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Introduction

Renewable energy production has grown over the last decades. Therefore large-scale
renewable power plants are build, see Table 1. This growth is due to technological
advancements and research in renewable energies. Since 2010 the levelized cost of
energy (LCOE) has fallen for every renewable energy production method, allowing
most to compete with fossil fuel energy production. This is achieved by reaching
the cost range of fossil fuel energy production [1]. Furthermore, few renewable energy
production methods have a LCOE even below the fossil fuel cost range or are predicted
to continuously be below most fossil fuel costs.

Name Location Type Capacity[MW]

Gansu Wind Farm China onshore wind 6800
Walney Extension UK offshore wind 659
Three Gorges Dam China hydroelectric 22500
Solar Star US photovoltaic 579
Ivanpah Solar Power Facility US concentrating solar power 392

Table 1: Small overview over a few of the biggest renewable energy plants.

For regions with high direct solar irradiation, also direct normal irradiation (DNI),
concentrating solar thermal power (CSP) plants are a promising dispatchable renew-
able energy production. CSP plants with a thermal storage haven astonishing easy
principle and use technology also used by fossil fuel energy production, the steam tur-
bine. A large number of mirrors of different sizes and shapes reflect sunlight on an
absorber where a fluid is heated up by the concentrated irradiation. Those absorbers
are typically tower mounted receivers using air, water/steam, thermal oil or a molten
salt as heat transferring fluid (HTF). The high temperatures of the HTF allow for
a high cost-efficiency [47]. In a thermal energy exchange water is turned into steam
powering a steam turbine.

The thermal energy can also be stored in huge thermal energy storage tanks which
then can provide the electricity on demand. Those storage capabilities of this technol-
ogy are a huge benefit and necessary since renewable energy production hardly ever
matches the current electricity demand. This allows countries with high renewable en-
ergy productions to even out fluctuations in their power grid. It even helps to further
increase the usability of non-dispatchable renewable energy technologies.

Today multiple large-scale CSPs are connected to national power grids providing
power when needed. In the US the Ivanpah Solar Power Facility and the Crescent
Dunes Solar Energy Project have a electric capacity of 392 and 125 MW respectively.
In South Africa the Khi Solar One has a capacity of 50 MW. Currently under con-
struction are Noor III in Morocco, Ashalim power station A in Israel, Cerro Dominador
Solar Thermal Plant in Chile and Redstone Solar Thermal Power in South Africa with
expected electric capacities of 150, 121, 110 and 100 MW respectively. Furthermore,
the Sandstone Solar Energy Project in the US is announced with 1.6 GW and in Chile
two projects with 13 hours of thermal energy storage are announced with 390 and 450
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MW. In addition to these large-scale commercial power plants are multiple smaller
research facilities in use, like the Solarturm in Jülich, Germany.

In order to optimize the LCOE or other economical values the Annual Energy Pro-
duction(AEP) is a factor that has to be maximized. A significant part of maximizing
the AEP is the collection of sunlight. More collected sunlight corresponds to a higher
AEP. Therefore the positioning, or layout, of the mirrors reflecting the sunlight is an
essential task within this optimization.

The position of a mirror underlies multiple effects which lessen the reflected sunlight
on the receiver. Whilst some of them are angle or distance dependent. Other effects
incorporate the interplay of different mirrors. Shadows can be thrown when an object
lies in between the mirror and the sun or the reflected sunlight is blocked when an
object lies in between the mirror and the receiver.

The minimization of those effects can be achieved by moving the positions, e.g.
changing the layout of the mirrors on the plant. Current research regards different
layouts with own advantages and disadvantages [34].

In this thesis an optimization of a CSP is presented. The first part presents a model
which is capable of calculating optical, thermal and electric energy production over a
year as well as economical values such as LCOE, internal rate of return or net present
value. The latter depending on the AEP and investment cost. Figure 0.1 shows the
interaction of the models.

☼

Heliostat
field

Thermal
receiver

Cold storage

Hot storage
Heat
Exchanger

Steam
turbine

Generator

Cooling
tower

Conden-
sator

PumpPump

Optical
Model

Thermal
Model

Storage
Model

Electrical
Model

Economic
Model

Figure 0.1: Model overview [47]

The optimization of the layout requires a fast and accurate model. These capabilities
are presented in the second part. Here a cross-validation is carried out. Furthermore
several methods for speeding up the optical model are presented and evaluated, whilst
keeping the accuracy.

The third part introduces state of the art algorithms as well as new methods to
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optimize the positioning of the mirrors. A combination of algorithms is chosen to show
the effects of the optimization on an existing CSP.

A summary as well as an outlook on this thesis and research to be done is given in
the fourth part.

In the following an overview over related work and state of the art in this field is
given.

Related work

In the following, existing tools for simulation of solar tower plants and optimization
of the heliostat layout problem are listed. The summary is inspired by the reviews of
Bode and Gauché [8], Garcia et al. [18] and Richter [47].

Model

Starting in the 1970s, a bunch of different codes has been developed to calculate the
collected irradiation power in a central receiver system. Ray tracing as well as mathe-
matical simulation techniques were used to calculate the flux. The latter being Hermite
polynomial expansion or convolution [20].

In order to model errors which occur in reality Monte-Carlo ray-tracers generate mil-
lions of randomized rays. Each ray gets perturbed with a certain probability. Whilst
this makes the obtained results very accurate the calculation is computationally ex-
pensive.

The usage of Gaussian distribution in analytical simulation techniques provides de-
terministic results. In order to obtain these results in suitable time simplifications on
the models are made. Due to these simplifications the results may not be as accurate
as when using a Monte-Carlo ray tracing approach.

Ray-tracers
Starting development in 1978, MIRVAL [30] is one of the first Monte-Carlo ray-
tracers. A commercial version named SPRAY is commercially available via the Ger-
man Aerospace Center(DLR).

A freely and state of the art tool is SolTrace developed since 1999 by the US National
Renewable Energy Laboratory (NREL). SolTrace utilizes parallelization in order to
reduce simulation time. It is capable of directly showing the flux distribution and the
obtained power as well as returning the simulated rays for post-processing steps.

The development of the open-source ray-tracer Tonatiuh [7] was started in 2004 by
teams of the University of Texas in Brownsville and the Spanish National Renewable
Energy Center (CENER). The returning post-processing script contains the rays, the
resulting power and the flux distribution [8].

STRAL [6] is a backward ray-tracer developed by the DLR. Instead of generating
the rays above the heliostad field, they are generated directly on the mirror surface.
In comparison to the previously mentioned ray-tracers this practice does not lose rays
and therefore has a shorter runtime. The tool comes with the capability to handle
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highly resolver mirror surface geometries. It is commercially available or through
collaborations with the DLR [8].

The Monte-Carlo ray-tracer SOLFAST (SOLar Facilities Simulation Tools) was de-
veloped by HPC-SA and PROMES-CNRS and uses an integral formulation instead
of collision-based ray tracing. A cross-validation with SolTrace and Tonatiuh was
made [52].

Mathematical simulation models
The software suite UHC, also called RCELL suite, was developed by the University of
Houston in 1974 [18]. It was used to design the Solar One CSP [44]. Based on the
UHC the commercially distributed software TieSol was developed, see above.

In 1978 Sandia developed the code DELSOL [27]. For flux computations it uses
Hermite polynomial convolution. Additionally to other early developed codes it can
optimize additional parameters such as tower height and receiver site, since it imple-
ments an economical model. The Windows software adaption WINDELSOL provides
even more features [18].

HELIOS is another code developed at Sandia [17]. It uses detailed heliostat surfaces
in order to calculate the flux distribution based on cone optics. This provides an
accurate flux distribution. HELIOS is hard to use and not available anymore.

The company Interatom stared the development of HFLCAL (Heliostat Field Lay-
out CALculation) [26] in the eighties. The DLR made it commercially available after
further development in the nineties [58]. The tool uses a computationally efficient ap-
proach utilizing a simplified convolution of the heliostats’ flux [18]. Due to permanently
improvement since the eighties, HFLCAL got some good features like automatic multi-
aiming and several different receiver models with secondary concentrators etc. [58].

ISOS is a code developed at the National Autonomous University of Mexico (Uni-
versidad Nacional Autónoma de México) [51]. In order to compute a 3D flux from a
single heliostat the code requires the input of an external ray-tracer [8].

HFLD is commercially available [8] and developed at the Chinese Academy of Sci-
ences [64]. It traces four rays from the edges of each heliostats, this is called edge-ray
principle. Therefore it is sufficiently fast for optimization algorithms.

The CRS4 research center developed the model CRS4-2 based on tessellation of the
heliostats [31].

Optimization of the heliostat field layout

Four main concepts in the heliostat field layout optimization can be found: the field
growth method, the pattern method, the free variable method and the hybrid or multi-
step optimization strategy [34].

• The field growth method utilizes a discretization of the field in order to add the
heliostats step by step on pre-defined points. The algorithm terminates when a
defined stopping criteria, e.g. minimum AEP, is met. The runtime can not be
parallelized due to the positioning of each heliostat depending on the previously
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placed heliostats. Furthermore the efficiency and runtime are highly dependent
on the number of pre-defined points on the field. A greedy heuristic is used by
Sánchez and Romero [54] to employ this concept.

• In the pattern method all heliostats are arranged in geometric patterns. Each
pattern can then be described by certain adjustable parameters. Instead of op-
timizing hundreds or thousands of x and y positions in this case only a few
parameters have to be optimized. These then influence the resulting x and y po-
sitions. Therefore only the best suitable adaption of the base pattern is searched
and not necessary the optimal x and y positions for the optimal plant perfor-
mance [34]. State of the art research considers north-south cornfields [57], radial
staggered [32], hexagons [3, 42] and spirals [39]. A disadvantage of this method
is the reduced search space during construction.

• The free variable method directly optimizes the x-y coordinates. The complexity
of this problem requires appropriate heuristics in order to solve it. The field of
optimization many heuristics where developed over the last years. Such as non-
linear programming, general gradient-based methods or nature-inspired heuristics
like genetic, evolutionary, viral, simulated annealing and particle swarm heuris-
tics. In [34] a gradient-based method is presented.

• The multi-step optimization strategy does not specify how exactly the x-y po-
sitions are optimized. It rather combines two or more optimization methods.
This strategy aims at reducing the search space to a solution near the global
maximum first and then refining this solution locally. For the last step either a
greedy heuristic or a linear programming algorithm algorithm might be a good
choice. Buck [9] showed when using a pattern based optimization first and the
refining the solution with a greedy heuristic this provides better results then each
algorithm alone.
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Part I.
Models

1. Optical model

A solar field is given by N heliostats Hi i ∈ {1, .., N}, each with a mirror area Ai. For
the time-dependent solar angles θsolar as well as γsolar and the direct normal irradiation
IDNI. The optical model utilizes a ray tracing approach to compute the cumulated
optical radiation on a tower-mounted receiver for a given moment. During the tracing
cosine effects ηcos, shading and blocking ηsb, heliostat reflectivity ηref, atmospheric
attenuation ηaa and spillage losses ηspl are taken into account.

The developed optical model is a renewed model from the model in Richter [47],
Richter et al. [50]. While it has a comparable scope similar to the old model, it tackles
some design issues. This section aims at a complete overview over this model. In Sec-
tion 1.1 the site specific parameters are explained. Furthermore, Section 1.2 describes
the meteorological information such as the modeling of the sun. Sections 1.3, 1.4 and
1.5 describe the modeling of the heliostats, tower and receiver respectively. In Section
1.6 we present a Monte-Carlo ray tracing as well as our newly invented ray tracing
methods, which use the Gaussian distribution in order to analytically calculating a
flux distribution.

1.1. Site

1.1.1. Coordinate system

From the user’s view the coordinate system’s origin corresponds to the provided lat-
itude and longitude. The x axis points towards East and the y axis points towards
North. The z axis points vertically upwards. One unit at each axis represents one
meter. In Figure 1.1 the coordinate system is shown in a 2D case from the bird per-
spective.

1.1.2. Definition of area

The site area is given by a list of boundary points, that form a polygon describing
the site. The boundary points can be given as Cartesian coordinates in the coordinate
system (see 1.1.1) as well as geo coordinates, e.g. latitude and longitude pairs. Each
element placed in the solar tower power plant model is checked if they are inside the
polygon. This check also includes the expansion and therefore preventing each object
to lean over the boundary. Figure 1.1 shows an exemplary definition of an area with
boundary points. The object in the mid of the figure is valid whilst the object outside
of the polygon is not.
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Figure 1.1: Exemplary area with an abstract outline and two restricted areas.

1.1.3. Restricted area

The restricted areas are defined in the same way as the boundary of the site, but they
can contain multiple polygons. Again each placed object is checked against a violation
by lying (partially) inside a defined polygon. Figure 1.1 depicts two restricted areas.
Two objects violate the restricted areas. One lies in the rectangular area and the other
lies partially within the bounds of the other area.

1.1.4. Elevation

The topographical information of the site can be given as (x, y, z) tuples. As this data
is provided at discrete points, a bilinear interpolation is used to get the elevation of a
single object between these discrete points. If a heliostat is outside of the bounding box
around the provided discrete points, it inherits the elevation from the nearest neighbor
in this set.

1.2. Meteorological Information

In our models we need some meteorological information which is first used by the
optical model. In the optical model we need information about the sun which is given
by its azimuth γsolar, altitude θsolar and irradiation IDNI in [W m−2], see Figure 1.2.

1.2.1. Sun position

The direction of the sunlight is given by the solar vector τsolar which can be calculated
by Equation (1.1). A visualization of the solar vector τsolar in our three-dimensional
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Cartesian coordinate system can be found in Figure 1.2.

τsolar =

sin(−γsolar) · − cos(θsolar)
cos(−γsolar) · cos(θsolar)

sin(θsolar)

 (1.1)

W

E
x

S

N
y

z

τsolar

.

γsolar

θsolar

Figure 1.2: The solar position τsolar is given by solar altitude θsolar and solar azimuth
γsolar. The Figure is derived from Richter [47, p. 7]

1.3. Heliostats

1.3.1. Heliostat geometry

Each heliostat Hi is raised on a pedestal and has a mirror center-position pi. All
heliostats have an arbitrary layout of small mirrors, called facets, mounted on the
mirror frame, see Figure 1.3. These facets have either a rectangular or a triangular
shape with a right angle.

The layout of the facets on the heliostats can be described via two methods. The
first method describes heliostats of a rectangular form which is given by the number of
facets in horizontal nFacets,horizontal and vertical direction nFacets,vertical, a uniform length
`Facet and width wFacet for each facet as well as horizontal wGap and vertical `Gap gaps
between the facets. The total mirror area as well as the overall height and width of a
heliostat can then be described with

Ahelio = (nFacets,horizontal · wFacet) · (nFacets,vertical · `Facet)

hhelio = nFacets,vertical · `Facet + (ni,Facets,vertical − 1) · `Gap

whelio = nFacets,horizontal · wFacet + (nFacets,horizontal − 1) · wGap

(1.2)

8



The heliostat’s expansion dhelio is the diameter of the minimum bounding sphere,
dhelio =

√
h2

helio + w2
helio.

The second method of describing the layout of facets on a heliostat is by describing
each single facet and giving a relative position to the center of the heliostat according
to its local coordinate system (see Section 1.3.3). Then the heliostat area Ahelio is the
sum of all facet areas. The height and weight can be calculated by the distances of the
farthest points in the corresponding directions.

1.3.2. Minimal distance between heliostats

For security reasons or to make sure every heliostat is accessible for cleaning and
maintenance, it may be desired to have a minimal distance between two heliostats.
The distance is measured between the two bounding spheres of the heliostats. In
Figure 1.1 there are two heliostats which are too close to each other. The distance
between these bounding spheres is less then the specified minimal distance.

1.3.3. Local heliostat coordinate system

The local coordinate system preserves the length of the global coordinate system, i.e.
one length unit stays one meter. Its origin is the heliostat mirror-position pi raised by
its pedestal height. The orientation is according to the alignment of the heliostat at
different sun positions.

The x-axis xi of heliostat i is defined as the horizontal direction, i.e. parallel to the
lower edge of the heliostat. yi is parallel to the vertical edge of the heliostat. The z-axis
is the normal vector ni of the heliostat scaffold. Figure 1.3 shows the local coordinate
system for a flat heliostat with four times seven facets.

When transforming a point q from local to global coordinates or vice versa, the
following vector equation has to be solved for the global position vector or the local
vector respectively:  |

qglobal

|

 =

 | | |
xi yi ni
| | |

 ·
 |

qlocal

|

 (1.3)

When solving for qlocal, an explicit formula for inverting 3× 3 matrices can be used.
The determination of xi, yi and ni is described in the following Section.

1.3.4. Alignment of the heliostats

All heliostats are aligned such that the reflected ray with origin in pi aims at the
receiver aiming point paim,i. The aiming point depends on the receiver geometry see
Section 1.5 and Equations (1.8, 1.11, 1.13). The normalized reflective vector can be
computed by

ri =
paim,i − pi
|paim,i − pi|

. (1.4)
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Figure 1.3: Horizontal and vertical heliostat axes xi and yi of heliostat Hi with center
point pi [47, p. 12]

Because the incoming solar vector τsolar, see Section 1.2.1, and outgoing reflective vector
ri are known (see Figure 1.4), the normal vector ni of heliostat Hi can be computed
by

ni =
ri + τsolar

|ri + τsolar|
. (1.5)

The axis xi and yi (see Figure 1.3) of an aligned heliostat Hi can be computed by

xi =
ni × (0, 0, 1)tr

|ni × (0, 0, 1)tr| (1.6a)

and
yi = ni × xi. (1.6b)

While the heliostat scaffold is aligned, the alignment of the facets on the scaffold is
fixed and therefore stays the same.

1.3.5. Canting

The orientation and positioning of facets on a large heliostat can be done in different
ways. This is called canting. In canting, each individual facet of a heliostat is viewed
and aligned to a focus point for a specific sun direction ~s. Given sun direction ~s the
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Figure 1.4: Reflection on the surface of a mirror

reflected light concentrates in the focus point, see Figure 1.5a. For other sun directions
than ~s the light comes in at a tilted angle. Therefore the heliostat will now focus the
light to an area instead of a single point, see Figure 1.5b.

(a) Light is focused to a single point (b) Light is focused to an area

Figure 1.5: Effects of same canting focus point at different sun directions.

In the 3D case each facet on a heliostat is oriented at one focus point for a given
sun direction ~s, see Figure 1.6. The calculation of the orientation of the facets can be
done in two ways which will be described in the following.

On-axis canting calculates a paraboloid centered in the heliostats position with the
focus point on the receiver where the sunlight emerges from the receiver. This means
that the heliostat, receiver and the sun are all on one common axis. The facets are
positioned around the symmetry axis of the paraboloid.
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Figure 1.6: Canting visualization with each facet and their normal vector on one he-
liostat.

Off-axis canting calculates a paraboloid on the heliostats position with the focus
point on the receiver, where the sunlight emerges from a specified direction ~s. In
our model ~s can be given by a date and time or by the angles azimuth and altitude.
Therefore the heliostat, receiver and sun are not on one common axis. The facets are
positioned on one side of the paraboloid.

1.3.6. Focal points of facets

Heliostat facets can either be flat or focused. When focused they have a parabolic form
with a focal length fi. The focal length can be set fixed to a given value from a set of
focal lengths or to the ideal focal length. When giving a set of focal length the model
chooses the focal length nearest to the distance of the heliostats position pi to the
aiming point on the receiver paim,i. The ideal focal length always corresponds to the
distance between the aiming point on the receiver surface and the heliostat position
fi = |paim,i − pi|.

1.4. Tower

The tower is placed at the position ptower = (xtower, ytower, ztower)
T, while ztower is given

by the topography, see Section 1.1.4. The tower is assumed either to be a cuboid with
length `tower, width wtower and height htower, or a cylinder with radius rtower and height
htower, see Figure 1.7. The tower expansion dtower is the diameter of the minimum
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bounding circuit in the x-y plane. So, dtower =
√
`2

tower + w2
tower is calculated for a

rectangular tower or dtower = 2 · rtower for a cylindric tower.
Its dimensions are later interesting for detecting its projected shadow on the heliostat

field. The tower has an orientation angle αtower in the x-y plane. This angle is defining
the main facing direction of the tower. The angle is measured in a clockwise manner
from the North. In the northern hemisphere, the heliostats are mainly placed in the
north of the tower (αtower = 0◦), whereas in the southern hemisphere they are mainly
placed in the south of the tower (αtower = 180◦). The vector in facing direction, which
determines the receiver orientation is given by

~ftower =
dtower

2
·

− sinαtower

cosαtower

0

 . (1.7)

1.5. Receiver

At the receiver the reflected rays are collected and their radiation is transfered into heat.
The receiver is mounted htop meters below the top of the tower. For the calculation of
a flux map (see Section 1.6.2) we discretize the receiver into cells.

There are several concepts which divide into two groups: cavity and external receiver
[4]. In our model we distinguish between a flat tilted cavity receiver, cylindric cavity
receiver and cylindric external receiver, see Figure 1.7.

1.5.1. Flat tilted cavity receiver

A Flat tilted cavity receiver can be found in the CESA-1 central receiver facility in
Andalusia, Spain or the solar tower Jülich in Germany. They represent a cavity or
volumetric receiver. The receiver is modeled as a bounded plane in the x-z plane,
which is tilted by a zenith angle θrec in the facing direction of the tower ~ftower. The
receiver has a width of wrec and height hrec, see Figure 1.7a. For this type of receiver,
the model assumes that each heliostat Hi aims towards the center of the aperture, so
that

paim,i = ptower + ~ftower +


−hrec

2
· sin θrec · sinαtower

hrec

2
· sin θrec · cosαtower

htower − htop −
hrec

2
· cos θrec

 . (1.8)

1.5.2. Cylindric cavity receiver

This receiver has the form of a half-cylinder, such as the PS10 receiver in Andalusia,
Spain. The receiver has an arc lenght of arec and a height of hrec. For this type of
receiver, the model assumes that each heliostat Hi aims towards the center of the
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(c) Cylindric external receiver

Figure 1.7: Different receiver types on different tower types. The Figure is derived
from Richter [47, p. 11]

aperture, see Figure 1.7b. The distance from the tower center to the receiver center
point is

dmid = rtower −
4 · r2

tower − (2 · arec
π

)

2
(1.9)

for cylindrical towers or

dmid = | ltower

2
− arec

π
| (1.10)

for rectangular towers. With this distance the aiming point is given by:

paim,i = ptower +

 −dmid · sinαtower

dmid · cosαtower

htower − htop −
hrec

2

 . (1.11)

1.5.3. Cylindric external receiver

This receiver is cylindrical wrapped around the tower for 360◦. Cylindric external
receivers are used in the Solar One and Solar Two central receiver facilities at Barstow
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in California, USA and the 19 MW plant Gemasolar in Andalusia, Spain. The receiver
is modeled with diameter drec of the cylinder in the x-y plane and height hrec, see
Figure 1.7c.

For this type of receiver, the model assumes, that each heliostat Hi aims towards
the closest point at the center of the aperture. In the x-y plane, the angle between
the x-axis and the line from heliostat Hi at position pi = (xi, yi, zi)

T to the receiver
center, is given by

αi = atan

(
yi
xi

)
. (1.12)

So, the aiming point for a heliostat Hi is given by

paim,i = ptower +


drec

2
cosαi

drec

2
sinαi

htower − htop −
hrec

2

 . (1.13)

1.6. Ray-tracer

To calculate the concentrated power of reflected rays at the receiver we have to trace
them from the sun along the heliostat surface to the receiver. Therefore we use a hier-
archical ray tracing approach [39, 6]. For our ray tracing methods, each facet surface
is partitioned in a number of cells, see Figure 1.8. Each cell has one representative ray
for which different effects, like blocking and shading, are calculated for the whole cell.
The number of representative rays per heliostat facet is given by the number of rays
in horizontal direction times the number of rays in vertical direction per facet. Here
pki is defined as the origin of the k-th representative ray at the surface of heliostat Hi

and ~rk,i as the direction of the k-th representative ray of heliostat Hi.
We then calculate the complete flux at the receiver surface according to our different

methods. The integration over the flux on the receiver surface equals the optical power
collected at the receiver.

1.6.1. Efficiencies and losses

When tracing each ray the ray is exposed to different effects and losses which influence
the amount of power which is received by the receiver. In the following each effect and
loss is described.

Cosine effects In order to reflect the sun light onto the receiver surface heliostats
track the sun position as illustrated in Figure 1.4. The cosine effect ηcos describes the
reduced projected area of the respective cell due to the tilted alignment of the heliostat.
Cosine effects depend on the solar position and the location of the individual heliostat
in relation to the receiver. The heliostat surface normal bisects the angle between the
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Figure 1.8: Discretization of a heliostat facet by 5 by 5 cells. Each cell has a represen-
tative ray, which is weighted by its area.

solar rays and a line from the heliostat to the receiver [20]. The effective reflection
area of the heliostat is reduced by the cosine of one-half of this angle. It can easily be
calculated using the law of reflection. The scalar product of the solar vector τsolar and
the heliostat normal ni is related to the angle of incidence [39] (see Figure 1.4) so that

ηcos,i = 〈τsolar, ni〉, (1.14)

where 〈·, ·〉 describes the scalar product of two vectors.

Shading and blocking Shading effects appear when an object, e.g. a heliostat or a
tower, is in-between the sun and another object. Blocking effects appear when the first
object is in- between the receiver and the second object.

In this work we calculate shading effects by the tower as well as shading and blocking
effects between the heliostats. In the following each computation is shortly described.

• Tower shadow
In Section 1.4 we defined a cuboid and a cylindrical tower, for these shapes
incoming rays from the sun to the heliostats have to be checked if they hit the
tower. The tower shadow can be described as a corridor with width dtower facing
away from the sun starting at the tower position ptower. The heliostats in this
corridor form a subset of potentially tower shaded heliostats.

This subset can be computed by calculating the minimal distance between the
line from the tower position ptower straight into the sky and the line from the
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heliostat center pi to the sun. If this distance is smaller or equal to dtower

2
+ dhelio

2

the heliostat is potentially tower shaded.

For heliostats which are potentially shaded by the tower each single ray comming
to the heliostat has to be checked. This means for each ray from the sun to
a reflection point pki on the heliostat surface a possible intersection has to be
calculated. If there is an intersection the corresponding area of pki is shaded by
the tower.

• Heliostat shading
As for tower shading, a subset of heliostats can be computed by checking the
minimal distance. Except in this case we don’t look at the distance between
two lines, but at the distance between a line and the center pj of a heliostat Hj.
The line originates at the center pi of heliostat Hi and travels to the sun. If
the minimal distance is smaller or equal to dhelio, then heliostat Hi is potentially
shaded by heliostat Hj. Each ray from the sun with a reflection point pki on
heliostat Hi has to be checked if it hits heliostat Hj. If an intersection can be
found the corresponding area to pki is shaded.

• Heliostat blocking
For the computation of heliostat blocking we can utilize the same approach as in
heliostat shading, when using the reflected vector paim,i− pi instead of the vector
from the sun to pi.

Heliostat reflectivity The mirror surface reflects the solar radiation in direction of
the receiver. Due to dust or absorbency of the mirror surface parts of the radiation
are scattered or lost at the mirror surface. This loss is often modeled as constant value
in literature [45], neglecting the dependency of the reflectivity on incidence angle and
solar spectrum. We model the reflectivity as constant value ηref.

Atmospheric attenuation efficiency When the light travels from the heliostat to
the receiver it progressively loses power over the distance due to the atmosphere. This
effect is called atmospheric attenuation efficiency and depends on the distance di. This
calculated between the position pi of heliostat Hi, from which the ray originates, and
the receiver aiming point paim,i. The computation is given by

di = |pi − paim,i|. (1.15)

We use the formula from Schmitz et al. [56], who extended the formula from Leary
and Hankins [30] for distances less than 1000 m. The approach from Schmitz et al.
[56] has the goal to correspond well with the model of Pitman and Vant-Hull [43] for
a visual range of about 40 km (see Figure 1.9). The computation from [56] is

ηaa,i =

{
0.99321− 1.176 · 10−4 di + 1.97 · 10−8 d2

i , di ≤ 1000 m

exp(−1.106 · 10−4 di) , di > 1000 m
. (1.16)
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Figure 1.9: Atmospheric attenuation ηaa,i computation as in Schmitz et al. [56].

Optical errors When modeling rays originating in the sun getting reflected at a he-
liostat to a receiver, errors can occur. These errors are called optical errors and can
be described in means of a Gaussian distribution with a standard deviation of σ in
[mrad], see Figure 1.10. In our model the errors can be set to specific values as well as
default values.

• Sun Error σsun: Occurs due to the fact that we model the sun as a plane rather
then a sphere. Therefore we add this error to model the sun as an angular
Gaussian distribution based on the idea of Rabl [46].

• Tracking Error σtracking: The motor aligning the heliostat will in most time result
in a slight deviation from the intended alignment.

• Slope Error σslope: The slope error describes the property of the mirror surface
not being perfect, e.g. having a certain roughness which creates an irregular
surface, reflecting rays in slightly different directions then the perfect reflection.

In our model we use one representative Gaussian distribution with standard deviation
σbeam which can be computed by

σbeam =
√
σ2

sun + σ2
tracking + σ2

slope. (1.17)
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Figure 1.10: Error cones for optical errors [47].

1.6.2. Flux map

To calculate the distribution of the collected power on the receivers surface we compute
a so called flux map. To achieve this each receiver surface gets discretized into smaller
cells. The total collected power is the sum of the power collected in each cell of the
discretization. In the following the calculation for the power collected in each cell is
described in the corresponding methods.

1.6.3. Monte Carlo method

The Monte Carlo method relies on the law of large numbers. It therefore uses large
amounts of randomized rays, of which each ray has its own source point on a heliostat.
The randomization is achieved by perturbing each ray with a certain probability based
on the Gaussian distribution with standard deviation σbeam. In Figure 1.11a the Monte
Carlo method is depicted for one heliostat aiming at the midpoint of the receiver at
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Figure 1.11: Monte Carlo and multi-Monte Carlo method with low resolution.

the top of the tower, whilst for the better clarity only 6 rays are shown. As the Figure
shows, the rays do not hit the midpoint of the receiver, since they are slightly perturbed
by the Monte Carlo method.

Multi-Monte Carlo The usage of multiple outgoing rays from one point on a heliostat
defines the multi-Monte Carlo method. This aims at getting more diversity for each
heliostat cell instead of just shooting one ray per cell. In Figure 1.11b the multi Monte
Carlo method is shown for one source point with 10 rays.

Flux map In the Monte Carlo method for each receiver hitting ray the intersection
with a cell of the receiver is calculated. Then the power of the ray is added up to the
sum of power collected in that cell.

1.6.4. Convolution method

The convolution method shoots a ray which gets analytically distributed by the Gaus-
sian normal distribution with standard deviation σbeam on the receiver. This results in
an error cone projected at the receiver with direction ~rk,i and origin at the reflection
point pki on the heliostats surface, similar to the outgoing error cone in Figure 1.10.
For the evaluation we use a normal distribution (see Figure 1.12 left) which we can
evaluate at different points offset from the intersection point to get the flux (see Figure
1.12 right). The method is based on the method described in Richter et. al [47, 50].

Evaluation of the error cone To evaluate the flux produced by the error cone, we
use the angle between the direction of the reflected ray ~rk,i with origin pki and the

vector ~r′. The latter can be calculated with prec−pki . The point at the receiver surface
prec is where we want to evaluate the Gaussian distribution. Then we calculate the

20



−2
0

2 −2

0

2
0

0.1 •

•••

•

• •
•

•

Figure 1.12: Gaussian normal distribution on a receiver [47]

length |~r′| of the vector ~r′. This length is used to approximate the length of the ray
~rk,i until it hits the receiver. This makes the calculation faster since we don’t have
to calculate the exact intersection. We then compute the deviation σrec on prec with
Equation (1.18). Next, we calculate the minimal distance dk,i,rec of the point prec to
the ray with direction ~rk,i and origin pki . With this we can compute the probability
density function value P (dk,i,rec, σrec) for a point on the receiver with distance dk,i,rec

to the center of the distribution according to Equation (1.19) from Abramowitz and
Stegun [2] with µ = 0.

σrec = |~r′| · tan(σbeam) (1.18)

P (dk,i,rec, σrec) =
1

σ
√

2π
e

−(dk,i,rec)
2

2σ2rec (1.19)

Flux map For the calculation of the flux map we use the previously described eval-
uation. For each ray we evaluate the error cone at the midpoints of the different
receiver cells. We assume that the power for one ray is equivalent over one receiver
cell. Therefore each cell contains the sum of the evaluations of all rays weighted by its
own area.

1.6.5. Cell-wise convolution method

The cell-wise convolution method analytically aggregates each possible perturbed ray
of a heliostat cell. It therefore projects the shape of the cell onto the receiver where
the edges are blurred according to the Gaussian distribution with standard deviation
σbeam. Figure 1.13 shows the single rays of a heliostat cell in one dimension, the
summed distribution as flux can be found in Figure 1.14.

This blurred projection of a heliostat cell onto a receiver requires different transfor-
mations. The evaluation at the receiver as well as the necessary transformations are
described in the following.
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Figure 1.13: In the one-dimensional case, each ray reflected in the cell results in a
Gaussian distribution on the receiver.

Evaluation at the receiver The evaluation of a projection at a point prec on the
receiver assumes the heliostat cell from which the rays originates to be flat, centered in
the origin, parallel to the x-y-plane and the sun has to be centered above the heliostat
cell. The intensity at prec is computed by

I(prec) =
n∑
i=1

Ii(prec), (1.20)

where Ii(prec) is the intensity produced by the i-th ray of the heliostat cell in point
prec. Since each ray has variance σ2

beam the distribution of ray i is given by

Ii(x) =
1√

2σ2π
exp

(
−(x− µi)2

2σ2

)
. (1.21)

Inserting this into the Equation (1.20) the total intensity can be computed by

I(x) =
1√

2σ2π

n∑
i=1

exp

(
−(x− µi)2

2σ2

)
. (1.22)

When considering infinitesimal rays in a cell in which n→∞, we need to integrate
over all µ ∈ [xmin, xmax]. This integral can be solved by
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Figure 1.14: The flux of an cell with width xl = −5, xr = 5 and σ2 = 0.5 on the receiver
(one-dimensional case). The dashed lines mark the edges of the cell.

I(x) =
1√

2σ2π

∫ xmax

xmin

exp

(
−(x− µ)2

2σ2

)
dµ

=
1√

2σ2π

∫ xmax−x

xmin−x
exp

(
− µ2

2σ2

)
dµ

=
1

2

[
erf

(
xmax − x√

2σ

)
− erf

(
xmin − x√

2σ

)]
.

(1.23)

For the two dimensional case we need to integrate over the whole area of a heliostat
cell, i.e. µx ∈ [xmin, xmax] and µy ∈ [ymin, ymax]. Then the intensity I(x, y) for a point
prec = (x, y)T can be calculated by

I(x, y) =

∫ xmin−x

xmax−x

∫ ymin−y

ymax−y

1√
2πσ2

exp

(
−µ

2
x + µ2

y

2σ2

)
dµydµx

=
1

4

(
erf

(
ymax − y√

2σ

)
− erf

(
ymin − y√

2σ

))
(

erf

(
xmax − x√

2σ

)
− erf

(
xmin − x√

2σ

))
.

(1.24)
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Facets and cells When looking at non-flat facets with a certain focal length, we
discretize a facet such that one ray represents a cell of a facet according to Figure
1.8. As a simplification we assume each cell to be flat so that we do not have to
consider curved shapes in the projection of heliostat cells onto the receiver. A sample
discretization of a facet into 10 evenly spaced cells is shown in Figure 1.15.

δx

F1

F2

F3

F4
F5 F6

F7

F8

F9

F10

Figure 1.15: Evenly-spaced discretization of a facet with N = 10

Cell alignment In order to correctly project the shape of the heliostat cell onto
the receiver we need to align the heliostat cell such that it is centered in the origin
and parallel to the x-y-plane. The alignment of the cell consists of the following
transformations:

• Translate the cell with its midpoint pcell into the origin

• Rotate the cell such that its normal ncell equals global z-axis

• Rotate the cell such that its x-axis xcell equals global x-axis

In the following the sun direction, according to these transformations, is denoted
by ~vsun. The cell is shortened in the x- and y-axis according to the cosine effect with
factors γx = | sin∠~vsun~ex|, γy = | sin∠~vsun~ey|. Whereas ∠~x~y is the angle between the
vectors ~x and ~y:

x′min = γxxmin

x′max = γxxmax

y′min = γyymin

y′max = γyymax
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The rotation from the sun up to the point that it is centered above the transformed
cell is described by a rotation from the vector ~vsun onto the heliostat cell normal ncell.
Applying all these transformations to the different prec allows us to use the interval
from Equation 1.24 for all evaluations.
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Figure 1.16: The flux of a single heliostat cell on the receiver in the two-dimensional
case with x′min = −5, x′max = 5, y′min = −5, y′max = 5, σ = 0.4. The dashed
lines mark the edges of the cell.

Flux map For the calculation of the flux map we use the previously described evalua-
tion. For each cell we evaluate the projection at the midpoints of the different receiver
cells. We assume that the power for one ray is equivalent over one receiver cell. There-
fore each cell contains the sum of the evaluations of all heliostat cells weighted by its
own area. Figure 1.16 shows an example flux for the projection of one heliostat cell.

2. Thermal model

Heiming [24] developed a simplified thermal model which bases on molten salt as heat
transfer fluid (HTF) and a cylindrical external receiver. Therefore this section mainly
relies on the work of Heiming [24].
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2.1. Receiver

The receiver converts radiant power collected by the reflection of light on the heliostat
surface into thermal power, i.e. inner power of the heat transfer medium. The HTF can
be of a different kind, for example ambient air [25], pressurized air [33], water/steam
[16], particles [53], or molten salt [29]. In our model only molten salt is considered
as HTF. Furthermore the receiver model is simplified. This is caused by the need for
annual energy optimization (see Part III).

Geometry The receiver consists of multiple panels of receiver height. Each panel
contains a set of tubes through which the HTF flows in parallel. The flow direction
then alternates panel-wise [24]. The defined flow of the HTF is divided into two circuits.
Both start in the northern most panels and exit on the southern most panels. The first
flow alternates through the panels to the west and then crosses to the east where it
alternates through the panels to the south. The second flow travels to the east, crosses
to the west and then goes to the south. This flow pattern was shown by Wagner [see
63, Figure 20]. As the exact number of panels is not stated it can be computed by the
diameter of the tubes and the diameter of the receiver,

Ntubes/panel =

⌊
π ·Drec

Dtube,outer ·Npanels

⌉
, (2.1)

with bxe = b|x|+ 0.5c · sgn(x).

2.2. Simplified receiver model

The simplified model for the calculation of the thermal energy produced is based on [63]
and is still used in the System Advisor Model (SAM) [36]. In the simplified receiver
model the following energy balance (2.2) from Heiming [24] applies for the thermal
power of the HTF Q̇htf, the incident radiation Q̇inc, the reflections losses Q̇ref, the
radiation losses Q̇rad and the convection losses Q̇conv,

Q̇htf = Q̇inc −
(
Q̇ref + Q̇rad + Q̇conv

)
. (2.2)

Each heat flow Q̇ is the sum of its sub heat flows q̇i, i.e. the heat flows of the single
cells of the receiver. As in Heiming [24] the following equations will mark length-
related quantities with a prime and area-related quantities with a double prime (e.g.,
q̇′′inc [W m−2] is the area-related incident radiation, also called flux).

In the following sections the computation of the incident radiation and the heat
losses for the thermal receiver are shown.

2.2.1. Incident radiation

A flux map can be used to calculate the incident radiation. Due to the insignificant
amount of ambient radiation, considering the large amount of incident radiation, it is
not considered here. Generally the flux map can be defined as
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q̇′′inc = q̇′′inc(x, ϕ). (2.3)

Heiming [24] then defines the flux of a receiver cell as integration over the corre-
sponding area:

q̇inc =

∫
δϕ

∫
δx

q̇′′inc(x, ϕ)dxdϕ. (2.4)

Since the flux map computed in Section 1.6 is all ready discretized into smaller cells
with their flux we only need to match the smaller cells from the optical model to
the bigger cells in the thermal receiver model. The overall incident radiation is then
computed by

Q̇inc =
∑

q̇inc. (2.5)

2.2.2. Reflection

Since each material is reflecting some radiation the receiver cannot hold to the whole
incident radiation. This is described by the fractions for absorptivity α, reflectivity ρ
and transmissivity τ that sum up to 1 [28]. The transmissivity τ is 0 since the receiver
is opaque. Therefore ρ = 1−α holds. The following equations from Heiming [24] drop
the symbols ρ and τ and express the reflectivity in terms of α.

The heat loss at each position of the receiver surface can be described in terms of
the reflection by

q̇ref = (1− α) · q̇inc. (2.6)

For surface materials where the absorptivity is wavelength dependent this circum-
stance should be considered in the notation. This holds for non-gray or selective surface
materials. In the following the solar spectrum on the surface of the earth is notated
by λsun .

q̇ref = (1− α(λsun)) · q̇inc. (2.7)

Inserting this equation to the local energy balance, it can be simplified from

q̇htf = q̇inc − (q̇ref + q̇rad + q̇conv) (2.8a)

to an efficiency factor of the incoming incident radiation

q̇htf = α q̇inc − (q̇rad + q̇conv). (2.8b)

2.2.3. Radiation

Since the temperature of the receiver surface is above absolute zero the receiver emits
radiation to the environment. According to Kirchhoff’s law (2.9) the emissivity ε
corresponds to the absorption α for each wavelength of light [28].
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ε(λ) = α(λ) (2.9)

We assume that there are three temperatures given in Kelvin Tsky, Tamb, and Tdp.
Where Tsky describes the temperature at the horizon, e.g. the sky, Tamb describes the
ambient temperature of the environment below the horizon, and Tdp is the ambient
dew point temperature. In the following h denotes the solar time in hours which is 0 at
solar noon, negative in the morning, and positive in the afternoon. The temperature
Tsky can be calculated by Equation (2.10) given by Duffie and Beckman [15].

Tsky = Tamb

(
0.711 + 0.0056 (Tdp − 273.15) + 0.000073 (Tdp − 273.15)2

+ 0.013 cos

(
π

(
180− h · 15

180

)))1/4

(2.10)

Since half the radiation from the receiver is in direction of the sky, we use a view
factor of 1

2
. The Stefan-Boltzmann constant σ = 5.67 · 10−8 W m−2 K−4 is denoted by

σ and the wall surface temperature by Twall which computation can be found in [24].
Heiming [24] then gives the following equations for the radiation to the sky and the
ground respectively:

q̇rad,sky =
1

2
hrad,skyA (Twall − Tsky)

with hrad,sky = σ ε
(
T 2

wall + T 2
sky

)
(Twall + Tsky)

(2.11)

q̇rad,amb =
1

2
hrad,amb A (Twall − Tamb)

with hrad,amb = σ ε
(
T 2

wall + T 2
amb

)
(Twall + Tamb)

(2.12)

The full radiation loss is then simply the sum of both [63], i.e.,

q̇rad = q̇rad,sky + q̇rad,amb. (2.13)

When choosing selective materials as receiver surface the absorptivity is high in
the wave length range of the sun’s radiation while emissivity is low in the range of
wavelengths that are emitted at typical receiver surface temperatures. This leads to
minimization of radiation losses at the receiver surface [24].

2.2.4. Convection

The transfer or dissipation of heat in fluids, like liquids or gas, is called convection.
There are two types of convection of interest here. The first one is called forced
convection caused by a flowing fluid. The second one is natural convection which
depends on gravity and thermal buoyancy.
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Heiming [24] states that the convection can be computed similar to Fourier’s law
of heat conduction. This is a product of heat transfer coefficient, surface area and
temperature difference:

Q̇conv = hconvA (Twall − Tfilm)with Tfilm =
Twall + Tamb

2
(2.14)

The forced convection coefficient can be computed by Equation (2.15a) from Heiming
[24]. In Equation (2.15b) from Heiming [24], the computation of the natural convection
is shown. The conductivity of air at film temperature Tfilm is denoted by kfilm. The
combination of forced and natural convection to the mixed convection is taken from
Siebers and Kraabel [60] and can be found in Equation (2.15c) Siebers and Kraabel
[60] recommend the exponent a = 3.2.

hconv,for = Nuconv,for
kfilm

Drec

(2.15a)

hconv,nat = Nuconv,nat
kfilm

hrec

(2.15b)

hconv,mixed =
(
haconv,for + haconv,nat

)1/a
(2.15c)

The computation of the Nusselt numbers Nuconv,for and Nuconv,nat can be found in
Heiming [24] and is based on the work of Siebers and Kraabel [60] and Siebers et al.
[61].

2.3. Thermal storage

The advantage of modern solar tower power plants over photovoltaics is the use of a
thermal storage system. This stores the heated fluid when the request is low and then
can later on use the HTF when needed. Therefore peak loads or storage strategies
which release the most power when the reimbursement is high can be satisfied.

The thermal storage model assumes that the installed storage space is large enough.
From this storage the HTF is pumped into our steam generator, when there are peak
loads, i.e. at times with the highest reimbursement.

3. Electrical model

In the electrical model the previously collected thermal power gets converted into
electrical power. The model is also called Power Block or Power Conversion Unit and
consists of a steam generator, a turbine, a generator and a cooling system. Instead
of modeling each component on its own we use a lookup table for the whole power
conversion unit [24]. The efficiency of the power block depends on the load and the
ambient temperature, whereas a higher load and lower ambient temperature result in
a better efficiency.
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In Figure 3.1 from Heiming [24] the lookup table is pictured as efficiency over different
loads at different temperatures from data of the company TSK Flagsol. When calcu-
lating the efficiency for some design point we use bilinear interpolation between the
next higher measured load and temperature and the next lower load and temperature.
In Figure 3.2 from Heiming [24] the data is smoothed by the bilinear interpolation.
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Figure 3.1: Characteristic Diagram of a 100 MWth power conversion unit. The lines
represent the temperature-dependent efficiencies for different loads.
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Figure 3.2: Efficiency of a 100 MWth power block depending on ambient dry-bulb tem-
perature and load.

4. Annual integration

The annual integration is used to calculate the annual energy produced by a solar
tower power plant. The annual integration equals the sum over the produced energy
of all days of the year, whereas the daily energy equals to the integral over the hourly
calculated power from sunrise to sunset, see Equation (4.1). Since the exact calcula-
tion of Equation (4.1) would yield to high runtimes, Tinnes [62] provides a study on
quadrature methods that can be used to approximate the integral. We use the pre-
viously described models (see Sections 1-3) to calculate P for a given moment. This
section gives an overview of the used quadrature method in SunFlower to calculate
sample points in a year to approximate Equation (4.1) as well as how to get the DNI
and other meteorological data at that sample points using real weather data and the
meteorological radiation model (MRM). This section is based on the work of Tinnes
[62] as part of the SunFlower project.

Eannual =
365∑
d=1

Ed =
365∑
d=1

(∫ sunset

sunrise

P (t, d)dt

)
with d: number of days, t: time, P : produced power.

(4.1)

4.1. Quadrature

To get the specified day points, which have to be simulated, we use the trapezoidal
quadrature method. This leads to equidistant days during the year. For the times
at the days we get equidistant times between sunset and sunrise. Whilst we do not
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simulate sunrise and sunset, because of an irradiation of 0 W m−2, we take them
into account as weights when calculating the daily energy. In Figure 4.1 we see the
trapezoidal quadrature-rule for calculating the energy over a day with 7 daypoints.

t

P

sunrise sunset

Figure 4.1: Visualization of the trapezoidal quadrature-rule for 7 daypoints[62].

4.2. Real weather data

For the input of real weather data we support the typical meteorological year (TMY)
data files from the National Renewable Energy Laboratory [5] and the energy plus
weather (epw) data files from EnergyPlus [40]. Both datasets provide hourly measured
DNI, environment pressure, dew point temperature and other values for a specified
location for one year. Since these models have seasonal dependencies and are influenced
by different weather situations we have to reconstruct the data according to Tinnes
[62]. However we let the user decide if the specified points from the quadrature should
be used without reconstruction leading to the actual measured values at one day for
the given period. Figure 4.2a shows the measured DNI for Mumbai from EnergyPlus
[40] and Figure 4.2b shows the measured DNI for Daggett as TMY3 [5].

Reconstruction The reconstruction is an aggregation of the data for the given period.
Therefore we take the average of the data for all days in the given period. The averaged
data is then used in the different models as an aggregated day representing the whole
period.

4.3. MRM

The MRM provides the irradiation Idni as function over latitude, longitude, angstrom
alpha α, visibility τvis, air pressure pair, water pressure pwater, ground albedo ρground,
time t and altitude θsolar. Since the irradiation is the only value calculated by the MRM
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(a) Measured DNI at Mumbai (India) for each hour of a year[62].

(b) Measured DNI at Daggett (USA) for each hour of a year[62].

Figure 4.2: Measured DNI at the locations Mumbai and Dagget[62].

we have to choose symbolic values for the rest of the data, see Table 2. The DNI values
show symmetrical behavior over one year as can be seen in Figure 4.3 for the locations
Mumbai and Daggett. Therefore we do not have to reconstruct the calculated values
and can use them in the models of Sections 1-3 [62].

Parameter Value

dew point temperature 10°C
environment temperature 15°C
wind speed 3 m/s

Table 2: Values not computed by MRM

4.4. JSON file

In Table 3 the parameters of the JSON file specifying the settings for the MRM are
shown. In Table 4 the parameters of the JSON file specifying the settings for the
annual integration are shown.
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(a) Modeled DNI for one year at Mumbai with the MRM model[62].
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(b) Modeled DNI for one year at Daggett with the MRM model[62].

Figure 4.3: Modeled DNI values, computed with the MRM model at the locations
Mumbai and Dagget[62].

Parameter name Unit Data Type Range

angstrom alpha - double [-4, 2]
ground albedo factor double [0, 1]
visibility km double [1, 335]
air pressure hPa double [800, 1100]
water pressure hPa double [0, 101]

Table 3: JSON file for the MRM as list of its parameters.

Parameter name Unit Data Type Range

number of periodpoints count int [1,365]
number of daypoints count int [1,24]
annual integration method - enum {const day, aggregated day}

Table 4: JSON file for the annual integration as list of its parameters.
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5. Economic model

This section describes the economic factors when modeling a solar tower power plant
based on the work of Heiming [24]. The costs for a solar tower power plant are split
into two parts. The investment costs, called capital expenditure (CAPEX). And the
running costs paid on a regular basis, called the operational expenditure (OPEX).
In the following these costs are described followed by an economic evaluation of the
modeled plant based on these costs.

5.1. Investment cost

When building a solar tower plant an investment for parts of the building process have
to be paid. These costs are the investment cost summarized under the term capital
expenditure (CAPEX). The sum for the CAPEX, measured in [M$], can be found in
Equation (5.1) from Heiming [24]. According to [4] we will use the symbols I and c
for investment and specific costs respectively.

CAPEX = Iland + Ihel + Itower + Irec + Istor + Ipcu (5.1)

When building such large scale projects as solar tower power plants present concepts
of scaling and volume effects can be used to estimate the costs based on previous
projects. The scaling effect derives a scaling factor from existing projects according to
their sizes. With this scaling factor s we now can estimate the cost for the new project
cnew according to the reference cost cref, the reference size Aref and the new size Anew

with Equation (5.2) [55].

cnew = cref ·
(
Anew

Aref

)s
(5.2)

The volume effect describes the effects of decreasing costs due to increasing quantities
and production experience. With reference production Volume Vref, new production
Volume Vnew, a progress ratio pr and reference costs cref we can compute the estimated
costs cnew with Equation (5.3) [55].

cnew = cref · prlog2
Vnew
Vref (5.3)

With these effects we now can estimate the costs for the different investment costs
from Equation (5.1) based on existing data.

Land The investment cost for the land of the building site is the sum of the terrain
cost itself Iterrain and the cost for improving the terrain Iimprov. The terrain cost is
computed per square meter of the area of the site as can be seen in Equation (5.4a).
The improvement can be estimated by previously build solar tower plants with a scaling
factor as can be seen in Equation (5.4b). Then Equation (5.4c) is the sum for the
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complete cost of the land Iland where reference values from Augsburger [4] can be used,
see Table 8.

Iterrain = cterrainAterrain (5.4a)

Iimprov = Iimprov,ref ·
(

Aterrain

Aterrain,ref

)simprov

(5.4b)

Iland = Iterrain + Iimprov (5.4c)

Heliostats According to Heiming [24] the costs for a heliostat is the sum of several
sub-costs: Material and labor costs, also called direct costs Ihel,dir, the optical costs
Ihel,optic that take the heliostats’ slope into account, overhead costs Ihel,overhead for man-
agement and engineering and indirect costs Ihel,indir for additional tooling:

Ihel = Ihel,dir + Ihel,optic + Ihel,overhead + Ihel,indir (5.5)

• Direct costs The investment on the direct cost again splits up into sub-costs
which are listed in Table 5. These sub-costs Chel,dir,i take the number of heliostats
Nhel, the mirror area Ahel and the production volume Vhel, which is equal to the
number of heliostats for one solar tower plant, into account and adding scaling
and volume effects on them as well as a price index pi which describes a change of
price over time of the reference price. The Equations (5.6) are the corresponding
equations from Heiming [24].

Ihel,dir = Nhel · chel,dir (5.6a)

chel,dir =
∑
i

chel,dir,i (5.6b)

chel,dir,i = chel,dir,i,ref ·
(

Ahel

Ahel,ref

)shel,dir,i
· prhel,dir,i

log2
Vhel

Vhel,ref · pihel,dir,i (5.6c)

Heliostat direct cost i chel,dir,i,ref [$/u] shel,dir,i prhel,dir,i pihel,dir,i

Foundation 200 0.2274 0.9806 1.0816
Pedestal and structure 3 777 1.4700 0.9900 1.8070
Drives 6 000 0.6000 0.9400 1.3702
Mirrors 4 996 1.0420 0.9700 1.0861
Control and Communications 875 0.2311 0.9600 1.2841
Wiring 877 0.4479 1.0000 1.0302
Shop Fabrication 480 0.4264 0.9800 1.0000
Installation and Checkout 450 0.2610 1.0000 1.0000
Total reference direct costs 17 655

Table 5: Estimated direct cost parameters of a heliostat [4].
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• Optical cost The optical cost is related to the heliostat canting as described in
Section 1.3.5. Equation (5.7) from Heiming [24] as reference value σslope,ref the
value from Table 8 can be taken.

Ihel,optic = Nhel · chel,optic (5.7a)

chel,optic = 0.01 · 10−3

(
1

(σslope)
2 −

1

(σslope,ref)
2

)
Ahel (5.7b)

• Overhead Overhead costs are computed by a share or of the direct costs Ihel,dir

whilst considering a volume effect [4].

Ihel,overhead = or · Ihel,dir · prhel,overhead
log2

Vhel
Vhel,ref (5.8)

• Indirect cost The indirect costs contain the costs for engineering and construct-
ing the heliostats. The reference values for Equation (5.9) from Heiming [24] can
be found in Table 6.

Ihel,indir =
∑
j

Ihel,indir,j (5.9a)

Ihel,indir,j = Ihel,indir,j,ref ·
(

Ahel

Ahel,ref

)shel,indir,j
· prhel,indir,j

log2
Vhel

Vhel,ref · pihel,indir,j (5.9b)

Heliostat indirect cost j Ihel,indir,j,ref [$] shel,indir,j prhel,indir,j pihel,indir,j

Engineering 250 000 0.9551 0.96 1.2623
Facilities and Tooling 800 000 0.9551 0.86 1.1460
Equipment Lease 200 000 0.9551 0.86 1.1460
Total reference indirect costs 1 250 000

Table 6: Estimated indirect cost parameters of a heliostat [4].

Tower For the investments on the tower Heiming [24] used Equation (5.10). However
since there is only one tower in our modeled solar tower power plants the volume effect
doesn’t play a role.

Itower = Itower,ref ·
(

htower

htower,ref

)stower

· prtower
log2

Vtower
Vtower,ref · pitower (5.10)

Receiver The receiver investments are similar to those of the tower. Further on the
volume effect doesn’t matter here either because there is only one receiver.

Irec = Irec,ref ·
(

Arec

Arec,ref

)srec
· prrec

log2
Vrec

Vrec,ref · pirec (5.11)
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Storage The storage costs consider scaling effect, volume effect and price index. As
can be seen in Equation (5.12) from Heiming [24].

Istor = Istor,ref ·
(

Sstor

Sstor,ref

)sstor
· prstor

log2
Vstor

Vstor,ref · pistor (5.12)

Power conversion unit The investment on the power conversion unit considers scal-
ing effect, volume effect and price index. The calculation is shown in Equation (5.13)
from Heiming [24]. The reference cost can be found in Table 7.

Ipcu =
∑
k

Ipcu,k (5.13a)

Ipcu,k = Ipcu,k,ref ·
(

Spcu,k

Spcu,k,ref

)spcu,k
· prpcu,k

log2

Vpcu,k
Vpcu,k,ref · pipcu,k (5.13b)

PCU cost k Spcu,k,ref Ipcu,k,ref spcu,k prpcu,k pipcu,k

Steam Generator 34.0 MWth 1.6 M$ 0.6734 0.9526 1.4400
Steam Turbine and Generator 13.5 MWel 8.8 M$ 0.6829 0.9526 1.2971
Cooling System 13.5 MWel 7.4 M$ 0.2514 0.9526 1.2254
Master Control – 1.6 M$ – – 1.1690
Total reference PCU costs 19.4 M$

Table 7: Estimated cost parameters of a power conversion unit [4].

Quantity Value Unit Quantity Value Unit
cterrain 0.5 [$/m2] Aterrain,ref 2.8 [km2]
Iimprov,ref 1.1 [M$] simprov 0.3687 [–]
Ahel,ref 148 [m2] Vhel,ref 1625 [u]
σslope,ref 4.14 [mrad] or 20 [%]
proverhead 0.96 [–] Itower,ref 1.6 [M$]
htower,ref 75 [m] stower 1.797 [–]
prtower 0.9526 [–] Vtower,ref 1 [u]
pitower 1.0816 [–] Irec,ref 9.1 [M$]
Arec,ref 100 [m2] srec 0.5283 [–]
prrec 0.9526 [–] Vrec,ref 1 [u]
pirec 1.44 [–] Istor,ref 3.7 [M$]
Sstor,ref 88.2 [MWhth] sstor 0.6202 [–]
prstor 0.9526 [–] pistor 2.2 [–]

Table 8: Reference and scaling values provided by Augsburger [4].
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5.2. Operation and maintenance costs

The operation and maintenance costs are based on the equations of Morin [35]. In
the following we will denote the running cost with C which consist of expenditures for
staff, water, spare parts and insurance. These individual cost will be summed up to a
per-year value which will be called OPEX, see Equation (5.14).

OPEX = Cstaff + Cwater + Cspare + Cinsur. (5.14)

In the following all parameters for the running costs as given by Morin [35] can be
found in table 9. Further on some equations hold for parameters in e for them the
factor fcurr converts euros to dollars to stay consistent with the previous calculation.

Staff Morin [35] states that the personal for the heliostat field grows linearly with its
area, while the staff for the power conversion unit is fixed. Equation (5.15) therefore
holds for a linear factor fstaff,field. Due to part-time jobs non-integer values are possible
for the required personnel [24].

Cstaff = (fstaff,field · Afield +Nstaff,pcu) · cstaff · fcurr (5.15)

Water In solar tower power plants water is used for mirror cleaning and for wet-
cooling systems for the power conversion unit. In this work we assume a wet-cooling
system. Since the water consumption is only a very small part of the total annual
cost and the mirror cleaning is only a small part of the water consumption Morin [35]
states that the total mirror-area can be neglected in this calculation. Therefore we
only consider the annual energy production (AEP) Eannual as factor since the water
consumption in the cooling system of the power block depends on this. The calculation
of the running costs for the water can be found in Equation (5.16).

Cwater = Eannual · fwater · cwater · fcurr (5.16)

Spare parts The cost for spare parts depends on the CAPEX and is calculated as a
fraction of it [24]:

Cspare = CAPEX · fspare (5.17)

Insurance As the spare parts insurance payments depend on the CAPEX and are
modeled as a fraction of it:

Cinsur = CAPEX · finsur (5.18)
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Quantity Value Unit Quantity Value Unit
cstaff 48 000 [e/a] fstaff,field 3 · 10−5 [m−2]
cwater 0.5 [e/m3] fwater 0.295 [m3/(MWhel)]
fspare 1 [%] finsur 1 [%]

Table 9: Parameters for the running costs as given by Morin [35].

5.3. Economic evaluation

For the economical evaluation of the modeled solar tower power plant the previously
described CAPEX and OPEX as well as the AEP Ea, the plant life time Ny and
the interest rate i are used as parameters. Due to consistency with Augsburger [4]
we use Equation (5.19) to transform the annual expenditure OPEX to operational
expenditures OM which are measured in [¢/(kWhel)].

OM =
OPEX

Ea
. (5.19)

Levelized cost of electricity The levelized cost of electricity (LCOE), also called
levelized energy cost (LEC), is used for the evaluation of energy costs. It is the most
common value and used for easy comparison of power plants of different types [24].
Heiming [24] uses the following definition for the LCOE:

LCOE =
Annual costs

Annual energy production
=
CAPEX · fannuity +OPEX

Ea

=
CAPEX · fannuity

Ea
+OM

(5.20)

with the annuity factor

fannuity =
(1 + i)Ny · i

(1 + i)Ny − 1
. (5.21)

Net present value In Equation (5.22) from Augsburger [4] the computation for the
total profit, e.g. the net present value (NPV) is given with the annuity factor as defined
in Equation (5.21). The computation sums up all incomes and subtracts all expanses
over the whole project life time.

NPV =
(1 + i)Ny − 1

i · (1 + i)Ny
(ToE −OM) · Ea − CAPEX

=
ToE −OM
fannuity

· Ea − CAPEX
(5.22)

Internal rate of return The internal rate of return (IRR) is the interest rate of
Equation (5.22) where NPV = 0.
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Payback period For plant operators the payback period is of high interest. It gives
the time in years after which the plant is starting to make profit. In Equation (5.23)
from Augsburger [4] the symbol ToE describes the price paid per kWhel on the elec-
tricity market.

Ny,payback =
log
(

(ToE−OM)·Ea
(ToE−OM)·Ea−CAPEX·i

)
log (1 + i)

(5.23)

6. Settings

In this section each individual setting is presented. The settings are grouped into JSON
files. In the following each JSON file is listed.

6.1. Site settings

In Table 10 the parameters of the JSON file, specifying the settings for the site, are
shown. The root node of the file has to be called ”site”.

Parameter name Unit Data Type Range

latitude degree double [-90, 90]
longitude degree double [-180, 180]
timezoneOctMar - double [-12, 12]
timezoneMarOct - double [-12, 12]
minimal distance
between objects

meter double [0, 100]

coordinates - enum
{Cartesian,
Geo(lat & long)}

fieldboundaries

-> points
array of points in
Cartesian or Geo

array[[double,

double]]

array of size 3 or
greater

restricted areas - array

-> points
array of points in
Cartesian or Geo

array[[double,

double]]

array of size 3 or
greater

Table 10: JSON file for the site as list of its parameters.

6.2. Meteorological information

In Table 11 the parameters of the JSON file, specifying the settings for the meteoro-
logical information, are shown. The root node of the file has to be called ”meteodata”.

6.3. Heliostat settings

In Table 12 the parameters of the JSON file, specifying the settings for the heliostats,
are shown. The root node of the file has to be called ”heliostat”.
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Parameter name Unit Data Type Range

azimuth degree double [0, 360]
altitude degree double [0, 90]
irradiation W/m2 double [0, 1400]
dew point temperature °C double [-40, 50]
environment temperature °C double [-50, 60]
environment pressure Pa double [8000, 12000]
wind speed m/s double [0, 110]
day - int [0, 365]
time h double [0,24]
duration h double [0, 24]
duration multiplicity days int [0, 365]

Table 11: JSON file for the sun as list of its parameters.

6.4. Tower settings

In Table 13 the parameters of the JSON file, specifying the settings for the tower, are
shown. The root node of the file has to be called ”tower”.

6.5. Receiver settings

In Table 14 the parameters of the JSON file, specifying the settings for the receiver,
are shown. The root node of the file has to be called ”receiver”.

6.5.1. Ray-tracer settings

In Table 15 the parameters of the JSON file, specifying the settings for the ray-tracer,
are shown. The root node of the file has to be called ”ray-tracer”.

6.6. Thermal model settings

In Table 16 the parameters of the JSON file, specifying the settings for the thermal
model, are shown. The root node of the file has to be called ”thermal receiver”. Table
17 shows the different materials to choose from.

6.7. Electrical model settings

In Table 18 the parameters of the JSON file, specifying the settings for the power
block, are shown. The root node of the file has to be called ”powerblock”.

6.8. Economic model settings

In Table 18 the parameters of the JSON file, specifying the settings for the economic
model, are shown. The root node of the file has to be called ”economic”.
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Parameter name Unit Data Type Range

heliostat type name text std::string

facet surface form - enum {flat, focused}
facet surface form focused
-> ideal focal length boolean bool true; false
-> focal length meter double[] [0, 2000]

canting - enum

{none, on axis,
off axis time,
off axis angle, man-
ual}

off axis canting
-> reference - enum {datetime, azimuthaltitude}
-> datetime day x hour <int,double> [1, 365]x[0, 24]
-> azimuthaltitude degree x degree double[2] [0, 360]2

reflectivity norm factor double [0, 1]
pedestal height meter double [0, 30]
tracking method - enum {azimuth elevation}
tracking offset meter double [0, 1]

facet definition - enum
{single facets, sim-
ple rectangular}

facets(single) list std::list

-> facet position meter x meter double[2] [-50, 50]2

-> facet shape - enum {rectangular, triangular}
-> facet dimension
(rectangle)

meter x meter double[2] [0, 40]2

-> facet dimension
(triangle)

meter x degree double[2] [0, 40]x[0, 180]

-> facet rotation degree double [0, 360]
-> facet normal direction vector double[2]

facets(general)
-> number facets count x count int[2] [0, 100]2

-> facet gap meter x meter double[2] [0, 1]2

-> facet size meter x meter double[2] [0, 30]2

Table 12: JSON file for the heliostats as list of their parameters.
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Parameter name Unit Data Type Range

type - enum
{rectangular,
cylindrical}

height meter double [0, 300]
orientation angle degree double [-180, 180]
position meter double[2] [-2000,2000]2

tower rectangular
-> size meter double[2] (0, 100]
tower cylindrical

-> diameter meter double (0,100]

Table 13: JSON file for the tower as list of its parameters.

Parameter name Unit Data Type Range

type - enum
{flat cavity, cylindrical cav-
ity, cylindrical external}

height meter double (0, 100]
distance to towertop meter double [0, 100]
num cells amount int[2] [1, 1024]2

flat cavity
-> width meter double (0, 100]
-> tilt angle degree double [0, 90]
cylindrical cavity

-> arc length meter double (0, 200]
cylindrical external

-> radius meter double (0, 75]

Table 14: JSON file for the receiver as list of its parameters.

Parameter name Unit Data Type Range

ray tracing method - enum
{MC, mMC, convolution,
cell-wise convolution}

monte carlo ray multiplicator factor int [1, 100]
num rays per facet width amount int [1, 128]
num rays per facet height amount int [1, 128]
sigma sun mrad double [0, 1000]
sigma tracking mrad double [0, 1000]
sigma slope mrad double [0, 1000]

Table 15: JSON file for the ray-tracer as list of its parameters.
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Parameter name Unit Data Type Range

wall material - enum material
htf material - enum material
hot salt temperature °C double [200, 2000]
cold salt temperature °C double [200, 2000]
receiver diameter meter double (0, 150]
receiver height meter double (0, 100]
tube diameter meter double (0, 0.5]
tube wall thickness meter double (0, 0.1]
flow type number int [1, 8]
number of panels amount int [1, 100]
number of cells per panel amount int [1, 100]
pump efficiency norm factor double [0, 1]

Table 16: JSON file for the thermal model as list of its parameters.

Parameter Value

air air
stainless steel stainless steel
salt1 68% KCl, 32% MgCl2
salt2 8% NaF, 92% NaBF4
salt3 25% KF, 75% KBF4
salt4 31% RbF, 69% RbBF4
salt5 46.5% LiF, 11.5%NaF, 42%KF
salt6 49% LiF, 29% NaF, 29% ZrF4
salt7 58% KF, 42% ZrF4
salt8 58% LiCl, 42% RbCl
salt9 58% NaCl, 42% MgCl2
salt10 59.5% LiCl, 40.5% KCl
salt11 59.5% NaF, 40.5% ZrF4
salt12 60% NaNO3, 40% KNO3

Table 17: List of Materials.

Parameter name Unit Data Type Range

max thermal power MW double (0, 1000]
temperatures °C double[] [-100, 200]
loads percent double[] [0, 100]
efficiencies percent double[][] [0, 100]

Table 18: JSON file for the power block as list of its parameters.
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Parameter name Unit Data Type Range

interest rate - double (0, 2]
number staff amount int [0, 100]
plant lifetime years int [1, 200]
storage capacity MWth double [0, 1000]
tariff of electricity ¢/(kWhel) double [0, 100]

Table 19: JSON file for the economic model as list of its parameters.
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Part II.
Feasibility tests

In this part methods to reduce the computation time of the simulation are introduced.
In the following we will validate the optical model and find a good ray resolution. Then
we will discuss the bitboard resolution and preselection during shading and blocking
calculation. Furthermore we will take a look at the parallelization of the hierarchical
ray tracing method.

7. Validation of optical model

To validate the optical model of SunFlower first a cross validation with the tool SolTrace
[65] is done. Then the accuracy is opposed to the number of sun rays evaluated by both
tools when simulating an existing power plant. At last the new developed analytical ray
tracing methods in SunFlower are validated against the own Monte-Carlo approach.

7.1. Cross validation against SolTrace

To validate the results of SunFlower we compare the outcomes of test cases with those
of the Monte-Carlo ray-tracer SolTrace [65] by running each tool ten times. Each
test case represents a setup of a solar tower power plant with a unique combination of
settings. The setups therefore are designed to test the majority of setting combinations
when modeling solar tower power plants. We have defined a general setup in Table 20
which utilizes the heliostat Sanlúcar 120. The Sanlúcar 120 is used in the PS10 plant
and consists of 7 rows by 4 columns of facets summing up to roughly 120 m2 as stated
by [41]. A picture of the Sanlúcar 120 can be found in Figure 7.1. Since SolTrace can
not consider tower shading we disable the tower shading feature of SunFlower .

For each of the following test cases the accumulated optical power at the receiver is
computed for both tools and normalized by the average results of SolTrace which are
defined as reference. The original output values for the optical power can be found in
Table 24.

7.1.1. One heliostat

We designed multiple test cases for different heliostats. Additionally to the accumu-
lated optical energy we also compute the flux at the receiver. The individual heliostats
are assumed to be positioned at (0,100) in a distance of 100 meters to the base of the
tower. The different settings combinations can be found in Table 21.

The comparison of the average results can be found in Figure 7.2a. Except for
test case 1 the results of SunFlower are between the minimum and maximum of the
SolTrace results. As additional measurement we calculated the gap. This is defined as
the difference between the minimum and maximum result in ten runs of the respective
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Parameter Value
Latitude 37.442400
Longitude -6.250188
Direct Normal Irradiance 800 W m−2

Sun azimuth 180°
Sun altitude 70°
Sun Error 2.35 mrad
Slope Error 0 mrad
Tracking Error 0 mrad
Heliostat Sanlúcar 120
Heliostat Reflectivity 88%
Rays per Heliostat 168000
Ray tracing Method for SunFlower Monte-Carlo
Tower height 115 m
Tower type Rectangular Tower
Tower length 18 m
Tower width 8 m
Tower position (0,0)
Receiver type Flat Cavity Receiver
Receiver height 12 m
Receiver width 13.78 m
Receiver Tilt Angle 11.5°
Receiver distance to Towertop 2.74 m

Table 20: Basic Setup for the validation test cases. The settings are inspired by the
PS10 plant.

tool. The gap between the maximum and minimum of SunFlower averages at 2.675
Watts, while the gap in SolTrace averages at 486.483 Watts.

7.1.2. Blocking and shading

In this test case we place two heliostats. For the blocking cases the first heliostat is
positioned at (0,740) while the second is positioned at (0,750). To create a blocking
effect the sun is at 180 °azimuth and 80 °altitude. For the shading cases the first
heliostat is positioned at (0,80) while the second is positioned at (0,100). To create a
shadow the sun is at 180 °azimuth and 0 °altitude. The settings can be found in Table
22.

The comparison of the results can be found in Figure 7.2b. Except for test cases
7 and 8, the results of SunFlower are between the minimum and maximum of the
SolTrace results. The gap between the maximum and minimum of SunFlower averages
at 119.3 Watts for the blocking test cases (7-12) and 43.3 Watts for the shading test
cases (13-18) while the gap in SolTrace averages at 753.8 and 519.2 Watts respectively.
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Figure 7.1: Frontal view of the Sanlúcar 120 [41].

Test case Canting Focused facets
None On-axis Off-axis Flat Focused

1 X X
2 X X
3 X X
4 X X
5 X X
6 X X

Table 21: Unique settings combinations for each test case with one heliostat.

7.1.3. Complete solar tower power plant

In the following scenes the complete PS10 is modelled with different settings. The
heliostat positioning can be seen in Figure 7.3. The combination of the settings can
be found in Table 22.

Since SolTrace can not handle the amount of facets present in the PS10 solar tower
power plant. We abstracted the Sanlúcar 120 with a heliostat having the same mirror
area but only containing one facet. This results in the canting test cases that the facets
do not get canted. Therefore in Table 24 we have the test cases 19’ and 20’ to compare
the results of SunFlower with the results of SolTrace and the regular test cases to show
the results achieved with SunFlower on the PS10 solar tower power plant.

The results of SunFlower have an average gap of 57 811.9 Watts for test cases 19’
and 20’, whilst SolTrace has an average gap of 66 050 Watts. The average gap of
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(a) Results of test cases where one heliostat
is placed.
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(b) Results of test cases where two heliostats
are placed. An alternating sun position
ensures shading and blocking respectively.

Figure 7.2: Results of Monte-Carlo ray tracing validation on different test cases.

SunFlower for test cases 19 to 24 is 21 318.6 Watts.

7.2. Accuracy vs number of rays

When simulating solar tower power plants with Monte-Carlo ray tracing methods, it is
imperative that enough rays are traced. This is due to the law of large numbers which
Monte-Carlo methods use as their foundation. Therefore it is of interest to investigate
how many rays have to be traced to get a certain accuracy regarding the evaluation of
optical energy collected at the receiver.

We compare the outcome for the PS10 solar tower power plant for different number
of traced rays. For the comparison the complete PS10 power plant with focused facets
and off-axis canting on the Sanlúcar 120 is used. We run the setup for 1, 4, 16, 64, 256,
1 024, 4 096 and 16 384 rays per facet, this results in a overall number of 17 472, 69 888,
279 552, 1 115 208, 4 472 832, 17 891 328, 71 565 312 and 286 261 248 rays respectively.
The outcome is then normalized by the outcome when we shoot 286 261 248 rays. Each
number of rays gets traced for 16 different points a year to account for multiple sun
positions. A plot of the influence of the number of rays on the accuracy can be found
in Figure 7.4. For a total of 17 472 we have an error of less than 0.2%, which is less
than the average deviation to SolTrace from the previous test cases. When reaching
1 115 208 rays the error is less than 0.005%.

7.3. Validation of ray tracing methods

To validate our new analytical ray tracing methods, we compare the outcome of these
for the same test cases as in Section 7.1 against our Monte-Carlo method. For the test
cases 1 to 18 we take as many rays as in Section 7.1. For test cases 19 to 24 the number
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Test case Sun position Canting Focused facets
Blocking Shading None On-axis Off-axis Flat Focused

7 (180°, 80°) X X
8 (180°, 80°) X X
9 (180°, 80°) X X
10 (180°, 80°) X X
11 (180°, 80°) X X
12 (180°, 80°) X X
13 (180°, 0°) X X
14 (180°, 0°) X X
15 (180°, 0°) X X
16 (180°, 0°) X X
17 (180°, 0°) X X
18 (180°, 0°) X X

Table 22: Unique settings combinations for each test case with blocking and shading
effects.

Test case Canting Focused facets
None On-axis Off-axis Flat Focused

19 X X
20 X X
21 X X
22 X X
23 X X
24 X X

Table 23: Unique settings combinations for each test case with PS10 plant heliostat
layout.

of rays is the 99.8% point of SunFlower as evaluated in Section 7.2 of 1 ray per facet.
The convolution method is averaging below 1% error compared to the result by the
Monte Carlo method, whilst getting an error of 2% in test cases 19 and 21. The cell-
wise convolution method manages to get accurate results in test cases with no canting.
When simulating the whole PS10 power plant it has an error of 5% with flat facets and
7% with focused facets. For test cases with canting, the cell-wise convolution method
does not produce reliable results. The results are pictured in Figure 7.5.

7.4. Conclusion

In this section we measured the results given by state of the art Monte-Carlo ray-tracer
SolTrace and our tool SunFlower for 20 test cases. Each test case was run on each tool
ten times. Comparing the results of SunFlower to those of SolTrace there are only
four test cases where the results do not lie in-between the minimum and maximum of
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Figure 7.3: PS10 heliostat field layout.

SolTrace, but they are also near the results of SolTrace. Therefore we can conclude
that our tool produces reliable results.

Furthermore we showed that we even can reduce the resolution of rays on our tool.
We can recommend a resolution of 0.2 rays

m2 with an error of less than 0.05% when
optimizing whole plant layouts. Whereas we recommend 945 rays

m2 with an error of less
than 0.001% when more accurate results are needed or not whole plant layouts are
simulated.

The validation of our analytical flux calculations showed that our convolution method
produces an error of less than 1% on average. Therefore the we consider the convolution
method reliable for flux calculations. On the other hand the cell-wise convolution has
problems calculating the flux for canted heliostats. Furthermore it produces errors
of 5% and 7% when simulating flat and focused facet heliostats in the PS10 layout.
Therefore at the current stage of development we can not recommend the cell-wise
convolution.
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Test case SunFlower SolTrace
min avg max min avg max

1 82 805.3 82 838.3 82 855.6 82 349.5 82 517.1 82 639.2
2 83 602.3 83 613.6 83 623.2 83 334.6 83 498.9 83 740.7
3 81 528.7 81 582.2 81 618.0 81 145.4 81 442.6 81 731.1
4 83 141.1 83 141.1 83 141.1 82 830.3 83 133.1 83 378.0
5 83 674.8 83 674.8 83 674.8 83 356.8 83 593.8 83 846.7
6 83 674.2 83 674.2 83 674.2 83 489.4 83 747.6 84 089.2
7 73 159.0 73 219.9 73 281.5 73 304.0 73 545.7 73 958.9
8 74 447.0 74 551.7 74 620.0 74 541.9 74 909.7 75 335.3
9 70 813.0 70 890.9 70 968.3 70 500.1 70 761.3 71 093.9
10 71 323.9 71 394.3 71 497.4 70 766.9 71 256.0 71 784.5
11 81 179.1 81 203.1 81 228.0 80 807.8 81 215.2 81 644.5
12 81 156.4 81 178.4 81 199.1 80 818.5 81 156.7 81 444.7
13 78 091.5 78 123.6 78 150.5 77 628.9 77 956.0 78 165.7
14 78 876.7 78 882.9 78 891.3 78 555.1 78 758.1 78 965.5
15 67 191.4 67 245.8 67 286.5 66 853.5 67 120.5 67 390.1
16 67 271.1 67 313.1 67 361.9 66 844.4 67 174.4 67 412.7
17 79 177.3 79 177.3 79 177.3 78 697.7 78 952.6 79 246.7
18 79 176.3 79 176.3 79 176.4 78 738.6 78 977.7 79 252.7
19’ 40 390 396.0 40 444 354.7 40 499 494.0 40 144 700 40 178 400 40 211 500
19 40 146 491.3 40 155 660.2 40 163 434.6 / / /
20’ 46 874 261.2 46 876 703.6 46 880 786.9 46 838 800 46 872 300 46 904 100
20 41 086 482.7 41 096 312.3 41 113 109.6 / / /
21 42 083 186.2 42 096 105.4 42 130 365.7 / / /
22 42 858 804.9 42 872 978.9 42 890 698.9 / / /
23 46 814 649.7 46 815 879.3 46 817 764.8 / / /
24 46 855 424.5 46 856 298.3 46 857 577.5 / / /

Table 24: Exact results for each tool for all test cases.
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Figure 7.4: The impact of the number of rays on the accuracy. Each point represents
the average normalized optical power over multiple sun positions.
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Figure 7.5: Results of analytical flux computation on validation test cases.
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8. Bitboard resolution and preselection

In this section an approach to reduce the computationally expensive task of the ray
tracing is presented. In order to achieve this a subset of heliostats is used when cal-
culating shading and blocking effects in contrast to all helisotats. The subset contains
potentially shading or blocking heliostats which then need to be checked with ray
tracing. To determine this subset, a data structure is needed, which is fast in nearest-
neighbour search and in range-search[47].

For the calculation of the subset a two-dimensional index structure, called bitboard,
is used. The index structure is designed to map onto an equidistant grid, such that
the two-dimensional x-y space is covered. The grid cells then store the information if
they contain a part of a heliostat, see Figure 8.1.

To calculate the subset of potential shading or blocking heliostats we distinct in a
two-dimensional preselection, a three-dimensional preselection as well as no preselec-
tion at all. The last case results in all rays beeing traced against all heliostats to see
if they are shaded or blocked. The two-dimensional preselection works only on the
bitboard, considering each heliostat on the path of the ray to be potentially shading or
blocking. The rays get widened to build a channel with width equal to the heliostats
expansion, evaluating all cells which are in this channel. The three-dimensional pre-
selection checks whether the distance of the ray to the heliostat is smaller than the
expansion of the heliostat plus the expansion of the represented area of the ray, which
could lead to a shaded or blocked ray.

tower

heliostat 1

heliostat 2

heliostat 3

heliostat 4

heliostat 5

Figure 8.1: Bitboard index structure: Each cell stores the information whether part of
a heliostat is in this cell. [47]

A study was made over simulating 16 moments on different resolutions of the bit-
board, e.g. on different cell sizes. In Figure 8.2 the average run time on all 16 moments
is depicted for different bitboard resolutions. The fluctuations without any preselection
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are caused by the initialization of the bitboard. The 2D preselection offers a lower run
time peak whilst the 2D and 3D preselection together increase less with bigger cells,
e.g more heliostats which may be flaged for potential shading and blocking. Overall
just the 3D preselection takes 17 times longer than the other combinations while no
preselection leads to the lowest run times.
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Figure 8.2: The runtime of SunFlower over the resolution of the BitBoard.

8.1. Only preselection

Another approach to speed up the shading and blocking calculations is to rely on the
preselection without tracing any ray at all to calculate the shading and blocking effects.

The requirement for this to work is that the number of blocked or shaded rays is equal
to the number of potentially blocked or shaded rays. When using both preselections
2D and 3D preselection we made a study which should give an estimation on how many
preselected rays finally get shaded or blocked. The study showed that only 10% of the
potentially shaded or blocked rays are finally shaded or blocked. Therefore this method
would create an enormous error on the outcome and is not suitable for speeding up
the simulation process.

9. Parallelization in hierarchical ray tracing

As stated in 1.6 we use a hierarchical ray tracing approach. This can be parallelized
in two different ways, parallelization of the single stages during the ray tracing or the
whole ray tracing. Therefore the first approach was to parallelize the creation of rays,
the shading calculation, the blocking calculation and the tracing against the receiver
mesh. Whilst the second was a parallelization of the whole process.

We assumed that the second approach should lead to faster run times since we have
a better data locality in the cache of the cores. When studying the run time of these
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two different approaches, we noticed that the first approach led to higher run times
than the second, see Figure 9.1.
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Figure 9.1: The runtime of SunFlower when parallelizing single stages of the ray tracing
or the whole process.

Thus, it can be said that the second approach is the better one and is used up from
now on in SunFlower .
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Part III.
Optimization

The annual energy production of a solar tower power plant underlies multiple effects as
presented in Sections 1 to 5. In order to minimize losses during the energy production
we optimize the positioning of the heliostats. The research results of Richter et. al.
[47, 48, 49] are the foundation of the development of this part.

Heliostat field layout optimization is a continues optimization problem. This in-
troduces complexity to the already given restrictions on positioning the heliostats as
presented in Section 1.1. In the following each algorithm has to cope with the com-
plexity.

With our findings from Part II we use 0.2 rays
m2 and the Monte-Carlo ray tracing

method. Furthermore we do not use a pre-selection for the shading and blocking
calculations.

In the following the optimization problem is described. Furthermore each used al-
gorithm is described and a new multi-step optimizer is presented. Finally we optimize
a large-scale solar tower power plant.

10. Algorithms

For the optimization of the heliostat field layout we derived several algorithms from
existing research as well as new ones. In the following several patterns, which mark
the state of the art approach for designing a heliostat field, will be explained. Further
a genetic algorithm and a local search heuristic are presented.

10.1. Patterns

Patterns are the state of the art approach for building solar tower power plants. To
our knowledge, all commercial solar tower power plants use patterns to position the
heliostats. Furthermore state of the art research discusses new patterns which shall
improve the outcome of a plant. In [57] Schramek et. al. claim that the ground
coverage is more important than the actual pattern. This will lead to a closer packing
of the heliostats on the field.

In general, patterns can be described in terms of their free variables, which define
the actual positioning of the heliostats. The positioning of the heliostats can then be
optimized by setting the free variables with a modern solver like the simplex or a simple
method which discretizes the range of the free variables and tests all combinations to
find the best suitable one. We have chosen the Downhill Simplex method from [37].
In the following some of these pattern approaches will be discussed.
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10.1.1. North-South Cornfield

The north-south cornfield [57] pattern places the heliostats on straight lines. Where
every second row is staggered to achieve a closer packing. This pattern is defined by the
row and column distances (see Figure 10.1). To achieve the staggering the distances
can be parametrized by:

drow
i = arow · ri + brow, (10.1)

dcol
i = acol · ci + bcol. (10.2)

Where ri denotes the y-value of row i and ci denotes the x-value of column i. There-
fore yielding the following free variables for optimization:

arow linear factor for the row distance
brow constant factor for the row distance
acol linear factor for the column distance
bcol constant factor for the column distance

10.1.2. Radial staggered

The radial staggered pattern is based on the intuitive idea of arranging the heliostats
in rings around the tower, such that the heliostats in every second ring are staggered in
order to achieve a closer packing. This pattern is currently used in various commercial
solar tower power plants, see for example the Khi One in Figure 10.2. An advantage
of this pattern is, that it naturally includes paths for cleaning trucks. This should not
be underestimated in practice [42].

Figure 10.3 shows schematically how the pattern is constructed. The heliostats are
placed in rings around the tower in a staggered manner. Several rings are grouped into
zones. The zones are enumerated from the inside to the outside by Zi and the rings
within zone Zi by Ri,j. The rings within one zone have the same number of heliostats,
which is determined by the requested distance dsep of the innermost ring of each zone.
The distance between two zones is larger than the distance between rings, since at this
point the heliostats are not properly staggered.

The pattern offers several degrees of freedom:

• when to start a new zone

• distance in-between rings and zones

The number of heliostats per ring can be computed by:

Ni =

 2π

2 · asin
(
dsep

2ri,1

)
 . (10.3)
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Figure 10.1: This sketch illustrates the general structure of the north-south cornfield
layout. Heliostats are placed on rows in staggered columns. The rows are
enumerated from the front to the back, the columns symmetrically from
the center to the outside.

We reduce the dimension of the corresponding search space as follows: For the
starting of a new zone we merely try two different heuristics, resulting in two distinct
patterns. The first option is to start a new zone whenever the number of potential
heliostats per ring doubles. This heuristic was proposed by Collado et. al. [13]. The
second option compares the number of heliostats per space used, in the case a new ring
in the previous zone is added and when a new zone is started. It then picks the better
of the two values. Formally, we compute Equation (10.4), where N1 is the number of
heliostats per ring in the current zone and N2 the number in a hypothetical new zone.
This heuristic was proposed by Siala and Elayeb [59].

N2

R2
2π −R2

0π
≥ N1

R2
1π −R2

0π
(10.4)

Furthermore, we do not optimize each ring distance individually, but parameterize
it as a linear function of the current radius, i.e. dRing

i,j = aring · ri,j + bring. The distance
between zones is directly coupled to the ring distance. Lastly, the distance between
heliostats on a ring is also modeled as a linear term of the current radius, i.e. dsep

i =
asep · ri,1 + bsep. This linear parametrization enables us to generate a field which is
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Figure 10.2: This is a picture from the khi solar power plant in South Africa [21].

denser in the center and less dense on the outside, while still having a manageable
number of free variables. This results in the following variables for optimization:

aring linear factor for ring distance
bring constant factor for ring distance
asep linear factor for heliostat distance
bsep constant factor for heliostat distance

10.1.3. Hexagon

The radial staggered pattern introduced in the previous section has several shortcom-
ings. It wastes some space due to the fact that the number of heliostats per ring is
constant within one zone while the rings continuously increase. It would be desirable
to also increase the number of heliostats continuously. Additionally, radial patterns
are more complex to build than straight ones and they are more difficult to maintain,
due to the bended paths which the cleaning truck has to use. This all adds up to the
costs of the plant, which makes it less profitable [42]. A possible improvement is to
approximate the rings by hexagons. This has been suggested in patent by Pham et.
al. [42] and the resulting hexagon pattern is also mentioned in other publications [3].

Figure 10.4 shows the structure of this pattern. The heliostats are placed on concen-
tric hexagons Hi around the tower. Each hexagon has one more heliostat per edge than
the previous one, resulting in Ni = N0 + 6i heliostats on Hi, were N0 is the number
of heliostats on the first ring. The heliostats are distributed regularly on the sides of
the hexagon, such that the distance from the corner to the first heliostat is half the
distance between two heliostats. This results automatically in a staggered layout with
no two heliostats in adjacent rows forming a line with the tower. Note, that the side of
each hexagon equals the distance of its corners to the tower, and the ratio between this
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Figure 10.3: This sketch illustrates the general structure of the radial staggered layout.
The heliostats are arranged on rings R1,1 − R2,2 around the tower. The
radius of a ring Ri,j is denoted by ri,j. The distance between rings Ri,j

and Ri,j+1 is denoted by dRing
i,j . The rings are subdivided in zones Z1 and

Z2. The distance between these zones is denoted by dZone
1 . The distance

between two heliostats on the same ring is dsep
i and corresponds directly

to the number of heliostats placed on this ring.

distance and the radius ri of a hexagon is ki
ri

= 2√
3
. From this we can compute, that

the distance between heliostats on ring Hi is ci = 2ri√
3(N0+i

. Furthermore, the distance

dsep between heliostats on adjacent hexagons can be calculated as dsep =
√

(1
2
cj)2 + d2

i

where j is either i or i+ 1.
The free variables in this pattern are the number N0 of heliostats on the first hexagon

and the distances di between the individual hexagons.
In our implementation, we start with a small hexagon with only one heliostat per

edge. This hexagon might be within the circle around the tower which is blocked by
the tower, the powerblock and other buildings. Therefore it may be removed by the
post processing working on these constraints. The distances between hexagons are
parametrized analogously to the radial staggered setting by di = a · ri + b. This yields
the following variables for optimization:

62



a linear factor for the hexagon distance
b constant factor for the hexagon distance
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Figure 10.4: This sketch shows the general structure of the hexagon pattern. All he-
liostats are placed on the edges of the concentric hexagons. We define ri
by the distance from the center to the midpoints of its edges and ki by the
distance to its corners. Since hexagons are composed of regular triangles,
its edges also have length ki. We denote the distance between Hi and Hi+1

measured at the midpoints of the edges by di. The distance between two
heliostats on the hexagon Hi is ci and the distance of a heliostat on Hi to
the next corner is 1

2
ci. The distance to a heliostat on the next hexagon

is dsep (which is the distance of the heliostats closest to the center of the
edge).

10.1.4. Spiral

A disadvantage of all previous patterns is, that their regularities still waste space while
at the same time not avoiding blocking and shadowing. By studying sunflowers, it
turned out that their spiral arrangement is much better in this task. Therefore, Noone
et. al. [39] suggest transferring this pattern to the heliostat field and reports good
results.

In this pattern, the position of each heliostats is determined by its angle and radius.
For the angle of the k-th heliostat we use αk = 2πϕ−2k where ϕ = 1+

√
5

2
is the golden

ratio. And for its radius we use rk = akb. The resulting spiral as shown in Figure 10.5
is called the golden spiral.

This pattern has naturally two free parameters for optimization:

a linear factor (”zoom”)
b exponential factor (”density”)
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Figure 10.5: This sketch illustrates the general structure of the biomemetic pattern.
All heliostats are placed on the spiral around the tower(denoted by �).
The angle distance between adjacent heliostats is α.

10.1.5. Contracted honeycombs

The following pattern has, to our knowledge, not been suggested for heliostat fields,
but originates from logistics [12]. There, the setting consists of a center and a number
of local distribution points. The task is to minimize both the distance of all distribution
points to the center and the distance of all points in the area to the closest distribution
point. It is known that contracted honeycombs are a good solution for this scenario,
which is rather intuitive if we consider that regular hexagons (often referred to as
honeycombs) form a lattice that equally divides the plane.

For heliostat fields we also value heliostats which are closer to the tower, and the
area which is not covered by heliostats should be minimized. Although the logistics
scenario does not consider effects like blocking and shading, it might nevertheless be a
good candidate.

The pattern is based on a regular hexagon grid, but shifts all points using

z′ = z2 ∀z ∈ C ⇐⇒
(
x′

y′

)
=

(
x2 − y2

2xy

)
∀
(
x
y

)
∈ R2, (10.5)

resulting in Figure 10.6.
The only free parameter in this pattern is the zoom, i.e. the dimension of the
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Figure 10.6: This sketch shows how the points in the original hexagon grid (depicted
in black) are shifted by the transformation z2 (resulting points shown in
red). Since this quadratic function is symmetric, it results in only three
points.

underlying hexagon grid. We also considered using a more general form z′ = zp with
p as a free parameter, but experiments showed this would yield rather strange results.

10.1.6. JSON file

The JSON File for a pattern contains a node named by the pattern. For all patterns
only the settings for the downhill simplex [37] have to be chosen, see Table 25.

Parameter name Unit Data Type Range

tol factor double [0, 1]
max iterations number double [0, ∞)

Table 25: JSON file for the settings of the downhill simplex.

10.2. Genetic algorithm

The genetic algorithm which we use in this work is a deviate from the genetic algo-
rithm in Netz [38]. We use the discrete version of the algorithm which bases on the
extensible genetic algorithms library called GeneiAL [19]. In this section we will use
the expressions gene for a position, chromosome for a position set and population or
generation for a set of positions sets. The genetic algorithm uses eight components
that are presented in order of execution. In Figure 10.7 the pipeline for the genetic
algorithm is shown.

1. Chromosome Factory

2. Stopping Criteria

3. Selection Operation

4. Coupling Operation

5. Crossover Operation
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6. Choosing Operation

7. Mutation Operation

8. Replacement Operation

Figure 10.7: This sketch revised from Netz [38] shows how the components in the ge-
netic algorithm work together.

10.2.1. Discrete Value Mapping

In order to connect the genetic algorithm to our problem we need to define a chromo-
some type which allows for comparing two different chromosomes. Netz [38] defined
a discrete value mapping, which allows for comparing. To achieve this we discretize
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the available area into ρ2 many cells, where ρ defined by the resolution. The available
positions can then be described by:

xd = a · xmax − xmin

ρ
+
xmax − xmin

2 · ρ with a ∈ [0, ρ− 1] ∧ a, ρ ∈ N, (10.6)

yd = b · ymin − ymin

ρ
+
ymax − ymin

2 · ρ with b ∈ [0, ρ− 1] ∧ b, ρ ∈ N. (10.7)

With these xd and yd we can build a chromosome γd:

γd = {{xd1, yd1}, {xd2, yd2}, · · · , {xdn, ydn}} (10.8)

where n corresponds to the number of heliostats to be placed. With this we can
build different chromosomes to a population of size Npop.

10.2.2. Chromosome Factory

The Chromosome Factory is used to create random, but sound chromosomes. In the
very first step it provides the genetic algorithm with a current population (Current
Generation Genome Pool, see Figure 10.7).

Soundness is provided by the chromosome factory by an iterative process which adds
heliostats in each iteration. The first step of an iteration is the generation of a random
position in the field boundaries. This position is then added to the chromosome and
the chromosome is checked against the model. If the chromosome only contains valid
positions the currently generated position is kept. Otherwise it gets removed from the
chromosome. This behavior is shown in Listing 1.

1 Chromosome ChromosomFactory : : generateChromosome ( )
2 Chromosome chrom ;
3 whi le chrom . s i z e ( ) < N genes do
4 Pos i t i on pos = generateRandomPos ( )
5 chrom . add ( pos )
6 i f chrom . v a l i d ( ) then
7 noop
8 e l s e
9 chrom . remove ( pos )

10 end i f
11 end whi le

Listing 1: Chromosome Factory Pseudo-Code

The chromosome factory also consists of a fallback mode if too many attempts fail to
generate one new position. This fallback mode then iterates all positions in a random
direction. If a valid position is found along the way it moves back to its normal
behavior, else it assumes the field to be to dense and will terminate.
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10.2.3. Stopping Criteria

There are multiple ways to define stopping criteria for the genetic algorithm. For this
genetic algorithm we allow a combination of to common criteria which are a maxi-
mum number of iterations (e.g. generations) and a optimal fitness value. Other more
complex stopping criteria are a stagnation recognition or a possible future progress
detection.

10.2.4. Selection Operation

Each generation is ordered by its fitness. To determine the fitness of a gene (e.g.
a position) we use the optical efficiencies. The fitness of a chromosome is then the
average fitness of its genes. The selection operator determines chromosomes which are
used for the crossover operation (see Section 10.2.6).

The selection operation provides a set of elite chromosomes which are passed to the
replacement operation (see Section 10.2.9) without modification and passes a selection
pool to the coupling operation (see Section 10.2.5). The first set provides Elitism whilst
the second shall create diversity. We use a ”roulette wheel selection” [38] where each
chromosome is picked by probability ps,i depending on their fitness. For given fitness
fi the probability of chromosome i to be selected is

ps,i =
fi∑Npop

j=1 fi
. (10.9)

10.2.5. Coupling Operation

We use a random coupling operation to find disjunct pairs within the selection pool.
The resulting pairs are then forwarded to the crossover operation.

10.2.6. Crossover Operation

The crossover operation or recombination is a difficult task in an optimization prob-
lem with interactive restriction between genes, namely the proximity restriction of
two positions. Therefore classic crossover operations like one-point crossover, N-point
crossover or uniform crossover (see Figure 10.8) are not applicable on our problem.

We use a one-step crossover from [49] to solve our proximity restrictions and get
sound offspring. The one-step crossover first merges both chromosomes into a combined
set. All proximity restrictions are then solved by removing those of the second parent
that are in conflict. After this the set is reduced to the n best positions/genes where
n is the amount of heliostats to be placed. Figure 10.9 shows the one-step crossover
method.

10.2.7. Choosing Operation

The introduction of new aspects through mutation to existing chromosomes can lead to
worsen chromosomes with an overall good fitness. Therefore only some chromosomes

68



Figure 10.8: Classical crossover operations: one-point crossover(’flips’ both chromo-
somes at one point), N-point crossover(’flips’ chromosomes at n points)
and uniform crossover(picks random genes on a uniform distributions from
both parents) [38]

Figure 10.9: One-step crossover as defined in Netz [38]

of the offspring pool are selected. The choosing operation divides the offspring pool
into a set of chromosomes which get mutated and one set which does not get mutated.
Each chromosome is chosen at random with possibility pchoosing.

10.2.8. Mutation Operation

Mutation is used to amplify diversity by changing the chosen chromosomes. Ideally
only a small portion of each chromosome is changed, so that the majority of the genetic
information stays the same.

For each chromosome in the chosen set we choose a nmut at random such that nmin
mut ≤

nmut ≤ nmax
mut . Then nmut positions/genes are chosen at random to be mutated, where

positions/genes with lower fitness have a higher chance to be chosen because they have
a higher chance to be improved by the mutation. Therefore we increase the likelihood
of the chromosomes fitness to raise during mutation.

For position pi = (x, y) a minimal value δmin is calculated in x- and y-direction to
ensure that the mutated position pmut is indeed in a different cell. The computation
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for the minimal values is

δminx =
xmax − xmin

2ρ
, (10.10)

δminy =
ymax − ymin

2ρ
. (10.11)

Then random variables rx and ry are picked which decide in which directions the
position is altered. We calculate a random position (xr, yr) with

xr =

{
Random(x+ δminx , xmax), if rx > 0

Random(xmin, x− δminx), if rx ≤ 0
(10.12)

yr =

{
Random(y + δminy , ymax), if ry > 0

Random(ymin, y − δminy), if ry ≤ 0
(10.13)

With this we can calculate the mutated position pmut = (xmut, ymut) with

xmut = (x+ (rx · δminx)) · (1− µ) + (xr · µ) (10.14)

ymut = (y + (ry · δminy)) · (1− µ) + (yr · µ) (10.15)

where µ is the mutation rate.
Now the mutated position pmut has to be transformed into a discretized mutated

position pdmut. For this we calculate a cell index c with

c = (crow · ρ) + ccolumn (10.16)

where

crow =

⌊
ymut

|ymax−ymin|
ρ

⌋
(10.17)

ccolumn =

⌊
xmut

|xmax−xmin|
ρ

⌋
. (10.18)

With the cell index c we can calculate the discretized mutated position pdmut =
(xdmut, y

d
mut) with

xdmut =
c− (cmodρ)

ρ
· |xmax − xmin|

ρ
+
|xmax − xmin|

2 · ρ (10.19)

ydmut = cmodρ · |ymax − ymin|
ρ

+
|ymax − ymin|

2 · ρ (10.20)

During the mutation operation we ensure that all restrictions are satisfied and no
cell contains more than one position.
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10.2.9. Replacement and Replenish Operation

The population Γnext for the next generation is assembled by the replacement and
replenish operation. Let Γcurrent be the population after the mutation operation from
the previous section. We delete the worst chromosome from Γcurrent until

|Γcurrent| = Npop −Nrand, (10.21)

where Nrand is the number of randomly added genes to the population.
Since the fitness of randomly generated chromosomes after a few generations is worse

than most chromosomes, they would be removed when reducing the set to a size of
Npop chromosomes. To keep the diversity of randomly generated chromosomes the
replenishing is done after the removing of the worst chromosomes. The population of
the next generation is then

Γnext = Γcurrent ∪ {γ1, γ2, . . . , γNrand
}, (10.22)

where γ1, γ2, . . . , γNrand
are randomly generated chromosomes from the chromosome

factory (see Section 10.2.2). The diversity is then moved to next generations by the
coupling and crossover operations, where the randomly generated chromosomes could
have an impact.

10.2.10. JSON file

In Table 26 the parameters of the JSON File specifying the settings for the genetic
algorithm are shown. The settings lie within a node called ”ga”.

Parameter name Unit Data Type Range

resolution number int [Npop, ∞)
amount chromosomes per
generation

number int [1, ∞)

mating pool size number int [1, Npop]
offspring pool size number int [1,Npop]
choosing probability propability double [0,1]
min mutation genes number int [1, max mutation genes]
max mutation genes number int [min mutation genes, Npop]
mutation rate factor double [0,1]
elitism number int [1,Npop]
amount random genes number int [0,Npop]
max iteration number int [1,∞)
max fitness double [0,1]
chromosome factory max
creation attempts

number int [1,∞)

Table 26: JSON file for the settings of the genetic algorithm.
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10.3. Variable neighborhood descent

Variable neighborhood descent (VND) is a variant of the variable neighborhood search
(VNS) proposed by Hansen and Mladenović [22, 23] which utilizes defined neighbor-
hoods to search a local optimum in respect to all neighborhoods. For a defined order of
neighborhoods VND starts with the first neighborhood and searches a better solution
in this neighborhood. If a better solution was found the algorithm starts again with the
first neighborhood. Otherwise it progresses to the next neighborhood. Those steps are
repeated until no better solution can be found and the last neighborhood is reached.
A pseudo-code implementing this principle is presented in Listing 2.

1 // Input : i n i t i a l s o l u t i o n s0

2 s e t k := 1 ( neighborhood counter ) , s := s0

3 repeat
4 repeat
5 search neighborhood Nk (s) f o r improving neighbor
6 s′ ∈ Nk (s) with eval (s′ ) > eval (s)
7 i f improving neighbor s′ found then
8 s e t s := s′

9 s e t k := 1
10 u n t i l no improvement found
11 s e t k := k + 1
12 u n t i l k > kmax

13 // Output : l o c a l optima s r egard ing a l l ne ighborhoods

Listing 2: VND Pseudo-Code

10.3.1. Neighborhoods

We define a neighborhood as the all sets of heliostat positions which can be reached
when moving each heliostat by a certain distance. Since this leaves infinite many
possibilities for each heliostat we discretize the direction in which the heliostats can
move. We implemented the possibility to search in 4, 8, 12 or 16 directions. These
directions are equidistant, e.g. {N, E, S, W} for four directions.

We regard more distances close to the heliostat position and few far away. The
calculation for the distances is

e
log(8∗dhelio)

N−1
·i, i ∈ {1, .., N − 1}, (10.23)

where N is the number of neighborhoods. The ordering of the neighborhoods is reverse
to the ordering of the distances. Therefore leading to neighborhoods regarding bigger
distances first.

10.3.2. JSON file

In Table 27 the parameters of the JSON File specifying the settings for the variable
neighborhood descent algorithm are shown. The settings lie within a node called ”vnd”.

72



Parameter name Unit Data Type Range

max iterations number int [0, ∞)
min improvement factor double [1.0,2.0]
num neighborhoods number int [1,20]
move directions number int {4,8,12,16}

Table 27: JSON file for the settings of the variable neighborhood descent algorithm.

11. Multi-Step optimizer

The idea behind a multi-step optimizer is to combine the advantages of different algo-
rithms to shorten the overall runtime whilst getting the best possible outcome. The
multi-step optimizer chains different algorithms passing results in between algorithms.
This leads to increasing the overall runtime, therefore we adjust the algorithms in such
a way that they stop earlier or assume a better initial solution.

11.1. Settings

The settings of the multi-step optimizer decide the overall runtime and the outcome by
defining which optimization algorithms run in which order. Furthermore the settings
allow for defining the algorithm behavior as defined in Section 10 for each algorithm
specifically.

Optimization algorithm pipelines The pipeline defines which and in which order
the optimization algorithms should be executed. Thereby passing the outcome of the
first algorithm as initial solution to the second algorithm and so forth. There are
two exceptions for passing the outcome. First the pattern algorithms do not need an
initial solution, therefore they don’t get passed the last result. And second the genetic
algorithm can handle more than one initial solution, therefore it gets past all outcomes
of earlier algorithms in the pipeline.

11.1.1. JSON file

In Table 28 the parameters of the JSON File specifying the settings for the multi-step
optimizer are shown.

Parameter name Unit Data Type Range

chain - enum[]

{ns-cornfield, radial-staggered, hexagon, spi-
ral, contracted-honeycombs, vnd, genetic-
algorithm}

Table 28: JSON file for the settings of the variable neighborhood descent algorithm.
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12. Optimizing large-scale solar tower power plants

12.1. Used algorithms

We use all of the patterns described in Section 10.1, the genetic algorithm of Section
10.2 and the variable neighborhood descent of Section 10.3. As stated in Section 11.1
the pattern algorithms do not need initial solution. Therefore the outcome of each
pattern will be discussed individually.

The genetic algorithm was run with the patterns as initial solutions as well as no
initial solution. The local search was run on the outcome of the genetic algorithm
initialized with patterns.

In Table 29 the settings for the complete pipeline from patterns to the genetic algo-
rithm to the variable neighborhood descent can be found. We chose the same stopping
criteria for all patterns. The settings for the genetic algorithm without an initial solu-
tion are the same but the pipeline only consists of the genetic algorithm.

Parameter Value

pipeline
[spiral, radial-staggered, ns-cornfield,
contracted-honeycombs, hexagon, vnd,
genetic-algorithm]

tol 0.0001
max iterations (patterns) 600
resolution 8000
amount chromosomes per generation 100
mating pool size 10
offspring pool size 10
choosing probability 0.1
min mutation genes 3
max mutation genes 15
mutation rate 0.75
elitism 10
amount random genes 10
max iterations (genetic algorithm) 100
max fitness 1.0
chromosome factory max creation attempts 100
max iterations (local search) 10
min improvement 1.0001
num neighborhoods 5
move directions 8

Table 29: Settings for the multi step optimizer.

12.2. Test case PS10

The optimization of the heliostat positions for the PS10 solar tower power plant regards
624 heliostats, each of which has a mirror area of about 120 square meters. The area is
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bounded by [−400, 400] in x-direction and [−10, 800] in y-direction. We use 16 optical
moments to calculate an annual integration. The original position layout achieves an
average optical efficiency of 80.04%.

12.2.1. North-South Cornfield

The north-south cornfield pattern achieved an average optical efficiency of 77.58% in
roughly five hours. The resulting positions are displayed in Figure 12.1a.

12.2.2. Radial Staggered

The radial staggered pattern achieved an average optical efficiency of 79.3% in roughly
three and a half hours. The resulting positions are displayed in Figure 12.1b.

12.2.3. Hexagon

The hexagon pattern achieved an average optical efficiency of 79.66% in roughly two
hours. The resulting positions are displayed in Figure 12.1c.

12.2.4. Spiral

The spiral pattern achieved an average optical efficiency of 78.93% in roughly three
and a half hours. The resulting positions are displayed in Figure 12.1d.

12.2.5. Contracted Honeycombs

The contracted honeycombs pattern achieved an average optical efficiency of 78.88%
in roughly two hours. The resulting positions are displayed in Figure 12.1e.

12.2.6. Genetic algorithm

The genetic algorithm did not manage to improve the result when initialized with the
patterns. Therefore the best solution after 100 generation was the positioning of the
heliostats in the hexagon pattern (see Figure 12.1c).

Without initial solutions the genetic algorithm achieved an average optical efficiency
of 71.65% after 100 generations. The resulting position set is depicted in Figure 12.2a
and the fitness plotted over the generations is depicted in Figure 12.2b.

The genetic algorithm ran for about two days to finish 100 generations in both cases.

12.2.7. Variable neighborhood descent

The variable neighborhood descent terminated after three iterations with an average
optical efficiency of 79.55%. Figure 12.3 shows the position set produced by the vari-
able neighborhood descent with the hexagon solution as initial solution. The variable
neighborhood ran for roughly one day per iteration.
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12.3. Economical evaluation

Table 30 shows the final calculated values for the PS10 original layout and our opti-
mized layout. In both cases the investment cost equals 61.65Me.

Layout AEP IRR LCOE NPV Payback period

Original 33.77GW 0.0559 18.73¢/(kWhel) 32.11Me 12.69a
Optimized 33.48GW 0.0543 18.89¢/(kWhel) 30.87Me 12.88a

Table 30: Settings for the multi step optimizer.
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(e) The resulting positions of the con-
tracted honeycombs pattern.

Figure 12.1: Resulting heliostat positions from patterns
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Figure 12.2: Genetic algorithm performance
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Figure 12.3: Resulting heliostat positions from variable neighborhood descent
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Part IV.
Summary

In Part I we presented mathematical the model. In Part II we validated our optical
model against state of the art software SolTrace [65] and showed that the our results
are correct. Furthermore we evaluated ray resolutions, preselections and data locality
to achieve a lower runtime whilst minimizing the error. With this low runtime high
accuracy model we showed optimization processes for the heliostat field layout in Part
III.

13. Conclusion

A new model for evaluating solar tower power plants was presented. The advantages
of this new model lies in its extensive evaluation to achieve a low cost high gain policy
that make it suitable for optimization problems.

An accurate description of each aspect of the model was given in Sections 1-5. The
presentation included a mathematical description of the scene as well as a description
of how we trace a ray. The thermal model was explained with all loses and heat
propagation. A bilinear interpolation is used to simulate the power block.

The cross validation against the state of the art ray-tracer SolTrace showed that
we achieve more accurate and reliable results. In 17 of 20 test cases our results were
between the SolTrace maximum and minimum over 10 runs. The calculated gap for
each test case was smaller in our tool than the one in SolTrace for the same amount of
runs. Summarized our tool is faster and more accurate for each test case. Unfortunately
the cell-wise convolution ray tracing method seems not applicable on canted heliostats.
However the convolution method yields reasonable results and is a good candidate for
further investigation and analytical optical power calculations.

It was shown that preselections for shading and blocking calculations are not efficient
with the developed ray tracing approach. Furthermore, it was shown that data locality
during hierarchical ray tracing as well as a reduction in the number of rays improve
the runtime of the model. We found out that roughly 1 ray per facet (≈ 5m2) suffices
to optimize a solar tower power plant with an error of less than 0.05% and a more
precise evaluation with an error of less than 0.001% is achieved when tracing 945 rays

m2 .
The optimization of solar tower power plants with state of the art pattern-based

optimization produces good results. For an optimization on the Plant Solar 10 we
achieved scores of 77.58% for a north-south cornfield, 78.88% for contracted honey-
combs, 78.93% for a spiral, 79.3% for a radial staggered and 79.66% for a hexagon
layout without post processing. These results are almost equal to the original layout
of the Plant Solar 10 in Sevilla which achieved 80.04% efficiency.

The genetic algorithm did not produce good results. The parameters chosen for
the genetic algorithm may not be optimal for the given problem. When considering
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a genetic algorithm with its high runtime a suitable initial solution set with the right
parameters has to be found.

The variable neighborhood descent achieved an average efficiency of 79.55%. Right
now it is unclear how our implementation was able to worsen the result from the 79.66%
of the hexagon solution.

14. Outlook

Despite the accomplishes of our model we can define new goals for the future. In the
following for most parts of our tool an outlook is given what can or will be implemented
in the near future.

The Sun can make use of Buie’s sunshape model [10, 11]. This would allow us
to compute the effective size of the image on the receiver produced by the incoming
sunlight.

The ray-tracer is a complex technology which can be further optimized and extended.
We can introduce a two axis slope error or even a map of different slope errors to
calculate different optical errors depending on the position of the traced ray. Further
more a GPU accelerated ray tracing and the usage of new technologies like NVIDIA
RTX [14] have to be studied in order to determine their usefulness in this field.

An annual integration should consider each hour of the year. Since this is not
suitable for optimization a study has to be carried out which integration domain and
resolution to choose to best approximate the summation of each hour of the year.

Pattern-based optimization is currently the state of the art in layout optimization
for heliostat fields. Our patterns only depend on their parameters, whilst some of them
could be removed and implicitly handled in the pattern generation. This could not
only yield to better results, but also achieve lower run times during an optimization
through a solver since it has less free variables to optimize.

Despite the good result of our downhill simplex solver more solvers can be imple-
mented in order to find the best one suitable for this problem, e.g. the one with a
low run time and possible best outcome. Furthermore, a parameter study has to be
carried out to find out which stopping criteria fits our problem best, e.g. which tol and
max iteration, see Section 10.1.

The genetic algorithm may not be suitable for this problem, since the calculation
is just too complex and costly for the amount of generations and population needed.
This may be due to the fact that uniformly random generated positions are the most
far from the actual optima. This in mind the chromosome factory from Section 10.2.2
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could consider choosing random parameters for random patterns. Thereby introducing
diversity in patterns and in solution space.

Diversity in optimization runs for different CSP may need more complex stopping
criteria like the stagnation recognition or possible future progress. The simple max
iterations or optimal fitness value stopping criteria may run too long for less positions
or terminate too early for more positions to optimize.

The coupling operation chooses at random but maybe it is more suitable to choose
via a metric which finds the most opposing chromosomes and pair them since they can
create the most diversity.

A parameter study has to be carried out to find a suitable set of parameters for our
problem. If there is no such parameter set, the genetic algorithm may be to costly for
this optimization problem and should be considered bad practice when compared to
pattern-base optimization.

Variable neighborhood descent can profit from a smarter approach where a first fit
instead of a best fit method is used in order to reduce the run-time. Furthermore we
have to check against the implementation how worse results can be accepted.

Less evaluation will result in less run-time. Therefore if only one or a few local
positions are evaluated it may suffice to only reevaluate a subset of the current solution.
A method can be developed to find a suitable subset for less than a defined number of
heliostats changed. Then a study has to find out, if this results in less run time, e.g.
if the method is faster than the traded run time. Also the validity of said method has
to be proven.

Furthermore, an evaluation always carries out all calculation despite the requested
value. A feature could be implemented, only calculating the value needed and dropping
unnecessary calculations, thereby minimizing the run time.

The economic evaluation calculates investment costs which are too high compared
to the ones given by Osunaa et al. [41]. In order to solve this the annual integration
has to be validated. Afterwards the settings of the economic model, see Table 19, need
suitable values.
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