
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

LEARNING CONTROL STRATEGIES FOR HYBRID

VEHICLES USING NEURAL NETWORKS

Rebecca Haehn

Examiners:
Prof. Dr. Erika Ábrahám
Dr. Walter Unger

Additional Advisor:
Johanna Nellen

Aachen, 31.03.2016

Abstract

This bachelor thesis has the topic to examine, whether it is possible to learn
a control strategy for hybrid electric vehicles using arti�cial neural networks. In
the course of this thesis this is examined for a basic control strategy. To achieve
this goal, di�erent training algorithms for arti�cial neural networks are tested.
We make use of the vehicle model developed for the OASys project to generate
training and test data and the open source libraries FANN and Open NN for
the speci�cation, training and test of neural networks. We demonstrate that it
is possible to learn this basic control strategy with a satisfactory precision, but
not exactly. It is assumed that even better results can be achieved with a higher
computational e�ort.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

Acknowledgements

Thanks to my family for always supporting me.
I would also like to express my gratitude towards Johanna Nellen and Erika

Abráhám for their patience and help with this thesis.

Contents

1 Introduction 9

2 Preliminaries 15

2.1 Vehicle model . 15
2.2 Control strategies . 17
2.3 Arti�cial neural networks . 23

3 Learning control strategies 33

3.1 Generation of training data . 33
3.2 Selecting the neural networks parameters 36
3.3 Topology of the neural network . 37

4 Neural network-based control strategy 39

4.1 Evaluation of control strategies . 40
4.2 Testing the neural networks . 41

5 Evaluation 43

5.1 Final results . 46

6 Conclusion 49

6.1 Future work . 49

Bibliography 51

Appendix 53

A Experimental results 53

viii Contents

Chapter 1

Introduction

The environmental awareness of humanity grew in the last years. It became more
important to reduce the emission of polluting and harmful gases and the consumption
of limited resources. Cars have a signi�cant share of both, by using fuel for combustion
engines and producing exhaust gases.

In order to protect the environment cars should consume as little fuel as possi-
ble because exhaust gases are harmful to both the environment and human health.
Therefore the automotive industry and research seeks for possibilities to reduce the
emissions and fuel consumption. A �rst approach was to develop electric propulsion
systems for cars. The result were electric vehicles. But those have another disad-
vantage, as they do not use fuel, but drive purely electric, they need a battery. As
batteries have a certain capacity, the vehicles have only a limited driving range be-
fore the battery has to be recharged. Compared to conventional cars they have a
short range, the charging times are long, also not everywhere are charging stations
for electric vehicles. A larger battery is not a suitable solution, because that makes
the vehicles much more expensive and heavy.

By combining both propulsion systems it is possible to achieve a wide range for
driving due to the combustion engine and additionally support the combustion engine
with the electric motor, which causes no polluting emissions, for a better e�ciency,
for more details see [9].

Vehicles, which do not drive solely with a combustion engine, but also with an
electric motor, are called hybrid electric vehicles (HEVs). In such vehicles fuel can
not only be used for driving the car but also to recharge the battery which powers
the electric motor. This way the combustion engine can always operate in its opti-
mal rotational speed ranges with a high e�ciency, because if the rotational speed is
higher than requested, the battery becomes recharged, which is relatively favourable
in such a moment. The electric motor can be used to support the combustion en-
gine, which is called boosting, to improve the driving performance. Especially when
starting the car, which often occurs in city tra�c, the electric motor is important, as
the combustion engine is not particularly e�cient at low rotational speeds. So the
total fuel consumption of HEVs is lower than in conventional cars, through increased
e�ciency and recuperation. Additionally, those cars are less heavy than pure electric
vehicles since smaller batteries are su�cient. So HEVs have advantages compared to
fuel-driven as well as electric vehicles.

There are mainly three types of HEVs: parallel, series and combined hybrids.

10 Chapter 1. Introduction

Series HEVs are electric vehicles with a combustion engine to recharge the battery,
parallel HEVs have an engine and an electric motor, which can be used both at the
same time, and combined HEVs are a combination of the two others, further described
in [9].

Battery Power converter Motor

Engine

Transmission
(including clutch
and gears)

Axles and vehicle

Figure 1.1: PHEV con�guration as in [9]

In this thesis only parallel HEVs (PHEVs) are considered, as illustrated in Fig-
ure 1.1. These can be driven by both engines at the same time, so the required driving
force to get the car at a requested speed can be split on both engines. A split value
speci�es which share the combustion engine provides, for example a split value of one
means that just the combustion engine is used, while zero means that just the electric
motor is used. When deciding in which situation which split value should be used our
goal is to minimize the total fuel consumption. To examine for which split values the
fuel consumption is minimal, a vehicle model computing the vehicle state, including
the absolute fuel consumption, after driving with certain split values, is used, which
was developed for the DFG project OASys. This vehicle model will be described in
the next chapter.

So for PHEVs a control strategy which computes this split values is necessary. For
every time step a split value has to be determined, to compute preferably continuous
concrete values for the torques of the motors. The split value can be constant for a
while, then several successive torque values become computed with the same split.
Currently, di�erent control strategies are implemented in the DFG project. They all
have in common that they solve an optimization problem for each split they compute,
the so called energy management problem, which will be described in Chapter 2.2.1.
This causes a high computational e�ort, is time-consuming and needs also memory
and processing units, which might be restricted due to hardware constraints in HEVs.
However it is important that a control strategy computes the split values in real-
time, because they are necessary for the car to drive. It is also desirable to reduce
the computational e�ort, so a faster control strategy would be preferable, if it would
cause a comparable reduced fuel consumption as the current strategies.

In this thesis an approach to develop a faster but equally good control strategy by
using arti�cial neural networks is examined. Arti�cial neural networks are increas-
ingly used to solve concrete application problems, for example optimization problems
and will be explained in more detail in Section 2.3. So it might also be possible to
learn a control strategy for a PHEV with an arti�cial neural network. A network
which has learned a control strategy, could be used as a control strategy as well, after
�nishing the learning process. Instead of computing the split values with the original
strategy, they could be computed by a trained neural network. A trained neural net-
work consists of individual neurons arranged in layers and weighted connections from
the neurons in each layer to the neurons in the next layer. The output of each neuron
is the function value of its so called activation function for the sum of its weighted
inputs. Activation functions are for example a step function, a linear function or the
hyperbolic tangent. The output of the trained neural network is the output of its
neurons in the last layer and is therefore computed by a �xed number of additions,

11

multiplications and possibly potencies. So the computation time depends on the size
of the network and on the number of its connections, but is approximately the same
for each input and memory is not much more required than necessary for the network
itself.

The topic of this thesis is to examine how well a control strategy for a hybrid vehicle
can be learned by an arti�cial neural network, to decide if the network would be a
suitable alternative to the original strategy. There are di�erent types of strategies,
for example basic strategies as the following:

� Rule-based strategies: e.g. ICE, where always the internal combustion engine
is used or EM, which uses the electric motor whenever this is feasible

� Non-predictive strategies based on optimal control: e.g. equivalent consumption
minimization strategies (ECMS), which minimize the sum of the current fuel
consumption and the input power of the electric motor times a (time dependent)
equivalence factor

� Strategies based on optimal control with prediction horizon: e.g. RDP and
ADP, which are based on dynamic programming

There are also more complex strategies, for example learning-based strategies, which
use those basic control strategies for learning. To test if it is in principle possible
to learn a control strategy with a neural network, it is appropriate to start with a
preferably continuous, basic strategy and to continue with a better, but more complex
one, if it works to learn the basic strategy. As for learning strategies with a prediction
horizon a neural network would need the predictions as inputs as well, which would
increase the number of inputs, in this thesis just non-predictive strategies based on
optimal control are tried to be learned.

The actual intention of trying to learn a control strategy using neural networks
is to learn the genetic-algorithm-based control strategy GeneiAL, which is explained
in [13]. But as this strategy currently uses a prediction horizon and would be quite
di�cult to learn, �rst a basic strategy is tried to be learned to test whether it is at all
possible to learn a strategy like this. Also the generation of training data for GeneiAL
would be way more time-consuming than for an ECMS, as more dimensions of inputs
are necessary. If it is possible to learn a basic strategy, later we will make experiments
with learning GeneiAL too.

Using a neural network instead of the original strategy could speed up the com-
putation by the reduced computational complexity, optimization problems no longer
need to be solved every time a new split is computed, as the neural network com-
putes its output with basic arithmetic operations and the time-consuming training
process of the neural network is done before using it as a control strategy. Solving
the optimization problem to minimize the fuel consumption is more time and mem-
ory consuming compared to computing the output of a neural network, because for
each considered split value a vehicle is simulated to be able to evaluate the total
consumption, which will be described in more detail in Section 2.2.2.

This thesis begins in Chapter 2 with a description of the used vehicle model and the
corresponding control strategies, especially those, which are supposed to be learned.
Also the general energy management problem, which should be solved by a control
strategy, is de�ned. This is necessary to be able to evaluate, how good a control
strategy is. In Chapter 2 furthermore the basics of arti�cial neural networks are
described, including the training and testing process and di�erent libraries. The main

12 Chapter 1. Introduction

part of this thesis is Chapter 3, where the decisions concerning the concrete training
process of the arti�cial neural network, which is supposed to learn a control strategy,
are described, including the generation of training data. The following testing process,
especially the testing criteria and how a trained network becomes embedded into a
control strategy, is explained in Chapter 4. In Chapter 5 the di�erent networks are
evaluated and the developed strategy is compared to the learned strategy. The thesis
ends with a short summary, an evaluation of the achieved results and a brief discussion
of possible future work in Chapter 6.

13

Notation

Especially in the �rst part, where the vehicle model is described, lots of di�erent
notations occur. For a better readability of the following chapters, the variables and
constants used in Section 2.1 are listed here:

vact ∈ R≥0 actual velocity in m/sec
vreq ∈ R≥0 requested velocity in m/sec
accreq ∈ R requested acceleration in m/sec

T ∈ N≥0 duration of a driving cycle in sec
t ∈ [0, T] current time in sec

i ∈ {1,2,3,4,5} current gear
ri ∈ R≥0 gear ratio for gear i

ωwh ∈ R≥0 wheel angular velocity in rad/sec
ωem ∈ R≥0 rotational speed of the electric motor in rad/sec
ωice ∈ R≥0 rotational speed of the combustion engine in rad/sec

Twh ∈ R actual torque at the wheels in Nm
Tcs ∈ R actual torque at the crankshaft in Nm
Treq ∈ R requested torque at the crankshaft in Nm
Tbr ∈ R torque at the brake in Nm
Tem ∈ R torque at the electric motor in Nm
Tice ∈ R torque at the combustion engine in Nm

splitice ∈ [0, 1.5] torque split for the combustion engine, values above 1 mean
that the combustion engine is used to move the vehicle and
recharge the battery at the same time

ṁf ∈ R≥0 fuel mass rate (instantaneous consumption) in g
consf ∈ R≥0 absolute fuel consumption in g
SoC ∈ [0,1] battery state of charge

rwh ∈ R≥0 wheel radius in m
mr ∈ R≥0 equivalent mass of the rotating parts of the vehicle in kg
Pem ∈ R≥0 electric motor input power in W
Hl ∈ R≥0 lower heating value of the fuel m2/s2

ηgb ∈ R≥0 mechanical transmission e�ciency

m ∈ R≥0 vehicle's mass in kg
g ∈ R≥0 acceleration of gravity in m/sec2

A ∈ R≥0 vehicle frontal area in m2

ρ ∈ R≥0 density of air in kg/m3

Cd ∈ R≥0 air drag resistance
θ ∈ [0, 90] road slope
fr ∈ R≥0 rolling resistance

14 Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter �rst the vehicle model, developed for the DFG project OASys, is de-
scribed. Then the corresponding control strategies, as well as the energy management
problem they are supposed to solve, are explained. Especially the strategies, which
are supposed to be learned, are described in more detail. The reason for choosing this
strategies is explained too.

It is continued with a description of arti�cial neural networks in general, for a
better understanding of the main part of this thesis. This includes the training and
testing process and the descriptions of two di�erent libraries for arti�cial neural net-
works that have been used in this thesis.

2.1 Vehicle model

In the following, the vehicle model, as described in [13], is used in this thesis, to
simulate a PHEV driving with a given control strategy. This is necessary to determine
for example the absolute fuel consumption and the CO2 emission for certain driving
cycles, which are used as a metric to compare di�erent strategies. Also some of the
strategies use this vehicle model to simulate the behaviour of a vehicle for certain
split values, to decide which one they return.

The car's propulsion consists of two engines, an internal combustion engine and
an electric motor, which is illustrated in Figure 2.1. Both can accelerate the car
simultaneously, as it is a PHEV. In order for this to be possible, both have to be
coupled to the same axis. This axis is attached to the gearbox, which is connected to
the wheels. The wheel angular velocity ωwh depends on the velocity v of the vehicle:
ωwh = v

rwh
, where rwh is the wheel radius. The engines move with the same angular

velocities, because they are connected to the same axis, so ωice = ωem holds. To
convert the angular velocities at the engines to the one at the wheels, the gear i and
the corresponding gear ratio ri are relevant: ωwh = ωice

ri
.

For a requested acceleration a a certain torque at the wheels Twh is necessary,
which can be computed with the following formula, taken from [4]:

Twh = rwh · (
1

2
ρCd ·A · v2 + (m+mr)a+m · g · fr · cos(θ) +m · g · sin(θ)) (2.1)

where ρ is the density of air, Cd the air drag resistance, A the vehicle frontal area, m
the vehicle's mass, mr the equivalent mass of the rotating parts of the vehicle, g the

16 Chapter 2. Preliminaries

Electrical motorBattery

Gearbox

Combustion engineTank

Clutch

︸ ︷︷ ︸
rwh

Twh ωwh
Tice

ωice

Tem

ωem

Tcs

ri

Figure 2.1: PHEV model as in [4]

acceleration of gravity, fr the rolling resistance, θ the road slope. This formula takes
the resistances that must be overcome by the vehicle, while driving, into account.

The torque at the crankshaft Tcs can be calculated from Twh, depending on the
current gear, using the formula from [13]:

Tcs =
Twh + Tbr
ηgb · ri

(2.2)

where ηgb, which is the mechanical transmission e�ciency, is assumed to be constant
and Tbr is the torque at the brake. In these formulas immediate torque responses are
assumed.

The requested torque at the crankshaft Treq is generated by the electric motor
Tem and the combustion engine Tice:

Treq = Tice + Tem (2.3)

A control strategy u distributes Treq on the two engines:

Tice = u · Treq (2.4)

Tem = (1− u) · Treq (2.5)

How such a control strategy can be computed is described in the next section.
To calculate how much fuel would be used for a certain control strategy, a driv-

ing car is simulated. Therefore several components are necessary, as illustrated in
Figure 2.2:

� Test route, so called driving cycle: contains for each time step (in seconds) of
the simulation, the time step t itself, acceleration accreq, gear i and requested
velocity vreq; the values in-between are interpolated, if more data is needed

� Driver: gets requested velocity vreq, actual velocity vact, and gear ratio ri ac-
cording to the driving cycle and calculates Treq

� Control strategy: computes a split, to distribute Treq to Tice, Tem and Tbr,
further described in the next section

� Control converter: checks if the split is suitable and returns Tice, Tem and Tbr

� Vehicle: gets Tice, Tem, Tbr and gear i and calculates amongst other values the
absolute fuel consumption consf and the battery state of charge SoC

2.2. Control strategies 17

Driving cycle Driver Control strategy

Vehicle

Control converter

Tice, Tem, Tbr

splitice

Treq

vreq

vact

ri

Figure 2.2: Simpli�ed OASys model

With the above described model a control strategy can be evaluated by simulating
a driving car. The evaluation criterion is mainly how much fuel is consumed, as every
control strategy is an approach to solve the energy management problem, which has
the goal to minimize the fuel consumption and is described in more detail in Section
2.2.1. For an exact comparison the SoC has to be considered too, as recharging
the battery may consume fuel as well and a higher charged battery will enable to
save more fuel while the next ride. So a control strategy with a slightly higher fuel
consumption might eventually be better, when the SoC is higher. Another evaluation
criteria could be the CO2 emission, but this is neglected in this thesis. In the next
section control strategies in general as well as some concrete strategies are explained.

2.2 Control strategies

Control strategy

Twh

ωwh

ri
vact
consf

SoC
ṁf

t

splitice

Figure 2.3: Control strategy as implemented for the OASys project

As mentioned before, the purpose of a control strategy is to compute a control u,
here called splitice, which distributes the Treq to Tice, Tem and Tbr. Therefore it gets
several input values as illustrated in Figure 2.3:

� target values (requested torque Treq ∈ R in Nm, wheel angular velocity ωwh ∈
R≥0 in rad/sec, gear ratio ri ∈ {r1, r2, r3, r4, r5} for the current gear i)

� vehicle state (actual velocity vact ∈ R≥0 in m/sec, absolute fuel consumption

18 Chapter 2. Preliminaries

consf ∈ R≥0 in g, battery state of charge SoC ∈ R≥0, fuel mass rate (instanta-
neous consumption) ṁf ∈ R≥0 in g)

� current time t ∈ [0, T] in sec, where T ∈ N≥0 is the duration of the driving cycle
in sec

The only output the control strategy has to compute is the torque split splitice ∈
[0, 1.5] for the combustion engine, which is de�ned as the share of the requested
torque the combustion engine has to provide. Split values above one mean that the
combustion engine is not just used to drive the vehicle, but also to recharge the
battery. While the battery becomes recharged the electric motor cannot be used to
drive the vehicle, so in this case the combustion engine has to provide the requested
torque and the additional necessary energy to recharge the battery. The strategies,
which will be used in this thesis, compute a new split once every second, so the
computation time is limited. A control strategy has to be an online algorithm, as the
future states of the vehicle are unknown.

In this thesis the focus is on equivalent consumption minimization strategies
(ECMS), which are explained in more detail in Section 2.2.2. There are also more
complex strategies, for example online learning algorithms, which learn di�erent basic
control algorithms, but these will not be part of this thesis.

As the fuel consumption should be minimized, every approach for a control strat-
egy tries to solve the energy management problem, which is described in the next
section. So for computing the splitice an optimization problem has to be solved. Nev-
ertheless are the control strategies, which are part of this thesis, just an approximation
to the actual solution, because they are online algorithms and therefore have the no-
regret property, which means, they can not change a split, if it was in retrospect not
the optimal decision.

2.2.1 Energy management problem

The quality of a control strategy u can be determined by a cost function L, which
calculates the costs for every time step: the lower the total costs, the better the
control strategy. The input of L are the evaluation criteria for the control strategies,
for example the fuel consumption and the SoC. The control u(τ), which is the splitice
at the time step τ , is su�cient to compute the fuel consumption for time step τ when
a driving cycle is given, as the fuel consumption depends just on the rotational speed
ωice and the torque Tice, which can be computed from the splitice and the information
in the driving cycle. So here L depends on u(τ), SoC(τ) and τ : L(u(τ), SoC(τ), τ).

The energy management problem, as de�ned in [4], is to �nd a control strategy u,
which is cost-minimal, optimally for arbitrary driving cycles. Such a control strategy
solves the following minimization problem:

J∗ = min
u(·)

T∑
τ=0

L(u(τ), SoC(τ), τ) (2.6)

for a given driving cycle over a equidistantly discretized time interval [0, T], where the
SoC(0) has to be the initial SoC and Formula 2.1 and the restrictions for the SoC
in Formula 2.15 must hold, with acceleration a and velocity v given by the driving
cycle. This basically means, the car must drive according to the driving cycle. The
�nal SoC and other aspects are not considered here for simplicity.

2.2. Control strategies 19

Now this is the optimization problem, which should be solved as good as possible
by a control strategy. It is possible to �nd the optimal solution, for example with
dynamic programming, but not in real-time, and not without knowledge about the
whole driving cycle. So the basic strategies, which are described in the next section
and do not have knowledge of the prospective route, can just try to approximate the
optimal solution.

2.2.2 Equivalent consumption minimization strategy

In this section di�erent equivalent consumption minimization strategies, as well as the
concrete energy management problem they are supposed to solve, are described. First
the simplest variant is described, later di�erent approaches are introduced. Those
strategies should later be learned by arti�cial neural networks. In the following equiv-
alent consumption minimization strategy is abbreviated as ECMS. In this strategies
the cost of using the battery is weighted against the cost of using fuel with an equiva-
lence factor s. The ECMS solves the following energy management problem from [4],
under the conditions de�ned in Section 2.2.1:

J∗ = min
u(·)

t∑
τ=0

ṁu
f,equ(τ) (2.7)

Because only the already driven route is known, only the sum up to the current time
step t can be minimized. As the name of the strategy already says, the cost function,
which is tried to be minimized here, is the equivalent consumption ṁu

f,equ(τ):

ṁu
f,equ(τ) = ṁf (ωice(τ), Tuice(τ)) +

s

Hl
Pem(ωem, T

u
em(τ)) (2.8)

where ṁf (τ) is the fuel consumption, Hl is the lower heating value of the fuel and
Pem is the electric motor input power.

There are di�erent approaches to determine the equivalence factor s. The easiest
possibility is to use a constant value. In this ECMS, a constant factor of 3.2 is used.

For given equivalence factor and input values, the strategy calculates every time
step t a new split value split(t). If Treq ≤ 0 then split = 0, and if Treq > 0 a
search to �nd the best split is performed. Depending on the implementation di�erent
search algorithms are used. In the C++ implementation a golden section search is
performed, which is similar to a binary search. In the Matlab implementation, which
can be used to generate C++ code, a search over discrete values is performed.

The search is performed in the interval [0, 1.5] to �nd the split with the least
equivalent consumption in the next simulation step. To determine this split, in every
step of the search the fuel consumption of the car in the next simulation step, driving
with the currently examined split, is computed, by simulating one time step with the
vehicle model. The corresponding consumption of electric energy becomes computed
as well to calculate the equivalent consumption with Equation 2.8.

This is computationally intensive and therefore time consuming, as in every step
for di�erent split values the equivalent consumption is calculated by computing a
simulation step with the vehicle model and the electric motor input power. This com-
putations are for a single split more time consuming when using the C++ implemen-
tation, as the Matlab computation is more e�cient, but in the Matlab implementation

20 Chapter 2. Preliminaries

more di�erent split values are examined. The C++ implementation has the disad-
vantage that the search is based on the assumption that the equivalent consumption
depending on the split is a strictly unimodal function, which can not be guaranteed.

Despite the computational e�ort, the computed splits are just an approximate
solution for the minimization problem in Equation 2.7, which is to calculate the
minimum of the given sum. A sum is minimal, when every single summand is minimal.
The summand in time step τ as speci�ed in Equation 2.8, depends on ωice(τ), ωem(τ),
Tuice(τ) and Tuem(τ), because s and Hl are constants here. So the split just depends
on the gear and the actual and requested velocities, which are already enough to
compute the other values. It is noticeable that the split does not depend on the
SoC, when using this strategy with a constant equivalence factor. Therefore a neural
network, which should learn this ECMS, would get at most the three input values gear,
actual velocity and requested velocity. This explains, why exactly such a strategy is
supposed to be learned by a neural network, although it is not the best one. It is a
basic strategy, so the split value does not depend on too many factors, especially as
this strategy does not use a prediction horizon. And to test, if it is possible to learn a
control strategy with a neural network, it should be started with a basic strategy. A
problem might occur, if the output of this strategy is not continuous, as continuous
functions are easier to learn for arti�cial neural networks.

In the following the abbreviation ECMS is only used for the equivalence consump-
tion minimization strategy, which uses a constant equivalence factor. There are other
ways of computing an equivalence factor, two of those are de�ned below.

PECMS

A possibility to improve the ECMS, described in the last section, is to choose a time-
dependent equivalence factor s(τ). There are di�erent approaches to determine the
equivalence factor s(τ). One possibility is an equivalence factor depending just on the
current SoC:

s(t) = s0 + kp(SoCref − SoC(t)) (2.9)

with an initial value s0 for s(t) and a proportional feedback gain kp. In Matlab,
the implemented strategy uses s0 = 3.2 and kp = 2.5. The resulting strategy is
the so called proportional equivalent consumption minimization strategy (PECMS).
This strategy also solves the energy management problem in Equation 2.7, only the
equivalence factor s in the equivalent consumption in Equation 2.8 has to be replaced
by s(τ).

PIECMS

In other approaches, the equivalence factor depends not just on the current SoC, but
also on the sum of the previous SoC(τ), from [4]:

s(t) = s0 + kp(SoCref − SoC(t)) + ki

t∑
τ=t0

(SoCref − SoC(τ)) (2.10)

with an initial value s0 for s(t), a proportional feedback gain kp, as for the PECMS,
and additionally an integral feedback gain ki. In the Matlab implementation, s0
and kp are the same as in the PECMS and ki = 0.001. This strategy is the so called

2.2. Control strategies 21

proportional integral equivalent consumption minimization strategy (PIECMS). It also
solves the energy management problem in Equation 2.7, but the equivalence factor s
in the equivalent consumption in Equation 2.8 has to be replaced by s(τ).

One of these strategies should be learned by an arti�cial neural network later. To
decide which one the input/output behaviours of the strategies have to be considered,
which is done in Chapter 3. In the next section �rst a control instance is introduced,
the so called control converter, which is supposed to ensure that the vehicle model
stays within certain mechanical bounds. It also has the task to convert the split,
which is computed by the control strategy, into the torque values, which are expected
by the vehicle model.

2.2.3 Control converter

In the last section control strategies were explained. In those strategies it has usually
not yet been considered, that for a safe and smooth operation the torque values and
rotation speeds, as well as the SoC, resulting from the calculated split, must stay
within certain bounds, as de�ned in [4]:

ωice,min ≤ ωice ≤ ωice,max (2.11)

ωem,min ≤ ωem ≤ ωem,max (2.12)

0 ≤ Tice ≤ Tice,max(ωice) (2.13)

Tem,min(ωem) ≤ Tem ≤ Tem,max(ωem) (2.14)

SoCmin ≤ SoC ≤ SoCmax (2.15)

The only torque value, which can be negative, is Tem, where a negative value means
that the battery is recharged, either by the combustion engine or during braking.

To ensure that the vehicle model stays within those bounds in this model a so
called control converter is used. This is a control instance, which tests if the vehicle
state stays within these bounds, when using the split the control strategy computed
in the next simulation step. If this is not the case the control converter computes a
new split, for which the vehicle state is admissible if possible.

This is not the only task of the control converter, which is illustrated in Figure 2.4,
its other purpose is to convert the split computed by the control strategy into the
torque values, as the vehicle model expects torque values. The vehicle is simulated
every 0.02 seconds, so the control converter has to provide a new torque distribution
every 0.02 seconds, too. The split used to compute this distribution remains �xed for
one second, which reduces the computational e�ort.

Control converterTreq

splitice
Tice

Tem

Tbr

Figure 2.4: Control converter as implemented for the OASys project

How the torque distribution is computed exactly is described in detail in the
following. After splitice is computed, how exactly depends on the control strategy
and is described for the strategies, which are used in this thesis, in Section 2.2.2, the

22 Chapter 2. Preliminaries

control converter gets splitice and Treq as input and tests if Equations 2.11 to 2.15
hold when this split is used. If not, a new split has to be computed, in this case the
control converter computes the new split, depending on the condition which did not
hold. Then the control converter calculates the torque values. If Treq ≥ 0, which
means the car is driving, the following formulas are used:

Tice(t) = splitice(t) · Treq(t) (2.16)

Tem(t) = (1− splitice(t)) · Treq(t) (2.17)

Tbr = 0 (2.18)

As the goal is to minimize the fuel consumption Tbr should be always kept minimal
and therefore is just not zero, when the car has to brake, but in this case Treq < 0
holds. So Tbr does not depend on the split value, when the vehicle is not braking, as
it would be a waste of fuel to brake and use the engines to drive the vehicle at the
same time, which is therefore impossible.

If Treq < 0 the car is braking and therefore the torque values are computed di�er-
ently. While braking the combustion engine can just be used to additionally charge
the battery, but actually Tice is mostly zero. Whenever the battery is not completely
charged braking should be used to recharge the battery as much as possible, so Tem
is negative. When charging the battery the condition in Equation 2.15 has to be con-
sidered. In this case the following formulas are used to calculate the torque values:

Tice(t) = 0 (2.19)

Tem(t) = max(Treq(t), Tem,min) (2.20)

Tbr(t) = −(Treq(t)− Tem(t)) · ri (2.21)

To compute Tbr from Treq the gear ratio is necessary, because Treq is the torque
requested at the crankshaft and not the one at the wheels, but the brakes a�ect
the wheels directly. So the remaining Treq, when recharging the battery as much as
possible, has to be converted to the remaining Twh,req, which has to be provided by
the brakes. As Twh,req = Treq · ri applies, follows Tbr(t) = −(Treq(t)− Tem(t)) · ri.

So the control converter distributes for each time step t the Treq(t) to the engine
torques according to Equations 2.16 to 2.21, and then returns Tice, Tem and Tbr as
calculated above.

It is possible to turn the control converter o�, which is useful to examine the
changes in the vehicle state when driving with a certain control strategy. This is
relevant for the evaluation of control strategies using neural networks later. When
turning o� the control converter it is important to convert the split to the engine
torques for the simulated vehicle, which is usually done by the control converter.
Without using the control converter, the simulated vehicle always uses the torques
computed with the split the control strategy has calculated, even if this would cause
for example a completely recharged battery. This way it can be examined, if two
simulated vehicles using di�erent control strategies just behave similar because of
the control converter, or if the strategies are similar, which has to be determined,
when comparing a strategy using an arti�cial neural network with the strategy the
network was supposed to learn. In the next section �rst arti�cial neural networks are
introduced.

2.3. Arti�cial neural networks 23

2.3 Arti�cial neural networks

Arti�cial neural networks have a wide �eld of application, amongst other also to solve
optimization problems. In this thesis arti�cial neural networks should be used to
learn a control strategy for a hybrid vehicle, to reduce the computation time. In this
section the basics of arti�cial neural networks are explained. First, the structure of
arti�cial neural networks is introduced, then the training process is explained and
the subsequent test phase. Finally, two libraries for arti�cial neural networks are
presented.

An arti�cial neural network (ANN) is constructed similar to a biological neural
network. It consists of layers of neurons and connections between those neurons.
There is an input layer, an output layer and additional hidden layers between those.
Here are only feed forward networks considered, those have just connections in direc-
tion from the input layer to the output layer, and from each neuron just to neurons
from the respectively next layer. They can be regarded as directed, acyclic graphs. It
is also possible to construct networks with connections in both directions but those
networks are way more complex, di�cult to train, and sometimes show chaotic be-
haviour, as explained in [18].

inj g aj
=

∑
i wi,j · ai = g(inj)

Input
Links

Input
Function

Activation
Function

Output Output
Links

ai

wi,j

Figure 2.5: Mathematical model for a neuron j as in [18]

The ANN calculates output values according to the given input values, based on
its weights and the network topology. To understand how exactly this is computed, it
must be explained, how a single neuron works. The structure of a neuron is shown in
Figure 2.5. As can be seen a neuron j gets di�erent input values ai from the neurons
in the previous layer via the input links, and an additional input value a0 = 1 called
bias, whose weight w0,j is used to simplify the activation function. Each of those
links has a weight, where the weight of the link from neuron i to neuron j is called
wi,j . The input inj of neuron j with n inputs is then the weighted sum of its inputs
inj =

∑n
i=0 wi,j · ai. The output aj of neuron j is calculated using the activation

function g, so aj = g(inj). This output is then forwarded to the neurons in the next
layer via the output links. This way the output of the whole network is computed.

Which function is computed by the network depends on several settings. First, the
topology of the network, how many neurons it includes and how these are arranged in
layers and connected with each other. Furthermore the weights of these connections
and the activation functions of the neurons.

There are di�erent activation functions, which are usually non-linear functions, for
example step functions, the sign function or sigmoid functions, which are scaled and
shifted hyperbolic tangent functions, illustrated in Figure 2.6. An important criterion
for choosing an activation function later is the di�erentiability of it, which is necessary

24 Chapter 2. Preliminaries

for several training algorithms. The sign function for example is not di�erentiable in
zero and has everywhere else the derivative zero, which would prevent the weight
adjustment by some training algorithms.

(a) step (b) sign (c) linear (d) sigmoid (e) hyperbolic tangent

Figure 2.6: Activation functions

The input of a neuron should be in the intervals [0, 1] respectively [−1, 1], depend-
ing on the activation function, for the neuron to have di�erent output values, e.g. if
a neuron has the sign function as activation function and all possible input values are
positive, the output is always the same. This can also occur when using an activation
function which has continuous output values, for example a sigmoid function, if all
possible input values are much larger than one, the output is always nearly one, which
makes it di�cult to detect di�erences in the inputs.

For the ANN to be able to detect a di�erence in various inputs, it is important that
the weights match to the intervals in which the input values are, because the input
of each neuron is the sum of the weighted inputs and has to be in the interval [0, 1]
respectively [−1, 1], depending on the activation function, for the neuron to detect
a di�erence. Scaling the input data can simplify �nding appropriate weights. The
bene�t of scaling the input of the ANN is explained in the next section.

2.3.1 Scaling

In this section it is described how the input and output data of an ANN can be scaled
and how this can improve the training process, which is explained in the next section.
The output values have to be scaled in most cases, because they are the outputs
of the neurons in the output layer and as such computed by an activation function,
which usually only assumes values in [−1, 1]. So if the expected output values are in
a di�erent interval, they have to be scaled. In this case it is necessary to scale the
expected output already in the training data, because while training the output of
the network is compared with the expected output in the training data for which it
is necessary that those values are comparable.

A possible scaling function to scale a value x ∈ [xmin, xmax] to a value xscaled ∈
[min,max] is the following linear function:

xscaled = min+
x− xmin

xmax − xmin
· (max−min) (2.22)

The input values do not have to be scaled, as the ANN can compensate di�erent
orders of magnitude in the inputs by weight modi�cation. Nevertheless it is sensible
to scale the input values to a uniform interval, since the learning process otherwise can
be slowed down, especially when the input values di�er by many orders of magnitude.
This is the case, as the initial weights have to be set and it is di�cult to �nd suitable
initial weights for non-scaled inputs in di�erent orders of magnitudes. If all weights are
in the same order of magnitude many iterations are necessary to adjust the weights to

2.3. Arti�cial neural networks 25

compensate the di�erent orders of magnitude in the inputs. So a better performance
is expected, if all input values a�ect the ANN equally strong, see [2].

To scale the input values, the range in which all possible input values are included
has to be known from the beginning, which is not given for every application. Another
disadvantage is that because of some outliers the normal input signal could be mapped
to just a small share of the target interval. This can be prevented by the elimination
of outliers before scaling. The target interval depends just on the used activation
function.

In the next section the training process, which should be speeded up by scaling
the input, is explained in detail.

2.3.2 Training phase

In this section the training phase of an ANN is explained, including the corresponding
decision about the topology, the activation functions and the initial weights, which
have to be made before starting the actual training process. Then it is continued with
a concrete training algorithm.

Before trying to learn a function using an ANN, it has to be examined, which
topology is suited for learning this function, as not every topology o�ers the same
abilities. A perceptron network, which has no hidden layer, just the input and out-
put layers, is only able to learn linearly separable functions, according to [18] for
example AND and OR, but not XOR, which is illustrated in Figure 2.7. An ANN
with one hidden layer, which has to be su�ciently large, is already able to represent
any continuous function of its inputs with any desired accuracy. An ANN with two
hidden layers can even represent discontinuous functions, but the necessary number
of neurons in the hidden layers grows exponentially with the number of inputs, as
mentioned in [18]. For di�erent network structures it is harder to investigate which
functions can or can not be represented.

Figure 2.7: Linearly separable functions, taken from [18]

So neural networks are useful to learn for example a continuous function for which
just some values are given, but not the function itself, or a preferably continuous
function which is given. Learning a given function with a neural network is just
useful, if the output of the function has to be computed in real-time, but the function
itself is di�cult to compute. Such a function could be approximated by the network,
which would reduce the computational complexity and the time required to determine
function values.

To construct a network, which computes a given function, �rst the topology of
the network has to be determined. There is no known rule for determining how many
layers, neurons and connections between those neurons a network should optimally

26 Chapter 2. Preliminaries

have, depending on the function to be computed. So it is necessary to test di�erent
topologies and choose the one, which works best. For a certain topology activation
functions for the neurons have to be selected, then a network is created with initial
weights and this activation functions. The initial weights can be random values in an
interval, which should be chosen according to the possible values of the input data,
so that the input of the activation function is approximately between -1 and 1, and
the network is able to detect a di�erence in the input, as explained before. Another
possibility to set the initial weights is to use the Algorithm 1 developed by Widrow
and Nguyen [14], which depends on the smallest and largest possible input value,
so we assume here that the input values are between -1 and 1. This algorithm is
developed for a network with just one hidden layer, but it can be applied recursively
to neural networks with more hidden layers.

function init_weights(number of hidden neurons h, number of input values n)
initialize all weights with random values
wi ← weights of neuron i
β ← 0.7 · h 1

n

for all hidden neurons i do
for all weights wj,i do

wj,i ← wj,i

‖wi‖ · β
end for

end for

end function

Algorithm 1: Initialize weights from [14]

The resulting network does not compute the correct function, yet. To compute
the correct function, the weights have to be adapted to the problem. This is achieved
by training the network.

A network is trained with some training data, a given set of data, according to
the function that should be learned. This training data consists of data tuples, which
each contain possible input values for the function and the corresponding function
values. During training, the network gets some of these input data and computes
the output with the initial weights, according to the di�erence between this output
values and the function values from the training data the weights are adapted, for
example with the back-propagation algorithm for learning in multilayer networks in
Algorithm 2.

The training depends on several factors:

� the initial weights

� the selection of the training data

� the training algorithm, which itself can depend on:

� how frequently the weights become adapted, e.g. after each input pattern
or after the whole data set

� the learning rate

� the error function

� other individual factors (e.g. an increase factor or a weight decay shift)

2.3. Arti�cial neural networks 27

function back_prop_learning(training data, network with L layers, initial
weights wi,j and activation function g)

∆ vector of errors, indexed by nodes
repeat

for all tupel (x,y) in training data do
for all nodes i in input layer do

ai ← xi
end for

for l = 2 to L do

for all nodes j in layer l do
inj ←

∑
i wi,j · ai

aj ← g(inj)
end for

end for

for all node j in output layer do
∆[j]← g′(inj) · (yj − aj)

end for

for l = L− 1 to 1 do
for all node i in layer l do

∆[i]← g′(inj)
∑
j wi,j ·∆[j]

end for

end for

for all weight wi,j do
wi,j ← wi,j + α · ai ·∆[j]

end for

end for

until stopping criterion is satis�ed
return network
end function

Algorithm 2: Back-propagation for learning in multilayer networks as in [18, 12]

� the stop criteria

� the number of iterations

2.3.3 Testing phase

The training phase should be followed by a testing phase, to test whether the ANN
correctly learned the function. This is not always given, sometimes the training data
contain too less data tuples for the number of neurons in the network, in this cases
so called over�tting is performed, as described in [18]. This means the ANN just
memorizes the given data tuples, but does not manage to compute the correct output
values for di�erent input data. It is also possible to train a too simple network with
complex training data, whose relation is complicated to learn, in this cases the ANNs
simply do not manage to learn the correct functions as well, as they are too complex.
So it is necessary to check if the ANN works as desired.

To achieve an ANN which successfully learned a given function, it is often nec-
essary to have several training and testing phases. It is started with a topology and

28 Chapter 2. Preliminaries

activation and training functions which are assumed to produce an appropriate ANN.
The training of this network is followed by a testing phase and if the result is not good
enough, the training becomes repeated with di�erent parameters, for example more
or less neurons, another activation function or a di�erent training function. After
this the resulting ANN is tested again, if the result is still not good enough then the
procedure becomes executed again until the outcome is su�ciently good.

In the process the changes of the parameters are not just arbitrary. For example
if less neurons cause an even worse result, the next time again more neurons are
used. It is also recommendable to train and test not just one network with the same
parameters, as the resulting ANN is not always the same and sometimes it might
seem to be a worse result than before, but in fact the average result would be better.

The testing phase requires some test data, which consists of data tuples. Those
data tuples need to have exactly the same number of input and output values as
the ones in the training data. The testing process provides the most useful and
realistic results, when the test data inputs are di�erent from the training data inputs.
Nevertheless the test data outputs in each tuple have to be the function values of the
inputs in the same tuple, for the function which should have been learned.

While testing the ANN, it gets the input values of each tuple in the test data as
inputs and has to compute the corresponding outputs. This outputs should be the
same as the ones in the test data, as those are the function values, which should be
computed by the ANN. The larger the di�erence between those values, the worse the
function was learned.

The error of each output can be de�ned using di�erent metrics. It should be noted
that a small di�erence to the expected output could be due to rounding, as the values
are calculated by a computer. To compute the distance between an output x of the
network and the corresponding expected output x∗ according to the test data for
example the following metrics can be used:

� Discrete metric: d(x, x∗) =

{
1 , if |x− x∗| > ε

0 , else

� Manhattan metric: d(x, x∗) = |x− x∗|

� Euclidean metric: d(x, x∗) = (x− x∗)2

For multidimensional outputs the sum of the distances of the individual entries is
calculated and divided by the number of outputs. If the output is either 1 or −1
respectively 0, but no other value, the fault can be simply measured with the discrete
metric, where ε = 0.

The total error of a set of test data can be computed as the sum of the errors
of all output values of each test data tuple, using a �xed metric: e =

∑
x d(x, x∗).

When using the discrete metric for this, the total error corresponds to the number of
errors in the set of test data. But especially if there are several sets of test data with
di�erent length the total error is not comparable, because it contains no information
regarding the individual error size anymore. The share of mistakes on the number
of tuples tested, would be a more suitable comparison value. So the average error
would be better comparable. The average error can be calculated from the total
error by dividing by the number of test data. When computing the average error
also the number of output values for each tuple should be considered by dividing
by the number of outputs per input tuple as well. In the next section two concrete
implementations of arti�cial neural networks are introduced.

2.3. Arti�cial neural networks 29

2.3.4 Implementation

There are several di�erent implementations for arti�cial neural networks. As the neu-
ral network should be used for learning a control strategy for a hybrid vehicle and if
possible be used itself to implement such a control strategy, it should be implemented
in the same programming language as the control strategy. The programming lan-
guage used for the existing strategies and the vehicle model is C++. Therefore FANN
and Open NN, which are open source neural network libraries available in C++, come
into consideration.

FANN

FANN [15] is the abbreviation for Fast Arti�cial Neural Network, which is a library
for neural networks developed mainly by Ste�en Nissen as a graduate project. As the
name says, the library is supposed to be as fast as possible. The following information
in this section are taken from the reference manual for FANN [16].

With the FANN library it is possible to create networks with connections from
every neuron to every neuron in the respectively next layer, but also networks with
less connections or with connections not just to the next layer but to all following
layers. Also several activation functions are implemented, for example the following,
where s is the steepness, a parameter to further adapt the functions, x is the sum of
the weighted input values and y is the function value:

� SIGMOID: y = 1
1+exp(−2·s·x)

→ range of values: 0 < y < 1

� SIGMOID_SYMMETRIC (hyperbolic tangent): y = tanh(s · x)
= 2

1+exp(−2·s·x) − 1

→ range of values: −1 < y < 1

� LINEAR_PIECE_SYMMETRIC (bounded and linear): y = x · s
→ range of values: −1 < y < 1

Those are the activation functions, which are used in this thesis. Because as mentioned
in [1] a network with three layers, when using the sigmoid activation function, is
already able to learn all functions a network with di�erent activation functions could
learn. In FANN are however more activation functions implemented.

Furthermore the library o�ers two di�erent error functions for the training, a linear
and a hyperbolic tangent error function. There are �ve di�erent training algorithms
available:

� INCREMENTAL: a standard backpropagation algorithm, weights are updated
after each input pattern, see Algorithm 2
→ sometimes fast, but does not train well for advanced problems

� BATCH: a standard backpropagation algorithm, weights are updated after cal-
culating the mean square error for the whole data set
→ slower than incremental, but better solutions for some problems

� RPROP: resilient backpropagation, a batch training algorithm, where each
weight adaptation depends on the last weight change and the sign of the gradi-
ent of the error function, detailed in [10]
→ faster than backpropagation, but can converge to local minima

30 Chapter 2. Preliminaries

� QUICKPROP: a batch backpropagation training algorithm, where each weight
adaptation depends on the last weight change and the gradient of the error
function for the last and the current step, for more information see [3]
→ faster than backpropagation, but can be chaotic while learning because of
large step size

� SARPROP: RPROP with simulated annealing, noise is added to the update
value and a weight decay term to the error function, as described in [19]
→ converges faster and more often than RPROP

Those algorithms are all �rst-order training algorithms, as they use the �rst derivation
of the error function. They can be combined while training, it is possible to use one
algorithm in the beginning, until a certain stop criteria is reached and then continue
with another one.

FANN provides a further training algorithm, the so called cascade training algo-
rithm, as explained in [17], but this one generates a network with connections not only
between successive layers. This algorithm starts with an ANN without hidden layer,
where all inputs are connected to all outputs. Then neurons are added one by one
to the network. Before a neuron is added several candidate neurons, initialized with
di�erent random weights, are trained separately. A candidate neuron has trainable
connections to the input neurons and all previously added neurons but no output
links yet. It receives still the error from the output neurons for training. The input
links of a candidate are trained while the other weights in the ANN are �xed. The
purpose of the training is to adjust the input weights of the candidate neuron in order
to maximize the covariance S between the candidates output cp and the error ek,p at
the output neuron k for the input in the training data tuple p. The covariance S is
de�ned as in [17]:

S =

K∑
k=0

P∑
p=0

(cp − c)(ek,p − ek) (2.23)

where K is the number of output neurons, P is the number of tuples in the training
data, c is the average output of the candidate over all tuples in the training data and
ek is the average error at output neuron k over all tuples in the training data. When
all candidates are trained, the candidate with the largest covariance S is added to
the ANN by �xing its input connections and adding output connections to all output
neurons, whose weights are initialized with small random values. When a new neuron
is added all output connections are trained again. This is repeated until the maximum
number of neurons is reached or the ANN is trained good enough.

Possible stop criteria are the mean square error and the number of output values,
which di�er more than a selected bit fail limit from the function value in the training
data. If the network does not reach the required error values another stop criterion
is a maximum number of epochs.

Altogether FANN is fast and o�ers many possibilities to adapt a network and its
training process.

Open NN

Open NN ([7]) was developed by Roberto López as part of his PhD thesis [5], so as a
PhD thesis is more complex than a graduate project, it might be better suitable than
FANN.

2.3. Arti�cial neural networks 31

The Open NN library is structured di�erent than the FANN library, according
to [5]. The implemented type of ANNs is called multilayer perceptron and is built
by perceptrons, which correspond to the neurons described earlier. In Open NN the
topology and the activation functions can not be adapted as diverse as in FANN. A
multilayer perceptron as implemented in Open NN is a feed-forward network in which
every neuron has connections to all neurons in the next layer. It can have multiple
layers: one input, several hidden and one output layer, as mentioned in [6]. There are
�ve di�erent activation functions available: threshold, symmetric threshold, logistic,
hyperbolic tangent and linear functions, for more details see [8]. In the hidden layers
every neuron has a sigmoid activation function as default value, in the output layer
they have linear ones.

Each multilayer perceptron has an objective functional assigned, which de�nes
the task the network should solve and provides a method to measure how well the
network represents the function it should learn. The concept of an objective func-
tional is a replacement for the concept of an error function and enables to extend
the learning tasks, which is not relevant in this thesis, because an error function is
already su�cient. For example the sum of squares error is an objective functional.

According to this concept the training process is to minimize the objective func-
tional. An objective functional is improved by a training algorithm. To optimize the
objective functional the training algorithm adjusts the weights in the network. Like
in FANN, there are, according to [5], di�erent training algorithms available for the
initial weight vector w(0), learning rate λ(i), gradient vector g(i) and Hessian matrix
H(i) as de�ned in [5]:

� RandomSearch: tries out randomly distributed weight vectors, zero-order, global
optimization method
→ extremely slow convergence in most cases, only used to obtain good initial
guess for more e�cient methods

� EvolutionaryAlgorithm: described in more detail in [5], zero-order, global opti-
mization method
→ used for problems, which are di�cult to solve with common methods

� GradientDescent: w(i+1) = w(i)−λ(i)·g(i), �rst-order, local optimization method
→ suitable learning rate necessary, sometimes requires many iterations, slow
convergence

� ConjugateGradient: w(i+1) = w(i) − λ(i) · h(i), where h(i) is the train direction
vector with h(0) = −g(0) and h(i+1) = g(i+1) + γ(i) · h(i) and γ(i) is a parameter
which can be updated in several ways as described in [5], �rst-order, local opti-
mization method
→ combination of GradientDescent and NewtonMethod, more e�ective than the
single methods in isolation

� NewtonMethod: w(i+1) = w(i)−λ(i) ·H−1(i) · g(i), second-order, local optimiza-
tion method
→ high computational complexity to compute the Hessian matrix and its inverse

� QuasiNewtonMethod: w(i+1) = w(i)−λ(i) ·G(i) ·g(i), �rst-order, local optimiza-
tion method
→ like NewtonMethod, but H−1 is approximated by G to reduce the computa-
tional complexity

32 Chapter 2. Preliminaries

The zero-order algorithms in Open NN are mainly useful to �nd a good initial guess
for problems which are di�cult to solve. The �rst-order algorithms are similar to the
algorithms available in FANN and the second-order algorithms are just used to �nd
an even better solution than the �rst-order ones if possible.

A training strategy can include initialization, main and re�nement training algo-
rithms, according to [6]. This is useful for di�cult problems, where just one algorithm
does not yield satisfactory results. The initialization algorithm, which is usually a
zero-order algorithm, should bring the network near the optimum, with global opti-
mization. The main algorithm, on which the strategy mainly relies, is used to �nd a
nearly optimal solution, here often a �rst-order algorithm is used. Last, for even more
accuracy, the re�nement algorithm is used; second-order algorithms can perform best
here, as they require the most exact information.

Some of the stopping criteria in Open NN are the following, as described in [5]
and in [6]:

� maximum number of epochs reached

� maximum computation time exceeded

� evaluation of the objective functional is minimized to a goal value

� performance improvement in one epoch is less than a certain value

� norm of objective function gradient is below a goal value

Altogether Open NN o�ers as FANN many possibilities to adapt a network and
the training process, but the training process is slower than FANN. Using FANN has
the advantage, that the e�ect of changes in the other parameters can be tested faster,
because the training process in Open NN, especially when the evolutionary training
algorithm is involved, needs a lot more time to reach a demanded error than FANN.
This would be an acceptable disadvantage, as the �nal network has to be trained just
once, and using the network to compute an output is still fast. Open NN also has
some functions, which are not implemented in FANN and vice-versa. For example the
evolutionary algorithm, which might be useful. So the �nal decision, which library is
better suited and is used to learn a control strategy for a hybrid vehicle, is discussed
later.

Chapter 3

Learning control strategies

In this chapter the generation of training data, as well as the decisions about the topol-
ogy, activation functions and training algorithms for the network, which is supposed
to learn a control strategy for a hybrid vehicle, are described.

There are several control strategies implemented, basic control strategies as there
would be rule-based strategies (ICE, EM) and strategies based on optimal control
either non-predictive (ECMS) or with prediction horizon (DP, as in [4]) and more
complex learning based strategies (GA, as described in [13]), which use a set of basic
control strategies and choose in each situation the currently best split.

To train a network training data is required. This is generated by the function,
which should be learned by the network. The number of training data grows ex-
ponentially with the number of dimensions which are considered as input, as for all
admissible ranges of the inputs the output behaviour has to be learned. Therefore
strategies which use a prediction horizon like DP and learning based strategies like
GA, which use basic control strategies with a prediction horizon, are not learned here,
as they need for each time step in the prediction horizon a gear and a requested veloc-
ity as additional input dimensions. To keep the number of inputs small in this thesis
the strategy, which is learned, is an ECMS. Which training data is used to learn an
ECMS and how this training data is generated is the topic of the next section.

3.1 Generation of training data

To train an ANN a set of training data as described in Section 2.3.2 is required.
Training data consist of tuples, which each contain a possible combination of input
values and the corresponding output values. When using the ECMS the output
depends on the gear, the requested velocity and the actual velocity, for the PECMS
also on the battery state of charge and for the PIECMS additionally on the sum of
the past battery states of charge. In the following the PECMS is used, as for the
PIECMS one input value more is necessary. For the ECMS even one input value
less would be necessary, but that means the battery state of charge is not taken into
account when distributing the torque on the engines, which is not reasonable, because
if the battery is nearly discharged using the electric motor is impossible and when it
is nearly completely charged it is useless to charge it using the combustion engine.
The only output that is computed by a control strategy is the split, so an ANN, which
learns a control strategy, has also only this one output value. Altogether a tuple in

34 Chapter 3. Learning control strategies

the training data speci�es �ve values: (vreq, vact, gear, SoC, splitice), where splitice is
the only output value.

The training data have to be generated by using the function that should be
learned, in this case the PECMS. Before generating the data, a recapitulation of
the vehicle model implemented within the OASys project is useful. When a vehicle
driving a certain driving cycle is simulated, not always the split calculated by the
control strategy is used. After the control strategy computed a split for the current
conditions, the control converter examines whether the computed split is feasible. If
one of the constraints in Equations 2.11 to 2.15 is not ful�lled when using this split,
the split is discarded and replaced by another split the control converter computes.
It has to be decided, if the network should be trained with the split values PECMS
computes, or the ones, which are in fact used, because of the control converter.

In PHEVs the combustion engine can be used to recharge the battery, when it runs
with a torque greater than the requested torque. In these cases the split is larger than
one. Using the combustion engine to recharge the battery comes into e�ect either to
enable the combustion engine to operate in its optimal rotational speed ranges with
a high e�ciency, or when the battery has nearly reached the lowest permitted state
of charge. If in the latter case, the control strategy computes a split, with which
the electric motor would be used anyway, the control converter changes this split,
as Equation 2.15 would not hold, to a split value which is not necessarily in [0, 1.5],
but rather greater. So both, the strategies and the control converter, have this so
called 'boost' option, but in the control strategies implemented in the OASys project
the split is restricted to [0, 1.5]. As the control converter has no such restriction,
the split the control converter computes can have values far above 1.5. This would
cause problems when scaling the split values to a certain interval. Therefore the
strategy itself without the control converter is learned. This causes no problem,
because the control converter is used during the simulation, when using a strategy
with a neural network, as well. This way the comparison between the split values
the PECMS computes and the ones the neural network strategy computes is more
sensible. Additionally it can be evaluated how often the control converter changes
the split, when used during the simulation.

Next it has to be decided, whether the training data needs to be scaled. As
mentioned in Section 2.3.1, at least the output data have to be scaled to the range
of the activation functions in the output layer. In this thesis the hyperbolic tangent
is used as activation function, therefore the output values have to be scaled to the
interval [−1, 1]. The input values can be scaled to the interval [−1, 1] too, as this
could improve the training of the network. As the orders of magnitude of the input
values do not di�er too much, the results might be good even without scaling. As the
initial weights are set using Algorithm 1 of Widrow and Nguyen, but generalized for
training data in an arbitrary interval, the input values are �rst not scaled.

It still has to be decided, which data tuples represent the strategy the best. As
a reminder: each data tuple contains the four input values vreq, vact, SoC and gear
and the corresponding split as output value. The input values in the training data
should cover the whole domain of possible input data when using the trained net-
work. So a �rst approach would be to generate data tuples for homogeneously dis-
tributed grid points covering the possible intervals of all input values. For each of
those input combinations the corresponding output (splitice) is computed using the
PECMS. These computations involve the simulation of the vehicle behaviour with the
demanded vact, vreq, gear and SoC. The vehicle is simulated beforehand until the

3.1. Generation of training data 35

velocity vact is reached. The state of charge SoC is set, then the PECMS is called
with the requested velocity and gear. When using the C++ implementation this ve-
hicle is required for the computation of the equivalent consumptions for di�erent split
values, but when using the Matlab implementation the vehicle is only used to convert
the inputs for the network to the corresponding inputs for the PECMS and not for
the computation itself. Because the Matlab PECMS gets the requested torque at
the wheels, the angular velocity and the fuel rate instead of the actual and requested
velocities as input. These values are computed by the vehicle model. After this com-
putation the inputs SoC, gear, vact, and vreq as well as the split value computed by
the PECMS are written in the training data �le.

In this training data there might still be data tuples, which are unrealistic, for
example for gear = 1 a relatively high velocity of vreq = 40ms is not feasible. To train
the network with unrealistic training data is not useful, because when the network is
used in a control strategy itself, it will not have to compute split values for such inputs.
Moreover, training the network with such unrealistic inputs might hinder learning
and lead to unnecessarily bad output values for realistic inputs too. Therefore it is
better to generate the training data just with realistic inputs and not with all possible
combinations of input values.

Even more realistic data would be the combinations of input values that occur in
sample driving cycles. So another approach is to consider those data tuples which
occur while simulating a vehicle model using the PECMS on a certain driving cycle.
This is probably less useful than the �rst approach described above, because in this
way the training data would not contain all di�erent realistic input values and it
cannot be guaranteed that the whole possible input domain is fully exploited, which
is important for the adaptation of the weights in the ANN. Another disadvantage is
that the used driving cycles cannot be used to test the result, as the test data should
be di�erent from the training data. A further problem might be that the ANN simply
memorizes the driving cycle, which was used to generate the data, which is not the
aim, as the network should replace the strategy in general and not just for one certain
driving cycle. Therefore the �rst approach for the data generation is used.

When using the �rst approach it has to be decided, which input values are realistic.
The PECMS always keeps the SoC, which is independent of the other parameters,
between 0.5 and 0.7. However, because the control converter is applied to the PECMS
output, sometimes values slightly below 0.5 occur. Therefore when generating training
data, SoC values in the range [0.49, 0.7] are considered. As mentioned before, the
velocities and the gear are not independent. For each gear there is an optimal driving
range that should be considered. Furthermore the assumption is made that the gear
is changed from one time step to the next by a maximum of one. So for each gear only
those requested and actual velocities are relevant, which are in the optimal driving
range of either the gear itself or the following or the previous gear. The optimal
velocities for each gear in the used vehicle model and the resulting intervals for the
training data are listed in Table 3.1. The decision on how many training data are
generated, that is how large the distance between the input tuples in the training
data is, is made later.

When the training data �nally are available, it is still not possible to start with the
training of an ANN yet. Before this is possible some more decisions have to be made.
For example which activation functions are the best suited, how many neurons are
necessary or which training algorithm leads to the best result. How those decisions
are made is described more detailed in the next sections.

36 Chapter 3. Learning control strategies

gear optimal velocities in m/sec training interval in m/sec
1 0 - 3 0 - 8
2 3 - 8 0 - 14
3 8 - 14 3 - 20
4 14 - 20 8 - 45
5 20 - 45 14 - 45

Table 3.1: Feasible velocity ranges

3.2 Selecting the neural networks parameters

In this section the decisions about the parameters of the used ANN are explained,
starting with the activation functions over the training algorithm to the corresponding
parameters of the ANN.

First the activation functions of the neurons have to be chosen. The neurons in the
input layer have always a linear activation function. As mentioned in [1] a network
with three layers, when using the sigmoid activation function in the hidden layer, is
already able to learn all functions a network with di�erent activation functions could
learn. So in the following the used networks have sigmoid activation functions in
the hidden layers. For the output layer, in Open NN linear activation functions are
used by default. However the linear activation function is not useful for the output
layer in our case, as the output interval should be bounded, but with linear activation
functions it would be possible to get output values, which are not in the admissible
interval. Therefore we use sigmoid activation functions also in the output layer.

Next the decision which training algorithm is used has to be made. To test if
a zero-order algorithm like the evolutionary algorithm or a second-order algorithm
improve the result, Open NN has to be used, but in FANN apart from di�erent �rst-
order backpropagation algorithms also the cascade training algorithm is implemented,
which might lead to better results. So Open NN and FANN o�er di�erent possibly
useful modi�cation options for the network.

Altogether di�erent con�gurations are tested in this thesis: one con�guration
uses a �rst-order training algorithm which both FANN and Open NN o�er, so that
this con�guration enables to compare the libraries regarding the running time and
the resulting trained networks. Furthermore two library-speci�c con�gurations are
tested, to improve the results. Those con�gurations are described in Chapter 5.

Next we need to specify the learning rate, the desired error, and the number of
iterations. The learning rate has a default value of 0.7 in FANN, which seems to
work best for our problem too, when comparing the result for �xed parameters and
di�erent learning rates. During the �rst training iterations, the error usually shrinks.
However, when a certain error is reached, it starts to grow again in the following
iterations. Thus, we obtained the sweet spot of the error value by using a very
small desired error. Afterwards, we started the training again using the observed
minimal error value. If a certain error has to be reached, the number of epochs
must be set accordingly large. In general, a large number of epochs is useful, as the
chance to terminate the learning process because the desired error is reached increases.
Therefore, we set the maximum number of iterations to 100.000.

Furthermore, some decisions about the topology have to be made. For example
the number of hidden layers and the number of neurons have to be decided. The
decisions about the topology are explained in the next section.

3.3. Topology of the neural network 37

3.3 Topology of the neural network

In this section the remaining decisions regarding the topology of the network are
discussed; the number of layers, the number of input values and the corresponding
number of networks1.

As a network with three layers is able to represent all continuous functions ac-
cording to [1], a network with three layers should be su�cient and just the number
of neurons must be adapted, if the PECMS is continuous. Otherwise, a network with
two hidden layers is su�cient to represent the PECMS. But as mentioned in [11] not
just the representability of a function, but also its learnability has to be considered.
Functions which are di�cult to learn might be learned better when using ANNs with
more layers. But in general ANNs with more layers are more di�cult to train, there-
fore we �rst consider an ANN with only one hidden layer. If the result is not su�cient
then ANNs with two or even more layers are tested.

Next the number of inputs has to be determined. The networks should get the
same information as the PECMS, to learn how to calculate the split like the PECMS
does. That information covers only on the state of charge of the battery, the gear,
the actual velocity, and the requested velocity. Therefore the network has to get this
four values as input.

It has to be tested whether it would improve the result, if multiple networks with
fewer input values would be used. To make this decision, the training data have to be
examined. To estimate whether an ANN is able to learn a function, represented by a
set of data, a plot of the data, which should be learned helps, as there can be seen, if
there are 'jumps' in the represented function, which makes it di�cult to learn. This
irregularities might be reduced, by using fewer input parameters and more networks.

Figure 3.1: PECMS used on the NEDC driving cycle

1Please note, that for a function f : A×F → B with A,B, F being sets and f being �nite, we can

either train a single network to learn f using inputs from A×F or we can try to learn f(x) : A→ B
by a separate network for each x ∈ F

38 Chapter 3. Learning control strategies

When plotting the split and the gear for the driving cycle NEDC using the control
strategy PECMS, see Figure 3.1, it can be seen that the split values are discontinuous
when the gear is switched. As the gear can just take on 5 di�erent values, it would
be possible to train �ve di�erent networks, one for each gear, instead of a single one
with the gear as parameter. If for each gear one network is trained, those do not
have to get the gear as parameter anymore and therefore get one input value less.
So an approach to simplify the learning process is to train �ve networks, with just
three input values: actual and requested velocity and the battery state of charge. The
number of outputs is simply one, as only the split has to be computed.

So there are the following options:

� one ANN with four input values: gear, vact, vreq, SoC

� �ve ANNs, for each gear one, with three input values: vact, vreq, SoC

For the second option other training data than described in Section 3.1 have to be
generated. In this case �ve training data �les, one for each gear, are necessary, which
do not contain values for the gear.

Which of these two possibilities is better has to be tested. Therefore the testing
criteria have to be de�ned, which is the topic of the next chapter. Then the training
and testing have to be executed, to be able to compare these alternatives.

Chapter 4

Neural network-based control

strategy

This chapter is about the evaluation of the created ANNs. There are various as-
pects, which can be evaluated. In this thesis the focus is on the comparison of the
input/output behaviour of the ANN with that of the PECMS and on using the ANNs
as a control strategy and comparing this strategy to the PECMS when it is used
in a simulated vehicle on a driving cycle. In this chapter �rst it is described how
the trained ANNs can be used as a control strategy for a simulated vehicle. This is
necessary to compare the �nal states of simulated vehicles on a certain driving cycle,
one of them using the PECMS and another one using the trained ANNs. Later it
is explained, how the input/output behaviour of the ANN and the PECMS can be
compared directly.

For testing the created ANNs by using them as a control strategy and comparing
this strategy to the PECMS two things have to be explained: how the ANNs are used
as a control strategy and what has to be considered when using di�erent strategies
with the intention to compare them. It is started with the explanation how the ANNs
are used as control strategy.

In Chapter 3 are two approaches considered, training one network with four in-
puts, or �ve networks with three inputs, for each gear one. When using the �rst
approach, the trained network can simply be used as control strategy by giving it
the corresponding inputs, which the PECMS would get as well, and using its output
to distribute the torque. When the second approach is implemented, only all �ve
networks combined can be used as control strategy. In this case it depends on the
current gear which network gets the remaining three values as input, for example if
the vehicle is driving in the third gear the ANN, which was trained for gear three,
gets the input and only the output computed by this ANN is used to distribute the
torque. So in each step only one network is used.

To examine such a neural-network-based control strategy, it is used in a simula-
tion. For a simulation, a vehicle is simulated on a certain driving cycle. Therefore
the simulation rate has to be set, a value which determines how often the car be-
comes simulated per second. To be able to compare this strategy to the PECMS,
the simulation environments have to be the same, so this value has to be the same in
all simulations. Also how often a new split becomes computed should be equal in all
simulations, as computing the split more or less often leads to di�erent results. In the

40 Chapter 4. Neural network-based control strategy

Matlab model the split value is �xed for one second, but the vehicle is simulated 50
times per second. To be able to compare the Matlab PECMS implementation to the
neural-network-based strategy in C++, these settings are also used in the C++ simu-
lation. So the control strategy computes a new split once every second for the present
state of the vehicle model. During the simulation on a certain driving cycle, the sim-
ulated vehicle computes amongst other values also the absolute fuel consumption for
the whole driving cycle.

When the trained ANNs are used as a control strategy, for example the drivability
and functionality of this strategy can be evaluated, which is the topic of the next
section, but the basic intention is to compare the network strategy to the PECMS.
This is done, as explained above, by executing simulations using di�erent control
strategies. After the simulation are completed, the �nal states of the vehicle models
can be compared, especially the absolute fuel consumption, as the main intention of
the PECMS was to minimize this absolute fuel consumption and not for example the
CO2 emission. Additionally, also the �nal SoC has to be taken into account, as a
higher SoC might compensate a slightly higher fuel consumption.

As a reference value the so called ICE strategy can be used, which is the strat-
egy, which always returns the split value 1, and therefore the vehicle uses solely its
combustion engine, like a conventional vehicle. The fuel consumption should be re-
duced, by using a hybrid vehicle, so all strategies should achieve a lower absolute fuel
consumptions than this strategy. Apart from the absolute fuel consumption also the
functionality of the network strategy is relevant to decide if it is a suitable replace-
ment for the PECMS. Which criteria are used to examine this, is described in the
following section.

4.1 Evaluation of control strategies

To evaluate a control strategy, several criteria have to be examined. A control strategy
is useful only if the requested velocities are reached timely. This is guaranteed here by
the control converter, independent of the control strategy itself, as the strategy just
computes the distribution of the requested torque and not the concrete torque values
for each engine. So the actual velocity is for every strategy, also those using ANNs,
close to the requested velocity. As this would be the case for every control function,
it is no measure for the quality of a control strategy. But as the network should have
learned the PECMS, it should be compared, how often the control converter changes
the split values, when using the PECMS and the network strategy, to measure how
often the split value computed by the network is invalid.

Another criterion could be the drivability of the vehicle, when using the network
strategy. But this would just evaluate the function relating the input with the output
and not how well a network learned the PECMS, as the PECMS does not consider the
drivability when computing the split values. A measurement for the drivability would
be for example the sum of the absolute di�erences between successive split values. A
good drivability would be achieved, when the split values do not change abruptly and
rapidly, as the engines have to react according to this split values and in reality they
are not able to react immediately and sound.

Finally, it is important that the computations are executed in real-time, as the
intention for creating a strategy using an ANN is to achieve a fast strategy. To prove
that this is achieved, the running times of both strategies can be compared; if the

4.2. Testing the neural networks 41

network strategy is at least as fast as the PECMS, it is real-time capable. This can
be done by simulations on a given driving cycle, once using the PECMS, the other
time using the network strategy and measuring both running times. When the above
stated characteristics are similar in both strategies the network strategy would be a
suitable replacement for the PECMS.

So far only the results of the simulations on di�erent driving cycles are considered,
but not yet the input/output behaviour. The examination of the simulation results
enables to compare for example the driving behaviour and the fuel consumption and
evaluate, if the strategy using neural networks is a suitable replacement for the orig-
inal strategy on di�erent driving cycles, but the examination of the input/output
behaviour is well suited to evaluate the quality of the trained network. Therefore this
is analysed in the next section.

4.2 Testing the neural networks

In this section the testing process for an ANN, which learned the PECMS, is described.
To test the ANNs themselves, which means to compare their input/output behaviour
with that of the PECMS, it has to be decided, which testing data and which error
functions will be used to estimate, if the ANNs properly learned the PECMS. Possible
test data are grid data in the input intervals. Grid-based test data can be generated
exactly like grid training data, which is described in Section 3.1. If both training and
testing data are generated grid-based, the grid for the test data needs to be shifted,
as the test data should not be identical to the training data, to test if the ANN not
just memorized the training data. Another possibility is to use a driving cycle for
testing. Therefore, the PECMS is simulated on a concrete driving cycle and for each
time step the actual and requested velocities, the battery state of charge, the gear
and the computed split value are written in a �le, which then can be used as test
data. For testing this is the better alternative, as this way it is tested, if the network
is able to compute the correct split for realistic input values.

By using the ANNs as a control strategy also the computed split values can be
compared, but the errors are cumulative, as a di�erent split value causes a slightly
di�erent state of the simulated vehicle, which means the ANN gets other inputs in
the next step than PECMS, which in turn leads to a di�erent split. However, if the
network is trained well, the deviation from the PECMS should be small. Comparing
the split values during a simulation is also useful to see which in�uence deviations
have on the absolute fuel consumption, which can be examined by comparing the �nal
states of the vehicles, as described in Chapter 4.

When plotting the split values the PECMS computes and the ones the network
strategy computes on the same driving cycle, the current states of the vehicle can be
plotted too, to see for which input values the di�erence of the output values is too
large and to determine what could be changed in the training process to achieve a
better result. Therefore it would be useful to prevent subsequent errors. This can be
done by computing the output of the PECMS during the simulation using the network
strategy. That means, we use the neural network strategy result as split values in the
simulation, but for each input we additionally compute as reference values also the
splits determined by the PECMS strategy, so di�erent splits do not cause subsequent
errors.

To estimate, if an ANN properly learned the PECMS, a measurement for the

42 Chapter 4. Neural network-based control strategy

error of an ANN has to be de�ned. The testing process for an ANN in general was
already described in Section 2.3.3, there are also metrics de�ned, which are used for
determining the average error in the output values. The mean square error de�ned
there by the Euclidean metric and the testing criteria de�ned in this chapter are used
in the following chapter to evaluate the created networks.

Chapter 5

Evaluation

In this chapter the trained networks are evaluated. It is also explained which problems
occurred and how they are tried to be solved. For being able to evaluate the created
networks, in Chapter 4 testing criteria have been de�ned. In the following only the
testing criteria de�ned there are considered. Using those criteria the neural-network-
based strategies are compared to the PECMS they should have learned and to the
ICE strategy. In the next section the best result is evaluated more detailed.

The results for ICE in Table 5.1 provide a lower bound for the absolute fuel
consumption. In this chapter the following abbreviations are used: DC for driving
cycle, CC for the number of splits which had to be changed by the control converter,
and MSE for mean square error. Furthermore, consf is the absolute fuel consumption,
SoC is the �nal SoC in a simulation, and ∆splitice is the sum of the di�erences of
successive split values.

DC consf SoC CC ∆splitice running time
NEDC 429.077 0.70 342 0 11.37
FTP_75 725.771 0.70 248 0 17.44
FTP_HIGHWAY 380.8 0.70 97 0 7.22

Table 5.1: ICE results

There are di�erent ANNs, which have to be tested, trained using di�erent train-
ing algorithms, as mentioned in Section 3.2. For comparability, the con�gurations of
training algorithms the RPROP algorithm in FANN and the QuasiNewtonMethod
in Open NN are used. Actually, QUICKPROP is more similar to the QuasiNewton-
Method, but as RPROP is a �rst-order training algorithm leading to signi�cantly
better results for this problem, RPROP is used instead. The libraries are still com-
parable, because both use one �rst-order training algorithm, but QUICKPROP and
the QuasiNewtonMethod are not exactly the same training algorithms either.

Additionally two library-speci�c con�gurations are tested. In FANN the cascade
training algorithm is used, to test if this type of training algorithm improves the
result. In Open NN a training strategy, consisting of the evolutionary algorithm, the
quasi-Newton method and the Newton method, is used.

From here on the corresponding control strategies have the following names:

� FANN: using the RPROP algorithm

44 Chapter 5. Evaluation

� CASCADE: using the cascade training algorithm implemented in FANN

� OPEN_NN: using the QuasiNewtonMethod

� OPEN_NN_OPT: using a training strategy with three di�erent training algo-
rithms

All four training algorithms can be used for training either one network with four
inputs, or �ve networks with three inputs, as explained in Section 3.3. It also has to
be examined, which in�uence the training data have. It is always trained with grid
data, but the number of data tuples in the training data can be varied, by adjusting
the distance between individual data tuples.

Due to time constraints not all possible combinations of settings can be tested
in this thesis. As it is computationally intensive and therefore time-consuming to
generate many training data and train ANNs, just the two FANN con�gurations are
used to determine, which settings lead to better results, as FANN is faster than Open
NN. We start with a small amount of training data to make the decision if one or �ve
networks lead to better results. How many neurons are necessary is tested for each
con�guration separately, for the networks trained using the RPROP algorithm one
hidden layer is used.

ANNs DC MSE of FANN MSE of CASCADE
NEDC 0.0134 0.00287

1 FTP_75 0.0359 0.0147
FTP_HIGHWAY 0.117 0.0307
NEDC 0.00281 0.00566

5 FTP_75 0.00404 0.00691
FTP_HIGHWAY 0.00692 0.0225

Table 5.2: Results for one and �ve networks, trained with a total of 6372 training
data tuples

In Table 5.2 it can be seen that the control strategies with �ve networks lead
better results, only the CASCADE strategy on the driving cycle NEDC is better with
one network. This was tested for networks which are trained with training data with
scaled inputs and some with unscaled inputs. The results are approximately equally
good, while training with training data with scaled inputs and outputs the demanded
error is just reached faster. Therefore in the following we analyse strategies using �ve
networks, for each gear one and �rst training data with unscaled inputs.

Next it is tested whether using more training data improves the results, because
when plotting the split values, it can be seen that the split the network strategies
compute tends to be lower than the one computed by PECMS for the same input
data, especially for the gears one to three, see Figure A.1. This could be due to the
small amount of training data, if no tuple with a high split is in the training data, it
is understandable that the network does not learn to return a higher split for inputs
between the tuples in the training data. And for gear �ve there are some peaks in
the split values the PECMS does not compute. Which cause these have has to be
determined, too.

The results in Table 5.3 show that more training data do not improve the total
result. To �nd the reason for this the mean square errors for the individual networks

45

strategy DC MSE
NEDC 0.00701

FANN FTP_75 0.00363
FTP_HIGHWAY 0.0107
NEDC 0.00925

CASCADE FTP_75 0.00825
FTP_HIGHWAY 0.0379

Table 5.3: Results for �ve networks trained with a total of 120210 training data tuples

are calculated, see Table A.1. It can be seen, that the network for the fourth gear
provides worse results than the one trained with less data, see Table A.2. It is also
noticeable that the results of CASCADE are for less as well as for more training
data worse than the results of FANN, therefore the CASCADE strategy is not further
pursued.

The worse results of the fourth network might be caused by the unscaled training
data, which might slow down the training. But when training the networks for the
fourth and �fth gear with scaled training data the results are not signi�cantly better.
As the training data are not completely continuous, it might help to smooth them,
but this caused even worse results and is therefore discarded again.

To determine, why the results for the fourth gear is worse than with less training
data, the split values on the NEDC driving cycle are plotted, see Figure A.2. The
problem is that the network for gear four returns too often zero. To determine why
this is the case the training data for gear four are plotted. As the training data have
four dimensions, which is di�cult to plot, the split depending on the requested and
actual velocities for the �xed state of charge, for which the problem occurs, is plotted
in Figure 5.1.

Figure 5.1: Training data for gear four, for the �xed state of charge SoC = 0.5, with
scaled split values

It can be seen that the split is minimal, when the requested velocity is smaller than

46 Chapter 5. Evaluation

the actual velocity. When the requested velocity is noticeably larger than the actual
one, the split is also constant but larger. But for actual and requested velocities, which
are nearly the same, there are training data with even larger split values. When the
network is trained with this training data, it tries to generalize those data, to be able
to compute a reasonable output for input values in-between the training data tuples.
This is quite di�cult for training data like this, as they are not continuous. The reason
for this is that in PECMS a case distinction is made whether the requested torque
is greater or less than zero. So for input values for which the torque is just slightly
greater than zero the behaviour of the ANN might be di�erent than the PECMS's
behaviour, as the output of inputs in-between the training data tuples depends on
several neighbouring training data tuples, which might cause unexpected peaks or
zeros. This might be averted by generating more training data for such discontinuous
input areas. This is due to time-constraints not part of this thesis.

So far the best result is achieved with �ve networks and many training data, except
for the network for gear four. Whether with Open NN a better result can be achieved
still has to be examined. When evaluating the results that are achieved with Open
NN, as listed in the Tables A.4 and A.3, it can be seen that the results achieved with
more training data are better than those with less training data. Though there is no
signi�cant improvement noticeable when using a training strategy consisting of three
di�erent training algorithms.

When comparing the Open NN strategies with the FANN strategy, the FANN
strategy is slightly better than the Open NN strategies. Therefore the best total
result so far is achieved with FANN, using �ve networks, for each gear one, where
those for gear one to three and �ve are trained with more training data and the one
for gear four with less training data. The best strategy is examined in more detail in
the next section, there also the drivability and the split value progression for a certain
driving cycle is evaluated.

5.1 Final results

In this section the best achieved result is evaluated in more detail. For comparison
the test results of PECMS on di�erent driving cycles are used, see Table 5.4.

DC consf SoC CC ∆splitice running time
NEDC 388.275 0.626 61 8.44 12.31
FTP_75 587.058 0.533 80 42.48 18.69
FTP_HIGHWAY 356.712 0.579 73 19.80 7.66

Table 5.4: PECMS results

The best result is achieved with FANN, as examined in the last section, with �ve
networks that are trained with many data, only the network for gear four is currently
trained with less training data. Simulation results for FANN as control strategy on
di�erent driving cycles are listed in Table 5.5. The fuel consumption and �nal state
of charge of the battery are nearly the same as when using the PECMS. Also the
di�erence of successive split values is similar to the one of PECMS, but the control
converter has to change the split values way more often than when the PECMS is
used. However, if we additionally compute the PECMS outputs during a simulation
with FANN as a control strategy, the control converter would change the split the

5.1. Final results 47

PECMS computes more often, in about the same order of magnitude as when using
FANN. The running time is even shorter than the one of the PECMS, so altogether
we can con�rm the drivability and functionality of the FANN strategy. So the FANN
strategy is a suitable replacement for the PECMS.

DC consf SoC CC ∆splitice running time
NEDC 388.095 0.626 4830 8.037 10.507
FTP_75 586.613 0.533 5806 44.77 16.063
FTP_HIGHWAY 356.021 0.579 3490 18.47 6.73

Table 5.5: Final states of simulated vehicles when using FANN as control strategy

Finally, the output error of the FANN strategy is determined using the mean
square error as before. The total test results are presented in Table 5.6, the individual
test results for each network in Table 5.7.

DC MSE
NEDC 0.00102
FTP_75 0.00360
FTP_HIGHWAY 0.00699

Table 5.6: Total test results of the FANN strategy

MSE
DC gear 1 gear 2 gear 3 gear 4 gear 5
NEDC 0.000302 0.00171 0.00212 0.000179 0.00195
FTP_75 0.00565 0.00162 0.00252 0.00627 0.00348
FTP_HIGHWAY 7.14·10−5 8.42·10−5 0.00199 0.00559 0.00811

Table 5.7: Individual test results of the networks used in the FANN strategy

The split value progression for those driving cycles is plotted in the Figures A.3,
A.4 and A.5. Using the example driving cycle NEDC the result is evaluated more
detailed in the following. In Figure 5.2 the split values for the start of the NEDC
are plotted. The progression of the split values the FANN strategy and the PECMS
compute matches approximately. The networks compute peaks, where PECMS com-
putes them, only the height does not always match. Furthermore, FANN computes
some peaks that the PECMS does not compute; this is probably due to the fact that
the networks try to generalize the function their training data represents by applying
extrapolation.

In Figure 5.3 a more detailed view on the end of the NEDC driving cycle is
illustrated. It can be seen that the split values for gear four are a little higher than
for PECMS, where the input values correspond to torque values just slightly greater
than ; this situation was analysed earlier in this chapter. Probably for the same
reason, the split values for the �fth gear are somewhat more uneven than those of the
PECMS.

All in all, the resulting neural-network-based control strategy satis�es our needs,
but there are still possibilities to further improve the result. These possibilities are
explained in the next section.

48 Chapter 5. Evaluation

Figure 5.2: Split values FANN computes for the start of the NEDC driving cycle

Figure 5.3: Split values FANN computes for the end of the NEDC driving cycle

Chapter 6

Conclusion

This thesis started with an introduction to the vehicle model developed in the context
of the DFG project OASys and the corresponding control strategies. In the further
proceeding the vehicle model was used to evaluate di�erent control strategies by
computing the absolute fuel consumption for di�erent driving cycles, as the purpose
of the considered control strategies is to minimize the fuel consumption.

Next, arti�cial neural networks were introduced and two di�erent libraries for arti-
�cial neural networks were presented. Those libraries were applied to try learning the
control strategy PECMS for hybrid electric vehicles using arti�cial neural networks.
Several decisions were made about the training data, the network topology, other
network parameters and the used training algorithm. At last as training data grid
data were used, where the split values were computed directly by the PECMS and
not by the control converter, which is a control instance of the implemented vehicle
model.

Regarding the network topology it was proved to be better to use �ve networks,
for each gear one, instead of one network with the gear as additional input. The
comparison of the libraries FANN and Open NN showed that FANN leads to slightly
better results for our problem.

Several testing criteria for the developed control strategies were used to evaluate
them and to identify the best one. It was noticed that a larger amount of training
data leads mostly to better results than a smaller amount. The best control strategy
was evaluated in more detail also regarding aspects like driveability and functionality,
with the result that the performance of a neural-network-based control strategy is
equally good as the PECMS. This makes the neural-network-based strategy a suitable
replacement for the PECMS.

Nevertheless there are still many possibilities to improve the results, which are
described in the next section.

6.1 Future work

The achieved control strategy would be optimal, if for every possible input value its
output would be the same output as PECMS computes for this input. This is not the
case yet, so the result can still be improved. Due to time constraints in this thesis only
a limited amount of training data could be generated. Also the training time and size
of the used ANNs is limited. It is assumed that generating more training data would

50 Chapter 6. Conclusion

improve the result, and also letting the ANNs learn for a longer time should lead to
improvements. This could not be tested in the course of this thesis, as it already
took several days to generate the used training data and to train the ANNs. When
generating more training data it might help to take into account where the deviations
are larger than average and generate more data especially in the corresponding ranges.

It would also be interesting to apply di�erent training strategies. At last it would
be useful to generate a neural network that has learned the best available control
strategy, i.e. the one with (i) the lowest energy consumption measured by absolute
fuel consumption and battery state of charge and (ii) a good drivability measured
by the split-di�erences. That is our motivation to train neural networks to learn the
genetic-algorithm-based strategy GeneiAL as future work.

Bibliography

[1] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303�314.

[2] D. Dichant. Demand Planning mittels Neuronaler Netze. Diplom.de, 2002.

[3] Scott E. Fahlman. An empirical study of learning speed in back-propagation
networks. Technical report, Carnegie Mellon University, 1988.

[4] Sascha Geulen, Martina Josevski, Johanna Nellen, Janosch Fuchs, Lukas Netz,
Benedikt Wolters, Dirk Abel, Erika Ábrahám, and Walter Unger. Learning-based
control strategies for hybrid electric vehicles. In Proceedings of the 2015 IEEE
Multi-Conference on Systems and Control (MSC 2015), pages 1722�1728. IEEE,
2015.

[5] Roberto López González. Neural Networks for Variational Problems in Engi-
neering. PhD thesis, Technical University of Catalonia, 2008.

[6] Roberto López González. Open NN manual, 2012. http://libfann.github.
io/fann/docs/files/fann_cpp-h.html.

[7] Roberto López González. Open NN: An open source neural networks C++
library. http://opennn.cimne.com/, 2014.

[8] Roberto López González. Open NN user's guide, 2014. http://opennn.
cimne.com/docs/Flood3UsersGuide.pdf.

[9] Lino Guzzella and Antonio Sciarretta. Vehicle Propulsion Systems - Introduc-
tion to Modeling and Optimization. Springer Science & Business Media, Berlin
Heidelberg, 2012.

[10] Christian Igel and Michael Hüsken. Empirical evaluation of the improved Rprop
learning algorithms, 2003.

[11] David Kriesel. Ein kleiner Überblick über Neuronale Netze. 2011. http://www.
dkriesel.com.

[12] U. Lämmel and J. Cleve. Künstliche Intelligenz. Carl Hanser Verlag GmbH &
Company KG, 2012.

[13] Johanna Nellen, Benedikt Wolters, Lukas Netz, Sascha Geulen, and Erika
Ábrahám. A genetic algorithm based control strategy for the energy manage-
ment problem in PHEVs. In Proceedings of the Global Conference on Arti�cial
Intelligence (GCAI 2015), pages 196�214. EasyChair, 2015.

http://libfann.github.io/fann/docs/files/fann_cpp-h.html
http://libfann.github.io/fann/docs/files/fann_cpp-h.html
http://opennn.cimne.com/
http://opennn.cimne.com/docs/Flood3UsersGuide.pdf
http://opennn.cimne.com/docs/Flood3UsersGuide.pdf
http://www.dkriesel.com
http://www.dkriesel.com

52 Bibliography

[14] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural net-
works by choosing initial values of the adaptive weights. In Proceedings of the
1990 International Joint Conference on Neural Networks, IJCNN, pages 21�26
vol.3. IEEE, 1990.

[15] S. Nissen. FANN: Implementation of a fast arti�cial neural network library.
http://leenissen.dk/fann/wp/, 2015.

[16] S. Nissen. FANN reference manual, 2016. http://libfann.github.io/
fann/docs/files/fann_cpp-h.html.

[17] Ste�en Nissen. Large scale reinforcement learning using Q-SARSA (λ) and cas-
cading neural networks. Masters thesis, Department of Computer Science, Uni-
versity of Copenhagen, København, Denmark, 2007.

[18] Stuart Russell and Peter Norvig. Arti�cial Intelligence - A Modern Approach.
2013.

[19] N. K. Treadgold and T. D. Gedeon. The SARPROP algorithm: A simulated
annealing enhancement to resilient back propagation. In Proceedings of the In-
ternational Panel Conference on Soft and Intelligent Computing, 1996.

http://leenissen.dk/fann/wp/
http://libfann.github.io/fann/docs/files/fann_cpp-h.html
http://libfann.github.io/fann/docs/files/fann_cpp-h.html

Appendix A

Experimental results

F
ig
ur
e
A
.1
:
FA

N
N
,
us
in
g
�v
e
ne
tw
or
ks

tr
ai
ne
d
w
it
h
a
to
ta
l
of

63
72

tr
ai
ni
ng

da
ta

tu
pl
es
,
us
ed

on
th
e
N
E
D
C
dr
iv
in
g
cy
cl
e

54 Appendix A. Experimental results

F
igure

A
.2:

FA
N
N
,
using

�ve
netw

orks
trained

w
ith

a
total

of
120210

training
data

tuples,
used

on
the

N
E
D
C
driving

cycle

55

M
SE

st
ra
te
gy

D
C

ge
ar

1
ge
ar

2
ge
ar

3
ge
ar

4
ge
ar

5
N
E
D
C

0.
00
03
02

0.
00
17
1

0.
00
21
2

0.
06
21

0.
00
19
5

FA
N
N

F
T
P
_
75

0.
00
56
5

0.
00
16
0

0.
00
25
1

0.
01
61

0.
00
32
5

F
T
P
_
H
IG

H
W
A
Y

7.
14
·1

0−
5

8.
42
·1

0−
5

0.
00
19
9

0.
04
37

0.
00
78
3

N
E
D
C

0.
00
03
63

0.
00
50

0.
00
53
3

0.
03
08

0.
04
48

C
A
SC

A
D
E

F
T
P
_
75

0.
00
65
7

0.
00
29
7

0.
00
30
8

0.
01
14

0.
03
77

F
T
P
_
H
IG

H
W
A
Y

0.
00
01
54

2.
74
·1

0−
5

0.
00
57
7

0.
02
20

0.
04
58

T
ab
le
A
.1
:
In
di
vi
du
al
re
su
lt
s
w
he
n
us
in
g
a
to
ta
l
of

12
02
10

tr
ai
ni
ng

da
ta

tu
pl
es

fo
r
FA

N
N
an
d
C
A
SC

A
D
E

M
SE

st
ra
te
gy

D
C

ge
ar

1
ge
ar

2
ge
ar

3
ge
ar

4
ge
ar

5
N
E
D
C

0.
00
07
94

0.
00
55
5

0.
00
22
9

0.
00
01
82

0.
01
05

FA
N
N

F
T
P
_
75

0.
00
41
4

0.
00
13
4

0.
00
31
2

0.
01
20

0.
01
08

F
T
P
_
H
IG

H
W
A
Y

3.
33
·1

0−
5

2.
22
·1

0
−
5

0.
00
39
6

0.
00
72
5

0.
00
75
4

N
E
D
C

0.
00
07
64

0.
00
40
0

0.
00
64
9

0.
01
66

0.
01
96

C
A
SC

A
D
E

F
T
P
_
75

0.
00
86
8

0.
00
19
2

0.
00
53
5

0.
00
96
8

0.
01
46

F
T
P
_
H
IG

H
W
A
Y

0.
00
02
14

8.
92
·1

0
−
5

0.
01
03

0.
01
32

0.
02
63

T
ab
le
A
.2
:
In
di
vi
du
al
re
su
lt
s
w
he
n
us
in
g
a
to
ta
l
of

63
72

tr
ai
ni
ng

da
ta

tu
pl
es

fo
r
FA

N
N
an
d
C
A
SC

A
D
E

56 Appendix A. Experimental results

M
SE

strategy
D
C

total
gear

1
gear

2
gear

3
gear

4
gear

5
N
E
D
C

0.061
0.000317

0.302
0.00340

0.0230
0.00991

O
P
E
N
_
N
N

F
T
P
_
75

0.0165
0.0113

0.0497
0.00234

0.00820
0.0108

F
T
P
_
H
IG

H
W
A
Y

0.0138
1.28·1

0
−
5

3.85·1
0
−
5

0.00179
0.00832

0.0166
N
E
D
C

0.00696
0.000581

0.00402
0.0110

0.0106
0.0321

O
P
E
N
_
N
N
_
O
P
T

F
T
P
_
75

0.00954
0.00753

0.00332
0.0109

0.0107
0.0240

F
T
P
_
H
IG

H
W
A
Y

0.0267
5.60·1

0
−
5

8.46·1
0
−
5

0.010
0.0110

0.0320

T
able

A
.3:

Individual
results

w
hen

using
a
total

of
120210

training
data

tuples
for

O
P
E
N
_
N
N
and

O
P
E
N
_
N
N
_
O
P
T

M
SE

strategy
D
C

total
gear

1
gear

2
gear

3
gear

4
gear

5
N
E
D
C

0.623
0.132

1.420
1.5

0.214
0.129

O
P
E
N
_
N
N

F
T
P
_
75

0.711
0.0393

1.146
1.433

0
0.125

F
T
P
_
H
IG

H
W
A
Y

0.341
9.96·1

0
−
6

0.844
1.13

0.717
0.188

N
E
D
C

0.754
0.101

1.421
1.017

1.37
1.429

O
P
E
N
_
N
N
_
O
P
T

F
T
P
_
75

0.720
0.0954

1.147
1.009

0.713
1.146

F
T
P
_
H
IG

H
W
A
Y

1.173
0.0914

0.844
0.808

0.883
1.29

T
able

A
.4:

Individual
results

w
hen

using
a
total

of
6372

training
data

tuples
for

O
P
E
N
_
N
N
and

O
P
E
N
_
N
N
_
O
P
T

57

F
ig
ur
e
A
.3
:
B
es
t
re
su
lt
fo
r
FA

N
N
,
us
ed

on
th
e
N
E
D
C
dr
iv
in
g
cy
cl
e

58 Appendix A. Experimental results

F
igure

A
.4:

B
est

result
for

FA
N
N
,
used

on
the

F
T
P
_
75

driving
cycle

59

F
ig
ur
e
A
.5
:
B
es
t
re
su
lt
fo
r
FA

N
N
,
us
ed

on
th
e
F
T
P
_
H
IG

H
W
A
Y
dr
iv
in
g
cy
cl
e

	Introduction
	Preliminaries
	Vehicle model
	Control strategies
	Artificial neural networks

	Learning control strategies
	Generation of training data
	Selecting the neural networks parameters
	Topology of the neural network

	Neural network-based control strategy
	Evaluation of control strategies
	Testing the neural networks

	Evaluation
	Final results

	Conclusion
	Future work

	Bibliography
	Appendix
	Experimental results

