
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

SOLVING PSEUDO-BOOLEAN CONSTRAINTS

Marta Grobelna

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Gereon Kremer, M.Sc.

Aachen, July 3, 2017

Abstract

Boolean Satisfiability (SAT) became more and more important in the recent
years. It offers an approach for solving many practical problems in various
areas of application, such as Electronic Design Automation (EDA), in a very
efficient way. Many practical problems can be compactly represented by pseudo-
Boolean (PB) constraints. Therefore, in the last few years PB-solvers have
been developed. A common way to solve PB-constraints is to encode each PB-
constraint as a satisfiability-equivalent Boolean formula and use a SAT-solver
in order to decide the satisfiability. However, in recent years many SMT-solvers
were developed offering efficient approaches which could be used for solving PB-
constraints. This thesis proposes an SMT-solver that solves pseudo-Boolean
satisfiability problems. In doing so the PB-constraints are encoded as Boolean
and arithmetic formulas and combined into a liner integer arithmetic formula.
Moreover, two approaches for simplifying PB-constraints are presented which
may accelerate the solving procedure.

iv

v

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch
nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und
Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennze-
ichnet.

Marta Grobelna
Aachen, den 3. Juli 2017

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Pseudo-Boolean Constraints . 11
2.2 Cardinality Constraints . 12
2.3 Translating Pseudo-Boolean Constraints 12

3 Encoding Pseudo-Boolean Constraints 15
3.1 General Procedure . 15
3.2 Encoding as Propositional Formula . 15
3.3 Encoding as Integer Arithmetic Formula 24

4 Simplifying Pseudo-Boolean Constraints 27
4.1 Simplifying Pseudo-Boolean Constraints Using Residual Number Systems 27
4.2 Gauss Algorithm for Simplifying Pseudo-Boolean Constraints 31

5 Experimental Results 35
5.1 Comparison of MiniSat+ and SMT-RAT 36
5.2 Comparison of Strategeis for SMT-RAT 40

6 Conclusion 43

Bibliography 45

viii Contents

Chapter 1

Introduction

Boolean Satisfiability became a powerful technology during the past few decades. This
trend persists due to the remarkable number of applications for satisfiability (SAT)
solver in, e.g., model checking, automated planning and scheduling, combinatorial de-
sign or circuit design verification. SAT-solvers are even used in software engineering.
Since the complexity of software has dramatically increased in recent years, the com-
plexity of corresponding Unified Modeling Language (UML) models, which play a key
role in today’s software engineering, has also increased. As the quality of software
depends on the quality of its UML model, it is crucial to verify the models. This
can be done by a SAT-solver as presented in [SWK+10]. Another interesting appli-
cation field is the Electronic Design Automation (EDA) in particular, automatic test
pattern generation, circuit delay computation, crosstalk noise analysis and so forth
[BBH+09, CESS08, CK05].

One fundamental question arises at this point - how must a given problem be
represented such that a SAT-solver can be used to solve it? One way is to represent
the problem using propositional logic. In this case the SAT-solver gets a formula in,
e.g., Conjunctive Normal Form (CNF) as input and decides if the given formula is
satisfiable. Unfortunately, propositional logic is not expressive enough to represent
many problems. This is why the more powerful first-order logic is commonly used.
However, one cannot use a simple SAT-solver as decision procedure for it. Proving
the satisfiability of a general first-order logic formula requires a first-order theorem
prover. The semantics of function, predicate and constant symbols in a general first-
order formula are arbitrary. Obviously, it is not sensible to decide the satisfiability
of an interpretation that is not sensible for the proper application. This is why in
practice the formulas representing a problem usually refer to a certain theory which
fixes the meaning of the function, predicate and constant symbols [BBH+09]. A
popular theory is the Presburger arithmetic. It contains the symbols (0,1,+,−,≤)
in which 0 and 1 are constant symbols, + and - are binary function symbols and ≤
is a binary predicate symbol. All symbols have their usual mathematical meaning.
Another prominent theory is the theory of integer linear arithmetic with equality. It
contains the addition and multiplication functions, as well as the following binary
predicates: < , ≤ , = , ≥ , >. Solver which are able to decide the satisfiability of
first-order formulas referring to a certain underlying theory are called SAT Modulo
Theories (SMT) solvers [BBH+09, Kra95].

SMT-solvers usually use a SAT-solver as an underlying decision procedure. The

10 Chapter 1. Introduction

question is how to use a SAT-solver for solving the SMT-problem. Basically, there
are two kinds of SMT-solvers: eager SMT-solvers and lazy SMT-solvers. An eager
SMT-solver first translates the original formula into a satisfiability-equivalent propo-
sitional formula and afterwards the SAT-solver has to decide upon its satisfiability. A
lazy SMT-solver abstracts from the theory atoms and uses a SAT-solver to generate
solutions for the Boolean structure of the formula. For each solution, a theory solver
is used to decide whether the respective constraints are consistent. A prominent the-
ory solver for linear arithmetic theory over Q is Simplex. However, it depends on
the theory which kind of solver should be applied, as the translation to satisfiability-
equivalent propositional formula cannot be made as efficiently for all kinds of theories.

The focus of this thesis lies on the pseudo-Boolean theory. A pseudo-Boolean
constraint can be written as a polynomial which variables can only take the values 0
or 1 while the coefficients are arbitrary integers. A special case of the PB-constraints
are the cardinality constraints. Those are constraints which variables can also only
take the values 0 or 1 but all coefficients equal to 1. This kind of constraints is used
for, e.g., binate covering based technology mapping, constraint-based placement and
routing, noise analysis and other [BBH+09, CK03, Seb07].

There are problems which can be expressed by a formula in propositional logic
or in first-order logic or in both of them. However, not every representation is opti-
mal. It has turned out that the aforementioned EDA problems can be described by
a set of pseudo-Boolean (PB) constraints more compactly than by propositional logic
[CK03]. This also holds for many other problems, e.g., VLSI design, statistical me-
chanics, maximum satisfiability, economics, manufacturing and so forth. Therefore,
it is sensible to develop PB-solvers [BBH+09, BH02].

Most practical questions are either satisfiability or optimization problems. Satis-
fiability problems refer to the following category of problems: given a PB-constraint,
decide if the formula is satisfiable. If it is satisfiable then give an assignment of vari-
ables which satisfies the formula. Otherwise, an infeasible subset of constraints should
be returned. Optimization problems consist of an objective function which has to be
minimized or maximized subject to a set of PB-constraints [BBH+09].

This thesis proposes an SMT-solver which solves pseudo-Boolean satisfiability
problems. The solver consists of a SAT-solver and a Simplex-solver. Before the
SMT-solver is applicable, a preprocessor encodes the PB-constraints as linear integer
arithmetic formulas where one part of the formulas are Boolean formulas and the other
part are arithmetic formulas. Moreover, two methods for simplifying PB-constraints
are presented. One approach uses residual number bases [FC14] in order to reduce
the number of occurring variables in a constraint. The other approach implements
the well-known Gauss algorithm that reduces the number of constraints.

This thesis is structured as follows. In chapter 2 pseudo-Boolean and cardinal-
ity constraints are defined. Moreover, it gives an theoretical background about the
translation of PB-constraints. Then in chapter 3 the encoding of PB-constraints is
discussed. The first part of chapter 3, deals with the decision which PB-constraints
should be encoded as Boolean formulas and how they can be encoded. The second
part deals with the encoding of arithmetic formulas. In chapter 4, both simplifying
approaches are presented. Then in chapter 5 the results of benchmarks are presented.
Finally, in chapter 6 the thesis concludes with a short summary and future prospect.

Chapter 2

Preliminaries

In this chapter all necessary definitions are presented. In the first section, linear and
non-linear pseudo-Boolean constraints are defined. The next section deals with a
special case of pseudo-Boolean constraints - the cardinality constraints. Finally, in
the last section some terms needed for the encoding are explained.

2.1 Pseudo-Boolean Constraints

A pseudo-Boolean function f is an n-ary function with f ∶ Bn ↦ Z, where B is the set
of Boolean values 0 and 1, and Z is the set of integers. A pseudo-Boolean constraint
(PB-constraint) is an equation or an inequality between a pseudo-Boolean function
and an integer. Moreover, it can be either linear or non-linear. A non-linear PB-
constraint has the form

∑
i

ai ⋅∏
j

lij # b

where the coefficients ai and the right hand side b are integers, # is one of the
relations < , ≤ , = , ≠ , ≥ , >, and lij are the literals. A literal lij can either be
a Boolean variable xij or its negation xij . For linear PB-constraints, as the name
already suggests, the multiplication of literals is not allowed. Hence, linear PB-
constraints have the form

∑
i

ai ⋅ li # b

All predicate and function symbols have their usual mathematical meaning. As the
variables are Boolean, a variable assigned to true is interpreted as 1 while a variable
assigned to false is interpreted as 0. Thus, all predicate and function symbols can
be used as usual. A solution of a PB-constraint is an assignment of variables which
satisfies the constraint. If a constraint is satisfied by every possible assignment, then
the constraint can be simplified to true and will be called tautology. If there exists no
assignment such that the constraint is satisfied, then the constraint can be simplified
to false and will be called contradiction [Bar96, BBH+09].

12 Chapter 2. Preliminaries

2.2 Cardinality Constraints
A special case of PB-constraints are the cardinality constraints. There are three differ-
ent types of cardinality constraints: atleast(b,{l1, . . . , ln}), atmost(b,{l1, . . . , ln}) and
exactly(b,{l1, . . . , ln}). The constraint atleast(b,{l1, . . . , ln}) requires that at least b
literals among l1, . . . , ln are assigned to 1. The constraint atmost(b,{l1, . . . , ln}) re-
quires that at most b literals among l1, . . . , ln are assigned to 1. Finally, the constraint
exactly(b,{l1, . . . , ln}) requires that exactly b literals among l1, . . . , ln are assigned to
1. All three cardinality constraints can be represented by a PB-constraint as follows

atleast(b,{l1, . . . , ln}) ⇐⇒
n

∑
i=1

1 ⋅ li ≥ b

atmost(b,{l1, . . . , ln}) ⇐⇒
n

∑
i=1

1 ⋅ li ≤ b

exactly(b,{l1, . . . , ln}) ⇐⇒
n

∑
i=1

1 ⋅ li = b

Note that all coefficients in a PB-constraint representing a cardinality constraint are
equal to 1. However, if all coefficients are equal to -1 the constraint can easily be
transformed into an equivalent cardinality constraint. For example, the constraint
−1x1 − 1x2 − 1x3 − 1x4 ≥ −1 can be transformed to 1x1 + 1x2 + 1x3 + 1x4 ≤ 1. Hence, it
is equivalent to an atmost cardinality constraint. Moreover, if all coefficients on the
left hand side and the integer on the right hand side are equal, then the constraint can
be transformed into an equivalent cardinality constraint by dividing the constraint
by the integer. For example, the constraint 2x1 + 2x2 + 2x3 + 2x4 ≤ 2 is equivalent
to x1 + x2 + x3 + x4 ≤ 1. Thus, the constraint is equivalent to an atmost cardinality
constraint [BBH+09].

2.3 Translating Pseudo-Boolean Constraints
All PB-constraints can be encoded as propositional formulas. In doing so, one needs
to find a propositional formula which is only satisfiability-equivalent to the PB-
constraint. This means, that all assignments I of the variables occurring in the
PB-constraint ϕ that satisfy ϕ (I ⊧ ϕ), must also satisfy the corresponding proposi-
tional formula ψ (I ⊧ ψ). Moreover, there must not exist a different assignment I′ of
the literals occurring in ϕ, such that I′ ⊭ ϕ but I′ ⊧ ψ and vice verse. This can be
also written as follows

Definition 2.3.1. Assume two formulas ϕ and ψ and there exists an assignment I
with I ⊧ ϕ. Then the two formulas are satisfiability-equivalent if and only if there
exists an assignment I′ with I′ ⊧ ψ.

However, encoding PB-constraints as propositional formulas can lead to formu-
las with exponential number of constraints [BBH+09]. Especially for very long PB-
constraints the according propositional formula might be very complicated. Even
more complicated is the translation for PB-constraints that have coefficients with dif-
ferent signs. Therefore, some of the PB-constraints are usually encoded as integer
arithmetic formulas [BA12, BBH+09].

Similarly as for the propositional formulas, all PB-constraints can also be encoded
as integer arithmetic formulas. Here, one has to pay attention to the fact that the

2.3. Translating Pseudo-Boolean Constraints 13

domain of the literals of an integer arithmetic formula is no more restricted to Boolean
values. Thus, each literal can take any integer value. Obviously, this is a problem
that must be considered when encoding PB-constraints as integer arithmetic formulas.
The exact procedure is presented in the next chapter.

14 Chapter 2. Preliminaries

Chapter 3

Encoding Pseudo-Boolean
Constraints

3.1 General Procedure

This thesis proposes an SMT-solver for linear integer arithmetic which is used for
solving linear PB-constraints. Due to the fact that the SMT-solver cannot directly
process PB-constraints, a preprocessor is needed which encodes the PB-constraints as
Boolean and arithmetic formulas and combines them into one liner integer arithmetic
formula. This section gives a short overview over the functioning of the preprocessor
and the SMT-solver. In the next two sections more detail information about the
translation follow.

The general approach is modeled by the flowchart 3.1. The blue elements repre-
sent processes which are done by the preprocessor. The input for the preprocessor is a
conjunction over PB-constraints which is represented by a list of the PB-constraints.
The preprocessor takes a PB-constraint from the list and checks if it can be encoded
as a propositional formula. Otherwise, the PB-constraint is encoded as an integer
arithmetic formula. Afterwards, the preprocessor again checks if there is an another
PB-constraint in the list and repeats the procedure. Once all constraints are encoded,
the constraints are combined into one liner integer arithmetic formula. The satisfia-
bility of the formula is then decided by the SMT-solver that consists of a SAT and
Simplex solver.

3.2 Encoding as Propositional Formula

The focus of this section lies on the decision if a PB-constraint should be translated
into a satisfiability-equivalent propositional formula and how it can be done. There
are many PB-constraints which can easily be encoded as propositional formulas, as
they directly correspond to a Boolean construct, e.g., implication. For example, the
PB-constraint −1x1 + 1x2 ≥ 1 can be encoded as x1 → x2. There are many such
PB-constraints and those can be processed by a SAT-solver very efficient [BBH+09].

One of the tasks of the preprocessor is to filter out constraints which should be
encoded as propositional formulas. It should be possible to create the corresponding
propositional formula fast and, even more important, the SAT-solver should be able

16 Chapter 3. Encoding Pseudo-Boolean Constraints

List of PB-
constraints

Next formula?

Get next PB-
constraint

Can be encoded
in proposi-

tional formula?

Encode as arith-
metic formula

Encode as propo-
sitional formula

SMT-solver

Sat/Unsat

Yes

No

No

Yes

Figure 3.1: Approach of the preprocessor.

to process this formula faster than the Simplex-solver. The most intuitive way to
filter out such constraints is to look at the number of terms on the left hand side
of the constraint. It is sensible to translate all PB-constraints which have only one
term on the left hand side, as all of them directly correspond to an easy Boolean
construct. This criterion divides the PB-constraints into two categories: short and
long formulas. Short formulas are formulas which have only one term on the left
hand side. Respectively, long formulas consist of more than one term. While all short
formulas can simply be encoded as propositional formulas, it is quite hard to decide
if it is sensible to encode a long formula. Thus, one needs further criteria, e.g., the
consistency of the coefficient’s signs. Depending on the right hand side, some long
PB-constraints with consistent signs can be translated efficiently. For others, some
more special criteria are required.

Due to the definition 2.3.1, finding a correct encoding for a PB-constraint requires
the consideration of all possible assignments of literals occurring in the constraint.
All assignments which satisfy the considered PB-constraint, must also satisfy the
corresponding propositional formula and no other assignment must satisfy it.

3.2. Encoding as Propositional Formula 17

The first subsection deals with the encoding of short formulas. The next subsection
describes the translation of long formulas with consistent signs. Afterwards, subsec-
tion 3.2.3 presents the encoding of cardinality constraints. Finally, in subsection 3.2.4
the encoding of long formulas with non-consistent signs is explained.

3.2.1 Encoding Short Formulas
This section deals with the short formulas, i.e., formulas that have the form a ⋅ x # b.
The case-by-case analysis is structured as follows. First the encoding of PB-constraints
with the relations ≥ and > are explained. The case-by-case analysis for those PB-
constraints is divided according to the sing of a. The next considered group of PB-
constraints are the equations. The last group of PB-constraints are those with the
relation ≠.

The first case-by-case analysis considers PB-constraints with the relations ≥ and
>, and assumes that a is positive.

ax1
>

≥ b↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, b < 0

true, b = 0 and the relation is ≥

x1, b > 0 and a > b
x1, b = 0 and the relation is >

x1, a = b and the relation is ≥

false, a = b and the relation is >
false, b > a

(3.1)

In the first case the PB-constraint can be encoded as true, as a positive number is
always strictly greater than a negative one. In the second case the PB-constraint can
also be encoded as true due to the fact that b is equal to 0 and the minimal value
reachable on the left hand side is also equal to 0. In the next case b is positive but
it is less or equal to a. Thus, the case when the left hand side is equal to 0 must be
excluded. This is done by encoding the formula as x1. In the next case the formula
can also be encoded as x1, since only a positive number can be strictly greater than
0. The next two cases correspond to short PB-constraints where the coefficient and
the right hand side are equal. Obviously, when the relation is ≥ the literal must be
set to 1 is order to satisfy the formula. For the relation > the formula can never be
satisfied and can be encoded as false. Finally, in the last case b is greater than a.
Hence, such PB-constraint can obviously be never satisfied.

The previous proof by cases considered PB-constraints with a > 0. Now, the cases
where a is negative are discussed.

ax1
>

≥ b↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

false, b > 0

false, b = 0 and the relation is >

x1, b < 0 and b > a
x1, b = 0 and the relation is ≥

x1, a = b and the relation is >

true, a = b and the relation is ≥

true, b < a

(3.2)

Due to the fact that a is negative and in the first case b is positive, it is trivial that the
PB-constraint has to be encoded as false. The second case is also trivial, as negative

18 Chapter 3. Encoding Pseudo-Boolean Constraints

number is not greater than 0. In the third case b is also negative, however it is greater
than a. Thus, the formula will only be satisfied if the left hand side is equal to 0.
Therefore, such PB-constraints has to be encoded as the negation of the literal. In
the next case b is again equal to 0. Hence, the left hand side must also be equal to 0.
The next two cases consider PB-constraints where the coefficient is equal to the right
hand side. If the relation is >, the left hand side must be equal 0 since the right hand
side is negative. Otherwise, if the relation is ≥ then the formula is always satisfied.
The last case is trivial.

That was the case-by-case analysis for PB-constraints with the relations ≥ and >.
The next step would be to look at PB-constraints which have the relations ≤ and <.
However, this cases do not have to be considered because they can be transformed to
the cases presented previously, as it hols that

∑
i

aixi
<

≤ b ⇐⇒ ∑
i

−aixi
>

≥ −b (3.3)

This is why the case-by-case analysis for those PB-constraints is not necessary. Instead
of this, the next case-by-case analysis considers the equations.

ax1 = b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1, a = b

x1, b = 0

false, a ≠ b

(3.4)

The first case is trivial since when a and b are equal, the constraint can only be
satisfied if x1 is set to 1. The situation is different when b is equal to zero, the
constraint is satisfied if x1 is assigned to 0. This is the reason why, such constraints
are encoded as the negation of the literal. The last case is trivial.

The last case-by-case analysis considers PB-constraints with the relation ≠.

ax1 ≠ b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1, b = 0, a ≠ 0

x1, b = a

true, a ≠ b

(3.5)

In the first case the constraint has to be translated to x1 because a must not be equal
to zero. In the next case b and a are equal. Thus, the only possibility to make the
left and right side unequal is to make the left hand side equal to 0. The last case is
again trivial.

Those were all cases for short formulas. In the next sub-section the translation of
more complex PB-constraints is discussed.

3.2.2 Encoding Long Formulas with Consistent Signs
The PB-constraints considered in this section have an arbitrary number of terms and
all coefficients on the left hand side are either positive or negative. A new criterion
used for filtering out the constraints of interest is the sum over all coefficients on the
left hand side. Nevertheless, a PB-constraint with positive (negative) left hand side
is a constraint where all coefficients on the left hand side are positive (negative).

The case-by-case analysis in this section is structured as follows. First, PB-
constraints with the relations ≥ and > are considered. The case-by-case analysis
for them is divided according to the sings of the coefficients on the left hand side.

3.2. Encoding as Propositional Formula 19

Thus, the first part of the case-by-case analysis considers PB-constraints with positive
left hand side. Then those with negative left hand side are considered. Afterwards
equations and PB-constraints with the relation ≠ are considered.

The first case-by-case analysis refers to PB-constraints with the relations ≥ and >
and positive left hand side. Now, there are only two criteria left - the value of b and
the relations. First, the cases where b is equal to 0 are considered.

∑
i

ai ⋅ xi
>

≥ 0↝

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

true, the relation is ≥

⋁
i

xi, the relation is > (3.6)

Due to the fact that the left hand side is positive the constraint is valid, independent
from the assignment of the literals xi. The highest value which can be reached on the
left hand side is equal to the sum over all coefficients (xi = 1 for all i). The minimum
value is equal to zero (xi = 0 for all i). This is the reason why in the first case the
constraint can be encoded as true. In the next case one has to pay attention to the
fact that the left hand side is not allowed to be equal to 0. This means that the
case where all xi are assigned to 0 has to be excluded. Since a disjunction is true
if and only if at least one literal is true, and false if and only if all literals are false,
the constraint can be encoded as a disjunction over all literals. Now it is ensured
that the minimum value which can be reached on the left hand side is equal to the
smallest coefficient. Since the smallest coefficient is greater than 0 (all coefficients are
positive), the translation is correct.

The next considered case assumes that b is negative. Since the left hand side is
positive and the relation is either ≥ or >, such a constraint is a tautology. Hence, the
constraint is encoded as true.

The last case considers the situation where b is positive. This is a quite complicated
situation but first the clear cases are discussed.

∑
i

ai ⋅ xi
>

≥ b↝

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

false, sum < b

⋀
i

xi, sum = b and the relation is ≥

false, sum = b and the relation is >

(3.7)

In this case one has to consider the sum of the constraints on the left hand side.
The sum can be seen as the maximum value which can be reached on the left hand
side (xi = 1 for all i). Therefore, if already the maximum reachable value on the left
hand side is smaller than b, it is not possible to satisfy the constraint. Therefore, in
the first case the constraint is encoded as false. In the next case the sum over all
coefficients is equal to b. This corresponds to a conjunction over all variables, since a
conjunction is true if and only if all literals are true. The situation is different when
it is required that the left hand side is strictly greater than b. As the sum is equal to
b there exists no possibility to make the left hand side greater. Hence, the constraint
is unsatisfiable. Observe that the case where the sum is strictly greater than b is not
considered. The reason why this case is not considered is that one has to enumerate
all possibilities which satisfy this condition. The following example illustrates the
problem. Consider the following inequality

2 ⋅ x1 + 2 ⋅ x2 + 3 ⋅ x3 + 1 ⋅ x4 + 1 ⋅ x5 > 3 (3.8)

It is fulfilled for many different assignments of the literals xi. Finding all models for
this inequality is similar to the subset sum problem. This is a well-know NP-complete

20 Chapter 3. Encoding Pseudo-Boolean Constraints

problem. The input for this problem is a set of positive integers and the question is
whether there exists a subset of the integers such that the sum over these is equal
to an integer S [Woe03]. Here, the problem is similar. A set of positive integers is
given. The task is to find all subsets whose sum is strictly greater than the right
hand side of the inequality. Depending on the number of terms, as well as the integer
on the right hand side, the number of such subsets can be very high. Thus, for such
PB-constraints the arithmetic encoding is usually more suitable.

In the previous case-by-case analysis the situation where the left hand side is
positive has been considered. Now, the cases where the left hand side is negative are
discussed. First, the case where b is equal to 0 is considered.

∑
i

ai ⋅ xi
>

≥ 0↝

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

false, the relation is >
⋀
i

xi, the relation is ≥ (3.9)

In the first case the formula can be encoded as false, since all coefficients are negative
(and so the sum over them) and a negative number is not greater than 0. Since
the coefficients are negative, the sum over them can be interpreted as the smallest
reachable value on the left hand side. Consequently, the highest value will be reached if
all literals xi are assigned to 0. Thus, in the second case all literals have to be assigned
to 0 because for all the other assignments the sum would be negative. Therefore, in
this case the constraint is encoded as a conjunction over the negated literals xi.

The next considered case is where b is greater than 0. Due to the fact that the
sum over the coefficients is negative neither a constraint with the relation ≥, nor a
constraint with the relation > can be satisfied when the coefficients are negative and
b is positive. Therefore, in both cases the constraint is simply encoded as false.

The last possibility for b is left. Here, the cases where b is negative are discussed.

∑
i

ai ⋅ xi
>

≥ b↝

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

true, sum > b

true, sum = b and the relation is ≥

⋁
i

xi, sum = b and the relation is >
(3.10)

Clearly, if the sum over the coefficients is strictly greater than b, no assignment can
make the left hand side smaller than b. Therefore, such PB-constraints are encoded as
true. In the next case, the PB-constraint can also be encoded as true, due to the fact
that no assignment can make the left hand side less than b. The last case is also quite
clear. It must be avoided that all literals are assigned to 1. For all the other cases,
the left hand side is strictly greater than b. Therefore, a disjunction over the negated
literals is a correct encoding for such PB-constraints. However, there again exists one
more case, namely when the sum is strictly less than b. This case is also similar to
the subset sum problem. Hence, arithmetic encoding for this cases is usually more
suitable.

Due to the same reasons as previously, it is unnecessary to pay attention to cases
where the relation is ≤ or <, since they can also be converted to the cases presented
above. The next case-by-case analysis considers equations.

∑
i

ai ⋅ xi = b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⋀
i

xi, sum = b

⋀
i

xi, sum ≠ b and b = 0
(3.11)

3.2. Encoding as Propositional Formula 21

In the first case the sum over coefficients is equal to b. This implies that all literals
xi must be set to 1. Therefore, the constraint is encoded as a conjunction over the
literals. In the second case b is equal to zero. In this situation the left hand side must
be equal to 0 in order to fulfill the constraint. Thus, all literals must be set to 0 and
therefore the constraint is encoded as a conjunction over negated literals. If b is not
equal to zero and the sum is not equal to b, then the arithmetic encoding is usually
more efficient than the Boolean encoding.

The last case-by-case analysis considers PB-constraints with the relation ≠. In
this case there exists only one situation when it pays off to translate the constraint
into propositional formula. If the right hand side of the constraint is equal to 0, the
constraint can be translated into the formula ⋁i xi. This translation is valid because
this formula is equivalent to ¬(⋀i xi) and since the left hand side should not be equal
to the right hand side, at least one literals has to be set to 1. For all the other cases
the arithmetic encoding may be better than Boolean due to reasons explained before.

3.2.3 Encoding Cardinality Constraints
The focus of this section lies on the translation of cardinality constraints. These are
constraints whose coefficients are equal to 1 and therefore they are special cases of
usual PB-constraints. Due to their quite easy structure, it is possible to translate
some of them efficiently to propositional formulas. This section only considers car-
dinality constraints which frequently occur in benchmarks from the Pseudo-Boolean
Competition in the years 2016 and 2015. In order to simplify the case-by-case analysis
first, the translation of the general three kinds of cardinality constraints are discussed.

First, the encoding of the constraint exactly(b,{x1, . . . , xn}) is explained. It cor-
responds to the following PB-constraint

x1 + x2 + . . . + xn = b

This constraint is satisfied if exactly b literals on the left hand side are assigned to 1
and can be encoded as the following propositional formula

n

⋁
i1=1

n

⋁
i2=1
i2≠i1

. . .
n

⋁
ib=1
ib=ib−1

n

⋀
ib+1=1
ib+1≠ib

(xi1 ∧ xi2 ∧ . . . ∧ xib ∧ xib+1 ∧ . . . ∧ xin) (3.12)

The first b literals must be assigned to 1, the remaining n - b must be negated, in
order to satisfy the formula.

Now, the atleast(b, {x1, . . . , xn}) constraint is considered. Every atleast constraint
can be written as the following PB-constraint

x1 + x2 + . . . + xn ≥ b

It requires that at least b literals on the left hand side are assigned to 1, which in
turn means that at most n - b literals have to be assigned to 0. Trivially, the formula
cannot be satisfied if the number of literals n is less than b. Therefore, here n ≥ b is
assumed. In order to encode this formula, one can use the encoding of the constraint
exactly to exclude the cases where less than b literals are assigned to 1. Hence, the
constraint can be translated as follows

n

⋁
i=1

xi ∧ ¬ exactly(b − 1,{x1, . . . , xn}) ∧

¬ exactly(b − 2,{x1, . . . , xn}) ∧ . . . ∧ ¬ exactly(1,{x1, . . . , xn})

(3.13)

22 Chapter 3. Encoding Pseudo-Boolean Constraints

The first sub-formula guarantee that at least one literal is assigned to 1. However, if
b is greater than 1, one must exclude the cases where less than b literals are assigned
to 1. Here, the encoding for exactly(k,{x1, . . . , xn}) can be used, as one has to ensure
that not only b - 1, b - 2, b - 3, and so on, literals are set to 1.

The cardinality constraint atmost(b, {x1, . . . , xn}) remains. This will be unsatisfi-
able if b is a negative number. Thus, it is assumed that b is positive. This constraint
is equivalent to the following PB-constraint

x1 + x2 + . . . + xn ≤ b (3.14)

This formula will be satisfied if at most b literals on the left hand side are assigned
to 1. This leads to a propositional formula which is similar to the previous one. The
difference between those two is that here the number of literals which are not negated
is increased and not, as before, the number of negated literals. Hence, the formula
has the form

exactly(0,{x1, . . . , xn}) ∨ exactly(1,{x1, . . . , xn})

∨ . . . ∨ exactly(b,{x1, . . . , xn})
(3.15)

The first sub-formula ensures that no literal can be assigned to 1. Together with the
next sub-formula it is allowed to assign at most one literal to 1. The next one allows
assigning two literals to 1 and so on.

Now, since the general encoding of the three kinds of cardinality constraints are
clear, a closer look at the constraints which frequently occur in benchmarks can be
taken. Usually, the constraints occurring in benchmarks are not directly in the form of
one of those three kinds of cardinality constraints. However, they can be transformed
to one of them. The first case-by-case analysis considers PB-constraints with the
relation ≥. The PB-constraint

x1 + x2 + . . . + xn ≥ 1

occurs very oft and it can be encoded very efficiently. Obviously, this constraint is
equivalent to the cardinality constraint atleast(1, {x1, . . . , xn}). Therefore, it can
be encoded just as a disjunction over the literals, as explained in 3.13. Another
interesting constraint is the following

−x1 − x2 − . . . − xn ≥ −1 ⇐⇒ x1 + x2 + . . . + xn ≤ 1

This PB-constraint is not a cardinality constraint. Thus, first the both sides of the
constraint must be multiplied by -1. This is clearly equivalent the cardinality con-
straint atmost(1, {x1, . . . , xn}). The last constraint belonging to this category is the
PB-constraint

− x1 − x2 − . . . − xn ≥ −2 ⇐⇒ x1 + x2 + . . . + xn ≤ 2 (3.16)

The difference between this constrain and the previous one is the right hand side.
Therefore, the constraint is encoded as atmost(2, {x1, . . . , xn}).

The remaining type of PB-constraints are those which are equivalent to the car-
dinality constraint exactly(b, {x1, . . . , xn}). In benchmarks from the Pseudo-Boolean
Competition in the years 2016 and 2015, the most frequently occurring cardinality
constraints are exactly(0, {x1, . . . , xn}) and exactly(1, {x1, . . . , xn}). Thus, only those
are encoded as propositional formulas.

3.2. Encoding as Propositional Formula 23

3.2.4 Encoding Long Formulas with Non-Consistent Signs
PB-constraints with non-consistent sings are those that have negative and positive
coefficients on the left hand side. Depending on the sum over the coefficients and the
right hand side, the Boolean encoding is usually complicated, as those are also similar
to the subset sum problem mentioned before. Therefore, most of PB-constraints
belonging to this category are encoded as arithmetic formulas. However, there are
few of them that directly correspond to quite easy Boolean constructs. Moreover, the
focus of this section also lies on constraints that frequently occur in benchmarks.

The easiest PB-constraints belonging to this category are those with two terms,
since they correspond to quite easy Boolean constructs. However, here are only fre-
quently occurring cases considered, so only the three PB-constraints are encoded as
propositional formulas

− n ⋅ x1 + n ⋅ x2 ≥ b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x1 ∧ x2, b = n

true, b = −n

x1 → x2, b = 0

(3.17)

It is assumed that n is positive. In the first case b is equal to n. This constraint will
only be satisfied, when x1 is assigned to 0 and x2 to 1. Hence, it is encoded as x1∧x2.
In the second case b is equal to -n. Since the smallest coefficient is equal to -n and
the right hand side is negative, the constraint is always satisfied. Thus, it is encoded
as true. In the last case b is equal to 0. The only case where the constraint is not
satisfiable, is when only x1 is assigned to 1. Therefore, it must be guarantee that if
x1 is assigned to 1, x2 is also assigned to 1. This corresponds to an implication.

Now, PB-constraints with three terms on the left hand side are considered. Ba-
sically, either one coefficient or two coefficients are negative. The other cases were
already explained in section 3.2.2. First, constraints with one negative coefficient are
regarded.

− n ⋅ x1 + n ⋅ x2 + n ⋅ x3 ≥ b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

true, b = −n

x1 ∨ x2 ∨ x3, b = 0

(x1 → (x2 ∧ x3)) ∧ (x1 ∨ x2 ∨ x3), b = n

(3.18)

In the first case b is equal to -n (n is positive). Since -n is the smallest and the only
negative coefficient on the left hand side, there exists no assignment such that the
sum would be less than -n. Hence, such constraints are encoded as true. In the next
case, the right hand side is equal to 0. The assignment where only x1 is assigned to 1
must be excluded. Therefore, as soon as x1 is assigned to 1, at least one of the other
literals must also be set to 1. Hence, x1 implies that x2 or x3 are valid. The last case,
is a little more complicated. The constraint requires that the sum on the left hand
side is at least equal to n. Obviously, this constraint will not be satisfied when only
x1 is assigned to 1. However, it can be satisfied when x1 is set to 1 but only if x2
and x3 are also assigned to 1. This is why the implication is needed. However, the
implication itself is not enough because first, the cases where x2 or x3 are assigned to
1 are not satisfied by this formula. Second, the case when all literals are set to zero
must also be excluded. This is why the disjunction over all coefficients is needed. It is
unsatisfiable when all literals are assigned to 0, but it is satisfied for cases when x2 or
x3 are assigned to 1. Hence, the conjunction over both sub-formulas gives a correct
encoding for the origin PB-constraint.

24 Chapter 3. Encoding Pseudo-Boolean Constraints

Now, the cases where two coefficients are negative are discussed.

− n ⋅ x1 − n ⋅ x2 + n ⋅ x3 ≥ b↝

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x3, b = n

¬(x1 ∧ x2) ∧ ((x1 ∨ x2)→ x3), b = 0

(x1 ∧ x2)→ x3, b = −n

(3.19)

The first case is quite clear since the sum on the left hand side must be at least n and
on the left hand side two of the coefficients are negative. Clearly, the only possibility
to satisfy the constraint is to assign x3 to 1. For all the other combinations, the
constraint is unsatisfiable. The PB-constraint in the second case requires that the
sum on the left hand side is equal to 0. The first sub-formula ensures, that x1 and
x2 are never assigned to 1 at once. This case must be excluded, as the sum on the
left hand side would already be equal to -2n and since -2n + n is less than zero, the
constraint would not be satisfied. However, the negation of the sub-formula is for
all the cases where x1 and x2 are not assigned to 1 satisfied. This means that this
sub-formula by itself, is not satisfiability-equivalent to the PB-constraint. Therefore,
the second sub-formula is needed. It guarantees that if x1 or x2 is assigned to 1, x3 is
also assigned to 1. Thus, the sum on the left hand side is always at least 0 and this is
what the origin PB-constraint requires. In the last case b is equal to -n. Since there
are two negative coefficients, one has to pay attention that not both literals belonging
to the coefficients are set to 1. Actually, this is what the implication guarantees. Since
this is the only case which must be excluded, the formula is satisfiability-equivalent
to the PB-constraint.

Obviously, there are much more cases which are not considered here. All of them
are encoded as integer arithmetic formulas. How exactly the encoding works, is
explained in the next section.

3.3 Encoding as Integer Arithmetic Formula
This section gives detailed information about the translation of PB-constraints into
satisfiability-equivalent integer arithmetic formulas.

PB-constraints which must be encoded as integer arithmetic formulas will be
solved by Simplex. This implies three things. First, in order to encode a PB-constraint
as an integer arithmetic formula one has to change the type of the variables from
Boolean to integer. Second, one has to guarantee that the new variables only takes
the values 0 or 1. Third, the new variables must be connected with the Boolean, as
each Boolean variable and its corresponding integer variable must be assigned to the
same value. The solution for this problems is to add new variables and to construct
auxiliary constraints which guarantee that the mentioned problems does not occur.
Using an example we explain how all three problems can be solved.

Consider the following two PB-constraints

2 ⋅ x1 + 2 ⋅ x2 + 3 ⋅ x3 + 1 ⋅ x4 + 1 ⋅ x5 ≥ 3 (3.20)

1 ⋅ x1 + 1 ⋅ x3 + 1 ⋅ x6 ≥ 2 (3.21)

The preprocessor first considers the first constraint. It belongs to the category of long
formulas. Since the sum over coefficients on the left hand side is greater than the
right hand side, the constraint should be encoded as an integer arithmetic formula

3.3. Encoding as Integer Arithmetic Formula 25

according to 3.2.2. As Simplex works on integer variables first, new integer variables
i1, i2, i3, i4 and i5 are created. Each Boolean variable is uniquely connected to one
of the new integer variables because the Boolean variables might occur in other PB-
constraints (here 3.21). For this purpose the preprocessor has a list which contains
all Boolean variables and its corresponding integer variables. Here, the list looks like
this:

{(x1, i1), (x2, i2), (x3, i3), (x4, i4), (x5, i5)} (3.22)

Now the integer arithmetic formula can be created

2 ⋅ i1 + 2 ⋅ i2 + 3 ⋅ i3 + 1 ⋅ i4 + 1 ⋅ i5 ≥ 3. (3.23)

This formula could already be processed by Simplex. However, it must be satisfiability-
equivalent to the formula 3.20. Until now, Simplex is allowed to assign the literals ij to
arbitrary integer values. Obviously, an assignment may be invalid for PB-constraints
and so the formula 3.23 is not satisfiability-equivalent to the formula 3.20 yet. More-
over, it is possible that the SAT-solver already assigned some literals which also occur
in this constraint. Therefore, auxiliary constraints are added. Those guarantee that
if a Boolean variable is set to true (false) then the corresponding integer variable is
set to 1 (0). Note that this constraint also ensures that the integer variables only
take the values 0 or 1. The corresponding auxiliary constraint has the form

5

⋀
j=1

((xj → (ij = 1)) ∧ (¬xj → (ij = 0))) (3.24)

The final translation of the formula 3.20 is

ψ ∶= 2 ⋅ i1 +2 ⋅ i2 +3 ⋅ i3 +1 ⋅ i4 +1 ⋅ i5 ≥ 3∧
5

⋀
j=1

((xj → (ij = 1))∧ (¬xj → (ij = 0))) (3.25)

Now, the second constraint 3.21 is translated. Since 3.20 does not contain the Boolean
variable x6, a new integer variable i6 is created and the variable list must be updated
as follows

{(x1, i1), (x2, i2), (x3, i3), (x4, i4), (x5, i5), (x6, i6)}. (3.26)

Since the auxiliary constraints for the variables i1 to i5 have already been added, only
an auxiliary constraint for the new integer variable is added. This means that the
formula 3.21 is encoded as

1 ⋅ i1 + 1 ⋅ i2 + 1 ⋅ i6 ≥ 2 ∧ (x6 → (i6 = 1)) ∧ (¬x6 → (i6 = 1)) (3.27)

At this point the preprocessor forwards the conjunction over both translations 3.25
and 3.27 to the SMT-solver.

In general, a PB-constraint ∑j aj ⋅xj # b is satisfiability-equivalent to the integer
arithmetic formula

∑
j

aj ⋅ ij # b ∧ ⋀
j

(xj → ij = 1 ∨ xj → ij = 0) (3.28)

where xj are Boolean variables and ij are integer variables.

26 Chapter 3. Encoding Pseudo-Boolean Constraints

Chapter 4

Simplifying Pseudo-Boolean
Constraints

Encoding large formulas can lead to exponential number of clauses in corresponding
propositional formula or a large number of auxiliary formulas for integer arithmetic
formulas. This chapter presents two approaches which can simplify PB-constraints
and so accelerate solving of PB-constraints in some cases. In the first section an
approach based on residual number systems is presented. In the second section it
is shown how Gauss algorithm can be used to reduce the number of constraints and
terms.

4.1 Simplifying Pseudo-Boolean Constraints Using
Residual Number Systems

4.1.1 General Approach

This approach is based on Chinese Remainder Theorem. By means of this theorem,
each integer can be uniquely decomposed into a sequence of smaller integers according
to some base. Depending on the choice of the base, the sequence of integers can be
longer or shorter. The mathematical operations addition, subtraction and multiplica-
tion can be applied component-by-component. The idea of this approach is to find a
residual number base [FC14] which allows to represent each coefficient occurring in a
PB-constraint by a minimal sequence of smaller integers. Once such a base is found,
the PB-constraint can be translated to a conjunction of new PB-constraints which
probably have smaller number of terms. The better the chosen base, the shorter the
corresponding PB-constraints [FC14].

This approach is actually used by PB-solvers which encode all PB-constraints as
Boolean formulas. However, for this PB-solver it should help to reduce the number of
terms for some PB-constraints, such that they can be encoded as Boolean constraints
[FC14].

28 Chapter 4. Simplifying Pseudo-Boolean Constraints

4.1.2 Preliminaries

Mixed Radix Base. It is well-known that each natural number represented in
decimal system can be represented in various numeral systems, e.g., binary system
or hexadecimal system. Usually, each digit is represented using the same base. For
example, in binary system the number 105 corresponds to 1101001 in binary system
and the basis for each digit is ⟨2,2,2,2,2,2,2⟩. Basis where all digits are represented by
the same integer are called constant radix base, where radices are the particular entries
in the base. One can write this relationship as illustrated in table 4.1. However, it
is possible to represent each digit using different radix. Such bases are called mixed
radix bases. A finite mixed radix base is also a sequence of integers ⟨r0, r1, . . . , rk⟩,
however the radices ri does not have to be equal. Again, consider the number 105
and mixed radix base ⟨2,3,4,5⟩. The representation of this number is illustrated in
4.2. The digits can be calculated as follows

d0 ∶ 105 mod 2 = 1

d1 ∶ 52 mod 3 = 1

d2 ∶ 17 mod 4 = 1

d3 ∶ 4 mod 5 = 4

Definition 4.1.1 (Chinese Remainder Theorem). Let n1, n2, . . . nk be a sequence of
pairwise coprime integers, then there exists exactly one integer n (0 ≤ n <∏i ni) which
can be represented by a sequence of integers a1, a2, . . . , ak (0 ≤ ai ≤ ni for each i) such
that

n ≡ ai (mod ni) (4.1)

holds for all i ∈ {1, . . . , k} [CLRS09].

An important conclusion of this theorem is that the mathematical operations
addition, subtraction and multiplication which are applied on two integers x and y
can also be applied on their decomposition. This means if x can be decomposed
into the sequence of integers (x1, . . . , xk) and y can be decomposed into the sequence
(y1, . . . , yk), then the following holds (z ∈ N)

(x + y) mod z ⇐⇒ ((x1 + y1) mod z, (x2 + y2) mod z, . . . , (xk + yk) mod z),

(x − y) mod z ⇐⇒ ((x1 − y1) mod z, (x2 − y2) mod z, . . . , (xk − yk) mod z),

(x ⋅ y) mod z ⇐⇒ ((x1 ⋅ y1) mod z, (x2 ⋅ y2) mod z, . . . , (xk ⋅ yk) mod z).

(4.2)

Radix 2 2 2 2 2 2 2
Digits d0 d1 d2 d3 d4 d5 d6
105 1 1 0 1 0 0 1

Table 4.1: Representation of 105 in constant
radix base.

Radix 2 3 4 5
Digit d0 d1 d2 d3
105 1 1 1 4

Table 4.2: Representation of 105
using mixed radix base µ =
⟨2,3,4,5⟩.

Residual Number Base. A residual number (RNS) base is a sequence of pairwise
coprime integers greater one, calledmoduli. An RNS base is a base for a PB-constraint
if additionally, the product over the moduli is greater than the maximum coefficient

4.1. Simplifying Pseudo-Boolean Constraints Using Residual Number Systems 29

occurring in the PB-constraint and the number of moduli is minimal. However, not all
PB-constraints have an RNS base which is non-redundant. For example cardinality
constraints have no non-redundant RNS bases, as 1 modulo any number again results
in 1. This means that the calculation of bases for such constraints is redundant.

Due to the Chinese remainder theorem, every integer x can uniquely be represented
in an RNS base µ = ⟨m0,m1, . . . ,mn⟩ as follows

xµ = ⟨(x mod m0), (x mod m1), . . . , (x mod mn)⟩

Thus, given the RNS base µ = ⟨2,3,5,7,11⟩, the number 748 represented in µ has the
form (748)µ = (0,1,3,6,0), since

748 mod 2 = 0

748 mod 3 = 1

748 mod 5 = 3

748 mod 7 = 6

748 mod 11 = 0

Since addition, subtraction and multiplication can be performed on the numbers
represented in an RNS base without any restriction, this representation can be used for
simplification of PB-constraints. In doing so, each coefficient of a PB-constraint must
first be represented in the base. Out of this representation an equations system of
pseudo-Boolean modulo (PB-Mod) constraints can be derived. The following example
illustrates how the simplification works. The following constraint is considered

748 ⋅ x1 + 936 ⋅ x2 + 58 ⋅ x3 + 493 ⋅ x4 + 145 ⋅ x5 + 85 ⋅ x6 = 105 (4.3)

Digit d0 d1 d2 d3 d4
Radix 2 3 5 7 11
748 0 1 3 6 0
935 1 2 0 4 0
58 0 1 3 2 3
493 1 1 3 3 9
145 1 1 0 5 2
85 1 1 0 1 8
105 1 0 0 0 6

Table 4.3: Representation of the coef-
ficients from equation 4.3 in the RNS
base µ1 = ⟨2,3,5,7,11⟩

Digit d0 d1 d2
Radix 5 17 29
748 3 0 23
935 0 0 7
58 3 7 0
493 3 0 0
145 0 9 0
85 0 0 27
105 0 3 18

Table 4.4: Representation of the
coefficients from equation 4.3 in
the RNS base µ2 = ⟨5,17,29⟩

The tables 4.3 and 4.4 show the coefficients occurring in the equation 4.3 repre-
sented in the two different RNS bases µ1 = ⟨2,3,5,7,11⟩ and µ2 = ⟨5,17,29⟩. The first
base (µ1) yields the following equations system

1 ⋅ x2 + 1 ⋅ x4 + 1 ⋅ x5 + 1 ⋅ x6 = 1 mod 2

1 ⋅ x1 + 2 ⋅ x2 + 1 ⋅ x3 + 1 ⋅ x4 + 1 ⋅ x5 + 1 ⋅ x6 = 0 mod 3

3 ⋅ x1 + 3 ⋅ x3 + 3 ⋅ x4 = 0 mod 5

6 ⋅ x1 + 4 ⋅ x2 + 2 ⋅ x3 + 3 ⋅ x4 + 5 ⋅ x5 + 1 ⋅ x6 = 0 mod 7

3 ⋅ x3 + 9 ⋅ x4 + 2 ⋅ x5 + 8 ⋅ x6 = 6 mod 11

(4.4)

30 Chapter 4. Simplifying Pseudo-Boolean Constraints

The second base (µ2) yields this equations system

3 ⋅ x1 + 3 ⋅ x3 + 3 ⋅ x4 = 0 mod 5

7 ⋅ x3 + 9 ⋅ x5 = 3 mod 17

23 ⋅ x1 + 7 ⋅ x2 + 27 ⋅ x6 = 18 mod 29

(4.5)

Obviously, the second equations system is shorter than the first one. This may mean,
that the second equations system can be solved faster than the first one. This implies
that the choice of base is important. However, the resulting constraints are so called
pseudo-Boolean modulo (PB-Mod) constraints which cannot directly be processed by
the preprocessor. Hence, one needs an encoding for them [FC14].

4.1.3 Encoding Pseudo-Boolean Modulo Constraints
In order to simplify a PB-constraint, a non-redundant RNS base µ = ⟨p1, . . . , pm⟩
was used. The result was a conjunction of PB-Mod-constraints. Now, since the
preprocessor should be used to solve the conjunction, the PB-Mod-constraints must
be transformed into regular PB-constraints. For the modulo operation it holds that
if a mod b = c then there exists an integer t such that it holds t ⋅ b+ c = a. This can be
applied on the PB-Mod-constraints

m

⋀
j=1

(
n

∑
i=1

(ai mod pj) ⋅ xi ≡ cj mod pj)⇔
m

⋀
j=1

(
n

∑
i=1

(ai mod pj) ⋅ xi = tj ⋅ pj + cj) (4.6)

However, tj is an arbitrary integer. According to the definition of the modulo opera-
tion for every tj holds

tj = ⌊
(∑

n
i=1(ai mod pj) ⋅ xi) − cj

pj
⌋ ≤ ⌊

(∑
n
i=1(ai mod pj)) − cj

pj
⌋ =∶ k (4.7)

Hence, the value of tj can be bounded by k. Thus, each variable tj can be encoded
using unary bit-blasting, that means

tj =
k

∑
i=0

yij (4.8)

where yij is a variable that can either take the value 0 or 1 [FC14].
All in all, a PB-Mod-constraint can be transformed into a regular PB-constraint

by

n

∑
i=1

(ai mod pj) ⋅ xi ≡ cj mod pj ⇔
n

∑
i=1

(ai mod pj) ⋅ xi − pj ⋅ (
k

∑
i=0

yji) = cj (4.9)

For example, the PB-Mod-constraint 23 ⋅ x1 + 7 ⋅ x2 + 27 ⋅ x6 = 18 mod 29 is equivalent
to the PB-constraint 23 ⋅ x1 + 7 ⋅ x2 + 27 ⋅ x6 − 29 ⋅ y11 = 18, as ⌊ 23+7+27−18

29
⌋ = 1 and so

only one additional variable is required [FC14].

4.1.4 Finding Optimal Residual Number Base
As seen in the previous subsection, the choice of base influences the number of vari-
ables occurring in the equation system after RNS-transformation. In order to mini-
mize the number of occurring variables it is important to choose a base that contains
primes which divide the maximum number of coefficients [FC14].

4.2. Gauss Algorithm for Simplifying Pseudo-Boolean Constraints 31

Coefficient Prime Factors
748 2, 11, 17
935 5, 11, 17
58 2, 29
493 17, 29
145 5, 29
85 5, 17

Table 4.5: Prime factors of the coefficients of equation 4.3.

Definition 4.1.2. A non-redundant RNS base µ is called optimal if and only if there
exists no other RNS base whose moduli divides more coefficients than µ.

In order to find such a base first, one has to perform prime factorization. Once,
the prime factorization is performed for all coefficients, the primes are sorted first
lexicographic, and then according to the number of divided coefficients. The shortest
sequence of the sorted primes whose product is greater than the maximal coefficient
is the optimal base. An example should illustrate the approach [FC14].

Again the equation 4.3 is considered. First the prime factorization is performed.
Table 4.5 shows the resulting prime factors. Now for each prime factor, the number
of divided coefficients can be count. The next step is to sort the primes according to

Prime Factor 2 5 11 17 29
Number of divided

coefficients 2 3 2 4 3

Table 4.6: Number of coefficients divided by the corresponding prime factor.

the number of divided coefficients. The order of the primes is (17,5,29,2,11). The
optimal RNS base is the shortest sequence of integers whose product is greater than
935. As 17 ⋅ 5 is smaller than 935 and 17 ⋅ 5 ⋅ 29 is greater than 935, the sequence
⟨17,5,29⟩ is the optimal RNS base [FC14].

4.2 Gauss Algorithm for Simplifying Pseudo-Boolean
Constraints

4.2.1 General Approach
A conjunction of PB-constraints with the relation = can be interpreted as a system
of regular equations on which the well-known Gauss algorithm can be performed.
We construct a matrix M that contains all the left hand sides of the equations.
Afterwards, Gauss algorithm is performed on it. The resulting matrix M ′ can be
used to simplify the inequalities. In best case, this procedure can reduce the number
of constraints which have to be processed by the SMT-solver.

Preparing Equations. First, a matrix M that contains all the left hand sides of
the equations is constructed. Afterwards, the lower upper (LU) decomposition can be
performed on this matrix [Eig17]. The decomposition decomposes the matrix into a

32 Chapter 4. Simplifying Pseudo-Boolean Constraints

unit-lower-triangular matrix L and an upper-triangular matrix U. The upper matrix
U will later on be used to simplify the remaining constraints. Note that the actual im-
plementation of the LU decomposition also performs permutations on the matrix. The
right hand side must therefore be adapted according to these permutations [Eig17].

Simplifying Inequalities. An upper matrix can be used to simplify inequalities.
In doing so, a matrix I is constructed which contains all the left hand sides of the
inequalities. Now, for each row i in the matrix I, one look for a row in matrix U
which can make an entry in row i equal to 0. This is done as long as there exists no
more row in the upper matrix which could make any entry in row i equal to 0. Once
all rows in matrix I are simplified, one can transform both matrices (I and U) to
PB-constraints. Finally, the resulting constraints are forwarded to the preprocessor
which can encode them.

The following example illustrates how the approach works. The following PB-
constraints are considered

1 ⋅ x1 − 2 ⋅ x2 + 1 ⋅ x3 = 4

2 ⋅ x1 + 1 ⋅ x2 + 1 ⋅ x3 = 5

1 ⋅ x1 + 1 ⋅ x2 = 2

−5 ⋅ x2 + 1 ⋅ x3 ≥ 2

4 ⋅ x1 + 1 ⋅ x2 + 4 ⋅ x4 ≥ 1

(4.10)

The matrix M representing the equations has the form

M =
⎛
⎜
⎝

1 −2 1
2 1 1
1 1 0

⎞
⎟
⎠

(4.11)

Now, the upper matrix U can be calculated. However, our approach works on integers
so the upper matrix must be transformed in such a way that all elements are integers.
Thus, the upper matrix has the form

U =
⎛
⎜
⎝

2 1 1
0 −5 1
0 0 −2

⎞
⎟
⎠

(4.12)

For the right hand side holds b = (5, 2, -1). Matrix I representing the inequalities
has the form

I = (
0 −5 1
4 1 4

) (4.13)

Using matrix U one can simplify matrix I such that the following matrix results

I ′ = (
0 0 0
0 −1 0

) (4.14)

Hence, the following PB-constraints can be produced

2 ⋅ x1 + 1 ⋅ x2 + 1 ⋅ x3 = 5

−5 ⋅ x2 + 1 ⋅ x3 = 2

−2 ⋅ x3 = −1

−1 ⋅ x2 ≥ −10

(4.15)

4.2. Gauss Algorithm for Simplifying Pseudo-Boolean Constraints 33

In this case the Gauss algorithm could reduce the number of constraints as well as
the number of terms. Usually, this should accelerate the solving of PB-constraints.

34 Chapter 4. Simplifying Pseudo-Boolean Constraints

Chapter 5

Experimental Results

The approaches presented in this thesis were implemented using the modular C++
library SMT-RAT [CKJ+15]. SMT-RAT offers various modules which implement
different SMT solving procedures, such as SAT-solver or Simplex-solver. The different
modules can be used to compose a user-defined SMT-solver. For this purpose, one has
to define a strategy. In a strategy a user can define of which modules a SMT-solver
is composed and in which order the modules should be executed. Moreover, one can
define which parts of code are executed or not.

The SMT-solver used in this thesis combines the SAT-solver and the Simplex-
solver with a newly implemented preprocessor module for PB-constraints. In order
to test the various encoding and simplification approaches, different strategies were
created. All strategies implement the encoding of arithmetic formulas, short and
long formulas with consistent signs. Overall six strategies were established. Table
5.1 gives an overview over all strategies. The first column contains the names of the
strategies. The next two columns show if a strategy encodes cardinality constraints
or long formulas with non-consistent sings as Boolean formulas. The last two columns
indicate if Gauss or RNS procedure are used by a strategy. At this point it is important
to underline that all optimization possibilities were ignored.

Strategy Cardinality
Constraints

Long Formulas
with Non-Consistent

Signs

Gauss
Algorithm RNS

Basic 7 7 7 7

Cardinality
Constraints 3 7 7 7

Non-Consistent
Signs 7 3 7 7

Gauss 3 3 3 7

RNS 3 3 7 3

Complete 3 3 7 7

Table 5.1: Overview over strategies for SMT-RAT.

The benchmarks are taken form the pseudo-Boolean Competition 2015 and 2016.
Each test was run with a timeout of 30 seconds. As a reference the PB-solverMiniSat+

36 Chapter 5. Experimental Results

[ES06] was taken which encodes all PB-constraints as Boolean formulas. Overall 4597
benchmarks were run. SMT-RAT was able to solve about 20% of the overall number
of examples. MiniSat+ was able to solve about 60% of the examples. Table 5.2 shows
how many examples a certain strategy was able to solve. Thus, SMT-RAT was overall

Strategy Number of
solved examples

Basic 913
Cardinality
Constraints 677

Non-Consistent
Signs 1023

Gauss 766
RNS 829

Complete 829

Table 5.2: Number examples solved by the different strategies.

worse than MiniSat+. However, there are some benchmark classes where SMT-RAT
is much faster than MiniSat+. Those are presented in this chapter.

In order to show how fast SMT-RAT was able to solve different problems, various
diagrams have been made. The x-axis of each diagram shows the overall number of
variables occurring in an example. The y-axis shows the time needed for solving the
problem in milliseconds.

The first section deals with the comparison of MiniSat+ and SMT-RAT. The
second section deals with the comparison of the different strategies for SMT-RAT.

5.1 Comparison of MiniSat+ and SMT-RAT
The diagrams presented in this section show the results for two different benchmark
classes. The first class contains problems which are similar to the already mentioned
subset sum problem. Those are PB-constraints whose sum on the left hand side is
greater than the right hand side. Thus, according to chapter 3 all of them are encoded
as arithmetic formulas. The second class contains problems which are represented by
a sequence of long PB-constraints with consistent signs, which SMT-RAT encodes as
Boolean constraints. However, there is always one formula containing all variables
which is encoded as arithmetic formula.

Here, SMT-RAT always used the basic strategy. It turned out that SMT-RAT
usually becomes better with increasing number of variables for the two benchmark
classes. This behaviour is presented by the diagrams below.

Figure 5.1 illustrates a diagram presenting the results for benchmarks belonging
to the first class. The benchmarks were taken from the pseudo-Boolean Competition
2015 and belong to the group "Proof Complexity". The problems solved here were
called "Fixed Bandwidth". One can see that only at the beginning MiniSat+ is faster
than SMT-RAT. When the number of variables is greater than about 45, SMT-RAT
can solve the problems faster than MiniSat+.

A similar behaviour can be observed in figures 5.2 and 5.3. Both figures present
benchmarks belonging to the same class and group. The benchmarks presented in
figure 5.2 show problems called "Regular Extracted". Benchmarks presented in figure

5.1. Comparison of MiniSat+ and SMT-RAT 37

50 75 100 125 150 175

100

200

300

400

500

600

Number of variables

T
im

e
[m

s]

SMT-RAT
MiniSat+

Figure 5.1: Results for the benchmarks belonging to the first class. The problems
solved here are called "Fixed Bandwidth".

5.3 were called "Subset Cardinality Sigma". At the beginning in both cases SMT-RAT
is worse than MiniSat+ however, when the number of variables reaches a certain mark,
SMT-RAT can solve the problems faster. This show that when problems belonging to
this class reach a certain complexity, arithmetic encoding of the constraints is better
than Boolean encoding.

Figure 5.4 shows results for benchmarks belonging to the second benchmark class.
The benchmarks used here are from year 2016 and belong to the group "Vertexcover
Plain". Here, one can clearly see that for this benchmark group SMT-RAT is much
better than MiniSat+. Similar behaviour illustrates figure 5.5. The benchmars showed
here also belong to the same class. However, they belong to the group "Vertexcover
Hard". One can observe that again at the beginning MiniSat+ is slightly better than
SMT-RAT. This holds for examples consisting of at most 110 variables. Afterwards,
the performance of MiniSat+ vary strongly. However, it is unable to solve problems
consisting of about 170 variables within 30 seconds.

All in all, one can see that for both classes arithmetic encoding of PB-constraints
can pay off. Especially when the number of variables in such PB-constraints is very
high. The reason for this behaviour is probably the fact, that Simplex is usually faster
than a bit vector procedure which is used by MiniSat+.

38 Chapter 5. Experimental Results

50 100 150 200

100

200

300

400

500

600

Number of variables

T
im

e
[m

s]

SMT-RAT
MiniSat+

Figure 5.2: Results for the benchmarks belonging to the first class. The problems
solved here are called "Regular Extracted".

50 100 150

100

200

300

400

500

600

Number of variables

T
im

e
[m

s]

SMT-RAT
MiniSat+

Figure 5.3: Results for the benchmarks belonging to the first class. The problems
solved here are called "Subset Cardinality Sigma".

5.1. Comparison of MiniSat+ and SMT-RAT 39

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3
⋅104

Number of variables

T
im

e
[m

s]

SMT-RAT
MiniSat+

Figure 5.4: Results for the benchmarks belonging to the second class. The problems
solved here are called "Vertexcover Plain".

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3
⋅104

Number of variables

T
im

e
[m

s]

SMT-RAT
MiniSat+

Figure 5.5: Results for the benchmarks belonging to the second class. The problems
solved here are called "Vertexcover Hard".

40 Chapter 5. Experimental Results

5.2 Comparison of Strategeis for SMT-RAT
This section compares the different strategies for SMT-RAT. Each diagram compares
the basic strategy with strategy which was the best.

Figure 5.6 shows the results for benchmarks from year 2015 belonging to the grout
"EC_ODD_GRIDS". All constraints were equations with positive left and right
hand side. However, the right hand side is always smaller than the sum over co-
efficients on the left hand side. Thus, according to chapter 3, all constraints were
encoded as Boolean constraints by the strategies cardinality constraints and
complete. However, RNS could not accelerate the solving, since all coefficients
in this class are either equal to 1 or to -1. Actually, it turned out that the strate-
gies cardinality constraints and complete are much better than the basic
strategy. The diagram shows only the cardinality constraints strategy, since
the results for both strategies were very similar. One can clearly see, that the
cardinality constraint strategy is much better even when the number of vari-
ables reaches the 600 mark.

Another interesting benchmarks are those from year 2015 belonging to the group
"Proof Complexity". The problems are called "Regular Plain" (look Fig. 5.7). This
problems are similar to those mentioned before ("Regular Extracted"). The best
strategies were cardinality constraints, Gauss, complete and RNS. Since
the constraints occurring in this examples are only inequalities, RNS was not appli-
cable. However, the RNS strategy encodes cardinality and long formulas with non-
consistent signs. Thus, RNS did not accelerate anything. The same holds for Gauss
strategy. The diagram shows the results of complete strategy, as all the mentioned
strategies had similar results. The basic strategy was not able to solve even one
example while the complete strategy became worse when the number of variables
became about 85.

All in all there are several classes of problems which SMT-RAT can solve much
faster than MiniSat+. The arithmetic encoding especially pays off for PB-constraints
with large number of terms. However, for small PB-constraints Boolean encoding
seems to be better. Unfortunately, both simplifying approaches seem not to work
well. According to [FC14], RNS is suitable for long constraints and works well when
they are encoded as Boolean constraints. In our approach, in most cases long formulas
are solved by Simplex that works well with big integers. Gauss algorithm does not
help probably due to similar reasons. However, overall one can say that arithmetic
encoding of PB-constraints is sensible and can accelerate the solving process.

5.2. Comparison of Strategeis for SMT-RAT 41

100 200 300 400 500 600

0.5

1

1.5

2

⋅104

Number of variables

T
im

e
[m

s]

Cardinality Constraints
Basic

Figure 5.6: Results for the benchmarks from year 2015 belonging to the group
"EC_ODD_GRIDS".

40 60 80

0.5

1

1.5

⋅104

Number of variables

T
im

e
[m

s]

Complete
Basic

Figure 5.7: Results for the benchmarks from year 2015 belonging to the group "Proof
Complexity". The problems are called "Regular Plain".

42 Chapter 5. Experimental Results

Chapter 6

Conclusion

This thesis proposed an SMT-solver for solving PB-constraints. The basic idea was
to transform every PB-constraint into either a Boolean formula and an arithmetic
constraint and combine these into a linear integer arithmetic formula. In order to
solve this formula a SMT-solver was used. In order to accelerate the encoding two
approaches for simplifying PB-constraints were proposed. One approach used residual
number bases in order to reduce the number of terms occurring in a PB-constraint.
The other approach implemented Gauss algorithm which reduced the overall number
of PB-constraints. Using SMT-RAT the approach proposed here could be compared
to one of the most popular PB-solvers MiniSat+. The experimental results showed
that arithmetic encoding of PB-constraints can pay off when the number of variables
grows. However, both simplification approaches seemed not to help.

Future work might consider non-linear PB-constraints and include the possibility
to add objective functions. Moreover, more detail analysis of the PB-constraints could
probably lead to more efficient Boolean encoding.

44 Chapter 6. Conclusion

Bibliography

[BA12] Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer
Publishing Company, Incorporated, 3rd edition, 2012.

[Bar96] Peter Barth. Logic-Based 0-1 Constraint Programming. Springer US, 1996.

[BBH+09] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Ap-
plications. IOS Press, Amsterdam, The Netherlands, The Netherlands,
2009.

[BH02] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete
Appl. Math., 123(1-3):155–225, November 2002.

[CESS08] K. Claessen, N. Een, M. Sheeran, and N. Sorensson. Sat-solving in prac-
tice. In 2008 9th International Workshop on Discrete Event Systems, pages
61–67, May 2008.

[CK03] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint
solver. In Proceedings 2003. Design Automation Conference (IEEE Cat.
No.03CH37451), pages 830–835, June 2003.

[CK05] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 24(3):305–317, March 2005.

[CKJ+15] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and
Erika Ábrahám. SMT-RAT: An Open Source C++ Toolbox for Strategic
and Parallel SMT Solving, pages 360–368. Springer International Publish-
ing, Cham, 2015.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[Eig17] Eigen. Eigen::FullPivLU< MatrixType > Class Template Ref-
erence. https://eigen.tuxfamily.org/dox/classEigen_1_
1FullPivLU.html, 2017. [Online; accessed 15-June-2017].

[ES06] Niklas EÃľn and Niklas SÃűrensson. Translating pseudo-boolean con-
straints into sat. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 2:1–26, 2006.

https://eigen.tuxfamily.org/dox/classEigen_1_1FullPivLU.html
https://eigen.tuxfamily.org/dox/classEigen_1_1FullPivLU.html

46 Bibliography

[FC14] Yoav Fekete and Michael Codish. Simplifying Pseudo-Boolean Constraints
in Residual Number Systems, pages 351–366. Springer International Pub-
lishing, Cham, 2014.

[Kra95] Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, New York, NY, USA, 1995.

[Seb07] Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–
224, 2007.

[SWK+10] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and
Rolf Drechsler. Verifying uml/ocl models using boolean satisfiability. In
Proceedings of the Conference on Design, Automation and Test in Eu-
rope, DATE ’10, pages 1341–1344, 3001 Leuven, Belgium, Belgium, 2010.
European Design and Automation Association.

[Woe03] Gerhard J. Woeginger. Combinatorial Optimization - Eureka, You Shring!
Springer Berlin Heidelberg, 2003.

	Introduction
	Preliminaries
	Pseudo-Boolean Constraints
	Cardinality Constraints
	Translating Pseudo-Boolean Constraints

	Encoding Pseudo-Boolean Constraints
	General Procedure
	Encoding as Propositional Formula
	Encoding as Integer Arithmetic Formula

	Simplifying Pseudo-Boolean Constraints
	Simplifying Pseudo-Boolean Constraints Using Residual Number Systems
	Gauss Algorithm for Simplifying Pseudo-Boolean Constraints

	Experimental Results
	Comparison of MiniSat+ and SMT-RAT
	Comparison of Strategeis for SMT-RAT

	Conclusion
	Bibliography

