
The present work was submitted to the LuFG Theory of Hybrid Systems

BACHELOR OF SCIENCE THESIS

EFFICIENT CONVERSION OF GEOMETRIC STATE SET

REPRESENTATIONS FOR HYBRID SYSTEMS

EFFIZIENTE KONVERTIERUNG GEOMETRISCHER ZUSTANDSRAUM-DARSTELLUNGEN FÜR

HYBRIDE SYSTEME

Simon Froitzheim

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Stefan Schupp, M.Sc. Aachen, May 18, 2016

Abstract

Reachability analysis of linear hybrid systems via �ow pipe computation
makes extensive use of geometric and symbolic state set representations of var-
ious kinds. During analysis, several operations on state sets are performed and
the complexity of these operations highly depends on the utilised representation.

With the transformation into a currently more advantageous representation
being a valid approach, so as to improve runtime and precision, developing e�-
cient conversions between di�erent types of state set representations is advisable.

This thesis presents various procedures concerning the e�cient conversion be-
tween convex polytopes (H- and V-representation), hyperrectangles, zonotopes
and support functions.

Conducted evaluations show that it is di�cult to provide e�cient approaches
and implementations for every possible conversion between the mentioned state
set representations, albeit most of the introduced algorithms work both correctly
and e�ciently.

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

vii

Acknowledgements

While this bachelor thesis and my study as a whole has been a di�cult journey for
me, especially in terms of my personal health, I still learned a lot during this phase
of my life, not only about computer science, but also about what matters in life. It is
safe to say that, without the support and motivation of family and friends, I would
not have been able to achieve what I achieved by now.

Very special thanks thus go to my parents, Carina, Lars and Felix for their great
support. Moreover, I would like to thank everyone else that encouraged me not
only during this �nal challenge, but also during the entirety of my bachelor study,
comprising every person that provided comfortable distractions from my work, also
including my violin teacher Kalliopi.

Additionally, I am grateful to the whole sta� of the i2 for providing a pleasant
working atmosphere. Extra acknowledgments go to Prof. Dr. Erika Ábrahám for
giving me the opportunity of writing this bachelor thesis and Prof. Dr. Jürgen Giesl
for �lling the role of my second examiner.

Last but not least, I would like to express my gratitude to my advisor Stefan
Schupp, who was always open for questions and spent a lot of time helping me in the
course of this thesis.

viii

Contents

1 Introduction 9

2 A Lead-In to Hybrid Systems 13
2.1 Hybrid Automata . 14
2.2 Reachability Analysis for Hybrid Systems 18
2.3 Controller Synthesis for Hybrid Systems 22

3 State Set Representations 23
3.1 Convex Polyhedra . 24
3.2 Hyperrectangles . 26
3.3 Zonotopes . 27
3.4 Support Functions . 28
3.5 Other State Set Representations . 30
3.6 Operations on State Sets . 31

4 Conversion Procedures 35
4.1 Principal Component Analysis and ORHs 36
4.2 Conversion of V -Polytopes . 39
4.3 Conversion of H-Polytopes . 44
4.4 Conversion of Hyperrectangles . 46
4.5 Conversion of Zonotopes . 49
4.6 Conversion of Support Functions . 51

5 Evaluation 59
5.1 General Analysis . 59
5.2 Speci�c Experiments and Plots . 65

6 Conclusion 69
6.1 Summary . 69
6.2 Discussion . 69
6.3 Future work . 70

Bibliography 71

x Contents

Chapter 1

Introduction

With the high complexity of today's technical systems and no decrease of this intri-
cacy in sight, the veri�cation of useful properties, predominantly safety, has never
before been a more relevant task. This circumstance applies to the research �eld
of hybrid systems as well, in fact, formal veri�cation has proven itself to be some-
what problematic for hybrid systems: Many powerful veri�cation tools for discrete
automata already exist, but the same cannot be said about their discrete-continuous
counterparts; the combination of discrete jumps and continuous �ow that designates
hybrid automata is still di�cult to analyse.

Nonetheless various rudiments for veri�cation purposes do exist: In most practical
scenarios, simulation approaches still form the default ver�cation procedures, ranging
from statistical methods that compute an amount of randomly chosen trajectories (e.g
[CDL09]) to solutions that generate a �nite set of trajectories through the system in a
methodical manner (e.g. [DM07]). The largest problem with the idea of a simulation is
that no matter how many simulation runs you conduct, there is always the possibility
that you do not pass an unwanted but reachable state.

This very issue ensured the need to explore other concepts, with maybe the most
important of these concepts being the reachability analysis, aiming to compute the set
of all possible states in a given system. In our case, for hybrid systems, this very state
set is often impossible to compute, hence it has to be approximated in the general case:
Involving essentially three main categories for hybrid systems reachability analysis,
consisting of theorem-proving-based, interval-constraint-propagation-based and �xed-
point-computation-based approaches, I focus on the latter class that relies mostly
on geometric objects for the approximation process.1 It is thus no surprise that
in context of this category, the possibilities of geometric as well as symbolic state
set representations have been and are still being explored, resulting in a number of
di�erent methods often using distinct representations. Exemplary approaches feature
the utilisation of linear dynamics [LG09, DB], predicate abstraction [ADI02] and level
set functions [MBT01].

It soon became clear that it is tricky if not impossible to �nd an optimal state set
representation, mainly because computational complexity highly diverges concerning
each of the necessary operations for reachability analysis with varied representations:
As an example, computing the union of two convex polyhedra in vertex represen-
tation may be easily done, but calculating the intersection is tough; using a half-

1For a more detailed look at these three classes, please refer to Section 2.2.

10 Chapter 1. Introduction

space representation for the polyhedron instead yields the opposite scenario in which
the intersection operation is unproblematic with the union operation however being
intricate to perform. Both operations are unfortunately important for �xed-point-
computation-based reachability analysis, which proves to be a grave problem.

This state of a�airs and the fact that some approaches like [ASB09] use multiple
state set representations for their own concept of reachability analysis both give rev-
elance to conversion procedures for state set representations: With transformations
into other representations during the whole computation being a valid design concept,
developing well-conceived procedures to do so can signi�cantly improve the e�ciency
of the entire process. This means that not only the computation time bene�ts from
sophisticated algorithms, but the mere precision of the conversion process likewise,
since, as a matter of fact, exact conversions are rarely possible between the di�erent
state set representations because of their special properties, consequentially resulting
in the need to approximate the solution. Even if the conversion could be done ex-
actly, it is in many cases not advisable to do so, as an exact result requires a longer
computation time than an approximation in the general case.

Existing research on the general topic of conversion of state set representations
for hybrid systems reachability analysis can usually only be found in parts of speci�c
reachability analysis approaches or in papers dealing with intrinsic state set represen-
tations: By way of example, speci�c reachability analysis approaches explore conver-
sion partly in context of zonotope/hyperplane intersection [GLG08], zonotope/poly-
tope intersection[ASB08], oriented rectangular hulls [SK03] and convex set overap-
proximation via support functions [LGG10, Var00].1 On the other hand, paradig-
matic essays with focus on state set representation feature representation-speci�c
works (mostly zonotopes) that also deal with conversion like [Fuk04], [GNZ03] and
[Fuk].

The conversion of state set representations plays an important role regarding con-
troller synthesis for hybrid systems too, mainly in terms of underapproximative con-
version [ABD+00].

There are two main objectives of this bachelor thesis: First and foremost the en-
deavour consists of developing and implementing various conversion algorithms under
supervision as part of the Toolbox for the Reachability Analysis of Hybrid Systems
Using Geometric Approximations (HyPro)2 and secondly this �nal paper aims at
presenting and evaluating those same algorithms in an accessible yet complete and
both formal and substantial correct manner.

HyPro is in short a current project of the Theory of Hybrid Systems research
group which is embedded into the Software Modeling and Veri�cation chair at the
RWTH Aachen University;3 it consists of a C++ library that strives to give the
possibility to evaluate and compare existing reachability analysis approaches regarding
hybrid systems as well as to provide the means for the fast implementation of new
techniques.

My bachelor thesis is structured as follows: Initially I give a more in-depth intro-
duction to hybrid systems reachability analysis as well as describe a popular way of
formally representing hybrid systems, namely hybrid automata, in Chapter 2. Sub-

1The possibilities of overapproximation via support functions and overapproximation utilising
oriented rectangular hulls are explored more thoroughly in Chapter 4.

2
HyPro can be found with https://ths.rwth-aachen.de/research/projects/hypro/

(lastly called up by the 4th April, 2016)
3The homepage of the Software Modeling and Veri�cation chair can be reached with the following

hyperlink: https://moves.rwth-aachen.de/ (lastly called up by the 4th April, 2016)

https://ths.rwth-aachen.de/research/projects/hypro/
https://moves.rwth-aachen.de/

11

sequently, an overview over the most common geometrical and symbolic state set
representations is presented in Chapter 3, before reaching the core of this thesis with
the following two chapters that deal with the conversion of state set representations
in speci�c: Chapter 4 describes the underlying conversion algorithms in detail, while
Chapter 5 depicts an elaborate evaluation of these algorithms. A conclusion given
with Chapter 6 summarises the results and discusses the success of the bachelor thesis
and possible future work.

12 Chapter 1. Introduction

Chapter 2

A Lead-In to Hybrid Systems

Discrete systems are systems with discrete state changes in a possibly in�nite state
space. Examples for such systems are a computer program or a sensor in a water
boiler which reports when the temperature of the water inside is above a certain
threshold.

Dynamic systems are systems that behave continuously with a real-valued state
space, ergo analog systems that measure physical quantities like time, temperature or
speed.

A hybrid system combines discrete and continuous behaviour (cf. Figure 2.1)
and can basically be everything from a simple ball that is thrown and bounces o�
the ground up to a complex airplane: An exemplary "bouncing ball" has its current
velocity and height as continuous components while the time points when the ball
bounces o� the ground introduce discrete events which gives the contingency to model
it as a hybrid system. Modern airplanes run with complex software which is fully
discrete, but for all that the software operates in an environment that demands for
the application of a whole lot of physical systems so as to deal with many continuous
factors like temperature, air pressure, and in this case yet again height and velocity.

discrete

+
t

x(t)

continuous

=
t

x(t)

hybrid

Figure 2.1: Hybrid systems consist of both discrete and continuous components.
This cohesion can be intuitively seen as a discrete automaton that shows continuous
behaviour in its locations.

14 Chapter 2. A Lead-In to Hybrid Systems

2.1 Hybrid Automata

In order to be able to formally specify the reachability problem for hybrid systems, I
priorly present a popular modeling formalism for suchlike systems, namely the hybrid
automaton, according to [ACH+95], and a special subclass, the linear hybrid automa-
ton:

De�nition 2.1 (Syntax of a hybrid automaton). A hybrid automaton HA =
(Loc, V ar,Con,Lab,Edge,Act, Inv, Init) is an 8-tuple where

� Loc is a �nite set of locations.

� Var is a �nite set of real-valued variables. A valuation is a function v ∶ V ar → R
assigning values to these variables. V denotes the set of all valuations for a
variable set Var.

� Con is a �nite set of controlled variables with Con ⊆ V ar.1

� Lab is a �nite set of synchronisation labels including the stutter label τ ∈ Lab.

� Edge is a �nite set of transitions with Edge ⊆ Loc × Lab × 2V
2 × Loc.2 Edge

contains a τ -transition (stutter transition) of the form (`, τ, IdCon, `) for each
location ` ∈ Loc with (v,v′) ∈ IdCon i� ∀x ∈ V ar either x�∈Con or v(x) = v′(x)
holds.3

� Act is a function assigning a set of activities to each location ` ∈ Loc. An
activity is a function f ∶ R≥0 → V . Every activity is required to be time-invariant:
∀` ∈ Loc, f ∈ Act(`) and t ∈ R≥0 has to hold: (f + t) ∈ Act(`) where (f + t)(t′) =
f(t+ t′) ∀t′ ∈ R≥0. This means that an activity f of a location ` needs to stay a
valid activity of the location without regard of the input time value.

� Inv is a function assigning an invariant Inv(`) ⊆ V to every location ` ∈ Loc.

� Init is a �nite set of initial states with Init ⊆ Σ where Σ = Loc × V formalises
the set of states, i.e. the state of a hybrid automaton is described by a pair (`,v)
of a location ` and a valuation v.

Hybrid automata can both perform discrete steps and continuous time steps each
with their own semantics:

De�nition 2.2 (Discrete transition-step relation). The transition-step relation
→a of a hybrid automaton HA = (Loc, V ar,Con,Lab,Edge,Act, Inv, Init) with cur-
rent state (`, v) and a ∈ Lab for discrete steps is given by the following semantic rule:

1Controlled variables are merely pertinent to the parallel composition of hybrid automata which
is of no interest regarding this bachelor thesis. The set Con is therefore solely listed here for the
sake of completeness. Interested readers can �nd a complete speci�cation with [ACH+95]

2The employed notation 2M is a formalisation of the powerset concerning the set M , i.e. 2M is
the set of all subsets P of M : 2M = {P ∣ P ⊆M}.

3Stutter transitions can basically be seen as "do nothing" steps which, similarly to controlled
variables, only play a major role in parallel compositions of hybrid automata. They are thus as well
without relevance for this thesis which is why I will not further specify them and their purpose. Here,
too, you can refer to [ACH+95] for more information.

2.1. Hybrid Automata 15

(`, a, µ, `′) ∈ Edge (v, v′) ∈ µ v′ ∈ Inv(`′)
(`, v)→a (`′, v′)

where `, `′ ∈ Loc and µ ⊆ V 2.

Intuitively a discrete step (`, v)→a (`′, v′) is feasible if there is an enabled transition
(`, a, µ, `′) with label a from location ` to location `′ and the invariant of `′ is satis�ed
after the step. In this context the term "enabled" refers to an existence of a target
valuation v′ that can be paired with the current valuation v according to the transition
relation µ. It is to be noted that the speci�cation for the transformation from v to v′

when taking a transition is often called reset function.

De�nition 2.3 (Time-step relation). The time-step relation →t of a hybrid au-
tomaton HA = (Loc, V ar,Con,Lab,Edge,Act, Inv, Init) with current state (l, v) for
time steps is given by the subsequent semantic rule:

f ∈ Act(`) f(0) = v f(t) = v′ t ≥ 0 f([0, t]) ∈ Inv(`)
(`, v)→t (`, v′)

where ` ∈ Loc, t ∈ R and v, v′ ∈ V .
By intuition the activities describe at which rate the variables change over time when
staying in a certain location. A time step (`, v)→t (`, v′) is thus only possible if there
is an activity f in the current location ` that assigns the initial valuation v to the time
point 0 and the resulting valuation v′ to the time point reached after letting a certain
time t elapse. The control is however only allowed to stay in a location ` as long as
the invariant Inv(`) is not violated, i.e. the invariant has to hold for time points 0,
t, and all time points in between. Activities are usually given implicitly by ordinary
di�erential equations (ODEs)1 with the corresponding activity being the solution to
the equation.

So as to complete the de�nition of general hybrid automata, at least for my pur-
poses, I additionally de�ne the derivation relation, single execution steps and the
execution as a whole for this model:

De�nition 2.4 (Derivation relation, execution step and execution).

� The derivation relation → of a hybrid automaton HA = (Loc, V ar,Con,Lab,
Edge,Act, Inv, Init) is the union of the transition-step relation and the time-
step relation.

� A step σ → σ′ with σ,σ′ ∈ Σ is called an execution step of HA.

� An execution (alternatively path or run) π of HA is a sequence σ0 → σ1 → σ2...
with σi ∈ Σ, σi = (`i, vi), v0 ∈ Inv(`0), and σi → σi+1 ∀i ≥ 0. ΠHA(σ) denotes
the set of all paths of HA starting in state σ. A state σ is reachable i� there is
a run of HA starting in an initial state σ0 ∈ Init and leading to σ.

The HyPro project as well as this bachelor thesis both focus on a special form of
hybrid automata, the linear hybrid automata;2 the following de�nitions prepare the
formalisation of this speci�c kind:

1An ODE is a di�erential equation with only one independent variable and its related derivatives.
2The term "linear hybrid automaton" is ambiguous in literature: Some de�nitions require linear

hybrid automata to have constant derivatives in terms of activities, others need linear ODEs; the
de�nition presented in this �nal paper belongs to the latter group.

16 Chapter 2. A Lead-In to Hybrid Systems

De�nition 2.5 (Linear term, linear constraint, linear set).

� A linear term t over the variable set V ar is a linear combination of variables
from Var with real-numbered coe�cients, i.e. for t holds t = k0 + k1x1 + k2x2 +
... + knxn where x1,...,xn ∈ V ar and k0,...,kn ∈ R.

� A linear constraint c over the variable set V ar is of the form t1 ○ t2, where t1
and t2 are both linear terms over V ar and ○ ∈ {≤,<,=,>,≥}.

� A linear set L over the variable set V ar is a set de�ned by Boolean conjunctions
of �nitely many linear constraints over V ar. Note that linear set are not func-
tional complete due to the missing negation. However, negations are restrictedly
realisable, as the negation is given partly via the range of the constraint opera-
tors ○, e.g. the linear constraint t1 ≥ t2 can be negated by replacing it with the
linear constraint t1 < t2.

At last I am able to determine linear hybrid automata:

De�nition 2.6 (Linear hybrid automaton). A linear hybrid automaton LHA =
(Loc, V ar,Con,Lab,Edge,Act, Inv, Init) is an 8-tuple where syntax and semantics
are identical to those of a general hybrid automata (cf. De�nitions 2.1 � 2.4) with
the following three additional restrictions:

� For every location ` ∈ Loc, the activities Act(`) are described by linear ordinary
di�erential equations.

� For every location ` ∈ Loc, the initial set Init, the invariants Inv(`) and the
guards ψ1 of the transitions Edge are linear sets.

� The variable assignments need to be deterministic for all transitions in Edge,
i.e. per edge there is only one resulting valuation v′ allowed for every initial
valuation v concerning pairs (v,v′) ∈ µ.

Example 2.1 (Smoke detector). To clarify the concepts de�ned above, I present
a very simple exemplary model of a hybrid system in the following with the depiction
of the corresponding linear hybrid automaton available via Figure 2.2:

A newly bought smoke detector is hanging on the ceiling fully operational, starting
out with 100% of its battery charge x in the initial location "normal". While hanging
there, the battery charge slowly depletes with a constant factor −1 over time. When
the charge falls below 30%, the smoke detector enters a location "warning" in which it
constantly emits a beeping noise until the user exchanges the batteries. While remain-
ing in this location, the battery charge drops twice as fast due to the production of the
warning sound. In case the user does not replace the batteries, the smoke detector
will at last enter the location "depleted" in which it is no longer able to operate.

For reasons of simplicity I assume that the new batteries are always fully charged,
i.e. exchanging them brings x back to 100%. It is possible to replace the current
batteries at any point.

A formal speci�cation of the related automaton presented in Figure 2.2 is given
below:

1Guards are used by hybrid automata to determine whether it is allowed to take a transition
with the current valuation v, i.e. the transition is only enabled if v satis�es the guard condition.
Guards partly de�ne the transition relation µ.

2.1. Hybrid Automata 17

normal
ẋ = −1
x ≥ 30

x = 100
warning
ẋ = −2
x ≥ 0

depleted
ẋ = 0

exchangeBattery → x ∶= 100

depleting ∶ x = 30

exchangeBattery → x ∶= 100

emptying ∶ x = 0

exchangeBattery → x ∶= 100

Figure 2.2: The linear hybrid automaton model of the smoke detector.

� Loc = {normal,warning, depleted},

� V ar = {x},

� Con(normal) = Con(warning) = Con(depleted) = {x},

� Lab = {τ, exchangeBattery, depleting},

� Edge =
{(normal, exchangeBattery,{(v,v′) ∈ V 2 ∣ v′(x) = 100}, normal),
(normal, depleting,{(v,v′) ∈ V 2 ∣ v(x) = 30 ∧ v′(x) = v(x)},warning),
(warning, exchangeBattery,{(v,v′) ∈ V 2 ∣ v′(x) = 100}, normal),
(warning, emptying,{(v,v′) ∈ V 2 ∣ v(x) = 0 ∧ v′(x) = v(x)}, depleted),
(depleted, exchangeBattery,{(v,v′) ∈ V 2 ∣ v′(x) = 100}, normal)},

� Act(normal) = {f ∶ R≥0 → V ∣ ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = −1t + c},
Act(warning) = {f ∶ R≥0 → V ∣ ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = −2t + c},
Act(depleted) = {f ∶ R≥0 → V ∣ ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = c},

� Inv(normal) = {v ∈ V ∣ v(x) ≥ 30},
Inv(warning) = {v ∈ V ∣ v(x) ≥ 0},
Inv(depleted) = {true},

� Init = {(normal, v) ∈ Σ ∣ v(x) = 100}.

18 Chapter 2. A Lead-In to Hybrid Systems

2.2 Reachability Analysis for Hybrid Systems

Hybrid systems reachability analysis approaches in general aim for solving the hybrid
systems reachability problem:

De�nition 2.7 (Hybrid systems reachability problem). Given a hybrid automa-
ton HA with an initial state set Init and a target state set P , the hybrid systems
reachability problem is to decide whether there is a state in P that is reachable from
the initial states Init in HA.1

If the set P is a set of unsafe states for the automaton HA, the reachability problem
becomes a safety veri�cation problem. The reachability problem for general hybrid
automata is undecidable. For some subclasses (e.g. initialized rectangular automata),
the problem becomes decidable [HKPV95].

As mentioned before, this work focuses on linear hybrid automata (cf. De�nition
2.6) and thus I restrict the reachability problem from now on to only deal with this
type of automata. This specialisation simpli�es the problem which nonetheless stays
undecidable in most cases; however, a good number of incomplete approaches exists
for linear hybrid automata and its undecidable subclasses while simple subclasses
already have been proven to be decidable (e.g. [AD94, HR98]).

As already stated in Chapter 1, there are three main categories of reachability
analysis techniques, one of them utilising theorem proving which resulted in proof
systems that can be used for substantiating invariants and veri�cation conditions in
basically every system class like shown in [AMHS01]. Unfortunately, theorem proving
has required interactivity and can usually only handle systems of limited size. A well-
known tool that uses theorem proving is KeYmaera [PQ08].

Interval constraint propagation poses another major group of approaches and is in
this context usually embedded into satis�ability modulo theories (SMT) solvers that
make use of �rst-order logic to verify the safety of the system. A variety of tools
regarding interval constraint propagation can be found such as iSAT-ODE [Egg14],
dReach [KGCC15], HSolver [RS07] and Ariadne [CBGV12].

Regarding this �nal paper, the focus lies on �xed point computations, the third
class of procedures, that generally use geometric and/or symbolic state set represen-
tations (such computations were �rstly introduced in [ACH+95]).

2.2.1 Fixed Point Computation

Fixed point computations can further be diversi�ed into forward �xed point com-
putation and backward �xed point computation: Forward �xed point computation
gradually computes the set of all reachable states by extending the set of initial states
with all possible successing states until no new states are detected anymore, i.e. a
�xed point is reached; the procedure then checks for a non-empty intersection with
the target state set P to evaluate the safety of the system.

A general forward �xed point computation procedure is formalised with Algorithm
2.1; the algorithm receives an initial state set Init and a target state set P and returns
true if the target set P is reachable and false otherwise. It can be easily seen that
this procedure does not necessarily terminate if the state space is in�nite.

1In the future I will refer to the hybrid systems reachability problem simply with "reachability
problem".

2.2. Reachability Analysis for Hybrid Systems 19

1: procedure BasicForwardReach(Init, P)
2: Rnew ← Init;
3: R ← ∅;,
4: while Rnew ≠ ∅ do ▷ while new states are found
5: R ← R ∪Rnew;
6: if R ∩ P ≠ ∅ then
7: return true; ▷ target set is reached
8: else
9: Rnew ← Reach(Rnew); ▷ extend reachable set
10: Rnew ← Rnew ∖R; ▷ identify new states
11: end if
12: end while
13: return false; ▷ target set is not reachable
14: end procedure

Algorithm 2.1: Basic forward reachability algorithm.

Backward �xed point computation on the other hand starts out from the target set
P and gradually computes all possible predecessors of those states until a �xed point
is reached; it then reviews intersection with the set of initial states.

Both forms of �xed point computation are suitable choices for reachability analysis,
but many computations using any form of �xed point computation do simply not
terminate and if they do, they still cost a lot of resources. Even so, backward �xed
point computation is not possible in some cases, e.g. in the case of non-invertible reset
functions, i.e. indeterministic predecessors. However, indeterministic predecessors are
excluded in my de�nition of linear hybrid automata (cf. De�nition 2.6).

The abstract concepts of forward �xed point computation and backwards �xed
point computation are contrasted via Figure 2.3.

Init PΩ1 Ω2 Ω3

Init PΩ1Ω2Ω3

Figure 2.3: Abstract juxtaposition concerning the concepts of forward �xed point
computation (left) and backwards �xed point computation (right) with the set of
initial states being denoted by Init, the set of target states being represented by P .
The reachable state set after computation step i is displayed via the set Ωi.

As representation of the sets is per se di�cult, over-approximations are often
advisable, since they give the possibility to use e�cient state set representations and
to simplify computation. However, an approximation error is nearly certainly present
as a trade-o�; when using over-approximations the system can only be proven safe -
never unsafe: An intersection with the target/initial set could possibly only be present
due to the over-approximation in which case another computation run with a more
precise over-approximation could be the next step and may return a di�erent result.

20 Chapter 2. A Lead-In to Hybrid Systems

y

x

Init

P

y

x

Init

P

Figure 2.4: Illustration of the initial state set Init, the target state set P , the
reachable set of predecessors of P which is indicated by arrows (left) and an exemplary
over-approximation using hyperrectangles that are displayed in red (right).

A visual example of a backward �xed point computation using hyperrectangles1

as geometrical over-approximations is given by Figure 2.4. Concerning this example,
the computation run detects an intersection with the initial set.

If proving a system as unsafe is the main objective, one could also use under-
approximations of the reachable state set. The situation here is converse: An inter-
section with the initial/target set using under-approximations would substantiate the
system's unsafety, but could never show the system's safety.

2.2.2 Flow Pipe Construction

It is also possible to use a �ow pipe construction as a special form of �xed point
computation to reduce the approximation error as presented in [CK98]. In fact,
HyPro and many �xed point computation tools make use of a �ow pipe, such as
Flow* [CÁS13], HyCreate [HyC], Cora [AD14] and SpaceEx [FGD+11]. Please
note that the several state set operations that concern �ow pipe construction and
are thus mentioned in this section are formally speci�ed throughout Chapter 3. The
content of this subsection is based on [LG09].

The basic idea of the �ow pipe construction revolves around considering only a
bounded �ow duration and dividing this whole so-called time horizon into smaller
segments (time steps) of length δ, and over-approximating these single time steps
separately step-by-step. The resulting over-approximation is given via the union of
the over-approximations for each segment.

Regarding the �rst over-approximatively computed segment Ω0, the required com-
putational e�ort is higher than for subsequent segments and the procedure slightly
di�ers based on the bloating technique that is used: Without regard of the bloating
technique, computation of Ω0 always begins by computing the reachable state set at
time point δ (Ωδ) via a linear transformation of the initial state set Init.

1Please refer to Chapter 3.2 for a formal de�nition of hyperrectangles

2.2. Reachability Analysis for Hybrid Systems 21

Ω0

Ωδ

Ω0

Ωδ

Figure 2.5: Schematic computation of the �rst �ow pipe segment using uniform
bloating (left) and improved bloating (right). The initial state set is denoted by Ω0,
the reachable state set at time point δ by Ωδ. Result sets of the convex hull of the
union are displayed in blue, while those of the Minkowski sum are visualised in red.

Afterwards, when utilising uniform bloating, the convex hull of the union of Init
and Ωδ is calculated in an attempt to cover the reachable set in between time points
0 and δ as well. As this is usually not su�cient to cover all possible trajectories of
the system, the resulting convex hull is expanded by using a bloating factor α1: The
Minkowski sum of the convex hull and usually a ball B of radius α is calculated in
case of an autonomous system; for non-autonomous systems, the external in�uence is
described by a factor β and thus the ball B is of a greater radius (α + β) to re�ect
the in�uence of the external input.

In case of improved bloating, the bloating takes place earlier in the computation,
right after obtaining the reachable set at time point δ via linear transformation:
This newly computed set is bloated before computing the convex hull of the union
of the just described set and the initial set. Improved bloating yields smaller over-
approximations in the general case which makes it superior to uniform bloating.

HyPro currently supports both uniform and improved bloating. Both concepts
are contrasted via Figure 2.5.

Figure 2.6: Part of an actual �ow pipe plot regarding a bouncing ball model. The
segments are displayed in alternating colours for reasons of clarity.

Every segment after the �rst one is simply computed by applying linear trans-
formations on the initial segment Ω0, resulting in very similar geometry of each seg-
ment (cf. Figure 2.6). After computing a segment, the intersection of the currently
reachable set and existing guard sets and the invariant set of the current location are
necessary for a correct analysis of the system. Additionally to that, the non-emptiness

1The bloating factor α depends on a number of other factors like the initial set and time step
size. For more information on this topic, please refer to [Gir05].

22 Chapter 2. A Lead-In to Hybrid Systems

`0
ẏ = v
v̇ = −g
y ≥ 0

y ≥ 0 ∧ v ≥ 0

bounce ∶ y = 0 ∧ v < 0
→ v ∶= −cv

−15 −10 −5 0 5 10

2

4

6

8

10

y

v

Figure 2.7: Complete �ow pipe plot (right) of a bouncing ball model (left) with
gravity constant g = 9.81 and some other constant c = 0.75: The ball starts at height
y ∈ [10,10.2] and starts falling with velocity v = 0. In the underlying automaton, a
transition to the same state is taken every time the ball hits the ground at y = 0 and
bounces o�. The �ow then continues at the right hand side of the graphic and loses
velocity and height overall with progressing time. The time horizon is 3, the time
step size δ is 0.01 and the maximum number of allowed transition usages is 5.

concerning the intersection of the reachable set and the target set P has to be tested in
order to be able to verify properties. Furthermore, in case of non-autonomous systems,
additional bloating via Minkowski sum is required after computing a new segment.
An exemplary plot of a complete �ow pipe computation concerning a bouncing ball
model is given by Figure 2.7.

2.3 Controller Synthesis for Hybrid Systems

Reachability analysis is not the only application area for under-approximations of
state set representations, it also plays an important role in terms of controller synthesis
for hybrid systems. Even so, the concept of controller synthesis has no real relevance
for this bachelor thesis and is presented brie�y for reasons of integrity.

The switching controller synthesis is a popular approach [WT97]: Switching con-
troller synthesis aims for designing a controller C of a hybrid automaton HA that
ensures the safety of the system during runtime: The controller C supervises the
momentary state of HA and forces the execution of controllable transitions of HA
in order to prevent the automaton from reaching unwanted or even unsafe states.
Under-approximations are in the context of controller synthesis additionally used for
creating counterexamples that can be utilised for re�ning the model [CFH+03].

Chapter 3

State Set Representations

Since the �ow pipe construction operates on state sets and, as already implied, uses
mainly geometrical objects for over-approximating these sets, I will now take a closer
look at the options that are currently available concerning the choice of representation:

There are several options as regards representation when approximating the reach-
able sets of hybrid systems all of which can be categorized by two main classes of state
set representations, namely geometric and symbolic state set representations:

Geometric state set representations, as one would expect, revolve around utilising
multidimensional geometric objects in order to represent the reachable sets, the most
popular ones being convex polyhedra, orthogonal polyhedra, hyperrectangles, zonotopes
and ellipsoids.

Alternatively symbolic state set representations are much more abstract, often
relying on algebraic approaches. The current main representatives here are support
functions and Taylor models.

With so many di�erent representations being used and experimented with, it has
yet proven di�cult to �nd something like an optimal state set representation, since
each representation comes with its very own set of advantages and disadvantages (cf.
Section 3.6). Choosing a suitable representation or even multiple representations for
one's own purposes depends on many factors and usually a compromise is to be made:

In general, the more complex the state set representation chosen, the more memory
space is needed, the more intricate it is to perform necessary operations for reachability
analysis (like intersection and union), and thus the more costly it is to approximate
the reachable set; however, the precision of the approximation highly improves at the
same time.

The HyPro project currently supports convex polyhedra, hyperrectangles, zono-
topes and support functions which is why I focus on these four representations. In
the following sections, I de�ne them and give �tting examples. Although not being of
main interest for this bachelor thesis, I still present orthogonal polyhedra, ellipsoids
and taylor models afterwards shortly in Section 3.5, before ending this chapter with
Section 3.6 which takes a closer look at the necessary operations on state sets dur-
ing reachability analysis and especially on how well they can be performed on these
distinct representations. Most of the content in this chapter is based on [LG09].

24 Chapter 3. State Set Representations

3.1 Convex Polyhedra

Convex polyhedra (e.g. [Zie95]) are, as one would expect, a special form of polyhedra,
closer speci�ed via the following two de�nitions:

De�nition 3.1 (Polyhedron, polytope). A polyhedron PH is a solid object in the
d-dimensional Euclidian space and the solution set to a �nite number of inequalities
with real coe�cients and d real variables. A polytope is a bounded polyhedron.1

De�nition 3.2 (Convex polyhedron, convex set, convex polytope). A convex
polyhedron is a polyhedron PH which set of points is also a convex set in the d-
dimensional Euclidian space, i.e. for every possible pair of points p1, p2 from PH
must hold that every point that lies on the straight line segment between p1 and p2 is
also a point of PH:

∀p1, p2 ∈ PH.∀λ ∈ [0,1] ⊆ R.λp1 + (1 − λ)p2 ∈ PH.

A convex polytope is a bounded convex polyhedron.

Convex polyhedra in contrast to non-convex polyhedra provide bene�ts regarding the
representation possibilities of the objects and thus simplify many operations that are
usually conducted on these solids.2 Nevertheless, non-convex polyhedra are still rarely
being utilised for reachability analysis, mainly in the form of orthogonal polyhedra
(cf. Section 3.5).

There are commonly two di�erent representations being used for convex polyhedra,
namely the H-representation and the V -representation. In order to be able to de�ne
the H-representation, I de�ne hyperplanes and half-spaces beforehand:

De�nition 3.3 (Hyperplane). A d-dimensional hyperplane is a subspace that is of
one dimension less than the surrounding ambient space.

Hyperplanes are often described by a (non-zero) normal vector c of dimension d that is
orthogonal to the hyperplane and de�nes the alignment, and an o�set z which speci�es
the distance from the origin to that plane.3 A hyperplane can also be written as a
linear equality.

De�nition 3.4 (Half-space). A d-dimensional half-space H is that part of a d-
dimensional Euclidian space obtained by removing the part lying on one side of a
(d − 1)-dimensional hyperplane. A half-space H is closed i� H contains its space-
dividing hyperplane. Otherwise H is called an open half-space.

A half-space can also be written as a linear inequality and can as well as hyperplanes
be de�ned by a (non-zero) normal vector c and an o�set z of the corresponding
space-dividing hyperplane. For future reference I will presume that the normal of
this space-dividing hyperplane is always pointing outwards in relation to the related
half-space, unambiguously de�ning it.

1Please note that the terms "polyhedra" and "polytope" are also ambiguous in literature: A
polyhedron is often de�ned as a three-dimensional object only; in case of that de�nition, a polytope
could be formalised as the generalisation of a polyhedron for dimensions d > 3 and could thus also
be undbounded.

2For more information on convex sets, convex polyhedra and their special properties, you can
refer to [Gal08].

3As the term of the "o�set" sometimes refers to a distance value in a non-normalised plane
equation, I personally refer to the Euclidian distance with this term, i.e. I expect the normal vector
c to be normalised such that the o�set always represents the Euclidian distance from hyperplane to
origin.

3.1. Convex Polyhedra 25

De�nition 3.5 (H-polyhedron, H-polytope). A d-dimensional H-polyhedron
HP is represented by the intersection of �nitely many closed d-dimensional half-spaces
Hi (yielding the facets of the polyhedron), i.e. HP = ⋂ni=1Hi, where n ∈ N>0.

A H-polytope is a bounded H-polyhedron.

It is common to specify an H-polyhedron by a matrix inequality of the form HP =
{x ∈ Rd ∣ Cx ≤ z}, where C is a matrix containing the normals of the half-spaces as
rows and z is a vector comprising the constant distances of the associated half-spaces
from the origin. This yields the H-representation:

De�nition 3.6 (H-representation). An H-representation of a polyhedron that
is de�ned by m halfspaces is a tuple (C,z) with normal matrix C ∈ Rm×n containing
rows ci which represent the associated half-space normals, and distance (o�set) vector
z ∈ Rm.

There is an in�nite amount of H-representations for every single polyhedron, as the
representation may comprise redundant half-spaces; however, for every full-dimensional
convex polyhedron exists a minimal unique H-representation.

While H-polyhedra are de�ned via their facets, V -polyhedra are formalised by the
convex hull of their vertices:

De�nition 3.7 (Convex hull). The convex hull CH(V) of a set V ⊆ Rd is the
smallest convex set that contains V . For a �nite set V = {v1, ..., vn}, the convex hull
is given via

CH(V) = {x ∈ Rd ∣ ∃λ1, ..., λn ∈ [0,1] ⊆ Rd.
n

∑
i=1

λivi = x ∧
n

∑
i=1

λi = 1}.

De�nition 3.8 (V -polyhedron, V -representation, V -polytope).
A d-dimensional V -polyhedron V P is the convex hull of a �nite set V ⊂ Rd, i.e.
V P = CH(V). The elements of the set V are called the vertices of V P . The set V is
called a V -representation of V P .

A V -polytope is a bounded V -polyhedron.

Similarly to the H-representation, V -representations may contain redundant vertices,
as it is possible to add inner points of the polyhedron as vertices. This and the
possibility to intersect in�nitely many half-spaces in case of an H-representation leads
to the fact that there is no constant representation size for polyhedra, which may
demands for reduction algorithms during computation in order to remove redundant
(in terms of implementation) half-spaces or vertices.1 It is worth noting that it is not
possible to construct an unbounded V -polyhedron when using the above presented
de�nition (other de�nitions can allow unboundedness2).

Both representations are commonly used, since some operations are easier with
an H-representation of the object while others are easier with a V -representation (cf.
Section 3.6). An exact conversion into the favourable representation for each operation
is often not advised, as the exact computation of the complementary representation

1An example for such a reduction algorithm is presented in Subsection 4.2.2 of this thesis.
2De�nitions that allow for unboundedness usually permit the usage of polyhedral cones for the

construction of the object.

26 Chapter 3. State Set Representations

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x 1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

Figure 3.1: A 2-dimensional convex polytope in minimal representation (visualised
by a gray area), once displayed as the intersection of �ve half-spaces with correspond-
ing normals (left) and once represented by the convex hull of its �ve vertices (right).

usually has exponential cost. In a general sense, convex polyhedra provide precise
approximations but are costly to handle.

A visual example of a 2-dimensional convex polytope with the underlying minimal
information stored for each representation can be seen in Figure 3.1.

3.2 Hyperrectangles

Hyperrectangles (e.g. [MKC09]) form a very simple type of state set representation:

De�nition 3.9 (Hyperrectangle). A d-dimensional hyperrectangle (or box) B is
the cross product of d real-numbered intervals.

This simple de�nition yields a few interesting properties:

� Every box has 2d facets and 2d vertices due to the �xed number of d de�ning
intervals. Complexity of the representation thus only scales linearly with the
dimension d.

� Most operations can be done very e�ciently on hyperrectangles because of their
simple structure. However, they are not closed regarding the majority of oper-
ations (cf. Section 3.6).

� Each edge of any box is parallel to one coordinate axis which results in a �xed
alignment in space. This property and the limited number of facets and vertices
makes approximations with hyperrectangles in general very unprecise.

3.3. Zonotopes 27

In order to minimise the approximation error when approximating a convex set Ω
with boxes, it is recommended to compute the interval hull ◻(Ω) of Ω:

De�nition 3.10 (Interval hull). The interval hull ◻(Ω) of a set Ω is its smallest
enclosing box, i.e.

◻(Ω) = [x1, x1] × ... × [xd, xd]

where ∀i with 1 ≤ i ≤ d, xi = inf{xi ∣ x ∈ Ω} and xi = sup{xi ∣ x ∈ Ω} holds.1.

An example of the interval hull is illustrated in Figure 3.2.

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

Figure 3.2: The interval hull ◻(Ω) (displayed by thick lines) of the convex set Ω
(depicted via the gray area), formally speci�ed with ◻(Ω) = [0.33,5] × [1,9].

3.3 Zonotopes

The class of zonotopes (e.g. [GNZ03])is a special sub-class of convex polyhedra that
utilises the Minkowski sum:

De�nition 3.11 (Minkowski sum). The Minkowski sum X⊕Y of two sets X and
Y is the set of sums of all possible element pairs from X and Y by taking one element
from each set for every pairing:

X ⊕ Y = {x + y ∣ x ∈X ∧ y ∈ Y }.

Figure 3.3 shows an paradigmatic Minkowski addition.
Zonotopes can intuitively be seen as the Minkowski sum of a �nite amount of line

segments, a more formal de�nition featuring a centre point c and a set of generators
G which represents these line segments is given hereafter:

1xi is the ith component of x

28 Chapter 3. State Set Representations

1 2 3 4 5 6

1

2

3

4

0

y

x

⊕

1 2 3 4 5 6

1

2

3

4

0

y

x

=

1 2 3 4 5 6

1

2

3

4

0

y

x

Figure 3.3: The Minkowski sum of two triangles.

De�nition 3.12 (Zonotope). A d-dimensional Zonotope Z with a centre point
c ∈ Rd and a set of generators G = {g1, ..., gn}, where gi ∈ Rd, n ∈ N>0 and 1 ≤ i ≤ n, is
given via the following equation:

Z = {x ∈ Rd ∣ ∃α1, ..., αn ∈ [−1,1].x = c +
n

∑
i=1

αigi}.

It is to be noted that as the coe�cients α1, ..., αn range from −1 to 1, every zonotope
contains not only its generators g1, ..., gn but also implicitly their corresponding inverse
line segments, resulting in a point symmetric set that has its centre point as the centre
of symmetry. Furthermore, not only the direction of the generators matter, but also
their length. A common way of representing a zonotope Z is by using the notation
< c, g1,...,gn >. This notation is called the G − representation of Z.

Similarly to polytopes, zonotopes are variable in representation size: It is always
possible to add additional generators to G. Zonotopes provide generally a good ac-
curacy in most applications, they are nevertheless limited in this regard due to their
centre of symmetry and because of that strictly symmetrical structure. They can
be seen as a compromise between polyhedra and hyperrectangles, as they supply po-
tentially better approximations than boxes, while lacking precision in comparison to
polyhedra that can also express non-symmetrical objects. So as to support the rather
abstract de�nition of zonotopes, a step-by-step construction of an exemplary zonotope
can be seen in Figure 3.4.

3.4 Support Functions

While all previously presented representations are determined by a set of parameters
geometrically, support functions (e.g. [GG09]) symbolically represent the underlying
object as a mathematical function:

De�nition 3.13 (Support function). The support function pΩ of a convex set
Ω ⊆ Rd is a function de�ned as follows:

pΩ ∶ Rd → R ∪ {∞,−∞}

`↦ sup
x∈Ω

x ⋅ `

Intuitively, evaluating the support function pΩ for an input vector ` and a convex
object Ω gives you an indication about where to �ttingly place a hyperplane with
maximum distance to the origin and normal vector ` such that it touches Ω: The

3.4. Support Functions 29

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

c

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

c

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

c

Figure 3.4: A step-by-step construction of a paradigmatic zonotope with center
c = (3,5)T and generators g1 = (0,1)T , g2 = (1,1)T and g3 = (1,−2)T . Step 1 (left) holds
only g1 and its inverse, step 2 (middle) adds g2 to the object and step 3 (right) displays
the full zonotope by adding the �nal generator g3. The inverse of the generators are
displayed as dashed vectors while the resulting set per step is visualised via thick lines
and a gray area.

result value pΩ(`) is thus the distance from the origin to mentioned hyperplane (and
thus also to the corresponding facet of Ω), since the support function returns the
product of the direction ` and the outermost point of Ω regarding this direction; the
resulting touching hyperplane that is orthogonal to ` with o�set pΩ(`) is called a
supporting hyperplane of Ω. If the underlying object has no outer bound in direction
`, the support function returns ∞ or −∞ depending on the chosen direction `. For a
better understanding, an exemplary evaluation of a support function in a paradigmatic
direction ` and its resulting supporting hyperplane are visualised in Figure 3.5.

It is worth noting that closed convex sets Ω are uniquely determined by their
support functions as shown by the following equation:

CH(Ω) = ⋂
`∈Rd

{x ∈ Rd ∣ x ⋅ ` ≤ pΩ(`)}

This means that any convex set Ω, represented by a support function, is the intersec-
tion of an in�nite set of half-spaces with normal vector ` and o�set pΩ(`). A support
function can thus be seen as an H-polyhedron de�ned via an innumerable number of
constraining half-spaces.

Computing the value pΩ(`) for an input vector ` means solving a linear optimi-
sation problem: The objective is to maximise the linear function x ⋅ ` for all points
x ∈ Ω. This can be done by using e.g. a linear optimiser.

While most operations that are relevant for reachability analysis can be performed
e�ciently on support functions and while they o�er computational possibilities that
geometrical representations cannot serve with (cf. Subsection 3.6.1), they are not
without their own shortcomings: When representing convex objects by their support

30 Chapter 3. State Set Representations

1 2 3 4 5

1

2

3

4

5

6

7

8

9

0

y

x

`

H` = {x∣x ⋅ ` = pΩ(`)}

Figure 3.5: A convex set Ω (depicted by the gray area) and its supporting hyperplane
with normal vector ` = (1,2)T .

function, it is hardly possible to derive any information about the geometry without
evaluating the function which is usually costly if conducted in vast numbers. Choosing
sensible directions ` for evaluation purposes can thus have a large impact on the pre-
cision of the approximation and computation time by reducing the necessary number
of evaluations.

3.5 Other State Set Representations

In this section I give a short introduction to some alternative state set representations
that are without further relevance for this bachelor thesis, since they are not supported
by HyPro. Nonetheless, these representations are being used in various reachability
analysis techniques which is enough to justify their entry here:

� An ellipsoid (e.g. [KV00]) is a geometric state set representation that is in-
tuitively the result of transforming an Euclidian ball with an invertible linear
transformation. They are usually represented by a center point c and a positive
de�nite shape matrix Q = AAT . Ellipsoids have a constant representation size
(per dimension).

� Another way of representing state sets geometrically is using orthogonal poly-
hedra (e.g. [BMP99]): These type of polyhedra are generally non-convex and
are given as the union of a number of special hyperrectangles that are called
elementary boxes. Contrary to convex polyhedra, there are three possible rep-
resentations for orthogonal polyhedra, namely the vertex representation, the
neighborhood representation and the extreme vertex representation. Similarly to
convex polyhedra, the representation size is not limited.

3.6. Operations on State Sets 31

� Taylor models (e.g. [CÁS13, Neu]) depict an additional symbolic state set rep-
resentation: Taylor models are based on taylor expansions and interval arith-
metics. They are speci�ed via a d-dimensional polynomial p and two interval
domains D,I ⊆ Rd. The taylor models of order 0 are similar to interval products,
while taylor models of order 1 are similar to zonotopes.

3.6 Operations on State Sets

To further explain the usage of so many distinct state set representations regarding
hybrid systems reachability analysis, I will take a closer look at how well the di�erent
representations perform concerning the main operations that are applied on state sets
during �ow pipe construction:

These already previously mentioned main operations (cf. Subsection 2.2.2) are the
convex hull of the union of two sets, the Minkowski sum of two sets, the intersection
of two sets, the non-emptiness test of a set and the linear transformation of a set.
Assume that B and C are two subsets of an arbitrary domain and d is the dimension:

� The convex hull (cf. De�nition 3.7) of the union CH(⋅ ∪ ⋅) is given via

CH(B ∪C) = conv{x ∣ x ∈ B ∨ x ∈ C}.

It is used instead of a simple union operation, as convex sets are not closed
under union alone. The convex hull of the union is mainly used for computing
the �rst segment of a �ow pipe.

� The Minkowski sum ⋅ ⊕ ⋅ (cf. De�nition 3.11) is required for bloating.

� The intersection ⋅ ∩ ⋅ is de�ned as

B ∩C = {x ∣ x ∈ B ∧ x ∈ C}.

Applications include the calculation of the intersection of the current reachable
state set with guard, invariant and target sets. Intersection is thus used very
frequently.

� The non-emptiness test ⋅ ≠ ∅ for a set B simply revolves around checking
whether B = ∅ holds and is required for proving intersections with the target
set to be non-empty/empty.

� The linear transformation ⋅→A with transformation matrix A (for e.g. rotation
and/or scaling) is utilised for obtaining each �ow pipe segment during compu-
tation. Although not being a linear transformation in the classical sense, the
a�ne transformation that is the translation of an object is also used for �ow pipe
construction. The translation vector b is in this case included via one additional
matrix dimension.

For polyhedra, support functions, hyperrectangles and zonotopes, the computational
aspects regarding these �ve operations are summarised in Table 3.1. It can be seen
that the computational di�culty of the mentioned operations highly di�ers with
changing representations. Furthermore it is also apparent that no representation
provides an e�cient procedure for every single one of those operations.

32 Chapter 3. State Set Representations

Convex object Representation CH(⋅ ∪ ⋅) ⋅ ⊕ ⋅ ⋅ ∩ ⋅ ⋅ ≠ ∅ ⋅→A
Convex polyhedra H-representation hard hard easy easy easy

V -representation easy easy hard easy easy
Zonotopes G-representation − easy − easy easy

Hyperrectangles constraining intervals − easy easy easy −
Support functions p ∶ Rd → R ∪ {∞,−∞} easy easy hard hard easy

Table 3.1: Computational aspects of the representations. An entry "easy" is to
be interpreted that there exists a polynomial-time algorithm (concerning dimension
and representation size) for the corresponding representation and operation, "hard"
stands for the lack thereof. The symbol − denotes that the associated representation
is not closed under the proper operation.

Implementations of the above-mentioned operations can be adjusted in their own
special fashion for every representation, utilising the special properties of each rep-
resentation type. However, this is mostly of no concern for this bachelor thesis that
focuses on conversion procedures; for the understanding of most of the conversion al-
gorithms presented in Chapter 4 it su�ces to know about the mere existance of these
implementations. An exception to this is the HyPro implementation of the sup-
port function which happens to be a necessary foundation for Section 4.6. Because
of that, I make a supplement to operations on support functions and corresponding
realisations in the following before concluding this here chapter.

3.6.1 Operations on Support Functions

Current developments in the �eld of reachability analysis for hybrid systems show
an increasing interest concerning support functions in comparison to traditional ge-
ometric representations. The reason for this is for the most part that in general
only certain areas of a resulting state set are of interest for safety veri�cation. E.g.
when the objective revolves around detecting possible intersections of the reachable
set with a target set P , evaluating the reachable set in some well chosen directions in
case of a representation via support function could make a complete computation of
the reachable set super�uous which again saves resources.

The related implementation of HyPro regarding operations on support functions
is mostly based on the equations below (cf. [GG09]):

Proposition 3.1. For all compact convex sets Ω,Ω′ ⊆ Rd, all matrices A, all positive
scalars λ and all vectors ` ∈ Rd:

pAΩ(`)=pΩ(AT `)
pλΩ(`)=λpΩ(`) = pΩ(λ`)

pΩ⊕Ω′(`)=pΩ(`) + pΩ′(`)
pCH(Ω∪Ω′)(`)=max(pΩ(`), pΩ′(`))

HyPro stores one underlying convex object(more speci�cally an H-polyhedron or
ball) per support function Ω at the start of the computation and then memorises
the operations conducted on this starting object Ω without actually transforming
the object itself. By doing so, when the support function is then evaluated in some
direction `, it is su�cient to apply the memorised operations recursively according
to Proposition 3.1 in reverse order on the normal vector ` only to determine the

3.6. Operations on State Sets 33

primary direction `′ that needs to be evaluated in the starting object Ω in order to
get a correct result for the resulting geometry.

In case of the application of binary operations like the Minkowski sum it is required
to "backtrack" these operations with directions ` recursively to all underlying objects
that are part of the sequence of performed operations and not just one object, e.g.
to determine the correct direction `′ for a convex set Ω = Ω1 ⊕ Ω2 represented by a
support function, it is required, when using this method, to evaluate once for Ω1 and
once for Ω2 and to sum both result values up afterwards.

As a matter of fact, the more detailed handlings of the main operations on support
functions by HyPro in each step, excluding the intersection and the non-emptiness
test which are not given in the form of equations by Proposition 3.1, are listed in the
following:

� The linear transformation ⋅ → of a set is simply handled by multiplying the
transformation matrix A in its transposed form with input direction `. In the
case of A being a rotation matrix, the rotation gets inverted, as for rotation
matrices AT = A−1 holds. It is to be noted that a�ne transformations on support
functions are computable as well, although they need more computational e�ort
and are not very important regarding reachability analysis.

� When trying to evaluate an object in an input direction ` that is the result of
a Minkowski sum ⋅ ⊕ ⋅, the computation branches into the operation history of
both operands and sums the evaluation results from both recursions up.

� In case of encountering the convex hull of a union CH(⋅ ∪ ⋅) in a recursion step,
the computation descends into both operation histories as well, but computes
the maximum of both results in this scenario.

An example that clari�es this procedure in the simple case of evaluating a support
function that memorised a single rotation is given in the following:

Example 3.1 (Rotation). A convex set Ω, represented by a support function, has
a 90 degrees rotation around the origin as only operation memorised and shall be
evaluated in direction ` = (3,0)T (cf. Figure 3.6).

In order to evaluate the support function properly, the correct direction for an
evaluation in the underlying initial object has to be determined which is achieved by
applying the inverse rotation on the direction vector ` that yields `′ = (0,−3)T .

Afterwards, pΩ(`′) and thus implicitly also the hyperplane H`′ is computed and the
correct o�set (which amounts to 3 after normalisation) for the hyperplane H` with
normal ` is found.

The situation for the intersection ⋅ ∩ ⋅ and the test for emptiness ⋅ ≠ ∅ proves to be
di�erent: Both operations are very hard to perform on support functions because of
the missing information about the underlying geometry, which is why the intersection
is merely approximated by HyPro in the general case and the test for non-emptiness
is currently not supported at all.

It is thus necessary to over-approximate the support function with a di�erent
representation in order to be able to conduct a reliable non-emptiness test. An over-
approximation of the intersection is computed by recursively descending into the
operation history of the operands and taking the minimum of both evaluations. How-
ever, an empty intersection cannot be detected this way in the general case which is
why converting into another representation is advised as well in this scenario.

34 Chapter 3. State Set Representations

−2 −1

−3

−2

−1

1 2 3

1

2

y

x

`′

H`′

−2 −1

−3

−2

−1

1 2 3

1

2

y

x
`

H`

Figure 3.6: The convex set Ω (visualised by a gray area), before the 90 degrees ro-
tation (left) and after the rotation (right) with vectors ` and `′ and the corresponding
supporting hyperplanes H` and H ′

`. The rotation of the whole object is not computed
in reality and only displayed for explanatory purposes.

It can also be of advantage to change representation from support function to a
di�erent state set representation from time to time, even when not performing these
two operations. The reason for this is simply that the list of memorised operations
simply grows too large after conducting a lot of operations on the object, which of-
ten results in a lot of recursive function calls; converting the support function in an
over-approximative manner into a distinct representation and later back to a support
function "resets" this memorisation and may improve computation time of future
evaluations. Interested readers may wonder how this can be done e�ciently; this
question leads us to the next chapter of this work which deals with several conver-
sion approaches, also including conversions from various representations to support
functions and vice versa.

Chapter 4

Conversion Procedures

Now that the background is covered and the relevant state set representations are
de�ned, I am at last able to present the results of my bachelor thesis, the conversion
algorithms, in depth:

In the context of this �nal paper, I developed nineteen fully operational transfor-
mation procedures and two conversion approaches that work limitedly; the underlying
issues are discussed in Subsection 4.6.1 of this chapter.

As a part of HyPro, a project that is nearing its completion, most of the code
infrastructure and the vast majority of state set operations, basic utility functions,
arithmetic operations and datastructures were already programmed without my do-
ing; aside from some code refactoring, the mentioned nineteen conversion approaches
and a host of major utility functions for that matter (including a variant of prin-
cipal component analysis) were implemented by myself and the main focus of my
labour. Exact conversion from Zonotope to V -Polyhedron and exact conversion from
H-Polyhedron to V -Polyhedron and vice versa were already realised before I com-
menced my work and were therefore not my doing; the corresponding algorithms are
nevertheless covered in this thesis in an attempt to achieve full coverage of the topic.1

All dimensions of the Euclidian space are supported by the implementations, how-
ever, computing in higher dimensions comes with an expected heavy computation time
penalty. The current dimension is always denoted by d throughout this chapter and
the index i is an integer with 1 ≤ i ≤ d.

From now on, I will make use of the following notation for denoting the conversion
modes:

� An exact conversion is formalised by a tailed arrow ↣, and is only successful
if both the input object and the output geometry describe exactly the same
convex set.

� When referring to an over-approximative conversion, i.e. a transformation that
is allowed to produce objects which depict exactly the input sets or even larger
sets, the notation is given by a double-headed arrow ↠. A "larger" produced
object means in this context that the original object is a proper subset of the
resulting object.

1All �gures in this chapter are arti�cially constructed example graphics for explanatory purposes
and are no actual output plots of my functions. For literal plots, please refer to Chapter 5.

36 Chapter 4. Conversion Procedures

� Under-approximative conversions aim for smaller sets, i.e. sets that are subsets
of the original objects, and are represented by dashed arrows ⇢.

The altogether twenty-four conversion approaches are presented in the form of �ve
sections, one for each covered state set representation. Every section deals with those
algorithms that transform the corresponding state set representation into a di�erent
representation. I tackle the �ve utilised representations in the same order as they
were presented in Chapter 3, with the exception of the V -polyhedra being dealt
with even before H-polyhedra, since conversions of V -polyhedra are of high relevance
for nearly all other groups of presented algorithms. However, before delving into
the conversion algorithms themselves, I introduce a special application of principal
component analysis, namely the oriented rectangular hulls (ORHs), as they are utilised
by some of the developed algorithms.

4.1 Principal Component Analysis and ORHs

Principal component analysis, in short PCA (e.g. [Dun89]), is a mathematical pro-
cedure for structuring and simplifying given sets of data by �nding the dominating
correlations between these sets, allowing for a replacement of the original data with
a much smaller, but still representative set.

Olaf Stursberg and Bruce H. Krogh presented a paper (cf. [SK03]) that describes
the concept of computing oriented rectangular hulls using PCA. An ORH can in-
tuitively be seen as a hyperrectangle that is aligned in such a way that it encloses
the underlying set of data (e.g. a set of vertices) in an optimal fashion. ORHs are
therefore due to their orientation in general no longer hyperrectangles by de�nition,
but still retain the bene�cial property of featuring the same limited representation
size as their strictly axis-oriented counterparts.

Formally, ORHs are de�ned as the resulting object of the procedure described
below; the term of the oriented rectangular hull is therefore bound to that computation
method.

Being entirely based on the above-mentioned work by Stursberg and Krogh, I
now explain my implementation of principal component analysis that computes the
oriented rectangular hull of a forwarded set of sample points X = {x1, ..., xp} in six
steps:

1. The �rst conducted measure is computing the arithmetic mean xm of X in order
to have a point with central tendencies1 concerning X:

xm = 1

p

p

∑
j=1

xj

2. Secondly, the cloud of sample point is (approximately) centered around the
origin with the arithmetic mean point positioned exactly at the origin. This is
achieved by calculating a set of translated samples X = {x1, ..., xp} with xj =
xj − xm.

1The arithmetic mean of a set of points describes in general not the centre point of the set, but
merely an approximation of the centre point.

4.1. Principal Component Analysis and ORHs 37

3. The next step is the construction of the sample matrix S which simply holds
the translated sample points as columns and is formalised as

S =
⎛
⎜
⎝

x1,1 ⋯ x1,p

⋮ ⋱ ⋮
xd,1 ⋯ xd,p

⎞
⎟
⎠
,

where xi,j = xji − xmi is the ith component of the jth sample point.

4. Subsequently, the sample covariance matrix Cov(S) is computed: For two com-
ponents xi = xi−xmi and xk = xk−xmk , the sample covariance Cov(xi, xk), which
serves as an estimation of the covariance between the two vector components,
is de�ned as

Cov(xi, xk) =
1

p − 1

p

∑
j=1

xi,j ⋅ xk,j .

The covariance, as a measure of the correlation of two variables, describes in this
scenario how the positions of the sample points concerning the two considered
dimensional components relate to each other. Therefore, the symmetric sample
covariance matrix is �lled with the sample covariances regarding all possible
pairings of dimensional components:

Cov(S) =
⎛
⎜
⎝

Cov(x1,x1) ⋯ Cov(x1,xd)
⋮ ⋱ ⋮

Cov(xd,x1) ⋯Cov(xd,xd)

⎞
⎟
⎠

For the set of sample points X, Cov(S) represents the distribution of these
points in the d-dimensional Euclidian space. The sample covariance matrix is,
in terms of my implementation, computed with the following simpli�ed equation:

Cov(S) = 1

p − 1
⋅ S ⋅ ST

5. Before being able to derive a suitable orientation of the oriented rectangular hull,
a singular value decomposition1 needs to be performed on the sample covariance
matrix:

Cov(S) = U ⋅Σ ⋅ V T

Both U ∈ Rd×d and V ∈ Rd×d are unitary matrices and because of the symmetry
of Cov(S), U = V holds. The matrix Σ is a diagonal matrix containing the
singular values σ. Regarding the construction of the ORH, only the matrix
U is utilised (or alternatively V). It is worth noting that the singular value
decomposition is not necessarily unique.

6. With the matrix U at hand, an enclosing ORH can be derived: Every column
of U , where U●,i denotes the ith column of U , de�nes two half-spaces H+

i and
H−
i of the ORH, yielding a total of 2d facets:

H+
i = {x ∣ UT●,i ⋅ x ≤ max

x∈X
{UT●,i ⋅ x} +UT●,i ⋅ xm},

1The singular value decomposition is computed with the Eigen template library, accessible via
eigen.tuxfamily.org/ (lastly called up by the 6th May, 2016)

eigen.tuxfamily.org/

38 Chapter 4. Conversion Procedures

H−
i = {x ∣ −UT●,i ⋅ x ≤ −min

x∈X
{UT●,i ⋅ x} −UT●,i ⋅ xm},

where x ∈ Rd. All resulting normals of the ORH are thus simply de�ned by the
corresponding non-inverted/inverted matrix columns of U and are always nor-
malised. For the correct o�set, the positive/negative product of the translated
sample points and the normal needs to be maximised/minimised. The associ-
ated parts of the equation are very similar to the optimisation problem that a
support function de�nes for the whole convex object (cf. De�nition 3.13) with
the signi�cant di�erence, that the problem is in this case limited to a presum-
ably much smaller and, more importantly, already available set of points from
the object. My implementation therefore just iterates over all given sample
points and determines the maximal/minimal product. The addition/substrac-
tion of the product of normal and arithmetic mean point is necessary in order
to obtain the correct distances regarding the original sample points, i.e. these
parts of the above equations reverse the initially conducted translation.

Example 4.1 (Computation of an ORH). An oriented rectangular hull of the set
of sample points X = {(1,4)T , (2,5)T , (4,1)T , (5,2)T } is to be computed: The trans-
lated sample points are obtained by subtracting the arithmetic mean

xm = 1

4

4

∑
j=1

xj = (3
3
)

from every sample point, yielding the set of translated samples X = {(−2,1)T , (−1,2)T ,
(1, − 2)T , (2, − 1)T }. For the sample matrix S thus holds

S = (−2 −1 1 2
1 2 −2 −1

) ,

and the sample covariance matrix Cov(S) is obtained by

Cov(S) = 1

3
⋅ (−2 −1 1 2

1 2 −2 −1
) ⋅

⎛
⎜⎜⎜
⎝

−2 1
−1 2
1 −2
2 −1

⎞
⎟⎟⎟
⎠
≈ (3.33 −2.66

−2.66 3.33
) .

The singular value decomposition is in this case unique and given with

Cov(S) ≈ (−0.7 0.7
0.7 0.7

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U

⋅(6 0
0 0.667

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σ

⋅(−0.7 0.7
0.7 0.7

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V T

.

At last, four half-spaces are extracted from the matrix U . These four half-spaces H+
1 ,

H−
1 , H

+
2 and H−

2 are de�ned by the sets

H+
1 ≈{x ∣ (−0.7,0.7) ⋅ x ≤ 2.1 + 0},

H−
1 ≈{x ∣ (0.7,−0.7) ⋅ x ≤ −2.1 − 0},

H+
2 ≈{x ∣ (0.7,0.7) ⋅ x ≤ 0.7 + 4.2},

H−
2 ≈{x ∣ (−0.7,−0.7) ⋅ x ≤ 0.7 − 4.2},

with the addition/substraction representing the reversion of the translations. The
whole exemplary computation is illustrated by Figure 4.1.

4.2. Conversion of V -Polytopes 39

−2 −1

−3

−2

−1

1 2 3 4 5

1

2

3

4

5

y

x

xm

Figure 4.1: The resulting oriented rectangular hull with sample points and normals
(black), and the implicitly computed translated ORH that is centered around the
origin with translated samples and the two deviating half-spaces (blue). The red dot
represents the arithmetic mean xm of the sample points.

Oriented rectangular hulls have multiple applications regarding not only the conver-
sion of state set representations: The naive practice is to use the vertices of an object
as the underlying sample points for conversion purposes which is already a handy
usage taken by itself, but there are even more possibilities, some of which will be
explored throughout the rest of this chapter and Chapter 5.

4.2 Conversion of V -Polytopes

The �rst group of my conversion algorithms is dealing the transformation of V -
polyhedra: With the �nite set of vertices V = {v1, ..., vn} at hand, conversion revolves
around iterating over V in one or another fashion, be it in context of the already
presented oriented rectangular hulls or other approaches. As already mentioned be-
fore, there exist no unbounded polytopes when using the de�nition introduced in
Section 3.1 which is why I assume that all V -polyhedra are constructed according to
that de�nition (and are thus V -polytopes). Since the state sets encountered during
reachability analysis are usually bounded, this restriction is not of high relevance.

4.2.1 V -Polytope ↣ H-Polytope

Exact conversion from V -representation to H-representation is realised with a vari-
ation of the QuickHull algorithm (e.g. [Edd77]), an algorithm mainly designed for
computing the convex hull of a set of points. This set of points is in our case of course
the set of vertices V (possibly containing redundant vertices). Since this algorithm
was not implemented by myself, I will only shortly describe the underlying procedure
in the following with a visual example provided by Figure 4.2:

40 Chapter 4. Conversion Procedures

1 2 3 4 5

1

2

3

4

5

6

0

y

x 1 2 3 4 5

1

2

3

4

5

6

0

y

x 1 2 3 4 5

1

2

3

4

5

6

0

y

x

y

x

Figure 4.2: Paradigmatic three-step computation run of the described QuickHull
variant: The algorithm �rst constructs a simplex, i.e. a triangle in the 2-dimensional
Euclidian space (left). The full convex hull in H-representation is constructed via
two further iterations (middle and right). Vertices that are chosen in the current step
are displayed in red, possible vertex candidates for the next iteration are visualised in
black, and points that are no longer considered are represented in blue. The dashed
lines stand for the facets that are discarded in the corresponding iteration.

The iterative version of QuickHull that HyPro uses, starts by constructing a sim-
plex 1 out of d+1 vertices from V with preferably large distance between each of them.
Construction of a simplex means in this context that the half-spaces, whose intersec-
tion de�nes the above-mentioned simplex, are calculated; this is easily achievable for
such a simple object.

If all other vertices, aside from the d + 1 necessarily included points, are already
lying inside the simplex, the algorithm terminates; otherwise, it carries on by extend-
ing the simplex and deleting redundant half-spaces in the process. This is done as
described below:

For every extension step, a new vertex vnew lying at the outside of the object
is chosen in order to extend the object by this vertex; this implies, that after every
extension step (and also after the initial computation of the simplex), all points that
are at that moment lying at the inside of the object are not further considered for the
computation. Regarding the chosen vertex for each iteration, a vertex that is as far
away as possible from the current object is preferable.

The extension itself is attained by calculating the horizon Ξ of the newly chosen
vertex vnew, i.e. the set of vertices and half-spaces that are "visible" from the position
of vnew: New connecting half-spaces between vnew and the visible vertices are calcu-
lated and added to the set of existing ones, while discarding the visible half-spaces,
as these are assumed to be super�uous.

The described extension procedure is repeated until all vertices are included in the
resulting object; the output object is then an exact H-representation of the source
polytope.

1A simplex is the simplest full-dimensional polyhedron, i.e. an object with exactly d+1 vertices.

4.2. Conversion of V -Polytopes 41

1 2 3 4 5

1

2

3

4

5

6

0

y

x

Figure 4.3: The V -polytope V P (gray area), its vertices, and the resulting box B.

4.2.2 V -Polytope ↠ H-Polytope

Since the exact conversion from V -representation to H-representation, described in
the previous section, has exponential complexity in general, I present an alternative
conversion for this purpose that over-approximates the resulting H-representation
using oriented rectangular hulls (cf. Section 4.1): The ORH-algorithm is simply
called with the set of vertices V as input; because the resulting ORH fully encloses
V , it is not possible that the computed hull is smaller than the original V -polytope.

This approach shows that ORHs can not only be used for the conversion of convex
objects, but also implicitly for the reduction of polyhedra that grow too large in terms
of representation size as well: As a reminder, the resulting H-representation features
only 2d half-spaces and when converted back to a V -polytope in an exact fashion, 2d

vertices.

4.2.3 V -Polytope ↠ Hyperrectangle

Transforming a Polytope into a box usually demands for an over-approximation due
to the huge di�erence in expressiveness of the representation. The concept for the
conversion of a V -polytope revolves around iterating over the set of vertices V once
and determining the maximal and minimal component values for every dimension by
memorisation. These extreme values, when used as the lower/upper interval bounds,
implicitly de�ne the intervals of the interval hull.

Example 4.2. A V -polytope V P with V = {(1,2.5)T , (3,0.5)T , (3,5.5)T , (5,2.5)T ,
(5,5)T } is converted to a hyperrectangle using the above-described approach: The
procedure iterates over the given set of vertices and identi�es the extreme values per
dimension, yielding the box and interval hull B = [1,5] × [0.5,5.5] (cf. Figure 4.3).

4.2.4 V -Polytope ↠ Zonotope

Considering that oriented rectangular hulls are special zonotopes and need to be over-
approximated in the general case when having a polytope as the source object, I make
use of the ORH-computation here as well, employing the vertices V as the input for

42 Chapter 4. Conversion Procedures

the program. Albeit, as the ORH-procedure (cf. Section 4.1) constructs the ORH
in the form of half-spaces, there are additional computations required in order to
calculate the centre c and the set of generators G = {g1, ..., gn} of a proper zonotope:

Calculation of the centre c is realised by computing the V -representation of the
obtained ORH in an exact manner (cf. Subsection 4.3.1) �rst and then determining
the arithmetic mean of the vertices which is exactly the centroid of an object with
such prede�ned simple geometry.

However, as already mentioned before, this is in general not the case when consid-
ering more complex objects; for such geometry, the arithmetic mean merely depicts
an approximation of the centroid. Because of this, I had to discard my initial idea of
reusing the arithmetic mean point xm that is computed during the ORH-procedure
so as to save computation time: The mean of the input sample points is not neces-
sarily the centroid of the resulting ORH. Computation of a new centre point is thus
necessary.

It is worth noting that there is no risk of eventual redundant vertices possibly
disturbing the computation of the centroid: The ORH constitutes a minimal half-
space representation of the over-approximation; this approximation is then converted
exactly (the program would even eliminate super�uous points). As there are only 2d

vertices in the resulting V -representation, none of these vertices can be redundant.
The generators are, after the calculation of c, obtained in two phases:

1. Primarily, the objective is to obtain the point-to-plane-distances between the
centre c and the corresponding bounding hyperplanes of the ORH-half-spaces.
There are d such distances to compute, as the distance from c to both hyper-
planes, regarding every output pair of the ORH-procedure, is exactly the same.
In order to do this, arbitrary points pi that lie on one of the two planes con-
cerning every pairing are calculated beforehand: Every of the d points is simply
obtained by computing the intersection point of one of the corresponding hyper-
planes with one axis. With those points pi available, the point-to-plane-distance
ζi between centre c and the corresponding pair of bounding hyperplanes regard-
ing the half-spaces H+

i , H
−
i with normals n⃗ and −n⃗ is given by

ζi =
n⃗T ⋅ c − n⃗T ⋅ pi

∥n⃗∥1
.

2. Secondly, the normals of the half-spaces need to be scaled to generator length.
This is done by using the computed point-to-plane-distances: When being con-
fronted with already normalised normals (which is the case when using normals
from ORHs), the correct scaling factor αi for each generator gi is simply the dis-
tance ζi. If this is not the case, the scaling factors αi would instead be obtained
via dividing the distance by the length of the normals:

αi =
ζi
∥n⃗∥

The same reasons that prevent me from reusing the arithmetic mean of the sample
point cloud xm as the centre c of the resulting zonotope, prohibit that the o�sets
of the translated sample points, which are implicitly computed in the context of the
ORH-procedure, can be utilised for obtaining the correct distances to c: Distances
from the origin to the hyperplanes of the translated ORH, located at the origin, can

4.2. Conversion of V -Polytopes 43

1 2 3 4 5

1

2

3

4

5

0

y

x

c
g2

g1

h1

h2

p1 p2

Figure 4.4: The ORH in G-representation with the vertices that were used for the
mean computation (black points), the centre c (red), the plane points p1 and p2 (blue),
and the two hyperplanes h1 and h2 that were used for the distance computation. The
inverse of the generators g1 and g2 are represented by dashed arrows.

indeed di�er from the correct distances concerning the centroid of the ORH and make
the above-described steps necessary.

Example 4.3. So as to clarify the derivation of a suitable zonotope, the oriented rect-
angular hull that was obtained in Example 4.1 is now transformed into G-representation
(cf. Figure 4.4:

A conversion to V -representation yields the set of vertices V = {(1,4)T , (2,5)T ,
(4,1)T , (5,2)T } which coincides in this case with the set of input sample points for the
ORH-procedure. The centre of the zonotope is therefore given as the arithmetic mean
of the vertices which results in c = (3,3)T .

The plane points p1 and p2 are de�ned by the intersections of the x-axis and
hyperplanes h1 and h2 for this example1 , resulting in p1 = (3,0) and p2 = (5,0).
For the distances ζi thus holds

ζ1 ≈
(0.7,−0.7)T ⋅ (3

3
) − (0.7,−0.7)T ⋅ (3

0
)

√
0.72 + −0.72

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈1

≈ −2.1

and

ζ2 ≈
(−0.7,−0.7)T ⋅ (3

3
) − (−0.7,−0.7)T ⋅ (5

0
)

√
−0.72 + −0.72

´¹¹¸¹¹¶
≈1

≈ 0.7.

As the normals are unit vectors, the correct scaling factors αi are precisely the corre-
sponding distances, yielding the set of generators G = {g1, g2} with g1 = (−1.47,1.47)T

1If there had not been a possible intersection with the x-axis, i.e. the x-component of the normal
had been zero, the algorithm would have chosen a di�erent axis.

44 Chapter 4. Conversion Procedures

and g2 = (−0.49,−0.49)T .

By now, it should have become apparent that converting to a zonotope when using
oriented rectangular hulls is more costly than sticking with the H-representation. It
is thus recommended to use over-approximations from V -polytopes to H-polytopes,
unless a zonotope is explicitly required.

4.2.5 V -Polytope ↣ Support Function

The transformation to a support function is in the context of HyPro, as already
mentioned before, in theory no di�erent from converting exactly to an H-polyhedron.
Thus, the conversion in this context works exactly as described in Subsection 4.2.1,
with the single di�erence of saving the result internally as a diverse datastructure
that provides distinct functionalities.

4.3 Conversion of H-Polytopes

When the source object is a polytope in H-representation, the naive approach in
terms of conversion revolves around initially determining the vertices of the underlying
object; this describes the concept of nearly all of the developed algorithms in this
subsection in fact very well.

Although it is easily possible to construct unbounded H-polyhedra, I assume here,
similarly to the situation with V -polyhedra before, that the input objects are all
bounded, i.e. that they are all H-polytopes; unbounded objects are, as already men-
tioned, of low interest for reachability analysis.

As a reminder, the notation Hi represents the half-spaces of the H-polytope with
the integer n denoting the number of half-spaces in this context.

4.3.1 H-Polytope ↣ V -Polytope

Obtaining the set of vertices of geometry that is represented by an intersection of
�nitely many half-spaces comes down to intersecting the space-dividing hyperplanes
of all given half-spaces until all extreme points are found:

Regarding the d-dimensional Euclidian space, any intersection concerning the
bounding hyperplanes of d di�erent half-spaces may yield a full-dimensional inter-
section point in case the normals of the hyperplanes are a�nely independent. These
intersection points include the extreme points of the polytope and therefore all vertices
necessary for a minimal representation. With this coherence follows that, when con-
verting from H-representation to V -representation, each of those intersection points
is a possible vertex candidate for the transformation result.

An appropriate exact conversion procedure thus builds all possible d-combinations
of given half-spaces and computes the intersection point of the corresponding hyper-
planes for every combination (if there is one). Each resulting point then has to be
examined further: Only if the vertex candidate ful�lls all constraints of the remaining
half-spaces, it is truly a vertex of the corresponding V -representation; all candidates
are therefore tested against each of the n − d remaining half-space inequations.

Figure 4.5 illustrates the above-described concept in form of a visual example.

4.3. Conversion of H-Polytopes 45

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

0

y

x

Figure 4.5: A 2-dimensional polytope P (gray area) that is transformed exactly
from H-representation to V -representation: Every possible pairing of the displayed
half-spaces yields a vertex candidate by intersection of the corresponding hyperplanes.
These resulting six vertex contenders are tested for membership of all half-spaces; two
candidates are eventually discarded (blue points), and the other four candidates form
the set of vertices concerning P (red points).

4.3.2 H-Polytope ↠ Hyperrectangle

Out of the two transformation approaches that I developed for the over-approximative
conversion from H-polytope to hyperrectangle, the procedure of this subsection rep-
resents the naive algorithm: The H-representation is initially transformed into a
vertex-representation as described in the previous subsection, before conducting an
over-approximative conversion to a hyperrectangle according to Subsection 4.2.3.

4.3.3 H-Polytope ↠ Hyperrectangle (Alternative Approach)

With the ambition of avoiding the costly computation of the vertices, I had the
idea of using a linear optimiser for obtaining an over-approximating hyperrectangle,
exactly the way it is utilised for evaluating a support function. Since the underlying
geometry of HyPro support functions is mostly represented by H-polyhedra, this
alternative approach for transforming H-representations into boxes works just like
transforming support functions into hyperrectangles which is presented in Subsection
4.6.5, alongside an example.1

Both the naive conversion procedure from H-representation to box and the al-
gorithm using linear optimisation for the same purpose are contrasted in terms of
e�ciency in Subsection 5.1.2.

1Please note that I do not present the corresponding procedure in this section, as it is more
�ttingly to discuss this algorithm in context with the algorithms for the transformation of support
functions.

46 Chapter 4. Conversion Procedures

1 2 3 4 5−3 −2 −1

1

2

3

4

5

6

0

y

x

Figure 4.6: The box B, converted into a V -polytope.

4.3.4 H-Polytope ↠ Zonotope

Regarding the conversion to zonotopes, the only available approach in this scenario is
an initial conversion to V -representation before continuing with an over-approximation
to a resulting zonotope (cf. Subsection 4.2.4).

4.3.5 H-Polytope ↣ Support Function

There is only one necessary measure for the transformation of an H-polytope into a
support function, and that is a simple constructor call in order to de�ne the source
H-polytope as the underlying geometry of a new support function.

4.4 Conversion of Hyperrectangles

The conversion of hyperrectangles into other representations is, as one might expect,
a very simple task. With a constant number of vertices and facets and also �xed facet
normals, all algorithms are very economical to perform, since they only depend on
the dimension d. Furthermore, all of the necessary data is instantly available with
the given de�ning intervals of the box. In the context of this thesis, I presume that
the intervals are non-empty and bounded.

As boxes form the most limited representation type that is tackled here, at least
in terms of precision, approximating the resulting geometry is not sensible; exact
transformations are always possible and advised for hyperrectangles.

Regarding the currently treated hyperrectangle, the set of the d box intervals is
denoted by I = I1 × ... × Id with Ii = [xi, xi].

4.4.1 Hyperrectangle ↣ V -Polytope

When transforming a box into a V -polytope instead, the 2d resulting vertices are
simply determined by building all possible combinations of d distinct interval bounds
(of which there are exactly 2d combinations); each combination yields one resulting
vertex.

4.4. Conversion of Hyperrectangles 47

1 2 3 4 5−3 −2 −1

1

2

3

4

5

6

0

y

x

Figure 4.7: The box B as the intersection of the half-spaces resulting from the
conversion to an H-polytope. Its facet normals are indicated by arrows.

Example 4.4. Box B = [−2,4]×[0.5,5.5] is at last converted into a V -polytope which
is illustrated by Figure 4.6. The resulting set V of vertices is given with all possible
combinations of interval end points of B and is presented below:

V = {(−2
0.5

) ,(−2
5.5

) ,(4
0.5

) ,(4
5.5

)}

4.4.2 Hyperrectangle ↣ H-Polytope

When striving for an H-representation of a hyperrectangle, only the o�sets of the
2d half-spaces can vary, the 2d normals are �xed in the form of the positive axes
directions and the negative axes directions.

The o�sets for every pair of half-spaces are received by taking the non-inverted
upper interval bound xi as the proper distance from the origin to the bounding hy-
perplane regarding the corresponding positive axis direction, and using the inverted
lower interval bound −xi for the negative axis direction analogously. This cohesion is
easily deducible when rearranging the corresponding half-space inequalities.

Example 4.5. The returning box B (B = [−2,4] × [0.5,5.5]) is converted into an
H-polytope (C,z) this time (cf. Figure 4.7): The normal matrix C is prede�ned with

C =
⎛
⎜⎜⎜
⎝

1 0
−1 0
0 1
0 −1

⎞
⎟⎟⎟
⎠
.

The proper distance vector z is then given with the interval bounds (non-inverted upper
bound and inverted lower bound):

z =
⎛
⎜⎜⎜
⎝

4
2

5.5
−0.5

⎞
⎟⎟⎟
⎠

48 Chapter 4. Conversion Procedures

1 2 3 4 5−3 −2 −1

1

2

3

4

5

6

0

y

x

c
g1

g2

Figure 4.8: The box B with the resulting centre c and generators g1, g2 after the
transformation. The inverse of the generators are indicated by dashed vectors.

4.4.3 Hyperrectangle ↣ Zonotope

In order to transform a box into a zonotope, the corresponding centre c and generators
G = g1, ..., gd, of which there are d many for every hyperrectangle, are calculated as
described below:

� The centre c is given implicitly by the centres of the intervals, i.e. the ith
zonotope centre component ci is given by

ci =
xi + xi

2
.

� Concerning the generators gi, their alignment is �xed (every generator points
in one axis direction), and thus only their independent lengths `i have to be
computed, which is achieved by halving the length of the associated interval
(also called the radius of the interval):

`i =
∣xi − xi∣

2

The resulting generator is then given via gi = (0, ..., `i, ...,0)T with `i residing
at the ith position in the vector.

Example 4.6. A box B, de�ned by B = [−2,4] × [0.5,5.5], is to be converted to a
zonotope (cf. Figure 4.8): The centre c is computed via

c = (
−2+4

2
0.5+5.5

2

) = (1
3
) ,

the generators G = {g1, g2} are calculated with

g1 = (
∣−2−4∣

2
0

) = (3
0
)

and

g2 = (0
∣0.5−5.5∣

2

) = (0
2.5

) .

4.5. Conversion of Zonotopes 49

4.4.4 Hyperrectangle ↣ Support Function

As one would expect, the underlying procedure in this constellation resembles an
exact conversion from hyperrectangle to H-polytope (cf. Subsection 4.4.2).

4.5 Conversion of Zonotopes

Regarding zonotopes, all realised procedures revolve around computing the vertices
of the object �rst which is why the exact conversion from zonotope to V -polytope
is the main focus of this section. This task of computing the extreme points of a
zonotope is also known as the zonotope construction problem[Fuk04]. Similar to the
other sections before, I only consider bounded source objects; unbounded zonotopes
are unde�ned one way or the other.

As a reminder, c denotes the centre of a zonotope Z, while G = {g1,...,gn} is the
set of its generators.

4.5.1 Zonotope ↣ V -Polytope

Before dealing with the zonotope construction algorithm, I point a special property
of zonotopes out:

A point v is only a possible extreme point of the zonotope, if it is the result of
n subsequent additions of line segments, with the n summands being strictly the n
generators of the zonotope; every generator represents exactly one summand, either
in its "normal" form or as its inverse. This yields a total of 2n vertex candidates for
every zonotope.

With that said, in terms of HyPro, the zonotope construction problem is solved
in a recursive manner: Starting at the position of the centre c, the algorithm obtains
two positions p1 and p2, one by adding the �rst generator g1 to c, and the other by
adding −g1 to c. If there is more than one generator, the procedure is then recursively
called for both p1 and p2 (becoming the centre points of their recursion calls). The
�rst generator g1 is removed beforehand, such that g2 is then the new �rst generator.

This course of action is repeated until the lowest recursion layer is reached, i.e.
until there is only one generator left. The additions at this lowest layer then provide
all 2n extreme point candidates that are afterwards returned to the invoking instance
of the procedure. Every recursion layer is therefore tasked with the addition of one
generator and the corresponding inverse exclusively.

Although there are redundant vertices, lying inside of the object, among the 2n

calculated extreme point candidates, the algorithm does not identify these redundan-
cies, as super�uous vertices are removed by the V -polytope constructor that is called
subsequently.

Figure 4.9 illustrates the above-described approach.

4.5.2 Zonotope ↣/↠ H-Polytope

Constructions of H-polytopes out of zonotopes is no easy feat: Getting valuable
information about the enclosing half-spaces e�ciently with only the centre and the
generators given has proven to be a di�cult task for me, in fact, Fukuda states that
computing an H-representation "is still an open question"(cf. [Fuk], p. 3). Because of

50 Chapter 4. Conversion Procedures

1 2 3 4 5 6

1

2

3

4

5

6

0

y

x

c

Figure 4.9: Paradigmatic zonotope construction for a zonotope Z with three gener-
ators. Line segments that correspond to the �rst generator and thus highest recursion
layer are displayed by plain arrows, the additions conducted by the second layer are
depicted by dashed arrows, and the computations of the �nal deepest layer are visu-
alised by dotted arrows. Additional displayed objects are the centre point c (black),
the points that are computed by the algorithm for further recursions, but are never
returned, as they are no vertex candidates (blue), and the vertex candidates that are
returned by the algorithm (red and green). The two green vertices are redundant and
are removed by the V -polytope constructor subsequently.

this, when aiming for an H-representation, a detour via V -representation is currently
common.

This means that an exact conversion from zonotope to V -polytope, as described
in the previous subsection, is performed at �rst, before conducting either an exact
conversion (cf. Subsection 4.2.1) or an over-approximative conversion, as described
in Subsection 4.2.2, in order to obtain an H-representation of the object.

The choice of method is determined by passing one function parameter to the
function and is thus up to the user to decide. The default conversion mode is an
exact conversion, because it is conventional to use simple zonotopes (like oriented
rectangular hulls) for reachability analysis. Regarding such basic zonotopes, exact
convex hull algorithms performed on the set of vertices usually have an acceptable
runtime in most applications.

4.5.3 Zonotope ↠ Hyperrectangle

Over-approximation of the in general much simpler shaped hyperrectangles, when
being confronted with a zonotope as the source object, is yet again achieved by de-
termining the vertices of the zonotope. After this exact conversion to a V -polytope
(cf. Subsection 4.5.1), the resulting box is approximated as described in Subsection
4.2.3.

4.6. Conversion of Support Functions 51

4.5.4 Zonotope ↣/↠ Support Function

Transformation to a support function when dealing with zonotopes is, as one might
expect, done like a conversion to an H-polytope as well (cf. Subsection 4.5.2). Choos-
ing a conversion mode is again up to the user, with exact conversion being the default
mode.

4.6 Conversion of Support Functions

Last but not least, conversions of support functions are very di�erent from any sort of
conversion algorithm that was presented until here, and they come with very speci�c
challenges: As already mentioned before, there is only one way of obtaining any
information about the underlying geometry of convex sets that are represented by
support functions, and this one way is evaluating the support function pΩ(`) into
any direction `. When facing bounded objects, which is yet again assumed in this
context, each evaluation of a support function yields a supporting hyperplane (cf.
Chapter 3.4) that can then be used for an approximation of the underlying convex
set Ω, as described in the following sections in more detail.

In general, the quality of a result in terms of precision is extremely dependent on
a number of factors: The most important factors are the number of directions that
the support function is evaluated into, and the nature of the underlying geometrical
object: As a general rule holds that, the more directions the support function is eval-
uated into, the more precise is the resulting approximation and the more structurally
complex the convex set, the more directions are required for an accurate approxi-
mation of the source object. Choosing sensible directions that �t to the geometry
is also very helpful e�ciency-wise, as a few well-chosen directions possibly obtain an
approximation of similar or even better quality than a lot more randomly picked or
uniformly distributed directions.

However, it is to be kept in mind that any evaluation results in the need for the
solving of a whole linear optimisation problem; it is thus, in terms of computation
time, not advised to evaluate into more directions than necessary. Assessment of
how many and which directions are appropriate though is a huge challenge, since
determining any information about the geometry beforehand is impossible with only
the support function at hand, which serves as a kind of black box.

Use case scenarios that allow for an estimation of the underlying structure, con-
cerning the support functions that are utilised, could heavily improve the choice of
both number and alignment of directions and thus also computation time and quality
of the approximation. My situation in the context of this bachelor thesis is, however,
detached of any speci�c reachability analysis use case scenario, which is why I decided
to use a variable number of uniformly distributed template directions for most of the
algorithms in this chapter.

These template directions are computed by a special utility function which is called
with a parameter u: The function begins by constructing a template of u uniformly
distributed directions in the 2-dimensional plane. If d > 2 holds, this 2-dimensional
template plane is then rotated and placed axis-aligned concerning every possible re-
maining pairing of dimensions, yielding more directions for higher dimensions with
the same parameter u. Calling this function in the 3-dimensional Euclidian space with

52 Chapter 4. Conversion Procedures

u thus results in approximately 3u directions,1 as the template is besides the initial
xy-alignment further placed xz-aligned and yz-aligned. It is therefore not possible to
construct every number of directions (for d > 2) when using this function.

Apart from that restriction, it is up to the user to decide how many template
directions are being utilised in the corresponding conversion procedures. If nothing
is speci�ed, the default value is u = 8, as eight template directions per dimension pair
provided good precision in most conducted tests.

It is also worth noting that support functions only very rarely obtain exact results
when converted into other representations, especially when dealing with structurally
complex objects. When gradually increasing the number of evaluation directions and
keeping the previously used ones, a �xed-point will eventually be reached: No matter
how complex the object, the output object will be an exact transformation of the
orginal object at some point; further increase of the number of evaluation directions
beyond this point has no other e�ect than a mounting of computation costs.

In the following, let pΩ(`) be the support function of the convex set Ω, where ` is
some d-dimensional direction vector. The integer m denotes the number of directions
that the support function is evaluated into.

Before the presentation of my developed algorithms regarding the conversion of
support functions, I take a closer look at a speci�c problem regarding support func-
tions in the following subsection, since my inability to solve this issue prevents two of
the implemented algorithms from working in all scenarios. The corresponding problem
revolves around the computation of boundary points of objects that are represented
by support functions.

4.6.1 Boundary Point Computation for Support Functions

Some of the conversion algorithms that I talk about in this section need (any) bound-
ary points of the underlying geometry for their computations. Calculations of such
boundary points have proven to be somewhat problematic: When evaluating a sup-
port function pΩ(`) into any direction ` and receiving a supporting hyperplane H` in
the process, it is certain that there is at least one boundary point lying somewhere
on this plane, but it is unclear where exactly this boundary point is located.

In an attempt to solve this problem, the linear optimiser that is used by HyPro for
the evaluation of support functions was modi�ed: The last point plast that is visited
during a computation of the linear optimiser is now memorised and this very point
is in addition to the evaluation direction ` forwarded through the whole sequence of
operations that were conducted on the support function (cf . Subsection 3.6.1); this
is achieved by applying all memorised operations to plast one after another. This
last visited point plast is in favourable scenarios a boundary point of the underlying
geometry, and is in fact (nearly) always an extreme point of at least one underlying
object2. When there are binary operations involved, the optimiser obtains one such
point plast for every object that was used as an operand concerning the memorised
operations.

While this modi�cation means that every conducted evaluation has now increased
cost in comparison to before, computing those operations for a few points in addition

1Depending on the value of u, there may be duplicate directions among the 3u initially computed
directions that are removed afterwards.

2The only scenario in which plast is not necessarily an extreme point, is a situation in which the
support function is exaclty evaluated in direction of a facet normal.

4.6. Conversion of Support Functions 53

−3 −2 −1

−3

−2

−1

1 2 3

1

2

3

plast

plast′

Ω1

Ω3
Ω2

y

x

Figure 4.10: Two convex sets Ω1 and Ω2, both represented by a support function,
are intersected with each other, resulting in the convex set Ω3. The set Ω3 shall
now be evaluated into direction ` = (0,1)T for a boundary point: In order to do this,
the linear optimiser evaluates in both Ω1 and Ω2 once and returns in addition to
the o�set of the supporting hyperplanes (which are displayed in the colour of their
corresponding set) also the lastly visited point (plast and plast′). Afterwards, the
minimal point out of these two points regarding direction ` is chosen as a boundary
point which is in this case plast (the red point). It is obvious that plast is no point of
the actual intersection set Ω3 and thus also no viable boundary point of Ω3.

is not very expensive when limiting the memorised operations to a maximum number,
and is still in every scenario more e�cient than computing the same operations for
the whole geometry.

However, this solution attempt is �awed, and this �aw is substantiated by the
current realisation of the intersection operation concerning support functions of the
HyPro project: As already described in Subsection 3.6.1, when intersecting a sup-
port function with any other object, the resulting intersection set is implicitly over-
approximated by evaluating into some direction ` in both underlying objects and
taking the minimum of both result values. This lack regarding an exact computa-
tion of the intersection makes it impossible to calculate valid boundary points using
the above-described idea. The whole problem becomes a lot clearer with the visual
example that is provided by Figure 4.10.

The situation concerning the boundary point computation of a support function
that memorised an intersection operation becomes even worse when the result of
that intersection is empty: Although the boundary is non-existent for an empty in-
tersection, the boundary point computation still returns result points. These result
points are obviously wrong, but are never identi�ed as incorrect results, since empty
intersections currently cannot be detected.

With no idea for a possible new approach for the intersection operation when
dealing with support functions, additional e�ort was put into the development of
di�erent boundary point computation procedures, but without success. Albeit Pijush

54 Chapter 4. Conversion Procedures

K. Ghosh and K. Vinod Kumar presented a theoretical way of obtaining the boundary
of a support function in [GK98], it is unclear how this approach should be realised
without any intersection operation:

In short, when evaluating in direction `, Ghosh and Kumar state that, concerning
the support function, the computation of the directional derivative at ` in direction of
unit vectors w in all directions yields a complete facet of the object with a dimension
of at most d−1. Repeating this technique d times thus necessarily results in an object
of dimension 0, i.e. a point. This point is then a boundary point of the underlying
geometry.

However, it is unclear how this idea should be realised in praxis, with one of
the main issues being the determination of a suitable algebraical representation of
the support function (which is obviously needed for the calculation of the directional
derivatives), at least without restricting the underlying geometry to only allow simple
objects. Another problem is that there is an unlimited number of unit vectors which
would make an approximation of the resulting facets necessary.

As a workaround to these problems, I started developing an implementation that
would make the currently realised boundary point computation via the modi�cation
of the linear optimiser dispensable. I could think of only one possible other way
of calculating the facet of an object represented by a support function, which is
to intersect the support function with the supporting hyperplane that is obtained by
evaluating in some direction `. But as should have become clear by now, computation
of the intersection does not work properly at the moment and it was not possible to
resolve the corresponding problems, which is why this un�nished implementation was
eventually discarded.

Concerning all following conversion algorithms, boundary point computation is
thus achieved with the modi�ed linear optimiser described above. Circumventing its
issues without sacri�cing the intersection operation, which is very frequently used in
reachability analysis, is possible in the following way: By converting the support func-
tion to a di�erent representation before performing an intersection and transforming
the result back to a support function after the conducted intersection operation, the
correctness of future operations is ensured and the list of memorised operations is
reset as a positive side e�ect.

4.6.2 Support Function ↠ H-Polytope

As already mentioned, evaluating a support function pΩ(`) into any direction ` yields
a supporting hyperplane. The idea for my conversion to an H-polytope is to evaluate
pΩ(`) into m template directions and to use each of the resulting supporting hyper-
planes as a bounding hyperplane of the corresponding half-space. The output object
is then de�ned by the intersection of those m resulting half-spaces.

This procedure always results in an over-approximatingH-polytope because of one
particular interesting property of supporting hyperplanes: Supporting hyperplanes
only touch the underlying geometry and never intersect with the inner points; there
is thus no danger of reducing the original object, when relying on such planes. This
coherence should become clear with Figure 4.11.

4.6. Conversion of Support Functions 55

−3 −2 −1

−3

−2

−1

1 2 3

1

2

3

y

x

Figure 4.11: A convex set Ω, depicted by the gray area, is evaluated into �ve
uniformly distributed template directions. The directions are represented by arrows,
with the dotted lines denoting the extension of these directional vectors. The resulting
�ve supporting hyperplanes yield a visualised over-approximation of Ω; the facets of
the approximation are displayed via a thick outline.

4.6.3 Support Function ↠ V -Polytope

The attendant approach for obtaining a suitable over-approximation in V -represen-
tation is working exactly as the procedure described in the previous subsection, with
the addition of an exact conversion to a V -polytope (cf. Subsection 4.3.1) after the
construction of an over-approximating H-polytope based on the derived supporting
hyperplanes.

A direct approach for the computation of proper vertices as a special case of the
boundary point computation for support functions (cf. Subsection 4.6.1) is in theory
possible, but is combined with a high computational e�ort and not very robust either:
For a proper over-approximation, it must be ensured that at least all extreme points
of the objects are obtained; this would require multiple over-approximations of the
source object which would have to be compared in the process.

4.6.4 Support Function ⇢ V -Polytope

Under-approximative conversions from support functions to V -polytopes work, de-
spite being simple in concept, only restrictedly: The idea here is to obtain a number
of boundary points of the underlying convex set Ω by evaluating the corresponding
support function into a number of template directions, with each evaluation yielding
one boundary point; these points then form the set of vertices of the resulting under-
approximation. As only points on the boundary of Ω are considered, it is obvious
that the result is always a subset of the original set. A visual example is presented
with Figure 4.12.

As already stated in Subsection 4.6.1, the computation of boundary points is

56 Chapter 4. Conversion Procedures

−3 −2 −1

−3

−2

−1

1 2 3

1

2

3

y

x

Figure 4.12: The support function of returning convex set Ω is now evaluated
into the same �ve directions again, this time with the goal of obtaining an under-
approximation. The resulting boundary points that are determined by the linear
optimiser are displayed as black points and the resulting under-approximation is dis-
played with a thick outline. In this case, when using �ve template directions, the
computed under-approximation is close to being the original set.

currently not working properly for support function objects that were intersected
with other objects. The under-approximation of V -polytopes therefore in general
only works correctly on input objects that feature no intersection as a memorised
operation.

4.6.5 Support Function ↠ Hyperrectangle

My implementation of conversions from support functions to hyperrectangles is the
only procedure in this section that does not rely on uniformly distributed template
directions: For obtaining the interval hull of the underlying geometry, it is su�cient
to evaluate the support function into the 2d directions of the axes and to use the
resulting o�sets as the corresponding interval bounds: Evaluation in negative axis
direction yields a distance that is, when inverted, the correct lower interval bound
of this dimension and evaluating in positive axis direction results in an o�set that
constitutes without further modi�cations already the proper upper interval bound
(cf. Figure 4.13).

As already mentioned in Subsection 4.3.3, this technique is also used as an al-
ternative approach for obtaining the interval hull of an H-polytope, since the linear
optimiser works on H-polyhedra anyway for the most part.

4.6.6 Support Function ↠ Zonotope

The �rst developed approach for conversions to zonotopes, when being confronted
with a support function as the source object, recombines already presented tech-

4.6. Conversion of Support Functions 57

−3 −2 −1

−3

−2

−1

1 2 3

1

2

3

y

x

Figure 4.13: Convex set Ω (gray area), represented by a support function, is con-
verted over-approximately to a box (visualised by a thick outline). This is achieved
by evaluating in the 2d axis directions and deploying the obtained o�sets as the cor-
responding interval bounds with the received o�sets in negative axis directions being
negated in the process.

niques: At �rst, the underlying geometry is converted to an H-polytope as described
in Subsection 4.6.2. With the resulting half-space-representation that is in general
no zonotope yet at hand, an oriented rectangular hull, with the vertices of the ob-
tained H-polytope (received via an exact conversion to V -representation) as input, is
computed (cf. Subsection 4.2.4).

4.6.7 Support Function ↠ Zonotope (Alternative Approach)

As the procedure described in the previous subsection features a lot of smaller con-
versions that are costly for complex objects and escpecially expensive in higher di-
mensions, I developed a di�erent approach for the conversion to zonotopes with the
ambition of improving computation time:

This alternative approach �rst computes a set of boundary points of the support
function (cf. Subsection 4.6.1) with template directions, before performing the ORH-
computation on just these boundary points, saving a lot of costly transformations
thereby. Aside from the problem that the boundary point computation is not working
properly with intersection, it is likely that the ORH obtained this way does not enclose
the whole underlying geometry, meaning that there is additional e�ort needed in order
to expand the calculated ORH such that it constitutes a proper over-approximation
of the underlying object.

Thankfully, it is only necessary to conduct a �xed number of 2d additional evalua-
tions afterwards, since we know that the ORH has only 2d facets with already known
normals. The procedure thus evaluates in each of the 2d facet normal directions and
the newly obtained o�set then determines how far the facets of the ORH need to
be pushed in the corresponding direction so as to it encloses the object in combina-

58 Chapter 4. Conversion Procedures

−3 −2 −1

−3

−2

−1

1 2 3

1

2

3

y

x

Figure 4.14: Underlying convex set Ω (depicted by gray area), represented via a
support function, is now converted into a zonotope: Using three template directions,
three corresponding boundary points (blue points) are obtained, and the initially
computed ORH, based on those three boundary points is displayed via a blue outline.
As this ORH is no proper over-approximation of Ω, all facets are pushed back by
correct o�set values that are determined by conducting additional evaluations into
the 2d ORH facet normals. The output ORH is indicated by the red outline (ORH
normals, centre, and generators are not visualised due to the already crowded graphic).

tion with the other facets. Figure 4.14 visualises a paradigmatic application of the
algorithm.

While the procedure featured in this subsection works only restrictedly because
of the boundary point computation, precision of the resulting approximations was
assumed to be a lot better when developing this technique. Both approaches are
compared in terms of precision and computation time in Subsection 5.2.2.

Chapter 5

Evaluation

With all of my conversion algorithms presented, I now take a closer look at the
correctness of the approaches and also the precision and the computation speed that
these procedures provide:

Section 5.1 describes a general veri�cation of all of the introduced transformation
approaches in context of a universal conversion scenario featuring special template
objects, while Section 5.2 deals with two speci�c experiments that involve only one
or two of the portrayed algorithms each.

In contrast to the previous chapter, all graphics in this chapter are actual output
plots of my implemented functions. All experiments were conducted on the same
computer with background tasks kept to a necessary minimum.

In the context of this chapter, I use the following abbreviations:

� V for V -polytope

� H for H-polytope

� B for box

� Z for zonotope

� SF for support function

5.1 General Analysis

In order to be able to provide a comparison of all twenty-four conversion algorithms,
I made use of template objects, i.e. objects that are built with the help of the already
described special utility function which computes a number of template directions
based on a passed parameter u (cf. Section 4.6):

Template H-polytopes consist of one half-space for every obtained template direc-
tion: Each resulting template direction forms the normal of a half-space with a �xed
o�set of �ve. Template objects in other representations were received by conversion
of the initially constructed template H-polytopes into the other representations ac-
cording to Section 4.3. The conversions were done exactly for template V -polytopes
and template support functions, and were performed over-approximately for template
hyperrectangles, resulting in the interval hulls, and template zonotopes, resulting in
oriented rectangular hulls.

60 Chapter 5. Evaluation

All template objects therefore have a conformal structure: In the 2-dimensional
space, the parameter u exactly describes the number of resulting facets of the object,
regarding higher dimensions, there are approximately u facets per possible dimen-
sional component pair. Although objects which are that uniform are not encountered
very often in praxis, they still give a good indication about the correctness, compu-
tation time and precision that is to be expected from those algorithms.

The general analysis described in this section was conducted in two phases: The
�rst phase aimed for the production of output plots regarding the conversion of tem-
plate objects in the second dimension (the 2-dimensional Euclidian space was chosen
for reasons of presentability), while the second phase compared runtimes concerning
the transformation of 3-dimensional template objects. Both phases and the corre-
sponding obtained results are discussed in the following two subsections.

5.1.1 General Analysis - Plots

Every 2-dimensional source template object concerning the preperation of the plots
was constructed with parameter u = 12, i.e. the source object for the conversions is
a regular twelve-sided polygon (dodecagon), except for template hyperrectangles and
template zonotopes; these represent the interval hull and the ORH of the mentioned
polygon respectively. Regarding every group of algorithms, the constructed template
object was simply transformed with every available conversion procedure once and the
resulting output object was plotted afterwards. Subsequently, I present the obtained
plots along with the source object in �ve groups with exactly the same algorithm
groupings and presentation order as in Chapter 4.

Please note that the purpose of the plots in this subsection is mainly to give an
indication about how the results of the di�erent algorithms per group look in relation
to each other.

Conversion of Polytopes

Both the conversions ofH-polyhedra and V -polyhedra obtain exactly the same output
plots, as visualised by Figure 5.1.

The results are unsurprising here, with the exact conversions working correctly
and the over-approximations to zonotope and H-polytope obtaining the same ORHs.
Any other alignment of the ORHs would have been as �tting due to the uniform
structure of the source template object, but, in this scenario, the ORH gives no bene�t
precision-wise in comparison to the computed interval hull. Both implementations of
the conversion from H-polytope to hyperrectangle result in the same output object
and there is thus unsurprisingly no di�erence in terms of precision.

Conversion of Hyperrectangles

As the utilised template hyperrectangles already represent the interval hull of the
template dodecagon and boxes in general only feature exact conversions, there is
no use in showing additional plots concerning this group of algorithms, the obtained
objects concerning the box-conversion procedures all look like the red object in Figure
5.1. This is perfectly �ne, as only the internal datastructure representation was
changed during the transformation process.

5.1. General Analysis 61

−7 −6 −5 −4 −3 −2 −1

−7

−6

−5

−4

−3

−2

−1
1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 5.1: Output plots concerning the conversion of polytopes. The blue object
is the source object and also the result of the conversions V ↣ H,V ↣ SF , H ↣
SF , H ↣ V ; the green object depicts the ORH that was constructed by all of the
transformations V ↠ H,V ↠ Z, H ↠ Z. Finally, the red outline represents the
interval hull obtained by V ↠ B and both versions of H ↠ B.

Conversion of Zonotopes

Since the template zonotopes are no di�erent from the template boxes in this case,
I constructed a non-template zonotope (with centre c = (3,3)T and generators G =
{(0,1)T , (1,1)T , (2, − 1)T }) that was used as input for the corresponding conversion
procedures instead. The results can be seen in Figure 5.2.

The output is satisfactory in this scenario as well, with the ORH providing a better
approximation than the hyperrectangle this time.

Conversion of Support Functions

At last, a template support function of the dodecagon was converted into all other
representations using the default eight template directions for evaluation, resulting in
the output plots depicted by Figure 5.3.

All algorithms work correctly in this scenario as well and provide fairly good
approximations: The obtained over-approximating polytope in bothH-representation
and V -representation is particularly tight, with the under-approximation in green
being close to the source object, too. Regarding the two di�erent approaches for
conversion to zonotopes, the resulting ORHs provide the same precision although
being aligned di�erently.

62 Chapter 5. Evaluation

−1

−1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 5.2: The plots of the zonotope conversion. The outline of the source zono-
tope is depicted in blue which is also the result of the exact conversions Z ↣ V ,
Z ↣ H and Z ↣ SF , while the lines in cyan represent the over-approximation to an
H-polytope/support function. The conversion to a box resulted in the red hyperrect-
angle.

−8−7−6−5−4−3−2−1

−8

−7

−6

−5

−4

−3

−2

−1
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 5.3: Output plots of the support function conversion using eight template
directions. The black vertices and gray area represent the source object. Further
displayed are the results of transformations SF ↠ H and SF ↠ V which both
obtained the same result (blue object), in addition to the results of conversions SF ↠
B (red object), SF ⇢ V (green object) and SF ↠ Z, where the violet ORH denotes
the result of the normal conversion and the orange object depicts the output of the
alternative conversion method.

5.1. General Analysis 63

Conversion Procedure Avg. Runtime (in ms)
u = 8 u = 12 u = 16

V ↣H 15.58 48.46 160.04
V ↠H 0.42 2.28 1.22
V ↠ B � 1 � 1 � 1
V ↠ Z 0.38 2.32 2.82
V ↣ SF 15.12 37.3 161.9

H ↣ V 17.8 135.14 851.52
H ↠ B 8.82 70.72 547.68

H ↠ B (A) 0.92 2.14 3.02
H ↠ Z 19.36 168.22 869.08
H ↣ SF � 1 � 1 � 1

B ↣ V � 1 � 1 � 1
B ↣H � 1 � 1 � 1
B ↣ Z � 1 � 1 � 1
B ↣ SF � 1 � 1 � 1

Z ↣ V � 1 � 1 � 1
Z ↣H 0.96 1.08 0.9
Z ↠ B � 1 � 1 � 1
Z ↣ SF 0.62 0.96 0.9

SF ↠H 105.82 156.74 183.64
SF ↠ V 116.32 198.92 270.74
SF ⇢ V 5.9 17.9 34.32
SF ↠ B 0.84 2.02 2.8
SF ↠ Z 145.06 185.9 255.7

SF ↠ Z(A) 13.66 20.4 43.42

Table 5.1: Results of the runtime analysis concerning all 24 conversion algorithms
and the uniform template objects. The displayed values depict an average value
regarding 50 computation runs (in milliseconds). The alternative version of an algo-
rithm is denoted by (A). An entry � 1 is to be interpreted that the average time was
much smaller than 1 ms.

5.1.2 General Analysis - Runtime

In order to give an indication about the general runtime that is to be expected when
applying the procedures to 3-dimensional objects of di�erent size, I constructed tem-
plate objects of all representations, as described before, for each u ∈ {8,12,16}, result-
ing in template objects based on 24, 36 and 48 template directions. These template
objects were then transformed using the implemented procedures; the corresponding
results are presented via Table 5.1:

The contained values represent average values out of 50 computation runs and
the conversions of support functions were conducted with the default eight template
directions. Bold values are of most relevance for the following paragraphs, while red
values cannot be explained by me, as certain procedures have less runtime for more
complex objects.

As more complex objects are usually encountered during reachability analysis and

64 Chapter 5. Evaluation

the simpler objects in the context of this experiment basically show the same results , I
only consider the runtimes for template objects that were constructed with parameter
u = 16 in the following subsections that analyse the obtained data.

Conversion of Polyhedra

As expected, the exact conversions between H-representation and V -representation
are expensive, as they have exponential complexity, what is worth noting though
is that an exact conversion V ↣ H (160.04 ms avg.) is much cheaper for complex
objects than vice versa (851.52 ms avg.), at least with the current implementation.
The transformations H ↠ B and H ↠ Z, which also utilise this exact conversion,
therefore show long runtimes in comparison to the other algorithms as well (547.68
ms avg. and 869.08 ms avg. respectively).

Furthermore, when dealing with a V -polytope as the source object, the over-
approximation of an H-polytope with an ORH is obviously done a lot faster than
conducting an exact conversion; the results here show the in fact huge di�erences
very well: With only 1.22 ms avg. needed for a computation of a �tting ORH in
comparison to the already mentioned 160 ms avg. for the exact approach, the over-
approximation was more than a hundred times faster. It is also worth noting that
the additional computations that are required for the calculation of a zonotope out
of the ORH do not seem to have a big impact on the computation time, as the
over-approximative conversion from V -polytope to zonotope required only 2.82 ms in
average.

On top of that, regarding the two developed procedures for obtaining an over-
approximative hyperrectangle of an H-polytope, the alternative algorithm clearly
outclasses the naive approach: Both algorithms provide exactly the same precision,
as they both always calculate the intervall hull, but the alternative approach is by
far more e�cient, as it needed merely 3.02 ms avg. in contrast to the 547.68 ms avg.
provided by the naive procedure. This result is no surprise, as the naive approach has
exponential complexity, while the alternative solves a small number of optimisation
problems that only scale with the dimension. It is therefore adviced to exclusively
use the alternative algorithm.

Conversion of Hyperrectangles

With the exception of the naive approach for the calculation of the interval hull of an
H-polytope, all conversions from or to a hyperrectangle were conducted very fast, in
fact, most of the approaches took a time of much less than 1 ms in average. This is
also unsurprising when considering the very simple geometry of boxes.

Conversion of Zonotopes

The conversion of the utilised template zonotopes was also done very e�ciently. As
all template zonotopes are ORHs, the results show that, when converting with an
ORH as the source object, conversion to other representations is marginally slower
than with simple boxes, at least in the third dimension.

5.2. Speci�c Experiments and Plots 65

Conversion of Support Functions

Concerning the conversion of support functions, the result values show that the imple-
mentations that compute boundary points were faster than the algorithms that mainly
compute supporting hyperplanes: The under-approximation from support function to
V -polytope and the alternative approach for a conversion to a zonotope both featured
an average computation time of less than 50 ms which is a lot faster than the rest of
the procedures (aside from the conversion to a box).

In contrast to the alternative approach, the default version for a zonotope con-
struction in this context is with 255.7 ms avg. about �ve times as slow. This can
be explained with the default conversion algorithm being composed of many costly
smaller conversions. As the output objects concerning both algorithms in general dif-
fer, it is required to take a look at the precision that these algorithms provide before
judging solely based on the runtime. A comparison precision-wise is presented with
Subsection 5.2.2.

5.2 Speci�c Experiments and Plots

While the previous section provides a look at all implemented procedures, I subse-
quently present two smaller experiments that have the purpose of examining addi-
tional properties of only a few of the introduced techniques:

Subsection 5.2.1 investigates the e�ciency of oriented rectangular hulls, while
Subsection 5.2.2 compares both of the introduced approaches for transforming support
functions into zonotopes.

5.2.1 Precision of Oriented Rectangular Hulls

In Section 5.1 we saw that most conversions to and from oriented rectangular hulls
can be e�ciently computed, but it is not obvious how well ORHs enclose more ir-
regular objects. To make things clearer, I prepared four V -polytopes that were over-
approximated by ORHs (cf. Subsection 4.2.1). The resulting output plots can be seen
in Figure 5.4, along with the vertices of the source objects and their interval hulls. I
discuss the obtained results in the following:

A scenario, in which the obtained ORH is exactly the interval hull and therefore
brings no advantage with it whatsoever, is shown in Figure 5.4a. On top of that,
the vertices in this situation have a strictly symmetrical distribution concerning the
arithmetic mean of the vertices, which means that there are multiple valid matrices
U (in this case only two) that could be obtained by the singular value decomposi-
tion. The second possible ORH (green dashed line) encloses the set of vertices much
better, but was not computed by the algorithm. It is worth noting though that such
symmetric objects are rarely encountered in praxis.

Regarding the rest of the plots, the ORH provides better precison than the interval
hull, with substantially better approximations in Figure 5.4c and Figure 5.4d.

Figure 5.4d is particularly interesting, as it shows that ORHs can also be used for
the fast construction of valid full-dimensional H-polytopes (and zonotopes) when only
a few points of a line are given. This situation can occur when the intersection set
of e.g. a �ow pipe segment with a guard is converted to a V -polytope: The resulting
polytope in this case possibly only consists of two points; for higher dimensions, it

66 Chapter 5. Evaluation

(a) (b)

(c) (d)

Figure 5.4: Plots for four ORH-computations. The black points represent the ver-
tices of the source V -polytope, while the blue objects depict the resulting ORHs; the
dashed lines in red visualise the interval hull of the source vertices, whereas the dashed
geometry in green indicates the optimal ORH regarding the scenario depicted in (a).

is actually not obvious how to construct a full-dimensional H-polytope out of two
points. We now know that ORHs provide an e�cient way of doing so.

5.2.2 SF ↠ Z - Precision

With Subsection 5.1.2 indicating that the alternative approach for the conversion of
support functions to zonotopes that makes use of boundary points is a lot faster than
its counterpart, this section provides a comparison of both algorithms in terms of
output precision:

Two of the four V -polytopes, that were over-approximated with ORHs in the previ-
ous experiment, were converted to support functions in the context of this experiment
beforehand. Each object was then converted according to both algorithms for 4,5,6,7
and 8 template directions, yielding a total of 10 output plots that are presented with
Figure 5.5.

All �ndings here show clearly that the alternative approach using boundary points
is superior to its twin in terms of precision as well: The boundary point algorithm
obtained a tight over-approximation for both objects with only 4 template directions
already, in fact, it computed exactly the source object in case of Ω1. An increase of
the number of directions had no further e�ect in case of Ω1, while the overall precision
basically stayed about the same with ORHs of slightly di�erent alignment obtained
with increasing number of directions. What is curious though is that the precision of
the approximations actually su�ered a bit from the increase of template directions be-

5.2. Speci�c Experiments and Plots 67

(a) Ω1, 4 directions (b) Ω2, 4 directions

(c) Ω1, 5 directions (d) Ω2, 5 directions

(e) Ω1, 6 directions (f) Ω2, 6 directions

(g) Ω1, 7 directions (h) Ω2, 7 directions

(i) Ω1, 8 directions (j) Ω2, 8 directions

Figure 5.5: Comparison of the two di�erent conversion algorithms from support
function to zonotope. The convex sets Ω1 and Ω2 that are represented by support
functions are depicted by gray areas and were converted to zonotopes using both
approaches. The red objects visualise the results of the alternative approach that
uses boundary points, while the blue objects represent the output of the default
technique that builds an H-polytope with supporting hyperplanes instead.

68 Chapter 5. Evaluation

yond 5. This is probably due to the computation of unfavourable template directions,
beginning with 6 template directions (cf. Figure 5.5f).

The default procedure on the other hand often resulted in over-approximations
of such sizes (cf. e.g. Figure 5.5a) that even a conversion to a hyperrectangle would
have been more precise (and much cheaper). With growth of the number of template
directions, the results obtained by the default algorithm slowly approximated the at
all times better or equally good output objects of the alternative approach.

It is therefore recommended to use the boundary point computation for the cal-
culation of an over-approximating zonotope. But as this is not always possible due
to issues already discussed, the default algorithm is possibly still useful in scenarios
in which the boundary point computation works incorrectly, at least when being con-
ducted with enough template directions. What is "enough" though for the underlying
geometry is hardly possible to tell without additional information.

Chapter 6

Conclusion

This �nal chapter concludes this bachelor thesis by summarising and discussing the
results, and emphasising possible future work.

6.1 Summary

In the course of this thesis, I developed and implemented twenty-four conversion algo-
rithms concerning �ve popular geometrical and symbolical state set representations
against the backdrop of reachability analysis for hybrid systems. With especially
�ow pipe computation in mind, these procedures were designed to ensure that each
d-dimensional hyperrectangle, zonotope, support function and convex polytope in ei-
ther H-representation or V -representation could be transformed into any of the other
representations e�ciently, giving the opportunity to change representations at will
during computation and thus to fully exploit the individual advantages of the various
representations.

The presented techniques support all Euclidian dimensions and make use of a va-
riety of concepts, with the most notable being the construction of over-approximating
oriented rectangular hulls and the currently still restrictedly working boundary point
computation of support functions.

My conducted evaluation of the implemented procedures shows a large disparity
in terms of precision and necessary computation time among many of the algorithms,
con�rming the trade-o� between computation time and output quality that is usually
present in the research �eld of computer science. Oriented rectangular hulls were
recognised for providing a good balance in these terms. Concerning the two conversion
scenarios for which I implemented two di�erent approaches, the a�ected procedures
were compared and the superior algorithm was identi�ed in both cases.

6.2 Discussion

The general objective of providing e�cient conversion procedures could be achieved
for the most part: Nearly all of the introduced algorithms work correctly and ob-
tain fairly good results in a reasonable time window, with respect to the individ-
ual di�culty of the featured conversions. However, some of the conversions (like

70 Chapter 6. Conclusion

the over-approximative conversion from H-polytope to zonotope) have proven to be
problematic to realise in an e�cient manner.

Furthermore, altough there was a lot of e�ort put into the under-approximation
of support functions with V -polytopes, I was not able to �nd a computation method
that works unrestrictedly. Nevertheless, the boundary point computation of support
functions is by far not trivial and also currently not covered to its full extent in
literature.

It is also unfortunate that I was not able to present an actual exemplary application
of my algorithms in the bigger context of hybrid systems reachability analysis due to
the only limited time that I had at my disposal.

So all in all, I claim that my developed procedures provide an overall reasonable
e�ciency and make a valuable addition to the HyPro project, while there is still
room for improvement, as summarised by the following �nal section.

6.3 Future work

Multiple possible topics for future research were already indicated in the course of
this thesis and are closer speci�ed in the following:

1. First and foremost, solving the current issues with the boundary point compu-
tation for support functions would remove the present restrictions for some of
my algorithms. Achieving this goal could involve the improving of the intersec-
tion operation regarding support functions and/or deriving �tting algebraical
representations out of support functions in order to be able to compute their
directional derivatives like described in [GK98].

2. The already mentioned zonotope construction problem (cf. [Fuk04]) may also
be worth examining, as the ability to e�ciently compute an H-polytope out
of a general zonotope (and vice versa) would yield improvements for the corre-
sponding algorithms.

3. Subsection 5.2.1 shows that the current ORH-computation is currently not able
to choose the most bene�cial orientation in case there are mutliple valid singular
value decompositions. With the consideration of additional properties, it should
be possible to choose the best orientation.

4. Last but not least, nearly all of my conversions of support functions make use
of template directions. While this is �tting in scenarios in which there is no
information about the underlying geometry, it could be worthwile to explore
the possibilities of choosing sensible directions, if there is more information at
hand. On top of that, enabling the user to specify his own evaluation directions
is another possible way of enhancing the existing procedures.

Bibliography

[ABD+00] Eugene Asarin, Olivier Bournez, Thao Dang, Oded Maler, and Amir
Pnueli. E�ective Synthesis of Switching Controllers for Linear Systems.
In Proceedings of the IEEE, pages 1011�1025. IEEE, 2000.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Anal-
ysis of Hybrid Systems. Theoretical Computer Science, 138:3�34, 1995.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126(2):183 � 235, 1994.

[AD14] M. Altho� and J. M. Dolan. Online Veri�cation of Automated Road
Vehicles Using Reachability Analysis. IEEE Transactions on Robotics,
30(4):903�918, 2014.

[ADI02] Rajeev Alur, Thao Dang, and Franjo Ivan£i¢. Hybrid Systems: Computa-
tion and Control: 5th International Workshop, chapter Reachability Anal-
ysis of Hybrid Systems via Predicate Abstraction, pages 35�48. Springer,
2002.

[AMHS01] E. Ábrahám-Mumm, U. Hannemann, and M. Ste�en. Veri�cation of Hy-
brid Systems: Formalization and Proof Rules in PVS. In Proceedings
of IEEE Engineering of Complex Computer Systems, pages 48�57. IEEE
Computer Science Press, 2001.

[ASB08] Matthias Altho�, Olaf Stursberg, and Martin Buss. Veri�cation of Uncer-
tain Embedded Systems by Computing Reachable Sets Based on Zono-
topes. In Proceedings of the 17th IFAC World Congress, 2008.

[ASB09] Matthias Altho�, Olaf Stursberg, and Martin Buss. Computing Reachable
Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes.
Nonlinear Analysis: Hybrid Systems, 3, 2009.

[BMP99] Olivier Bournez, Oded Maler, and Amir Pnueli. Orthogonal Polyhedra:
Representation and Computation. Lecture Notes in Computer Science,
1569:46�60, 1999.

[CÁS13] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An Analyzer for
Non-linear Hybrid Systems. In Conference on Computer Aided Veri�ca-
tion, volume 8044, pages 258�263, 2013.

72 Bibliography

[CBGV12] Pieter Collins, Davide Bresolin, Luca Geretti, and Tiziano Villa. Com-
puting the Evolution of Hybrid Systems Using Rigorous Function Calcu-
lus. In Analysis and Design of Hybrid Systems, pages 284�290. IFAC-
PapersOnLine, 2012.

[CDL09] Edmund Clarke, Alexandre Donzé, and Axel Legay. Hardware and Soft-
ware: Veri�cation and Testing: 4th International Haifa Veri�cation Con-
ference, chapter Statistical Model Checking of Mixed-Analog Circuits with
an Application to a Third Order ∆�Σ Modulator, pages 149�163. Springer,
2009.

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël
Ouaknine, Olaf Stursberg, and Michael Theobald. Abstraction and
Counterexample-Guided Re�nement in Model Checking of Hybrid Sys-
tems. International Journal of Foundations of Computer Science,
14(4):583�604, 2003.

[CK98] A. Chutinan and B. H. Krogh. Computing Polyhedral Approximations
to Flow Pipes for Dynamic Systems. In Proceedings of the 37th Annual
Conference on Decision and Control, volume 2, pages 2089�2094. IEEE,
1998.

[DB] Mireille Broucke Department and Mireille Broucke. Reachability Analy-
sis of Hybrid Systems with Linear Dynamics. http://www3.nd.edu/
~mtns/papers/13040_2.pdf.

[DM07] Alexandre Donzé and Oded Maler. Systematic Simulation Using Sensitiv-
ity Analysis. In Hybrid Systems: Computation and Control, volume 4416,
pages 174�189, 2007.

[Dun89] G.H. Dunteman. Principal Components Analysis. Number 69. SAGE
Publications, 1989.

[Edd77] William F. Eddy. A new convex hull algorithm for planar sets. ACM
Transactions on Mathematical Software, 3(4):398�403, 1977.

[Egg14] Andreas Eggers. Direct Handling of Ordinary Di�erential Equations in
Constraint-Solving-Based Analysis of Hybrid Systems. PhD thesis, Uni-
versität Oldenburg, Germany, 2014.

[FGD+11] Goran Frehse, Colas Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. Computer Aided Veri�cation: 23rd International Conference,
chapter SpaceEx: Scalable Veri�cation of Hybrid Systems, pages 379�395.
Springer, 2011.

[Fuk] Komei Fukuda. Polytope Examples (Fukuda) � Zonotopes. http://
www.cs.mcgill.ca/~fukuda/760B/handouts/expoly3.pdf.

[Fuk04] Komei Fukuda. From the Zonotope Construction to the Minkowski Ad-
dition of Convex Polytopes. Journal of Symbolic Computation, 38:1261�
1272, 2004.

http://www3.nd.edu/~mtns/papers/13040_2.pdf
http://www3.nd.edu/~mtns/papers/13040_2.pdf
http://www.cs.mcgill.ca/~fukuda/760B/handouts/expoly3.pdf
http://www.cs.mcgill.ca/~fukuda/760B/handouts/expoly3.pdf

Bibliography 73

[Gal08] Jean Gallier. Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial
Topology, Voronoi Diagrams and Delaunay Triangulations. arXiv preprint
arXiv:0805.0292, 2008.

[GG09] Colas Guernic and Antoine Girard. Computer Aided Veri�cation: 21st In-
ternational Conference, chapter Reachability Analysis of Hybrid Systems
Using Support Functions, pages 540�554. Springer, 2009.

[Gir05] Antoine Girard. Hybrid Systems: Computation and Control: 8th Interna-
tional Workshop, chapter Reachability of Uncertain Linear Systems Using
Zonotopes, pages 291�305. Springer, Berlin, Heidelberg, 2005.

[GK98] Pijush K. Ghosh and K. Vinod Kumar. Support Function Representation
of Convex Bodies, Its Application in Geometric Computing, and Some
Related Representations. Computer Vision and Image Understanding,
72(3):379�403, 1998.

[GLG08] Antoine Girard and Colas Le Guernic. Hybrid Systems: Computation
and Control: 11th International Workshop, chapter Zonotope/Hyperplane
Intersection for Hybrid Systems Reachability Analysis, pages 215�228.
Springer, 2008.

[GNZ03] Leonidas J. Guibas, An Nguyen, and Li Zhang. Zonotopes As Bounding
Volumes. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 803�812. Society for Industrial and
Applied Mathematics, 2003.

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What's Decidable About Hybrid Automata? In Proceedings of the
Twenty-seventh Annual ACM Symposium on Theory of Computing, pages
373�382. ACM, 1995.

[HR98] Thomas A. Henzinger and Vlad Rusu. Hybrid Systems: Computation and
Control: First International Workshop, chapter Reachability Veri�cation
for Hybrid Automata, pages 190�204. Springer, 1998.

[HyC] HyCreate: A Tool for Overapproximating Reachability of Hy-
brid Automata. http://stanleybak.com/projects/hycreate/
hycreate.html.

[KGCC15] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dReach: δ-Reachability
Analysis for Hybrid Systems. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, volume 9035, pages 200�205,
2015.

[KV00] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal Techniques for
Reachability Analysis. In Proceedings of the Third International Workshop
on Hybrid Systems: Computation and Control, pages 202�214. Springer-
Verlag, 2000.

[LG09] Colas Le Guernic. Reachability Analysis of Hybrid Systems with Lin-
ear Continuous Dynamics. PhD thesis, Université Grenoble I � Joseph
Fourier, 2009.

http://stanleybak.com/projects/hycreate/hycreate.html
http://stanleybak.com/projects/hycreate/hycreate.html

74 Bibliography

[LGG10] Colas Le Guernic and Antoine Girard. Reachability Analysis of Linear
Systems Using Support Functions. Nonlinear Analysis: Hybrid Systems,
4, 2010.

[MBT01] Ian Mitchell, Alexandre M. Bayen, and Claire J. Tomlin. Hybrid Systems:
Computation and Control: 4th International Workshop, chapter Validat-
ing a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets,
pages 418�432. Springer, 2001.

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction
to Interval Analysis. Society for Industrial and Applied Mathematics,
2009.

[Neu] Arnold Neumaier. Taylor Forms�Use and Limits. Reliable Computing,
9(1):43�79.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A Hybrid Theorem
Prover for Hybrid Systems (System Description). In International Joint
Conference on Automated Reasoning, volume 5195, pages 171�178, 2008.

[RS07] Stefan Ratschan and Zhikun She. Safety Veri�cation of Hybrid Systems
by Constraint Propagation-based Abstraction Re�nement. ACM Trans.
Embed. Comput. Syst., 6(1), 2007.

[SK03] Olaf Stursberg and Bruce H. Krogh. E�cient Representation and Com-
putation of Reachable Sets for Hybrid Systems. In Proceedings of the 6th
International Conference on Hybrid Systems: Computation and Control,
pages 482�497. Springer, 2003.

[Var00] Pravin Varaiya. Veri�cation of Digital and Hybrid Systems, chapter Reach
Set Computation Using Optimal Control, pages 323�331. Springer, 2000.

[WT97] H. Wong-Toi. The Synthesis of Controllers for Linear Hybrid Automata.
In Proceedings of the 36th IEEE Conference on Decision and Control,
volume 5, pages 4607�4612. IEEE, 1997.

[Zie95] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer, 1995.

	Introduction
	A Lead-In to Hybrid Systems
	Hybrid Automata
	Reachability Analysis for Hybrid Systems
	Controller Synthesis for Hybrid Systems

	State Set Representations
	Convex Polyhedra
	Hyperrectangles
	Zonotopes
	Support Functions
	Other State Set Representations
	Operations on State Sets

	Conversion Procedures
	Principal Component Analysis and ORHs
	Conversion of V-Polytopes
	Conversion of H-Polytopes
	Conversion of Hyperrectangles
	Conversion of Zonotopes
	Conversion of Support Functions

	Evaluation
	General Analysis
	Specific Experiments and Plots

	Conclusion
	Summary
	Discussion
	Future work

	Bibliography

