of Hybrid
hybr I d Systems
Informatik 2

Diese Arbeit wurde vorgelegt am LUFG Theorie hybrider Systeme

BACHELORARBEIT

COMPUTING MINIMAL INFEASIBLE SUBSETS FOR
THE CYLINDRICAL ALGEBRAIC DECOMPOSITION

Wanja Hentze

Supervisors:
Prof. Dr. Erika Abraham
Prof. Dr. Jurgen Giesl

Advisor:
Gereon Kremer 27. Marz 2017

Abstract

In the field of satisfiability modulo theories (SMT), specifically for theories
involving nonlinear constraints over real-valued variables, the cylindrical alge-
braic decomposition (CAD) is a fundamental algorithm. To use it efficiently
in a lazy SMT solver, the CAD needs to provide the SAT solver with Boolean
lemmas about its constraints. In this paper, we approach the problem of gen-
erating a specific kind of lemmas, namely infeasible subsets, by casting it as
an instance of the set cover problem (SCP). A novel algorithm is introduced,
comprising a preconditioning step and a hybrid approach switching between the
greedy approximative solution to the SCP and an optimal exhaustive solution
based on problem size. We embed an implementation of this algorithm into
the SMT-RAT framework and judge its advantages over the greedy algorithm
by comparing the two on a number of real-world and synthetic examples. We
demonstrate that our algorithm allows SMT-RAT to reach a solution after sig-
nificantly fewer CAD calls in a number of cases while incurring a negligible
increase in cost over the greedy algorithm. However, we find that this only
translates to a very slight increase in overall performance due to its benefits
being limited to a very specific set of QF_NRA problems

iv

Eidesstattliche Versicherung

Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

selbstandig und ohne unzuléssige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Fir den Fall, dass die Arbeit zusatzlich auf
einem Datentréger eingereicht wird, erklare ich, dass die schriftliche und die elektronische
Form vollstandig tUbereinstimmen. Die Arbeit hat in gleicher oder ahnlicher Form noch keiner
Prufungsbehdrde vorgelegen.

Ort, Datum Unterschrift

*Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zust&dndigen Behdrde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlassiger Falscheid; fahrlassige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §8 154 bis 156 bezeichneten Handlungen aus Fahrléssigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Tater die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Ort, Datum Unterschrift

vi

Acknowledgements

I would like to use this opportunity to express my gratitude towards all of the people
that made it possible for me to write this thesis. First of all, I would like to thank
everyone at the Computer Science 2 chair of the RWTH Aachen University. In par-
ticular, I thank my primary supervisor Prof. Dr. Erika Abraham for allowing me to
write this thesis as part of the Theory of Hybrid Systems research group as well as
Prof. Dr. Jirgen Giesl for volunteering as a secondary supervisor. In addition, I want
to thank my advisor Gereon Kremer for tierelessly assisting me with both technical
and academic advice at many points during my work. Finally, I wish to express my
deep gratitude to my friends and family for their unrelenting moral support and to
Joélle for never leaving my side, reading through my work many times and helping
me improve my writing.

Contents

I_Introduction

2 Background

I SAT Solving,
2.2 SM1T Solvingo o000
E.o Cylindrical Algebraic Decomposition

p.2 Greedy Algorithm for the SCH
B3 Weighted SCH

b4 Passible Metried

.1 Preconditioning the Contiict Matriy

g.2 PFicking the Best Algorithmy

p__Implementation and Evaluation

.1 Gauging the Success of the Preconditioning Ste
b2 Onthe (Choice ot 1

.o__Impact on Overall Solver Pertormancqg

11
11
12
14
14
16

19
19
20
21
22

25
25
29

33
33
35
35

39

41

viii Contents

Chapter 1

Introduction

Satisfiability modulo theories (SMT) is the problem class concerned with deciding the
satisfiability of Boolean formulae over constraints from some algebraic theory. For its
users, an SMT solver essentially combines the utility of a boolean satisfiability (SAT)
solver and a computer algebra system. SMT solvers have found numerous applications
in recent years, especially in formal verification of both software and hardware system
designs.

Many SMT solvers today employ what is known as the lazy SMT algorithm,
described in [Seb(7]. A lazy SMT solver consists of a classical SAT solver and a
theory solver working in an alternating fashion. The SAT solver only considers the
Boolean structure of the formula, abstracting away theory constraints as Boolean
literals, and tries to find satisfying assignments for it. The theory solver, in turn, is
only concerned with the algebraic feasibility of those assignments and can ignore the
Boolean structure of the greater problem at hand.

Although the SAT solver can never reason about anything but Boolean logic, it
can still learn certain truths from the theory solver as long as they are encoded in
purely Boolean logic. These pieces of Boolean information, called lemmas, are crucial
to the efficiency of the SMT procedure. Without them, the SAT solver remains
ignorant about any underlying relationships between its theory constraints. One kind
of lemma that is particularly useful is the infeasible subset, as it tells the SAT solver
a more precise reason why an assignment is inconsistent with the theory.

Lazy SMT is especially relevant to theories that allow for variables over an infinite
domain or admit a complex algebraic structure. A theory with both of these properties
is the logic of quantifier-free nonlinear real arithmetic (QF_NRA), which deals with
equalities and inequalities involving polynomials over R™. The decidability of such a
logic is implied by the results of Tarski and Seidenberg in [Tarbll, Seibd]. However,
solving any but the most trivial QF _NRA problems using the method presented in
their proofs is computationally intractable. The cylindrical algebraic decomposition
(CAD) is an improvement on that method which is intended specifically to be feasibly
computable. This thesis concerns itself specifically with the problem of computing
infeasible subsets using the information obtained from a CAD.

The modular SMT-solving framework SMT-RAT, described in detail in [CKIF153],
will serve as a working basis for the implementation of the ideas presented here.
It provides a number of modules representing either partial or complete solvers for
various theories, including an implementation of the CAD. For computing infeasible

10 Chapter 1. Introduction

subsets from a CAD, it currently employs a simple greedy algorithm.

In this thesis, we argue that this algorithm can be improved upon in several
ways. Firstly, we introduce a preconditioning technique that solves many instances
of the problem outright and simplifies most other instances to a small and difficult
to solve core. Secondly, we hypothesize that, after preconditioning, most problem
instances are too small to neccessitate the use of a polynomial-time approximative
solution such as the greedy algorithm. We propose a hybrid algorithm that finds the
optimal solution for small problem instances and falls back to a weighted version of
the greedy algorithm for larger instances. In addition, we discuss how constraints
should be weighed in this algorithm. Finally, we show how this hybrid algorithm can
be adapted to produce not only one, but several infeasible subsets.

In the following chapter, the theoretical concepts and the terminology relevant
for this thesis are introduced. Subsequently, in Chapter 2, we give a summary of
the literature surrounding the topic of infeasible subsets, giving particular attention
to one publication which approaches the issue from a linear programming viewpoint.
In Chapter 3, the set cover problem (SCP) is introduced and its application to the
topic is described. We then identify several theoretical weaknesses of the naive greedy
solution to the SCP when it is used for finding infeasible subsets. In addition, we use
data gathered from concrete solver runs to show how these weaknesses manifest in
realistic scenarios. In Chapter 4, we present our novel algorithm and argue how it
addresses these weaknesses. Chapter 5 briefly describes the implementation of the
algorithm in the SMT-RAT toolbox and presents experimental results comparing its
performance with that of the greedy algorithm. Finally, we give our conclusion and
discuss possible further improvements upon the algorithm in Chapter 6.

Chapter 2

Background

To understand how infeasible subsets can speed up the lazy SMT procedure, some
understanding of the inner workings of both modern SAT and SMT solvers is needed.
In the following, SAT and SMT are introduced formally as problem classes. A brief
overview of the central ideas in SAT solving, the lazy SMT algorithm and the CAD
is given. Based on this, the idea of infeasible subsets is motivated and introduced for-
mally. Finally, the existing approaches for generating infeasible subsets are reviewed.

In this paper, R is used to represent the set of real numbers, B = {true, false} is
the set of Boolean truth values and Z is the set of integer numbers.

2.1 SAT Solving

SAT is the class of problems concerned with the satisfiability of boolean formulae.
More precisely:

Definition 2.1.1. (SAT Problem) Given a Boolean formula ¢ over a set of variables
X =ux1,...,T,, is there an assignment X — B of truth values to these variables such
that ¢ evaluates to true?

In some cases, it is simpler to consider only formulae that are in the conjunctive
normal form (CNF). A formula is said to be in CNF if it is of the form (I; 1 V12V...)A
(I21 Via2) A. .., where every l;; is a literal, i.e. either a variable or the negation of a
variable from X. Terms that are disjunctions of literals, such as (I11 V12V 11 3), are
called clauses. A Boolean formula in CNF is therefore a conjunction of clauses. While
all Boolean formulae can be converted to an equivalent Boolean formula in CNF, this
transformation will in some cases result in an exponential blowup of formula size.

Tseitin presents a way to transform any Boolean formula into a SAT-equivalent one
that is at most a constant factor larger than the initial one. This transformation can
be computed in polynomial time, so it represents a reduction of SAT to CNF-SAT,
the problem class concerned with deciding the satisfiability of a Boolean formula in
CNF.

For a long time, SAT has been known to be NP-complete. This is known as
the Cook-Levin theorem™. Therefore, all currently known general solutions exhibit
at least exponential time complexity. However, it is possible to formulate algorithms
that, while still exponential in the worst case, outperform the naive guessing approach

12 Chapter 2. Background

by large margins on many real world problems. One of the simplest improvements
over that brute-force approach is the backtracking SAT algorithm, which goes as
follows: Pick any variable from the formula and guess a Boolean value for it. Then,
replace every occurence of that variable by the guessed value and simplify the formula
according to the rules of Boolean algebra. Repeat this step until the formula can be
simplified to either true or false. If it simplifies to true, the current set of guesses is
an assignment that satisfies the formula, so the algorithm returns sat. If it simplifies
to false, backtrack to the last guess that has not already been inverted and invert it.
If no more guesses can be inverted, return unsat.

An important milestone in the field of SAT solving was the work of Davis, Putnam,
Logemann and Loveland in [DP60, DLLG2]. Their approach, now known as the DPLL
algorithm, still forms the basis of most SAT solvers today. It introduced two key
ideas that set it apart from a simple backtracking algorithm: wunit propagation and
pure literal elimination. Unit propagation is concerned with unit clauses, i.e. clauses
containing only a single literal. These clauses can only evaluate to true if that literal
evaluates to true. Therefore, the variable involved in that literal has to be assigned
true if it is a positive literal and false if it is a negative literal. Pure literal elimination
is concerned with variables that appear either only in positive or only in negative
literals. Variables that only appear in positive literals can always be assigned true,
and variables that only appear in negative literals can always be assigned false without
affecting the satisfiability of the formula. Applying unit propagation and pure literal
elimination might lead to additional unit clauses and pure literals, so these steps can
be repeated until no more unit clauses or pure literals remain. By applying these two
steps after every decision in the backtracking procedure, the depth of the backtracking
search tree can be reduced substantially.

There is another essential SAT algorithm called Conflict-Driven Clause Learning
(CDCL). It expands upon DPLL by looking more closely at the conflicts it comes
across, allowing it to backtrack several levels at a time to the last decision that
impacted the conflicting clause. A more detailed description is given by Biere et al.
n [BHYMW0Y]. CDCL is implemented in the popular SAT solver MiniSAT[ES03],
which SMT-RAT’s SAT solver is based on.

2.2 SMT Solving

The SMT problem, or Satisfiability Modulo Theories, is a generalisation of the SAT
problem. Instead of boolean variables, the atoms comprising the formulae are con-
straints from a certain theory over a set of theory-variables. In the most general
sense, a theory T is characterized by the its universe U(T), a set of operators and
relations specifying it algebraic structure and the set of T-constraints that it allows.
A T-constraint is a formula connecting one or several variables and constants using
the operators and relations from 7T that evaluates to either true or false for every as-
signment of T-values to its variables. In other words, a T-constraint can be thought
of as defining a function U(7) — B. Using this terminology, the SMT problem can
be defined as follows:

Definition 2.2.1. (SMT Problem) Given a Boolean formula ¢ over a set of T -
constraints C = ¢y, ...,c, that involve T -variables from a set X = x1,..., Ty, 18

IThe theorem is attributed to both Stephen Cook and Leonid Levin, who discovered this property
of SAT independently of each other.[Caa7l, Cevz3)

2.2. SMT Solving 13

there an assignment X — U(T) of values to these variables such that ¢ evaluates to
true?

Conventionally, the class of SMT problems over a theory 7T is referred to as
SMT(T). For example, the class of SMT problems over the theory of quantifier-free
linear integer arithmetic (QF__LIA) is called SMT(QF__LIA). The universe U(QF LI A)
of that theory is Z and its algebraic structure is that of regular integer arithmetic. The
allowed constraints are all those of the form \yz1+- - -+, x, 0 ¢, with A,..., A\,,c €Z
and ¢ € {=,<, <, >, >}

Consider now the SMT(QF__LIA)-formula ¢ from Example 2221

Example 2.2.1.

gO(X) = 2x1 —x9+x3 >3
1+ a3 =2
(1’1 <0V z3< 0)
To+x3 >0

> > >

Even the satisfiability of a rather simple formula such as this, containing only 5 7 -
constraints over 3 theory variables, can be difficult to determine without a structured
approach.

Deciding the satisfiability of SMT formulae using computer programs is the subject
of the field known as SMT solving, and the programs developed for this purpose are
called SMT solvers. Fundamentally, most SMT solvers can be described as either
a lazy or an eager solver. Both kinds of solvers are essentially a combination of a
SAT solver and a theory solver. However, they differ in how these two are combined.
Eager SMT solvers work by reducing the whole SMT problem to an instance of SAT
and then consulting a traditional SAT solver to solve it. In the reduction, every
theory constraint is encoded into a purely Boolean formula over Boolean variables.
As this can result in a SAT formula containing a large number of Boolean variables,
this technique is often referred to as bit-blasting. If the reduction step is formally
correct, this approach is a complete decision procedure. For theories with an infinitely
large universe, a semi-decision procedure can be obtained by bounding the domain
of possible values and successively widening the bound until a solution is found. In
[BRDEF14], this is applied to the theory of quantifier free nonlinear integer arithmetic
(QF _NIA).

The second fundamental approach to SMT solving is referred to as lazy SMT. It
is based on the concept of the Boolean abstraction of an SMT(7T)-formula, in which
every unique 7T -constraint is replaced by a unique Boolean variable. Abstracting away
the example formula ¢ results in

¢"(B) = b
A bs
A\ (b3 V b4)
A bs.
The central idea underlying lazy SMT goes as follows: Every assignment of theory

values to X can be associated with an assignment of Boolean values to B by substi-
tuting X into all constraints and evaluating them. Conversely, every assignment of

14 Chapter 2. Background

Solve Boolean No
abstraction

T .

Solve
Add lemmas constraint set
to ¢
o

Constraints
feasible?

Figure 2.1: The basic full-lazy SMT procedure.

Boolean values to B represents a conjunction of 7T -constraints, each of which is ei-
ther a constraint from the original SMT (T)-formula or the negation of an constraint,
depending on which value was assigned to the Boolean variable associated with that
constraint. If there is an assignment of theory-values to X that satisfies p(X), the
corresponding assignment of Boolean values to B must also satisfy ¢?(B). Thus, enu-
merating all satisfying assignments of P and using a T-solver to decide the feasibility
of the associated constraint set yields a complete solution to SMT(T) as long as the
T-solver is complete.

2.3 Cylindrical Algebraic Decomposition

One strategy to solve sets of inequalities over real numbers, introduced by Collins in
[Cal7d], is the Cylindrical Algebraic Decomposition. Through successively projecting
the solution space to lower-dimensional spaces, it yields a decomposition of R™ into
cells such that each of a given set of polynomials has constant sign on every cell.
Furthermore, it also gives a sample from each cell that is said to represent that
cell. Using this decomposition, it is straightforward to check if a solution exists that
satisfies every inequality: Evaluate every polynomial against every sample. If every
sample results in the wrong sign for at least one polynomial, the set of inequalities is
infeasible. Otherwise, any sample that satifies all inequalities is a feasible solution.
Although the CAD works for all such sets of inequalities, it is quite computation-
ally complex in the worst case, taking time doubly exponential in the number of both
constraints and variables. While it can still be feasibly computed in many cases, it is
still the most computationally expensive part of SMT-RAT when used for QF__NRA
problems. Therefore, minimizing the number of theory calls is highly desirable.

2.4 Infeasible Subsets

The classic lazy SMT(T) setup, sketched in Figure B0, consists of a SAT solver that
continually presents proposed solutions to the 7-solver, which responds with 7T-sat
or T-unsat until either SAT is returned or the SAT solver runs out of solutions.

2.4. Infeasible Subsets 15

Every time the T-solver returns T-unsat, the SAT solver needs to learn some new
information, otherwise it would continue making the exact same assignment again.
As the SAT solver only works on Boolean variables and propositions, this information
has to be encoded as Boolean clauses. These clauses, called T-lemmas, can greatly
reduce the search space the SAT solver has to traverse before either finding a satisfying
assignment or returning unsat. The bare minimum of additional knowledge that the
SAT solver can always learn is that its full assignment was T -infeasible. Consider
now a SMT(QF__NRA)-formula such as

e(x1,...,xk) =21 <0 A (pi(z1,...,26) >0 V ...V pi(z1,...,2%)) A z1>0

where p1,...,p; are polynomials in x1, ..., 2. The Boolean abstraction of ¢ that the
SAT solver sees is

(p(Co,...,Cj+1):CQ A (Cl V ...V Cj) A Cjt1-

This abstraction is satisfied as long as cg, cj+1 and at least one other variable
are true. Therefore. there exist 2/ — 1 assignments satisfying it. However, from the
perspective of the T-solver, it is obvious that none of these assignments are feasible,
as ¢ < 0 and x > 0 can never hold at the same time. To convey this knowledge
to the SAT solver, it can emmit the lemma —(x < 0 A x > 0), abstracted as
=(co A ¢j41). Using this additional knowledge, the SAT solver can conclude unsat
in the very next iteration, instead of having to search its way through all possible
assingments. —(co A ¢jt1) is a special kind of lemma, as it is a subset of the
assignments passed to the T-solver that is 7T-inconsistent by itself. These lemmas
are especially useful to CDCL SAT solvers, which rely on information gained from
conflicts, because they give the SAT solver a precise reason why its assignments
yielded a T-conflict. This motivates the following definition:

Definition 2.4.1. (Infeasible Subset) Given a set of T-constraints P that is T -
inconsistent, a constraint set I C P is called an infeasible subset if

T¥ N\p

pel

If P is T-inconsistent, then it is always an infeasible subset of itself. This is called
the trivial infeasible subset. It conveys no additional information to the SAT solver
that it could not already deduce from the fact that the 7-solver returned 7 -unsat.
Furthermore, if I C P is an infeasible subset of P, then any I’ C P with I C I’ must
be an infeasible subset as well, because adding more constraints can never make an
already infeasible constraint set feasible. Therefore, an infeasible subset always yields
at least the same amount of information to the SAT solver as any of its supersets.
This naturally leads to the notion of minimal and minimum infeasible subsets.

Definition 2.4.2. (Minimal Infeasible Subset) An infeasible subset I of a set P of
T — constraints is minimal if there exists no I' C I that is itself an infeasible subset
of P.

Definition 2.4.3. (Minimum Infeasible Subset) An infeasible subset I of a set P of
T — constraints is a minimum infeasible subset if there exists no infeasible subset
I' C P with |T'| < |I].

16 Chapter 2. Background

In essence, a minimal infeasible subset represents a local minimum with respect
to cardinality, while a minimum infeasible subset represents a global minimum. Note
that it is entirely possible for the 7-solver to emmit multiple infeasible subsets for
a single theory call. In that case, the SAT solver adds all of them to its clause set.
However, simply emmiting all infeasible subsets would be suboptimal, because all the
information the SAT solver would gain from them is already gained by only learning
about all minimal infeasible subsets and too many redundant clauses can slow down
the SAT procedure. Instead, the T-solver should aim to emmit a moderate number
of highly relevant infeasible subsets.

The question that remains then is how to find small or minimal infeasible subsets
to speed up the SAT solver without incurring too high of a computational cost to the
theory solver. Before introducing our own ideas, we will first take a look at existing
research regarding infeasible subsets and the closely related topic of unsatisfiable
cores.

2.5 Related Work

In this section, we shall examine the state of the literature on the topic of computing
infeasible subsets. Although few have dealt with this problem explicitly in the con-
text of the CAD, a closely related topic from the field of SAT Solving has received
considerable attention, namely that of finding unsatisfiable cores of SAT clause sets.

2.5.1 Unsatisfiable Cores

Given an unsatisfiable SAT-formula F' = ¢y A---Ac, in CNF, U =) A--- A¢}, is said
to be an unsatisfiable core of F if it is unsatisfiable itself and cf,...c}, C ¢1,...cp.
Finding these unsatisfiable cores has been a topic of interest for a while in the SAT
community, as it allows an application making use of a SAT solver to receive more
than a simple 'no’ answer in the case of unsatisfiability. For example, an FPGA
routing tool can use them to report exactly which wires are unrouteable. This proves
to be important enough that today implementations of unsatisfiable core algorithms
exist even in hardware.[GWKSOR|

On the software side, several mature algorithms have been presented as well.
Conceptually, they can be categorized into two groups: Those that follow a bottom-
up approach start from an empty subset and add clauses until unsatisifiability is
achieved. Those that follow a top-down approach conversely start with the entire
formula and remove clauses until it is no longer unsatisfiable.

Another important distinction is whether an algorithm is monotonic. In a mono-
tonic algorithm, the subset only ever grows or shrinks, for bottom-up and top-down
approaches respectively. Non-monotonic algorithms may backtrack at times, i.e. a
non-monotonic bottom-up algorithm may remove clauses it previously added and a
non-monotonic top-down algorithm may add clauses it previously removed when nec-
cessary. In the following, several distinct algorithms for finding unsatisfiable cores are
presented briefly.

zChaff is an optimized SAT solver implementing the Chaff algorithm as presented
in [MMZF01]. Tt includes a method to generate proofs of the unsatisfiability of a
given SAT formula. In many cases, such a proof does not use all clauses comprising
the formula, so those which are not mentioned are known to be redundant. Taking
only the formulae included in the proof therefore yields an unsatisfiable core of that

2.5. Related Work 17

formula. In [ZM03], the authors show how, by applying this method repeatedly until
no more clauses can be eliminated, a small but not neccessarily minimal unsatisfiable
core can be obtained. This algorithm is therefore a monolithic top-down algorithm.
zChalff also exposes this functionality as a stand-alone program called zCore.

A Minimally Unsatisfiable Subformula Extractor (AMUSE) is a monotonic top-
down algorithm that sacrifices the guarantee of finding the minimum core every time
in order to achieve faster runtimes and the possibility of computing several different
unsatisfiable cores. It was introduced by Yoona et al. in [OMAT04)].

Compute All Minimal Unsatisfiable Subsets (CAMUS), presented in [LSOR], is an
algorithm that, as the name suggests, yields not only one minimal unsatisfiable sub-
set, but all of them. It works by first computing all minimal correction subsets of the
formula. A subset of an unsatisfiable formula is called correction subset if removing
it would make the formula satisfiable. If it is also minimal in the sense that removing
any element from it would make its complement unsatisfiable, it is an minimal correc-
tion subset. Using these minimal correction subsets, CAMUS iteratively constructs
unsatisfiable cores beginning from the empty set, making it a bottom-up algorithm.
Finding all unsatisfiable cores proves to be intractable in many cases, so Liffiton and
Sakallah also included a relaxed variant of the procedure. This still produces only
minimal subsets, albeit not neccessarily all of them, and does so a fraction of the
computational cost.

While all these algorithms employ vastly different strategies, optimize for different
metrics and yield different results, they still all solve the same problem and can, at
least in theory, be used interchangeably. At the very least, they can be compared
against each other on the same problem sets, and such comparisons were carried out
successfully in [OMAT04], [Huals] and [GIMPO7].

2.5.2 Previous Work on Infeasible Subets

Algorithms for computing infeasible subsets of SMT(7) clause sets have not received
nearly as much attention by researchers as algorithms for computing unsatisfiable
cores. As the rules to what makes a set of T-constraints infeasible are specific to the
theory, this task is mostly only solved for some specific choice of T.

Still, some research has gone into trying to develop a universal solution. In
[CGSO7], Cimatti et al. present a technique for generating infeasible subsets that
is applicable to any theory solver as long as it has a way of generating other lemmas.
It is based on the following observation:

Let C = {c1,...,cn} be a set of T-constraints, X = {z1,...,z,} a set of Boolean
variables representing the abstractions of those constraints and L a set of lemmas
about these constraints, encoded as Boolean formulae over X. Then, consider the
Boolean clause set S := X U L. If S is unsatisfiable and all the lemmas in L are
valid, then C is infeasible in 7. Accordingly, if there is an unsatisfiable core S’ C S,
then the constraints represented by the Boolean variables in X’ := S’ N X form an
infeasible subset of C'. Therefore, the algorithm only needs to compute unsatisfiable
cores of the set of lemmas given by the 7-solver in order to find infeasible subsets.
This allows the use of any of the existing solutions to the unsatisfiable cores problem,
such as the ones presented in Section 2.5.1. However, the success of this algorithm
crucially depends on the quality and quantity of lemmas provided by the T -solver.
When provided with no utile lemmas, its output is the trivial infeasible subset. There
is no immediately obvious way to extract a large amount of lemmas from a CAD, and

18 Chapter 2. Background

to the author’s knowledge, there is no such method in the literature either. For these
reasons, this solution is not further investigated here.

On the topic of CAD-specific algorithms for generating infeasible subsets, the
literature appears to be rather sparse. An algorithm from [IDETH] by Jaroschek
et al. approaches the issue from a linear programming perspective. The algorithm
works by constructing the conflict matrix M. Fach row in this matrix corresponds
to a sample obtained from the CAD and each column corresponds to a T-constraint.
More specifically, let C = {c1,...,¢,} be the set of constraints passed to the CAD
and S = {s1,...,8m} be the set of sample points obtained it. Then,

1, if ¢; violates s;
Mj,;:=13 "’ . !
0, otherwise.

The utility of this concept lies in the fact that it allows one to use linear algebra
to find an infeasible subset. A vector v € B™ can be thought of as a representation
of a subset I of C, where ¢; € I < v; = 1. Then, Mwv is the vector whose entries
state for every sample how many constraints in I violate it. Finding the minimum
infeasible subset can then be stated as the following integer programming problem:

m

minimise Z ;
=0

subject to Mw>(1,...,1)T

This formulation, however, does not directly lead to an efficient solution, as inte-
ger programming is an NP-hard problem. In fact, integer programming was among
the 21 original problems that Karp showed to be NP-complete in [Kar7?]. Restat-
ing the problem as such still offers two advantages. Firstly, it allows the use of a
state-of-the-art integer programming implementation. Although it is still bound to
exhibit exponential complexity in the worst case, being highly optimized means it
should perform well in many cases. Secondly, by relaxing the minimality condition
of the optimization problem, the solution can be sped up considerably. In turn, the
guarantee of finding the minimum infeasible subset every time has to be sacrificed.
In the following chapter, we present a different technique, reducing the problem not
to linear programming but to the set cover problem. However, we shall borrow the
notion of the conflict matrix.

Chapter 3

The Set Cover Problem

Modelling infeasible subsets as solutions to an integer approximation problem is one
possible way to approach the issue of computing infeasible subsets. There is another,
arguably more natural abstraction that links infeasible subsets to set covers.

Intuitively, a set cover is a selection of sets from a given pool such that every
element in a given universe is covered by at least one set in the selection. Formally,
set covers can be defined as follows:

Definition 3.0.1. (Set Cover)
Given a set U, called universe, and a set S of subsets of U such that

Us=vu
Ses

C C S is called a set cover of U using S if
Us=vu
seC

The set cover problem (SCP) is concerned with finding the smallest set cover of
a given universe using a given S. It is commonly stated in its optimization problem
version:

Definition 3.0.2. (Set Cover Problem)[GN73]
Given a set U and a set S C P(U) such that

Us=u

Ses

find a set cover C of U using S that minimizes |C|.

3.1 Infeasible Subsets as Set Covers

To draw the connection between set covers and infeasible subsets, one needs to un-
derstand exactly which information is known after the CAD is computed. Firstly, a
set P of polynomial constraints and a set @ of sample points, each representing a
cell of the CAD, can be assumed to be given. Secondly, by evaluating all constraints

20 Chapter 3. The Set Cover Problem

on all sample points, we can obtain the set V; C @ of samples violating it for every
constraint p; .

Due to the sign-invariance property of the CAD, if a constraint is not satisfied by a
sample point, it cannot be satisfied by any point within that point’s cell. Therefore, if
aset I CV ={Vi,...,V,} contains at least one constraint for every sample point that
violates that sample point, the conjunction of all constraints within I is unsatisfiable
on all of R™. I is thus an infeasible subset. Intuitively, this is the case exactly if I
represents a set cover of @ using V. We solidify our intuition in the following theorem:

Theorem 3.1.1. Let P = {p1,...,pr} be an infeasible set of polynomial constraints
over R™ and let QQ be the set of sample points obtained by applying the CAD to P.
Furthermore, for alli € {1,...,k}, let V; C Q be the set of sample points that violate
Pi-

Then, I = {pj,,...,p;j.}, with j1,....jm € 1,...,k is an infeasible subset of P if
and only if C ={V;,,...,V;, } is a set cover of Q using {Vi,...,Vi}.

To prove the forward implication, assume that C' is not a set cover of). Then,
there must be at least one ¢ € @ not covered by C, that is to say

i€{l,...,m}

This means that none of p;,,...,p;, violate g. Therefore, I is satisfied by ¢ and
is not an infeasible subset.

Conversely, assume that C is a set cover of Q. Let x € R™. As the CAD decom-
poses the entire solution space, it yields exactly one cell containing z. Let ¢ be the
sample point representing that cell. Since all the polynomials involved in {p1,...,px}
are sign-invariant on that cell, p; Ex < p; Eqforalli € {1,...,k}. Because C
is a set cover of @, there is [€ 1,...,m such that ¢ € Vj,. Therefore, p;, ~ ¢ and
thus p;, = . As pj, € I, it follows that I is not satisfied by any € R". I is thus
an infeasible subset.j As this theorem shows, infeasible subsets are equivalent to set
covers in a natural way. Therefore, an efficient algorithm for the SCP would yield a
fast way to find the minimum infeasible subset as well.

3.2 Greedy Algorithm for the SCP

Like integer programming, SCP was proven to be NP-complete by Karp’s essential
work in [Kar72]. Therefore, unless P = NP, any algorithm that finds the perfect
solution to every SCP instance admits at least exponential time-complexity. Instead
of aiming for the minimum solution, it is advisable to find an algorithm that runs
fast in all cases and yields minimal infeasible subsets that provide useful information
for the SAT solver. Thus, we relax the condition of the SCP so that instead of
finding the smallest possible cover, the goal is to find a close approximation to the
minimum solution. In [Ioh73], Johnson presented a straightforward greedy solution,
summarized in Algorithm 0, which runs in polynomial time and produces covers
which are in the worst case larger than the minimum solution by a factor logarithmic
in the problem size. In fact, as Ras and Safra show in [RSY97], P # NP implies that
there can be no polynomial-time approximation algorithm for the SCP that has an
approximation factor of better than Q(In(n)).

3.83. Weighted SCP 21

Therefore, by applying Theorem B, the greedy SCP algorithm can be turned
into an algorithm for finding infeasible subsets that is computationally inexpensive
and yields satisfactory results in most cases.

Algorithm 1 Greedy algorithm for the SCP

1: C+0
22 R« U
3: while R# 0 do
4: X « arg max (|[SNRJ)
Ses\C
5: C+ CU{X}
6: R+ R\X
return C

3.3 Weighted SCP

Although the only thing that matters for solutions to the classical SCP is the car-
dinality of the set cover, the same is not necessarily true for infeasible subsets. A
minimal infeasible subset is always more useful to the lazy SMT procedure than any
of its supersets, but there is no reason why the most useful infeasible subset has to
be a minimum infeasible subset. Some constraints are more useful to the SAT solver
than others when included in infeasible subsets, and some constraints make the task
of the CAD module harder whenever they appear in an assignment. Therefore, it
is desirable to restate the problem in a way that allows one to optimize for a more
sophisticated metric than just the size of the infeasible subsets. There is a generaliza-
tion of the SCP that seems obvious for this purpose: the Weighted Set Cover Problem
(WSCP).

Definition 3.3.1. (Weighted Set Cover Problem) Given a universe U, a set of subsets
S={51,...,58.} CP(U) such that

Us=u
Ses

and an assignment w : S — R of weights to subsets, a minimum weighted set cover is
a set cover of U using S that minimizes

Zw(S)

SeC

More intuitively, every subset S is associated with a weight that expresses how
expensive it is to include that subset in the set cover. The goal then is to find a cover
such that the total weight of its elements is as small as possible. In the context of
infeasible subsets, this allows one to assign a weight to every constraint expressing an
estimate of how expensive that constraint is when included in an infeasible subset.

3.3.1 Adapting the Greedy Algorithm

WSCP is at least as hard as SCP. A simple argument showing this is that if w
is constant, the WSCP becomes equivalent to its unweighted version. Therefore,

22 Chapter 3. The Set Cover Problem

WSCP itself has to be at least NP-hard and the same inapproximability results as
for the SCP apply. However, it turns out that there is a natural way to generalize
the greedy algorithm for the SCP into an algorithm that yields good results for the
WSCP. Instead of picking the subset that covers the highest number of the remaining
elements, pick the subset that maximizes the ratio between the number of remaining
elements covered and its weight. A more formal description of the algorithm is given
in Algorithm B. As Chvatal proves in [Chv7Y], this algorithm, just like its unweighted
counterpart, produces a polynomial-time approximation of the optimum solution that
is, at worst, off by a factor logarithmic in the input problem size. This makes it an
asymptotically optimal approximation among all polynomial-time algorithms for the
WSCP.

Algorithm 2 Greedy algorithm for the WSCP

1 C+0
22 R« U
3: while R# (0 do
4: X < arg max (lSﬂR|>
' ses\c \ w(S)
C+ CcuU{x}

R+ R\ X
return C

3.4 Possible Metrics

The choice of w is critical for the success of the WSCP approach. In the worst case,
a bad choice of w could lead to larger infeasible subsets that also contain less useful
information for the SAT solver. In the following, we suggest three possible metrics
and show how they can be unified into a single weighting function.

3.4.1 Algebraic complexity

One heuristic way of judging how useful a constraint is when contained in the infeasible
subset is looking at its algebraic complexity. The runtime of the CAD is bounded
above by a term depending both on the number of variables occurring in the inequality
set as well as the polynomial degree of the inequalities. Therefore, one should try to
minimize both of those numbers for all the constraints being passed to the CAD.
By including a constraint in the infeasible subset, we increase the abilty of the SAT
solver to reason about its truth value. Once it has deduced the truth value of a
constraint completely, the SAT solver will include that constraint in every subsequent
assignment. Hence, it is advisable not to include constraints with a high algebraic
complexity in the infeasible subets, if possible.

3.4.2 SAT Activity

SMT-RAT keeps track of a number called "SAT Activity" for every literal that repre-
sents a guess towards how interesting that literal is for the SAT-solver. The heuristic
currently employed for this is the Variable State Independent Decaying Sum (VSIDS),
first introduced in [MMZT01]] as part of the Chaff algorithm. In the beginning of the

3.4. Possible Metrics 23

procedure, every literal has a VSIDS of 0. Every time a conflict occurs, all the lit-
erals occurring in the conflict clause have their VSIDS increased. The amount by
which they are increased also increases with every conflict. This means that literals
occurring in more recent conflict clauses tend to have higher VSIDSs. When assigning
values to literals, the SAT solver will then pick the literal with the highest VSIDS. By
doing so, the SAT solver favors using fresh information gained from recent conflicts
over information from older conflicts which could be stale already. In order to provide
even more information about high-activity literals, the theory module should try to
pick constraints with a high SAT activity for inclusion in the infeasible subset.

3.4.3 Decision Level

SMT-RAT employs a backtracking SAT solver which tags literals with a decision level
as it assigns truth values to them. The higher the decision level, the later a certain
literal’s value was assigned. If a guess for a literal that was made very early on in SAT
procedure turns out to be false, a larger runtime penalty than in the case of a more
recently guessed variable will be incurred, as the SAT solver has to backtrack further.
When the SAT solver makes a wrong decision, it is therefore critical to recognize this
error as early as possible. An infeasible subset containing literals with a low decision
level can help with this. Thus, the theory module should aim to minimze the decision
levels of the constraints included in the infeasible subsets.

3.4.4 Combining Heuristics

By picking a suitable weight function, all the metrics previously mentioned can be
accounted for. How exactly the weight of a constraint is to be computed warrants
some discussion. First, note that the aim is to minimize algebraic complexity and
decision level, but to maximize SAT activity. Therefore, the weight function should
have a negative derivative with respect to SAT activity. However, we still have to
make sure that the weight stays positive, as a negative weight would indicate that
including a constraint in the infeasible subset is favorable even if all samples are
already covered. We propose the following function to assign weight to a constraint:

A
1+a(S)

where ¢(5), d(S) and a(S) are the complexity, decision level and SAT activity of
the constraint, respectively and wg A¢, Ag, Aq are constants which can be adjusted to
tune the weight function. By including a constant weight wg, the algorithm can be
instructed to always include constraints that violate a very high number of samples,
even if they are considered expensive due to other metrics.

w(S) :=wo + A ¢(S) + Ag d(S) +

24

Chapter 3. The Set Cover Problem

Chapter 4

Towards Smaller Infeasible
Subsets

As seen before, finding a minimum infeasible subset is an NP-complete problem and
therefore intractable in the general case. In contrast, the greedy algorithm concludes
very quickly on most inputs but can yield subpar results. There is a trade-off here
between computational complexity and solution quality. In the following, we show
how the results can be improved considerably while by investing a small amount of
additional work,

4.1 Preconditioning the Conflict Matrix

As the greedy SCP algorithm is already asymptotically optimal among polynomial-
time approximations to the SCP, any optimization we can perform must be domain
specific. Therefore, it is imperative to look at the actual SCP instances that occur
when using the CAD for QF_NRA problems. By identifying certain regularities in
those instances, we can develop heuristics to precondition most of them into a much
smaller, equivalent SCP instances. To discover and quantify these regularities, a test
run using standard benchmark sets was carried out. SMT-RAT was invoked on the
full QF_NRA benchmark set provided by SMT-LIB consisting of 11540 problems and
the resulting conflict matrices were captured. In total, 119453 conflict matrices were
generated. In Figures B, B2 and B33, a few of the conflict matrices thus obtained
are pictured.

There are two common patterns present in all these matrices: Firstly, most of the
columns are rather sparse. Many samples are even violated by only a single constraint.
Secondly, many of the columns in each of the matrices are identical. We will discuss
to what extent both of these phenomena are representative of the solver’s behavior
on the entire benchmark set and how to use them as heuristics to reduce the problem
size.

4.1.1 Essential Constraints

In the example conflict matrices, most of the columns contain a single 1. The matrices
from the full data set also exhibit this phenomenon: the average conflict matrix has

Chapter 4. Towards Smaller Infeasible Subsets

26

S1 S2 83 S4 S5 Se¢ S7 S8 S9 S10 S11

Y m
OO OO H Mw
OO 4O - O - .m
OO 1O OO H ﬁm
OO —H O OO H m
—\ O O O O oo MM
—— O OO OO Jm
— — O O O OO m
R = =R == <
o—H oo oo o —
coocococo -~ <t
S OO A~ —H - m
~ A
o o o o o o — wﬂ

hycomp/ball_count_1d_plain.03.gfree_global_10.

81 82 S3 S4 S5 Se¢ S7 S8 S9 S10 S11 S12 S13 S14 S15
1111111100 00000

0111110001 11110

|

0000011111 00O0UO0TO0TG O
1111000000 0 1 111
Figure 4.2: A conflict matrix from kissing/kissing_2_4.

(

c1
c2
c3
cq

81 S2 S3 S4 S5 Se S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23

|

11000000000 00O0O0OO0O0OOOOO0OO0O 0
0011000000 0O0O0O0O0OOOOO0OO0OOO0OO
0000100000O0O0OO0OO0OOOOOOO0OOO0OO
0000011111 111000O0O0O0O0O0O0O0
Figure 4.3: A conflict matrix from meti-tarski/ArthanlA-chunk-0023.

ooooo0000000O0O1T111111111

|

c1
c2
c3
[
Cs

4.1. Preconditioning the Conflict Matriz 27

81 82 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
af00000000OO0OO0OT1TT1 11111111
/00000011111 1111O00O0O0O0
2! 0001111100000 1111100
ea\11111000000O0O0O0O0O0T1T1T11

Figure 4.4: A conflict matrix from
meti-tarski/atan-problem—1-chunk-0076.

540.6 columns and 303.5 columns with only one 1. Such a column corresponds to
a sample that satisfies all constraints except for one. Any set of constraints that
does not include this constraint would be satisfied by that sample, so it cannot be an
infeasible subset. We shall call constraints with this property essential constraints.

Once we have identified all the essential constraints and the corresponding columns,
the first preconditioning step is to select all those constraints and to remove all
columns covered by them. The order in which the essential constraints are selected is
irrelevant to this algorithm, as selecting a constraint can never cause some other con-
straint to become essential. Therefore, it suffices to iterate through the entire matrix
only once. This step’s complexity is thus linear in both the number of constraints
and samples, so its runtime is dominated by that of the greedy algorithm.

After selecting the essential constraints for inclusion in the infeasible subset, we
can also drop all constraints that only cover samples that are already covered by
essential constraints, since those can never appear in a minimal infeasible subset.
Identifying them is simple: in the reduced conflict matrix, the rows corresponding to
these constraints will only contain entries with a value of 0. Note that this precon-
ditioning step not only reduces the size of the conflict matrix, but can at times also
improve the quality of the solution when used with the greedy algorithm. Consider
the conflict matrix in Figure B, obtained from the first invocation of the CAD on a
sample problem from the meti-tarski benchmark set.

Both ¢; and c¢3 invalidate 10 samples each, while ¢ and ¢4 invalidate 9 samples
each. Therefore, the greedy algorithm could pick either c¢; or cs in its first iteration,
depending on implementation. However, picking c¢; would result in a suboptimal
solution: The samples sg, s¢ and s; are only violated by ¢z, c3 and ¢4, respectively,
meaning cs, c3 and ¢4 are essential constraints. Hence, the greedy algorithm has to
include them all and returns {cy, 2, c3,¢4}.

Our preconditioning step would identify the essential constraints and then drop ¢;
as every sample it covers is also covered by an essential constraint. As {ca,c3,c4} is
already an infeasible subset and consists only of essential constraints, it must be the
unique minimum infeasible subset. Thus, the search for infeasible subsets is finished
after this preconditioning step and any further computations can be foregone.

4.1.2 Identical Columns

The second phenomenon apparent in the example matrices is that there are large sets
of columns that are identical. In the full data, there are on average 540.6 columns per
matrix but only 6.2 unique columns. If several samples are violated by the exact same
constraints, then it is unnecessary to consider all of them; all of them are satisfied if
and only if any one of them is satisfied.

28 Chapter 4. Towards Smaller Infeasible Subsets

Figure 4.5: The CAD produces redundant samples even for very simple constraint
sets

Why this occurs becomes apparent when one considers the limitations of the CAD.
Given a set P of polynomials, there is an ideal decomposition of R"™ into connected
cells on which each polynomial is sign-invariant. While the CAD will produce at
least one sample for every cell in that ideal decomposition, it will hardly ever produce
exactly one. In most cases, the CAD yields many samples for every cell in the ideal
decomposition. Consider for example the polynomials p; (z,y) = 5z — 4y — 2 and
pa(x,y) = 2 + y* — 2. Figure B33 visualizes both the cells in ideal decomposition for
these polynomials as well as the samples obtained from the CAD. Notably, the CAD
produces many samples per ideal cell even in such a simple case. These redundant
samples in the CAD then result in duplicate columns in the conflict matrix, as all
samples from the same ideal cell will result in the same signs for every polynomial.

This observation suggests another preconditioning step, namely dropping all the
duplicates and keeping only the unique columns. Doing this in the naive manner, by
comparing every pair of columns, takes O(m?) comparisons. Comparing two columns
takes O(n) elementary operations, which puts the overall complexity at O(m?n). A
more efficient way to do this is to sort the columns first. This requires O(m log(m))
column comparisons. Once the columns are sorted, removing duplicates can be done
by checking consecutive columns only and takes O(m) column operations. Alterna-
tively, one can use an associative datastructure such as a hash set for storing unique
columns, which results in an even better average-case performance.

At first, it is not clear whether the step of dropping duplicate columns should be
carried out before or after selecting essential constraints. Removing duplicate columns
has no influence on the number of essential constraints. In fact, that number is exactly

4.2. Picking the Best Algorithm 29

equal to the number of unique columns in M that contain a single 1. Therefore,
selecting all essential constraints first and the removing duplicate columns seems like
the better choice. Two additional arguments support that choice: Firstly, the step of
removing duplicate columns has a higher time complexity with respect to the number
of columns in the conflict matrix. After selecting the essential constraints, the number
of columns will have decreased, making this step less expensive. Furthermore, as seen
above, there is the possibility of the essential constraints already forming an infeasible
subset. In that case, the step of removing duplicate columns can be skipped. Thus,
the right choice is to select the essential constraints first and to remove duplicate
columns afterwards. The full preconditioning algorithm comprising both of these
steps is described in Algorithm B.

Algorithm 3 Preconditioning algorithm for reducing the size of the constraint matrix

1 B0

2: for alli € {1,...,m} do

3: count + 0

4: for all j € {1,...,n} do

5: if Miﬂ' =1 then

6: 0+ count +1

7: candidate < j

8: if 0 =1 then

9: E + FU{candidate}

10: for all c € {1,...,m} do

11: if M,.=1 then

12: M .markColumn (c)

13: uniqueColumns < 0

14: for alli € {1,...,m} do

15: if M ; € uniqueColumns then

16: M .markColumn (i)

17: else

18: uniqueColumns < uniqueColumns U{M ;}
return £, M

The set E returned after preconditioning is the set of all row indices corresponding
to essential constraints. Every column marked in M either corresponds to a sample
that is covered by one of the essential constraints or is redundant because there is
another unmarked column in M with the exact same entries. Either way, all marked
columns are dropped after preconditioning. If no columns remain, then the set of
essential constraints is already an infeasible subset. In that case, it is also the ungiue
minimum and minimal infeasible subset and there is no need to proceed any further.
If columns do remain, drop all the marked columns from M as well as all rows indexed
by E and continue to the actual infeasible subset generation procedure.

4.2 Picking the Best Algorithm

After preconditioning, it is expected that many of the conflict matrices vanish com-
pletely, as is the case for the example matrix in Figure B. Most other problem
instances will likely be reduced to a small but possibly complicated core and the re-

30 Chapter 4. Towards Smaller Infeasible Subsets

maining procedure will only have to find a set cover of the samples that Previously, the
greedy algorithm was chosen to guarantee polynomial run time on all problem sets,
as any optimal solution would take exponential time. However, if the vast majority
of input problems are very small in size, picking the greedy algorithm means trading
solution quality in for a negligible gain in speed. Indeed, for very small instances of
the SCP, even finding the optimal solution is computationally feasible. Therefore, we
present a hybrid algorithm for computing infeasible subsets: If the number of con-
straints is below a certain threshold ¢, we compute the optimal solution. If it is not,
we proceed with the greedy algorithm until the number of constraints that remain is
below t¢.

The choice of algorithm for finding the optimal solution still remains. Solving the
integer programming formulation of the problem using, for instance, a branch-and-
cut algorithm, is an option. However, as we are only concerned with the smallest
of problem instances, the overhead associated with such a sophisticated algorithm is
likely to be too large to justify its use. Furthermore, as integer programming is only
concerned with finding the optimum solution, it would yield all minimum infeasible
subsets. By fully exhausting the search space, we can instead obtain a solution that
is also guaranteed to yield all minimal infeasible subsets. Therefore, we opt for a
simpler, hand-crafted exhaustive algorithm. Iterating over set cover size in increasing
order, it enumerates all possible constraint sets of that size. If a constraint set forms a
set cover and is not a superset of any set cover previously found, it must be a minimal
set cover and is added to the set of known set covers. Because it visits all constraint
sets in ascending order with respect to cardinality, every constraint set is visited by
it after all of its subsets. Therefore, the algorithm is guaranteed to find all minimal
set covers and none that are not minimal.

The final, full procedure is described in Algorithm A. Note that there are three
parts contributing to the return value: the set E of essential constraints, the set
G of greedily selected constraints and the set A of all minimal infeasible subsets of
the set of constraints left after the preconditioning and greedy steps. Because E is
necessarily a subset of all infeasible subsets and A is computed exhaustively, only G
can be suboptimal. Therefore, if G = @, the algorithm has found all minimal infeasible
subsets.

As a final remark, it should be noted that the only part of the algorithm that has to
be adapted to give consideration to weighted constraints is the selectGreedily ()
function. Essential constraints need to be included in every infeasible subset regardless
of their weight, and the exhaustive step always has to consider all possible covers of
the remaining sample set.

4.2. Picking the Best Algorithm 31

Algorithm 4 Hybrid algorithm to generate infeasible subsets

—
=4

e e e e e e

E, M < precondition (M)
M .dropMarkedRowsAndColumns ()
if |[M .columns| == 0 then return {E}

G0
C (07 o ’0) c B|M.columns|
while |[M .columns| >t do
g+ M.selectGreedily ()
G+ GU{g}
cover < c+ M,
if min(cover) > 1 then return {£ UG}

A0
for all coversize € {1,...,|M .rows|} do
for all s € {bC {1,...,|M.rows|} | |b| = coversize} do
if3A€A: ACsthen

continue
cover <> i M;
if min(cover) > 1 then
A+ AU{s}
return {EUGUAFAGA}

32

Chapter 4. Towards Smaller Infeasible Subsets

Chapter 5

Implementation and
Evaluation

The previously desribed algorithm was implemented in the Satisfiability Modulo The-
ories Real Arithmetic Toolbox (SMT-RAT). SMT-RAT is written in C++ an main-
tained as an open source project by the Theory of Hybrid Systems research group of
RWTH Aachen University. It is described in further detail in [CKIT15]. SMT-RAT
includes a fully functional CAD implementation, which was leveraged for this task.
To improve the tractability of the strategy on a large number of problems, the CAD
was combined with the virtual substition module also present in SMT-RAT.
SMT-RAT’s CAD supplies an implementation of the greedy algorithm as pre-
sented, which serves as a reference point for judging the performance of our algorithm.

5.1 Gauging the Success of the Preconditioning Step

First, the effectiveness of the preconditioning step was analyzed. To measure this, our
solver was run against the full SMT-LIB QF _NRA set with a timeout of 30 minutes.
For every theory call, the number of constraints both before and after preconditioning
were captured. This data is summarized by the density plots in Figures 61 and B622.
All runs were carried out using an Intel Xeon X5675 CPU.

As the data shows, the constraint sets that ocurred were mostly rather small
even before preconditioning and never exceeded 25 constraints. After precondition-
ing, 24871 out of 36926 cases were already solved completely. The majority of the
remaining problem instances were shrunk considerably, with the largest containing
only 17 constraints.

The average number of samples in the problem instances was reduced significantly
as well, going from 1130.3 to 5.6 after preconditioning. The majority of this decrease
in size is to be attributed to the deletion of duplicate samples, as the average conflict
matrix already only contained 6.2 unique columns. The additional reduction in sample
count beyond that is due to the deletion of samples that are covered by essential
constraints. In the most extreme case, one problem instance contained 1862 836
samples. After preconditioning, this number diminished down to 3.

We can thus conclude that the preconditioning performs as well as expected by
our initial assumptions, solving over two thirds of all problem instances outright and

34

Chapter 5. Implementation and Fvaluation

6,000 |

5,000 |

of theory calls

1,000 |

2,000

of theory calls

4,000 |

3,000 |

2,000 |

4,000 |

%
g
.
LOP —
[an)
I~
ﬁ-{ —
il
I~ |
Jig]
= =
oo o
2 8 IR | S B |
R B O o
N RN B] I~ I\
= < E[] & :
gl |~ =
= — Al |
3 2l 18] oo 2
r~ « i 0 Xt i
o m == o]
T I I I I I I I I I I I I I I I I I I I T T T I T I
012345678 9101112131415161718192021 22232425
#£constraints
Figure 5.1: Constraint set sizes before preconditioning
— |
/l\
i
I~
00 |
N
[a\]

M N
CNOOIFOODODDODDODO OO

N

<t

—
T

H
o |
w |
o
o
o |
.
oo |
© |

I I I
10111213141516 171819 20 21 22 23 24 25
#£constraints

Figure 5.2: Constraint set sizes after preconditioning

5.2. On the Choice of t 35

reducing the rest substantially.

5.2 On the Choice of ¢

The central parameter impacting the performance of the hybrid algorithm is the
threshold ¢ at which the procedure switches from the greedy algorithm to the exhaus-
tive algorithm. Picking a suitable value for ¢ is therefore crucial. If it is too low, the
procedure will not be able find all minimal infeasible subsets in most cases. If it is too
high, the exponential asymptotic complexity of the exhaustive algorithm becomes a
problem. To make an informed decision on the value of ¢, two metrics have to be eval-
uated: Firstly, it is important to know how many problem instances are reduced to ¢
constraints or less by the preconditioning, as those instances are the ones for which
our algorithm guarantees an optimal solution. Secondly, the computational cost of
the exhaustive algorithm for problem instances containing exactly ¢ constraints needs
to be estimated.

Figure B3 displays for every value of ¢ both the percentage of problem instances
consisting of at most ¢ constraints and the average computational cost of the full
infeasible subset generation algorithm when invoked on a problem of size t. Compu-
tational cost was measured in CPU time. While for values of ¢t up to 8, the runtime
is mostly constant, it seems to grow exponentially after that, nearly doubling with
every increase in t. This matches the theoretical asymptotic complexity of finding
all minimal infeasible subsets. Adding to that, there appears to be a severe effect of
diminishing returns on raising ¢: With ¢ = 5, nearly 90% of the problem instances are
solved perfectly. At ¢t = 12, the fraction of problems solved perfectly surpasses 99%.
Chosing a value of ¢ above that is likely not worth the cost. We suggest a value of
t = 12 and use that in further experiments.

5.3 Impact on Overall Solver Performance

As shown in the previous section, the algorithm worked out as intended, finding all
minimal infeasible subsets in the majority of cases while incurring a negligible perfor-
mance cost. However, it remains to be seen whether the infeasible subsets computed
by it do in fact speed up the complete SMT procedure. Evaluating this proved to be
complicated, as it became apparent during benchmarking that the solver only invoked
the infeasible subset generation routine on a small portion of SMT-LIB’s QF_NRA
problem set. SMT-RAT was able to solve 8 147 problems out of the 11540 without
the CAD ever returning 7-unsat. This can happen due to one of several reasons.
Firstly, for a few of the problems, even the Boolean abstraction is already unsatis-
fiable. To a lazy SMT solver, these problems appear trivial, as it can return unsat
without ever consulting the theory solver. Secondly, some of the problems do require
theory calls, but their algebraic constraints are limited to polynomials of degrees 1
and 2. In those cases, virtual substitution suffices to answer all theory calls and the
CAD is never used. Lastly, on a number of problems, the solver was able to deduce sat
after a single CAD call that returned 7-sat. In addition to the majority of the prob-
lems being solved without infeasible subsets being requested, another 2 181 problems
caused the solver to hit the 30 minute timeout without requesting infeasible subsets.
This is likely due to those problems containing very complex algebraic constraints,
which results in the CAD becoming extremely computationally expensive. Thus, our

36 Chapter 5. Implementation and Fvaluation

100 50
80 | - 40
60 |- 130
IS
40 + - 20
20 |- // 110
00instances solved /./// —e— runtime
o= P~ -~ -~ i HPY Py 4————?*"./ 0

¢ v 9o —°

o
1 2 3 4 5 6

== T T T — T T
§ 9 10 11 12 13 14 15 16 17
t

~ -9

Figure 5.3: Impact of ¢ on the number of perfect solutions and on worst-case
runtime.

algorithm is limited in applicability to a very specific set of problems, namely those
containing at least one constraint of polynomial degree 3 or higher but not containing
constraints complex enough to make the CAD intractable.

Out of the remaining 1212 problems, SMT-RAT was able to reach a solution in
782 cases, regardless of whether the greedy or our novel algorithm was used. This
indicates that the improvement in overall solver performance was not substantial.
The time taken by the solver on those 782 problems confirms this observation: On
average, using the greedy algorithm, SMT-RAT ran for 49385 milliseconds before
returning a solution. With the hybrid algorithm, this number decreased negligibly to
49154. However, the hybrid algorithm did manage to achieve a significant decrease
in the number of CAD invocations in a number of cases. In total, SMT-RAT needed
5764 CAD calls to solve the aforementioned 782 problems using the greedy infeasible
subset generation algorithm, but only 4941 when using the hybrid algorithm. The
average size of the smallest infeasible subset found by the hybrid algorithm was 2.7,
while the infeasible subsets found using the greedy algorithm contained an average
of 2.9 constraints, so we met our goal of producing smaller infeasible subsets. The
problem that took the most CAD calls, regardless of which algorithm was used, was
atan-vega—-3-weak-chunk-0079 from the meti-tarski set. By switching to our
hybrid algorithm, the number of CAD calls needed by SMT-RAT to decide unsat for
this problem went down from 1738 to 997. However, this decrease of over 40% in the
number of CAD calls only resulted in an improvement in performance of about 8%,
as total runtime went down from 1754 seconds to 1622 seconds.

A possible explanation for this discrepancy could be that, while the reduction in
CAD calls did benefit the overall runtime, this benefit was diminished by the addi-

microseconds

5.8. Impact on Qverall Solver Performance 37

tional time required for the more complicated infeasible subset computation proce-
dure. By collecting call-graph data on SMT-RAT using the sampling profiler Callgrind
from the Valgrind framework, described in [NSU7], we were able to dismiss this con-
cern; the computation of infeasible subsets using the hybrid algorithm only accounted
for 0.08% of the total runtime when solving atan-vega—-3-weak-chunk-0079.

Evidently, the time needed to carry out the hybrid algorithm is not the reason
for the lack of a performance improvement. Instead, it seems likely that the CAD
calls the solver was able to skip due to improved infeasible subsets were not the ones
accounting for a majority of its runtime.

38

Chapter 5. Implementation and Fvaluation

Chapter 6

Conclusion

In this paper, we gave an answer to the question of how to efficiently compute useful
infeasible subsets from a CAD. First, we examined the existing research on both this
topic and the closely related topic of unsatisfiable cores and discussed whether any of
the solutions proposed therein could be applied to our exact problem statement. We
concluded that due to the lack of a method to produce lemmas from a given CAD,
the approach of reducing the problem to that of finding unsatisfiable cores was not
suitable for our purposes. The integer programming perspective by Jaroschek was
deemed to be a better fit, but we argued that it also had some crucial issues. We
therefore introduced a third perspective based on the notion of the set cover and
proved an important relationship between infeasible subsets and set covers to justify
this.

In order to formulate an efficient algorithm optimized for the specific problem
domain, we needed to grasp the nature of the problem instances our algorithm would
be facing. To this end, we captured and analyzed a number of actual problem instances
from solver runs. Based on this data, we presented two preconditioning heuristics to
trim problem instances down to a much smaller but complex core. We argued that,
due to this significant decrease in problem size, it is feasible to compute the optimal
solution in the majority of cases instead of relying on a faster but suboptimal solution
such as the greedy algorithm. Keeping this assumption in mind, we constructed
a three-stage algorithm consisting of the preconditioning heuristics followed by an
optional greedy stage and finally an exhaustive search. We make the observation that
in the cases in which the greedy stage is skipped, our algorithm does indeed find all
minimal infeasible subsets.

We implemented our algorithm in the context of the SMT-solving framework SMT-
RAT. Using this implementation, we verified our assumption, showing that the pre-
conditioning heuristics did indeed shrink the problem instances substantially. The
heuristic of identifying and selecting essential constraints proved to be particularly
successful, because it managed to find the unique minimum infeasible subset in two
out of three instances. We also provided profiling data supporting our choice of t = 12
for the hybrid threshold parameter.

Unfortunately, our hybrid algorithm was not able to make a meaningful impact on
SMT-RAT’s overall performance. We argue that this is due to the narrow spectrum of
QF_NRA problems to which it is currently applicable. If a problem is algebraically
simple enough to allow the use of virtual substitution, then that solution is much

40 Chapter 6. Conclusion

more preferable in terms of perfomance than the CAD. However, if a problem is
too algebraically complex, the CAD will become intractable. Still, we were able
to demonstrate a reduction of 14.2% in the number of CAD invocations needed by
SMT-RAT. In the future, improvements to the CAD algorithm could open up more
problems to its use, possibly increasing the necessity of a sophisticated infeasible
subset generation procedure.

In this work, we also described a method to tune the greedy stage of the algo-
rithm by attaching weights to constraints. In addition, we suggested several possible
heuristics for picking weights. It remains to be seen which of these heuristics are ad-
vantageous to the SMT solving process. This could be analyzed in further research.
A different venue for improvement could be the modification of our algorithm to pro-
duce not only infeasible subsets but also more general lemmas. For example, if the
samples that violate some constraint ¢; form a subset of the samples that violate
another constraint cs, the lemma cy = ¢; could be inferred.

Bibliography

[BDE*14]

[BHYMW09)

(CGS07]

[ChvT9]

[CKJ*15]

[Col75]

[CooT1]

[DLL62]

[DP60]

[ES03]

Karsten Behrmann, Andrej Dyck, Fabian Emmes, Carsten Fuhs, Jiirgen
Giesl, Patrick Kabasci, Peter Schneider-Kamp, and René Thiemann.
Bit-blasting for SMT-NTA with AProVE. Proc. SMT-COMP, 14, 2014.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh.
Conflict-driven clause learning SAT solvers. Handbook of Satisfiabil-
ity, Frontiers in Artificial Intelligence and Applications, pages 131-153,
20009.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A simple
and flexible way of computing small unsatisfiable cores in SAT modulo
theories. In Proceedings of the 10th International Conference on Theory
and Applications of Satisfiability Testing (SAT-2007), pages 334-339,
2007.

V. Chvatal. A greedy heuristic for the set-covering problem. Mathemat-
ics of Operations Research, 4(3):233-235, 1979.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp,
and Erika Abrahdm. Smt-rat: an open source c++ toolbox for strategic
and parallel smt solving. In International Conference on Theory and
Applications of Satisfiability Testing, pages 360-368. Springer, 2015.

George E Collins. Quantifier elimination for real closed fields by cylindri-
cal algebraic decompostion. In Automata Theory and Formal Languages
2nd GI Conference Kaiserslautern, May 20-23, 1975, pages 134—183.
Springer, 1975.

Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pages 151-158, New York, NY, USA, 1971. ACM.

Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394-397, July 1962.

Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7(3):201-215, July 1960.

Niklas Eén and Niklas Soérensson. An Extensible SAT-solver. In Selected
Revised Papers of the Sixzth International Conference on Theory and
Applications of Satisfiability Testing, volume 2919 of Lecture Notes in

42

Bibliography

[GMPO07]

[GNT2]

[GWKS08]

[Hua05]

[JDF15]

[Joh73]

[Kar72]

[Lev73]

[LSO08]

[MMZ+01]

[NS07]

[OMA+04]

[RS97]

[Seb07]

Computer Science, pages 502-518. Springer International Publishing,
2003.

Eric Grégoire, Bertrand Mazure, and Cédric Piette. Local-search ex-
traction of MUSes. Constraints, 12(3):325-344, 2007.

Robert S Garfinkel and George L Nemhauser. Integer programming,
volume 4, pages 298-300. Wiley New York, 1972.

K. Gulati, M. Waghmode, S. P. Khatri, and W. Shi. Efficient, scalable
hardware engine for boolean satisfiability and unsatisfiable core extrac-
tion. IET Computers Digital Techniques, 2(3):214-229, May 2008.

Jinbo Huang. MUP: A minimal unsatisfiability prover, 2005.

Maximilian Jaroschek, Pablo Federico Dobal, and Pascal Fontaine.
Adapting real quantifier elimination methods for conflict set compu-
tation. In Frontiers of Combining Systems - 10th International Sympo-
stum, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceed-
ings, pages 151-166, 2015.

David S. Johnson. Approximation algorithms for combinatorial prob-
lems. In Proceedings of the Fifth Annual ACM Symposium on Theory of
Computing, STOC ’73, pages 3849, New York, NY, USA, 1973. ACM.

Richard M. Karp. Reducibility among Combinatorial Problems, pages
85-103. Springer US, Boston, MA, 1972.

L. A. Levin. Universal sequential search problems. Probl. Peredachi
Inf., 9(3):115-116, 1973.

Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing
minimal unsatisfiable subsets of constraints. Journal of Automated Rea-
soning, 40(1):1-33, 2008.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat solver, 2001.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM Sigplan notices,
volume 42, pages 89-100. ACM, 2007.

Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A.
Sakallah, and Igor L. Markov. AMUSE: A minimally-unsatisfiable sub-
formula extractor, 2004.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP characterization of NP.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory
of Computing, STOC 97, pages 475-484, New York, NY, USA, 1997.
ACM.

Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on
Satisfiability, Boolean Modeling and Computation, 2007.

Bibliography

43

[Sei54]

[Tar51]

[Tse68]

[ZMO03]

Abraham Seidenberg. A new decision method for elementary algebra.
Annals of Mathematics, pages 365-374, 1954.

Alfred Tarski. A decision method for elementary algebra and geometry.
1951.

G Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constrained Mathematics and Mathematical Logic, 1968.

Lintao Zhang and S. Malik. Validating sat solvers using an independent
resolution-based checker: practical implementations and other applica-
tions. In 2008 Design, Automation and Test in Europe Conference and
Exhibition, pages 880-885, 2003.

	Introduction
	Background
	SAT Solving
	SMT Solving
	Cylindrical Algebraic Decomposition
	Infeasible Subsets
	Related Work

	The Set Cover Problem
	Infeasible Subsets as Set Covers
	Greedy Algorithm for the SCP
	Weighted SCP
	Possible Metrics

	Towards Smaller Infeasible Subsets
	Preconditioning the Conflict Matrix
	Picking the Best Algorithm

	Implementation and Evaluation
	Gauging the Success of the Preconditioning Step
	On the Choice of t
	Impact on Overall Solver Performance

	Conclusion
	Bibliography

