
Bachelor of Science Thesis

On Gröbner Bases in
SMT-Compliant

Decision Procedures

Sebastian Junges

Supervisors:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl
Advisor:
Dipl. Inform. Ulrich Loup

February 26, 2013

Abstract

Modern satisfiability solvers are able to determine satisfiability of a
given propositional logic formula very efficiently. Satisfiability modulo
theories (SMT) is an approach to use solvers to determine the satisfiability
of formulae from the first order logic over some theories.

This thesis aims at the development of methods for deciding consis-
tency of sets of polynomial constraints over the real numbers, which have
a decent performance when embedded into an SMT solver. Gröbner bases
and the Weak Nullstellensatz allow deciding consistency over the complex
numbers. Since Gröbner basis are frequently used and are subject to a lot
of active research, the existing algorithms are highly optimised. In this
thesis a well-known algorithm is implemented and extended to make the
method SMT-compliant.

To decide the unsatisfiability over the real numbers, an application of
the Real Nullstellensatz is implemented, in which existing methods for
semidefinite programming are combined with Gröbner bases to find sums
of squares, which are potential witnesses for unsatisfiability.

The experimental results show some promising applications, which
could be further improved by the implementation of the ideas from the
thesis’ comprehensive overview over both theoretical and technical en-
hancements.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und
noch nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten
Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wur-
den als solche gekennzeichnet.

Sebastian Junges
Aachen, den 22. August 2012

Acknowledgements
There are numerous people who supported me during my work on my bachelor
thesis. First of all, I owe my thanks to my supervisor Prof. Dr. Erika Ábrahám.
She has supported me for the last couple of years and gave me the great oppor-
tunity to be part of her research team. Moreover, she provided very detailed
comments on the thesis, far more than I could have expected. I am deeply
grateful to my advisor Ulrich Loup, who was available at day- and nighttime
to answer all kind of questions and give some valuable feedback. The topic of
this thesis is originated in some fruitful discussions we had. I would also like to
thank Florian Corzilius for all the work he put into SMT-RAT in order to make
it easier for me to develop my SMT-RAT module. The dialogues brought me a
deeper understanding of SMT and SMT-RAT. To all in the Theory of Hybrid
Systems group, I want to say "Thank You!" for all the help, fun, and meals.

vi

Contents

1 Introduction 9

2 SMT solving and real algebra 13
2.1 SAT solving . 13
2.2 SMT solving . 14
2.3 Theory of the reals . 16
2.4 SMT-RAT . 17

3 Consistency for polynomials 21
3.1 Consistency as an algebraic notion 21
3.2 Gröbner bases . 25
3.3 The Nullstellensatz . 32
3.4 Handling inequalities . 34

4 The SMT-RAT Gröbner basis module 37
4.1 An SMT module based on Gröbner basis calculation 37
4.2 Improving the Buchberger algorithm 41
4.3 State-of-the-art: Signature-based and saturation algorithms . . . 48
4.4 Efficient data structures . 48

5 Applying the Real Nullstellensatz 53
5.1 Finding witnesses by sums of squares 53
5.2 A module based on the real Nullstellensatz 59

6 Experimental results 61

7 Conclusion 65
7.1 Summary . 65
7.2 Discussion . 66
7.3 Future work . 67

Bibliography 69

viii Contents

Chapter 1

Introduction

The satisfiability problem (SAT) poses the question whether a propositional
logic formula is satisfiable, i.e., whether there is an assignment to the variables
such that the formula evaluates to true. Many problems from industry can be
modelled as a satisfiability problem and therefore, a lot of active research aims
at the development of efficient solvers for instances of this problem.

Often, a more expressive modelling language is desired, extending the propo-
sitional logic with theories from first-order logic. The combination of theory
solvers with SAT solvers is called Satisfiability Modulo Theories (SMT) solving.
Theory solvers used in SMT should meet some requirements in order to make
the interaction with the SAT solver work efficiently.

We focus on a specific theory, the existential fragment of the theory of the
real ordered field (real algebra). This is an expressive, but still decidable the-
ory [Tar51]. Some well-known decision procedures are the cylindrical algebraic
decomposition method and the virtual substitution method. Application areas
include the verification of safety-critical programs or models thereof.

From results in automatic theorem proving by [PPdM12] inspired, it seems
important to compose a theory solver using several different approaches, as each
of the methods may be advantageous for a specific fragment of the theory. Our
main focus is on equations. Given a set of polynomials in several variables and
of arbitrary degree, we are interested in the common zeroes, i.e., the assignments
to the variables such that all polynomials evaluate to 0. More specifically, we
are interested in the question if the set of common zeroes is empty over the real
numbers.

Over the complex numbers, the famous Hilbert’s Nullstellensatz gives criteria
for emptiness. Evaluation of these criteria can be done using the Gröbner basis
of a given set of polynomials. The Gröbner basis consists of a set of polynomials,
which have the same set of common zeroes as the original polynomials, but it
has some properties which simplify checking properties of the set, e.g., whether
the set of common zeroes is empty over the complex numbers.

To decide whether the set of common real zeroes of a Gröbner basis is empty,
one can apply the Real Nullstellensatz by Stengle [Ste74]. However, to apply
this theorem efficiently, we have to search for a witness. An approach by Platzer
et al. in [PQR09] yields feasible experimental results, which might lead to an
efficient SMT procedure.

10 Chapter 1. Introduction

Contribution

In this thesis we take two heavily used procedures and fit them into an SMT
framework in order to gain a speed-up on the detection of conflicts in the set of
equalities.

We start by a thorough introduction into the algebraic notions as a theoreti-
cal foundation. Based on these we are able to apply results from computational
algebra to develop the two new methods which we have adapted, implemented
and integrated into the SMT framework.

The first method, based on computing Gröbner bases, determines inconsis-
tencies of equalities over the complex numbers. There is a lot of research related
to Gröbner basis algorithms, but as far as we know, none of the existing algo-
rithms is SMT-compliant. Another issue is that related research focuses more on
algebraically hard problems, which have a structure different than the problems
we know from SMT.

We implemented a well-known variant of the Buchberger algorithm as well
as all dedicated data structures the algorithm uses. The data structures are
designed with the structure of typical SMT problems in mind. We extended
the algorithm to be SMT-compliant and wrapped it in a Gröbner basis module
which contains the SMT-compliant method as well as the interaction with the
other modules. We discussed and integrated two methods to factor inequalities
into the computation. Moreover, we provide a deeper understanding of the
theoretical and technical enhancements that can be made to such calculations.

The second method uses the computed Gröbner basis and is able to deter-
mine inconsistency of equalities over the real numbers. It is an application of
the Real Nullstellensatz in which we search for sums of squares as witnesses
for unsatisfiability. The approach is based on the ideas from Platzer et al. in
[PQR09]. We discuss the original approach and provide a preliminary imple-
mentation which uses a numerical library for semidefinite programming. The
resulting algorithm is integrated into our Gröbner basis module.

The algebraic components of our module are implemented in GiNaCRA1.
GiNaCRA is an open-source C++ library for real algebra. The module itself,
as well as the major part of our second method, is integrated in SMT-RAT2.
SMT-RAT is a modular C++ framework for the development of real algebra
solvers within SMT. Our implementations will be part of the next release, and
are available upon request3.

Our implemented methods significantly reduce the computation time on sev-
eral input instances, as we may conclude based on numerous benchmarks, whose
results are shown in the section on experimental results.

Related work

Several open computer algebra systems include Gröbner basis algorithms, e.g.,
Macaulay [GS], Reduce/Redlog [DS97a] and Singular [DGPS12]. Some of the
algorithms used in these systems are described in [Bri10], [GGV10], [EP11]. An
extensive treatment of technical improvements for Gröbner bases computations
is given in [RS]. Using Gröbner bases as a simplification step in quantifier

1Available from http://ginacra.sourceforge.net/
2Available from http://smtrat.sourceforge.net/
3mail to sebastian.junges@rwth-aachen.de.

http://ginacra.sourceforge.net/
http://smtrat.sourceforge.net/
sebastian.junges@rwth-aachen.de

11

elimination is mentioned in [DS97b]. All these contributions are superior in
terms of both theoretical as technical optimisation, but none regards the needs
of an SMT-compliant algorithm and the different structure of problems handled
in SMT.

The Real Nullstellensatz is successfully applied in [PQR09]. Applications of
the more general Positivstellensatz are given in [Par03], [Tiw05], and [Har07].
Although these approaches handle inequations directly, they require more effort
to be applied because three different witnesses have to be found. Furthermore,
these approaches do not require a Gröbner basis as input for the computation.

Besides SMT-RAT, we are only aware of one other SMT solver which can
handle highly non-linear instances, that is Z3 [dMB08]. Z3 has implemented
saturation algorithms for Gröbner bases, which aims at large, largely linear input
sets [PdMJ10], but the work on SMT-compliance in [dMP09] is preliminary and
has a more theoretical nature. There seems to be no efficient integration of
Gröbner bases computations for input sets with higher degrees. Other existing
SMT solvers capable of non-linear real algebra are iSAT [FHT+07] and CVC3
[BT07], but these are not complete and are more focused on the mainly linear
fragments.

Structure of the thesis
The remaining part of the thesis is structured as follows: In Chapter 2 we dis-
cuss SMT solving and requirements for the embedded theory solvers. We then
shortly present the framework SMT-RAT. In Chapter 3 we give the foundations
of our theory in algebraic terms and introduce Gröbner bases. In Chapter 4
we then develop an SMT-compliant Gröbner basis module and discuss several
enhancements. In Chapter 5 we show a possible way to apply the Real Null-
stellensatz. In Chapter 6 some experimental results are given. In Chapter 7 we
conclude the thesis and give our view on future work.

12 Chapter 1. Introduction

Chapter 2

SMT solving and real algebra

In this chapter, we describe how the Satisfiability Modulo Theories (SMT) solv-
ing approach works, and give some desirable features for the SMT components
we develop. Finally, we describe the SMT-RAT framework in which we embed-
ded our methods.

2.1 SAT solving

Satisfiability (SAT) checking is a well-known problem in computer science.
Given a propositional logic formula ϕ, the SAT problem is to decide whether
there exists an assignment of truth values to the variables of ϕ such that ϕ
evaluates to true. If such an assignment exists, we call a formula satisfiable
(sat), otherwise unsatisfiable (unsat).

Example 2.1.1. We give two propositional logic formulae:

• ϕ = (¬x ∨ y) ∧ (x ∨ ¬y ∨ z) is sat. (x = false, y = false, z = true).

• ψ = (¬x ∨ y) ∧ (x ∨ y) ∧ ¬y is unsat.

Although SAT checking is computationally hard, modern solvers are capable
to solve very large problem instances efficiently. We regard the family of DPLL
SAT solvers. These solvers increase a partial assignment until it is either a full
satisfying assignment or they find a conflict. A DPLL solver makes decisions
about the value of a variable and then propagates the implications of this de-
cision. Then, if no conflict is detected, a new decision is made. If all variables
already have an assignment, the problem is satisfiable. If a conflict is found, the
solvers undo those decisions which caused this conflict and ’learn’ a new clause
describing the conflict’s reason. If no new decisions can be made, the problem
is unsatisfiable.

Note that DPLL solvers need their input formula to be in conjunctive nor-
mal form (CNF). However, any Boolean formula can be transformed into an
equisatisfiable CNF in linear time and space by Tseitin’s encoding [Tse83].

A detailed description of DPLL solvers and their enhancements can be found
in e.g. [KS08] and [BHvMW09]. The actual implementation we use is based on
the SAT solver MiniSat [ES04].

14 Chapter 2. SMT solving and real algebra

2.2 SMT solving
Often, propositional logic does not suffice to describe a problem. One would like
to have a more expressive logic, for instance some fragment of the first-order logic
over some theory. In this fragment, the interpretation of symbols should be fixed.
For example, when someone is interested in equality of integers, the symbol ’=’
should have the standard interpretation. Adding axioms is not always possible1
and the performance of this solution makes these solvers inapplicable. A better
solution is to use dedicated methods tailored to the specific theory.

However, when developing dedicated methods, it is an asset if we can use the
highly evolved SAT solvers for the Boolean structure. This approach is called
Satisfiability Modulo Theories (SMT) solving. We can distinguish between two
types of SMT solving. The eager approach converts input formulae into equi-
satisfiable propositional formulae. The lazy approach uses an inference system
specialised on the theory. We use the last one, as it gives us the possibility to
use results from the theory, in our case the real arithmetic.

2.2.1 Lazy SMT solving
The method we use for lazy SMT solving is based on the DPLL(T) framework,
which is a combination of a DPLL-based SAT solver with a dedicated theory
solver. Our short introduction follows [ÁCLS10]. We start with explaining the
basic scheme as depicted in Figure 2.1. Definitions are postponed to Section
2.3, where we define the chief terms with respect to a concrete theory.

ϕ

SAT solver sat/unsat

Set of constraints Return inconsistent set

Theory solver

Boolean skeleton

Figure 2.1: Scheme for lazy SMT solving.

For a given Boolean combination ϕ of constraints, the SAT solver makes an
abstraction replacing all the theory constraints by fresh Boolean variables. This
yields the Boolean skeleton of ϕ. The SAT solver then looks for a satisfying
solution, and if it does not succeed, immediately returns unsat. Otherwise, the
theory solver gets the constraints matching the satisfying assignment and it is
called for a consistency check. The theory solver checks if the received set of
constraints is consistent within the theory. If so, the theory solver returns to
the SAT solver, which returns sat. If the set of constraints is not consistent
within the theory, the theory solver returns a set of inconsistent constraints to
the SAT solver, which adds the corresponding Boolean variables in a conflict
clause and proceeds then, as if it would have found a Boolean conflict.

1 For the theory of the reals, we would need an infinite set of formulae from the first-order
theory.

2.2. SMT solving 15

This scheme is enhanced in less lazy solving such that theory calls can also
happen for partial (Boolean) assignments. In this case, whenever the theory
solver returns sat, the SAT solver has to extend the assignment, if the assign-
ment is partial, or return sat, if the assignment is already a full assignment.

Example 2.2.1. Given the input formula

ϕ = (x− 1 = 0) ∧ (xy = 0) ∧ ((x+ y = 0) ∨ (2y = 0)),

the SAT solver first generates the Boolean skeleton and a mapping:

ϕB = a ∧ b ∧ (c ∨ d)

a 7→ (x− 1 = 0)

b 7→ (xy = 0)

c 7→ (x+ y = 0)

d 7→ (2y = 0).

Let us assume that the SAT solver directly assigns a and b to true, and then
decides to make a theory call. The theory solver would return true as {x− 1 =
0, xy = 0} is consistent. The call was on a partial assignment, so the SAT
solver extends the assignment. Assume that the SAT solver decides to add c to
the assignment. The theory solver receives the new constraint, and now returns
the set as conflict. The SAT solver extends the Boolean skeleton with the learned
clause:

ϕB = a ∧ b ∧ (c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c),
leading to the assignment a = b = d = true, c = false. As constraint set1 we
get {x−1 = 0, xy = 0, 2y = 0}, which is consistent. Since the assignment yields
true in the Boolean skeleton, the SAT solver can return sat.

In order to make this scheme efficient, it is important to provide an efficient
interaction between the SAT solver and the theory solver. Three requirements
for efficient interaction are:

• Incrementality : The theory solver should use the result from a previous
check whenever the input constraint set is extended.

• Backtrackability : The theory solver should be able to restore a previous
state whenever the input set is decreased.

• Small conflict-set generation: The theory solver should be able to return
inconsistent sets of constraints which are as small as possible.

Definition 2.2.1 (SMT-compliant). We call a theory solver SMT-compliant if
it supports incrementality, bactrackability and the generation of small conflict
sets.

Notice that there are a couple of other properties which make a theory
solver work even more efficient. These are not in the scope of our definition.
We mention two additional features which further improve the interaction.

1The input formula is in negation normal form (NNF), i.e., negation only occurs in front of
Boolean variables. If the input is in NNF, then only constraints whose corresponding variable
is assigned to true must be passed on to the theory solver.

16 Chapter 2. SMT solving and real algebra

• Informing : The theory solver should have knowledge about constraints
which might be added in future theory calls.

• Theory deduction: The theory solver should have the ability to tell the
SAT solver a pair of a set of constraints C and a constraint c, such that if
all constraints in C evaluate to true, then c evaluates to true.

2.3 Theory of the reals
In this thesis, we consider decision procedures for real arithmetic (RA). An RA
formula ϕ is an arbitrary Boolean combination of constraints c. Constraints
compare multivariate polynomials p over a set V of variables with zero. Mul-
tivariate polynomials are variables and constants, arbitrarily combined by ad-
dition, subtraction and multiplication. We define them by a grammar with
x ∈ V :

p ::= 1 | x | (p+ p) | (p− p) | (p · p)
c ::= p = 0 | p < 0 | p > 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

The semantics for such formulae is as usual. Several Boolean operators can be
added as syntactic sugar, moreover, we can also define the relations ≤,≥, 6= in
constraints.

A special case of RA is non-linear real arithmetic (NRA). In NRA, there
exist constraints which are not linear, i.e., whose degree is larger than one (see
Definition 3.1.5). If, in contrast, all constraints are linear, i.e., the degree of all
constraints is less than two, we call the fragment of RA linear real arithmetic
(LRA). For LRA highly efficient methods are available. In this thesis, we focus
on constraints which are non-linear.

Next we fix some notions. A more formal treatment of the theory is given
in Chapter 3.

Definition 2.3.1 (Variable assignment). A (real valued) variable assignment
α : V → R is a map from the set of variables V to the value domain R.

Definition 2.3.2 (Satisfying assignment). A set C of constraints is consistent
if it has a satisfying assignment, i.e., if there exists a variable assignment such
that all constraints c ∈ C evaluate to true. A set C of constraints is a conflict
set, also called inconsistent, if there exists no satisfying assignment for C.

Definition 2.3.3 (Theory call). A theory call returns for a given set C of
constraints either a conflict set C ′ ⊂ C or the empty set in case C is consistent.

2.3.1 Common approaches

We hereafter shortly introduce the two major procedures which are mostly used
for non-linear problems in the context of SMT solving.

Virtual substitution Virtual substitution (VS) is a method originally de-
veloped by Weispfenning in [Wei93]. It is a quantifier elimination procedure
based on a finite abstraction of the state space, substituting variables by a finite

2.4. SMT-RAT 17

set of test candidates. Instead of a real substitution, for an input formula ϕ
it produces a set of formulae Ψ such that ϕ is unsatisfiable if and only if all
ψ ∈ Ψ are unsatisfiable. Since this substitution only works for polynomials of
bounded degree, it is incomplete, but it turned out to be very efficient on many
problems. An SMT-compliant version is given in [CA11].

Cylindrical algebraic decomposition Cylindrical algebraic decomposition
(CAD) is a method originally developed by Collins in [Col75]. Instead of trans-
forming the input formula, the CAD partitions the solution space into regions
over which all input polynomials are sign invariant. This is done in two phases:
projection and lifting. The projection is done by successive elimination of vari-
ables. When there is only one variable left, the univariate solutions can be
easily calculated. In the lifting phase, we retrieve sample points for all cells
from the partitioned solution space. Since the representation of points in the
solution space is far from trivial, the CAD generally performs better when it gets
(strict) inequalities. Despite this, the CAD is a complete decision procedure.

2.3.2 Applications

Nowadays, more and more digital systems interact with their physical environ-
ment. Often, these systems are safety-critical, e.g., control systems in trans-
portation. The behaviour of such systems can be modelled by means of hybrid
automata. Hybrid automata can be verified to fulfil certain properties. One ap-
proach to do this is bounded model checking [Arm03]. During bounded model
checking, real arithmetic formulae with a Boolean structure have to be checked
for satisfiability. Therefore, there is a great interest in SMT solving within this
community (see e.g. [CMT12]).

Other applications for SMT solving are verification of programs involving
floats and the verification of formulae involving special functions [AP10].

2.4 SMT-RAT

We integrated our modules in SMT-RAT [CLJÁ12]. SMT-RAT is a modular
C++ framework to support the implementation of SMT solvers for non-linear
real arithmetic. Different methods and approaches to solve or simplify sets of
constraints can be implemented as modules. At compile-time, these modules
can be composed into a hierarchy together with a strategy which, during run-
time, decides which module should handle the input. In the version 0.3, there
are modules for CAD, Virtual Substitution as well as some preprocessing and
simplification modules.

The framework was slightly redesigned recently, therefore, we describe the
most important parts of the interface here. A more detailed description can be
found in the user’s manual [CLJÁ].

2.4.1 General overview

The general idea of the framework can be seen in Figure 2.2. The modules,
depicted as boxes contain different methods and/or different heuristics for these
methods. The links between the modules model the strategy. The approach to

18 Chapter 2. SMT solving and real algebra

solve a problem instance is that a module might work on a fragment of the input
and then pass a modified part of the formula to another module, which might
contain a more efficient method to solve this new, equisatisfiable formula. The
order of these calls and the specific modules which are called is described by
the strategy. We call a module B, which is called after another module A, the
backend module of A. The interaction between two successive modules is realised

ϕ

SAT solver sat/unsat

Set of constraints Return inconsistent set

Theory solver

Boolean skeleton

Module Module Module · · ·

Figure 2.2: Modules and strategy in SMT-RAT.

by sharing a common set of constraints1. Every module has a received formula
and a passed formula. The passed formula is the same as the received formula
of its direct successors. In Figure 2.3 the Module A has a received formula ϕ1

and a passed formula ϕ2. Module B has ϕ2 as its received formula.

Module
A

Module
B

ϕ2ϕ1 ϕ3

Figure 2.3: Two modules with their in- and output.

Modules should never change their received formula, as there might be other
modules also working on this formula. Moreover (see Figure 2.4) whenever a
backend module returns a conflict set with respect to the passed formula, it is
important to translate this to a conflict set with respect to the received formula
such that the SAT solver finally gets a conflict set with respect to its passed
constraints. In this manner, the SAT solver is able to understand the conflict
and learn its conflict clause. In Figure 2.4 Module C finds a conflict. It returns a
subset of its received constraints. Module B and all other predecessors translate
this subset back.

1In fact, they share a common formula, but for the theory solvers we use, this is always a
conjunction of constraints.

2.4. SMT-RAT 19

SAT solver · · · Mod.B Mod.C

C1 C2 C3

{. . .} ⊂ C3{. . .} ⊂ C2{. . .} ⊂ C1

Figure 2.4: Learning a conflict.

Definition 2.4.1 (Reason set). Given two sets C1, C2 of constraints, the reason
set of a constraint c ∈ C2 is a set R ⊆ C1 such that

∧
r∈R r → c.

The module has an interface which keeps a mapping storing the reason sets
for all constraints in the passed formula. This mapping is used for restoring the
conflict sets, but besides that, the mapping is also used to update the backends
whenever backtracking occurs, such that the backtracking is applied to the
passed formula (and thus the backend modules).

2.4.2 Implementing an own module
To implement an own module in SMT-RAT, one has to inherit the functionality
from a generic Module class. The own class should overload at least the three
core methods, which define the behaviour of the module. In order to keep data
structures correct, calls to the method in the superclass should be made.

assertSubformula(constraint): From now on, theory calls to the
module should consider the constraint in the received formula.

isConsistent(): This method asks the module for consistency of the as-
serted constraints in the received formula. Besides true and false, the check
can also return unknown. In order to have the ability to add backends for this
module, a call to runBackends should be added at a suitable place after the
calculation.

removeSubformula(constraint): This method is basically the inverse
of assertSubformula. It informs the module that it should no longer take
the constraint into account.

2.4.3 Theory solver and strategy
A theory solver built from SMT-RAT modules can be best regarded as a set
of rules which define the strategy. Each formula has a set of properties, which
are calculated on-demand. There are two major categories of properties. First,
those properties describing the formula, e.g., whether or not all constraints are
equalities. Second, those which describe whether another module was already
called on the formula. Now to define a strategy, we define a set of rules. Each
rule consists of a priority, a function which maps properties of a formula to
a Boolean value, and a module. The rules are evaluated according to their
priority order, and as soon as the function evaluates to true, the corresponding
module is attached as used backend, and the constraints which have been added

20 Chapter 2. SMT solving and real algebra

but not yet asserted in this module will be passed as arguments in the calls to
assertSubformula.

Chapter 3

Consistency for polynomials

In this chapter, we formalise our problem from the previous chapter in terms of
real algebra. We regard polynomials as algebraic objects. This enables us to use
well-understood theory about polynomials and we can define what consistency
means in algebraic terms. We then move on to Gröbner bases, which are an
important tool for simplifying the representation of polynomial sets. In the last
part, we consider criteria for consistency and shortly show how to apply some
of the results to inequalities.

3.1 Consistency as an algebraic notion
We start with some basic algebraic definitions which can be found in, e.g.,
[BWK93] and [CLO97].

3.1.1 Rings and fields
For our treatment of polynomials, two algebraic structures are elementary.

Definition 3.1.1 (Commutative Ring with 1). Given a set R and two binary
operations, + and ·, for which the following holds:

1. a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R (associative addition).

2. a+ b = b+ a for all a, b ∈ R (commutative addition).

3. There is a 0 ∈ R such that a+ 0 = a for all a ∈ R (existence of a zero).

4. For all a ∈ R there exists a b ∈ R such that a+ b = 0 (inverse element).

5. a · (b · c) = (a · b) · c for all a, b, c ∈ R (associative multiplication).

6. a · b = b · a (commutative multiplication).

7. There is a 1 ∈ R such that a · 1 = a for all a ∈ R (existence of a one).

Then (R,+, ·) is a commutative ring with 1. Since we only regard commutative
rings with a 1, we will simply refer to them as rings.

If the binary operators are clear from the context, we simply omit them.

22 Chapter 3. Consistency for polynomials

Definition 3.1.2 (Field). Given a set K and two binary operation, + and ·,
for which the following holds:

1. (K,+, ·) is a ring.

2. For all a ∈ K, a 6= 0 there exists a b ∈ K such that a · b = 1 (multiplicative
inverse element).

Then (K,+, ·) is a field.

Example 3.1.1. A well-known example for a ring is the set of integers, Z.
Well known examples for fields are the sets Q, R and C of rational numbers,
real numbers, and complex numbers respectively.

3.1.2 Polynomials
We now formally define polynomials as algebraic objects. Let in the following
x̄ = {x1, . . . , xn} with n ≥ 1, be a set of variables.

Definition 3.1.3 (Monomial). A monomial over x̄ is a product x̄α = xα1
1 · · ·xαn

n

for some exponent vector α = (α1, . . . ,αn) ∈ Nn. The set of monomials over
x̄ is denoted Mx̄. The total degree of a monomial x̄α, denoted by tdeg(x̄α),
is defined as

∑n
i=1 αi. If the total degree of a monomial equals zero, it is the

constant monomial 1. We say that a variable xi ∈ x̄ occurs in a monomial
x̄α ∈Mx̄ if αi > 0 and use xi ∈ x̄α as notation.

Definition 3.1.4 (Operations on monomials). For m1 = x̄α and m2 = x̄β we
define:

1. multiplication: m1 ·m2 = x̄γ with γi = αi + βi for all 1 ≤ i ≤ |x̄|.

2. divides: m1 | m2 if and only if αi ≤ βi for all 1 ≤ i ≤ |x̄|.

3. division: If m1 | m2 then m2

m1
= x̄γ with γi = βi − αi for all 1 ≤ i ≤ |x̄|.

Polynomials are obtained by addition of monomials multiplied by some co-
efficients.

Definition 3.1.5 (Polynomial). Let K be a field. A polynomial f over x̄,
f = a1m1 + . . .+alml, is a finite sum of pairwise different monomials mi ∈Mx̄

with coefficents, ai ∈ K for all 1 ≤ i ≤ l. The total degree, tdeg(f), of a
polynomial f is maxli=1{tdeg(mi) : ai 6= 0}. If |x̄| = 1 we call the polynomial
univariate, otherwise it is called multivariate. Polynomials with tdeg(f) = 0
are called constant. Polynomials with tdeg(f) = 1 are called linear.

Example 3.1.2. The polynomial f = 2x1x2 + x1 is a multivariate polynomial
with a total degree of 2. The polynomial g = 3x3

1+2x1 is a univariate polynomial
with a total degree of 3.

Definition 3.1.6 (Polynomial ring). [BWK93, Chapter 2] The set of all poly-
nomials over a given set of variables x̄ with coefficients in K is denoted as
K[x̄]. Together with the addition and multiplication of polynomials, K[x̄] is a
ring, which we call the polynomial ring over K.

Polynomials in the context of SMT solving are regarded as functions. The
following defines this notion formally.

3.1. Consistency as an algebraic notion 23

Definition 3.1.7 (Polynomial evaluation function). Given a polynomial ring
K[x̄], a field N such that K ⊆ N , and a polynomial f =

∑m
j=1 aj x̄

ej ∈
K[x̄]. Then we can define the following map: f : Nn → N , f(c1, . . . ,cn) =∑m
j=1 ajc

ej1
1 · · · cejnn . We call f(c1, . . . ,cn) the evaluation of f under c.

It follows immediately from the definition that the evaluation can also be
applied to single monomials and that the evaluation of a polynomial equals the
weighted sum of the evaluations of its monomials.

Definition 3.1.8 (Zero of f). Let K ⊆ N be fields, and c1, . . . , cn ∈ N . For
any polynomial f ∈ K[x1, . . . ,xn], the tuple (c1, . . . , cn) is called a zero of f if
f(c1, . . . , cn) = 0.

Example 3.1.3. The function f = 2x1x2 + x1 has an evaluation under (3,2)
which equals f(3,2) = 2 · 3 · 2 + 3 = 15.

3.1.3 Ideals and varieties
In the previous chapter, we discussed that we want to check the consistency of
constraints. We now define consistency for polynomials. Notice that we only
regard equalities for now.

Definition 3.1.9 (Affine variety). Let K ⊆ N be fields, and let f1, . . . , fs
be polynomials in K[x1, . . . , xn]. The set of the common zeroes of f1, . . . , fs,
defined as

VN (f1, . . . , fs) = {(c1, . . . , cn) ∈ Nn : fi(c1, . . . , cn) = 0 for all 1 ≤ i ≤ s}

is called the affine variety of f1, . . . ,fs over N . We sometimes omit the N if it
is clear from the context.

Consistency of polynomial equations thus reduces to checking if the affine
variety of some given polynomials is empty. In order to efficiently work with
these varieties, we first make an observation. Given a system of polynomials
f1, . . . , fs ∈ K[x̄] such that for an arbitrary c̄ ∈ Nn it holds that

f1(c̄) = 0

f2(c̄) = 0

...
fs(c̄) = 0

then, for this c̄ it also holds that for arbitrary h1, . . . , hs ∈ K[x̄] the linear
combination (

∑s
i=1 hifi)(c̄) = 0.

We now introduce ideals as an algebraic object which turns out to be suitable
for describing common zeroes.

Definition 3.1.10 (Ideal). Let R be a ring and I ⊆ R. I is an ideal of R if

1. 0 ∈ I.

2. a+ b ∈ I for all a,b ∈ I.

3. r · a ∈ I for all a ∈ I and r ∈ R.

24 Chapter 3. Consistency for polynomials

Lemma 3.1.1 (Generated ideal). [CLO97, p.31] If f1, . . . , fs ∈ K[x̄]. Then
the set

〈f1, . . . ,fs〉 = {
s∑
i=1

hifi : hi ∈ K[x̄] for all 1 ≤ i ≤ s}

is an ideal of K[x̄] and we call it the ideal generated by f1, . . . ,fs. The polyno-
mials f1, . . . ,fs are called the generators of 〈f1, . . . ,fs〉.

Theorem 3.1.2 (Hilbert basis theorem). [CLO97, p. 74] Every ideal I of K[x̄]
is generated by a finite number of polynomials, i.e, I = 〈f1, . . . ,fs〉 for some
f1, . . . ,fs ∈ K[x̄].

As a next step, we consider the correspondence between affine varieties and
ideals.

Proposition 3.1.3. If 〈f1, . . . , fs〉 = I ⊆ K[x̄] and 〈g1, . . . , gt〉 = J ⊆ K[x̄]
with I = J , then V (f1, . . . , fs) = V (g1, . . . , gt).

An idea for the proof is based on the observation that every generator of J
is a linear combination of generators of I. Therefore for every gi, gi(c̄) = 0 for
all c ∈ V (f1, . . . , fs). Thus, V (I) is well-defined. Moreover, from the definition
we directly get:

Corollary 3.1.4. If for a given ideal I it holds that 1 ∈ I then V (I) = ∅.

Definition 3.1.11. Let V ⊆ Nn be an affine variety. We define I(V) = {f ∈
K[x̄] : f(c̄) = 0 for all c̄ ∈ V }.

The set I(V) is an ideal. However, the ideal-variety correspondence is not
as close as we might have hoped for.

Proposition 3.1.5. If f1, . . . , fs ∈ K[x̄]. Then it holds that 〈f1, . . . , fs〉 ⊆
I(V (f1, . . . , fs)). However, we do not have equality in the general case.

The proof can be found in [CLO97, p. 33]. A counterexample for the converse
is given here.

Example 3.1.4. At first we notice that x 6∈ 〈x2, y2〉, since x has a total degree
of one, and all polynomials in 〈x2, y2〉 are of the form h1x

2 +h2y
2 and thus are

either zero or have a total degree of at least 2. It follows directly that 〈x, y〉 is
strictly larger than 〈x2, y2〉. Now we regard I(V (x2, y2)). Since x2 = y2 = 0
implies x = y = 0, we get that V (x2, y2) = {(0,0)}. The only thing which is still
to be shown is I({(0,0)}) = 〈x, y〉. Every polynomial of the form h1 · x+ h2 · y
trivially vanishes at (0,0). Moreover, if a polynomial vanishes at (0,0), the
constant monomial should have a zero coefficient (and thus be zero, and be in
the ideal). All other monomials are multiples of at least x or y, and therefore
are in the ideal.

Before proceeding, we notice that, even in the complex case, it does not hold
that V (I) = V (J) =⇒ I = J .

Example 3.1.5. V (〈x〉) = {0} = V (〈x2〉).

We conclude this section with another positive result on the correspondence
between varieties and ideals.

3.2. Gröbner bases 25

Proposition 3.1.6. [CLO97, p.32] Let V,W be affine varieties in K[x̄]. Then
V ⊂W if and only if I(V) ⊃ I(W).

Intuitively, this proposition states that adding a polynomial constraint may
reduce, but never increases the set of common zeroes.

3.2 Gröbner bases

The last section gives rise to two problems.

Question 1 (Reduced basis problem). How can we simplify the generators of
a given ideal?

This yields a more compact representation of the ideal and thereby a more
compact representation for the variety.

Question 2 (Membership problem). How can we decide whether a polynomial
is in a given ideal I?

Checking whether 1 ∈ I would allow us to check whether V (I) is empty
(Lemma 3.1.4). In later chapters, we also want to check other polynomials for
membership.

For linear polynomials we can use Gaussian elimination in order to answer
both questions. Gaussian elimination is suitable for the linear case due to the
fact that different monomials cannot divide each other, which however is possible
in the non-linear case.

For univariate polynomials we would use the greatest common divisor (gcd)
to obtain a single generator for the given ideal, whereas in the multivariate
case, it is in general impossible to find such a single generator [BWK93, p. 86].
Membership checking in the univariate case is possible with polynomial long
division (Example 3.2.2 or [CLO97, Section 1.5]) and then checking whether
the remainder is zero.

For the general case, we thus have to generalise both procedures. An ex-
tended treatment of the univariate and linear case and a comparison to the
general case can be found in [AL94].

3.2.1 Polynomial reduction

In both Gaussian elimination and the Euclidean computation of the gcd, a
reduction of polynomials is the core of the algorithm. An important, although
seldomly stressed property of these reductions is the order of the monomials,
which is important for both correctness and termination. Therefore, we define
such monomial orders for the general case.

Definition 3.2.1 (Variable order). A variable order is a linear order on the set
of variables x̄.

Linear orders are orders which are transitive, antisymmetric, and total. We
will not explicitly describe or refer to the variable orderings. As a convention we
order according to the indices (e.g. x1 > x2) or according to the lexicographic
order (x > y).

26 Chapter 3. Consistency for polynomials

Definition 3.2.2 (Monomial order). For any x̄ and a given variable order <x̄
on x̄ , a linear order ≺ on Mx̄ is a monomial order if it satisfies

1. 1 ≺ m ∀m ∈Mx̄ \ {1}

2. m1 ≺ m2 =⇒ mm1 ≺ mm2 ∀m,m1,m2 ∈Mx̄.

There are several possible monomial orders, we define the four which are
most commonly used in both literature and implementations.

Definition 3.2.3. Let m1 = xα1
1 · · ·xαn

n and m2 = xβ1

1 · · ·xβn
n .

• lexicographic order: m1 ≥lex m2 ⇐⇒

∃k 1 ≤ k ≤ n ∧ αk > βk ∧ ∀i 1 ≤ i < k =⇒ αi = βi

• graded lexicographic order: m1 ≥grlex m2 ⇐⇒

tdeg(m1) > tdeg(m2) ∨ (tdeg(m1) = tdeg(m2) ∧m1 ≥lex m2)

• graded reverse lexicographic order: m1 ≥grrevlex m2 ⇐⇒

tdeg(m1) > tdeg(m2) ∨
(tdeg(m1) = tdeg(m2) ∧

∃k 1 ≤ k ≤ n ∧ αk < βk ∧ ∀i k < i ≤ n =⇒ αi = βi)

The graded orders are called degree-based orders.

Example 3.2.1.

x2y2 ≥lex x
1y3 x2y2 ≥grlex x

1y3 x2y2 ≥grrevlex x
1y3

x3y1 ≥lex x
1y4 x3y1 6≥grlex x

1y4 x3y1 6≥grrevlex x
1y4

x2z ≥lex xz
2 x2z ≥grlex xz

2 x2z 6≥grrevlex xz
2

In general, lexicographic orders tend to yield a basis with some ’nice’ prop-
erties, however, calculating them is more expensive. In the remainder we will
not explicitly refer to the monomial order, and we will use the graded lexico-
graphic order in examples. The next definition makes it easier to reason about
polynomials when discussing reduction.

Definition 3.2.4 (Leading monomial and leading coefficient). Assume a mono-
mial order < and a polynomial f =

∑m
i=1 cimi ∈ K[x̄] with ci 6= 0 and mj < mi

for all 1 ≤ i < j ≤ m.

1. The leading monomial of f , lm(f), equals m1.

2. The leading coefficient of f , lc(f), equals c1.

3. The leading monomial with coefficient of f , lmc(f), equals lc(f) · lm(f).

Lemma 3.2.1. [BWK93, p.195] If f,g ∈ K[x̄] with f 6= 0, g 6= 0 and f , g both
ordered with the same order <. Then the following hold:

1. lm(f · g) = lm(f) · lm(g)

3.2. Gröbner bases 27

2. lc(f · g) = lc(f) · lc(g)

3. lm(f + g) ≤ max{lm(f), lm(g)}.

Notice that we do not have equality, as the leading terms may cancel each
other.

We will now generalise the polynomial long division1 from the univariate case
to the multivariate case. We start by giving a little example for the univariate
case.

Example 3.2.2. Dividing f = 4x3 + x2 + 2 by g = 2x+ 1 we start with r = f
and then we get

1. lmc(r) = 4x3 is dividable by lmc(g) = 2x with factor 2x2. After the first
step we have r = 4x3 + x2 + 2− 2x2(2x+ 1) = −x2 + 2.

2. lmc(r) = −x2 is dividable by lmc(g) = 2x with factor − 1
2x. The remainder

now is r = −x2 + 2− (− 1
2x)(2x+ 1) = 1

2x+ 2

3. lmc(r) = 1
2x is dividable by lmc(g) = 2x with factor 1

4 . The remainder
now is r = 1

2x+ 2− 1
4 (2x+ 1) = 7

4

4. lmc(r) = 7
4 is not dividable by lmc(g) = 2x.

So as result we get f = (2x2 − 1
2x+ 1

4)g + 7
4 .

We are mostly interested in the remainder. We therefore call such a proce-
dure reduction. If the result of a reduction of f is f ′, we say that f reduces to
f ′. For the multivariate case, we start considering a single reduction step.

Example 3.2.3. We want to reduce f = x2y + y2 by g = xy − 1, w.r.t. the
lexicographic order and x > y. The reduction step is possible, since lmc(g)
divides lmc(f). Thus f reduces to f ′ = x2y + y2 − x · (xy − 1) = y2 + x.

Definition 3.2.5 (Top reduction). Let f , f ′, g be polynomials in K[x̄] with
f 6= 0, g 6= 0. Then f top-reduces to f ′ modulo g if lm(g) | lm(f) and

f ′ = f − lmc(f)

lmc(g)
· g

We write f g−→t f
′ for such a step.

In contrast to the univariate case, it is possible that although the leading
monomial is not dividable, another monomial in the polynomial is.

Example 3.2.4. We want to reduce f = x2 + xy by g = xy − 1 w.r.t. the
lexicographic order and x > y. Top-reduction is not possible, since lmc(g) does
not divide lmc(f). But lmc(g) divides xy. Thus x2 + xy reduces to x2 + xy −
(xy − 1) = x2 + 1.

Definition 3.2.6 (Reduction). Let f, f ′, g be polynomials in K[x̄] with f 6= 0,
g 6= 0 and f = a1m1 + . . .+ alml, with ai ∈ K,mi ∈Mx̄ for all 1 ≤ i ≤ l. Then
f reduces to f ′ modulo g if there exists an i, 0 ≤ j ≤ l s.t. lm(g) | mi and

f ′ = f − aimi

lmc(g)
· g.

We write f g−→ f ′ for such a step. The polynomial g is called the reductor.
1The polynomial long division in its basic form is explained in [CLO97, p. 38].

28 Chapter 3. Consistency for polynomials

Since we cannot combine the several generators of an ideal into a single
one in the multivariate case [BWK93, p. 86], we have to extend the notion of
reduction such that it is able to cope with a set of reductors F .

Definition 3.2.7. Let f, f ′ be polynomials in K[x̄] with f 6= 0 and F ⊆ K[x̄].
Then f reduces to f ′ modulo F , written f

F−→ f ′, if there exists a g ∈ F s.t.
f

g−→ f ′. We write f F−→
∗
f ′ for multiple reduction steps.

In Algorithm 1 we show the pseudo code for the reduction modulo a set of
polynomials, which closely resembles [CLO97, p. 62]. Note that the existence

1 Input : f , G = g1,...,gs , ≥
2 Output : r s . t . f

G−→
∗
r w. r . t . ≥

3 r = 0 ; p = f ;
4 while (p 6= 0) {
5 i f (∃ i lmc(gi) | lmc(p)) {
6 p = p − lmc(p)/lmc(gi) ∗ gi ;
7 } else {
8 r = r + lmc(p) ;
9 p = p − lmc(p) ;
10 }
11 }

Algorithm 1: Polynomial reduction.

of a reductor can be easily checked with a while loop, but for an efficient imple-
mentation other strategies are better, and the correctness does not depend on
the way we check for and select our reductor. The proof for correctness is similar
to [CLO97, p. 62]. We only sketch the main ingredients here. The following
lemma shows that the term ’reduction’ is suitable and is the main ingredient
for showing termination.

Lemma 3.2.2. [BWK93, p. 198] Given f , f ′, g ∈ K[x̄]. If f g−→t f
′ then

lm(f) > lm(f ′).

The correctness follows from the fact that we apply the definition of reduction
whenever we can find a suitable gi, and, with the lemma above, it can be shown
that monomials in r are added in a strict descending monomial order.

Definition 3.2.8 (Normal form). Given f,f ′ ∈ K[x̄] with f 6= 0 and F ⊂ K[x̄].

Then f ′ = f̄F is the normal form modulo F if f F−→
∗
f ′ and f ′ cannot be reduced

modulo F .

Proposition 3.2.3. Let f, f ′ ∈ K[x̄] with f 6= 0 and F = {f1, . . . ,fs} ⊂ K[x̄].

If f F−→
∗
f ′, then there exist h1, . . . ,hs ∈ K[x̄] such that f = f1h1+. . .+fshs+f

′.

This follows directly from the definition, which can be constructively shown
by the division variant of Algorithm 1 in [CLO97, Theorem 3].

3.2. Gröbner bases 29

3.2.2 Ideal reduction

If we want to know whether f ∈ 〈f1, . . . fs〉 = I, we can use the reduction
algorithm. If the remainder equals zero, then f ∈ I. However, for the other
direction we have a counterexample.

Example 3.2.5. Given F = 〈x+ 1, x〉 and f = 2x+ 2. f x+1−−→ 0, so there exist
h1 = 2, h2 = 0 ∈ K[x̄] s.t. h1 · (x+ 1) +h2 · (x) = f . However, if we first choose
x as reductor, we get f x−→ 2, which cannot be further reduced.

One solution might be to reduce the generators w.r.t. the other generators.
As x+ 1

x−→ 1, 1 ∈ I and we can substitute x+ 1 with 1 in the set of generators.
We then could reduce f x−→ 2

1−→ 0. An algorithm for reducing generator sets is
given in Algorithm 2.

1 Input : F = {f1,...,fs}
2 Output : G = {g1,...,gt} s . t . 〈f1, . . . ,fs〉 = 〈g1, . . . ,gt〉
3 and for all i = 1, . . . ,t, gi cannot be reduced modulo G \ {gi} .
4 G = F ;
5 while (e x i s t s g ∈ G with g 6= ḡG\{g}) {
6 G = G \ {g} ;
7 h = ḡG\{g} ;
8 i f (h 6= 0) G = G ∪ {h} ;
9 }

Algorithm 2: Ideal reduction.

Simple inter-reducing does not suffice for deciding ideal membership though.

Example 3.2.6. Let I = 〈xy+1, y2−1〉 ⊂ K[x1, x2]. Notice that the generators
of I are already reduced. The polynomial f = xy2 − x = x(y2 − 1) is clearly
contained in I, but the reduction algorithm may yield the following calculation:
f = y(xy + 1)− x− y and then the remainder is −x− y.

Here, we could change the order of the polynomials to overcome this. How-
ever, we follow another, more general approach, in which we regard the input
polynomials as generators for an ideal. If we are able to generate another set
of generators for this ideal which have the properties of a unique remainder, we
are done.

3.2.3 Foundations of Gröbner bases

We now define Gröbner bases. These bases are sets of generators and allow
i.a. easily answering the membership problem. Obviously, in order to have nice
properties for the membership-question, the basis has to regard the leading
terms of the generators.

Definition 3.2.9. Let I ⊆ K[x̄] \ {0}. Then lmc(I) = {lmc(f) : f ∈ I}.

We can find such generators.

30 Chapter 3. Consistency for polynomials

Lemma 3.2.4. [CLO97, p. 73] Let I ⊆ K[x̄]\{0}. Then there exist g1, . . . ,gt ∈
I s.t. 〈lmc(I)〉 = 〈g1, . . . ,gt〉.

These generators build a Gröbner basis.

Definition 3.2.10 (Gröbner basis). For a given monomial order, a finite set
G = {g1, . . . ,gt} ⊂ I ⊆ K[x̄] is a Gröbner basis for I if

〈lmc(I)〉 = 〈g1, . . . ,gt〉.

The existence of a Gröbner basis for an arbitrary ideal can be shown by
combining Lemma 3.2.4 and Theorem 3.1.2. The Gröbner basis is also a suitable
set of generators for the ideal.

Corollary 3.2.5. [CLO97, p. 75] If G ⊂ I is a Gröbner basis, then 〈G〉 = I.

There are a lot of different characterisations for Gröbner bases. However,
the following suffices for our needs. An extended list can be found in [BWK93,
p. 206].

Lemma 3.2.6. [AL94, p. 32] Let I be a non-zero ideal of K[x̄]. Let G ⊂ I.
Then the following statements are equivalent:

1. G is a Gröbner basis.

2. f G−→
∗

0 if and only if f ∈ I.

3. For all f ∈ I, f 6= 0, there exists a g ∈ G s.t. lm(g) | lm(f).

Thus, checking ideal membership is a simple reduction, if we have a Gröbner
basis for our ideal.

Definition 3.2.11 (Reduced form). Let f , f ′ be polynomials in K[x̄] and I a
non-zero ideal of K[x̄]. If G ⊂ I is a Gröbner basis and f ′ = f̄G, then f ′ is the
reduced form of f , written as redG(f).

3.2.4 Constructing a Gröbner basis
The very first algorithm which computed a Gröbner basis was the Buchberger
algorithm, proposed by and named after Bruno Buchberger in his PhD. thesis
[Buc65]. Most modern algorithms resemble (parts of) this algorithm. In order
to understand the correctness of this algorithm, we review the characterisation
from Lemma 3.2.6. The important point of a Gröbner basis is that we can
guarantee that every leading term of a polynomial in the ideal can be divided
by the leading term of a generator. How is that different from arbitrary sets of
generators?

Example 3.2.7. Consider the ideal I = 〈xy + 1, y2 − 1〉 (compare Example
3.2.6). Then the polynomial f = y·(xy+1)−x·(y2−1) = xy2+y−xy2+x = x+y
is in the ideal. However x+ y cannot be reduced by the generators of I.

Here, we see that the leading terms of the two polynomials cancel each other
by multiplying each with a suitable monomial. So, if we want to find a Gröbner
basis, we have to eliminate the possibility of leading-term cancellation.

We can describe such cancellations with S-polynomials, which we define next.

3.2. Gröbner bases 31

Definition 3.2.12 (Least common multiple). For two monomials s,t ∈Mx̄, and
their exponent vectors α = (α1 . . . ,αn) and β = (β1, . . . ,βn), let the exponent
vector γ = (γ1, . . . ,γn) be defined by γi = max(αi, βi) for all 1 ≤ i ≤ n. The
least common multiple of s and t is then defined as lcm(s,t) = x̄γ .

Definition 3.2.13 (S-polynomial). Assume f,g ∈ K[x̄]\{0}. The S-polynomial
of f and g is defined as

S(f,g) =
lcm(lm(f),lm(g))

lmc(f)
· f − lcm(lm(f),lm(g))

lmc(g)
· g.

The S-polynomial is not only the easiest way to produce cancellation, it
is even sufficient to provide all cancellations [CLO97, p.81]. Therefore, our
main ingredient for constructing a Gröbner basis is finding cancellation by S-
polynomials, and if all S-polynomials are already in the ideal, then we have
found a basis.

Theorem 3.2.7 (Buchberger criterion). [CLO97, p. 83] Let G = {g1, . . . ,gt} ⊂
K[x̄] \ {0} be a set of generators and I = 〈G〉 its ideal. Then G is a Gröbner

basis if and only if S(gi, gj)
G−→
∗

0 for all 1 ≤ i < j ≤ t.

This immediately gives rise to the Buchberger algorithm (Algorithm 3). The

1 Input : F = {f1, . . . , fr},≥ ;
2 Output : G Gröbnerbasis w.r.t. ≥ s.t. 〈F 〉 = 〈G〉 ;
3 G = F ;
4 S = {(fi,fj) : 1 ≤ i < j ≤ r} ;
5 while (S 6= ∅) {
6 select (f1,f2) ∈ S ;
7 S = S \ {(f1,f2)} ;
8 q = S(f1,f2) ;
9 q = Reduce (q , G , ≥) ;

10 i f (q 6= 0) {
11 S = S ∪ {(fi,s) : fi ∈ G} ;
12 G = G ∪ {q} ;
13 }
14 }

Algorithm 3: Buchberger algorithm.

reduce-procedure does a (full) reduction (Algorithm 1). The correctness proof is
based on Theorem 3.2.7 and the fact that the algorithm checks for cancellations
between all elements in the basis. Whenever a new element is added, all new
pairs are also scheduled. A termination proof would show that if we would
keep on adding elements, we eventually have to add the 1, and afterwards, no
new elements could be added since the reduction would always reduce to zero
[BWK93, p. 213].

Example 3.2.8. We give an example calculation. We calculate the Gröbner
basis w.r.t. the graded-lexicographic order for the ideal I = 〈f1,f2〉 with f1 =
xy + 1 and f2 = y2 − 1 from Example 3.2.6. We initialize and set G = {f1, f2}
and S = {(f1,f2)}.

32 Chapter 3. Consistency for polynomials

1. We select (f1,f2) ∈ S. q = S(f1, f2) = xy2

xy · (xy+1)− xy2

y2 (y2−1) = x+y.
x+ y cannot be reduced by the elements in G. Thus, G = {f1, f2, f3} and
S = {(f1,f3), (f2,f3)} with f3 = x+ y.

2. We select (f1,f3) ∈ S. q = S(f1, f3) = xy
xy ·(xy+1)− xy

x ·(x+y) = −y2 +1.

q
f2−→ 0.

3. We select (f2,f3) ∈ S. q = S(f2, f3) = xy2

y2 ·(y
2−1)− xy2

x ·(x+y) = −y3−x.

q
f2−→ −x− y f3−→ 0.

We are done. The Gröbner basis is {xy + 1, −y2 + 1, x+ y}.

There are several improvements to this Buchberger algorithm. We discuss
them in Chapter 4. We now return to the remaining problem of finding a small
generating set.

3.2.5 Reduced Gröbner basis calculation
Gröbner bases give us a nice set of generators, but they’re neither minimal nor
unique. Minimality is obviously important to us, as we might want to pass the
Gröbner basis during our SMT procedure. Uniqueness is useful for comparison.
Luckily, we get uniqueness for free if we minimize and reduce our Gröbner basis.

Definition 3.2.14 (Reduced Gröbner basis). Let G be a Gröbner basis for an
ideal I such that for all polynomials f ∈ G:

1. lc(f) = 1.

2. For all monomials m which appear in f with a non-zero coefficient, the
monomial m does not lie in 〈lm(G \ {f})〉.

Then G is a reduced Gröbner basis.

The straightforward algorithm for this is given in Algorithm 4 and taken from
[BWK93, p 216]. If we sort F , then we only have to check against elements of
H.

Example 3.2.9. Consider the Gröbner basis G = {xy + 1, y2 − 1, x + y}
from Example 3.2.8. Then the reduced Gröbner basis is obtained by removing
xy + 1, because lm(x + y) | lm(xy + 1). No further steps have to be taken,
because neither of the monomials in the remaining polynomials can be reduced
by a leading monomial of the other polynomials.

Lemma 3.2.8. [CLO97, p. 90] For any ideal I 6= {0}, and some given variable
orders and monomial orders, I has a unique Gröbner basis.

We will use reduced Gröbner bases as generators for ideals.

3.3 The Nullstellensatz
We are now able to calculate a ’nice’ set of generators, and can easily decide
ideal membership. But we are more interested in the corresponding varieties. In
Section 3.1.3 we showed the strong correspondence. In this section, we consider
three further questions.

3.3. The Nullstellensatz 33

1 Input :G Gröbner basis ;
2 Output :Hreduced Gröbner basis s.t. 〈G〉 = 〈H〉 ;
3 H = ∅ ;
4 F = sort (G) ; // ascending , by G’ s monomial order
5 i = 1 ;
6 while (i <= s i z e (F)) {
7 j = 1 ; div = fa l se ;
8 while (j <= s i z e (H)) {
9 i f (lm(hj) | lm(fi)) div = true ;

10 }
11 i f (! d iv) H = H ∪ {fi/lc(fi)} ;
12 }
13 H = Reduction (H) ;

Algorithm 4: Reduced Gröbner basis.

Question 3. How can we decide if for a given ideal I it holds that VC(I) = ∅?

This question is answered by the Weak Nullstellensatz, which is discussed in
Section 3.3.1.

Question 4. How can we decide if for a given ideal I with VC(I) 6= ∅ it holds
that VR(I) = ∅?

Notice that VC(I) = ∅ implies VR(I) = ∅. The question is answered by the
Real Nullstellensatz, which is discussed in Section 3.3.2.

Since we are only interested in applying the theory to real algebra, we con-
sider the field R, the algebraically closed extension C and the countable subset
Q. First we formalise some of their properties.

Proposition 3.3.1. [BWK93, p. 306] The complex numbers are algebraically
closed, i.e., each non-constant polynomial in C[x̄] has a zero.

The reals are not algebraically closed, for instance x2 + 1 has no real zero.

Definition 3.3.1 (Sum of squares). Assume polynomials p1, . . . , pn ∈ K[x̄].
Then

∑n
i=1 p

2
i is a trivial sum of squares (TSQ). If a polynomial p can be

rewritten as a trivial sum of squares q, p = q, then p is a sum of squares.

Definition 3.3.2 (Real field). A field K is real if and only if −1 ∈ K is not a
sum of squares.

Proposition 3.3.2. The rational numbers and the real numbers are both real
fields. The complex numbers are not a real field.

3.3.1 Weak Nullstellensatz
From Corollary 3.1.4 we know that 1 ∈ I =⇒ V (I) = ∅. However, the other
direction also holds.

Theorem 3.3.3 (Weak Nullstellensatz). [CLO97, p. 168] Let I ⊂ C[x̄] be an
ideal. Then VC(I) = ∅ implies 1 ∈ I.

34 Chapter 3. Consistency for polynomials

This is a direct consequence from a famous result by Hilbert -the Hilbert
Nullstellensatz.

From this theorem and Corollary 3.1.4 we get the following result:

Corollary 3.3.4. Let I ⊂ C[x̄] be an ideal and G the reduced Gröbner basis of
I. Then VC(I) = ∅ if and only if G = {1}.

Thus by calculating the Gröbner basis for a given set of polynomials, we can
easily decide if these polynomials have common zeroes.

3.3.2 Real Nullstellensatz
In this part, we consider input sets which are consistent over the complex num-
bers. We first characterise real fields and use this observation to state a very
intuitive but strong theorem.

Definition 3.3.3. Given a polynomial p over a real field R, then p is:

• positive definit if p(ā) > 0 for all ā ∈ Rn.

• positive semidefinite if p(ā) ≥ 0 for all ā ∈ Rn.

When considering the reals, we know that any square is positive. The fol-
lowing are some results from a formal treatment in [BPR06, Chapter 2].

Proposition 3.3.5. Given a real field R, the following statements hold:

1. {a · a : a ∈ R} ⊆ {a : a ≥ 0} and {a2 : a ∈ R} = {a : a ≥ 0}.

2. Given a polynomial p ∈ R[x̄], p2 is positive semidefinite.

3. Sums of squares are positive semidefinite.

Note that not all positive semidefinite polynomials are sums of squares, fa-
mous examples can be found in [Mot67].

Next we consider the Real Nullstellensatz, which is due to Stengle [Ste74].
A more general form including also inequalities is called the Positivstellensatz.
Here we give the version of the Real Nullstellensatz from [Har07].

Theorem 3.3.6 (Real Nullstellensatz). Let R be a real field. Given polynomials
p1, . . . ,pn ∈ R[x̄] with I = 〈p1, . . . ,pn〉 and VC(I) 6= ∅, then VR(I) = ∅ if and
only if there exists a polynomial q, which is a TSQ such that 1 + q ∈ I.

3.4 Handling inequalities
In Chapter 2 we considered systems of equalities and inequalities. We now show
two ways to handle them. For a complete decision procedure, we will transform
the inequalities into equivalent equalities. For simplification, we show that we
can indeed reduce inequalities by a Gröbner basis.

Proposition 3.4.1. [PQR09, Proposition 1] The following equivalences hold:

1. p ≥ 0 ⇐⇒ ∃y.p− y2 = 0.

2. p 6= 0 ⇐⇒ ∃y.py − 1 = 0.

3.4. Handling inequalities 35

3. p > 0 ⇐⇒ ∃y.py2 − 1 = 0.

The proof uses two properties, namely squares are exactly the positive num-
bers in R and only the zero has no multiplicative inverse element.

This transformation comes at the cost of introducing several new variables.
Therefore, we are also interested in just reducing inequalities.

Proposition 3.4.2. [DS97b, Proposition 4.1] Given a formula ϕ with relations
∼∈ {>,≥, <,≤, 6=} of the following form:

ϕ =

s∧
i=1

pi = 0 ∧
t∧
i=1

qi ∼ 0.

Then for the Gröbner basis G = {g1, . . . ,gm} of I = 〈p1, . . . ,ps〉 the following
holds:

ϕ =⇒
m∧
i=1

gi = 0 ∧
t∧
i=1

redG(qi) ∼ 0.

Proof. That the substitution of the equalities by a Gröbner basis is equisatisfi-
able follows from, e.g., Corollary 3.2.5. We only need to show that gi = 0 for all
i implies qi ∼ 0 if and only if redG(qi) ∼ 0. For each qi there exist suitable hj
with 1 ≤ j ≤ m such that qi = h1g1 +. . .+hmgm+redG(qi) by definition. Thus,
qi(ā) = h1g1(ā) + . . .+hmgm(ā) + redG(qi)(ā). By our precondition -all gi eval-
uate to 0- we only need to consider the set S = {ā ∈ Rn : gi(ā) = 0, 1 ≤ i ≤ m}.
On S, all terms higi thus evaluate to zero. Hence qi(ā) = redG(qi)(ā) for all
ā ∈ S.

36 Chapter 3. Consistency for polynomials

Chapter 4

The SMT-RAT Gröbner basis
module

In this chapter, we first show how we wrap a Gröbner basis calculation into
a module in the SMT-RAT framework and how we make this module SMT-
compliant. Afterwards we optimize the standard Buchberger algorithm by intro-
ducing improved algorithms and data structures for calculating Gröbner bases.

4.1 An SMT module based on Gröbner basis cal-
culation

We start the description with a general overview of the behaviour of a mini-
mal implementation of a module, which uses Gröbner basis computations for
simplification.

Whenever a constraint is added, the module checks whether the received
constraint is an equality. If it is an inequality, the module adds the inequality
to the passed formula, such that backend modules handle it. If it is an equality,
it is added to a set of generators for an ideal I.

As soon as the module’s consistency check is called, the Gröbner basis of I is
calculated. If the Gröbner basis equals {1}, then unsat is returned. Otherwise
the Gröbner basis is passed to the backend modules, and then the backend
modules are called. Notice that if a new Gröbner basis is passed, the module
removes the old Gröbner basis from the passed formula. As reason set for the
passed polynomials from the Gröbner basis, the set of generators is used.

The remainder of this section gives more details on the behaviour and some
of the improvements made to the module.

4.1.1 Incrementality and backtracking

Changing the Buchberger algorithm to support incremental calls is rather natu-
ral. First, we notice that for a given set I = {p1, . . . , pn}, its Gröbner basis G =
{g1, . . . ,gm} and a polynomial q, we have equality of ideals 〈I∪{q}〉 = 〈G∪{q}〉.
Second, if we want to calculate the Gröbner basis of 〈G ∪ {q}〉, we only have
to calculate the S-polynomials for the pairs (gi, q). All other pairs reduce to

38 Chapter 4. The SMT-RAT Gröbner basis module

zero because G is a Gröbner basis. We formalise the incremental Buchberger
algorithm in the next section (Algorithm 5).

Gröbner bases in the module are represented by objects, which save the
already calculated Gröbner basis as well as a list of additional polynomials
which have been added to the object since the last consistency check, but are
not yet part of the Gröbner basis, as the consistency check has not been called
after adding these polynomials (see Figure 4.1).

new: GB:
{ } {x, y + z}

(a) Before: the GB is
{x, y + z}.

new: GB:
{y} {x, y + z}

(b) The constraint y =
0 is asserted.

new: GB:
{ } {x, y, z}

(c) After the consis-
tency check, we have a
new GB.

Figure 4.1: The Gröbner basis object while adding the equality y = 0.

Removing generators from the ideal is more involved, because calculating this
directly entails the computation of an intersection, resulting in a Gröbner basis
calculation with additional variables [BWK93, Section 6.2]. Instead of this, we
propose an approach inspired by the chronological backtracking in DPLL (the
latter is explained in e.g. [KS08]).

We implement the chronological backtracking by introducing a stack with
Gröbner basis calculation objects. After a Gröbner basis calculation, the top-
most element of the stack is updated, such that the additional polynomials are
considered in the newly calculated Gröbner basis. After removing an equality,
the elements are popped from the stack until we are before the point where the
now removed equality was added. In the next step, all equalities which were
added afterwards are added again (see Figure 4.2).

This approach might lead to an almost new Gröbner basis calculation, but
as the currently used SAT solver mostly uses chronological backtracking, the
chance of frequently removing equalities which were added early during the
incremental theory calls seems small.

{ } {x,y,z}
{ } {x,y}
{ } {x}

(a) Before: the equali-
ties x = 0, y = 0, z = 0
were added.

{ } {x}

(b) Everything calcu-
lated after y = 0 was
added is removed.

{z} {x}
{ } {x}

(c) The equality z = 0 is
scheduled as new input
again.

Figure 4.2: The Gröbner basis object stack while removing the equality y = 0.

4.1.2 Generating smaller conflict subsets
If the Gröbner basis equals {1}, the set of all equalities is inconsistent. However,
in most of these infeasible cases a subset of the equalities would already yield
{1} as its Gröbner basis.

4.1. An SMT module based on Gröbner basis calculation 39

To determine such a subset, de Moura and Passmore [dMP09] introduced
certificates for inconsistency. It was also shown that minimality of these certifi-
cates is a problem which is as hard as calculating the Gröbner basis.

These certificates are basically tuples of polynomials (h1, . . . ,hn) such that
for an ideal I = 〈f1, . . . ,fn〉 and a polynomial p ∈ I we have

∑n
i=1 hifi = p for

suitable hi ∈ K[x̄]. In the case of inconsistency, we have p = 1.
Calculating these certificates requires the reductions within the Gröbner

basis calculation to be extended to ordinary divisions, which is certainly less
efficient. In SMT-RAT, we pass the Gröbner basis to other modules, and we
have to provide reason sets. Smaller reason sets yield smaller conflict sets if
a conflict is found in a successor module. The calculation of small reason sets
requires the computation of certificates for each element in the Gröbner basis.

We try to provide small conflict and reason sets in a more naive way. During
the Gröbner basis calculation, we attach a bitvector to the polynomials. For
an input ideal I = 〈f1, . . . ,fn〉 and an arbitrary polynomial p which appears
during the calculation, the bitvector b(p) = (b1, . . . ,bn) has the semantics that
bi = 1 if and only if pi was used somewhere to construct p. This way, after the
computation of the Gröbner basis for I, we can extract an over-approximation
of the reason set for each element in the Gröbner basis, and thus, if 1 ∈ I, a
smaller conflict set.

Example 4.1.1. We calculate the reduced Gröbner basis for the ideal I =
〈f1, f2, f3〉, with f1 = x, f2 = y2 + z and f3 = y. The S-polynomial from
f2, f3 yields after a reduction with f3 the polynomial f4 = z. The reduced Gröb-
ner basis is then {f1, f3, f4}. The bitvectors for f1,f2,f3 are clear: b(f1) =
100, b(f2) = 010, b(f3) = 001. The bitvector of f4 is the bitwise-or of b(f2) and
b(f3), which yields b(f4) = 011. This means that z = 0 follows from y2 + z = 0
and y = 0, which is true.

We formalise this approach by the next theorem.

Definition 4.1.1 (Reason vector). For a given ideal I = 〈f1, . . . ,fn〉 the reason
vector b(p) = (b1, . . . ,bn) of p ∈ I is recursively defined as follows:

1. If p = fi for some 1 ≤ i ≤ n, then bi(p) = 1 and bj(p) = 0 for all j 6= i.

2. If p = S(q1, q2) then bi(p) = 1 ⇐⇒ bi(q1) = 1 ∨ bi(q2) = 1 for q1, q2 ∈ I.

3. If p′ q−→ p then bi(p) = 1 ⇐⇒ bi(q) = 1 ∨ bi(p′) = 1 for p′, q ∈ I.

Theorem 4.1.1. If b is a reason vector for p during the computation of the
Gröbner basis for I = 〈f1, . . . ,fn〉 then b is well-defined and p can be written as∑n
i=1 bihifi with suitable hi ∈ K[x̄].

Proof. The vector b is well-defined, as the Buchberger algorithm only consists
of a chain of the operations mentioned above. We prove the correctness by
induction, and distinct the following three cases:

1. p = fi for some 1 ≤ i ≤ n then p = 1 · 1 · fi.

40 Chapter 4. The SMT-RAT Gröbner basis module

2. p = S(q1, q2) for some q1, q2 ∈ I then

p = m1q1 +m2q2

= (m1

n∑
i=1

bi(q1) · h1i · fi) + (m2

n∑
i=1

bi(q2) · h2i · fi)

=

n∑
i=1

bi(p) · (bi(q1) ·m1h1i + bi(q2) ·m2h2i) · fi

Notice that the multiplication with bi(p) does not cancel non-zero terms,
because if a term is non-zero, then either bi(q1) = 1 or bi(q2) = 1, and
then bi(p) = 1.

3. p′ q−→ p for some p′, q, then

p = p′ +mq

= (

n∑
i=1

bi(p
′) · h1i · fi) + (m

n∑
i=1

bi(q) · h2i · fi)

=

n∑
i=1

bi(p) · (bi(p′) · h1i + bi(q) ·mh2i) · fi

with the same argument as applied in case 2.

Instead of using all equalities as reason/conflict set, the module extracts
the set from the Gröbner basis elements. We extended the calculations of the
S-polynomial and the calculation according to the Definition 4.1.1.

4.1.3 Handling inequalities

To handle inequalities, the module offers the possibilities described in Section
3.4. The transformation approach is a direct implementation of the equivalences
from Proposition 3.4.1. For each inequality in the set of received constraints,
we generate a fresh variable. Then, we handle the transformed constraint as we
handled equalities before.

Instead of transforming the inequalities into equalities, in the simplification
approach we just reduce the inequalities with respect to our Gröbner basis, as
in Proposition 3.4.2. To make this SMT-compliant, we introduce an inequalities
table. In this table, each received inequality corresponds to a row. The row
has the memory location of the original (received) inequality as index. Each
cell has a number (the backtrack number) which identifies with which Gröbner
basis the equality was reduced, and a polynomial which represents the reduced
polynomial.

Newly added inequalities are only reduced w.r.t. the latest Gröbner basis. If
an inequality c is removed, then the corresponding row is erased. If an equality
is removed, all cells with a backtrack number greater then b are removed, where
b is the number of equalities which were added before c.

4.2. Improving the Buchberger algorithm 41

Example 4.1.2. For the following constraints with their memory addresses
0x1 : x = 0, 0x2 : x + y ≥ 0, 0x3 : y + z ≥ 0, 0x4 : y = 0, 0x5 : z = 0 and
0x6 : x + z which were successively added to our module, we get the following
stack with Gröbner bases:

(0 : {}; 1 : {x}; 2 : {x,y}; 3 : {x, y, z})

The inequalities table then looks like this:

0x2 (0) x+ y (1) y (2) 0
0x3 (0) y + z (2) z (3) 0
0x6 (0) x+ z (3) 0

We regard the first row, as the argumentation for the other rows is analogous.
The memory address gives a reference to the constraint. The first cell is the
original polynomial, which is always stored. During the theory call, the inequality
is reduced to y. The number of equalities which were added to the Gröbner
basis is 1, so the backtrack number is 1. After another equality has been added,
with the next theory call, we can reduce the polynomial further. This yields
the polynomial 0, and 2 as backtrack number. Notice that there is no cell with
backtrack number 3, as the polynomial 0 cannot be reduced further w.r.t. the
third Gröbner basis.

With the reduction of inequalities, we may reduce inequalities to zero or to
constants, which can be replaced by one of the Boolean values. If an inequality
p ∼ 0 reduces to c ∼ 0, we have to distinct some cases, displayed in Figure 4.3.

∼=≤ ∼=≥ ∼=< ∼=> ∼= 6=
c = 0 true true false false false

c > 0 false true false true true

c < 0 true false true false true

Figure 4.3: Different cases after reducing a polynomial to a constant.

Reduction to false yields a conflict, and the module either returns directly
from its consistency check, or continues and looks for more conflicts with in-
equalities, such that it might return a bunch of conflict sets at once.

Reduction to true makes the constraint superfluous, which follows directly
from the fact that our set of constraints is a conjunction, so there is no reason
to pass it to the backend modules. Moreover, this information can be shared
with the predecessors of the current module by a theory deduction.

Generation of conflict and reason sets is done similarly as before. The re-
duced polynomial’s reason vector is extracted, but this time, the module adds
the original inequality to the reason set afterwards, as it is not taken into account
in the reason vector during the reduction.

Notice that the module is thus only capable of finding conflicts which are
caused by a set of equalities, together with at most one inequality.

4.2 Improving the Buchberger algorithm
We revisit the Buchberger algorithm (see Algorithm 3). From experimental
results (e.g. in [RS] and [Fau02]) we know that the number of superfluous S-

42 Chapter 4. The SMT-RAT Gröbner basis module

polynomials is usually very high. We discuss two criteria which indicate that a
S-polynomial is superfluous, given by Buchberger (e.g. [Buc79]).

We then briefly discuss some strategies on how to choose the S-polynomial
to process next, as this order has a strong influence on the computation time.
Afterwards we give the implementation which is based on an idea from Gebauer
and Möller [GM88]. As the reduction is the main procedure during the algo-
rithm, we conclude with a short discussion on some strategies to find suitable
reductors to reduce the S-polynomial fast.

To streamline our argumentation, we introduce S-pairs.

Definition 4.2.1 (S-pair). A pair of two polynomials f,g for which the S-
polynomial has to be regarded during the calculation of a Gröbner basis is called
an S-pair. We call an S-pair superfluous if the S-polynomial of f,g reduces to
zero. Otherwise we call an S-pair critical.

4.2.1 Criteria for superfluous S-pairs

We start with an example of an S-polynomial which reduces to zero.

Example 4.2.1. Let I = 〈f, g〉 with f = x2 + 2y + 2 and g = y2 + y. Notice
that lcm(f,g) = fg. Then

S(f,g) = y2 · f +−x2 · g
= y2 · (2y + 2) +−x2 · (y)

f−→ y2 · (2y + 2) + (2y + 2) · (y)

= g · (2y + 2)
g−→
∗

0

In the example above, notice that the leading monomials are disjoint. The
resulting S-polynomial can be reduced to zero by the original polynomials. Dis-
joint leading monomials are a sufficient criterion for an S-pair to be superfluous,
which is formalised by the next lemma.

Lemma 4.2.1 (Buchberger’s first criterion). [BWK93, Lemma 5.66] Let f,g ∈
K[x̄]. If lcm(lm(f),lm(g)) = lm(f)lm(g), then S(f,g)

f,g−−→
∗

0.

The proof is a simple generalisation of the example above. Checking this
criterion is rather easy, as it involves only the two polynomials in the S-pair.

The description of the second criterion is more complex, as it is a global
criterion stating that although an S-pair may be critical at the current state of
the calculation, it will be superfluous once we have reduced other S-polynomials.
The description follows [BWK93], in which a modified argument is given, such
that we do not have to introduce several algebraic notions. From the original
argumentation, e.g. in [CLO97], one might extract the following intuition:

The function of S-polynomials is to provide all possible cancellations be-
tween elements of the Gröbner basis. Let us assume that the cancellations itself
are an ideal, and regard the S-polynomials as generators for this ’cancellation
ideal’. Certain generators may be a product of other generators, so they can be
eliminated from the set of generators.

4.2. Improving the Buchberger algorithm 43

Definition 4.2.2 (T-representation). Let F ⊂ K[x̄] be a set of polynomials.
Let 0 6= f =

∑l
i=1mifi with mi ∈ Mx̄ and fi ∈ F for all 1 ≤ i ≤ l. If

max{lm(mifi)} ≤ t for some t ∈ Mx̄ then f is in t-representation with respect
to F .

Theorem 4.2.2. [BWK93, Theorem 5.64] Let G be a finite subset of K[x̄]\{0}.
If for all g1, g2 ∈ G with s = S(g1, g2) it holds that either s = 0 or s has a t-
representation with t < lcm(lm(g1), lm(g2)), then G is a Gröbner basis.

Intuitively, if an S-polynomial can be represented by (other) elements in G
in a way which only causes ’smaller cancellations’ than the biggest cancellation
produced by the S-polynomial, then this S-polynomial is superfluous. In terms of
the ’cancellation ideal’, the cancellation by the S-polynomial can be generated
by other cancellations. A description for this case is refined by the second
criterion.

Lemma 4.2.3 (Buchberger’s second criterion). [BWK93, Proposition 5.70] Let
G be a finite subset of K[x̄] \ {0} and f, g1, g2 such that:

1. lm(f) | lcm(lm(g1),lm(g2))

2. S(gi,p) has a ti-representation w.r.t. G with ti < lcm(lm(gi), lm(p)) and
i ∈ {1,2}:

Then S(g1, g2) has a t-representation w.r.t. G for a t < lcm(lm(g1), lm(g2)).

Since the correctness of our algorithm does not depend on the order in which
the S-pairs are treated, we could postpone the reduction of the polynomial
S(g1, g2) to the end. Then, at the point where the S-pair (g1, g2) is the only
remaining pair, we already have a Gröbner basis by Theorem 4.2.2. It follows
directly that S(g1, g2) is superfluous.

Before we refine how to apply the criteria, we discuss strategies for selecting
the S-polynomial.

4.2.2 Strategies for choosing the next S-pair
In the discussion of the Buchberger algorithm, we said that the an arbitrary S-
pair can be selected for treatment, but the efficiency of the algorithm is gravely
influenced by the selection strategy. From Buchberger originates the idea to take
the S-pair with the smallest least common multiple [Buc85]. The corresponding
S-polynomial tends to yield non-zero remainder after reduction, and thus we
reach the final Gröbner basis elements faster. Thereby the number of additional
S-pairs that have to be checked decreases. This strategy is often called the
normal strategy.

Definition 4.2.3 (Homogeneous polynomial). A polynomial p =
∑l
i=1 aimi

with ai ∈ K \ {0} and mi ∈Mx̄ for all 1 ≤ i ≤ l is called homogeneous if there
exists a c ∈ K such that tdeg(mi) = c for all 1 ≤ i ≤ l.

The normal strategy performs quite well, provided the ordering is a degree-
ordering. Moreover, the performance for homogeneous input polynomials is
far better with this strategy and a slightly modified Buchberger algorithm, as
described in [BWK93, Chaper 10]. Making the input homogeneous before the

44 Chapter 4. The SMT-RAT Gröbner basis module

calculation and dehomogenising it afterwards tends to construct unnecessarily
big, intermediate Gröbner bases. This is improved by a further refinement,
called sugar strategy, which was proposed by Giovini et al. in [GMN+91]. The
sugar strategy adds ’sugar’ to the polynomials in order to emulate homogeneity,
and emulates the selection-order of S-pairs which would be taken if the input
was indeed homogeneous. This approach is further improved by Bigatti et al.
in [BCR11].

4.2.3 The Gebauer-Möller variant
We now give the algorithm as we implemented in GiNaCRA. Besides the criteria
for superfluous S-pairs, we also made a couple of other changes to the basic
algorithm. The basis for this algorithm was taken from [BWK93, Algorithm
GRÖBNERNEW2], although the algorithm is originally presented in [GM88].
We modified it such that it:

1. works incrementally as necessary for SMT-compliance,

2. reduces the input polynomials,

3. returns immediately if an S-polynomial is reduced to 1.

On a technical level, we changed the S-pairs, such that they now save indices
instead of polynomials or references to polynomials. The proof for correctness
and termination in its basic form can be found in [BWK93, Theorem 5.73].
Here, we give some intuition on what happens. Currently, the implementation
uses the normal strategy, but the algorithm is also correct with another order
to pick the next S-pair.

Let us first assume that updatePairs(G,S,p) adds pairs (p,g) with g ∈ G
to the set of critical pairs S.

In the first part of the algorithm, we simplify the polynomials with respect
to the other generators, as in Algorithm 2 and then, in the second part, we add
the polynomials one by one to our Gröbner basis. By a call to updatePairs
we extend the set of critical pairs accordingly. This makes the algorithm in-
cremental, as we never add a pair which has already been considered by the
algorithm.

Returning {1} if we find that 1 is in the ideal lets the Buchberger algorithm
skip reducing or eliminating S-pairs.

Now we take a closer look at updatePairs (Algorithm 6). The description
follows [BWK93]. We start with the notion of Buchberger triples.

Proposition 4.2.4. Given h, g1, g2 ∈ K[x̄] \ {0}. The following statements
are equivalent:

• lm(h) | lcm(lm(g1), lm(g2))

• lcm(lm(h), lm(g1)) | lcm(lm(g1), lm(g2))

• lcm(lm(h), lm(g2)) | lcm(lm(g1), lm(g2))

Definition 4.2.4 (Buchberger triple). Given h, g1, g2 ∈ K[x̄] \ {0}. If the
statements from Proposition 4.2.4 hold, then (h; g1, g2) is called a Buchberger
triple. A Buchberger triple is said to be strict, if we do not have equality in the
statements from 4.2.4.

4.2. Improving the Buchberger algorithm 45

1 Input : Set of polynomials P , and Gröbner basis F ;
2 Output : Gröbner basis G s.t. 〈G〉 = 〈P ∪ F 〉 ;
3 I = F ;
4 J = ∅ ;
5 sort (I) ; //w.r.t. monomial order on the leading monomials.
6 foreach (p ∈ P) {
7 q = Reduce (p,I) ;
8 i f (q 6= 0) { I . add (q) ; J . add (q) ;)
9 }

10 G = F ;
11 S = ∅ ; // s e t o f S−pa i r s
12 foreach (p ∈ J) {
13 J = J \ {p} ;
14 (G,S) = updatePairs (G,S,p) ;
15 }
16 while (S 6= ∅) {
17 select s ∈ S ;
18 S = S \ {s} ;
19 q = reduce (S−pol (s) ,G) ;
20 q = q/lc(q) ;
21 i f (q == 1) return {1} ;
22 i f (q 6= 0) (G,S) = updatePairs (G,S,q) ;
23 }
24 return reduce (G) ;

Algorithm 5: Buchberger::calculate: Implementation of Buchberger al-
gorithm in GiNaCRA.

Notice that in a Buchberger triple, the second and third polynomials can be
switched, but the first position has a distinct meaning.

By the second Buchberger criterion (Proposition 4.2.3) we know that if
(h; g1, g2) is a Buchberger triple and the pairs (h, g1) and (h, g2) have been
considered by the Buchberger algorithm, then the pair (g1, g2) is superfluous.
We can even eliminate the pair before (h, g1) and (h, g2) have been considered,
but then, we have to make sure we do not eliminate two pairs from the same
triple.

Example 4.2.2. Let h, g1, g2 ∈ K[x̄] \ {0}. Assume lcm(lm(g1), lm(h)) =
lcm(lm(g1),lm(g2)). Then (h; g1, g2) as well as (g2;h, g1) are Buchberger triples.
Now we could eliminate two pairs: (g1, g2) on account of the first triple, and
(h, g1) on account of the second triple.

Hence, to prevent the algorithm from eliminating two pairs based on the
same set of three polynomials, it should only eliminate pairs before treatment
of the other pairs if we have a strict Buchberger triple.

The algorithm starts generating all S-pairs (g, q) with g ∈ G. From these,
we first eliminate those pairs which are within a Buchberger triple. Since we
just added these pairs, there is no possibility that we used them in eliminating
other pairs. Afterwards we remove pairs with disjoint leading monomials. In

46 Chapter 4. The SMT-RAT Gröbner basis module

1 Input : Set of polynomials G, set of critical pairs S, polynomial q ;
2 Output : Set of polynomials G, set of critical pairs S ;
3 B = ∅ ;
4 foreach (p ∈ G) {
5 B = B ∪ (p, q) ;
6 }
7 foreach (s ∈ B) {
8 i f (s part of a Buchberger triple in B and s not prime)
9 B = B \ {s} ;
10 }
11 foreach ((p,p′) ∈ B) {
12 i f (pp′ = lcm(p,p′))
13 B = B \ {p,q} ;
14 }
15 foreach ((g1,g2) ∈ S) {
16 i f ((q; g1,g2) is a strict Buchberger triple)
17 S = S \ {(g1,g2} ;
18 }
19 S = S ∪B ;
20 foreach (p ∈ G) {
21 i f (lm(q) | lm(p))
22 G = G \ {p} ;
23 }
24 G = G ∪ q ;

Algorithm 6: Buchberger::updatePairs: Filling the set of critical pairs
with critical S-pairs.

this order, we can eliminate pairs by the second criterion, using pairs which are
disjoint. As a third step, we eliminate new, strict Buchberger triples from our set
of S-pairs. In the last step, we remove polynomials from G which are superfluous
since their leading monomial is a multiple of the new elements leading monomial.

4.2.4 Strategies for reduction
Reducing polynomials with respect to a set of other polynomials is a key pro-
cedure when calculating a Gröbner basis. This procedure can be optimised in
two directions.

One direction for improvement is the time used to find a suitable reductor
for a polynomial p. During the Buchberger algorithm, the number of different
polynomials often grows large. Iterating through all potential reductors and
checking whether its leading monomial divides the leading monomial of p may
take a lot of time. If the polynomials are arranged in order of increasing leading
monomials, with respect to the used monomial order, as proposed in [CLO97,
p. 108], then we might save some time for degree-based orders since smaller
leading monomials are then more likely to divide another term. Moreover, the
number of potential reductors is smaller, according to the following lemma.

Lemma 4.2.5. Given polynomials p, p′ ∈ K[x̄] with 0 6= p 6= p′ and a set of

4.2. Improving the Buchberger algorithm 47

polynomials P ⊂ K[x̄]. We define a subset of polynomials Q ⊆ P such that the
leading monomials of polynomials in Q are exactly those polynomials in P which
are smaller than lm(p) w.r.t. the monomial order we use during the reduction,
i.e., Q = {q ∈ P : lm(q) ≤ lm(p)}. If p P−→ p′ then also p Q−→ p′.

Proof. From [BWK93, Theorem 5.5] we know that lm(q) | lm(p) implies lm(q) ≤
lm(p).

This brings a speed-up for the cases where there is no suitable reductor at
all. This ordering however has its drawbacks. The larger the factor with which
the reductor is multiplied the smaller the leading monomial of the reductor.
This means that we might need more reduction steps, and that the polynomial
which has to be reduced grows more with respect to the number of terms.

Based on the ideas in [PdMJ10] we can build an index which can further
reduce the number of potential reductors. This can be done in two ways, but
both of the index-strategies are based on the following observation:

Corollary 4.2.6. Given polynomials p, p′ ∈ K[x̄] with 0 6= p 6= p′ and a set of
polynomials P ⊂ K[x̄].

1. We define the set of polynomials Q, such that in the leading monomials of
polynomials in Q only variables occur which also occur in lm(p). Q = {q ∈
P : ∀x ∈ lm(p).x ∈ lm(q)}. Then it holds that p P−→ p′ implies p Q−→ p′.

2. We define the set of polynomials Q′, such that in the leading monomials of
polynomials in Q′ at least one variable occurs which also occurs in lm(p),
i.e., Q′ = {q ∈ P : ∃x ∈ lm(p).x ∈ lm(q)}. Then it holds that p P−→ p′

implies p Q′

−→ p′.

Proof. 1. Assume p
P\Q−−−→ p′. Then lm(q) | lm(p) for some q ∈ P \ Q. Let

lm(q) = x̄α and lm(p) = x̄β . It follows from the definition that αi ≥ βi
for all 1 ≤ i ≤ |x̄|, and especially that βi > 0 implies αi > 0. Now for an
arbitrary q ∈ P \Q we know that there exists a x ∈ lm(p) with x 6∈ lm(q).
Let j be the index of this x. Then βj > 0, but αj = 0. Contradiction.

2. Clear from the fact that Q ⊂ Q′.

Based this observation we propose the following. Instead of searching for a
suitable reductor in a long list of polynomials, we introduce a list lx for each
variable x. We have two possibilities to fill these lists.

1. The list lx is filled with all polynomials p with x ∈ lm(p). If we now want
to check whether a polynomial p can be (top-)reduced, we only have to
check one of the lists lx where x ∈ lm(p).

2. For each polynomial p we fill one of the lists lx with x ∈ lm(p) with p.
Now if we want to check whether a polynomial p can be (top-)reduced, we
have to check all lists lx where x ∈ lm(p).

48 Chapter 4. The SMT-RAT Gröbner basis module

The second direction in which improvements can be made is by trying to
reduce the number of terms which appear during the reduction. A simple ap-
proach is by ordering polynomials in either the list or index explained above
according to the number of terms. A more involved approach to reach this goal
is called Slimgb and was introduced by Brickenstein in [Bri10]. It uses a cost
function which may use the length as well as the degree and the coefficient to
select suitable reductors. Furthermore, it calculates reductions in parallel and
replaces some selections during the reduction.

4.3 State-of-the-art: Signature-based and satu-
ration algorithms

Although the Buchberger algorithm enhanced with the aforementioned crite-
ria and strategies performs well, recent development has lead to overall faster
algorithms. We do not give details, but only make some short remarks.

Signature-based algorithms The main idea for this class of algorithms is
that the cancellations are an algebraic object. The signature-based algorithms
calculate a basis for these cancellations, such that the number of reductions
is further reduced. However, calculating the basis for the cancellations may
impose a large overhead. Initiated by the F5 algorithm by Faugère [Fau02], a
lot of research is done to improve the practicality of the ideas from [MMT92].
Recent algorithms are given in e.g. [EP11] and [GGV10]. The structure of the
algorithm closely resembles the Buchberger algorithm, as well as the necessary
data structures.

Saturation algorithms The saturation algorithms, based on ideas from au-
tomatic theorem proving, are proposed by Passmore et al. in [PdMJ10]. These
algorithms aim at so called large, largely linear input sets, as they appear in
several SMT benchmarks. The algorithm is based on the abstract Gröbner bases
theory from [PdM09], which allows one to show correctness of algorithms which
do not consider all S-pairs. The algorithms keep the Gröbner basis small, and
provide several optimised data structures for fast access. Since these algorithms
are not obliged to check all S-pairs, a quadratic overhead for checking all com-
binations of S-pairs can be avoided. The main steps from the algorithm are
however very similar to the Buchberger algorithm, and therefore, the same data
structures can be used, as well as our approach for small conflict sets.

4.4 Efficient data structures

There are a couple of operations in the Buchberger algorithm which are per-
formed numerous times. Previously, we mostly discussed algorithmic ways to
reduce the number of these operations. In this section, we go to a technical level
and discuss the data structures used in our algorithms.

4.4. Efficient data structures 49

4.4.1 Monomials and polynomials

Let us first discuss the basic objects, the polynomials. In general, multivariate
polynomials p are sparse, i.e., for a polynomial p only a small fraction of all
monomials m < lm(p) appear with a non-zero coefficient in p. For the Gröbner
basis algorithm, adding monomials and getting the leading monomial are im-
portant operations, but we want a generic data structure which can also be used
efficiently in other operations. Therefore we decided to use a dynamic array of
monomials with non-zero coefficient for the polynomials.

Especially in the context of SMT, the number of variables in the input is
usually large. Moreover, since we work incrementally and additional variables
might be introduced during the calculation, we do not have a fixed bound on the
number of variables. In the monomials, often only a small number of variables
occur. We store monomials as dynamic arrays of pairs, which match a variable
with the degree in which it occurs in the monomial. The data structure for
monomials furthermore saves a rational coefficient, and since we request the
total degree regularly, we also store this. We depicted an example in Figure 4.4.

In [BS98] a different monomial representation is used: Fixed size arrays of ex-
ponents are used, in which the position of the exponent yields the corresponding
variable. With this representation packing is possible, i.e., letting one machine
word represent multiple exponents. Advantages of this are that less memory
is consumed (better cache performance) and less operations are necessary for
division and multiplication. Obviously, the maximal degree of each variable gets
smaller the more exponents are packed into a single machine word. Therefore,
only a limited number of exponents are packed in a single machine word. Since
the position of an exponent is used to identify its corresponding variable, the
number of machine words used is given by the number of (potential) variables
divided by the number of exponents packed into a machine word. Whereas in
the storage used in GiNaCRA the number of machine words needed for each
monomial is given by the number of variables occuring in the monomial times
two.

111

444

222

x

1

y

2

z

1

Figure 4.4: Example storage of the polynomial xy2 + 4z + 2.

4.4.2 Finding suitable reductors

For the generated ideal we provide a class, which consists of a dynamic array
in which the input polynomials as well as the reduced S-polynomials are saved.
In this way, an ideal-object can provide static indices, which are used in, for
example, the S-pairs. For finding suitable reductors, this dynamic array would
lack performance, so the object additionally stores a pointer to another data
structure which has references on the polynomials in the ideal. In this structure,

50 Chapter 4. The SMT-RAT Gröbner basis module

the potential reductors can be stored and sorted in an arbitrary fashion, as any
access and updates are performed through the ideal object.

For fast look-up of reductors, the strategies from Section 4.2.4 can be imple-
mented. Other refinements, given in [RS] include:

• Division-masks, such that only a single machine operation is necessary to
exclude a reductor.

• KD-trees, such that a more efficient search among the reductors can be
implemented.

The reductors are currently ordered according to either the number of terms or
the monomial order.

4.4.3 Reduction

Even with the criteria discussed in Section 4.2.1 the reduction procedure is the
most costly within the algorithm. We provide a small data structure dedicated
to storing the polynomial during reduction. The reduction frequently has to

• pop the leading monomial, and

• merge the current polynomial p with a monomial m times a polynomial q.

Directly merging monomials into an array of monomials might lead to a very
bad worst-case behaviour, as shown by Yan in [Yan98]. To overcome this, geo-
buckets were introduced in the same paper. Another way of saving terms is in
heaps, as proposed by Johnson in [Joh74]. Geo-buckets perform less compar-
isons, but hashes seem to have a better overall performance on multiplication
and division due to cache effects [MP07]. In [MP11], Monogan and Pearce
present more involved algorithms for division with a heap. Roune and Stillman
propose the use of a third priority queue called tournament trees in [RS]. All
priority queues can be further enhanced to reduce the number of comparisons
needed during merging. We give a short overview.

From Johnson [Joh74] originated the idea of compression. Instead of having
monomials in a node of the priority queue, a monomial factor and a polyno-
mial is saved. The heap is then sorted according to the leading terms times
the monomial factors in each node. The observation why this works is sim-
ple: polynomials are already ordered when they are merged into the current
polynomial.

Another approach to reduce the number of comparisons is active deduplica-
tion from [RS]. During insertion in the tree, equal monomials are merged by
summing up their coefficients. Based on this idea we introduce passive deduplic-
tion, which eliminates duplicates while popping the leading term. Notice that
the passive variant only prevents unnecessarily many searches for reductors.

The idea of hashing monomials to find equal monomials is mentioned by
Fateman in [Fat03], but results were not quite promising. The implementation
based on LISP seems to suffer from the effects of garbage collection. In the
context of reduction, and within a C++ implementation, hashing performs well
[RS]. Notice that hashing alone does not suffice, because hashes do not provide
any ordering.

4.4. Efficient data structures 51

1 x4 + 2xy

(a) We want to reduce x4 + 2xy

1 2xy

x2 y3 + y

(b) x4 + 2xy
x2+y3+y−−−−−−→ x2y3 + x2y + 2xy

1 2xy

x2 y

(c) x2y3 + x2y + 2xy
y2

−→ x2y + 2xy

y y3 + y

1 2xy

(d) x2y + 2xy
x2+y3+y−−−−−−→ y4 + y2 + 2xy

Figure 4.5: Example with the reductor data structure (heap and compression).

In comparison, [RS] showed experimentally that hashing perform well under
arbitrary instances, while the performance of active deduplication and compres-
sion depend on the instance.

In GiNaCRA, we provide a reductor class which can work with any prior-
ity queue. Currently, we work with a compressed representation with passive
deduplication on a heap. An example is shown in Figure 4.5.

4.4.4 S-pairs
In Section 4.2.2 we discussed strategies to select the next S-pair. An important
observation from [RS] is that S-pairs are often added in bunches, and that sorting
them is usually easy. We can then add the sorted list to a heap of such lists.
This way, we have less comparisons while keeping the S-pairs sorted according
to our strategy. More involved storage schemes are also given in [RS], but are
not subject of our research.

52 Chapter 4. The SMT-RAT Gröbner basis module

Chapter 5

Applying the Real
Nullstellensatz

From Section 3.3.2 we can conclude that given a sum of squares p and an ideal
I, if (p + 1) ∈ I ⊂ Q[x̄] then VR(I) = ∅. In this chapter, we discuss how this
criterion can be used to develop a module which can show inconsistency over
the reals of a set of equalities. The method is closely resembling the approach
presented in [PQR09] and implemented in KeYmaera [PQ08].

5.1 Finding witnesses by sums of squares

Given a set of polynomials I, checking whether for a given polynomial p, e.g., a
sum of squares, it holds that p ∈ 〈I〉 is easily done with the help of a Gröbner
basis for I. Thus, in order to develop an efficient method which tries to find
any sum of squares p with p ∈ 〈I〉, we need to provide an efficient procedure for
finding a polynomial which makes sure that the polynomial is a sum of squares.

As a first idea, we could use a brute-force approach, iterating over all poly-
nomials and checking if it is a sum of squares, which is discussed later on, and if
redG(p+ 1) = 0 holds. For all but very small problems, this approach does not
seem to be very promising. Though this is the basic idea of our approach. in-
stead of iterating over polynomials, we will iterate over monomials and append
them in a vector of monomials, which yields a more targeted search.

As a first step, we notice that we can represent matrices by vector-matrix-
vector products.

Proposition 5.1.1 (Matrix representation). [Par03, Section 3.2] Let p ∈ Q[x̄]
with tdeg(p) ≤ 2d for some d ∈ N, and z a vector of all monomials m ∈ Mx̄

with tdeg(m) ≤ d. Then it holds that p = ztQz for some suitable matrix Q.
A polynomial written as such a vector-matrix-vector product is called matrix
representation. The set L = {Q : ztQz = p} of all such matrices is an affine
subspace.

Let in the following denote Lp the set of all matrices {Q : ztQz = p}.
Since most of the multivariate polynomials which occur in our computations

are sparse, we often want a smaller vector z of monomials.

54 Chapter 5. Applying the Real Nullstellensatz

Definition 5.1.1 (Reduced matrix representation). Let the polynomial p =
ztQz be in matrix representation. Let J be the index set of empty rows and
columns, defined as J = {i : for all 1 ≤ j ≤ dim(z) Qi,j = 0 ∧Qj,i = 0}. Then
z̃tQ̃z̃, with z̃ obtained from z by removing all entries zi with i ∈ J from z, and
Q̃ obtained from Q by removing all entries qi,j with i ∈ J or j ∈ J from Q, is
called the reduced matrix representation.

Example 5.1.1. We write a polynomial in matrix representation and in reduced
matrix representation.

2 + y + 3y2

=
(
1 x y

)
·

2 0 1
0 0 0
0 0 3

 ·
1
x
y


=
(
1 x

)
·
(

2 1
0 3

)
·
(

1
y

)

Now, instead of iterating over all polynomials, we can iterate over vectors of
monomials and matrices.

By the following theorem, we are able to consider only polynomials which
are a sum of squares.

Definition 5.1.2. A matrix M ∈ Rk×k is positive semidefinite (PSD) if M is
symmetric (M = M t) and xtMx ≥ 0 for all x ∈ Rk.

Theorem 5.1.2. [Par03, Theorem 3.3] Let f ∈ K[x̄] with tdeg(f) ≤ 2d. Then
the following are equivalent:

1. f is a sum of squares.

2. For a vector z which contains all monomials m ∈ Mx̄ with tdeg(m) ≤ d
there exists a matrix Q with f = ztQz s.t. Q is PSD.

3. There exists a vector of monomials z and a matrix Q with f = ztQz s.t.
Q is PSD.

By this theorem, instead of iterating over all polynomials we can iterate over
all vectors of monomials and PSD matrices and we then only have to check if
for the represented polynomial p the equation redG(p+ 1) = 0 holds.

5.1.1 Using semidefinite programming
Before we proceed refining our search for sum of squares, we show how to check
whether a given polynomial is a sum of squares. This method is not directly
used in our method since we search within the PSD matrices for a suitable
matrix representation directly, but the idea is very similar.

Given a polynomial p and the set Lp, we want to check whether p is a sum
of squares. With Theorem 5.1.2 we can follow that p is a sum of squares if and
only if the intersection of Lp with the set of all PSD matrices is non-empty.
This can be efficiently done by using semidefinite programming (SDP), which
we introduce next.

5.1. Finding witnesses by sums of squares 55

Definition 5.1.3 (Trace of a matrix). Let A ∈ Rn×n be a matrix. The trace
of A, trace(A), is the sum of the diagonal elements

∑n
i=1 ai,i.

It follows directly that trace(A,B) is equivalent to the sum
∑n
i=1

∑n
j=1 ai,jbj,i.

Definition 5.1.4 (Semidefinite programming). Semidefinite programming is an
optimisation problem:

Maximise trace(C,X), C symmetric
subject to trace(Ai,X) = bi, Ai symmetric, 0 ≤ i ≤ m

X PSD.

A detailed description of SDP, and methods to solve this problem can be
found in, e.g., [VB94]. Next we give a very brief description of the intersection
of Lp with the set of PSD matrices, based the detailed treatment in [Par03,
Section 3].

In order to decide whether a polynomial p is a sum of squares, we write it
in matrix representation. By matching coefficients, we get linear constraints
describing Lp.

Example 5.1.2. Let us reconsider the polynomial 3y2 + y + 2 from Example
5.1.1. By comparing coefficients, we get q1,1 = 2, q1,3 = 1, and q3,3 = 3. By
SDP, we find that no matrix subject to these constraints is PSD.

We come back to the refinement of our search. We want to find a sum of
squares s s.t. redG(s + 1) = 0. In the next part, we reformulate the search.
Afterwards, we show that we can encode redG(s) = 0 as constraints for the
SDP, as first shown in [PQR09]. We conclude extending this to redG(s+1) = 0.

Reformulation of the problem First, we notice that by expanding the
matrix representation ztQz, we get a linear polynomial with respect to the
entries in Q. Furthermore, we get all products of two monomials in z.

Example 5.1.3. We take a symbolic example showing the reformulation.

(
z1 z2 z3

)
·

q1 q2 q3

q4 q5 q6

q7 q8 q9

 ·
z1

z2

z3


= z1z1 · q1 + z1z2 · q2 + z1z3 · q3+

z1z2 · q4 + z2z2 · q5 + z2z3 · q6+

z1z3 · q7 + z2z3 · q8 + z3z3 · q9

=
(
q1 q2 · · · q8 q9

)
· I ·


z1z1

z1z2

· · ·
z2z3

z3z3


with I the identity-matrix.

Thus, we can rewrite p = ztQz to qtCm with vectors q of coefficients, and
m of monomials, both of dimension dim(z)2.

56 Chapter 5. Applying the Real Nullstellensatz

Now, since multiplication is commutative, we can join monomials zizj and
zjzi. Because Q is symmetric, we replace all qji by qij with i < j. We have to
duplicate those entries in the coefficient matrix which are multiplied by a zizj
with i 6= j.

Now, with this representation, we can extract the constraints for the SDP.

Extracting constraints for the SDP As a first step, we calculate the re-
mainder with respect to our Gröbner basis G. First we give a definition of
reducing polynomials with coefficients.

Definition 5.1.5. The remainder of a polynomial p over the variables x̄ and
coefficients q̄ w.r.t. a Gröbner basis over x̄ is defined as follows:

redG(

n∑
i=1

mipi) =

n∑
i=1

mi(redG(pi))

with pi ∈ K[x̄] and mi ∈Mq̄ for all 1 ≤ i ≤ n.

We set qtDm′ = redG(qtCm), in which m′ contains all monomials which
appear in redG(mi) for some 1 ≤ i ≤ dim(m). Since the monomials are all
smaller w.r.t. the monomial order of G, dim(f ′) is finite. D is a suitable matrix,
which exists by the same reasoning we applied to the existence of the matrix
C. Notice that all monomials in m′ are linear independent. Thus qtDm′ = 0 if
and only if qtD = 0. This yields a linear equation for each monomial in m′.

Example 5.1.4. [PQR09] Given the Gröbner basis G = {a2 − x + y, b2 −
z, c2xz−c2yz+1}, and the vector of monomials z = (1, a, abc)t. We find a sum
of squares s with redG(s) = 0, by applying SDP with the following constraints.

From expanding the matrix representation we get:

redG(s) = redG(q1,112 + 2q1,2a+ 2q1,3abc+ q2,2a
2 + 2q2,3a

3bc+ q3,3a
2b2c2)

Now we extract the matrix coefficients as parameters:

0 =redG(q1,112 + 2q1,2a+ 2q1,3abc+ q2,2a
2 + 2q2,3a

3bc+ q3,3a
2b2c2)

=q1,1redG(1) + q1,2redG(2a) + q1,3redG(abc)+

q2,2redG(a2) + q2,3redG(2a3bc) + q3,3redG(a2b2c2)

=q1,1 − q1,3 + q1,22a+ q1,32abc+ q2,2x− q2,2y + q2,32abcx− q2,32abcy

Since all different monomials are linearly independent, we get the following set
of equations

(1) : q1,1 − q1,3 = 0

(a) : 2q1,2 = 0

(abc) : 2q1,3 = 0

(x) : q2,2 = 0

(y) : − q2,2 = 0

(abcx) : 2q2,3 = 0

(abcy) : − 2q2,3 = 0

5.1. Finding witnesses by sums of squares 57

This notion is formally captured by the following lemma.

Lemma 5.1.3. [PQR09, lemma 2] Given a Gröbner basis G ⊂ Q[x̄]. Assume
p = qtCm and p′ = qtDm are two matrix representations p, p′ ∈ Q[q̄][x̄] s.t.
p′ = redG(p). Let the entries in m be pairwise different. Then the following
holds:

{x ∈ Rk : redG(xtCm) = 0} = {x ∈ Rk : xtD = 0}.

This can be equivalently formulated as constraints in the SDP problem.
We return to the original problem of redG(1+qtCm) = 0. Since the 1 in this

sum is the only term which has no coefficient parameter q, and redG(1) = 1 for
all Gröbner bases, we get redG(qtCm) + 1 = 0. The 1 is a constant monomial,
and to capture it in our SDP-constraints, we introduce the convention that
m1 = 1. Then there is always a constraint for the constant monomial. By
convention, this will always be the first constraint. By adding −1 on both sides
of the first equation we get the following SDP formulation:

Maximise trace(C,X), C symmetric,
subject to trace(A1,X) = −1, A1 symmetric,

trace(Ai,X) = 0, Ai symmetric, 2 ≤ i ≤ m,
X PSD.

5.1.2 Gaining an exact solution

Using exact algorithms for SDP makes the problem highly intractable, as has
been indicated by [PP08]. Furthermore, although there are many free libraries
for SDP, e.g. CSDP [Bor99] and SDPA [FFK+08], they all use numerical meth-
ods. Thus, for a given SDP and a solution matrix over floating-point numbers,
we ought to find a solution matrix over the rational numbers. We do this in
three steps, which are discussed in greater detail in this section.

First, we approximate the solution-matrix entries by rationals with small
nominators and denominators. Then, we modify these entries such that the
rational solution matrix satisfies the constraints of the SDP. The last step is
then a certification that this rational solution is indeed a PSD matrix.

Finding small rational approximations for floating points. Since using
the conversion of a float to a rational number which returns a rational with a
very high precision tends to yield very big nominators and denominators, we
want to find a sufficient precise, rational number with nominator and denom-
inator. We use the Stern-Brocot tree [GKP94] (see Figure 5.1) with separate
nominators and denominators for all entries. Harrison [Har07] pointed out that
he experienced better results with more uniform denominators, but these are
certainly bigger if working with the same precision. This increases the time
used for the following steps. The idea behind the transformation is to traverse
the tree until we found a solution which is within a certain error. During the
traversal, we only expand the the nodes we visit.

Example 5.1.5. Given the floating point 0.62, we look for a rational number
with a maximal error of 0.025. We start at the root of the tree, and compare
the float with the value in the root (1). Since the float is smaller, we expand

58 Chapter 5. Applying the Real Nullstellensatz

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Figure 5.1: The topmost part of the Stern-Brocot tree.

the left child. We again compare the float with the value, which is 1
2 , thus we

expand the right hand side, compare again, expand the left hand side, and have
the value 3

5 = 0.6, which is within the error margin.

Finding a rational solution for a linear equation system. The entries
xi of our solution matrix are subject to the constraints Ai from the SDP, whose
entries are gathered in the rows ai. Moreover, our solution should be symmetric,
so we add rows bi which ensure that the solution matrix is symmetric. Thereby
we get a linear equation system (with the right hand side equal to the SDP
formulation). 

−−− a1 −−−
...

−−− am −−−
−−− b1 −−−

...
−−− bt −−−


·

x1

...
xn

 =


−1
0
...
0



To solve this, we use a slightly modified Gauss-algorithm, in which after the
matrix is brought into row-echelon form, we proceed as usual, with the modifi-
cation that if a row in the matrix consists of zeroes only, then we do not take
an arbitrary entry as solution, but the solution from the approximate rational
solution. In order to increase the probability that this solution is near to our
floating point solution, we start by permuting the columns of the equation sys-
tem such that that our approximate solution-entries with higher precision are
more likely to be taken.

Certifying that the matrix is PSD A trivial way of certifying that a matrix
is PSD follows directly from the following lemma:

Lemma 5.1.4. [GVL96, Chapter 4] A matrix A is PSD if a Cholesky factori-
sation A = LDLt exists.

We thus attempt to compute the Cholesky factorisation. If we succeed, then
our rational matrix is indeed a solution and we can easily extract our witness

5.2. A module based on the real Nullstellensatz 59

s with redG(s + 1) = 0. If we did not succeed, we might try the routine again
with a higher precision for the transformation of the floating point numbers into
rational numbers.

5.2 A module based on the real Nullstellensatz
We have implemented the calls to our real Nullstellensatz based procedure
within the module from Section 4.1. We show the main algorithm and then
shortly discuss SMT-compliance.

5.2.1 A general algorithm
After we calculated a Gröbner basis and if this Gröbner basis is not equal to
{1}, we make a call to Algorithm 7. We iteratively add monomials to our SDP
problem, until either the SDP procedure finds a PSD matrix and returns true,
or the upper bound on the monomials is reached. From the monomials and

1 Input : Gröbner basis G, maximal degree d .
2 Output : Witness for infeasibility if unsat, else 0 .
3 M = {m ∈Mx̄ : tdeg(m) < d} ;
4 N = [] ; // empty list of monomials.
5 C = {Cm ∈ Q|M |×|M | : m ∈M} ; // constraint matrices.
6 while (M 6= ∅) {
7 select m ∈M ;
8 M = M \ {m} ;
9 N .append(m) ;

10 foreach (ni ∈ N) {
11 t = redG(ni ·m) ;
12 while (t 6= 0) {
13 Clm(t)(i, |N |) = lc(t) ;
14 t = t − lmc(t) ;
15 }
16 }
17 (r , S) = SDPInterface (C) ;
18 i f (r == SDP succ e s s) {
19 w = GainExactSolut ion (S , C) ;
20 return w ;
21 }
22 }
23 return 0 ;

Algorithm 7: Core procedure to produce SDP.

the Gröbner basis we have to form the constraints. We then hand over the
constraints to the SDP procedure.

As pointed out in the last section, we have to gain an exact solution from
the floating point solution the SDP may return. We do this according the
description in Section 5.1.2.

We now discuss the key components in greater detail.

60 Chapter 5. Applying the Real Nullstellensatz

Monomial iterator The monomial iterator generates the monomials which
are used as entries in our monomial vector.

Obviously, we only have to generate monomials over variables which appear
in the Gröbner basis. But even some variables from the Gröbner basis can be
skipped. For example, for identities appearing in the Gröbner basis such as
x − y, x is substituted by y in all but this equality during the Gröbner basis
computations. Since the identity yields that the assignments to x and to y are
equal within the variety, we can leave out the variable x while iterating over
the monomials. More complex ways to leave out other variables during the
generation of monomials are given in [PQR09].

The current monomial iterator generates a bunch of monomials at once,
and then adds them one by one to our core procedure from Algorithm 7. The
monomials are created according to ascending graded lexicographic order. A
change to the order has a major impact on the performance of the method, as
finding monomials which generate a witness is the key concept of the procedure.

SDP procedure As backend for the SDP problems we use CSDP [Bor99],
which was also used by [Har07] and [PQR09]. Before CSDP is called, we trans-
form the data structures to match the precise call. Notice that we cannot simply
extend the data structures from a previous call, which yields some overhead.

5.2.2 A note on SMT-compliance
We currently only support small conflict set generation. The witness which
is returned by our procedure is by construction in the ideal generated by the
Gröbner basis. If we reduce the witness with respect to the Gröbner basis, the
remainder is zero. The witness can be generated by the polynomials that are
used during the reduction. This smaller set is thus already inconsistent. Our
reduction procedure appends a reason vector from which Gröbner basis elements
that were used during reduction are easily extracted. Regarding incrementally,
we can leave out monomials that reduce to zero. This decreases the time that we
need for iterating over the monomials, but does not affect the SDP procedure,
which is currently clearly the most time consuming part of the procedure.

Chapter 6

Experimental results

In this section, we give the running times of some experimental runs of the SMT
solver using our module. We then give our interpretation based on these results.

In order to attain these results and get a better overview of the effects of
single components within our module, we composed several binaries based on
the release build of GiNaCRA 0.7.0 and SMT-RAT 0.3.01 and compared them
with the base SMT-RAT solver as well as with Z3 4.0.

The base SMT-RAT solver consists of a VS module with the CAD mod-
ule as backend module. Z3 4.02 is the successor of the winner of last year’s
SMT Competition in the category QF_NRA (Quantifier Free Nonlinear Real
Arithmetic).

We applied the Gröbner basis module by using the following strategy (B):
The base SMT-RAT solver is extended by the Gröbner module as simplification
module, which uses the base strategy (VS, CAD) as a backend. The order in
which a theory call is processed is thus GB, VS, CAD.

This and other strategies which involve a Gröbner basis are tested with some
variations of the settings. All Gröbner bases are calculated with respect to the
graded lexicographic order. The following combinations of settings appear in
the results:

oc The Gröbner basis is calculated and only used to check consistency.

p The Gröbner basis is calculated and passed instead of the received equalities.

i As p, however inequalities are reduced modulo the Gröbner basis. The passed
inequalities are the received inequalities which do not reduce to true. If
a conflict is found, unsat is returned directly.

ri As i, but the reduced inequalities are passed instead.

pri As ri, but in case of a conflict, we proceed and handle the other inequalities
as well to detect multiple conflicts.

at Here, all inequalities are transformed into equalities. The Gröbner basis is
calculated, but not passed.

1Notice that these versions also include several improvements which are not in the scope
of this thesis. As a result, this section cannot be compared with the experimental results given
in [CLJÁ12].

2Binary available from http://rise4fun.com/z3/.

http://rise4fun.com/z3/

62 Chapter 6. Experimental results

Settings marked with a subscript "+" denote those which extract smaller reasons
from the reason vectors, whereas those without use the naive over-approximation
of the conflict set.

The settings of the other modules are fixed. To improve the results and let
the solver benefit more from our module, it would be advisable to tweak the
settings of other modules in order to reflect the behaviour of our module.

All benchmarks were run on systems running Debian "squeeze", with a 2x
2.33 GHz. Intel® Xeon® processor with 4 MB cache. The maximal memory
consumption was limited by software to 4 GB, but this limit was never reached.
The results are given in Table 6.1.

Bouncing ball Rectangular pos. Keymaera
80 22 421

sol. acc. cmp. sol. acc. cmp. sol. acc. cmp.
base 31 481.0 14.9 20 569.4 56.4 413 1931.4 200.5
B(oc) 31 548.3 16.6 20 427.7 33.6 413 1847.5 196.6
B(oc)+ 28 244.7 17.5 21 938.6 25.3 413 1768.2 195.8
B(p) 25 93.7 25.9 19 316.4 36.3 411 647.2 477.8
B(p)+ 24 31.3 31.3 20 503.9 35.9 411 648.6 477.0
B(i)+ 24 31.4 31.4 16 54.8 34.8 410 587.6 408.9
B(ri)+ 25 43.5 29.3 17 56.7 36.2 412 620.4 431.7
B(pri) 24 32.3 32.3 15 60.5 51.6 411 597.5 408.1
B(pri)+ 25 43.0 28.4 16 71.5 54.3 411 598.4 410.5
B(at)+ 30 251.4 16.9 16 588.5 278.0 415 1380.5 1190.7
Z3 80 5.5 1.1 22 45.2 1.5 419 4.2 3.7

Table 6.1: Running times in seconds of several binaries on three benchmark
sets.

The structure of the table is as follows. On top, the name of the benchmark
set and the number of problem instances contained in it are given. Then, for
each combination of binary and benchmark, there are three entries. The solved
instances (sol.) gives the number of instances which were solved within the time
limit of 600 seconds. The accumulated time (acc.) is the total time the binary
took on the solved instances. The compare time (cmp.) is the total time the
binary spent on solving those instances which were solved by all the solvers.
Detailed results are available upon request.

The selected sets are motivated by a practical context. The benchmarks
in Bouncing ball are from a model of the nonlinear movement of a bouncing
ball. Rectangular positioning is a set of benchmarks which describe placements
of small rectangles in a larger rectangle. These benchmarks were taken from
[CLJÁ12]. The Keymaera benchmark is a set of benchmarks from the hy-
brid systems verification tool KeYmaera. These benchmarks were taken from
[JdM12].

We see directly that Z3 has the best performance. Z3 seems to benefit a lot
from three modules which integrate methods1 not yet available in SMT-RAT.
These are an integrated simplex solver for the linear fragment, as well as interval
constraint propagation and a SAT-style CAD with bounded intervals [JdM12].

1Z3 is closed source, and although a lot of options are available, we could not extract any
information which method is the main reason for the better performance.

63

Moreover, SMT-RAT is a very young project in which there is still a lot of room
for optimisation1. The SMT-RAT solver is meant to be a proof of concept that
from several modules, an efficient solver for NRA can be built, therefore, we
focus on the comparison between the different SMT-RAT solvers.

A first observation is that on many instances, there is a significant speed-up
when we calculate the Gröbner basis, as some conflicts are found faster then
when using virtual substitution. However, if we pass the Gröbner basis, the
solver performance drops. We thereby conclude that a Gröbner basis is, in
general, not a simplification for the virtual substitution.

It is difficult from the examples to say something about incrementality and
backtracking. However, the effects of the smaller conflict set are made visible.
Returning smaller conflict sets is in general a good idea, however, on some
instances, due to the decisions the SAT solver makes, we run into some difficult
theory calls, which do not appear with the bigger conflict sets returned. The
greater the difference between running times for a single theory call for a given
input formulae, the bigger this effect can get. We are confident that with some
improved methods and some more influence on the decisions the SAT solver
makes, smaller conflict sets will mostly improve the solver’s performance.

Although the original focus was on equalities, a lot of benchmarks have a
majority of inequalities, so the handling of these is of great interest. Handling
inequalities by an inequalities table however seems to worsen the performance.
Despite the overall performance drain, on some Keymaera benchmark instances,
the performance increases significantly. We think that the reason is that the
inequalities table produces overhead if there are no conflict sets which consist
of one inequality and a set of equalities. On most benchmarks, these cases are
either rare, or the conflict sets are easily found by the VS module as they only
need a small number of substitutions. In the future, with integration of theory
deductions, the SMT solver will make significantly smaller theory calls, and
the overhead might be reduced. Furthermore, more involved selection of the
inequalities to be reduced and the moments to do so might reduce the overhead
while retaining the gain of simplifying complex inequalities.

Because transforming inequalities into equalities introduces a large number
of extra variables we thought it to be inapplicable. The running times indicate
that this approach is slow, but promising, as it is able to solve quite a lot of
the benchmarks. The transformation allows the module to also detect conflict
sets which consist of more than one inequality. We have not yet implemented
all proposed methods for input sets with many variables, but the running times
indicate that this might be necessary to handle larger sets, e.g., on Bouncing ball
times drop on instances with a large number of variables. Notice that passing
the transformed inequalities is not a good idea, as the high number of variables
makes the virtual substitution very slow2.

The Gröbner module might have more impact if used otherwise. Based on
some analysis with the tool Valgrind3, we can see that especially theory calls
which involve the CAD module take a lot of time. Therefore, we might try to

1On some instances, the performance of SMT-RAT raised sharply and unexpected, this
might be due to some optimisation for special cases

2This information cannot be extracted from Table 6.1, but some separate experiments
showed that with such settings, only 3 instances of Rectangular positioning can be solved.

3 Valgrind is a tool for debugging and profiling and is freely available from http://
valgrind.org/

http://valgrind.org/
http://valgrind.org/

64 Chapter 6. Experimental results

reduce the number of cases in which the CAD module is called by using the GB
module to preprocess the passed formulae from the VS module. The strategy
(C) used for this is embedded in the following set of binaries, which are base
SMT-RAT solvers in which the calls to the CAD solver are simplified by the
Gröbner module. The order of the modules is thus VS, GB, CAD. Binaries
with this configuration were created with several settings for the Gröbner mod-
ule, in which the same identifiers are used. The running times are depicted in
6.2. Rectangular positioning is left out, because the VS module never calls its
backends on these instances.

Bouncing ball Rectangular pos. Keymaera
80 22 421

sol. acc. cmp. sol. acc. cmp. sol. acc. cmp.
base 31 481.0 14.9 20 569.4 56.4 413 1931.4 200.5
C(oc)+ 31 135.5 14.5 412 1753.6 196.0
C(p)+ 31 135.9 14.6 413 1514.8 197.3
C(i) 30 45.9 14.6 405 196.7 196.7
C(pri)+ 30 43.4 14.4 405 195.6 195.6
C(at)+ 31 266.4 14.6 413 1573.6 194.4

Table 6.2: Running times in seconds of several binaries.

Here, the harder bouncing ball instances are solved a lot faster and thus the
VS backend calls have an improved performance. Passing the Gröbner basis
does not really affect the speed of the CAD. We have also noticed that the
passed formulae produced by the VS module seem quite complicated. It might
be more efficient in some cases to use the original theory call instead.

Chapter 7

Conclusion

7.1 Summary

In this thesis, we took two methods, Gröbner bases computations and semidef-
inite programming, which are heavily used in several computational tasks, and
embedded them into an SMT-framework. The main motivation for this comes
from automatic theorem provers, in which it is beneficial to have several meth-
ods, each specialised on fragments of real algebra, available in order to solve the
input problem efficiently.

The used methods are specialised on equalities, and monomials and poly-
nomials are the key object they work with. Therefore, we started this thesis
defining the notion of consistency in algebraic terms. Based on this notion, we
were able to apply Gröbner basis computations to simplify sets of constraints,
and, based on the Weak Nullstellensatz, we could also decide unsatisfiability
over the complex numbers for sets of equalities. While realising incremental-
ity is straightforward, backtracking and small conflict set generation are more
involved. We applied naive methods which seem to work well in practice.

Although our focus was on equalities, in the currently available benchmarks
most problem instances consist, for the most part, of inequalities. Thus, in
order to speed up these instances, we discussed two different approaches. One is
tailored towards simplification and reduces the polynomials modulo the Gröbner
basis, and the other one, which is more tailored towards reducing the number
of backend module calls, is based on transforming inequalities into equalities by
using extra variables. The inequalities table introduces much overhead at the
moment, and the number of calls which benefit from it is limited. Transforming
inequalities slows down the solver, but is able to solve more instances.

One major drawback of the Gröbner basis method is that all complex, thus
not only the real, zeroes are taken into account. We use an approach based on
semidefinite programming to apply the Real Nullstellensatz in order to detect
inconsistencies over the reals for a set of equalities. The method lacks speed and
is currently not able to handle the high number of variables, but we are aware of
some methods to improve this. Yet, the approach does not gain any information
if the set of equalities is satisfiable, which is the case for most theory calls from
our benchmark sets. The approach is based on numerical algorithms, and thus,
numerical solutions have to be transformed into exact, rational solutions. This

66 Chapter 7. Conclusion

component worked surprisingly well.
In the last part, we showed through some experimental results that even a

preliminary, SMT-compliant Gröbner basis computation speeds up the theory
solver on average, but that further enhancements such as handling inequalities or
applying the Real Nullstellensatz do have to be applied based on some heuristic.
Interesting is the increased performance on those instances in which conflicts
between equalities occur, because these are handled much faster than with the
already available methods. This shows the importance of developing even more
methods tailored towards specific fragments of real algebra.

7.2 Discussion

The performance of the Gröbner basis module with fixed settings varies between
different instances. For the development of heuristics which select the right
settings, we need a more fine-grained knowledge on what happens and how
successive modules perform on certain actions and instances. For example,
replacing the Gröbner basis by a new one removes several constraints from the
successors, which may impose a larger overhead than if we would just extend
the call with new equalities. Moreover, we saw different settings to have the
best performance depending on the strategy used in the experimental results.
Therefore, the Gröbner module should always be regarded in context of the used
strategy.

With an algebraic definition of consistency, one might wonder if there are
other algorithms within the computational algebraic geometry which may be
beneficial to SMT. Although a Gröbner basis is reduced in some sense, the
polynomials may get a lot bigger, which makes Gröbner basis not suitable as
simplification in general. Methods tailored to finding the real radical or other
representations for the ideal should be investigated further. Also, for large num-
ber of variables, the currently used data structures do not scale well enough.
Implementing the presented methods from Section 4.4 may improve the scala-
bility.

Gröbner bases with respect to a lexicographic order are often used to support
variable elimination, see e.g. [CLO97, Chapter 3]. Therefore, the computation
and passing of such Gröbner basis might lead to much better performance of
the VS and CAD module, as variable elimination gets a lot easier. In the
current implementation, we are not able to investigate this, as the Gröbner
module is very slow computing these. The longer running times are partly due
to the structure of lexicographic Gröbner bases, and partly originated in the
used strategies and data structures within the Buchberger algorithm.

In the last part of the thesis, we gave a description of the implementation of
an extension to our module based on the Real Nullstellensatz. This approach
seems to work well only if we are able to run in conflicts fast, as theory calls with
a consistent set of polynomials always takes at least as long as with an inconsis-
tent set. Moreover, if we do not transform inequalities into equalities, we miss
a lot of conflicts during this procedure. However, those transformations worsen
the performance of the other modules in SMT-RAT sharply, and the blow-up
in the number of variables is currently also a problem for the application of the
Nullstellensatz. However, a lot of simplifications are possible in order to reduce
the number of variables. Implementing these may make the module applica-

7.3. Future work 67

ble. Despite the poor performance of the module, we learned some reasons to
use numerical approaches within exact arithmetic, and as there are some other
approaches which may benefit from numerical solutions, knowledge about the
possibilities to use numerical libraries within exact arithmetic seems valuable.
One noteworthy application is a fast check whether a polynomial can be rewrit-
ten as a sum of squares. This would simplify constraints with such polynomials
a lot.

During development, a lot of ideas for improvements to the SMT framework
were born. Some of them are already integrated. Tight integration of different
modules seems to speed up the computation, but creates difficulties predicting
how the theory solver behaves, which is a drawback when designing heuristics.

7.3 Future work
We see a lot of possibilities for future work, which can be classified into three
main areas.

SMT and Gröbner bases

• Compute Gröbner bases which only have the same set of real zeroes, but
not necessarily the same set of complex zeroes.

• Using Gröbner bases for elimination of variables, by applying a lexico-
graphic order. Variable elimination [CLO97, Chapter 3] is one of the most
eminent applications of Gröbner bases.

• Using Comprehensive Gröbner bases [Wei92],[Nab07] for case splitting or
multivariate root counting [DSW98].

• By using activities, the order in which constraints are asserted can be
influenced. Getting equalities early may help a lot.

Calculating Gröbner bases from SMT instances

• Using different (intelligent) variable orderings, as the ordering has a huge
impact on the Gröbner basis and the computation time.

• Implementing additional strategies and data structures as discussed in
Sections 4.2 and 4.4 and compare them on SMT benchmarks.

• Implementing the state-of-the-art algorithms as mentioned in Section 4.3,
and compare them on SMT benchmarks.

Making the Real Nullstellensatz approach feasible

• Introduction of a better monomial iterator, maybe with activities on the
variables (and a reduced number of variables).

• Reduce the number of constraint matrices which are constructed.

• Use an SDP library which supports incremental calls.

• Move to a dedicated module, which can be run in parallel.

68 Chapter 7. Conclusion

Bibliography

[ÁCLS10] Erika Ábrahám, Florian Corzilius, Ulrich Loup, and Thomas
Sturm. A lazy SMT-solver for a non-linear subset of real algebra.
In Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (SMT ’10), 2010.

[AL94] William. W. Adams and Philippe Loustaunau. An Introduction
to Gröbner Bases. Graduate Studies in Mathematics. American
Mathematical Society, 1994.

[AP10] Behzad Akbarpour and Lawrence Charles Paulson. Metitarski:
An automatic theorem prover for real-valued special functions. J.
Autom. Reason., 44(3):175–205, March 2010.

[Arm03] Armin Biere and Alessandro Cimatti and Edmund M. Clarke and
Ofer Strichman and Yunshan Zhu. Bounded model checking. Ad-
vances in Computers, 58:117–148, 2003.

[BCR11] Anna Maria Bigatti, Massimo Caboara, and Lorenzo Robbiano.
Computing inhomogeneous Gröbner bases. J. Symb. Comput.,
46(5):498–510, 2011.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby
Walsh, editors. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press, February
2009.

[Bor99] Brian Borchers. CSDP, A C library for semidefinite programming.
Optimization Methods and Software, 11(1):613–623, 1999.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algo-
rithms in Real Algebraic Geometry. Algorithms and Computation
in Mathematics. Springer New York, 2006.

[Bri10] Michael Brickenstein. Slimgb: Gröbner bases with slim polynomi-
als. Revista Matemática Complutense, 23:453–466, 2010.

[BS98] Olaf Bachmann and Hans Schönemann. Monomial representations
for Gröbner bases computations. In Proceedings of the 1998 In-
ternational Symposium on Symbolic and Algebraic Computation,
ISSAC ’98, pages 309–316, New York, 1998. ACM.

70 Bibliography

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Proceedings of the 19th
International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages
298–302. Springer Berlin, Heidelberg, July 2007.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Poly-
nomideal. PhD thesis, 1965.

[Buc79] Bruno Buchberger. A criterion for detecting unnecessary reduc-
tions in the construction of Gröbner-bases. In Symbolic and Al-
gebraic Computation, volume 72 of Lecture Notes in Computer
Science, pages 3–21. Springer Berlin, Heidelberg, 1979.

[Buc85] Bruno Buchberger. Basic features and development of the critical-
pair/completion procedure. In Rewriting Techniques and Appli-
cations, volume 202 of Lecture Notes in Computer Science, pages
1–45. Springer Berlin, 1985.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner
bases: a computational approach to commutative algebra. Gradu-
ate texts in mathematics. Springer-Verlag, 1993.

[CA11] Florian Corzilius and Erika Ábrahám. Virtual substitution for
SMT-solving. In Proceedings of the 18th international conference
on Fundamentals of Computation Theory, FCT’11, pages 360–371.
Springer Berlin, Heidelberg, 2011.

[CLJÁ] Florian Corzilius, Ulrich Loup, Sebastian Junges, and
Erika Ábrahám. SMT-RAT manual. Available at
http://smtrat.sourceforge.net/.

[CLJÁ12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika
Ábrahám. SMT-RAT: An SMT-compliant nonlinear real arith-
metic toolbox (tool presentation). In Int. Conf. on Theory and Ap-
plications of Satisfiability Testing (SAT’12), volume 7317 of Lec-
ture Notes in Computer Science, pages 442–448. Springer, 2012.

[CLO97] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties,
and algorithms - an introduction to computational algebraic geom-
etry and commutative algebra (2nd ed.). Undergraduate texts in
mathematics. Springer, 1997.

[CMT12] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. SMT-
based scenario verification for hybrid systems. Formal Methods in
System Design, pages 1–21, 2012.

[Col75] George Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decompostion. In Automata Theory and For-
mal Languages 2nd GI Conference Kaiserslautern, May 20âĂŞ23,
1975, volume 33 of Lecture Notes in Computer Science, pages 134–
183. Springer Berlin, Heidelberg, 1975.

http://smtrat.sourceforge.net/

Bibliography 71

[DGPS12] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans
Schönemann. Singular 3-1-5 — A computer algebra system for
polynomial computations. 2012. http://www.singular.uni-kl.de.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (ETAPS/TACAS’08), vol-
ume 4963 of Lecture Notes in Computer Science, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[dMP09] Leonardo de Moura and Grant Olney Passmore. On locally mini-
mal Nullstellensatz proofs. In Proceedings of the 7th International
Workshop on Satisfiability Modulo Theories, SMT ’09, pages 35–
42, 2009.

[DS97a] Andreas Dolzmann and Thomas Sturm. Redlog: computer algebra
meets computer logic. SIGSAM Bull., 31(2):2–9, 1997.

[DS97b] Andreas Dolzmann and Thomas Sturm. Simplification of
quantifier-free formulas over ordered fields. Journal of Symbolic
Computation, 24:209–231, 1997.

[DSW98] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning.
Real quantifier elimination in practice. In Algorithmic Algebra
and Number Theory, pages 221–247. Springer, 1998.

[EP11] Christian Eder and John Edward Perry. Signature-based algo-
rithms to compute Gröbner bases. In Proceedings of the 36th In-
ternational Symposium on Symbolic and Algebraic Computation,
ISSAC ’11, pages 99–106, New York, 2011. ACM.

[ES04] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In
Enrico Giunchiglia and Armando Tacchella, editors, Theory and
Applications of Satisfiability Testing, volume 2919 of Lecture Notes
in Computer Science, pages 333–336. Springer Berlin, Heidelberg,
2004.

[Fat03] Richard Fateman. Comparing the speed of programs for sparse
polynomial multiplication. SIGSAM Bull., 37(1):4–15, March
2003.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing
Gröbner bases without reduction to zero (F5). In Proceedings
of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, pages 75–83, New York, 2002. ACM.

[FFK+08] Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, Kazuhide
Nakata, Maho Nakata, and Makoto Yamashita. SDPA (SemiDefi-
nite Programming Algorithm) – User’s manual. Technical report,
Tokyo Institute of Technology, 2008.

72 Bibliography

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan,
and Tobias Schubert. Efficient solving of large non-linear arith-
metic constraint systems with complex boolean structure. Journal
on Satisfiability, Boolean Modeling and Computation, 1:209–236,
2007.

[GGV10] Shuhong Gao, Yinhua Guan, and Frank Volny, IV. A new incre-
mental algorithm for computing Groebner bases. In Proceedings
of the 2010 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’10, pages 13–19, New York, 2010. ACM.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics: A Foundation for Computer Science. Addison-
Wesley Longman Publishing Co., Inc., Boston, 2nd edition, 1994.

[GM88] Rüdiger Gebauer and H. Michael Möller. On an installation of
Buchberger’s algorithm. J. Symb. Comput., 6(2-3):275–286, De-
cember 1988.

[GMN+91] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Rob-
biano, and Carlo Traverso. ”One sugar cube, please” or selec-
tion strategies in the Buchberger algorithm. In Proceedings of the
1991 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’91, pages 49–54, New York, 1991. ACM.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a soft-
ware system for research in algebraic geometry. Available at
http://www.math.uiuc.edu/Macaulay2/.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Johns Hopkins Studies in Mathematical Sciences. The Johns Hop-
kins University Press, 3rd edition, October 1996.

[Har07] John Harrison. Verifying nonlinear real formulas via sums of
squares. In Theorem Proving in Higher Order Logics, TPHOLs
2007, volume 4732 of Lecture Notes in Computer Science, pages
102–118. Springer Berlin, Heidelberg, 2007.

[JdM12] Dejan Jovanović and Leonardo de Moura. Solving non-linear arith-
metic. In Automated Reasoning - 6th International Joint Confer-
ence, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceed-
ings, volume 7364 of Lecture Notes in Computer Science, pages
339–354. Springer, 2012.

[Joh74] Stephen C. Johnson. Sparse polynomial arithmetic. SIGSAM
Bull., 8(3):63–71, August 1974.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An
Algorithmic Point of View. Springer, 1 edition, 2008.

[MMT92] H. Michael Möller, Teo Mora, and Carlo Traverso. Gröbner bases
computation using syzygies. In Papers from the International
Symposium on Symbolic and Algebraic Computation, ISSAC ’92,
pages 320–328, New York, 1992. ACM.

http://www.math.uiuc.edu/Macaulay2/

Bibliography 73

[Mot67] Theodore S. Motzkin. The arithmetic-geometric inequality. In
Inequalities, pages 205–224. New York: Academic Press, 1967.

[MP07] Michael Monagan and Roman Pearce. Polynomial division using
dynamic arrays, heaps, and packed exponent vectors. In Victor
Ganzha, Ernst Mayr, and Evgenii Vorozhtsov, editors, Computer
Algebra in Scientific Computing, volume 4770 of Lecture Notes
in Computer Science, pages 295–315. Springer Berlin, Heidelberg,
2007.

[MP11] Michael Monagan and Roman Pearce. Sparse polynomial division
using a heap. Journal of Symbolic Computation, 46(7):807 – 822,
2011.

[Nab07] Katsusuke Nabeshima. A speed-up of the algorithm for comput-
ing comprehensive gröbner systems. In Proceedings of the 2007
international symposium on Symbolic and algebraic computation,
ISSAC ’07, pages 299–306, 2007.

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations for
semialgebraic problems. Mathematical Programming, 96:293–320,
2003.

[PdM09] Grant Olney Passmore and Leonardo de Moura. Superfluous S-
polynomials in strategy-independent Groebner bases. In 11th In-
ternational Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC) 2009, pages 45–53, 2009.

[PdMJ10] Grant Olney Passmore, Leonardo de Moura, and Paul B. Jackson.
Gröbner basis construction algorithms based on theorem proving
saturation loops. In Decision Procedures in Software, Hardware
and Bioware, number 10161 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany.

[PP08] Helfried Peyrl and Pablo A. Parrilo. Computing sum of squares
decompositions with rational coefficients. Theoretical Computer
Science, 409(2):269 – 281, 2008.

[PPdM12] Grant Passmore, Lawrence Paulson, and Leonardo de Moura. Real
algebraic strategies for MetiTarski proofs. In Intelligent Computer
Mathematics, volume 7362 of Lecture Notes in Computer Science,
pages 358–370. Springer Berlin, Heidelberg, 2012.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hybrid the-
orem prover for hybrid systems. In Alessandro Armando, Peter
Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195
of Lecture Notes in Computer Science, pages 171–178. Springer,
2008.

[PQR09] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real
world verification. In Proceedings of the 22nd International
Conference on Automated Deduction, CADE-22, pages 485–501,
Berlin, Heidelberg, 2009. Springer-Verlag.

74 Bibliography

[RS] Bjarke H. Roune and Michael Stillman. Practical Gröbner basis
computation. In Proceedings of the 2012 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’12. to appear.

[Ste74] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semi-
algebraic geometry. Mathematische Annalen, 207:87–97, 1974.

[Tar51] Alfred Tarski. A decision method for elementary algebra and ge-
ometry. Bulletin of the American Mathematical Society, 59, 1951.

[Tiw05] Ashish Tiwari. An algebraic approach for the unsatisfiability of
nonlinear constraints. In Computer Science Logic, volume 3634
of Lecture Notes in Computer Science, pages 248–262. Springer
Berlin, Heidelberg, 2005.

[Tse83] Grigorii S. Tseitin. On the complexity of proofs in propositional
logics. In Automation of Reasoning: Classical Papers in Compu-
tational Logic 1967–1970, volume 2. Springer Berlin, Heidelberg,
1983.

[VB94] Lieven Vandenberghe and Stephen Boyd. Semidefinite program-
ming. SIAM Review, 38:49–95, 1994.

[Wei92] Volker Weispfenning. Comprehensive Gröbner bases. J. Symb.
Comput., 14:1–29, July 1992.

[Wei93] Volker Weispfenning. Quantifier elimination for real algebra - the
quadratic case and beyond. Applicable Algebra in Engineering,
Communication and Computing, 8:85–101, 1993.

[Yan98] Thomas Yan. The geobucket data structure for polynomials. J.
Symb. Comput., 25(3):285–293, March 1998.

	Introduction
	SMT solving and real algebra
	SAT solving
	SMT solving
	Theory of the reals
	SMT-RAT

	Consistency for polynomials
	Consistency as an algebraic notion
	Gröbner bases
	The Nullstellensatz
	Handling inequalities

	The SMT-RAT Gröbner basis module
	An SMT module based on Gröbner basis calculation
	Improving the Buchberger algorithm
	State-of-the-art: Signature-based and saturation algorithms
	Efficient data structures

	Applying the Real Nullstellensatz
	Finding witnesses by sums of squares
	A module based on the real Nullstellensatz

	Experimental results
	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

