
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

ADAPTIVE DYNAMIC REACHABILITY ANALYSIS FOR

LINEAR HYBRID AUTOMATA

ADAPTIVE, DYNAMISCHE

ERREICHBARKEITSANALYSE FÜR LINEARE HYBRIDE

AUTOMATEN

Dustin Hütter

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
M. Sc. Stefan Schupp

Aachen, 29.09.2016

Abstract

Hybrid systems exhibit discrete and continuous behavior. Occurring e.g.

in cyber-physical systems, verifying whether such systems do not reach certain

undesired states is highly important because a lot of these systems are safety-

critical.

There already exists a set of algorithms computing over-approximations of the

set of reachable states of hybrid systems. This thesis extends a common static

approach for the reachability analysis to a dynamic one. The presented dy-

namic approach enables us to re�ne single paths of a given model where the

set of reachable states invalidated a given safety criterion while avoiding the

re-computation of the whole model. Additionally, we exploit previous results of

our analysis and do not have to restart it for the whole system.

Our evaluation indicates that this procedure can make reachability analysis more

feasible in terms of runtime and �exibility.

iv

v

vi

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vii

Acknowledgements

Firstly, I would like to thank my advisor Stefan Schupp for his steady support of this
thesis project and the fruitful discussions that we had. Additionally, I want to thank
the whole Theory of Hybrid Systems group and especially Prof. Dr. Erika Ábrahám
for supporting me and giving me the chance to write this thesis in an interesting �eld
of research. My last thanks goes to Prof. Dr. Jürgen Giesl for his willingness to be
the second supervisor of this thesis.

viii

Contents

1 Introduction 9

2 Theoretical Background 11

2.1 Hybrid Automata . 11
2.2 General Reachability Analysis . 15
2.3 Representations . 15
2.4 Operations . 19
2.5 Flowpipe-based Reachability Analysis 20

3 Dynamic Reachability Analysis 25

3.1 Tree-based Reachability . 25
3.2 Dynamic Backtracking . 26
3.3 Context Information of Single Nodes 27
3.4 Implementation . 28
3.5 Example . 31
3.6 Dynamic Approach with Non-Aggregating Transitions 36

4 Experimental Results 37

4.1 Example Automaton . 38
4.2 Cruise Control Model . 40
4.3 Filtered Oscillator Model . 42
4.4 Strategy Choice . 45
4.5 Summary . 45

5 Conclusion 47

5.1 Summary . 47
5.2 Future Work . 47
5.3 Conclusion . 48

Bibliography 51

x Contents

Chapter 1

Introduction

In order to ensure that certain systems occurring in science and industry have desired
properties, the research area of veri�cation has evolved. On an abstract level, its aim
is to build an abstraction of the system and to apply formal methods on this system
to judge whether the abstraction satis�es the properties or not. This thesis focuses in
particular on recognizing whether the modeled systems do not reach undesired states.
These properties are also called safety properties.
While this problem is well-understood for systems exhibiting only discrete or only
continuous behavior, the veri�cation of hybrid systems, featuring both discrete and
continuous behavior, is a rather emerging �eld of research. Exemplifying such a sys-
tem, consider a controller for rods of a reactor. We may have discrete states modeling
either that we cool them down or heat them up. The physical change of temperature
in contrary is continuous. We will introduce the notion of hybrid automata which we
will use to build an abstraction of such a system. Our aim is then to judge whether a
(linear) hybrid automaton avoids a certain set of bad states. For the rod reactor ex-
ample such a bad state could be that the temperature of a rod exceeds a certain value.

Firstly, we will introduce the necessary theoretical foundations of hybrid automata and
have a look at an existing approach for the reachability analysis of linear hybrid au-
tomata. As this problem is undecidable [HKPV95], the latter approach restricts itself
to over-approximating the precise reachable set. In case the over-approximation has
an empty intersection with the bad states, we can deduce that the actual reachable set
also does. Otherwise we can re�ne the reachability analysis. If the over-approximation
still intersects the bad states, we can not deduce that the bad states are not reach-
able because it may be that only the set di�erence of the over-approximation and the
precise reachable set intersects the bad states.
The main contribution of this thesis is an extension of the previously mentioned ap-
proach to a dynamic one. The algorithm that we build on is static in the way that
we can initially specify a set of parameters, proceed with the analysis and get the
answer whether the over-approximation intersects the bad states or not. In case the
intersection is non-empty, we can restart the analysis with a new parameter setting.
Using a more precise parameter setting has a crucial e�ect on the quality of the over-
approximation. The theory part formalizes the notions of the quality of parameter
settings and over-approximations. As a matter of fact, the static approach can be
optimized in several ways. Firstly, with the dynamic approach we are able to reuse

10 Chapter 1. Introduction

the results of previous runs. Secondly, it may be bene�cial to detect the part that
was responsible for the non-empty intersection with the bad states and to only re-
peat the reachability algorithm for this part. In Chapter 3 we will present the idea
and implementation issues of our dynamic reachability algorithm. Thereafter, we will
evaluate it and examine its advantages and disadvantages. In the last chapter we will
conclude this thesis and explore possible optimizations for the future.

Chapter 2

Theoretical Background

In this chapter we will introduce the necessary theoretical foundations that the main
notions of this thesis base on. Therefore, we will �rst introduce the model that we
aim to model-check in terms of reachability. Then, we will present several technical
details leading to a common algorithm for reachability analysis.

2.1 Hybrid Automata

As we have already stated, we aim to have a formal model for systems featuring both
discrete and continuous behavior i.e. hybrid systems. Hybrid automata provide us
such a model. They enable us to build an abstraction of the modeled hybrid systems
capturing its main characteristics. We will �rst introduce general hybrid automata
and afterwards a more restrictive model, linear hybrid automata, that we will use for
further considerations. The di�erent classes of hybrid automata are distinguished by
their expressiveness and decidability of common problems involving these automata
[HKPV95].

2.1.1 General Hybrid Automata

In the following, we introduce the model of general hybrid automata. Subsequently,
we will simply denote them by hybrid automata [ACHH93]. A hybrid automaton H
is a 7-tuple of the form H = (Loc, V ar, Lab,Edge,Act, Inv, Init) where:

� Loc is a �nite set of locations. They correspond to the states in �nite automata
or Kripke structures.

� V ar is a �nite set of real-valued variables. They facilitate the continuous part
of the model by allowing to let them evolve in each location. In the following,
let d =| V ar |.

� Lab is a �nite set of synchronization labels including a stutter label τ . These
labels allow to describe the action triggering the transition. In case there is no
explicit synchronization label, it is implicitly assumed to be τ .

� Edge is a �nite set of edges with Edge ⊆ Loc×Lab×2R
d×Rd ×Loc. The notion

of a transition is given by t = (l,a,µ,l′) ∈ Edge where µ is a so-called reset map.

12 Chapter 2. Theoretical Background

The �rst component of µ ∈ 2R
d×Rd

contains the valid variable valuations with
which a transition can be taken. The second component describes the variable
valuations after the transition was taken. A transition t, triggered by the label
a, can be taken from state (l,v) ∈ Loc×Rd to (l′,v′) ∈ Loc×Rd i� v′ ∈ Inv(l′)
and (v,v′) ∈ µ i.e. v satis�es the guard of t and assigns the variables according
to v′. In case the guard of a transition is satis�ed, it is said to be enabled.

� Act is a function assigning a set of activities f : R+ → Rd to each location. For
each point in time, f models the dynamic of the variables in a certain location
by a di�erential equation.

� Inv is a function assigning an invariant Inv(l) ⊆ Rd to each location l ∈ Loc
i.e. determining a set of valid valuations for each location.

� Init is a set of initial states.

Note that due to the fact that we have locations and evolving variables, unlike
as for Kripke structures, states are not solely given by the location but by a pair
(l,v) ∈ Loc× Rd of the current location and variable valuation.

In Figure 2.1 we see an exemplary hybrid automaton H with the formal descrip-
tion:

� Loc = {l0,l1},

� V ar = {x0,x1},

� Lab = {a,b,τ},

� Edge = {(l0,a,{(v,v′) ∈ Rd×Rd : v(x1) ≥ 5∧v′(x0) = 0∧v(x1) = v′(x1)},l1),(l1,b,{(v,v′) ∈
Rd × Rd : v(x1) ≤ 5 ∧ v′(x0) = 0 ∧ v(x1) = v′(x1)},l0)},

� Act(l0) = {f : R+ → Rd : ∃c1,c2 ∈ R ∀t ∈ R+(f(t)(x0) = t + c1 ∧ f(t)(x1) =
2t+ c2)},
Act(l1) = {f : R+ → Rd : ∃c1,c2 ∈ R ∀t ∈ R+(f(t)(x0) = t + c1 ∧ f(t)(x1) =
−2t+ c2)}

� Inv(l0) = {v ∈ Rd : v(x0) ≤ 10 ∧ v(x1) ≤ 10}, Inv(l1) = {v ∈ Rd : v(x0) ≤
10 ∧ v(x1) ≥ 0},

� Init = {(l0,(0,0))}.

2.1. Hybrid Automata 13

l0

ẋ0 = 1
ẋ1 = 2

x0 ≤ 10

x1 ≤ 10

x0 = 0
x1 = 0

l1

ẋ0 = 1
ẋ1 = −2

x0 ≤ 10
x1 ≥ 0

a: x1 ≥ 5 →
x0 := 0

b: x1 ≤ 5 →
x0 := 0

Figure 2.1: Graphical representation of the exemplary hybrid automaton.

H consists out of the two locations l0 and l1 and the variables x0 and x1. Its
single initial state is (l0,(0,0)). In l0, x0 and x1 are forced to be less or equal than 10
and in l1 x0 is also forced to be less or equal than 10 and x1 to be greater or equal
than 0. Furthermore, we have one discrete transition from l0 to l1 which is triggered
by the label a and resets x0 to 0. The other transition is triggered by the label b and
enabled when x1 is less or equal than 5 and also resets x0 to 0.

2.1.2 Formal Semantics

In order to have a proper basis to de�ne the reachability problem that we aim to
solve, we will introduce the formal one-step semantics of hybrid automata. As we
have seen, the state of a hybrid automaton is a pair of a location and a variable
valuation. Hence, a state change may either take place by changing the location and
resetting certain variable valuations i.e. by taking a discrete transition or by just
changing the variable valuations i.e. by letting the variables evolve according to the
dynamics in the current location. The former is given by:

(l,a,µ,l′) ∈ Edge (v,v′) ∈ µ v′ ∈ Inv(l′)

(l,v)
a→ (l′,v′) RuleDiscrete

A discrete state change (l,v)
a→ (l′,v′) accordingly obeys the premises that a transition

(l,a,µ,l′) ∈ Edge exists such that its guard is satis�ed and the new variable valuation
v′ satis�es the invariant of the location l′ the discrete transitions ends in.
The second way of a state change is de�ned by:

f ∈ Act(l) f(0) = v f(t) = v′ t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l,v)
t→ (l,v′) RuleTime

A continuous state change (l,v)
t→ (l,v′) obeys the premises that for the activity f in

the location l, the initial valuation v changes to v′ = f(t) and for every point in time

14 Chapter 2. Theoretical Background

that is in between, including 0 and t, the invariant of l is satis�ed.

We say that a state (l,v) is reachable in a hybrid automatonH if there is a sequence
of transitions, either discrete or continuous, (l0,v0) → ... → (l,v) with l0 being an
initial location and v0 a corresponding initial valuation of H. In particular, given a set
of bad states B = {(lb1 ,vb1),...,(lbn ,vbn)} ∈ Loc×Rd, we are interested in determining
whether a state in B is reachable from (l0,v0). Due to the undecidability of the
reachability problem for hybrid automata, we will restrict ourselves to only compute
over-approximations of the reachable set. Therefore, if the over-approximation does
not intersect the reachable set, we can deduce that the reachable set also does not.
Furthermore, we will restrict the dynamics of the locations leading us to linear hybrid
automata.

2.1.3 Linear Hybrid Automata

Linear hybrid automata are a special type of the hybrid automata that we have
already introduced. An autonomous linear hybrid automaton is a hybrid automaton
with the additional restriction that the activities of the variables in each location are
given by linear ordinary di�erential equations (linear ODEs) exhibiting the following
form [LG09]:

ẋ(t) = Ax(t) (2.1)

respectively

ẋ(t) = Ax(t) + u(t) (2.2)

for non-autonomous linear hybrid automata. Here, A ∈ Rd×d is a matrix of
coe�cients for the d variables of the corresponding linear hybrid automaton. For
the non-autonomous case, the dynamics additionally possess a function u(t) with
which we can model external input. However, in this thesis we will only consider the
autonomous case. Determining solutions of linear ODEs enables us to compute the
development of variables' values in a single location which obviously is important in
reachability analysis. Solutions of linear ODEs as in Equation 2.1 have the following
form [LG09]:

x(t) = eAtx0

where x0 is the initial value of x and eAt denotes the so called matrix exponential
given by [Leo96]:

eAt =

∞∑
i=0

Aiti

i!
.

2.2. General Reachability Analysis 15

Hence, in comparison to general di�erential equations, solutions of linear ODEs
can be computed with moderate e�ort. Due to this fact, several approaches for the
reachability analysis of hybrid automata restrict themselves to linear hybrid automata
just as this thesis does.

2.2 General Reachability Analysis

As this thesis is devoted to the reachability analysis of linear hybrid automata, in
this section we will make a �rst step towards the reachability algorithm that we
will later use and extend. Algorithm 1 from [Á15] gives a rough sketch of how
we can employ such an analysis. Starting from the initial states InitH of a hybrid
automaton H, we iteratively compute an over-approximation of the reachable set.
Technically, in one iteration the call Reach(..) in Line 5 computes the �owpipes for all
states that resulted from taking a discrete transition in the last iteration respectively
computes the �owpipes for the initial states in the �rst iteration. After computing
the �owpipe, Reach(..) checks which guards of outgoing transitions are satis�ed and
applies the reset of the variable valuations to the satisfying sets for these transitions.
The variable Rnew stores these sets provided by applying the reset of the variable
valuations without the state sets that have been computed before i.e. Rnew is assigned
with Reach(Rnew)\RH . Initially, Rnew is assigned with InitH in Line 1. RH stores all
states that were determined during the reachability algorithm. In case Rnew is empty,
our analysis terminates with returning RH . Otherwise, there exists a state that can
still be evolved and the while loop continues. Additionally, to ensure termination the
maximum number of discrete jumps on each path and a time horizon T i.e. the time
that we stay at most in one location can be �xed.

Algorithm 1 General Reachability Analysis

Input: A hybrid automaton H with initial states InitH
Output: Set RH of reachable states
1: Rnew := InitH
2: RH := ∅
3: while Rnew 6= ∅ do

4: RH := RH ∪Rnew
5: Rnew := Reach(Rnew) \RH
6: end while

7: return RH

As a �rst approach for the reachability analysis of hybrid automata, this algorithm
is suitable but it clearly abstracts from a lot of technical details e.g. how exactly
Reach(...) proceeds. In the following we will introduce these technical details that we
need to give a proper implementation.

2.3 Representations

So far, we abstracted from the way in which we represent the reachable set respectively
an over-approximation of it. As a matter of fact, the choice of the representation is

16 Chapter 2. Theoretical Background

crucial regarding the accuracy of the approximation and the e�ciency of the anal-
ysis procedure. In the following, we will introduce boxes, polytopes, zonotopes and
support functions. The interested reader �nds a more opulent collection of represen-
tations e.g. in [LG09].

2.3.1 Boxes

A simple representation is given by boxes. They are de�ned as follows:

De�nition 2.3.1 (Box [LG09]).

A set B is a box i� it can be expressed as a product of intervals.

B = [x1,x1]× ...× [xd,xd]

B is the set of points x whose ith coordinate, xi, lies between x1 and x1.

Intuitively, boxes approximate a set by a hyper-rectangle. Their main advantage
is that they can be stored e�ciently only using 2d parameters in d dimensions and
a lot of frequently used operations in reachability analysis can be performed quite
e�ciently with boxes. One of their downsides is, shown in Figure 2.2, that the
introduced over-approximation is in general large in comparison to other state set
representations.

Figure 2.2: A box over-approximating another set [LG09].

2.3.2 Polytope

A more accurate representation is given by means of polytopes. Therefore, we �rst
de�ne the notion of a half-space:

De�nition 2.3.2 (Halfspace [Zie95]).

A d-dimensional half-space h is a set of points with h = {x ∈ Rd : cTx ≤ z}, with
c ∈ Rd being the normal vector of h and z ∈ R being an o�set parameter.

De�nition 2.3.3 (Polytope [Zie95]).

A polytope P is the bounded intersection of a �nite set H of half-spaces:

2.3. Representations 17

P =
⋂
h∈H

h

One way of representing polytopes is to store the half-spaces de�ning the polytope.
This form of storing polytopes is called H-Polytopes. Another way is to store a �nite
set V of vertices and to de�ne a polytope as the convex hull of V . The notion of a
convex hull is explained in Section 2.4. Both ways of representing polytopes have their
advantages and disadvantages regarding the execution of certain frequently performed
operations. Furthermore, they are equivalent in terms of expressivity. Hence, one can
combine both representations but as a matter of fact transforming one representation
into the other goes along with exponential cost in the worst-case [Zie95]. Figure 2.3
illustrates a set being over-approximated by a polytope. We can observe that the
polytope yields a �ner approximation as boxes did. However, this bene�t goes along
with higher computational costs.

Figure 2.3: A polytope over-approximating another set [LG09].

2.3.3 Zonotope

A further representation is given by zonotopes. They may be de�ned as follows
[LG09]:

De�nition 2.3.4 (Zonotope).

A zonotope Z may be de�ned as follows:

Z = {x ∈ Rd : x = c+
d∑
i=1

αigi},

where the gi ∈ Rd are the so-called generators of a generator set G = {g1,...,gd}, the
αi ∈ [−1,1] for i ∈ {1,...,d} are scalars and c ∈ Rd is the center of Z.

Zonotopes are also a quite common form of representing reachable sets. However, they
have a center of symmetry and therefore generally do not allow as much precision in
approximating a set as for example polytopes do. On the other side, zonotopes exhibit
constant runtime complexity e.g. for linear transformations which is an important
operation for reachability analysis as we will see. Figure 2.4 gives an illustration of
a zonotope.

18 Chapter 2. Theoretical Background

Figure 2.4: A zonotope over-approximating another set [LG09].

2.3.4 Support Functions

Here, we will consider the representation given by so-called support functions. They
di�er from the representations seen so far by the fact that they are not given by
a collection of parameters but by a symbolic representation. Their de�nition is as
follows:

De�nition 2.3.5 (Support function [LG09]).

The support function of a set S, denoted ρS is de�ned by:

ρS : Rd → R ∪ {∞,−∞}
l 7→ sup

x∈S
x · l

A point x of S such that x · l = ρS(l) is called a support vector of S in direction l.

The underlying concept of support functions is that any direction i.e. a vector
x ∈ Rd is mapped to a plane fully containing the set to be considered and crossing
it in exactly one point. Figure 2.5 visualizes this for one vector l. Thereby, we can
approximate a given set by the support functions of several directions. The more
directions that are taken into account, the more precise the approximation gets.

2.4. Operations 19

Figure 2.5: A set with a supporting hyper-plane in direction l [LG09].

2.4 Operations

In addition to the way in which we represent the over-approximation of the reachable
states, we also need to be able to perform certain operations on the calculated sets
during the reachability computation. In the following, we will introduce the most
important ones.

Two fundamental operations are set union, denoted by ∪, and set intersection,
denoted by ∩, known from classic set theory and de�ned as A∪B := {x|x ∈ A∨x ∈ B}
respectively A ∩ B := {x|x ∈ A ∧ x ∈ B} for two sets A and B. The intersection
e.g. is used to determine which part of a set satis�es a guard of some transition. For
the union of two sets, we need to add the ingredient of building the convex hull of
this union for our approach. This is required as the over-approximations that we use
are obligated to be convex which the union of two convex sets not necessarily is. We
denote the convex hull of a set A by CH(A). It is de�ned as the smallest convex set
containing A. This operation is illustrated in Figure 2.6.

Figure 2.6: A set (shaded gray) and its convex hull [LG09].

Another important operation is the Minkowski sum, denoted by ⊕. For two sets
A and B it is de�ned as A ⊕ B := {a + b|a ∈ A ∧ b ∈ B}. This operation is e.g.

20 Chapter 2. Theoretical Background

needed for the initialization step of the reachability algorithm when computing the
�rst over-approximation. Figure 2.7 shows an exempli�cation of the Minkowski sum:

Figure 2.7: Minkowski sum for two sets [LG09].

In the following section, we will see how these operations are used in the reach-
ability algorithm. For a more detailed description of the presented operations, in
particular how well each of these can be performed using di�erent representations,
the interested reader may consult [LG09].

2.5 Flowpipe-based Reachability Analysis

We are now able to give a re�ned version of Algorithm 1. As there are two ways
for a state set to evolve, namely by changing variable valuations in a single location
l according to the dynamic of l and by taking discrete transitions, we will consider
both and �nally give a pseudocode version of a �owpipe-based reachability analysis
[CK98].

2.5.1 Reachability by Variable Evolution in Single Location

One way of transitioning from one state of a hybrid automaton to another one is to
let the variables evolve in one location l according to the linear ODEs of the variables
in l. As we have seen, a solution of a linear ODE is given by Equation 2.1.3 :

x(t) = eAtx0

Hence, the reachable variables' assignments, say Rδ(S), in a single location l at
time δ starting from an initial set S, are given by:

Rδ(S) = eδAS

We use this to compute the over-approximations Ω0, ...,ΩT of the actual reachable
sets. Here, T is the time horizon i.e. the amount of time that we stay in a location
at most. Furthermore, an Ωi with i ∈ {0, ..., T} is the over-approximation of the
reachable set for the time interval [δi, δ(i + 1)]. In addition to that, δ is the time
step that each Ωi covers being an integer divisor of T . Thus, choosing a smaller δ
provides a more accurate over-approximation of the reachable sets but simultaneously
increases the number of intervals to be considered. Putting this together, the idea is
to compute the sequence of over-approximations by means of a recurrence relation:

Ωi+1 = eδAΩi

That is, we compute the single sets Ω1, ...,ΩT consecutively by taking their pre-
decessor regarding the time step into account and let them evolve according to the
current locations' dynamic.

2.5. Flowpipe-based Reachability Analysis 21

Construction of Ω0

A remaining problem is that we need to construct the initial �owpipe segment Ω0 in
order to be able to use the recurrence relation to determine the following �owpipe
segments. We will give a brief sketch on how this construction works. As the problem
of determining the precise reachable set for linear hybrid automata is undecidable we
compute an over-approximation of it. Say (l,X0) is an element of the initial state set
of a linear hybrid automaton to be considered, then the initial �owpipe segment Ω0

for this element of the initial state set may be determined according to [LG09]:

Ω0 = CH(R0(X0) ∪Rδ(X0))⊕B(αδ)

Hence, we take the convex hull of the union of R0(X0) i.e. e0AX0 = X0 and
Rδ(X0) both being part of the exact �owpipe. This operation results in Ω′0 of Figure
2.8 in which the dotted lines depict the precise dynamic of the current location. We
can see that not all trajectories of it are fully contained in the convex hull that we have
computed. In order to obtain an over-approximation, we apply the so-called bloating
mechanism. Technically, this is done by calculating the Minkowski sum of the previous
convex hull and B(αδ). B(αδ) is a ball with radius αδ which is an upper bound for
the Hausdor� distance between the precise �owpipe and the over-approximation. We
de�ne the Hausdor� distance for two sets X and Y as [LG09]:

dH(X,Y) = max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

x∈X
inf
y∈Y
‖x− y‖}

Intuitively, the Hausdor� distance for two sets X and Y is determined by �nding
the absolute value of the maximum of all shortest path for each x ∈ X to any y ∈ Y
respectively for each y ∈ Y to any x ∈ X. Further details for this particular part of the
construction can be found e.g. in [Dan00]. After having calculated the aforementioned
Minkowski sum, the construction ensures that we obtain a proper superset i.e. an
over-approximation, Ω0 in Figure 2.8, of the exact �owpipe that we can use for further
proceeding.

R0(X0)

Rδ(X0)

Ω′0

R0(X0)

Rδ(X0)

Ω0

Figure 2.8: Intermediate �owpipe segment Ω′0 not containing all trajectories and the
�nal one Ω0 being a superset of the precise reachable set.

22 Chapter 2. Theoretical Background

2.5.2 Reachability by Discrete Transitions

After having presented the mechanism for calculating over-approximations of the
exact �owpipe in a single location, in this section we will focus on the second way in
which states of a hybrid automaton can evolve, namely by taking discrete transitions.
Figure 2.9 illustrates the process of transitioning from a �owpipe in l to a new initial
set in another location l′ by taking a transition t = (l,a,µ,l′). Basically, we check
for all �owpipe segments in l whether the intersection with the states satisfying the
respective guard of t is non-empty. For those segments where this is the case, we
consider this part and apply the corresponding variable valuation updates of t to it.
The usual proceeding is shown in the left part of Figure 2.9. The �owpipe segments
Ωi and Ωi+1 both intersect the guard of t. The union of the sets obtained by updating
the variable valuations of each Ωi and Ωi+1 is not necessarily convex. The dotted line
indicates the part of the union that would break the convexity characteristic. Hence,
we compute the convex hull of the union illustrated by Ωnew and aggregate the single
sets that we obtain by applying the reset map of t to Ωi and Ωi+1. Another way
is to apply non-aggregating transitions as shown in the right part of Figure 2.9.
Therefore, we omit the aggregating step and proceed independently with all sets,
Ωnew1

and Ωnew2
, that we obtain by applying the reset map of t to the �owpipe

segments of the source location i.e. Ωi and Ωi+1. On the one hand it provides the
advantage of not introducing a further approximation error by not computing the
convex hull of the newly obtained sets but on the other hand it dramatically increases
the computation e�ort of the whole reachability analysis because in the following for
all new sets �owpipes have to be computed.

Ωi

Ωi+1

g

Ωnew
Ωi

Ωi+1

g

Ωnew2

Ωnew1

Figure 2.9: An aggregating transition (left part) and a non-aggregating transition
(right part).

Putting together what we have elaborated in the last sections, we obtain a pseu-
docode version, Algorithm 2, of a �owpipe-based reachability analysis [Á15]. At �rst,
RH is initialized with the initial state set of the input automaton H in Line 1. In
RH the computed reachable states are collected. Rnew stores exactly those reachable
states that have entered RH in the last step of the computation. The main loop ter-
minates if either no new reachable states have been computed in the last iteration i.e.
Rnew = ∅ or a termination condition, for example that the maximum number of pre-
de�ned discrete jumps is reached, is satis�ed. In one iteration of the loop, an element
of Rnew is taken into consideration and evolved. This includes to compute the �ow-

2.5. Flowpipe-based Reachability Analysis 23

pipe for this set and to store the result in the variable R′. Once the �owpipe has been
calculated, for all possible transitions whose guards satisfy the �owpipe (segments)
the jump successors are determined. The computation of a �owpipe and of jump suc-
cessors are explained in detail in Section 2.5. The call of computeJumpSuccessor(R′)
in Line 6 also involves that the newly obtained reachable sets are added to Rnew
respectively RH .

Algorithm 2 Flowpipe-based Reachability Analysis

Input: A linear hybrid automaton H with initial states InitH
Output: Set RH of reachable states
1: RH := InitH
2: Rnew := RH
3: while Rnew 6= ∅ ∧ ¬termination_cond do

4: Rnew := Rnew \ stateSet (for stateSet ∈ Rnew)
5: R′ := computeFlowpipe(stateSet)
6: computeJumpSuccessor(R′)
7: end while

8: return RH

24 Chapter 2. Theoretical Background

Chapter 3

Dynamic Reachability Analysis

The traditional �owpipe-based approach that we have seen before, is static in the
way that we initially �x its parameters like the time step and the representation and
keep them for the whole execution of the algorithm. Thereby, some disadvantages
come along. For instance, when checking the intersection with a set of bad states, it
might be desirable to only compute those reachable sets very precisely that tend to
intersect the bad states by taking a small time step or a precise representation and
over-approximate the other ones only as �ne-grained as necessary. On the one hand
it can make reachability analysis more feasible but on the other hand it still allows to
determine a precise over-approximation for all parts of a given automaton if desired.
In the following, we will introduce our approach for such a dynamic analysis.

3.1 Tree-based Reachability

In order to reach our goal of a dynamic reachability analysis, we will incorporate a
tree in the analysis. The nodes of this tree encapsulate the reachable sets for each lo-
cation respectively the over-approximations of those and enrich them by information
about the path of locations that were taken so far, the chosen reachability parame-
ters and several other context information that we will have a close look at in the
following. Figure 3.1 illustrates how our tree is constituted. On the �rst level, which
we de�ne to have depth 0, we have an initial node which is basically a dummy node
that only references the �rst actual level of reachable states. Each following level
represents the reachable states after having taken one more discrete transition than
on the level before. Initially, each node is given a reachable set resulting from the last
computation step respectively an initial state set for the nodes of level 1. For this
set, we compute the �owpipe i.e. we compute an over-approximation of the reach-
able variable valuations according to the dynamics of these variables in the current
location. E.g. the nodes of depth 1 obtain the initial states of the given automaton.
For each of these nodes the �owpipes are computed and the reachable sets resulting
from taking transitions whose guards are satis�ed are passed to the next level in the
corresponding location where the �owpipe computation iteratively restarts. In the
picture, tli,lj denotes the discrete transition from location li to location lj .

26 Chapter 3. Dynamic Reachability Analysis

......

tli,lj

......

tli,lk

......

tlm,ln

......

tlo,lp

......

tlo,lq

......

tlo,lr

→
Root node
referencing the
initial states

→ Reachable states after
zero discrete transitions

→ Reachable states after
one discrete transition

→ Reachable states after
n discrete transitions

Figure 3.1: A depiction of the tree-based reachability notion.

In order to keep the size of the tree compact, we do not store the computed �ow-
pipes explicitly. Instead, we store the �rst segment which can be used to reconstruct
the whole �owpipe using the context information of the node. The following section
elaborates on this information. As a matter of fact, the current location, the current
time step and representation are included. Hence, by the location we obtain its con-
tinuous dynamics that we can use to compute the �owpipe originating from the �rst
segment using the granularity given by the time step and the representation according
to the corresponding representation parameter.

3.2 Dynamic Backtracking

Using the scheme that was presented in the last section, we are able to employ back-
tracking in case the �owpipe of a node has a non-empty intersection with a given set
of bad states. Figure 3.2 shows the abstract proceeding to achieve that. If during
the �owpipe computation in a node, say n, such a non-empty intersection is detected,
we backtrack to the node nInit with depth 1 that n is derived from i.e. there exists a
directed path from nInit to n. In fact, we will even be able to backtrack only so far
until we reach a node that has once been backtracked and use the knowledge of this
previous backtracking. Once we have reached such a node, we re�ne the path from
this node up to n. As we will see, the nodes also store context information of the
reachability analysis that we can bene�t from while we employ backtracking.

3.3. Context Information of Single Nodes 27

Bad states hit!

tlj ,lm

tli,lj
tli,lk

tln,lo
tlp,lq

tlp,lr
tlp,ls

Figure 3.2: A depiction of the backtracking mechanism.

3.2.1 Dynamic Strategies

The aim of backtracking is to re�ne a path that has lead to intersecting one of the
bad states. Therefore, we vary the utilized time step and representation. In order to
specify which time step and representation are to be chosen when backtracking, we
de�ne a strategy S = ((t1,r1), ..., (tn,rn)) with ti ∈ Q and
ri ∈ {Box,Zonotope, Support Function,Polytope} for i ∈ {1, ..., n}. The initial pa-
rameter setup is (t1,r1). When the backtracking run with the parameter setting (ti,ri)
failed, the next backtracking run is employed with the parameter setting (ti+1,ri+1)
for i+ 1 ≤ n. If i+ 1 > n, the strategy was not able to resolve the bad states being
intersected.

3.3 Context Information of Single Nodes

After having introduced the idea of the tree-based reachability and the backtracking
mechanism that we employ, we will have a look at the information that each node
comprises in order to see how we achieve these goals on a more technical level.

� ID: Each node has a unique ID. The ID idn of a node n with depth i has length
i + 1 and is of the form idn = (0,a1, ..., ai) ∈ Ni+1 specifying the path in the
tree one has to take to reach n. Hence, to get from the root node to the next
node, take the a1-th child and take the a2-th child of the obtained node to get
to the next node and so on. This kind of ID is not only unique but also keeps
track of the nodes' positions.

� References to the parent node and the childrens' nodes: For the backtracking
mechanism that we employ, we need to be able to navigate through the tree.
Therefore, each node holds references to its parent and its children.

� Location: The current location that the node computes the �owpipe for.

� Time step: As we aim to specify the reachability settings locally and not globally
as in the traditional �owpipe-based approach, we store the time step that is used
for the �owpipe computation in each node.

28 Chapter 3. Dynamic Reachability Analysis

� Representation: The representation that is used for the �owpipe computation
in a node.

� Initial set: The set initially obtained by taking a transition on the level before.
As this set is modi�ed during the computation of the �owpipe, we store it sepa-
rately in order to later be able to recompute the �owpipe with new reachability
settings.

� First segment: The �rst segment of the �owpipe in a node. As we do not store
the �owpipe segments explicitly, we store the �rst segment in order to be able
to reconstruct the �owpipe. Such a reconstruction might be needed in case we
want to employ �xed-point recognition.

� Last segment: We also store the last determined segment of the �owpipe in a
node. This provides us the possibility to stop the �owpipe computation and to
resume it later.

� Guard satisfying intervals: When computing the �owpipe, we store for each
pair of representation and transition the intervals in which the guards of the
transitions are satis�ed. In case, we recompute the �owpipe with the same
representation and a �ner time step, we can exploit this knowledge.

� Backtracking information: In case a node is re�ning a path i.e. it is a backtrack-
ing node, the backtracking information includes the path that is recomputed and
the index i ∈ N keeping track of the position of the backtracking path such that
we really only recompute the backtracking path. If during backtracking the
representation stays equal and the time step gets �ner, the backtracking infor-
mation additionally includes the guard satisfying intervals of the backtracking
path. Assume transition t in location l is enabled in the interval [lt,ut] using
boxes and a time step of 0.2. We can deduce that, using boxes with a time step
of 0.1, being in l, the guard of t is satis�ed the earliest at lt and at most until
ut. Hence, we can omit intersecting the �owpipe segments for the time steps
before lt and after ut.

� Strategy index: The index of the parameter setting in the strategy that was
recently employed in this node. Initially it is set to zero. It is needed in order
to correctly switch from one parameter setting to the next one regarding the
chosen strategy and to recognize when all parameter settings have been applied.

� Only aggregation: For the case that we have non-aggregating transition, this
�ag stores for each node whether on the directed path from the root to it such
transitions occurred. If so, it is false. Otherwise, it is true. We need this for
the backtracking mechanism for non-aggregating transitions that is explained
in detail in Section 3.6.

3.4 Implementation

In order to sum up and further formalize what was presented in this chapter up to
now, in the following we give pseudocode versions of the backtracking mechanism and
a re�ned version of the traditional �owpipe-based algorithm.

3.4. Implementation 29

Algorithm 3 illustrates the backtracking mechanism. Before the proceeding is elabo-
rated, we clarify the used data structures. Firstly, the backtracker exhibits a strategy.
The strategy is a list of pairs of a time step and a representation as introduced before.
Secondly, the backtracker keeps track of all backtracking runs that have already been
executed. This is technically done by a map from location lists to an unsigned integer
representing the index of the strategy element that was used in the last backtracking
run.

The algorithm receives a node whose �owpipe intersected with the bad states. If
this was the case with the �nal parameter setting of the strategy, see Line 1, we
terminate as our strategy does not allow for further re�nement. Otherwise, from Line
7 to 13 we backtrack until we have reached the root node and store the path that lead
to intersecting the bad states just as we store the corresponding guard maps in case
that only the time step changes. Afterwards, we check whether the backtracking path
is a pre�x of one of the previous backtracking runs. If not, in case the representation
changes, we convert the initial set of the backtracking node b to the corresponding
representation in Line 16. Then, we increase the strategy index, assign b with the new
time step and representation and insert the new backtracking path with its strategy
index in the backtracking history. Otherwise, we determine the longest such pre�x
and move to the node from which on we can exploit an old backtracking run in Line
25. Before returning the backtracking node, we enrich it by the backtracking infor-
mation in Line 27. This includes the path that shall be recomputed, the guard maps
and the index stating at which position of the backtracking path the node is which is
initially 0.

30 Chapter 3. Dynamic Reachability Analysis

Algorithm 3 Backtracking mechanism

Input: A node n to be re�ned
Output: A node b for the backtracking run
1: if n.stratIndex+ 1 == strategy.size() then
2: terminate()
3: end if

4: b := n
5: onlyT imestepChanges =

(n.representation == strategy.at(n.stratIndex + 1).representation) ∧
(n.timeStep > strategy.at(n.stratIndex+ 1).timeStep)

6: path, guard_maps := ()
7: while b.depth 6= 0 do

8: path.pushFront(b.location)
9: if onlyT imestepChanges then

10: guard_maps.pushFront(b.guard_map)
11: end if

12: b := b.parent
13: end while

14: if ¬∃((l1, ..., li, ..., ln),n) ∈ history. ∀j ≤ i. lj = path[j] ∧ n > b.stratIndex
then

15: if ¬onlyT imestepChanges then
16: b.initSet = convert(b.initSet, strategy)
17: end if

18: b.stratIndex++

19: b.timeStep = strategy.at(b.stratIndex).timeStep
20: b.representation = strategy.at(b.stratIndex).representation
21: history[path] = b.stratIndex
22: else

23: prefix := longestPrefix(path)
24: history[path] = history[prefix]
25: b := moveTo(prefix, path, guard_maps)
26: end if

27: b.backtrackingInfo = (path, guard_maps, 0)
28: return b

Algorithm 4 shows the pseudocode of the dynamic reachability analysis incorpo-
rating the previously presented backtracking mechanism. It exhibits a priority queue
enabling us to prioritize nodes with a higher priority over those with a lower one in-
stead of non-deterministically choosing them. Nodes that are not backtracking have
a priority of 0. The priority of backtracking nodes corresponds to the length of their
backtracking path. The intuition behind that is that nodes with long backtracking
paths are preferred over those with shorter paths because they o�er more possibilities
for later backtracking runs to exploit them.

At �rst in Line 1, the priority queue is initialized with the passed initial nodes.
Note that InitH contains more than just the initial sets as in the traditional ap-
proach i.e. it is already enriched by the node parameters that can be set initially e.g.
the location, reference to the parent, the initial time step and so forth. While the
queue is not empty, we process the nodes that are still left in it i.e. we take the node n

3.5. Example 31

with the highest priority and call computeFlowpipe_dyn(n) in Line 4. This method
works quite similar like the corresponding method of the traditional reachability anal-
ysis with the additional abilities needed for the dynamic analysis. That is, dealing
with backtracking nodes and assigning nodes with the context information that they
incorporate. If it processes a backtracking node, it only recomputes those paths that
are on the critical path. In addition to that, if only the time step changed and be-
came �ner compared to the last parameter setting, computeFlowpipe_dyn(n) only
recomputes segments for those pairs of timeStep and transition t for which also the
more rough segmentation satis�ed the guard of t. When a segment has a non-empty
intersection with the bad states, the method returns true. Otherwise, it returns false
as the �owpipe computation was completed and assigns the so-far empty parameters
of the node like references to the children obtained by the taken transitions.

Algorithm 4 Dynamic Flowpipe-based Reachability Analysis

Input: A linear hybrid automaton H with initial nodes InitH and a set of bad states
badStates

1: Q.enqueue(InitH)
2: while ¬Q.empty() do

3: n := Q.dequeue()
4: badStatesHit = computeFlowpipe_dyn(n)
5: if badStatesHit then
6: backtrack(n)
7: end if

8: computeJumpSuccessors(n)
9: end while

3.5 Example

In this section, we will have a closer look at an example run using the previously intro-
duced dynamic approach for reachability analysis. Therefore, the hybrid automaton
depicted in Figure 3.3 will be taken as an input automaton. It features 6 locations
l0,...,l5 with l0 being the initial location and x0 ∈ [0,1] and x1 ∈ [0,10] being the
initial valuation of the continuous variables x0 and x1. The chosen automaton shall
illustrate the main features of the dynamic reachability analysis. After moving to l1
from the initial location l0, we expect intersecting the bad states, two times in l2 and
one time in l3. The backtracking mechanism requires to change the representation
and it is shown how a previous backtracking run can be reused. Furthermore, we
have a part of the emerging reachability tree that does not require to employ back-
tracking, namely the one that emerges when taking the discrete transition from l0 to
l5. Therefore, it shows the bene�ts of employing backtracking only for the part of the
reachability tree that is part of a critical path. We compute an over-approximation of
the reachable set up to a maximum of 4 discrete jumps and consider a time horizon
of T = 20. The bad states are de�ned as {(l2, x1 ≥ 21), (l3, x1 ≥ 21)}. The employed
strategy is ((0.5, Box), (0.1, Box), (0.1, Polytope)). All plots in this chapter and the
whole thesis were created using gnuplot [WK13].

32 Chapter 3. Dynamic Reachability Analysis

l0

ẋ0 = 1
ẋ1 = 1

x0 ≤ 2

x1 ≥ 0

x0 ∈ [0,1]
x1 ∈ [0,10]

l1

ẋ0 = 1
ẋ1 = 1.2

x0 ≤ 4

x1 ≥ 0

l3

ẋ0 = 1
ẋ1 = 1

x0 ≤ 6

x1 ≥ 0

l2

ẋ0 = 1
ẋ1 = 1

x0 ≤ 6

x1 ≥ 0

l4

ẋ0 = 1
ẋ1 = 0

x0 ≤ 6

x1 ≥ 0

l5

ẋ0 = 1
ẋ1 = 2

x0 ≤ 6

x1 ≥ 0

x0 ≥ 1 →
x0 := 1

x
0
≤

1
→

x
0

:=
1

x
0 ≥

3 →

x
0 :=

1

x 0
≥

3
→

x 0
:=

1

x 0
≥

4
→

x 0
:=

1

x0 ≥ 3 →
x0 := 1

x0 ≥ 3 →
x0 := 1

Figure 3.3: Graphical representation of the exemplary hybrid automaton.

At �rst, the initial valuations of x0 and x1 continuously develop according to the
dynamics in l0. For x0 ≥ 1 the outgoing discrete transition to l1 can be taken and gets
urgent when x0 = 2 due to the invariant of l0. As we perform reachability analysis,
we compute the reachable set for the case that we stay in l0 as long as the invariant
is satis�ed but also for the case that the transition is taken whenever the guard is
satis�ed. Thereby, we capture the whole reachable set of the given automaton. This
procedure is continued analogously in the locations reachable from l0. Figure 3.4
shows the dynamic of x0, on the x-axis, and x1, on the y-axis for the path l0 → l1 → l2.
We can observe that 3 �owpipes have been computed. The �rst one, in location l0,
ranges from x0 = 0 to x0 = 2. As the guard of the discrete transition from l0 to
l1 is enabled for x0 ≥ 1 and sets x0 to 1, the second �owpipe, in location l1, begins
at x0 = 1 and is extended up to x0 = 4. The third �owpipe, in location l2, ranges
from x0 = 1 to x0 = 6. During the analysis x1 exceeds 21 in l2 and therefore the bad
states are intersected triggering the backtracking mechanism. A backtracking node
for this path backtracks to the location l0 and recomputes the �owpipes on the critical

3.5. Example 33

path with the second parameter setting. Due to the fact that the backtracking node
re�ning the critical path l0 → l1 → l2 has a higher priority, precisely 3 because of the
length of the critical path, than the other nodes in the priority queue which have a
priority of 0 because they are not backtracking nodes, the backtracking node is at the
top of the priority queue and therefore preferred over the others. Because we only
have a �ner time step and the representation remains unchanged, we can exploit the
guard maps of the nodes on this path that were stored in the previous run. E.g. for
the discrete transition from l1 to l2 we can ignore all the time steps where x0 < 3 and
can omit the intersection computation of the corresponding �owpipe segments with
the guard. Technically, two di�erent time steps are not necessarily divisible by each
other for which reason we also have do the intersection computation for the �rst time
step before and the �rst time step after a transition guard is satis�ed.

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6

Figure 3.4: Continuous behavior for the initial reachability computation on the path
l0 → l1 → l2.

Figure 3.5 depicts the reachability tree at the point in time when the bad states
are intersected in l2. We can observe that the two discrete transitions i.e. from the
initial location l0 to l1 respectively l5 were taken just as on the next level the discrete
transitions originating from l1 respectively l5. When we compute the �owpipe for the
node in l2, the bad states are intersected triggering the backtracking mechanism. As
we can not reuse a previous backtracking run, we backtrack to the single initial node
and re�ne the critical path l0 → l1 → l2. Since the corresponding backtracking node,
q1 in Figure 3.5, has a higher priority than all other nodes in the queue i.e. q2 and
q3 at this point in time, it is preferred over these nodes.

34 Chapter 3. Dynamic Reachability Analysis

q1

Bad states hit!

tl1,l2

q2

tl1,l3

tl0,l1

q3

tl5,l4

tl0,l5

Figure 3.5: Reachability tree when the bad states are intersected for the �rst time in
location l2.

Figure 3.6 shows the variable valuations for the critical path with the new param-
eter setting next to the variable valuations of the previous run. Again, backtracking
is employed, using polytopes and a time step of 0.1, as x1 still exceeds 21. After this
backtracking run the con�ict is resolved due to the new, more precise, representation
as we can see in Figure 3.7.

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6

Figure 3.6: Continuous behavior for the �rst and for the second reachability compu-
tation on the path l0 → l1 → l2.

3.5. Example 35

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6

Figure 3.7: Continuous behavior for all 3 reachability computations on the path
l0 → l1 → l2.

Then, q2 is next in the priority queue. Again, the bad states are intersected, this
time in location l3, because x1 exceeds 21. Note that this node still operates with the
initial strategy settings, using boxes and a time step of 0.5, as on its path the bad
states were not hit so far. The reachability tree at the time when the bad states are
intersected in location l3, can be seen in Figure 3.8. As the previous con�ict was
resolved and there are no outgoing discrete transitions from l2, the only remaining
nodes in the priority queue are q2 and q3. Because the father node of q2 has already
been re�ned, we can reuse its initial set to re�ne the new critical path instead of
backtracking to the initial node.

tl1,l2

q2

tl1,l3

tl0,l1

q3

tl5,l4

tl0,l5

Figure 3.8: Reachability tree when the bad states are intersected in location l3.

After this con�ict was resolved, the reachability computation proceeds as usual.

36 Chapter 3. Dynamic Reachability Analysis

3.6 Dynamic Approach with Non-Aggregating Tran-

sitions

While our approach primarily focuses on transitions that perform aggregation, see
Subsection 2.5.2, we also o�er a rough handling of non-aggregating transitions. In
the following, we will elaborate on some of the di�erences that we have to deal with
when transitions do not aggregate.

One di�erence is that we possibly have several backtracking nodes with the same
location path and the same strategy index because the single segments in a single
location that would be aggregated for aggregating transitions are not aggregated any-
more. We handle this by backtracking for the �rst of these nodes and drop the
following ones because the �rst one already computes the over-approximation that
the following ones would also compute. This is technically done by the backtracking
history that the backtracker administrates. It keeps track of all backtracking runs,
including their paths and the corresponding strategy index.

Furthermore, the notion of reusing a former backtracking run is not that clear any-
more when non-aggregating transitions occur as we can have several paths in our
reachability tree with the same location sequence and strategy index. Therefore, we
do not have a unique path that we can exploit for backtracking. Our current approach
is that we use the onlyAggregation �ag contained in each node stating whether from
the initial node that n is derived by only aggregating transitions occur. If so, we can
reuse a former backtracking path up to the last node, i.e. the one with the highest
depth, where this �ag is true.

Chapter 4

Experimental Results

After having introduced the idea and concepts of the dynamic reachability analysis,
we will evaluate it by comparing it with the classical static reachability analysis. All
tests have been executed on a Thinkpad Edge 545 exhibiting 8GB of RAM and a four
core processor where each core has a frequency of 2.4GHz. The implementation is
part of a project called HyDRA being in a prototypical state of development.
The benchmarks used for testing and evaluating are partly taken from [hyb16]. Fi-
nally, we will discuss advantages and disadvantages of our approach. In the following,
we adhere to the convention that, given a dynamic strategy s = ((r1,t1),...,(rn,tn)),
sstatic is given by sstatic = ((rn,tn)). We use this in order to compare a dynamic
strategy with the static approach. Assuming that the last parameter setting of a dy-
namic strategy is the most precise one, we need to employ this one in a static setting
in order to ensure that we obtain the same result regarding whether the bad states
were intersected.

38 Chapter 4. Experimental Results

4.1 Example Automaton

Firstly, we will evaluate the dynamic analysis on the example automaton of Section
3.5. For the sake of clearness, it is again depicted in Figure 4.1. As before, we
choose a maximum of 4 discrete jumps, a time horizon of T = 20 and the bad states
may be de�ned as {(l2, x1 ≥ 21), (l3, x1 ≥ 21)}. The employed strategy is s =
((0.5, Box), (0.1, Box), (0.1, Polytope))

l0

ẋ0 = 1
ẋ1 = 1

x0 ≤ 2

x1 ≥ 0

x0 ∈ [0,1]
x1 ∈
[0,10]

l1

ẋ0 = 1
ẋ1 = 1.2

x0 ≤ 4

x1 ≥ 0

l3

ẋ0 = 1
ẋ1 = 1

x0 ≤ 6

x1 ≥ 0

l2

ẋ0 = 1
ẋ1 = 1

x0 ≤ 6

x1 ≥ 0

l4

ẋ0 = 1
ẋ1 = 0

x0 ≤ 6

x1 ≥ 0

l5

ẋ0 = 1
ẋ1 = 2

x0 ≤ 6

x1 ≥ 0

x0 ≥ 1→
x0 := 1

x
0
≤

1
→

x
0

:=
1

x
0 ≥

3→

x
0 :=

1

x 0
≥

3
→

x 0
:=

1

x 0
≥

4
→

x 0
:=

1

x0 ≥ 3→
x0 := 1

x0 ≥ 3→
x0 := 1

Figure 4.1: Graphical representation of the exemplary hybrid automaton.

The diagram below shows the mean value of 5 runs of each the dynamic analysis
where s is the employed strategy, the static analysis sstatic with the parameter setting
where the time step is 0.1 and polytopes are used and the dynamic analysis with s
where the discrete transitions from l1 to l2 and from l5 to l4 are non-aggregating.
We see that the dynamic analysis outperforms the static one. One of its advantages is
that only those parts of the reachable set are precisely computed that tend to intersect
the bad states. We can especially bene�t from that on hybrid automata with di�erent
branches as the one we evaluate here. While on the paths starting with l0 → l1 → l2

4.1. Example Automaton 39

and l0 → l1 → l3 polytopes with a time step of 0.1 are used due to backtracking, the
paths starting with l0 → l5 can be handled rather rough with boxes and a time step
of 0.5.
For the sake of completeness, the diagram also shows the mean value of 5 runs of the
dynamic analysis where the discrete transitions from l1 to l2 and from l5 to l4 are non-
aggregating. We already addressed the trade-o� between precision and complexity
when using non-aggregating transitions. Clearly, this is only a single example but it
indicates the trend also occurring on other benchmarks namely that the bene�t of a
higher precision rarely outweighs the disadvantage of increased complexity.

s sstatic s (non-aggregating)
0

2

4

6

8

10

1.28

2.03

9.84

R
un
ti
m
e
(s
ec
.)

Figure 4.2: Runtime analysis using the example automaton with s =
((0.5, Box), (0.1, Box), (0.1, Polytope)), sstatic = ((0.1, Polytope)) and s where the
discrete transitions from l1 to l2 and from l5 to l4 are non-aggregating.

40 Chapter 4. Experimental Results

4.2 Cruise Control Model

In this section we use a cruise control model as a benchmark. It is used to model
emergency brakes where v is the di�erence between the actual and the desired velocity,
t the time and x an auxiliary variable. Precise information about this model can
be found in [Oeh11]. The initial setting that we employed is in location B1

2 with
x = 0, v ∈ [15,40] and t ∈ [0,2.5]. We choose a maximum of 4 discrete jumps, a
time horizon of T = 20 and the bad states may be de�ned as {(l, x ≥ 135) | l ∈
{B1

1 ,B
2
1 ,B

1
2 ,B

2
2 ,N,A}}. Figure 4.3 gives a graphical depiction of the cruise control

model that we use. In contrast to the example model from the last section, it includes
variable's derivations that are non-constant making the continuous behavior of it
more interesting. The values of v, on the x-axis, and x, on the y-axis, are visualized
in Figure 4.4. The plot bases on a run where boxes with a time step of 0.1 were used.

Figure 4.3: Graphical representation of the cruise control model [Oeh11].

4.2. Cruise Control Model 41

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

Figure 4.4: Continuous behavior of the cruise control model using boxes with a time
step of 0.1. The x-axis depicts the values of v whereas the y-axis depicts the values
of the variable x.

The diagram below shows the mean of 5 runs executed with each s1 = ((0.4, Box),
(0.1, Box)), s2 = ((0.4, Box),(0.1, Support Function)) and
s3 = ((0.4, Box),(0.1, Polytope)) manifesting several characteristics of the dynamic
analysis. Firstly, employing s1, requiring 2 backtracking runs, is already faster than
to use the corresponding static variant. In this case, the e�ort of using the dynamic
approach pays o� which is due to the fact that not all paths have to be considered
with the �ner time step and due to the fact that the guard satisfying intervals can be
exploited during the backtracking runs. Although, applying sstatic1 is quite fast here,
the advantages of applying s1 outweigh the extra e�ort going along with the overhead
of performing the backtracking, updating the reachability tree and re�ning the old
critical path. Applying s2, which also needs 2 backtracking runs, con�rms this trend.
As support functions provide a more accurate over-approximation of the reachable
set, the required e�ort of applying them globally becomes noticeable. Hence, the run
where s2 is applied, is faster than the corresponding static variant where for all paths
of the cruise control model the more expensive representation with a quite small time
step of 0.1 is applied. The comparison of s3 and sstatic3 underlines the observations
made so far.

42 Chapter 4. Experimental Results

s1 sstatic1
s2 sstatic2

s3 sstatic3

0

10

20

30

0.48
1.66

23.11

35.85

8.6

20.86

R
un
ti
m
e
(s
ec
.)

Figure 4.5: Runtime analysis using the cruise control model with
s1 = ((0.4, Box), (0.1, Box)), s2 = ((0.4, Box), (0.1, Support Function)),
s3 = ((0.4, Box), (0.1, Polytope)) and their corresponding static versions
sstatic1 = ((0.1, Box)), sstatic2 = ((0.1, Support Function)) and
sstatic3 = ((0.1, Polytope)).

4.3 Filtered Oscillator Model

In this section we use a �ltered oscillator model as a benchmark. It is used to model
a switched oscillator for the variables x and y. The variables x1,x2,x3 and z �lter
the signal x and z is the corresponding output. Precise information about this model
can be found in [hyb16]. The initial setting that we employed is in location loc3
with x ∈ [0.2,0.3], y ∈ [−0.1,0.1] and x1,x2,x3,z = 0. We choose a maximum of
5 discrete jumps, a time horizon of T = 4 and the bad states may be de�ned as
{(l, y ≥ 0.5) | l ∈ {loc1,loc2,loc3,loc4}}. Figure 4.6 gives a graphical depiction of the
�ltered oscillator model that we use. The values of x, on the x-axis, and y, on the
y-axis, are visualized in Figure 4.7. The plot bases on a run where boxes with a time
step of 0.01 were used.

4.3. Filtered Oscillator Model 43

Figure 4.6: Graphical representation of the �ltered oscillator model [hyb16].

44 Chapter 4. Experimental Results

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 4.7: Continuous behavior of the �ltered oscillator model using boxes with a
time step of 0.01. The x-axis depicts the values of x whereas the y-axis depicts the
values of the variable y.

The diagram below shows the mean of 5 runs executed with each
s1 = ((0.5, Box), (0.1, Box), (0.05, Box)), s2 = ((0.5, Box), (0.1, Box), (0.01, Box))
and their static variants sstatic1 and sstatic2 . The employed input automaton is inter-
esting in the sense that its discrete structure is linear i.e. for each pair of locations we
have exactly one discrete path between them. Firstly, employing s1, requiring 2 back-
tracking runs on the same path i.e. on this path we employ boxes with a time step
of 0.05 in the second backtracking run, is more slowly than employing sstatic1 . There-
fore, this automaton serves as an example for the fact that the e�ort that we put into
backtracking does not always pay o�. Because of the linear discrete structure of the
input automaton, we can not bene�t of computing some branches rather roughly and
other ones precisely. Still, for such an automaton we can exploit the guard satisfying
intervals. Employing s2 indicates that this can su�ce to outperform sstatic2 for a very
�ne time step of 0.01. Here, the fact that we can exploit the guard satisfying inter-
vals during backtracking avoids that we have to intersect a huge number of �owpipe
segments with the corresponding transition guards for which we can already deduce
that the intersection is empty. Hence, in case we can omit a lot of these intersection
computations, the dynamic analysis has an advantage over the static one.

4.4. Strategy Choice 45

s1 sstatic1
s2 sstatic2

0

10

20

30

40

50

60

9.66
6.68

45.65

62.17

R
un
ti
m
e
(s
ec
.)

Figure 4.8: Runtime analysis using the �ltered oscillator model with s1 =
((0.5, Box), (0.1, Box), (0.05, Box)), s2 = ((0.5, Box), (0.1, Box), (0.01, Box)) and
their corresponding static versions sstatic1 = ((0.05, Box)) and sstatic2 = ((0.01, Box)).

4.4 Strategy Choice

Finally, we will conclude on the results of the last section and discuss how good
strategies for a dynamic reachability analysis might be designed. Deducing from the
benchmarks that were presented, boxes are quite fast in lower dimensionalities. For
automata where the continuous behavior is not in such a way that we make huge
approximation errors when using boxes, the tests suggest that it might be a good
idea to start with boxes and a time step of about 0.2 to about 0.4. Choosing a time
step that is too high initially bears the danger that guards of transitions are satis�ed
that would not be satis�ed when using a �ner time step. Therefore, we would might
follow paths that we could actually drop. For the case that this setting fails, one could
proceed with boxes and a relatively �ne time step of 0.01 to 0.1 which is still relatively
fast compared to applying e.g. polytopes with a �ne time step. If this again fails,
the continuous behavior of the linear hybrid automaton is possibly in such a manner
that we need a more precise representation like support functions or polytopes using
a �ne time step which can be made even smaller once more.
As the number of benchmarks for linear hybrid systems is quite limited at the mo-
ment, it is hard to make general statements about globally good strategies but from
the benchmarks that were used for testing and evaluating our approach the aforemen-
tioned suggestions turned out to be quite successful.

4.5 Summary

The benchmarks indicate that using our dynamic reachability approach can make
reachability analysis more �exible and faster. Because it adds some overhead, the

46 Chapter 4. Experimental Results

models to be considered need to have a certain level of complexity such that this
overhead pays o�. There are several factors in�uencing the success of our approach.
Firstly, the way in which the bad states are de�ned. In case a rather rough analysis
already su�ces in order to determine whether they are intersected, the overhead of
the dynamic analysis might not pay o�. Another factor is the branching degree of the
input automaton. Consider the example automaton from Section 3.5 featuring two
discrete transitions from the initial location l0 to l1 respectively l5 which therefore has
a rather compositional structure. While the paths of the reachability computation
with the in�x l0 → l5 can be computed rather rough as they do not intersect the bad
states, the paths with the in�x l0 → l1 have to be computed rather �ne-grained in
order to not intersect the bad states. In order to avoid intersecting the bad states
in a static setting, one would have to compute all paths of this automaton with a
�ne-grained setting. In contrast, the �ltered oscillator model from Section 4.3 shows
that automata with a low branching degree do not exhibit this bene�t. On the other
hand we can still reuse the results of previous computations for those automata. A
further advantage of the dynamic approach is its �exibility. In case one wishes to
compute a �ne-grained over-approximation of the reachable set for all parts of a given
model, one can simply de�ne a strategy where already the initial parameter setting
is chosen correspondingly.

Chapter 5

Conclusion

This thesis aimed at developing an approach for dynamic reachability analysis for lin-
ear hybrid automata that overcomes weaknesses of classic static approaches. Thereby,
we reuse results of previous computations and are enabled to compute �ner over-
approximations only for those parts of the reachable set that tend to intersect a given
set of bad states.

5.1 Summary

After having presented the theoretical background, we provided a basis for our dy-
namic reachability approach. Therefore, we introduced a new data structure, the
reachability tree, including context information for each node that enabled us to
achieve our goals. Firstly, it stores information that is needed for backtracking and
thereby recomputing certain paths of the reachability tree with new parameter set-
tings. Additionally, it keeps track of previous computation results and enables us to
recompute �owpipes in case this is needed e.g. for �xed-point recognition. We then
established the backtracking mechanism and gave a pseudocode implementation of it.
After this, we completed the circle by showing how the common (static) reachability
algorithm has to be adapted in order to incorporate the notions of our dynamic ap-
proach. An example run then illustrated the main ideas of the previously introduced
concepts.
Finally, we evaluated our algorithm. The benchmarks suggest that it can make reach-
ability analysis of linear hybrid automata more feasible. De�nitely, employing the
backtracking mechanism introduces a certain overhead. Hence, for quite small au-
tomata regarding their discrete structure this overhead might not payo�. But once
the considered automata become more complex in terms of their discrete structure,
the e�ort that we put into establishing a dynamic analysis tends to outweigh the
additional overhead.

5.2 Future Work

In this section we will have a brief look at possible optimizations and extensions that
the dynamic analysis could bene�t of.

48 Chapter 5. Conclusion

5.2.1 Fixed-Point Recognition

As pointed out in [SAC+15], �xed-point recognition is a challenge in the veri�cation
of hybrid systems. That is, we want to check whether newly obtained reachable sets
are already contained in our global set of collected reachable sets. The reachability
tree provides a solid basis for that. A possible approach to achieve this, would be to
traverse the reachability tree. Thereby, one would reconstruct the �owpipes of those
nodes having the same location as the reachable set for which the �xed-point check
is executed for and check whether these �owpipes contain the set. As this bears the
danger of getting quite expensive, one could introduce an additional parameter for
each node storing an over-approximation of its �owpipe. Then, one would only have
to reconstruct the whole �owpipe in case the reachable set to be tested is contained
in this over-approximation.

5.2.2 Parallel Dynamic Approach

We might bene�t from parallelizing our approach. When executing it sequentially,
the time dependencies between di�erent nodes in the working queue are met. In case
we aim to execute it in parallel we would have to make sure that this still is the
case. Consider e.g. two backtracking runs such that the second one would exploit
the �rst one. In such a scenario, we would have to make sure that the �rst node has
recomputed the critical path far enough before the second node moves on with its
execution. This and other synchronization issues would have to be resolved in order
to parallelize our method.

5.2.3 Extending the Strategy Settings

Current strategies enable us to vary the time step and the representation. As a
matter of fact, one could extend this. Reconsider the example automaton from Section
3.5. The backtracking run on the critical path l0 → l1 → l3 exploited the previous
backtracking run on the path l0 → l1 → l2 and therefore polytopes were used because
for the latter path the second parameter setting, boxes with a time step of 0.1 did not
su�ce to resolve the con�ict. However, for the locations reachable from l3, the second
parameter setting would su�ce in terms of intersecting the bad states. Therefore, one
could convert the initial sets that we obtain by taking the discrete transition from
l3 to l4 from polytopes to boxes. Additionally, one could allow to stop backtracking
before an initial node has been reached and recompute the path from there on. In
case this does not resolve the con�ict, we might have multiple re-computations of
�owpipes when we subsequently backtrack further just as this limits the potential of
reusing previous backtracking runs but there may be scenarios in which it could be
bene�cial.

5.3 Conclusion

Reachability analysis of (linear) hybrid automata is an emerging �eld of research.
Our dynamic approach can make this analysis more �exible and feasible. Using it,
we bene�t from computing �ne over-approximations only for those paths that tend to
intersect the bad states just as we reuse previous computation results. The suggested

5.3. Conclusion 49

extensions might further leverage it. As the bandwidth and depth of available veri-
�cation techniques in this �eld will grow, it will be interesting to monitor how they
compete.

50 Chapter 5. Conclusion

Bibliography

[Á15] Erika Ábrahám. Modeling and analysis of hybrid systems, Summer term
2015.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the speci�cation and
veri�cation of hybrid systems. In Hybrid systems, pages 209�229. Springer,
1993.

[CK98] Alongkrit Chutinan and Bruce H Krogh. Computing polyhedral approx-
imations to �ow pipes for dynamic systems. In Decision and Control,
1998. Proceedings of the 37th IEEE Conference on Decision and Control,
volume 2, pages 2089�2094. IEEE, 1998.

[Dan00] Thi Xuan Thao Dang. Véri�cation et synthese des systemes hybrides.
PhD thesis, 2000.

[HKPV95] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya.
What's decidable about hybrid automata? In Proceedings of the twenty-
seventh annual ACM symposium on Theory of computing, pages 373�382.
ACM, 1995.

[hyb16] https://ths.rwth-aachen.de/research/projects/
hypro/benchmarks-of-continuous-and-hybrid-systems/,
September 2016.

[Leo96] IE Leonard. The matrix exponential. SIAM review, 38(3):507�512, 1996.

[LG09] Colas Le Guernic. Reachability analysis of hybrid systems with linear
continuous dynamics. PhD thesis, Université Joseph-Fourier-Grenoble I,
2009.

[Oeh11] Jens Oehlerking. Decomposition of stability proofs for hybrid systems. PhD
thesis, Universität Oldenburg, 2011.

[SAC+15] Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran
Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. Current chal-
lenges in the veri�cation of hybrid systems. In Proceedings of the 5th
Workshop on Design, Modeling, and Evaluation of Cyber Physical Sys-
tems, volume 9361 of Information Systems and Applications, incl. Inter-
net/Web, and HCI, pages 8�24. Springer, 2015.

52 Bibliography

[WK13] Thomas Williams and Colin Kelley. Gnuplot 4.6: an interactive plotting
program. http://gnuplot.sourceforge.net/, April 2013.

[Zie95] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science &
Business Media, 1995.

http://gnuplot.sourceforge.net/

	Introduction
	Theoretical Background
	Hybrid Automata
	General Reachability Analysis
	Representations
	Operations
	Flowpipe-based Reachability Analysis

	Dynamic Reachability Analysis
	Tree-based Reachability
	Dynamic Backtracking
	Context Information of Single Nodes
	Implementation
	Example
	Dynamic Approach with Non-Aggregating Transitions

	Experimental Results
	Example Automaton
	Cruise Control Model
	Filtered Oscillator Model
	Strategy Choice
	Summary

	Conclusion
	Summary
	Future Work
	Conclusion

	Bibliography

