Using that
model, the formula ψ is checked whetherM |= ψ holds. If ψ has no quanti�ers, then
ψ only consists of constants and the formula can be directly evaluated on the model
M.

Our contribution to making the model checking algorithm more e�cient is to
reduce the arity of the self-composition model. For every sub-formula of ψ, we check
the number of quanti�ers in the scope of each sub-formula. Based on this number
of quanti�ers in a sub-formula, we build the corresponding self-composition model.
Doing so, there exists not one n-ary self-composition model but several smaller ones.
Having smaller models, the veri�cation time is reduced in comparison to the orig-
inal implementation, which has to run the veri�cation on one large model. While
more models need to be built, the smaller size can lead to a run-time improvement,
especially for large formulae.

This Master thesis is structured as follows: Chapter 2 covers the preliminaries
where the de�nition of hyperproperty, HyperPCTL (its syntax and semantic), an
example of HyperPCTL and the HyperPCTL model checking algorithm is brie�y
explained. Chapter 3 provides an overview of related work on HyperPCTL. Chap-
ter 4 describes the implementation environment of the HyperPCTL model checking
algorithm and the pseudocode of the algorithm. Chapter 5 starts with our contri-
butions to making the algorithm more e�cient for a fragment of the HyperPCTL
logic. Furthermore, the implementation of the original HyperPCTL model checking
algorithm, as well as the implementation of our improvements, are illustrated. Ad-
ditionally, we discuss challenges which occurred during the implementation as well
as their solutions. The pseudocode of the improved implementation is depicted as
well. Chapter 6 shows a brief analysis of the original HyperPCTL model checking
algorithm compared to the improved one. We compare the number of states and
transitions of the self-composition models as well as the run-time of both implemen-
tations. The last Chapter 7 concludes our Master thesis and provides an outlook on
possible future work.



Chapter 2

Preliminaries

In this chapter, we explain the fundamental basics for this Master thesis. We cover
the de�nitions of hyperproperty, HyperPCTL with its syntax and the semantics,
and present an example. In the end, we explain the HyperPCTL model checking
algorithm.

2.1 Basic Terms

HyperPCTL is an extension of Probabilistic Computation Tree Logic (PCTL) which
is an extension of Computation Tree Logic (CTL).

� CTL: CTL is a temporal logic �rst introduced by Clarke, Emerson and Sistla
[CES86]. It is a branching time logic which allows path quanti�ers (denoted
as ∃,∀). The logic is interpreted over a branching time structure like tree-like
structure.

� PCTL: PCTL is an extension of CTL and was introduced by Hansson and
Johnsson [HJ94]. In PCTL, the probabilistic quanti�cation over paths and a
comparison of a probability to a certain threshold are allowed. Properties on
states (state formulae) as well as on paths (path formulae) can be expressed
on a model.

In this Master thesis, we deal with a probabilistic system modelled as a discrete-
time Markov Chain (DTMC).

De�nition 2.1.1. De�nition DTMC

A DTMC is de�ned as a quadrupleM = (S, P,AP,L) which contains:

� a �nite non-empty set of states S

� a transition probability matrix P : S × S → [0, 1]
By P (s, s′) we denote the probability where we move from s to s′. We require∑

s′∈S P (s, s
′) = 1 for all states s ∈ S.
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� a set of atomic propositions AP

� a labelling function L : S → 2AP

It assigns to each state s ∈ S the set L(s) of atomic propositions a ∈ AP which
are valid in s.

A DTMC can be visualized as a graph. The states are represented as circles, the
transitions with positive probability are depicted as arrows carrying the probability
as a label and the state labels as a set next to a state. States which do not have a label
are usually labelled with an empty set. For reasons of clarity and comprehensibility,
the empty sets are omitted. Figure 2.1 shows a DTMC and its probability matrix
P .

Example 2.1.1. Consider the following small DTMC example which represents a
small weather report with its probability matrix.

Sunny

{Hot}

Rainy

{Wet}

0.6

0.4

0.6

0.4

P =

 Sunny Rainy

Sunny 0.6 0.4
Rainy 0.4 0.6



Figure 2.1: Small DTMC example with its probability matrix P .

The columns and the rows of the probability matrix represent the states Sunny
and Rainy.

For s1 = Sunny and s2 = Rainy, the entry pij in the i-th row and j-th column
of P stores the probability P (si, sj) for i, j ∈ {1,2}. A Hot sunny day is likely to
be followed by another sunny day with a probability of 60% and a Wet rainy day is
likely to be followed by another Wet rainy day with a probability of 60%. Since it is
a stochastic matrix, the sum of the rows of P is 1.

An in�nite sequence of states π = s0s1 · · · ∈ Sω with P (si, si+1) > 0, for all
i ≥ 0, is called a path of a Markov chain M = (S, P,AP,L). We refer to the i-th
state in the path π by π[i].

Pathss(M) denotes the set of all in�nite paths starting in the state s ofM. The
set of all �nite paths (Pathssfin(M)) denotes the set of all �nite pre�xes of paths
from Pathss(M).

The probability space is de�ned by the smallest σ-algebra that contains the cylin-
der sets of all �nite paths where the product of all transition probabilities gives
the probability of the cylinder set of a �nite path π = s0s1 · · · sn: Pr(cyl(π)) =∏n−1
i=0 P (si, si+1) [BK08].
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2.2 A Hyperproperty

A trace is a sequence of observations along an execution. A set of traces is a trace

property [Lam77]. A set of trace properties is called a hyperproperty. There are two
basic classes of trace properties, namely safety properties and liveness properties.
Temporal logics like Linear Temporal Logic (LTL) and CTL originated from these
properties [AS85]. A trace property can only refer to a single execution at the same
time. With a hyperproperty we can refer to multiple executions at a time. As a
result, we can observe, compare and draw connections between the executions. The
term hyperproperty was de�ned by Clarkson and Schneider [CS10].

2.3 Hyper Extension of PCTL � HyperPCTL

PCTL is an expansion of CTL and was introduced by Hansson and Johnsson [HJ94].
In CTL, we start in a given state where we verify whether a particular property holds
for a single execution in a given model. In PCTL, as an extension to CTL, we start
in a given state and quantify if a particular probabilistic property holds for a single
execution in a given model. However, with PCTL (or CTL and LTL) we can only
refer to a single execution at a time. Such an execution is a sequence of observations
during an execution which is called a trace. A set of such traces is called a trace

property. However, not all properties are veri�able over a single execution at a time,
so the term hyperproperty is introduced. If we want to describe security policies for
instance multilevel security policy, trace properties do not su�ce.

In communication, security policies are essential. One security policy, like non-
interference, is a system where its users are classi�ed as low (not highly classi�ed)
or high (highly classi�ed). A system's safety property is satis�ed if any sequence of
low input goes out as low outputs. Additionally, the low user should not notice any
high inputs or outputs of high users during its usage of the system. Meaning the low
user does not know the sensitive data usage of a high user. If we add probability
to non-interference, we obtain probabilistic non-interference [III90]. The probability
of a low observable trace is the same for every low-equivalent initial state [ÁB18].
The temporal logic, HyperPCTL, can express the requirements for probabilistic non-
interference since we can address multiple paths at the same time. A HyperPCTL
formula can be interpreted and modelled by a DTMC.

2.3.1 HyperPCTL Syntax

The HyperPCTL syntax has similarities and di�erences to other temporal logics.
A CTL state formula is a quanti�ed formula over paths. If we add a proba-

bility operator to check if a particular property holds for the probability, we get a
PCTL formula. In PCTL, we can compare the probabilities to a certain threshold.
In HyperPCTL, an arbitrary usage of the probabilities in arithmetic constraint is
allowed.
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However, the main di�erence is that in CTL and PCTL we can describe single
executions only whereas in HyperCTL* and HyperPCTL we can describe di�erent
concurrent executions and compare observations on them. This is realized in Hy-
perCTL* through path quanti�cation whereas in HyperPCTL state quanti�cation is
introduced as follows.

De�nition 2.3.1. HyperPCTL Syntax

The following de�nition of the HyperPCTL syntax is from [ÁB18].
A HyperPCTL state formula ψ is de�ned as:

ψ ::= aσ | ∀σ.ψ | ∃σ.ψ | (ψ ∧ ψ) | (¬ψ) | p ∼ p | true
p ::= c | P(ϕ) | p+ p | p− p | p · p

where ∼ ∈ {<,≤, >,≥,=}, c ∈ Q, a ∈ AP is an atomic proposition, σ is a state
variable from a countably in�nite supply of variables V = {σ1, σ2, · · · }, p a proba-
bility expression and ϕ a path formula.
A HyperPCTL path formula ϕ is de�ned as:

ϕ ::= eψ | ψ U ψ | ψ U [k1,k2] ψ

with ψ being a state formula and k1, k2 ∈ N≥0 where k1 ≤ k2. The semantics of the
operators e (Next), unbounded until U and bounded until U [k1,k2] are the same as
in the CTL de�ntion from [CES86].

The following syntactic sugar is used with k1, k2 ∈ N≥0 where k1 ≤ k2:

� ψ1 U≤k ψ2 := ψ U [0,k]ψ

� ψ1 ∨ ψ2 := ¬(¬ψ1 ∧ ¬ψ2)

� 3ψ := true U ψ

� 3[k1,k2]ψ := true U [k1,k2]ψ

� P(�ψ) := 1− P(3¬ψ)

� P(�[k1,k2] ψ) := 1− P(3[k1,k2] ¬ψ)

We write F , which denotes the set of all HyperPCTL state formulae. If an indexed
atomic proposition aσ occurs which is not in the scope of a quanti�er bounding σ in
ψ, this indexed atomic proposition is called free, otherwise it is bound. HyperPCTL
sentences consist of HyperPCTL state formulae where all occurrences of an indexed
atomic proposition are bound. HyperPCTL (quanti�ed) formulae are HyperPCTL
sentences.

Consider the following example of the HyperPCTL syntax.
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Example 2.3.1. Syntax example:

∀σ1.∀σ2.P(3aσ1) ∼ P(3bσ2),where ∼ ∈ {<,≤,=,≥, >}

As seen in the formula, the atomic propositions aσ1 and bσ2 are in the scope of a
quanti�er's state variable σ1 and σ2. Thus, the two atomic propositions are bound. If
we had an atomic proposition aσ3 in this formula, it would have been called free since
it is not bound to an occurring quanti�er's state variable and this formula would not
be a HyperPCTL formula.

Regarding the comprehension of this formula, it is to be understood as follows:
We have two instantiated states s1 and s2 as σ1 and σ2, i.e., we have two paths,
one starting in s1 and the other one in s2. We have two state labels a and b and a
mathematical relation ∼ ∈ {<,≤,=,≥, >}. Let us assume that the mathematical
relation is ≤ without loss of generality. The formula (∀σ1.∀σ2.P(3aσ1) ≤ P(3bσ2))
holds if and only if for each path the probability to eventually reach a state labelled
with a from a path starting in s1 (aσ1) is less or equal than the probability of reaching
b from a path starting in s2 (bσ2).

The purpose why we need indexed atomic proposition and what it means to be
in the scope of a quanti�er is explained in the following section.

2.3.2 HyperPCTL Semantics

The semantics is based on the n-ary self-composition of a DTMC. The executions
for an instantiated state runs in one DTMC. To observe the executions of all instan-
tiated states in one DTMC, we need copies of the DTMCs. Thus, we build and use
the n-ary self-composition model DTMCMn based on the number of n quanti�ers
in a HyperPCTL formula. Using this self-composition model, we can observe all
executions at the same time.

De�nition 2.3.2. HyperPCTL Semantic[ÁB18]
The n-ary self-composition of a DTMCM = (S, P,AP,L) results in a DTMCMn =
(Sn, Pn, APn, Ln) with the following components:

� Sn = S × · · · × S is an n-ary cartesian product of the set of states S.

� Pn(s, s′) = P (s1, s
′
1) · · · · · P (sn, s′n) for all s = (s1, · · · , sn) ∈ Sn and s′ =

(s′1, · · · , s′n) ∈ S′.

� APn = ∪ni=1APi, where APi = {ai|a ∈ AP} for i ∈ {1, · · · , n}.

� Ln(s) = ∪ni=1Li(si) for all s = (s1, · · · , sn) ∈ Sn with Li(si) = {ai|a ∈ L(si)}
for i ∈ {1, · · · , n}.

For a quanti�ed HyperPCTL formula ψ which is satis�ed by a DTMC M =
(S, P,AP,L) we de�ne the satisfaction relation as follows:

M |= ψ i�M, () |= ψ



14 Chapter 2. Preliminaries

with () as the empty sequence of states. The satisfaction relation |= de�nes the
validity of the HyperPCTL state formulae, in the context of a DTMC M and n-
tuple s = (s1, · · · , sn) ∈ Sn of states (for n = 0). Intuitively, M |= ψ means
that the formula ψ is true for a sequence of states s in M. In HyperPCTL we
quantify over states. The probabilities are relevant for the context of states, i.e., it is
crucial to know from which state s a path π starts as well as the probability of each
transition in that path to evaluate a HyperPCTL formula ψ. To keep the reference
between the quanti�ers and the remaining formula we replace each σ with σi, and
each corresponding a is replaced by ai, i ∈ {1, · · · , n}.

With that information, we can verify a formula like the one shown in Example
2.3.1.

The processing of a formula is called structural recursion. We evaluate a Hyper-
PCTL formula ψ by starting to process it from left to right. If we evaluate Example
2.3.1, the formula would be evaluated as follows: We iterate the formula step by step
and process the �rst part of the formula ψ which is the �rst instantiated quanti�er
with its state quanti�er. The rest of the formula ψ is the sub-formula ψ′ and is
processed in the next iteration. We look at ψ′ and start again from left to right. We
take the �rst part of the sub-formula ψ′ which is the second instantiated quanti�er
with its state quanti�er. The rest of ψ′ is the next sub-formula to be processed in
structural recursion. This process is repeated until the whole formula is processed.
The instantiated values for state variables are stored in the state sequence s.

The background on processing a formula using structural recursion is explained
in the theoretical procedure of the HyperPCTL model checking algorithm in Section
2.4.

De�nition 2.3.3. Semantics of DTMC formulae evaluation[ÁB18]
The formal notation of semantic rules to evaluate formulae in the context of a DTMC
M(S, P,AP,L) and an n-tuple s = (s1, · · · , sn) ∈ Sn of states are as follows:

M, s |= true
M, s |= ∀σ.ψ i� ∀sn+1 ∈ S.M, (s0, · · · , sn, sn+1) |= ψ[APn+1/APσ]
M, s |= ∃σ.ψ i� ∃sn+1 ∈ S.M, (s0, · · · , sn, sn+1) |= ψ[APn+1/APσ]
M, s |= ai i� a ∈ L(si)
M, s |= ψ1 ∧ ψ2 i�M, s |= ψ1andM, s |= ψ2

M, s |= ¬ψ i�M, s /∈ ψ
M, s |= p1 ∼ p2 i� Jp1KM,s ∼ Jp2KM,s

JP(ϕ)KM,s = Pr{π ∈ Pathss(Mn)|M, π |= ϕ}
JcKM,s = c
Jp1 + p2KM,s = Jp1KM,s + Jp2KM,s

Jp1 − p2KM,s = Jp1KM,s − Jp2KM,s

Jp1 × p2KM,s = Jp1KM,s · Jp2KM,s

Here, ψ,ψ1, ψ2 are HyperPCTL state formulae, ϕ is a HyperPCTL path formula,
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p1 and p2 are probability expressions, ∼∈ {<,≤,=,≥, >}, c ∈ Q is a rational con-
stant and a ∈ AP an atomic proposition, 1 ≤ i ≤ n. If there is an atomic proposition
aσ which is not in the scope of an instantiated quanti�er, this atomic proposition is
called free. The meaning of ψ[APn+1/APσ] is that if a free atomic proposition aσ oc-
curs, each free occurrence of aσ in ψ is replaced by an+1 for each atomic proposition
a ∈ AP .

The satisfaction relations for HyperPCTL path formulae, as de�ned in [ÁB18],
are:

M, π |= eψ i�M, π[1] |= ψ
M, π |= ψ1Uψ2 i� ∃j ≥ 0.(M, π[j] |= ψ2 ∧ ∀i ∈ [0, j).M, π[i] |= ψ1)

M, π |= ψ1U [k1,k2]ψ2 i� ∃j ∈ [k1, k2].(M, π[j] |= ψ2 ∧ ∀i ∈ [0, j).M, π[i] |= ψ1)

with ψ,ψ1, ψ2 as HyperPCTL state formulae, k1, k2 ∈ N≥0 with k1 ≤ k2 and π as a
path ofMn for some n ∈ N>0.

Example 2.3.2. Semantics Example � 2 Dining philosophers

Consider the following DTMC M in Figure 2.2 where two philosophers are sitting
at a table to have dinner together. In Figure 2.2, we start with the two philosophers
without having any fork (s0). The two forks are on the table and a philosopher
always takes the right fork �rst. The probability that one, whether the �rst or the
second philosopher, takes a fork is 0.5 (s1 or s3). If one philosopher has both forks,
the philosopher starts to eat (s2 or s6). Once one philosopher has �nished eating

the probability that the forks are returned to the table is 1 (s6
1−→ s7, s2

1−→ s5). If
one philosopher releases a fork, the right fork is always given �rst (s5 or s7). If both
have one fork, then both philosophers are giving the forks back on the table (s4).

To simplify this example only the probability of apparent states like s0, where
the probability of a philosopher taking one fork is 0.5, are deployed. Otherwise, the
probabilities p and 1−p would have been chosen. In those transitions any probability
for p is deployable.

To make it clear where left and right from a philosopher's perspective is, the left
and right from its perspective are depicted in state s0. A philosopher's perspective
is omitted in the remaining states to keep it more explicit.

ConsiderM with the HyperPCTL formula ψ:

∀σ1.∀σ2.(I1 ∧ I2)⇒ P(¬E2
1UE1

1) = P(¬E2
2UE1

2)

∧P(¬E1
1UE2

1) = P(¬E1
2UE2

2)

This formula predicates that if for all pairs of initial states (labelled by the
atomic proposition I ), the probability (¬E2

1UE1
1) must be equal to (¬E2

2UE1
2) and

the probability (¬E1
1UE2

1) must be equal to (¬E1
2UE2

2) for each (si, sj) ∈ S2 with
I ∈ L(si) and I ∈ L(sj). If that is the case, the formula is satis�ed byM and it holds
thatM, (si, sj) |= (P(¬E2

1UE1
1) = P(¬E2

2UE1
2)) ∧ (P(¬E1

1UE2
1) = P(¬E1

2UE2
2)). In
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s0
r1l

� �
l2r

{I}

s1
1
�
2|

{∅}
s2
1

|2|

{E2}

s5
1
�
|2

{I}

s3
|1
�
2

{∅}

s6
|1|

2

{E1}

s4
|1

2|

{I}

s7
1|
�
2

{I}

0.5

0.5

p

1p

1− p

p

1− p

1

1

p

1− p

Figure 2.2: Two dining philosophers represented by DTMCM.

other words, the probability of philosopher 2 (E2) not eating until philosopher 1
(E1) has begun eating, starting in one initial state (E2

1) equals the probability of
philosopher 1 (E1) not eating until philosopher number 2 (E2) has begun eating
starting in another initial state (E2

2) and vice versa.

By verifying the four initial states, we see that the probabilities are equal.

s0 = 0.5p+ 0.5p = p

s4 = 1 · 0.5p+ 1 · 0.5p = p

s5 = 0.5p2 + 0.5p2 + (1− p) · 0.5p+ (1− p) · 0.5p
= 1p2 + 0.5p− 0.5p2 + 0.5p− 0.5p2 = 0.5p+ 0.5p = p

s7 = 0.5p2 + 0.5p2 + (1− p) · 0.5p+ (1− p) · 0.5p
= 1p2 + 0.5p− 0.5p2 + 0.5p− 0.5p2 = 0.5p+ 0.5p = p

Hence, for all pairs of initial states, the formula is satis�ed byM (M |= ψ).
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2.4 HyperPCTL Model Checking Algorithm

Seyedehzahra Hosseini initially developed the implementation of the HyperPCTL
model checking algorithm in the group of Borzoo Bonakdarpour, Iowa State Univer-
sity. The implementation is introduced in the paper of Ábrahám and Bonakdarpour,
2018 [ÁB18].

The procedure of the original implementation is initially explained in theory.
The pseudocode of the algorithm is explained in detail in Chapter 4. The procedure
works in four main steps which are introductory explained here.

We have a DTMC Mn and a HyperPCTL quanti�ed formula ψ as input. The
model checking algorithm veri�es if a given modelMn satis�es the given property ψ.
To check if a state s inMn satis�es ψ, a set of labellings L̂n(s) has to be recursively
computed during the processing of ψ. In the set L(s) we add atomic propositions
whereas in the set L̂n(s) we can also add sub-formulae. Each state s has a set L̂n(s)
that contains all atomic propositions a ∈ AP and sub-formulae that are valid in s.
While processing a formula step by step, the set of labellings L̂n(s) is extended by
the current atomic proposition or sub-formulae. Then, the algorithm evaluates if
an arbitrary state is labelled with the correct set of labellings, ψ ∈ L̂n(s), so that
Mn satis�es ψ. Since each state has the same set of labellings L̂n(s), it su�ces to
check if one arbitrary state s has ψ ∈ L̂n(s). That means, either all states have the
correct labelling, so that ψ ∈ L̂n(s) holds, or none of them have ψ /∈ L̂n(s). If the
labelling set has the correct labellings, the formula ψ is satis�ed by Mn, and the
algorithm returns true, otherwise false. If ψ contains universal quanti�ers, then all
executions from the instantiated states s inM have to satisfy ψ. For an existential
quanti�er, only one execution from the instantiated states s inM has to satisfy ψ.
A formula is processed by structural recursion, because during the recursive process
of a formula, we build the set of labellings recursively. We evaluate all sub-formulae
ψ′ of ψ inside-out.

If we recall Example 2.3.1 and take equality as a mathematical relation, the
algorithm evaluates the input as follows:

1. The quanti�er state variables are renamed such that their names are σ1 · · ·σn.
The renaming is done to keep the context between the state variables in the
formula.

2. Then the n-ary self-compositionMn is built based on the number of quanti�ers
n in ψ. In this case, a 2-ary self-compositionM2 is built.

3. A labelling L̂n(s) for all states s ∈ Sn ofMn is recursively computed. Initially
the set is empty, L̂n(s) = ∅ for all states s ∈ Sn. This process is implemented
in the function HyperPCTL (see pseudocode in the Chapter 4). For all sub-
formulae ψ′ of ψ it does:

(a) ∀σ1.∀σ2.P(3 aσ1︸︷︷︸
ψ′ = aσ1 . Add ψ

′ to L̂n(s).

) = P(3 bσ2︸︷︷︸
ψ′ = bσ2 . Add ψ

′ to L̂n(s).

)
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(b) ∀σ1.∀σ2. P(3aσ1)︸ ︷︷ ︸
p1 = P(3aσ1 ). Compute values for p1.

= P(3bσ2)︸ ︷︷ ︸
p2 = P(3bσ2 ). Compute values for p2.

(c) ∀σ1.∀σ2. P(3aσ1) = P(3bσ2)︸ ︷︷ ︸
ψ′ = P(3aσ1 ) = P(3bσ2 ). Check if ψ′ holds. If it holds, add ψ′ to L̂n(s).

(d) ∀σ1. ∀σ2.P(3aσ1) = P(3bσ2)︸ ︷︷ ︸
ψ′ = ∀σ2.ψ1. Add ψ′ to L̂n(s) if ψ1 holds for all paths starting in σ2.

(e) ∀σ1.∀σ2.P(3aσ1) = P(3bσ2)︸ ︷︷ ︸
ψ′ = ∀σ1.ψ1. Add ψ′ to L̂n(s) if ψ′

1 holds for all paths starting in σ1.

4. At the end, the algorithm veri�es for a state s inM2 if ψ ∈ L̂n(s). If ψ ∈ L̂n(s),
then return true (M2 |= ψ), otherwise false (M2 2 ψ).

The function ProbMC proceeds with PCTL model checking, which was �rst in-
troduced by Ciesinski and Gröÿer [CG04]. The model checking algorithm for PCTL
checks if a given modelMn satis�es the given property. It takes the modelMn, the
property pn and the set of labellings L̂(s) as input from HyperPCTL so that ProbMC
computes the values of the states s in pi. The veri�cation whetherMn |= ψ is done
by main which comprises the fourth step.

The details of ProbMC, HyperPCTL and main are explained in Chapter 4 using
pseudocode.



Chapter 3

Related Work

Non-probabilistic model checkers for the logics HyperLTL and HyperCLT* are devel-
oped and discussed in [FRS15] and [CFST19]. The authors contribute to two aspects:
First, the model checking algorithm for HyperLTL and HyperCTL* is based on al-
ternating automata. Second, the �rst approach for model checking hardware systems
for alternation-free HyperCTL* formulae is presented. Alternation-free means only
one type of quanti�er is allowed in the formula. A model checker MCHyper for Hy-
perLTL is introduced in [CFST19]. Other tools for HyperLTL exists, for instance
satis�ability solver EAHyper [FHS17] and MGHyper [FHH18]. Furthermore, there
is a runtime monitoring tool RVHyper [FHST18].

For the probabilistic model checker, there exist three references for the temporal
logics HyperPCTL and HyperPCTL*. As the temporal logic HyperPCTL has been
�rst de�ned by Ábrahám and Bonakdarpour in 2018 [ÁB18], this �eld of research
can be considered new. Consequently, there exist only three references yet which
relate to HyperPCTL.

Probabilistic model checker for the logic HyperPCTL* is a statistical model
checker (SMC) presented by Wang, Nalluri, Bonakdarpour and Pajic [WNBP19].
The SMC is not based on sequential probability ratio tests (SPRT) but Clopper-
Pearson con�dence intervals. This algorithm is de�ned for the non-nested grammar
of HyperPCTL*.

A parameter synthesis problem for probabilistic hyperproperties is studied by
Ábrahám, Bartocci, Bonakdarpour and Dobe [ÁBBD20]. The problem is discussed
for a fragment of HyperPCTL.

A HyperPCTL model checking algorithm has been introduced by Ábrahám and
Bonakdarpour [ÁB18]. The authors de�ne the speci�cation language HyperPCTL,
for probabilistic hyperproperties of discrete-time Markov chains, and present a Hy-
perPCTL model checking algorithm.

HyperPCTL allows us to express stochastic relations between multiple executions
at the same time. Information-�ow security policies like non-interference can be
expressed with hyperproperties. Non-interference is a system where the users of
a system are classi�ed as low (not highly classi�ed) or high (highly classi�ed). A
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system's safety property is satis�ed if any sequence of low input goes out as low
outputs. Additionally, the low user should not notice any high inputs or outputs of
high users during its usage of the system. That means the low user does not know
the sensitive data usage of a high user. If we add probability to non-interference,
we obtain probabilistic non-interference [III90]. The probability of a low observable
trace is the same for every low-equivalent initial state [ÁB18]. With Probabilistic
Computation Tree Logic (PCTL), we can only express one execution. One execution
represents one user. However, in this case we need to be able to express multiple
executions to observe the users since the connection between them, whether one
is a low or a high user, are relevant. With HyperPCTL, we can express multiple
executions at the same time, so that we can observe the relation between the multiple
executions.

The term hyperproperty was �rst de�ned in [CS10]. Hyperproperty can not only
be applied to PCTL but to other temporal logics like Linear Temporal Logic (LTL),
Computation Tree Logic (CTL), Computation Tree Logic* (CTL*)*, PCTL and
Probabilistic Computation Tree Logic* (PCTL*) resulting in their respective hyper-
property variants HyperLTL [FRS15], HyperCTL, HyperCTL* [FRS15], HyperPCTL
[ÁB18] and HyperPCTL* [WNBP19].

In this Master thesis, we improve the e�ciency for a fragment of HyperPCTL
of the model checking algorithm of Ábrahám and Bonakdarpour. The system to be
described by using a HyperPCTL quanti�ed formula can be modelled as a discrete-
time Markov Chain (DTMC). The algorithm takes a DTMCM and a HyperPCTL
quanti�ed formula ψ as input and checks ifM |= ψ holds. The number of quanti�ers
n in ψ is essential for the algorithm. Based on n, the self-composition modelMn is
built fromM and withMn the formula is veri�ed. If there are no quanti�ers in ψ,
then the formula consists only of constants and the formula can be directly veri�ed
on M. The pseudocode of the model checking algorithm is listed in Algorithm 1,
Algorithm 2 and Algorithm 3 which are explained in Chapter 4.

In this Master thesis, we use PCTL model checking [BK08] and the model checker
Storm [DJKV17, Sto20a] which we explain both in detail in Chapter 4.
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Referenced Implementation

The programming language of the original implementation is Python 3. The same
programming language is used for the implementation of this Master thesis. In this
chapter, we explain the details such as the software dependencies, the implementation
environment and the pseudocode.

4.1 Software Dependencies

In this section, we shortly explain the used software.

4.1.1 Model Checker � Storm

Storm [DJKV17, Sto20a] is a tool developed at the chair of Software Modeling
and Veri�cation at RWTH Aachen University [IZw20] and programmed in the pro-
gramming language C++. With Storm, we can evaluate random or probabilistic
models. Storm takes a probabilistic model and a Probabilistic Computation Tree
Logic (PCTL) formula as input and evaluates if the formula holds for the model. It
supports several types of models, for instance, Markov chains and Markov decision
processes (MDPs) with discrete as well as continuous time.

Storm uses di�erent input languages to process a model and a formula. It takes
models from di�erent input languages like PRISM [KNP11], JANI [BDH+17] or
GSPN [EHKZ13]. Each language represents di�erent types of models as continuous-
time Markov Chain (CTMC), Markov Decision Process (MDP), Petri net, Stochastic
Petri net and some more. We have chosen to keep PRISM as the input language to
ensure compatibility with the original implementation.

Storm requires one of the following operating systems: macOS 10.12 (and higher),
DebianGNU/Linux 9 (and higher), Ubuntu Linux 16.10 (and higher). Additional
dependencies are required for the compiler and general dependencies [Sto20b].

There are further optional dependencies for instance, PyCarl [PyC20], which
allows us to represent rationales and rational functions in Storm. In our case, we are
working with rationales and rational functions, so PyCarl is needed.
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In order to be able to work with Storm, we need an API which allows us to use
with Storm via Python. This API is called Stormpy [Sto20c].

4.1.2 API for Python and Storm � Stormpy and

Dependency for Rationales and Rational Functions in Storm

� PyCarl

Stormpy [Sto20c] is the API so that we can work with Storm using the programming
language Python and a set of Python bindings is provided. However, with just these
bindings, the input can not be evaluated yet since the formulae contain rationales and
rational functions. Another binding necessary to work with arithmetic constraints is
called PyCarl. Stormpy uses PyCarl internally.

Python Computer ARithmetic and Logic library (PyCarl) [PyC20] is a set of
Python bindings for the Computer ARithmetic and Logic library (Carl). With this
dependency, we can evaluate rationales and rational functions.

4.1.3 Input Language for Storm � Prism Language

The PRISM Language [Pri20, KNP11] is used to construct and analyse a model.
This language is the input language for Storm to evaluate the property of a formula.

PRISM supports di�erent types of models for instance, discrete-time Markov
Chain (DTMC) CTMC etc. PRISM is used to construct and specify a DTMC.

4.1.4 Programming Language � Python

The implementation of the HyperPCTL model checking algorithm used in this thesis
is written in the programming language Python. Seyedehzahra Hosseini implemented
the code in the group of Borzoo Bonakdarpour, Iowa State University, USA.

The Python version has to be at least version 3 so that Stormpy can work. In this
Master thesis, the Python version that has been used to evaluate the implementations
is 3.6.9.

4.2 Implementation Environment

This section describes the environment of the implementation. The environments for
the experiments and the necessary modules are listed. With this environment, the
implementation of the HyperPCTL model checking algorithm can be compiled and
executed.

For this Master thesis, the following instances were used:

� The implementation executions for this thesis were run on a ThinkPad E460
with a 2.3Ghz i5 processor and 12 GB RAM.

� The operating system used is Linux Ubuntu 18.04.
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� The Python Version used is 3.6.9.

The following tools are necessary to compile the code:

� Storm [Sto20a] and the modules needed for its compilation can be read on the
website [Sto20b].

� A Storm supporting operating system (in this case Ubunutu 18.04) and a
C/C++ compiler tool chain (in this case gcc).

� The API Stormpy [Sto20c].

� The dependency for evaluating rationales and rational functions PyCarl [PyC20].

� The Python Version 3.

4.3 Pseudocode

The most important functions in the implementation are main, HyperPCTL, ProbMC
and makeSelfComposition. The pseudocode of the functions main, HyperPCTL
and ProbMC are from the paper of Ábrahám and Bonakdarpour [ÁB18]. They are
listed in Algorithm 1, Algorithm 2 and Algorithm 3 and explained in detail in this
section.

Algorithm 1 Function main(M, ψ)
HyperPCTL model checking algorithm [ÁB18].

Require: DTMCM = (S, P,AP,L), HyperPCTL quanti�ed formula ψ
Ensure: WhetherM |= ψ
1: n := number of quanti�ers in ψ
2: if n = 0 then
3: n := 1 // n will be the arity of the self-composition
4: end if

5: let L̂n : Sn → 2F with L̂n(s) = ∅ for all s ∈ Sn
6: L̂n := HyperPCTL(Mn, ψ, n, L̂n) // (see Algorithm 2)
7: if ψ ∈ L̂n(s) for some s ∈ Sn then
8: return True
9: else

10: return False
11: end if

The function main in Algorithm 1 takes a DTMC modelM and a HyperPCTL
formula ψ as input and returns whether M |= ψ holds by evaluating the set of la-
bellings L̂n(s) for a state s inM (line 7�10). The set of labellings L̂n(s) is computed
by the function HyperPCTL (line 6). Before the set of labellings is created by the
function HyperPCTL, the correct n-ary self-composition model has to be built so
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that main can evaluate ψ. The number of quanti�ers n in ψ determines the result-
ing n-ary self-composition model Mn which is built and returned by the function
makeSelfComposition (lines 1�3). That model is passed to HyperPCTL and the
function is able to create the set of labellings L̂n(s) for all states s ∈ S of the model
Mn.

The function HyperPCTL in Algorithm 2 is called by main and takes a discrete-
time Markov Chain (DTMC)Mn, a formula ψ, a non-negative integer n (the number
of quanti�ers in ψ) and a set of labellings L̂n(s) = ∅ as input. The function returns
a set of labellings L̂n(s). If the following cases occur in the sub-formulae ψ′ of ψ,
HyperPCTL does the following (inside-out):

� If the analysed sub-formula ψ′ is true, then true is added to the set L̂n(s) for
each state s ∈ S (lines 1�2).

� If the analysed sub-formula ψ′ is an atomic proposition aσ, then aσ is added
to the set L̂n(s) for each state s ∈ S (lines 3�4).

� If the analysed sub-formula ψ′ has the form ψ1∧ψ2, then we apply HyperPCTL
to ψ1 and ψ2 separately and add ψ1 and ψ2 to the labelling set for each state
s ∈ S (lines 5�8).

� If the analysed sub-formula ψ′ has the form ¬ψ1, then ¬ψ1 is added to L̂n(s)
for each state s ∈ S with ψ1 /∈ L̂n(s) (lines 9�11).

� If the analysed sub-formula ψ′ has the form p1 ∼ p2, then for all P(ϕ) appearing
in p1 ∼ p2 the function ProbMC is called which proceeds the standard PCTL
model checking. The result of each probability-expression is returned from
ProbMC to HyperPCTL. Then HyperPCTL checks if p1 ∼ p2 holds. If it does,
the labelling p1 ∼ p2 is added to the labelling set L̂n(s) for each state s ∈ S
(lines 12�15).

� If the analysed sub-formula ψ′ has the form ∃σi.ψ1, then HyperPCTL calls
itself again to process the next sub-formula ψ1 recursively. All states s are
labelled with ∃σi.ψ1 if and only if there exists a state s′i ∈ S in the labelling set
L̂n(s1, · · · , si−1, s′i, si+1, · · · , sn) so that the sub-formula holds (lines 16�18).

� If the analysed sub-formula ψ′ has the form ∀σi.ψ1, then HyperPCTL calls
itself again recursively to process the next sub-formula ψ1. All states s are
labelled with ∀σi.ψ1 if and only if for all s′i ∈ S are in the labelling set
L̂n(s1, · · · , si−1, s′i, si+1, · · · , sn) so that the sub-formula holds (lines 19-21).

The function ProbMC in Algorithm 3 is called by HyperPCTL and takes the
DTMCMn, the probability expression p, the non-negative integer n (the number of
quanti�ers in ψ) and the set of labellings L̂n(s) from HyperPCTL as input. Since
ProbMC proceeds the standard PCTL model checking, the algorithm needs to com-
pute a set L̂n(s) recursively for all states s to verify if each state s is in L̂n(s) to
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check ifM |= p holds or not. However, ProbMC does not verify if JpKM,s but returns
the values of p in all states s ∈ Sn as Lnp (s). The values Lnp (s) are returned to
HyperPCTL (line 30) so that HyperPCTL can compare the results of ProbMC. If
the comparison holds, then the labellings of the states are added to the set L̂n(s) in
HyperPCTL (lines 12�15 in Algorithm 2).

There, ProbMC computes the values Lnp (s) of p which are zero in the beginning
(line 1) for all states s ∈ S as illustrated below:

� If p has the form c, c ∈ Q, then the value c is set, Lnp (s) = {c} for all states
s ∈ S (lines 2�3).

� If p has the form p1 op p2 with op ∈ {+,−, ·}, then each sub-expression pi,
in this case p1 and p2 is called separately with ProbMC again to compute the
values Ln1 , L

n
2 for each sub-expression p1, p2 (lines 4�6).

� If p has the form P(ϕ), there can be several cases, namely:

� If ϕ has the form eψ, then the function computes a matrix multiplication
to obtain the value for the next operator e (lines 9�11).

� If ϕ has the form ψ1Uψ2, we apply HyperPCTL separately on ψ1 and ψ2

�rst (lines 12�14) and extend the set of labellings as explained in Algo-
rithm 2. With ϕ = ψ1Uψ2, we have to ful�l the until relation. To verify
the until relation, we compute a linear equation system as the following:

* For all states s ∈ S the probability is 0 if neither ψ1 nor ψ2 are in the
set of labellings L̂n(s) (from the function HyperPCTL) or if no state
s′ where ψ2 ∈ L̂n(s′) is reachable from state s. If there is no state s′

with ψ2 ∈ L̂n(s′) reachable from s where s ∈ L̂n(s) then ψ2 will not
be in the labelling set L̂n(s) and the until relation is not satis�ed.
with ψ2 ∈ L̂n(s′) is reachable from state s (line 16).

* For all states s ∈ S, the probability is 1 if ψ2 is in the set of labellings
L̂n(s) passed from the function HyperPCTL (line 17).

* For all other states, the probability is
∑

s′∈Sn P
n(s,s′) · ps′ . It means,

we add all values up where we go from state s to some state s′ mul-
tiplied with the probability ps′ which satis�es the property in s′ (line
8).

� If ϕ has the form ϕ = ψ1U [k1,k2]ψ2, we apply HyperPCTL separately
on ψ1 and ψ2 �rst (lines 12�14) and then extend the set of labellings as
explained in Algorithm 2. With ϕ = ψ1U [k1,k2]ψ2, we have to satisfy the
until relation U and additionally ful�l the property within an interval from
k1 to k2. Thus, we can not proceed as in the case ϕ = ψ1Uψ2 but we
have to go iteratively from i = 1 to k2 to check the probability that ful�ls
the property in i steps (lines 24�26). At the end, the probabilities in the
interval k1 to k2 are summed up (line 27).
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Algorithm 2 Function HyperPCTL(Mn, ψ, n, L̂n)
HyperPCTL model checking algorithm [ÁB18].

Require: DTMCMn = (Sn, Pn, APn, Ln), HyperPCTL quanti�ed formula ψ, non-
negative integer n, L̂n : Sn → 2F

Ensure: An extension of L̂n to label each state s ∈ S with sub-formulae of ψ that
hold in s

1: if ψ = true then

2: for all s ∈ Sn set L̂n(s) := L̂n(s) ∪ {true}
3: else if ψ = aσi then
4: for all s ∈ Sn with ai ∈ Ln(s) set L̂n(s) := L̂n(s) ∪ {aσi}
5: else if ψ = ψ1 ∧ ψ2 then

6: L̂n :=HyperPCTL(M, ψ1, n,L̂
n)

7: L̂n := HyperPCTL(M, ψ2, n,L̂
n)

8: for all states s ∈ Sn with {ψ1, ψ2} ⊆ L̂n(s) set L̂n(s) := L̂n(s) ∪ {ψ}
9: else if ψ = ¬ψ1 then

10: L̂n := HyperPCTL(M, ψ1, n,L̂
n)

11: for all states s ∈ Sn with ψ1 /∈ L̂n(s) set L̂n(s) := L̂n(s) ∪ {ψ}
12: else if ψ = p1 ∼ p2 then
13: Ln1 := ProbMC(M, p1, n, L̂

n) // (see Algorithm 3)
14: Ln2 := ProbMC(M, p2, n, L̂

n) // (see Algorithm 3)
15: for all states s ∈ Sn with Ln1 (s) ∼ Ln2 (s) set L̂n(s) := L̂n(s) ∪ {ψ}
16: else if ψ = ∃σi.ψ1 then

17: L̂n := HyperPCTL(M, ψ1, n, L̂
n)

18:
for all states s = (s1, · · · , sn) ∈ Sn with ψ1 ∈ L̂n(s′) for some s′i ∈ S and
s′ = (s1, · · · , si−1, s′i, si+1, · · · , sn) set L̂n(s) := L̂n(s) ∪ {ψ}

19: else if ψ = ∀σi.ψ1 then

20: L̂n := HyperPCTL(M, ψ1, n,L̂
n)

21:
for all states s = (s1, · · · , sn) ∈ Sn with ψ1 ∈ L̂n(s′) for all s′i ∈ S and
s′ = (s1, · · · , si−1, s′i, si+1, · · · , sn) set L̂n(s) := L̂n(s) ∪ {ψ}

22: end if

23: return L̂n
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Algorithm 3 Function ProbMC(Mn, ψ, n, L̂n)
HyperPCTL model checking algorithm [ÁB18].

Require: DTMC M = (S, P,AP,L), HyperPCTL probability expression p, non-
negative integer n, L̂n : Sn → 2F

Ensure: Lnp : Sn → Q specifying values Lnp (s) of p in all states s ∈ Sn
1: Let Lnp : Sn → Q with Lnp (s) = 0 for all s ∈ S
2: if p = c then
3: for all s ∈ Sn set Lnp (s) = c
4: else if p = p1 op p2 with op ∈ {+,−, ·} then
5: Ln1 := ProbMC(M, p1, n, L̂

n)
6: Ln2 := ProbMC(M, p2, n, L̂

n)
7: for each s ∈ Sn set Lnp (s) := Ln1 (s) op L

n
2 (s)

8: else if p = P(ϕ) then
9: if ϕ = eψ then

10: L̂n :=HyperPCTL(M, ψ, n,L̂n)
11: for all s ∈ Sn set Lnp (s) =

∑
s′∈Sn,ψ∈Ln(s′) P

n(s, s′)
12: else if ϕ = ψ1Uψ2 then

13: L̂n :=HyperPCTL(M, ψ1, n,L̂
n)

14: L̂n :=HyperPCTL(M, ψ2, n,L̂
n)

15: compute unique solution v for the following equation system:

16:
(1) ps = 0 for all states s ∈ Sn with ψ1 /∈ L̂n(s) and ψ2 /∈ L̂n(s), or
if no state s′ with ψ2 ∈ L̂n(s′) is reachable from s

17: (2) ps = 1 for all states s ∈ Sn with ψ2 ∈ L̂n(s)
18: (3) ps =

∑
s′∈S P

n(s,s′) · ps′ for all other states
19: for all s ∈ Sn set Lnp (s) = v(ps)

20: else if ϕ = ψ1U [k1,k2]ψ2 then

21: L̂n :=HyperPCTL(M, ψ1, n,L̂
n)

22: L̂n :=HyperPCTL(M, ψ2, n,L̂
n)

23: for each s ∈ Sn set Pn0 (s) = 1 if ψ2 ∈ L̂n(s) and Pn0 (s) = 0 otherwise
24: for i = 1 to k2 do

25:
for each s ∈ Sn set Pni (s) =

∑
s′∈S P

n(s,s′) · Pni−1(s′) if
ψ1 ∈ L̂n(s) and Pni (s) = 0 otherwise

26: end for

27: for all s ∈ Sn set Lnp (s) =
∑k2

i=k1
Pni (s)

28: end if

29: end if

30: return Lnp
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Chapter 5

Implementation of the Algorithm

This chapter covers the implementation of the HyperPCTL model checking algo-
rithm. We explain our contribution to this thesis �rst. Then, the improvements and
the execution of the improved implementation are explained. During the execution,
we have faced challenges which are explained along with several solutions.

5.1 Our Contributions

We contribute two aspects which are explained more detailed in the following:

1. Exploiting the probability matrix.

2. Reducing the arity of the self-composition model.

Storm returns the probability values by computing the probability vector for a re-
quested state. If we want to know the probability values of a di�erent requested
state, Storm is recalled again to compute the probability vector for that state. How-
ever, only one computation with Storm su�ces since Storm computes the values for
all states and only returns the values for a particular state. Instead, we should save
Storm's computation for all states directly and store the computations for further
requests. This is one of the two contributions we intended to add. However, while
inspecting the implementation we found out that this improvement had already been
made in the original implementation. The details of this improvement are explained
shortly in Section 5.2.1.

The second contribution is reducing the arity of the self-composition model. As
we see in the function main in Algorithm 1 the n-ary self-composition is computed
and passed on to the function HyperPCTL in which the formula is processed. The im-
provement does not build the self-composition model before performing HyperPCTL
but during processing the formula in our new function getBoundedVariables.
The formula is split in sub-formulae and based on the number of dependent quan-
ti�ers in a sub-formula, we build the according self-composition model. Since a
sub-formula is usually not dependent on all quanti�ers, the self-composition model
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is smaller than the n-ary self-composition model. Thus, we do not need to build the
n-ary self-composition model in the beginning. The n-ary self-composition model
is typically bigger than the sub-formula self-composition model. Thus, the original
implementation has to evaluate more transitions and states for a sub-formula in the
n-ary self-composition model, which is more time-consuming. We reduce the num-
ber of states and transitions and therefore the evaluation time by building only the
necessary size of self-composition model.

More detailed aspects of the implementation and its challenges will be described
in the next sections.

5.2 What Improvements are Envisaged

In this section, we explain our contributions in more detail. We �rst describe our
idea how to exploit the probability matrix to save some computation steps. After-
wards, we describe our idea to make the HyperPCTL model checking algorithm more
e�cient by reducing the arity of the self-composition model.

5.2.1 First Improvement: Exploiting the Probability Matrix

Recalling Example 2.3.1, the formula is satis�ed by a discrete-time Markov Chain
(DTMC) if, for each instantiated state s1, s2, the probability to eventually reach a
state labelled with a from s1 is according to the mathematical relation ∼ ∈ {<,≤
,=,≥, >} compared to the probability of reaching b from s2.

The original implementation computes a probability vector for every requested
state via Storm. In Example 2.3.1, if we want to know the probability values of σ1
and σ2, the implementation computes two probability vectors. The computation of
a probability vector computes the values for all states and returns the value for a
requested state, in this case, σ1. For the second probability vector, the implemen-
tation would compute the values for all states again and returns the value for σ2.
So in the improvement, it su�ces to have one computation for all states instead of
computations of every state, as shown in Figure 5.1.

Figure 5.1a is an illustration of the original process of Storm. In Figure 5.1b, the
desired process of Storm is illustrated. While revising the implementation to improve
it, as shown in Figure 5.1b, we discovered that the improvement had already been
made. The function is called check_property which will be explained in Section
5.3.

5.2.2 Second Improvement: n-ary Self-Composition

In this implementation, we aim to reduce the arity of the self-composition model to
make the model checking algorithm more e�cient.

From Algorithm 1, we know that the arity of the self-composition model depends
on the number of quanti�ers n in ψ. However, not all states and transitions of the
resulting self-composition model are relevant for a sub-formula ψ′ during the process
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∀σ1 · · ·σn(P(3t)) ≤ 0.5,
S = {s1, · · · , sm}

· · ·sn1 vect.,Mn |= ϕ? snm vect.,Mn |= ϕ?

Storm Storm

(a) Original version.

∀σ1 · · ·σn(P(3t)) ≤ 0.5,
S = {s1, · · · , sm}

·

· · ·sn1 vect.,Mn |= ϕ? snm vect.,Mn |= ϕ?

Storm

(b) Desired version.

Figure 5.1: Storm call of the original and the desired version.

of ψ. To reduce the number of states and transitions, we have to reduce the arity of
the self-composition model.

A vital restriction regarding this improvement is the HyperPCTL syntax: The
original implementation allows nested formulae. In our improvement, we only allow
non-nested formulae so that we can build smaller models for every sub-formula and
reduce the arity of the self-composition models. The HyperPCTL syntax is the
following:

De�nition 5.2.1. Restricted HyperPCTL Syntax[ÁBBD20]
HyperPCTL state formula:

ψ ::= aσ | ∀σ.ψ | ∃σ.ψ | (ψ ∧ ψ) | (¬ψ) | p ∼ p | true
p ::= c | P( eϕ) | P(ϕ U ϕ) | p+ p | p− p | p · p

where ∼ ∈ {<,≤, >,≥,=}, c ∈ Q, a ∈ AP , σ a state variable from a countably
in�nite supply of variables V = {σ1, σ2, · · · }, p a probability expression and ϕ a
path formula.
HyperPCTL path formula:

ϕ ::= aσ | ϕ ∧ ϕ | ¬ϕ | true

The syntactic sugar and the HyperPCTL semantics remain unchanged.

For the improvement of the n-ary self-composition we consider the following type
of formulae:

Qσ1. · · · Qσn.((
n∧
i=1

APσi)⇒ (
m∧
j=1

pj ∼j pj′))

where Q ∈ {∃, ∀},∼∈ {<,≤, >,≥,=}, c ∈ Q, APσi : Boolean combination of atomic
propositions ∈ AP ; might also be true and n,m ∈ N≥0.
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For the improvement of the n-ary self-composition, the number of state variables
σ in pj and pj′ are relevant.

We name the parts of the formula as described below to simplify the explanations
and �gures.

Qσ1. · · · Qσn.︸ ︷︷ ︸
quantifiers

((
n∧
i=1

APσi)︸ ︷︷ ︸
initial-states

⇒ (
m∧
j=1

pj ∼j pj′))︸ ︷︷ ︸
probability-formulaj︸ ︷︷ ︸

probability-formula

5.2.3 A First Attempt

The original implementation builds the n-ary self-composition model �rst and evalu-
ates the formula via HyperPCTL with the resulting self-composition model as input
model (see Algorithm 2 and Algorithm 3). However, it is not always necessary to
build the n-ary self-composition model to evaluate the formula. Notably, we take
a look at the sub-formulae probability-formulam �rst, more precisely pj , pj′ , be-
fore building the self-composition model. The sub-expression pj depends on some
state variables and for this sub-expression we do not need the n-ary self-composition
model to evaluate pj but the self-composition model based on the dependent state
variables in pj . A sub-expression usually does not depend on all state variables in
ψ. Thus, building the n-ary self-composition model to evaluate a sub-expression pj
would be too "large". In the n-ary self-composition model, there are some states
and transitions which are not relevant for the evaluation of pj . By building a self-
composition model that is smaller than the n-ary self-composition model, we save
states, transitions and computation time. The same procedure holds for the other
sub-expression pj′ . If there are several probability-formulam the whole process is
repeated for every probability-formulaj .

Example 5.2.1. Consider the examples:

(i) ∀σ1.∀σ2.(initσ1 ∧ initσ2)︸ ︷︷ ︸
Add the labellings of state

quanti�ers and inital states

with HyperPCTL with the orig-

inal model instead of 2-ary self-

composition.

⇒ ( P(3aσ1)︸ ︷︷ ︸
p1. Compute 1-ary

composition and

the probabilities

for all init states.

= P(3aσ2)︸ ︷︷ ︸
p2. Compute 1-ary

composition and

the probabilities

for all init states.

)

︸ ︷︷ ︸
Apply probMC with 1-ary composition on p1 and p2.

Check if p1 = p2.
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(ii) ∀σ1.∀σ2.∀σ3.(bσ1 ∧ bσ2 ∧ bσ3)︸ ︷︷ ︸
Add the labellings of state quan-

ti�ers and initial states with

HyperPCTL with the original

model instead of 3-ary self-

composition.

⇒ (P(3(aσ1 ∧ aσ2))︸ ︷︷ ︸
p1. Compute 2-

ary composition

and the proba-

bilities for all b

states.

< P(3(aσ2 ∧ aσ3))︸ ︷︷ ︸
p2. Compute 2-

ary composition

and the proba-

bilities for all b

states.

)

︸ ︷︷ ︸
Apply probMC with 2-ary composition on p1 and p2.

Check if p1 < p2.

The �rst step of the procedure stays the same as in the original implementation
in Section 2.4.

The second step is to split the formula ψ into sub-expressions. To reduce the n-
ary self-composition only the probability-formula on the right of "⇒" is relevant. In
the sub-expression p1 = P(�aσ1), we see that the atomic proposition a is dependent
on σ1, so only the 1-ary self-composition has to be used instead of the 2-ary self-
composition to evaluate the �rst sub-expression. The same holds for the other sub-
expression p2 = P(�aσ2) accordingly. After those two sub-expressions have been
evaluated, the two results are compared to the mathematical relation, in this case
the equality relation. If the result is true we have to evaluate for each state satisfying
initσ1 and initσ2 whether they satisfy the sub-formula. In contrast to the original
implementation, we do not need the 2-ary self-composition model. There, we would
have built a 2-ary self-composition model in the beginning and would have evaluated
the whole formula on the 2-ary self-composition model by breaking down the formula
by structural recursion (see Algorithm 2).

Informally, the implementation for the �rst attempt can be described as follows:

� Apply variable renaming such that the quanti�ed state variables are named
σ1 · · ·σn.

� Split the formula ψ into two parts: quanti�ers and the rest of the formula. We
also do the labelling of ψ as in the original code. The labelling of the quanti�ers
is done by applying HyperPCTL to the quanti�ers. The rest of the formula
is an implication with the conjunction of the initial states as the premise and
the probability-formula as the conclusion. If the initial state does not exist, we
return true, otherwise we proceed. The formula is split into the sub-expressions
pj , pj′ .

� We count how many state variables σ are in the sub-expression pj and build
the self-composition model according to the number of state variables which
appear as label index in the sub-expression pj .

� The same holds for pj′ . We count how many state variables σ are in the sub-
formula pj′ and build the self-composition model according to the number of
state variables which appear as label index in the sub-expression pj′ .
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main

parsermakeSelfComposition HyperPCTL

AddLabeltoLabelAllState

ProbMC · · · ProbMC

check_property check_property

Figure 5.2: Procedure call hierarchy of the original implementation.

� We evaluate each sub-expression by performing model checking with ProbMC
on pj , pj′ and compare the two results according to the mathematical relation
for each state in the self-composition model.

� If the result is true, then the whole formula is satis�ed, otherwise it is unsat-
is�ed.

� If the formula has several probability-formulae (probability-formula1, · · · ,
probability-formulam) connected by conjunctions, then we evaluate each
probability-formula one by one as explained in the previous steps.

5.3 Implementation of the Algorithm

During the implementation of the improved HyperPCTL model checking algorithm
some challenges occurred. Their solutions are explained, and the resulting modi�ed
functions are listed with their parameters and variables of the improved HyperPCTL
model checking algorithm. At the end of this chapter, the pseudocode of the improved
HyperPCTL model checking algorithm is shown.

As introduction to the original implementation, a procedure call hierarchy is
depicted in Figure 5.2.

In the original implementation, the function main gets as input a DTMC model
M, a HyperPCTL formula ψ and n as arity for the self-composition model. The
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function makeSelfComposition is called by main where it passes the DTMC
modelM and the arity n for the self-composition model to that function. The func-
tion makeSelfComposition builds the self-composition model Mn and returns
this model. It uses a helper function called AddLabeltoLabelAllState which
computes the new resulting labellings during the building process of the new self-
composition model. After the self-composition model is returned, the main function
parses the HyperPCTL formula ψ with the function parser. Then, the function
HyperPCTL is called where it gets the self-composition model Mn and the parsed
function ψ as input. The function HyperPCTL processes ψ. Depending on ψ, the
function HyperPCTL calls itself recursively as explained in the description of Algo-
rithm 2. In Figure 5.2, the recursion is depicted as the self-loop on HyperPCTL.
This function has a helper function called ProbMC which performs a Probabilistic
Computation Tree Logic (PCTL) model checking. Its input is the self-composition
modelMn and the probability-expression p from the function HyperPCTL. As ex-
plained in Algorithm 3, the function ProbMC calls the function HyperPCTL depend-
ing on the probability-expression. This is depicted as the loop between HyperPCTL
and ProbMC in Figure 5.2. The function ProbMC returns the values of the given
probability-expression p to HyperPCTL. The values of the probability-expression
are computed with a helper function called check_property which computes the
probability vector of the probability-expression via Storm and returns the values
to ProbMC. Then, ProbMC returns the values to the function HyperPCTL. The
function HyperPCTL returns the set of labellings L̂n(s) for the modelMn after pro-
cessing ψ. At the end, the function main takes the result of HyperPCTL and checks
for an arbitrary state s if it has the correct labelling. If it has the correct labellings,
main returns true andM |= ψ holds, otherwise the result is false andM 2 ψ.

In the improved implementation, the function main only calls the new func-
tion getBoundedVariables. The input parameters for the function main re-
mains the same, the DTMC model M, the arity n of the self-composition model
and the HyperPCTL formula ψ. The function getBoundedVariables gets the
formula ψ as input. It parses the formula ψ by calling the function parser and
split the formula into quanti�ers, initial states and probability-formula. If the initial
states do not exist in the DTMC model, the function returns true. If the initial
states do exist, then the probability-formula has to be evaluated. The probability-
formula is split into the probability-expressions pj and pj′ . For every probability-
expression, the according self-composition model is built by calling the function
makeSelfComposition. This function takes the model M and the number of
state variables in a probability-expression for the arity n for the self-composition
model as input. The process of the function makeSelfComposition and its helper
function AddLabeltoLabelAllState remains the same as before. After the self-
composition model is built for each probability-expression, the function ProbMC is
called with the probability-expression and the self-composition model as input. The
process of the function ProbMC and its help function check_property remains the
same as before. After the value of each probability-expression is returned, we eval-
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uate if the probability-expressions hold to the according to mathematical relation.
If the relation holds, the function returns true, otherwise false. If the formula has
multiple probability-formulae, this process is repeated for every probability-formula.

The following section explains the technical implementation of the original Hy-
perPCTL model checking algorithm.

5.3.1 List of Functions and Variables of the original Implementa-

tion

We �rst explain the functions with the most critical parameters and the most essential
variables of the original implementation in brief, so that the changes in the new
implementation can be explained in comparison.

� main(model, formula, arity_SC):
The three parameters of the function main are the DTMC modelM, a Hyper-
PCTL formula ψ and the arity n for the self-composition model. Intuitively,
we assumed that the implementation would determine the arity by the num-
ber of quanti�ers in ψ. However, the arity of the self-composition model is a
parameter entered by the user as a command line argument.

In the improved implementation, the arity of the self-composition model is not
relevant any more because it is determined in getBoundedVariables. The
parameter remains because the implementation needs this input for some other
functions which are not relevant for the scope of this Master thesis.

� makeSelfComposition(model, · · ·, arity_SC):
This function returns the self-composition model Mn. The most important
parameters of this function are the modelM and the arity arity_SC for the
self-composition model. The function main passes the model and the arity
to this function. During the building process of the self-composition model,
makeSelfComposition uses a helper function AddLabeltoLabelAllState
to determine the new labellings of the resulting self-composition model.

� AddLabeltoLabelAllState(model, · · ·, arity_SC):
This function is called from makeSelfComposition and returns the la-
bellings for the new self-composition model.

� HyperPCTL(formula, model, labellingSet, · · ·):
After the function makeSelfComposition returns the self-composition model
Mn, main passes the parsed formula and the self-composition model model
to HyperPCTL to create and return the set of labellings labellingSet
L̂n(s). In the beginning the set of labellings is empty. During the process of
the formula the function ProbMC is called, where it computes and returns the
values of the probability-expression p. To add the labellings of the probability-
expressions to the labelling set, HyperPCTL has to check if the probability-
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expressions hold for the mathematical relation. If it does, then the labellings
are added to the labelling set and proceed with processing the formula.

� ProbMC(probability-expression, model, labellingSet, · · ·):
This function takes the probability-expression p, the modelMn and
the labellingSet L̂n(s) as input from the function HyperPCTL. Classic
PCTL model checking is performed in ProbMC and returned to HyperPCTL.
To determine the values, ProbMC has a helper function check_property.

� check_property(probability-expression, model):
This function determines the values for the probability-expression by comput-
ing the probability vector via Storm. The result is returned to ProbMC.

� Global variables:

� List AllState:
This list is used in the function makeSelfComposition. During the
building process of the new self-composition model the function computes
the new resulting states for the self-composition model. Those states are
contained in this list.

� List VisitedState:
This list is used in the function makeSelfComposition. After a state
from AllState is processed where the transitions and its labellings are
created for that state, it is stored in this list. makeSelfComposition
proceeds building the self-composition model if there are states in the list
AllState which are not in VisitedState. Meaning, there are some
states left which have not been processed at that time. Otherwise, the
function terminates the building process and all states have been visited
and handled.

� Set LabelAllState:
This set contains all labels of the processed model. If one recalls the
model of the example in Section 2.2, the set contains the following labels
for that model: LabelAllState = {q0 : {I}, q2 : {E2}, q4 : {I}, q5 : {I}, q6 :
{E1}, q7 : {I}}.

The next section explains the implementation challenges and solutions. It is also
explained why and how the methods were modi�ed. The modi�ed functions with
their parameters and variables are listed below.

5.3.2 Implementation Challenges and their Solutions to Reduce the

n-ary Self-composition

In order to reduce the arity as explained in Section 5.2.3 only non-nested formulae
are allowed. However, the original procedure allows nested formulae. So the �rst
step of the challenge is to change the nested HyperPCTL syntax to a non-nested
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HyperPCTL syntax. Before the HyperPCTL syntax is changed from nested to non-
nested, it is necessary to think about the process of the formulae since the process
has changed as well.

Initially, a formula is processed by structural recursion. In the improvement,
structural recursion is not applied on the whole formula ψ, but only at the beginning
until the right arrow "⇒" of ψ. Up to the implication the formula is split into
sub-expressions p1, · · · pm to evaluate each sub-expression.

Two examples from the paper of Ábrahám and Bonakdarpour [ÁB18] are applied
to test the implementation. The �rst example features the HyperPCTL formula on
the DTMCM as shown in Figure 5.3.

∀σ.∀σ′.(initσ ∧ initσ′)⇒ (P(3aσ) = P(3aσ′)) (5.1)

This function is satis�ed by the DTMCM if the probability to reach a is the same
for all pairs of the initial states initσ and initσ′ .

s0{init}

s3

s1 {init}

s2{a} s4

s5 s6 {a}

0.4
0.2

0.4

0.7

0.3

1 0.8
0.2

1

1 1

Figure 5.3: DTMCM of the �rst example tested in the implementation [ÁB18] to
test formula 5.1.

The second example features the HyperPCTL formula on the DTMC M′ as
shown in Figure 5.4.

∀σ.∀σ′.[((t = n)σ ∧ (t = y)σ′)⇒ (P(3(r = n)σ) ≤ eln3 · P(3(r = n)σ′))]∧
[((t = y)σ ∧ (t = n)σ′)⇒ (P(3(r = y)σ) ≤ eln3 · P(3(r = y)σ′))]

(5.2)

This example represents the randomized response protocol to ensure that some
information about a user cannot be traced back to that user. This protocol is often
used in a survey where the privacy of a user is maintained. Some users do not want
to reveal their answers, so the users answer the questions of a survey incorrectly, or
they do not answer them at all. Through randomizing a user's response, the privacy
of a user can be ensured.
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s0{t = y}

{r = y}

{r = n} {r = y}

0.5
0.5

1

0.5
0.5

1 1

s1{t = n}

{r = n}

{r = n} {r = y}

0.5
0.5

1

0.5
0.5

1 1

Figure 5.4: DTMC M′ of the randomized response protocol to test formula 5.2 to
test the second example in the implementation [ÁB18].

5.3.3 1. Challenge: How to process the Formula

The formula is processed consecutively as depicted in Section 2.4. Since the goal
of the improvement is to reduce the arity of the self-composition, the �rst step of
processing the formula is to look into the sub-expressions pj , pj′ �rst as shown in Sec-
tion 5.2.3. According to the number of dependent state variables, the corresponding
self-composition models of pj and pj′ are built. Then, we use PCTL model checking
for all sub-expression, and we check if the results hold regarding the mathematical
relation.

The original process of the formula in the implementation is depicted in Figure
5.5. The syntax is processed recursively as in structural recursion. Thus, the pro-
cedure favours depth-�rst approaches, as shown in Figure 5.5. In the improvement,
processing the formula has changed since the sub-expressions pj and pj′ have to be
inspected �rst. The restricted syntax is depicted in Figure 5.6.

5.3.4 2. Challenge: Implementation of the HyperPCTL Syntax

The HyperPCTL syntax in the original implementation was implemented as in Def-
inition 2.3.1. Thus, nested functions are allowed. In the improvement of the imple-
mentation, no nested functions are allowed to reduce the arity of self-composition.
The formula ψ is arbitrarily extendable by conjunction. In the implementation the
HyperPCTL syntax is restricted as explained in Section 5.2.1.

5.3.5 3. Challenge: Applying the Indices during Self-composition

As explained in Section 5.2.1, we look at the number of the dependent state vari-
ables before the according self-composition model is built for the �rst sub-expression.
Based on the number of state variables z in the sub-expression, the z-ary self-
composition model is built and evaluated with this self-composition model. The same
process holds for the second sub-expression. If the numbers of dependent state vari-
ables are the same in both sub-expressions as in the Example 5.2.1, the �rst intuition
was to use the same self-composition model for the second sub-expression. In this
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Figure 5.5: Processing tree of parsing a formula in the original implementation.

·

· · ·prob_formula2

P(ϕ)∼P(ϕ)

prob_formula1

P(ϕ)∼P(ϕ)

initial − statesquantifiers

Figure 5.6: The new attempt of processing the formulae.
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case, another self-composition computation could have been avoided. However, this
did not work since the self-composition is also dependent on the indices i of the state
variables. The implementation matches the labels of the self-composition model;
i.e., the indices i of the model need to match with the indices i of the sub-expression
in order to evaluate it. An error occurs with the message that the implementation
could not �nd a labelling for σ2 as in Example 5.2.1 since the self-composition model
from the �rst sub-formula is labelled with σ1. In the original implementation de-
picted in Algorithm 2, the n-ary self-composition is computed and then forwarded to
HyperPCTL. The function HyperPCTL uses the self-composition model to evaluate
the formula. The error that some labelling could not be found did not occur in the
original implementation since the formula was not split into sub-expressions and all
indices are contained in the self-composition model.

To solve this challenge, the function makeSelfComposition had to be adapted.
The indices of a sub-expression have to be passed on to that function. Taking Ex-
ample 5.2.1, the index passed to the function for the �rst sub-expression pj is 1.
For the second sub-expression pj′ , the index passed to the function is 2. Thus, a
new parameter indices is added to makeSelfComposition and passed on to
AddLabeltoLabelAllState. With the added information of the indices of the
sub-expressions as a parameter for makeSelfComposition, the correct labelling
can be computed and matched to the resulting model.

However, the implementation still did not compute the correct self-composition
model. The execution aborted during computing the self-composition model for the
second sub-formula with index 2. The global variable list AllState plays a key
role in this function. After �nishing the self-composition model for the �rst sub-
expression with index 1, the function is recalled for the second sub-expression with
index 2. Since AllState is a global list, it still preserves all the states from the
previous operation. This function compares the VisitedStates with AllState
to know which states are left to process. It seems that this function has already
visited all states and aborts the building process. The global set LabelAllState
is not used in this function any more since the global set also contains the labelling
from the previous operations.

Consequently, new local variables have to be introduced:

� AllState

� TempLabelAllState

To preserve all the labellings in the implementation the set TempLabelAllState
is updated with the global set LabelAllState after every self-composition proce-
dure.

5.3.6 4. Challenge: Evaluating Multiple Formulae

After adapting the implementation of the HyperPCTL model checking algorithm
according to the three challenges, we can evaluate ψ which has one probability-
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formula. To evaluate various formulae, the example shown in Figure 5.4 was tested.
If multiple formulae are to be evaluated then the formula looks like the following:

Qσ1. · · · Qσn.︸ ︷︷ ︸
quantifiers

(
n∧
i=1

(
m∧
j=1

APσj )︸ ︷︷ ︸
initial-states

⇒ (
l∧

k=1

pk ∼k pk′))︸ ︷︷ ︸
probability-formulak︸ ︷︷ ︸

probability-formulae︸ ︷︷ ︸
imply_op︸ ︷︷ ︸

imply_ops

The repeating parts of formula ψ, referred to as imply_op, are the initial-states
and the probability-formulae. So according to the formula processing in Figure
5.6, evaluating several formulae is complicated. A better approach would be if the
processing of formula is implemented as suggested in Figure 5.7. With this strategy,
the number of probability-formulae is checked and processed accordingly as explained
in Section 5.2.3.

·

imply_ops

· · ·imply_op2

· · ·

imply_op1

prob_formulae

· · ·prob_form2

· · ·

prob_form1

pk′∼kpk

initial-states

quantifiers

Figure 5.7: Final process tree of the HyperPCTL formula ψ.

5.3.7 Further Improvement: Storing the Self-composition Models

One further idea is to store the self-composition models.
The implementation computes the self-composition model for the according state

variables σ for a sub-expression pk. It could be the case that the same state variables
occurs in a di�erent sub-expression of pl. Then, the same self-composition model has
to be computed again. If the self-composition model with the corresponding state
variables is stored, then a new computation of a self-composition model can be
avoided if the exact same set of state variables occurs again.
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In the implementation, the self-composition models are stored in a dictionary
with their state variables as key.

Consider the example, shown in Figure 5.4, with the HyperPCTL formula

ψ = ∀σ.∀σ′.[((t = n)σ ∧ (t = y)σ′)⇒ (P(3(r = n)σ) ≤ eln
3 · P(3(r = n)σ′))]∧

[((t = y)σ ∧ (t = n)σ′)⇒ (P(3(r = y)σ) ≤ eln
3 · P(3(r = y)σ′))]

To keep the vision, the quanti�ers and initial states are left out. Only probability-
formulae are depicted and considered. Usually, the probability-formulae would be
evaluated as follows:

( P(3(r = n)σ)︸ ︷︷ ︸
1-ary self-composition for state variable σ.

≤ eln
3 · P(3(r = n)σ′)︸ ︷︷ ︸

1-ary self-composition for state variable σ′.

)

︸ ︷︷ ︸
probability-formula1

and

( P(3(r = y)σ)︸ ︷︷ ︸
1-ary self-composition for state variable σ.

≤ eln
3 · P(3(r = y)σ′)︸ ︷︷ ︸

1-ary self-composition for state variable σ′.

)

︸ ︷︷ ︸
probability-formula2

In probability-formula2, the 1-ary self-composition is built for the state vari-
able σ and σ′ again although those models have already been built in probability-
formula1. The improvement now checks if such a model for the state variables
already exist before computing a self-composition model. If a model for the state vari-
ables already exist, this self-composition model is used to evaluate the sub-expression
pl. If it does not exist, the self-composition model for the state variables is computed
and stored for the case the state variables occur later in a sub-expression pl again.
If the state variables are used later in a sub-expression like in probability-formula2,
the corresponding self-composition model is reused.

In the following, the changed functions and variables are listed.

5.3.8 List of Functions and Variables of the improved Implementa-

tion

� main(model, formula, arity_SC):
This function gets three parameters as input, a DTMC model and a formula
ψ. The parameter arity_SC does not play a role for the improved implemen-
tation but remains for the rest of the implementation so that the rest of the
implementation can be reused for other types of models.

� getBoundedVariables(formula, save_Model):
This is the new and primary function of the improved algorithm implemen-
tation. It parses the passed formula and splits the formula into quanti�ers,
the imply_op initial states and probability-formulae. We call the function
HyperPCTL to process the quanti�er state variables so that the other vari-
ables of the formula can be matched to the quanti�er state variable labels.
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Otherwise, we do not have a connection between the quanti�er state variables
and the rest of the formula to evaluate it. If the formula consists of multiple
imply_ops, then the following procedure is repeated for each imply_op.:

If the initial states do not exist, we return true, because a false implication is
always true. If the initial states do exist, then we evaluate if the probability-
formula holds. If there are several probability-formulae, then this process is
repeated for every probability-formula. Each probability-formula is split into
three parts, the probability expression pk, the mathematical relation∼k and the
probability expression pk′ . For each probability-expression p the according self-
composition model is built with the function makeSelfComposition. The
number of state variables in a probability-expression is counted and passed to
the function makeSelfComposition as arity for the self-composition model.
In addition to the arity for the self-composition model, a new parameter is
passed to that function, namely the indices for the self-composition model as
explained in Section 5.3.5. The Boolean parameter save_Model is used to de-
cide whether we want to store the self-composition model so that we can reuse
that model later in a formula again, as explained in Section 5.3.7. A helper
function searchBuildCompositionModel is introduced to search, store
and return the self-composition models. The resulting self-composition model
is then passed to the function ProbMC to compute the values of the probability-
expression. The process of the functions ProbMC and check_property re-
mains the same as in the original implementation. It is checked whether the
values of the probability-expression hold for the relation. If they hold, then
this probability-formula evaluates to true, otherwise false.

� HyperPCTL(formula, model, labellingSet, · · ·):
One small change has been made in this function, because the comparison part
of every probability-expression to the mathematical relationship is not needed
anymore. The rest remains the same.

� makeSelfComposition(model, · · ·, arity_SC, indices):
One new parameter is added to this function is called indices. This param-
eter is needed to apply the correct labellings to the resulting self-composition
model, as explained in Section 5.3.5.

� AddLabeltoLabelAllState(model, · · ·, arity_SC, indices):
Since this function applies the labellings of the resulting self-composition model,
the parameter indices has to be passed to this function as well.

� searchBuildCompositionModel
(model, · · ·, arity_SC, indices):
This function uses the same parameters as makeSelfComposition because
it returns a self-composition model. If the boolean save_Model is false, then
we simply build the self-composition model with makeSelfComposition and
return it to getBoundedVariables. If the boolean save_Model is true,
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then we check if there already exists a self-composition model for the required
sub-expression. If there already exists one, we return this self-composition
model. Otherwise, we build the self-composition model, store it and return
this model.

The global variables remain the same as in the original implementation. The
changes are new local variables, as explained in Section 5.3.5.

� Local variables:

� List AllState:
This list originally was global. In the improved implementation, this
list is changed to a local list. This is needed to reset itself with ev-
ery call of the function makeSelfComposition. If there are some
states in VisitedState which are not in AllState, then not all states
have been processed yet, and the function proceeds to build the self-
composition model. Otherwise, it omits building the self-composition
model. If a new call for a self-composition model is made, then the states
from the previous self-composition model are still contained in this list,
and the function aborts the building process. It aborts the building pro-
cess because it recognizes that all states have already been visited. To
reset this list, the originally global list is changed to a local list.

� List VisitedState:
This list was originally a global list as well. With every call of the func-
tion makeSelfComposition, this list is reset so that the states of the
previous process do not interfere with the new process for the new self-
composition model.

� Set TempLabelAllState:
This new local set is used in the function makeSelfComposition in-
stead of the global set LabelAllState. It is reset with every function
call so that the labels of the previous process are not in this set. With
the correct index labelling in the according self-composition model of a
probability-expression, the evaluation of that probability-expression can
be evaluated correctly. At the end of makeSelfComposition, the la-
bels of the current resulting self-composition model are added to the global
set LabelAllState so that all labels are contained in the global set.

5.3.9 Code Procedure and Pseudocode

After all the changes the �nal informal implementation procedure is as follows:
We abbreviate original model (OG-model) and self-composition model (SC-model).
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Example 5.3.1. Consider the examples:

(i) ∀σ1.∀σ2.︸ ︷︷ ︸
Add labelling

for state quan-

ti�ers with

HyperPCTL

and OG-model

instead of 2-ary

SC-model.

(initσ1 ∧ initσ2)︸ ︷︷ ︸
If the initial

states do not

exist, return

true. Other-

wise, proceed.

⇒ ( P(3aσ1)︸ ︷︷ ︸
p1. Build 1-ary

SC-model and the

probabilities for all

init states. Save 1-ary

composition for state

variable σ1. Apply

probMC with its 1-ary

SC-model.

= P(3aσ2)︸ ︷︷ ︸
p2. Build 1-ary

SC-model and the

probabilities for all

init states. Save 1-ary

SC-model for state

variable σ2. Apply

probMC with its 1-ary

SC-model.

)

︸ ︷︷ ︸
Check if p1 = p2.

(ii) ∀σ.∀σ′.︸ ︷︷ ︸
HyperPCTL

with

OG-model.

[((t = n)σ ∧ (t = y)σ′)︸ ︷︷ ︸
If the initial states do

not exist, return true.

Otherwise, proceed.

⇒ ( P(3(r = n)σ)︸ ︷︷ ︸
p1 of probability-

formula1. Check

if SC-model for

state variable σ

exists: If yes,

use that model.

Else, build 1-ary

SC-model for σ.

Apply probMC on

SC-model.

≤ eln3 · P(3(r = n)σ′)︸ ︷︷ ︸
p2 of probability-

formula1. Check

if SC-model for

state variable σ

exists: If yes,

use that model.

Else, build 1-ary

SC-model for σ′.

Apply probMC on

SC-model.︸ ︷︷ ︸
Check if p1 ≤ p2.

)]

︸ ︷︷ ︸
probability-formula1

∧ [((t = y)σ ∧ (t = n)σ′)︸ ︷︷ ︸
If the initial states do

not exist, return true.

Otherwise, proceed.

⇒ ( P(3(r = y)σ)︸ ︷︷ ︸
p1 of probability-

formula2. Check if

SC-model exists for

state variable σ: If yes,

use that model. Else

build 1-ary SC-model

for σ. Apply probMC on

SC-model.

≤ eln
3 · P(3(r = y)σ′)︸ ︷︷ ︸

p2 of probability-

formula2. Check if

SC-model for state vari-

able σ exists: If yes,

use SC-model. Else

build 1-ary SC-model for

σ′. Apply probMC on

SC-model.︸ ︷︷ ︸
Evaluate if p1 ≤ p2.

)]

︸ ︷︷ ︸
probability-formula2
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In the �rst example, the implementation does not check if a self-composition for
a particular state variable exists because ψ has only one probability-formula. In the
second example, the implementation checks if a self-composition for a particular state
variable has already been built because ψ has more than one probability-formula.

Informally, the implementation of the improvement can be summarized as follows:

� Apply variable renaming such that the quanti�ed state variables are named
σ1 · · ·σn.

� Split the formula into two parts: quantifiers and imply_op. The labelling of
the quanti�ers is done by applying the function HyperPCTL with the model
passed from main.

The procedure for an imply_op is as follows:

� If the initial states do not exist, return true. If the initial states do exist,
proceed with the probability-formula.

� Split probability-formula1 into sub-expressions pk, pk′ and save the math-
ematical relation ∼k to compare the sub-expressions pk, pk′ .

� Counts how many state variables occur in sub-formula pk and build the
self-composition according to the number of dependent state variables in
pk.

� If there are several probability-formulae, then check if there already exists
a self-composition model for the dependent state variables of this sub-
expression. If yes, then use this self-composition model, otherwise build
the self-composition model and store it with the according state variables.

� Evaluate each sub-formula by applying model checking on the according
self-composition model.

� Repeat this procedure for every pk in probability-formulal.

� Compare the results of pk, · · · , pl according to the saved mathematical
relation.

� If the result is true, then the whole formula is satis�ed. Otherwise, the
formula is unsatis�ed.

� If multiple probability-formulae exist, repeat the process for each probability-
formula as explained.

� If the formula contains multiple implies_ops, then repeat the procedure for
each imply_op.

With all changes in the implementation, the �nal pseudocode is shown according
to the changes.

The pseudocode of the new functions are depicted in Algorithm 4, Algorithm 5
and Algorithm 6.
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Algorithm 4 Changed function main(M, ψ)
HyperPCTL model checking based on algorithm [ÁB18].

Require: DTMCM = (S, P,AP,L), HyperPCTL quanti�ed formula ψ
1: getBoundedVariables(ψ)

The function main, shown in Algorithm 4, gets a DTMCM and a formula ψ as
input. It does not call makeSelfcomposition and HyperPCTL any more. Also,
the function main does not verify if M |= ψ any more, hence it calls the function
getBoundedVariables and passes the formula ψ to it.

The function getBoundedVariables depicted in Algorithm 5 veri�es whether
M |= ψ holds. First, the function extracts the quanti�ers of the ψ and applies
HyperPCTL on the quanti�ers (lines 1�2). The model that HyperPCTL gets as
parameter is the original DTMC M. If we have multiple imply_ops, we repeat
the procedure for each imply_op like the following (line 3): We extract the initial
states and the probability-formulae. If we have multiple probability-formulae, we
repeat the procedure for each probability-formula and do the following (lines 4�5).
A probability-formula1 is divided into pk and pk′ to see on how many state variables
each sub-expression is dependent on (lines 7�8, 16�17). If we want to search and
store the self-composition models the Boolean save_Models is set to true, and
we call the helper function searchBuildCompositionModel to search and store
the self-composition model. If we do not want to search and store a self-composition
model, the state variables are counted, and a corresponding self-composition model
is built (lines 9�13). Based on that model ProbMC is called with pk as the passed
formula and the corresponding self-composition model as a model. The result of pk
is saved (line 14). The same procedure is repeated for pk′ (lines 16�23). Then the
results of pk and pk′ are compared according to the mathematical relation in ψ. If
the result is true, then the formula is satis�ed. Otherwise, it returns false (lines
26�28).

The function searchBuildCompositionModel in Algorithm 6 has the same
parameters as the function makeSelfComposition since it returns a model as
makeSelfComposition. It searches for a model, and if it exists, this model is
returned (lines 1-2). Otherwise, a self-composition model is built, stored and returned
(lines 4-6).

The function HyperPCTL remains almost the same as the original procedure
as depicted in Algorithm 2. Two things have been changed. First, HyperPCTL
does not call the function ProbMC any more. Last, this function does not have to
compare the results of ProbMC any more. That part is taken care of the function
getBoundedVariables.

The function ProbMC remains unchanged and is depicted in Algorithm 3.
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Algorithm 5 Function getBoundedVariables(formula,
boolean save_model)
Improving HyperPCTL model checking algorithm with the possibility to store the
self-composition model. We abbreviate makeSelfComposition with makeSC and
compositionModel with CM.

Require: HyperPCTL quanti�ed formula ψ
Ensure: WhetherM |= ψ
1: quantifiers := extract quanti�ers from ψ
2: HyperPCTL(quantifiers, M, labellingSet,· · · )
3: for (length of imply_ops > 1) do
4: initStates := extract initial states from formula
5: for (length of probability-formulae > 1) do
6:

7: pk := left side of probability-formulak
8: varLeft := state variables of pk
9: if save_Models = True then

10: CM :=searchBuildCM(model, len(varLeft), indices)
11: else

12: CM := makeSC(model, arity_SC, indices)
13: end if

14: result1 := ProbMC(pk, CM, labellingSet, · · ·)
15:

16: pk′ := right side of probability-formulak
17: varRight := state variables of pk′
18: if save_Models = True then
19: CM :=searchBuildCM(model, len(varRight), indices)
20: else

21: CM := makeSC(model, arity_SC, indices)
22: end if

23: result2 :=ProbMC(pk′, CM, labellingSet, · · ·)
24:

25: ∼k :=mathematical Relation ∼k
26: if result1 6∼k result2 then
27: return False
28: end if

29: end for

30: end for
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Algorithm 6 Function searchBuildCompositionModel(model, arity_SC
indices)
Function in which we search and store a self-composition model as well as return a
self-composition model if it has been built in ψ before.

Require: model, arity for self-composition model, indices
Ensure: Mn

1: if model exists then
2: return model
3: else

4: CM :=makeSelfComposition(model, arity_SC, indices)
5: save CM
6: return CM
7: end if
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Evaluation

In this chapter, we present the evaluation of the implementation. The following
aspects were considered in the original implementation and the new improved one:

� The number of states and transitions of the self-composition models.

� The run-time of the implementations.

6.1 Number of States and Transitions of Self-composition

Models

Regarding the number of states and transitions of the original input modelM and
those of the corresponding self-composition modelMn we obtain the following mea-
sured results in the original implementation compared to the new one without storing
the self-composition models:

For the �rst example, shown in Figure 5.3: The original modelM consists of 7
states and 11 transitions. The corresponding 2-ary self-composition modelM2 con-
sists of 23 states and 53 transitions. In the improved one, the 1-ary self-composition
model M1 consists of the same number of states and transitions as the original
model. One di�erence is that we do not have one model as in the original implemen-
tation but two 1-ary self-composition models since we build a 1-ary self-composition
model for each sub-formula. Altogether we have 14 states and 22 transitions. How-
ever, the number of transitions and states is distinctly smaller than the 2-ary self-
composition model. If we consider the improved implementation where we store the
self-composition models, the count of self-composition models stays the same since
the formula has only one probability-formula.

For the second example, shown in Figure 5.4: The original model M consists
of 5 states and 8 transitions. The corresponding 2-ary self-composition model M2

consists of 13 states and 32 transitions. In the improved implementation, the corre-
sponding 1-ary self-composition modelM1 has the same number of states and tran-
sitions as the original model. In this case, we have four 1-ary self-composition models
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because we build the according self-composition model to the corresponding state
variables for each sub-formula. Altogether we have 20 states and 32 transitions. If
we consider the improved implementation where we store the self-composition mod-
els, the count of self-composition models reduces to two having 10 states and 16
transitions.

We tested a third example which is the model of the �rst example, shown in
Figure 5.3, with the following formula to be evaluated:

ψ = ∀σ.∀σ′.∀σ′′.[(initσ ∧ initσ′)⇒ (P(3aσ) = P(3aσ′))∧
(initσ′ ∧ initσ′′)⇒ (P(3aσ′) = P(3aσ′′))]

The resulting self-composition model of the original implementation results in 79
states and 257 transitions. The resulting self-composition model of the improved
one without storing the self-composition models results in four models, each with
seven states and eleven transitions. Overall we have 28 states and 44 transitions.
If we compare the improved implementation where we store the self-composition
models, the count of self-composition models reduces to two having 14 states and 22
transitions.

The fourth example is an extension of the �rst example, shown in Figure 5.3, as
well with the following formula.

ψ = ∀σ.∀σ′.∀σ′′.∀σ′′′.[(initσ ∧ initσ′)⇒ (P(3aσ) = P(3aσ′))∧
(initσ′ ∧ initσ′′)⇒ (P(3aσ′) = P(3aσ′′))∧
(initσ′′ ∧ initσ′′′)⇒ (P(3aσ′′) = P(3aσ′′′))]

The resulting self-composition model of the original implementation results in 287
states and 1221 transitions. The resulting self-composition model of the improved
one without storing the self-composition models results in six models, each with 7
states and 11 transitions. In total, we have 42 states and 66 transitions. If we consider
the improved implementation where we store the self-composition models, the count
of self-composition models reduces to four having 28 states and 44 transitions.

The �fth and last example is an extension of the �rst example, shown in Figure
5.3, as well with the following formula.

ψ = ∀σ.∀σ′.∀σ′′.∀σ′′′.∀σ′′′′[(initσ ∧ initσ′)⇒ (P(3aσ) = P(3aσ′))∧
(initσ′ ∧ initσ′′)⇒ (P(3aσ′) = P(3aσ′′))∧

(initσ′′ ∧ initσ′′′)⇒ (P(3aσ′′) = P(3aσ′′′))∧
(initσ′′′ ∧ initσ′′′′)⇒ (P(3aσ′′′) = P(3aσ′′′′))]

The resulting self-composition model of the original implementation results in 1036
states and 5092 transitions. The resulting self-composition model of the improved one
without storing the self-composition models results in six models, each with 7 states
and 11 transitions. In total, we have 77 states and 88 transitions. If we compare the
improved implementation where we store the self-composition models, the count of
self-composition models reduces to four having 35 states and 55 transitions.
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Ex. OG Improved impl. without stor-
ing the SC-models

Improved impl. with storing
the SC-models

1. 1 SC-model:
23 states, 57
transitions

2 SC-models each:
7 states, 11 transitions
Total: 14 states, 22 transitions

2 SC-models each:
7 states, 11 transitions
Total: 14 states, 22 transitions

2. 1 SC-model:
13 states, 32
transitions

4 SC-models each:
5 states, 8 transitions
Total : 20 states, 32 transitions

2 SC-models each:
5 states, 8 transitions
Total: 10 states, 16 transitions

3. 1 SC-model:
79 states, 257
transitions

4 SC-models:
7 states, 11 transitions
Total: 28 states, 44 transitions

2 SC-models:
7 states, 11 transitions
Total: 14 states, 22 transitions

4. 1 SC-model:
287 states, 1221
transitions

6 SC-models:
7 states, 11 transitions
Total: 42 states, 66 transitions

4 SC-models:
7 states, 11 transitions
Total: 28 states, 44 transitions

5. 1 SC-model:
1036 states, 5092
transitions

8 SC-models:
7 states, 11 transitions
Total: 77 states, 88 transitions

5 SC-models:
7 states, 11 transitions
Total: 35 states, 55 transitions

Table 6.1: Number of states and transitions of self-composition models of the imple-
mentations.

We observe that the sizes of self-compositions are reduced, hence during model
checking we have to evaluate fewer states and transitions. We have an even lower
count of self-composition models if we apply the implementation where we store
them. A summary with the number of states and transitions is listed in Table 6.1.

We abbreviate original (OG), implementation (impl.) and self-composition model
(SC-model) in the tables.

With the improved implementation, the number of states and transitions are
reduced except for in Example 2. With the improved implementation where we
store the self-composition models, the number of states and transitions of the self-
composition models are reduced at least by half in comparison to the original imple-
mentation.

6.2 Runtime Evaluation

In our improvement, we reduce the arity of the self-composition models to make the
model checking algorithm more e�cient. In comparison to the original implementa-
tion, we do not have one n-ary self-composition modelMn but at least two smaller
self-composition models. We evaluate fewer states and transitions at the expense
of time to build, load and store the models which introduces a noticeable overhead
during the time measurement.

We observe for all three implementation variants (original implementation, im-
proved implementation without storing the self-composition models, improved im-
plementation with storing the self-compisition models) that more quanti�ers in a
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Ex. OG
impl.

Improved impl. without
storing the SC-model

Speed-up:
OG impl./Improved impl.

1. 0.047s 0.054s 0.87
2. 0.048s 0.092s 0.52
3. 0.101s 0.095s 1.06
4. 0.665s 0.134s 4.81
5. 4.939s 0.280s 17.64

Table 6.2: The run-times of the original implementation and the improved one with-
out storing the self-composition models.

Ex. OG
impl.

Improved impl. with
storing the SC-model

Speed-up:
OG impl./Improved impl.

1. 0.047s 0.055s 0.85
2. 0.048s 0.055s 0.87
3. 0.101s 0.077s 1.31
4. 0.665s 0.094s 7.07
5. 4.939s 0.258s 19.14

Table 6.3: The run-times of the original implementation and the improved one with
storing the self-composition models and the achieved speedup.

formula cause a longer runtime (see Table 6.2 and 6.3).
Comparing the original implementation with the improved implementation (with

or without storing the self-composition models), the original implementation has a
shorter runtime for Examples 1 and 2, while the improved implementation has a
shorter runtime for Examples 3, 4 and 5. The original implementation is faster for
Examples 1 and 2 because building and using several smaller self-composition models
is more time-consuming than building and using a single larger model for formulae
with few quanti�ers. The improved implementation (with or without storing the self-
composition models) is faster for Examples 3, 4 and 5 because building and using
several smaller self-composition models is faster than building and using a single
large model for formulae with more quanti�ers. We can see a trend that the relative
speed-up of the improved implementation increases with the number of quanti�ers
in the formula, i.e., we expect the speed-up to grow for even more quanti�ers. If
we additionally store the self-composition models, then the runtime of the improved
implementation decreases even further, because the self-composition models can be
reused.
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Conclusion and Outlook

In this Master thesis, we increased the e�ciency of a model checking algorithm for
a fragment of the logic HyperPCTL. Ábrahám and Bonakdarpour [ÁB18] proposed
the original HyperPCTL model checking algorithm. A discrete-time Markov Chain
(DTMC) can interpret a HyperPCTL state formula. The algorithm takes a DTMC
M and a HyperPCTL formula ψ as input and veri�es ifM |= ψ holds. The original
algorithm takes the given DTMC M and builds an n-ary self-composition model
Mn. There, n is the number of quanti�ers in the HyperPCTL formula ψ. Using
that self-composition model Mn, the formula ψ (i.e., every sub-expression of ψ) is
veri�ed. The original HyperPCTL model checking algorithm allows nested formulae.

In our improved implementation, we reduce the arity of the self-composition
model by analysing the HyperPCTL formula ψ �rst before computing the self-
composition model. To reduce the arity, we only allow non-nested HyperPCTL
formulae. We count how many state variables the sub-formula has. Based on the
number of the state variables a self-composition model with the number of state
variables as arity is built, and we verify the sub-expression on this self-composition
model. We do not have one big n-ary self-composition model as in the original
implementation, but multiple small self-composition models since a sub-expression
usually does not dependent on all state variables in ψ. Thus, we do not need to build
an n-ary self-composition model Mn. A further improvement is that we store the
self-composition model with the corresponding state variable. If a sub-expression
has the same state variables as a di�erent sub-expression that appeared in ψ before,
then the self-composition model does not have to be built again.

In our evaluation, we tested �ve examples to compare the original implementation
and the improved one. We compared two aspects, namely the number of states and
transitions of the self-composition models as well as the runtime of the implementa-
tions. The original implementation was compared to the improved one where we do
not store the self-composition models as well as the improved one where we store the
self-composition models. We have built bigger examples where the HyperPCTL for-
mula ψ contains up to �ve quanti�ers to see what impact the n-ary self-composition
model has. The number of states and transitions is reduced in the self-composition
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models compared to the n-ary self-composition model Mn. Additionally, we store
the self-composition models. Thereby, we can reuse them for other sub-formulae
with the same state variables and save computation time. We assumed correctly
that the bigger the number of quanti�ers in ψ gets, the longer the original imple-
mentation needs to verify if M |= ψ holds. The improved implementation without
storing the self-composition model has a speed-up of 17.64 compared to the original
implementation for an example where ψ contains �ve quanti�ers. The speed up of
the improved implementation with storing the self-composition model is by factor
19.14 compared to the original implementation. With a more common HyperPCTL
formula where we mostly have two quanti�ers, the original implementation can be
faster than the improved one, depending on the input modelM and formula ψ, since
the building, loading and storing of self-composition models is time-consuming.

As for future work, one possibility is to reduce the arity of the self-composition
models as in this Master thesis, but for nested HyperPCTL formulae. A further as-
pect could be to implement the model checking algorithm without using the function
HyperPCTL. Also, one could try to improve the function makeSelfComposition.
Instead of building each self-composition model from scratch, one could reuse a self-
composition model with an identically sized set of state variables and adapt the
labellings accordingly.



57

Glossary

PCTL Probabilistic Computation Tree Logic

PCTL* Probabilistic Computation Tree Logic*

CTL Computation Tree Logic

CTL* Computation Tree Logic*

LTL Linear Temporal Logic

DTMC discrete-time Markov Chain

CTMC continuous-time Markov Chain

MDP Markov Decision Process

SMC statistical model checker

PyCarl Python Computer ARithmetic and Logic library

Carl Computer ARithmetic and Logic library

OG-model original model

SC-model self-composition model

OG original

impl. implementation
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