
The present work was submitted to the LuFG Theory of Hybrid Systems

MASTER OF SCIENCE THESIS

OPTIMIZING REACHABILITY ANALYSIS

FOR NON-AUTONOMOUS HYBRID SYSTEMS

USING ELLIPSOIDS

Phillip Florian

Examiners:
Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Additional Advisor:
Stefan Schupp

Aachen, September 28, 2016

Abstract

Hybrid systems are systems with a mixed discrete and continuous behavior.

Due to their increasing occurrence in industry and science hybrid systems are

often safety critical. Because of that, a lot of e�ort was and still is put into

developing various algorithms and tools for hybrid systems veri�cation.

In this thesis we give an introduction to hybrid systems and to �owpipe-based

reachability analysis of those systems. We specially focus on optimizing this

reachability analysis in the presence of support functions by reducing their com-

plexity. Further, we propose a new way of computing the set of reachable states

on hybrid systems with external in�uence by usage of ellipsoids. We then eval-

uate our optimizations showing the general applicability of our approach and

make some suggestions for further research in this area.

iii

iv

Eidesstattliche Versicherung

___________________________ ___________________________
Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________
Ort, Datum Unterschrift

vi

Acknowledgments

At this point I would like to thank all the people that made my whole studies an
awesome time. First of, I have to thank my parents, my girlfriend and especially Tim
for for all the support they gave me. Without them I would probably have dropped
out at some point. Further, I would like to thank everyone working at the i2 chair
here at RWTH Aachen for their support, advices and knowledge which they provided
over the last 5 years.

Finally, a special thanks to my advisor Stefan Schupp who guided me trough the
work on this thesis and always had time to help me solve the problems that were
emerging during the last semester of my studies.
You are all awesome people and I doubt that I would stand where I am today if it
was not for you.

Thank you.

vii

viii

CONTENTS

1 Introduction 11

2 Preliminaries 13

2.1 Hybrid Systems . 13

2.2 Flowpipe-Based Reachability Analysis 15

2.2.1 Flowpipe-Computation . 17

2.2.2 Wrapping E�ect . 21

2.3 Set Representation . 22

2.3.1 Polytopes . 23

2.3.2 Support Functions . 26

2.3.3 Ellipsoids . 29

3 Optimizations for Non-Autonomous Systems Using Ellipsoids 33

3.1 Computation of the Non-Autonomous Part 35

3.1.1 Exact Arithmetic . 36

3.2 Optimizations for Reachability with Support Functions 39

3.2.1 Reduction of Linear Transformation Chains 39

3.2.2 Reduction of Jump Complexity 40

4 Experimental Results 45

4.1 Benchmarks . 45

4.1.1 Bouncing Ball . 45

4.1.2 Two Tanks . 46

4.1.3 Rod Reactor . 47

4.1.4 Cruise Control . 48

4.1.5 5-Dimensional Linear Switching System 48

4.1.6 Three-Vehicle Platoon . 49

4.1.7 Filtered Oscillator . 50

4.2 Evaluation . 51

5 Conclusion 57

5.1 Future Work . 57

ix

CONTENTS CONTENTS

Bibliography 58

A Set Operations 61

B Additional Information for Benchmarks 63
B.1 5-Dimensional Linear Switching System 63
B.2 Three-Vehicle Platoon . 64
B.3 Cruise Control . 64

x

CHAPTER 1
INTRODUCTION

Hybrid systems are systems with a combined discrete and continuous behavior. Typ-
ical examples are physical systems controlled by discrete controllers which can be
found in various places like aviation, control engineering or medicine, just to name a
few [ACHH93, DA01, GG09].
Due to the increasing number of hybrid systems in the �elds stated above, safety
veri�cation for those systems becomes more and more important. Therefore, an in-
creasing request for formal methods for veri�cation can be observed.
Purely discrete systems as well as purely continuous systems have already been re-
searched for years and thus, there are well-established ways of veri�cation available for
those systems. For hybrid systems however there are just few veri�cation techniques
with a lot of space for improvements due to the relatively young age of this �eld of
research.

Reachability analysis of hybrid systems has been a major �eld of research in hybrid
systems for over a decade now and it is still of interest. Currently there are three
di�erent approaches for reachability analysis. The approaches are SMT-solving, the-
orem proving and �owpipe computation [GT08, GG09]. Flowpipe-based approaches
are often using geometric objects to represent reachable sets including polyhedrons
and ellipsoids or symbolic representations, such as support functions or Taylor mod-
els [GGM06].

Independent of the techniques used for reachability analysis, the goal is always the
same. Given a system we want to verify whether a set of bad states is reachable.
A general approach is to start with the initial states of the system and observe the
evolution of the system in an iterative way. In each such state we then check if the
properties are satis�ed. If we discover a bad state to be reachable we call the system
unsafe. If non such state is reached we call it safe.

Reachability analysis for hybrid systems is even more complex than for most other
systems due to the combination of discrete and continuous behavior. The system can
either stay in its current mode for a certain time or change its mode instantly. In
the �rst case the state of the system evolves over time, in the second case the state

11

CHAPTER 1. INTRODUCTION

changes instantly. Due to this continuity the reachability problem becomes undecid-
able for some classes of hybrid systems [HKPV95]. Thus, safety veri�cation of hybrid
systems is a complex �eld with many aspects to take into account.

At the current state, the most one of the most popular tool is SpaceEx [FGD+11]. It
is capable of verifying most hybrid systems by means of �owpipe-based reachability
analysis using support functions. UsingHyPro, a library for state set representations,
we created the prototype of a reachability algorithm to put our ideas to the test.

Outline of the Thesis We will start by giving an explanation of hybrid systems
and of hybrid automata, which will be used to model these systems. Afterwards,
we introduce �owpipe-based reachability analysis on hybrid systems followed by an
introduction of di�erent methods to represent state sets in the reachability analysis.
For the set representations, we put our focus on polytopes, support functions and
ellipsoids, and discuss their advantages and disadvantages. We will then lead over to
the main part of this thesis where we give an explanation of how to separate non-
autonomous systems into an autonomous and a non-autonomous part. Further, we
show how to use ellipsoids to reduce computation time on those separated systems.
This includes an explanation of how to deal with the drawbacks of actual arithmetics,
i.e. arbitrary precise numbers. Afterwards, we will further optimize this approach
by reducing the computational complexity of the involved support functions. We will
then give an evaluation of those optimizations based on the experimental results of
our implementation for the HyPro-project1. At the end we will deliver a conclusion
of the thesis as well as a conclusion of all results and give some ideas for further
improvements.

1https://ths.rwth-aachen.de/research/projects/hypro/

12

https://ths.rwth-aachen.de/research/projects/hypro/

CHAPTER 2
PRELIMINARIES

Before we can discuss our ideas on optimizations for the reachability analysis we have
to introduce required background information for fully understanding the main part
of this thesis. We will start with hybrid systems and an explanation of �owpipe-based
reachability analysis followed by introducing di�erent ways of representing sets. All
set operations used in this thesis can be found in Appendix A.

2.1 Hybrid Systems

This thesis will, as stated before, deal with reachability analysis of hybrid systems. As
already mentioned hybrid systems are systems with a discrete as well as a continuous
behavior. A simple example for a system that can be expressed as a hybrid system
is a bouncing ball. Imagine you are dropping a ball from your hand. The ball will
fall towards the ground while continuously accelerating. It will then hit the ground
and bounce back instantly, jump up in the air and fall down again. Looking at this
example as a hybrid system we can model the airborne behavior of the ball as the
continuous part of the system and the instantaneous bounce as the discrete part.
In order to precisely specify such a system, we will now take a quick look at model-
ing formalisms for hybrid systems and then give another example for a hybrid sys-
tem. One of the most popular modeling formalism for hybrid systems are hybrid
automata [GGM06, GG09], which will be used here. Aside hybrid automata, there
are hybrid Petri nets and hybrid programs, which can also be used to represent hybrid
systems [DA01].
The formal notion of a hybrid automaton is as follows [ACHH93].

De�nition 2.1 (Hybrid automaton: Syntax)
A hybrid automaton is a tuple H = (Loc, V ar, F low, Inv, Edge, Init), where

• Loc is a �nite set of locations or control modes.

• V ar = {x1, . . . ,xd} is a �nite ordered set of real-valued variables, the number d
is called the dimension ofH. ˙V ar denotes the set {ẋ1, . . . , ẋd} of �rst derivatives

13

2.1. HYBRID SYSTEMS CHAPTER 2. PRELIMINARIES

of the variables, and V ar′ the set {x′1, . . . ,x′d} of values directly after a discrete
change.

• Flow : Loc→ PredV ar∪ ˙V ar speci�es for each location its dynamics or �ow.

• Inv : Loc→ PredV ar assigns to each location an invariant.

• Edge ⊆ Loc×PredV ar×PredV ar∪V ar′×Loc is a �nite set of discrete transitions
or jumps. For a jump (l1,g,r,l2) ∈ Edge, l1 is the source location, l2 is its target
location, g speci�es the jump's guard, and r its reset function, where primed
variables represent the state after the jump.

• Init : Loc→ PredV ar assigns to each location an initial predicate.

Note that PredX denotes the set of all predicates with free variables from X.

Hybrid automata are based on discrete transition systems, consisting of a set of loca-
tions, a set of variables and a set of discrete transitions (often called jumps). States
(also called modes) in this system are speci�ed by the current location paired with
the current variable values. If the guard of a jump is satis�ed in the current state a
discrete state change can happen (we call such a transition enabled). The jump might
change the current location as well as the values of the variables according to a reset
function.
Hybrid automata extend these models by including a dynamic continuous behavior.
While the control stays in a location, time transitions (called �ow) let the values of
the variables evolve continuously according to the dynamics of the current location,
which are speci�ed by ordinary di�erential equations (ODEs). Further, jumps are
not urgent, i.e. jumps need not to be taken as soon as they are enabled. However,
invariants for locations are used to restrict the time evolution and force the control
to change the modus before the invariants get violated.

Example 2.2

As an example consider the heating system of an o�ce, where the heater is turned on
if the temperature t falls below 21◦c and is turned of at over 23◦c. Turning the heater
on or o� is a discrete action, the change of temperature over time is a continuous
change in the system. Lets assume the room cools by 0.5◦c each minute if the heater
is o� and heats up by 1◦c if it is turned on. Further, we assume the temperature in
the o�ce lies always between 20◦c and 24◦c. The system can then be described by
the hybrid automaton as shown in Figure 2.1

On
ṫ = 1

20 ≤ t ≤ 24

O�
ṫ = −0.5

20 ≤ t ≤ 24

t ≥ 23

t ≤ 21

t = 21

Figure 2.1: Hybrid automaton representing the behavior of a heater.

From De�nition 2.1 and the behavior of a hybrid system explained before we can
derive the semantics for hybrid automata.

14

CHAPTER 2. PRELIMINARIES 2.2. REACHABILITY ANALYSIS

De�nition 2.3 (Hybrid automaton: Semantics)
The one-step semantics of hybrid automaton H = (Loc, V ar, F low, Inv,Edge, Init)
of dimension d is speci�ed by the following operational semantic rules:

l ∈ Loc v,v′ ∈ Rd f : [0,δ]→ Rd

df/dt = ḟ : (0,δ)→ Rd f(0) = v f(δ) = v′

∀ε ∈ (0,δ).f(ε),ḟ(ε) |= Flow(l) ∀ε ∈ [0,δ].f(ε) |= Inv(l)

(l,v)
δ−→ (l,v′)

RuleTime

e = (l,g,r,l′) ∈ Edge v,v′ ∈ Rd

v |= g v,v′ |= r v′ |= Inv(l′)

(l,v)
e−→ (l′,v′) RuleJump

Now that we have speci�ed hybrid automata along with their semantics, we can
advance towards their reachability analysis facing the reachability problem: Given a
hybrid automatonH and a set of states S , is there a state s ∈ S that is reachable inH?
It can be shown that this problem in general is undecidable by reducing the hybrid
automata to a 2-rate timed system1 [ACHH93]. Fortunately, for some subclasses
of hybrid systems decidability can be shown by reduction to a timed automaton.
The di�erent subclasses together with their restrictions and decidability-result can be
found in Table 2.1. A more detailed explanation of those decidability results and the
corresponding proofs can be found in [HKPV95].

Subclass derivatives conditions bounded reach. unbounded reach.
TA ẋ = 1 x ∼ c Yes Yes

x ∈ [c1,c2]
IRA ẋ ∈ [c1,c2] jump must reset x Yes Yes

when ẋ changes
RA ẋ ∈ [c1,c2] x ∈ [c1,c2] Yes No

LHA I ẋ = c x ∼ glinear Yes No
LHA II ẋ = flinear x ∼ glinear No No
HA ẋ = f x ∼ g No No

Table 2.1: Decidability results for subclasses of hybrid automata, where ∼∈ {< , ≤
, =≥ , >} (TA = timed automata, IRA = initialized rectangular automata, RA =
rectangular automata, LHA I = hybrid automata with constant derivatives, LHA II
= hybrid automata with linear ODEs, HA = general hybrid automata).

2.2 Flowpipe-Based Reachability Analysis

One major part of safety veri�cation of hybrid systems is the computation of sets of
reachable states. Safety properties specify a set of bad states, whose reachability is
critical for the safety of the system. If the system never reaches such a bad state it
is considered as safe, i.e. if the intersection of the reachable state set with the bad
state set is empty. In general this problem is undecidable as explained in the previous

12-rate timed systems are timed systems with two di�erent clocks. One clock progresses with
rate m and one with rate n, with m 6= n.

15

2.2. REACHABILITY ANALYSIS CHAPTER 2. PRELIMINARIES

chapter. The problem becomes semi-decidable if the time is discretized. However, in-
�nite runs in the system are till possible. Thus, most approaches aim at computing an
over- or under-approximation of the set of reachable states by limiting �ow durations
and the number of jumps (bounded reachability analysis). For the computation of
the reachable sets there exists di�erent approaches. Some reachability analysis tools
for hybrid systems use approaches that are based on theorem proving [ADI03], others
use SMT-solving-based approaches [GT08]. In this thesis we will focus on �owpipe-
construction-based (or �owpipe-based) approaches for reachability analysis. In this
approach we iteratively compute sets of states which over-approximate parts of the
actual �ow.

Since the actual reachability problem is undecidable we will perform a bounded reach-
ability analysis. The bound on the �ow duration is often called the time horizon and
the bound on the number of jumps is referred to as the jump depth. For the rest
of this thesis we will focus on over-approximations as they have more relevance in
current research. However, in theory all of our approaches described in Chapter 3
also work with under-approximations as well. If the set of reachable states is over-
approximated, the results of the analysis allow to declare a system safe (within the
speci�ed bounds) if the intersection with the set of bad states is empty. However, the
analysis provides no conclusions if the intersection is not empty. In this case the bad
states might intersect with parts of the state set introduced by over-approximation
and not with the actual state set. Thus, a more precise computation is needed for
further derivations.

The general algorithm for this approach is presented in Algorithm 1. The name
�owpipe refers to the set of states reachable by passing time in a location which
resemble a pipe due to the continuity of time.

Algorithm 1 Flowpipe-based reachability analysis

Input: Hybrid system model H
Output: Set of reachable states RH.

1: R← InitH
2: Rnew ← R
3: while Rnew 6= ∅ do
4: let stateset ∈ Rnew
5: Rnew ← Rnew \ {stateset}
6: R′ ← computeF lowPipe(stateset)
7: Rnew ← Rnew ∪ computeJumpSuccessor(R′)
8: R← R ∪R′ ∪Rnew
9: if R ∩ bad_states 6= ∅ then
10: break_loop
11: end if
12: end while
13: return R

The idea of the algorithm is to keep track of the set of states R, containing all states
that are currently known to be reachable and Rnew, the set of states which still need
to be analyzed. First, Rnew is initialized with the sets of all initial states (Line 2).
Then, an unprocessed set stateset is picked from Rnew (Line 4). Afterwards, the

16

CHAPTER 2. PRELIMINARIES 2.2. REACHABILITY ANALYSIS

set of states reachable from stateset by letting time pass according to the speci�ed
time horizon is computed (Line 6). For this set of states we then compute the states
reachable by taking a jump transition (Line 7).

The �owpipe, i.e. the set of states reachable by time transitions, is computed by the
computeF lowPipe method (Line 6), which returns a set R′of state sets that cover the
�owpipe, starting in stateset, for a time-bounded search up to the given time horizon.
The actual computation of the �owpipe will be explained later on in Chapter 2.2.1.

After the computation of the �owpipe, all possible jump successors for all state sets in
R′ are computed by the method computeJumpSuccessors (with respect to the jump
depth). This involves intersecting those sets with the guards of the jumps starting in
the respective location. If the intersection is not empty the reset function of the jump
will be applied to compute the successor sets. Those successor sets are then collected
and added to R and R′ (Line 7-8).

The algorithm terminates if either a bad state is discovered to be reachable (Line 9)
or Rnew is empty (Line 3), which means all reachable states have been computed and
the system is safe within the speci�ed bounds.

2.2.1 Flowpipe-Computation

An essential part of Algorithm 1 is the computation of the �owpipe. Given an initial
set, we want to compute an over-approximation of the time successors of this set
within the given time horizon N . A common technique to realize this is to discretize
the time horizon into equal parts, often called time steps, of length δ and then iter-
atively compute the set of reachable states for each time step. We will refer to these
sets as segments of the �owpipe.

In general, the �owpipe is computed by over-approximating the �rst segment of the
�owpipe, such that the set is covering all sets in the time interval [0,δ], and then com-
pute all remaining segments by a recurrence relation that depends on the constant
step size δ and the dynamics A in the given location. Note that δ directly in�uences
the accuracy of the �owpipe. However, for smaller δ more segments have to be com-
puted and thus the computation will take more time.

The following explanation of how to actually compute the �owpipe applies only to
linear hybrid models1. For non-linear ones we refer to [Che15].

We will be covering two types of hybrid systems. Pure hybrid systems, also called
autonomous systems and hybrid systems with some kind of external in�uence, called
non-autonomous systems. Autonomous systems are systems that only depend on
variables of the system. Non-autonomous systems are autonomous systems that are
continuously in�uenced by external sources. An example for a non-autonomous sys-
tem is a bouncing ball, as explained in Chapter 2.1, where its velocity is continuously
in�uenced by the wind. Here, the original bouncing ball is the autonomous part and
the wind is the non-autonomous part of the system.

The �ow inside a location of an autonomous linear hybrid system is described by a

1Models with linear guards and derivatives as already shown in Table 2.1.

17

2.2. REACHABILITY ANALYSIS CHAPTER 2. PRELIMINARIES

system of linear ODEs [GGM06, GG09, KV11] of the form

Ẋ(t) = A ·X(t), (2.1)

where X(t) is the state set at time t and A is a matrix describing the �ow.
Non-autonomous systems extend these dynamics by a time-dependent m-dimensional
interval vector u(t), used to represent the external in�uences on the systems evolution.
This in�uence results in a dynamic behavior that can be described by

Ẋ(t) = A ·X(t) +B · u(t) = A ·X(t) + V (t), (2.2)

where B ∈ Rd×m, u(t) ∈ Rm and V (t) = B · u(t) [GGM06].

Solving Equation 2.1 for autonomous systems results in

X(t) = etAX0.

This formula speci�es the states reachable from the initial state X0 with the �ow
matrix A at time t. Using this and the time discretization the set of states reachable
from a state set Xi with a time step δ can be obtained by the recurrence relation

Xi+1 = eδAXi = Φ ·Xi.

This relation allows us to iteratively compute the set of reachable states for a certain
segment by applying a linear transformation Φ on the previously computed segments.

Solving Equation 2.2 for non-autonomous systems would result in

X(t) = etAX0 +

∫ t

0

e(t−s)AV (s) ds. (2.3)

Solving this integral is quite expensive. Thus, this part is commonly over-approximated
by a set representing a ball with radius β [GGM06], where β is an over-approximation
of the maximum of the integral. For a given norm ‖·‖ the set is given by

Bβ = {x ∈ Rn | ‖x‖ ≤ β}.

So far we only know how to compute the reachable segments for times i · δ. In order
to obtain an actual approximation of the �owpipe we need to cover the behavior in
between the segments as well. If we want to be able to make statements about the
reachable states for a time interval [i · δ, (i + 1) · δ] an over-approximation has to be
computed. It can be shown that it is su�cient to compute the over-approximation
for the interval [0,δ] and then use this set for the iterative computation. Due to the
systems time invariance we can ensure that the continuous behavior in all further
segments is covered by this computation [GG09].
Currently there are two main approaches used to compute the �rst segment, both
using bloating1 to completely cover the �owpipe within the time interval [0,δ].

We refer to the �rst approach as "uniform bloating" and to the second method as
"improved/selected bloating".

1The phrase bloating denotes an enlargement of a given set often realized by a Minkowski sum
with another set Ω, where the origin is an element of Ω.

18

CHAPTER 2. PRELIMINARIES 2.2. REACHABILITY ANALYSIS

Uniform Bloating [GGM06, GG09] covers the dynamics of the autonomous part by
adding a bloating factor α to the convex hull of the union of the initial set X0 and
eδAX0. For non-autonomous systems, an additional bloating factor β can be computed
to cover the in�uences of external inputs. Using this method, the �rst segment Ω0

can then be computed as

Ω0 = conv(X0 ∪ eδAX0)⊕Bα+β ,

where Bα+β is a ball of radius α+ β. The factor α depends on the shape of the �ow
A and the step size δ [GGM06, Gir05]. It is over-approximation of the deviation from
the trajectory between two points and the line connecting those two points. This
over-approximation then describes the deviation of the �ow from the convex hull and
thus the bloating with factor α is necessary to cover this deviation of the �ow between
the two segments. Further, the factor β is needed to cover the non-autonomous part
of the system (if the system is fully autonomous β should be equal to zero and thus
can be neglected). One way to compute the parameters α and β that ensures all
continuous behavior is covered is given in Lemma 2.4 [GGM06, Gir05].

Lemma 2.4
Given a norm ‖·‖, let µ = supu∈U‖u‖ and ν = supx∈X0

‖x‖ then:

Ω0 = CH(X0 ∪ eδAX0)⊕Bαδ+βδ ,

where αδ = (eδ‖A‖−1 − δ‖A‖)ν, βδ = eδ‖A‖−1

‖A‖ µ and U is the state set specifying the

external input.

In order to improve accuracy one could replace the bloating with a ball by a bloating
with a more accurate representation, for example using boxes or polytopes where the
set is then created not via β but the actual solution of the di�erential equation from
Equation 2.3. For for most scenarios however a ball is su�cient as the necessary
bloating and the external input are in general small compared to the actual segments
and thus the representation of the external input has but a minimal in�uence on the
reachable sets.

In contrast to the uniform bloating, which �rst computes the convex hull of the union
of two sets and applies bloating afterwards, the improved bloating approach bloats the
reachable set at time δ and computes the convex hull of the union of the initial set X0

and the bloated set at time δ [Gir05, GGM06]. The �rst segment is then computed
as

Ω0 = conv(X0 ∪ (eδAX0⊕Bα+β)).

A graphical comparison of those two approaches can be seen in Figure 2.2. As seen
in the illustration, the improved bloating, as the name already suggests, is a more
accurate over-approximation reducing the size of the resulting set.
Once the �rst segment is computed, all further segments up to the time horizon can
be computed iteratively by applying the linear transformation Φ to the previously
obtained segment. These segments Ωi, computed by

Ωi = ΦΩi−1,

each cover the time interval [iδ,(i+ 1)δ]. Thus,
⋃
i Ωi with i ∈ {1, . . . ,dNδ e} cover the

whole �owpipe within the time horizon N .

19

2.2. REACHABILITY ANALYSIS CHAPTER 2. PRELIMINARIES

X0

eδAX0

(a) Uniform bloating

X0

eδAX0

(b) Improved Bloating

Figure 2.2: Illustration of the uniform bloating approach and the improved bloating
approach. Dashed lines represent the bloating and dotted lines the convex hull.

Example 2.5

Figure 2.3 shows an illustration of a possible �owpipe approximation, where the initial
set Ω0 is computed using uniform bloating.

X0

X1Ω0

Ω1
Ω2

Ω3

Figure 2.3: Flowpipe computation as an over-approximation of the reachable set.

For autonomous systems only the computation of Ω0 involves bloating. However, for
non-autonomous systems an additional bloating is needed after each step to cover the
continuous in�uence of the external input. This results in an alternating application of
linear transformation and Minkowski sum, which in strongly increases the complexity
of the �owpipe computation. The corresponding sets are computed by

Ωi+1 = (ΦΩi)⊕Bβ .

An alternative way of computing those non-autonomous �owpipes which allows to
separate these operations and use further optimizations will be shown later on in

20

CHAPTER 2. PRELIMINARIES 2.2. REACHABILITY ANALYSIS

Chapter 3.

As an example for the in�uence that the external input has on the reachability analysis
can be seen in Figure 2.4. Here the blue dashed sets represent the �owpipe segments
without external in�uence. The continuous growth of the segments introduced by the
external in�uence is clearly visible. Comparing the set Ω3 with the corresponding
autonomous set we see that the size of the set has almost doubled even though the
external input has only a small in�uence on Ω0. Even though in general the external
in�uence is smaller than illustrated here, it still can have a huge impact on �owpipes
with many segments.

Ω0

Ω1
Ω2

Ω3

Figure 2.4: Comparison of the �owpipes with and without external in�uences.

2.2.2 Wrapping E�ect

One of the problem that most common ways to compute reachability face, as soon as
approximation is involved, is the wrapping e�ect. This also holds for the �owpipe-
based approach described in Chapter 2.2.1. All reachability algorithms use over- or
under-approximation during the computation of a �owpipe to ensure the decidability
of the reachability problem. This may lead to an approximation error for current
segments which also in�uences all further segments. In Figure 2.5 we can see a box1

being turned by 45◦ and then over-approximated by a box twice. Without over-
approximation the size would not increase but with over-approximation its size has
grown to more than three times its original size after just two transformations. One
reason for the wrapping e�ect to occur is that we have to ensure the given represen-
tation is closed under all operations. Further, the wrapping e�ect a�ects all convex
representations. Even though, for some representations the wrapping e�ect can ap-
pear on di�erent operations. For boxes the e�ect appears on linear transformation,
but not on Minkowski sum and for ellipsoids it appears on Minkowski sums but not
on linear transformations. However, for all convex sets the wrapping e�ect appears

1A box is described by its lower and upper bound in each dimension and can thus be represented
by an interval-vector.

21

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

on union operations.

(a) Ω0 (b) Ω1 (c) Ω2

Figure 2.5: Successive wrapping induced by a rotation of π4 of a box representation
with over-approximation to ensure that boxes are closed under linear transformation.
It holds Ω1 = approx(ΦΩ0) and Ω2(approx(ΦΩ1)) where the darkest parts describe
the over-approximation.

Taking a look back at the �owpipe construction, especially for the non-autonomous
systems, we often obtain long sequences of operations containing many linear trans-
formations and Minkowski sums. Linear transformations and Minkowski sums often
use over-approximations and thus may yield a wrapping e�ect which can grow further
with each upcoming operation. As a result, reachability analysis becomes more and
more inaccurate the longer the �owpipes get and the more jumps occur. Of course,
this e�ect can be minimized by choosing a representation that does not use approx-
imations on those two operations like support functions or zonotopes. However, for
those representations the wrapping e�ect occurs in other parts of the analysis. Due to
this wrapping e�ect the intersection of bad states with the computed �owpipe might
be non-empty whereas the intersection of the actual set without wrapping could be
empty. Note that the total error introduced by the wrapping e�ect scales with the size
of the set which is approximated. The approach introduced in Chapter 3 will minimize
the wrapping e�ect by reducing the size of sets that need to be approximated.

2.3 Set Representation

As stated in Chapter 2.2.1 it is impossible in most cases to compute the exact reachable
set. In order to be able to obtain results in a reasonable time we need to approximate
the actual reachable set by a set for which the reachability analysis is fast and still
precise. The decision between computing sets fast or precise and the di�erent char-
acteristics of hybrid systems, e.g. a high number of jumps or long �owpipes, gave rise
to many set representations which each perform well on some areas but none of the
representations is superior on all areas.

At the current state of the art there exists many established ways to represent a set.
One could use boxes, ellipsoids, polytopes, zonotopes or support functions just to
name a few possibilities. Each of these representations has its own positive and nega-
tive characteristics. For example, if we use support functions we are able to compute

22

CHAPTER 2. PRELIMINARIES 2.3. SET REPRESENTATION

Minkowski sums in constant time but the intersection of support functions is quite
complex, whereas the intersection of H-polytopes is very easy to compute but the
Minkowski sum is hard to compute. In Table 2.2 you can �nd a comparison of the
most common representations and how they behave for the di�erent operations. It

Size A· · ⊕ · CH(· ∪ ·) · ∩ ·
Boxes 2d + + + +
Ellipsoids d2 + d + + + -
H-Polytopes kd+ k +∗ - - +
V-Polytopes kd + + + -
Zonotopes kd+ d + + - -
Support Functions NA + + + -

Table 2.2: A comparison of di�erent operations on di�erent representations. + menas
easy to compute, - means hard to compute. *only if A is invertible

can be shown that each representation has its bene�ts and will for some scenario be
a better �t than the others. Also, all those representations are not equally good in
terms of accuracy. Support functions are the only representation that can represent
all convex objects without the need of approximation (other representations are not
capable of describing bended surfaces of objects). Furthermore, some representations
are able to represent a body with an arbitrary but �nite number of facets1, like sup-
port functions and polytopes. Zonotopes are able to represent point-symmetric sets
leaving boxes to be the most coarse representation in the list but also the easiest to
compute. Boxes are well �tted for a quick but unprecise approximation of reachable
states.

In the following, we are going to look at polytopes, support functions and ellipsoids
in more detail.

2.3.1 Polytopes

The class of polytopes is actually divided into two di�erent representations, H-
polytopes and V-polytopes. However, it is possible to convert between those two
representations even though this conversion is hard to compute. We will start with
an explanation of H-polytopes, then we will deal with V-polytopes and afterwards
explain the conversion between those two.

De�nition 2.6 (Closed halfspace)
A d-dimensional closed halfspace is a set H = {x ∈ Rd | cTx ≤ z}.
The supporting hyperplane for H is given by Z = {x ∈ Rd | cTx = z}.

De�nition 2.7 (H-polytope)
A d-dimensional H-polyhedron H =

⋃n
i=1 Hi =

⋂n
i=1{x ∈ Rd | ci · x ≤ zi} is the

intersection of �nitely many closed halfspaces. A bounded H-polyhedron is called a
H-polytope.

In other words a H-polytope is a collection of points satisfying the intersection of
linear inequalities and is therefore often denoted H = {x ∈ Rd | Cx ≤ z}. A simple

1Facets are �at faces of objects.

23

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

example of a H-polytope can be seen in Figure 2.6(a). It arises from the the following
constraints.

y ≤ 3
− y ≤ −1

−x ≤ 1
x + 0.5y ≤ 3.5

Next, we take a look at V-Polytopes. V-Polytopes are not de�ned using the intersec-
tion of halfspaces but a set of points in the d-dimensional space.

De�nition 2.8 (V-polytope)
A V−polytope Ω = CH(V) is the convex hull of a �nite set of points V ⊂ Rd.

Again, a simple example of a V-polytope can be seen in Figure 2.6(b) which consists
of a collection of points and the corresponding convex hull.

x

y

0
0

1

1

2

2

3

3

(a) H-polytope

x

y

0
0

1

1

2

2

3

3

(b) V-polytope

Figure 2.6: A H-polytope and a V-polytope representing the same set.

After de�ning V-polytopes and H-polytopes we can take a look at the di�erent oper-
ations on those sets. One major property that is exploited in the computation is that
we can convert between both representations and thus can use the easier to compute
version of all operations.
For Minkowski sums and convex unions we will use V-polytopes and intersections will
be performed on H-polytopes. The only operation that can be e�ciently computed
on both sets is the linear transformation (If the linear transformation is invertible).

Example 2.9

Assume we are given two H-polytopes H1,H2 and want to compute the Minkowski
sum of those polytopes. Instead of computingH1⊕H2 we would use the more e�cient
computation

convToH(convToV(H1)⊕ convToV(H2)),

where convToH and convToV return a converted polytope in H and V representation
respectively.

24

CHAPTER 2. PRELIMINARIES 2.3. SET REPRESENTATION

Now that we stated which operation is best computed on which polytope, we are
going to explain how these operations are actually computed on polytopes.

We will begin with the intersection of two H-polytopes Hi = {x | Cix ≤ zi}, i ∈
{1,2}. As both are represented by the intersection of inequalities we can obtain the
intersection by combining the set of inequalities and get the new H-polytope

H1 ∩H2 = {x ∈ Rd | C1
C2
x ≤ z1

z2},

where redundant constraints may occur. However, removing those redundant con-
straints is not mandatory as they do not a�ect the resulting sets but the amount of
memory necessary to store the set.

Next, we have the Minkowski sum of two V polytopes V1,V2, which is computed as

V1⊕V2 = {x+ y | x ∈ V1, y ∈ V2}.

The convex union of V-polytopes V1,V2 is computed as the convex hull of the two sets
of points V1, V2

CH(Ω1 ∪ Ω2) = conv({V1 ∪ V2}).

The only operation not covered now is the linear transformation. Lets start with the
linear transformation of a V-polytope V with transformation matrix Φ. ΦV can be
computed by

ΦV = {Φ · x | x ∈ V}

Due to the properties of linear transformation each extreme-point of V is also a
extreme-point1 of V ′. Thus, it would su�ce to only compute the linear transformation
of those points. For a direct linear transformation on H-polytopes we need to ensure
that Φ is invertible. If it is not, we would need to convert to a V-polytope in order
to perform the linear transformation. The linear transformation on a H-polytope is
performed on each of its halfspaces Hi separately.
In order to apply the linear transformation to a halfspace H we have to choose d
arbitrary but linear independent points from its supporting hyperplane Z. The linear
transformation Φ will then be applied to those d points. Afterwards, we compute the
hyperplane Z ′ on which the linear transformed points lie. In order to generate the
resulting halfspace H′ = ΦH supported by Z ′ we need to transform a point x ∈ H \Z
and choose the orientation of H such that Φx ∈ H′.
Now that we have considered all operations for both representations we can discuss
the conversion between the representations.

The conversion of a H-polytope into a V-polytope is often referred to as the facet
enumeration problem. The conversion of a V-polytope into a H-polytope is called the
vertex enumeration problem. Both problems are of great interest, even outside of the
context of reachability analysis. Also, there are good algorithms for both problems if
only 2 or 3 dimensions are involved. For higher dimensions there are also algorithms
but their complexity is much higher. There is the class of beneath-beyond-methods
dealing with the conversion from V to H [BDH96, Bor07] and the class of reverse
search algorithms dealing with both directions of the conversion [KA96].

1A point that can not be removed from the V-polytope without reducing its size.

25

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

For the conversion from a d-dimensional H-polytope to a V-polytope a naive way
would be to compute all points where d of the halfspaces of H intersect and then test
if the point is an element of the remaining halfspaces. This way the only points that
will be left are exactly the extreme-points of the polytope. The other direction of the
conversion can be done by computing all halfspaces generated by the sets of points
Vi ⊆ V , with |Vi| = d and testing if all points of V are elements of the halfspace.
The resulting halfspaces then generate the corresponding H-polytope. The resulting
H-polytope will be free of be redundant halfspaces, thus the conversion from H to V
and back to H could be used in order to remove redundant hyperplanes.

2.3.2 Support Functions

As the name already suggests we can also represent a set by a function called a support
function (short sf). This support function assigns to each direction vector l a distance
value such that the point l · ρΩ(l) lies on the hyperplane Zl with normal l. Zl then
also touches Ω and all elements of Ω lie within the halfspace H induced by Zl.

De�nition 2.10
The Support function of a set Ω, denoted ρΩ is de�ned by:

ρΩ : Rd −→ R ∪ {−∞,∞}
l 7−→ sup

x∈Ω
x · l

A point x of Ω with x · l = ρΩ(l) is called a support vector of Ω in direction l.

Example 2.11

An illustration of the connections between the support value, the vector l, the cor-
responding hyperplane Zl and the induced halfspace H can be seen in Figure 2.7.

One thing to know about support functions is that they are more expressive than
most other representations as the expressed set can contain curves. It can be shown
that a �nite H-polytope can never express a set representing a ball, which of course
is can be done with support functions. It is also possible and almost straight forward
to convert the most common representations into support functions. The connection
between di�erent representations and the corresponding support functions for the
most commonly used representations is given below [GG09].

• The unit ball for the usual Euclidean norm: B2 = {x ∈ Rd : ‖x‖2 ≤ 1}. Then,

ρΩ(l) = ‖l‖2

• The unit ball for the ∞-norm: B∞ = {x ∈ Rd : ‖x‖∞ ≤ 1}. Then,

ρΩ(l) = ‖l‖1

• An ellipsoid Ω = {x ∈ Rd : xTQ−1x ≤ 1}. Then,

ρΩ(l) =
√
lTQl

26

CHAPTER 2. PRELIMINARIES 2.3. SET REPRESENTATION

H

Ω

x

y

0
0

2

2

4

4

6 8

l

Zl

l · ρΩ(l)

Figure 2.7: Illustration of the connection between the vector l, its support function
value ρΩ(l) and the corresponding halfspace Hl.

• A hyper-rectangle: Ω = [−h1;h1]×· · ·× [−hd;hd] where h1, . . . ,hd ∈ R+. Then,

ρΩ(l) =

d∑
j=1

|hj lj |

• A zonotope1: Ω = {α1g1 + · · · + αrgr : αj ∈ [−1,1],j = 1, . . . ,r} where the
generators g1, . . . , gr ∈ Rd. Then,

ρΩ(l) =

r∑
j=1

|gj l|

• A polytope: Ω = {x ∈ Rd : Cx ≤ d} where C is a matrix and d a vector of
compatible dimension. Then, computing ρΩ(l) is equivalent to solving a linear
program: {

Maximize l · x
Subject to Cx ≤ d

Next, we will explain how to compute operations on support functions [GK98, GGM06,
GG09]. Let us assume that ρΩ1

and ρΩ2
are the support functions of the convex sets

Ω1 and Ω2. The convex union of those sets can then be described by

CH(ρΩ1(l) ∪ ρΩ2(l)) = max{ρΩ1(l),ρΩ2(l)}

for every l ∈ Rd. It can be shown that the resulting function again is a support
function describing the convex union.

1A zonotope Z is a d-dimensional set represented by an arbitrary number of generator vectors
vi and its center point c such that Z = {x ∈ Rd | x = c+

∑
i λi · vi, − 1 ≤ λi ≤ 1, for all i}.

27

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

The intersection is similarly de�ned as

ρΩ1(l) ∩ ρΩ2(l) = min{ρΩ1(l),ρΩ2(l)}

for every l ∈ Rd. Again, it is not di�cult to show that the min-operation performs the
intersection operation. Unlike the previous case, min{ρΩ1(l),ρΩ2(l)} is not a support
function as support values can be computed even if the set is empty or degener-
ated [GK98]. As a result some of the supporting halfspaces de�ned by this operation
may be redundant. To get the corresponding support function we would need to
intersect all of these halfspaces and then convert the resulting H-polytope into a sup-
port function. Due to this problem the intersection of support functions is hard to
compute. Note that the intersection of a support function with a halfspace is again a
support function if the intersection is not empty.

The Minkowski sum can be e�ciently realized for support functions by

ρΩ1 ⊕ ρΩ2 = ρΩ1(l) + ρΩ2(l)

for every l ∈ Rd. Note that it is not necessary to respect points of the set here but
only the function. Thus, the Minkowski sum can be computed e�ciently and is closed
under support functions.

Last, we have the linear transformation. It can be shown that for support functions
a linear transformation Φ of a set Ω is equivalent as applying the transposed matrix
ΦT to the evaluation direction.

ρΦΩ(l) = ρΩ(ΦT l)

As already shown at the begin of Chapter 2.3 in Table 2.2, all operations except for
intersection with another support function can be e�ciently computed. Therefore,
support functions are well �tted for �owpipe-based reachability analysis. However,
due to the way operations on support functions are computed it is not possible to
give a general estimation of the storage complexity for support functions.

Reachability Analysis using support functions

Reachability analysis using support functions di�ers from other representations due to
the way support functions are implemented in software. Unlike all other representa-
tions we do not need to compute the resulting support function after each operation.
Instead, we build up a tree of operations and only evaluate the support functions with
respect to the operations in the tree if needed. This improves the overall computa-
tional time for support functions.
The evaluation of such a tree of support functions is done recursively by handing the
direction of interest l down from the root to the leaves of the tree.

Example 2.12

An example of a support function tree can be seen in Figure 2.8. The shown tree
could have been created by �rst applying a linear transformation to a polytope, then
computing the Minkowski sum of two balls and �nally compute the Minkowski sum
of those two support functions.

28

CHAPTER 2. PRELIMINARIES 2.3. SET REPRESENTATION

Assume we now want to evaluate the support function from Figure 2.8 in direction l.
This would result in the following computation

ρΩ1(l) = max (ρΩ2(l), ρΩ3(l))

= max (Φ · ρΩ4(l), ρΩ3(l))

= max
(
ρΩ4(ΦT l), ρΩ3(l)

)
= max

(
ρΩ4(ΦT l), max(ρΩ5(l), ρΩ6(l))

)

ρΩ1: Mink. sum

ρΩ2: Lin. trans.

ρΩ3: Mink. sum

ρΩ4: Polytope

ρΩ5: Ball

ρΩ6: Ball

Figure 2.8: Representations of an operation tree of a support functions.

2.3.3 Ellipsoids

An uncommon way to represent sets is by means of an ellipsoid. Ellipsoids are mostly
avoided in �owpipe-based reachability analysis as it has been shown that the com-
putations of intersection as well as the union on ellipsoids are very complex and the
results are unprecise due to the involved approximations needed to ensure that those
operations are closed under ellipsoids. However, ellipsoids can be used to compute
linear transformations and Minkowski sums very e�ciently. In our approach we will
be using ellipsoids only in the presence of linear transformations and Minkowski sums,
thus they are well suited for this approach.

As stated before, the intersection and union of ellipsoids are complex and not needed
for our purpose as we will use them to compute sets that involve neither of those
operations. Therefore, for ellipsoids the intersection and union will not be covered in
this thesis. For more information on intersection and union we refer to [KV07].

An ellipsoid E is represented by E = (q,Q) where q is a vector pointing to the center
of E and Q is the shape matrix of E . Q can be seen as a linear transformation that
has to be applied to an unit ball in order to obtain the corresponding ellipsoid.

De�nition 2.13 (Ellipsoid)
An ellipsoid E(q,Q) in Rd with center q and shape matrix Q is a set

E(q,Q) = {x ∈ Rd | 〈l,x〉 ≤ 〈l,q〉+ 〈l,Ql〉 12 for all l ∈ Rd},

where Q is positive semi-de�nite (Q = QT and 〈x,Qx〉 ≥ 0 for all x ∈ Rd) and 〈x,y〉
denotes the scalar product of vectors x and y.

29

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

Next, we take a look at linear transformations and Minkowski sums of ellipsoids.
Let E(q,Q) ⊆ Rd be an ellipsoid and Φ ∈ Rd×d a matrix, then the linear transformation
of E with Φ is de�ned as

ΦE(q,Q) = E(Φq,ΦQΦT).

As the matrix Q′ = ΦQΦT is again semi-de�nite, the result of a linear transformation
as presented yields a shape matrix of an ellipsoid. Thus, ellipsoids are closed under
linear transformation.

Now, for the Minkowski sums of ellipsoids. To ensure that ellipsoids are closed un-
der Minkowski sum we need to over-approximate the actual set that is obtained by
applying the Minkowski sum. An illustration of the actual Minkowski sum of two
ellipsoids and an ellipsoid that over-approximates the Minkowski sum can be found
in Figure 2.9

Consider the Minkowski sum of arbitrary many non-degenerated ellipsoids
E(q1,Q1), · · · , E(qk,Qk). The resulting set is not always an ellipsoid, as shown in
Figure 2.9. But, it can be tightly approximated by an external ellipsoid, i.e. we can
�nd an ellipsoid that completely contains the set resulting of a Minkowski sum [KV07].

Let l ∈ Rd be a non-zero vector. The external approximation E(q+,Q+
l) of the sum

E(q1,Q1)⊕ · · ·⊕ E(qk,Qk) is tight in direction l, i.e.,

E(q1,Q1)⊕ · · ·⊕ E(qk,Qk) ⊆ E(q+,Q+
l)

and

ρ(±l | E(q+,Q+
l)) = ρ(±l | E(q1,Q1)⊕ · · ·⊕ E(qk,Qk)),

where ρ(x | E(q,Q)) = 〈x,q〉 + 〈x,Qx〉 12 is the support function corresponding to the
ellipsoid E(q,Q) and q+ = q1 + . . .+ qk.
It can be shown that the shape matrix Q+

l can be computed by

Q+
l =

(
k∑
i=1

〈l,Qil〉
1
2

)(
k∑
i=1

1

〈l,Qil〉
1
2

Qi

)
.

This covers all necessary operations on ellipsoids that will be used later on in Chap-
ter 3.1.

From ellipsoid to other representations

Our approach of optimizing the reachability analysis for non-autonomous hybrid sys-
tems works on most representations and thus we need to be able to convert an el-
lipsoid to the most common representations. Those conversions are needed as we
will often have to compute the Minkowski sums of an ellipsoid and a set in another
representation, where it is more e�cient to �rst transform the ellipsoid into the other
representation.

We will give a description of this conversion to support functions, V-polytopes, H-
polytopes, boxes and zonotopes starting with the most simple conversion.

30

CHAPTER 2. PRELIMINARIES 2.3. SET REPRESENTATION

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

(a) First ellipsoid E1

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

(b) Second ellipsoid E2

-6

-4

-2

 0

 2

 4

 6

-4 -3 -2 -1 0 1 2 3 4

(c) Minkowski sums and ellipsoidal approximation

Figure 2.9: Actual Minkowski sum (blue) and an approximating ellipsoid (red) for
E1⊕E2

In order to transform an ellipsoid E(q,Q) to a support function we can just use the
underlying support function used to evaluate ellipsoids

ρE(q,Q)(l) = ρ(±l | E(q,Q)) = 〈l,q〉+
√
〈l,Ql〉.

Next, we will convert an ellipsoid into a box. Boxes are de�ned by an interval for each
dimension and thus we can over-approximate the ellipsoid by a box B by evaluating
E once in direction of each axis and obtain the bounds of the corresponding box.

B = {x ∈ Rd | x(i) ∈ [q(i)− ρE(0,Q)(1i); q(i) + ρE(0,Q)(1i)]∀1 ≤ i ≤ d}

where q(i) refers to q's value for the i-th dimension and 1i denotes the vector con-
taining a 1 at its i-th entry and 0 for all other entries.

31

2.3. SET REPRESENTATION CHAPTER 2. PRELIMINARIES

In order to obtain a H-polytope from an ellipsoid we can simply evaluate it in a �xed
number of directions where this number has a direct impact on the precision. For a
good approximation we advise to evaluate in at least 8 uniformly distributed direc-
tions for each pair of dimensions.

Lastly, we can convert an ellipsoid into a zonotope by solving a linear optimization
problem in order to obtain minimal and maximal axis for each pair of dimension and
use these results as our generators of the zonotope. However, this is not an optimal
solution but a fast one to compute.

In Figure 2.10 we have illustrated the results of the conversion of the same ellipsoid
into di�erent representations. As you can see, there is some approximation error in-
troduced in the process (dark blue area) which is present for all representations but
support functions.

In conclusion, ellipsoids have a good approximation only for support function and
H-polytopes. Therefore, it is advised to use ellipsoids only in the context of support
functions or polytopes to reduce the approximation error.

(a) Box approx. (b) Zonotope approx. (c) H-polytope approx.

Figure 2.10: Approximation error introduced by converting an ellipsoid into a box, a
zonotope and a polytope.

32

CHAPTER 3
OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS

USING ELLIPSOIDS

In this chapter we will show how to split the computation of �owpipes for non-
autonomous systems into an autonomous and a non-autonomous part, such that we
obtain chains of linear transformations and chains of Minkowski sums instead of the
alternating way described in Chapter 2.2. Afterwards, we will give an e�cient way of
computing the non-autonomous part by usage of ellipsoids. Lastly, we will propose
di�erent ways of reducing support functions in order to reduce the growth of their
complexity during the reachability analysis.

First, we will deal with separating the autonomous part and the non-autonomous
part of a hybrid system enabling us to use further optimizations on the separated
sets [GGM06]. Those optimizations would not be applicable in the original approach
due to the alternation between the operation. Further, the sets obtained by the sep-
aration are smaller than the original set and thus this approach will also minimize
the wrapping e�ect. The system separation will be done by separately tracking the
development of the autonomous part, the non-autonomous part and the necessary
bloating in each step.

In order to do this let Ω0 be the initial set, computed as explained in Chapter 2.2.1.
Further, let Ωi be the set after i steps, V = Bβ be the set needed to cover the external
in�uence in each step and Φ be the matrix representing the linear transformation eAδ.
With the reachability algorithm for non-autonomous systems from Chapter 2.2.1 we
would compute Ωi as

Ωi = Φ · Ωi−1⊕V.
In order to separate the external in�uence V from the autonomous system we intro-
duce three new sequences of sets, Ai, Vi and Si, with

A0 = Ω0, Ai+1 = Φ · Ai
V0 = V, Vi+1 = Φ · Vi
S0 = {0}, Si+1 = Si⊕Vi

33

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

where Ai is used to track the autonomous evolution of the system, Vi represents the
growth of the external in�uence and Si tracks the accumulated set of all external
inputs and their evolution in the last i steps.

With these sets we can now compute Ωi+1 by expanding the autonomous system by
the total external in�uence as

Ωi+1 = Ai⊕Si = ΦiΩ0⊕
i−1⊕
j=0

ΦjV.

By usage of the distributive law [GGM06] it holds

Φ · (Ω⊕V) = (Φ · Ω)⊕(Φ · V).

The correctness of this computation follows directly from the properties of linear
transformation and Minkowski sum.
By applying this distribution of linear transformations over Minkowski sums the cor-
rectness of our new way of computing Ωi+1 is easy to show. It holds

Ωi = Φ · Ωi−1⊕V = ΦiΩ0⊕
i−1⊕
j=0

ΦjV.

The corresponding modi�cation of the �owpipe-computation can be found in Algo-
rithm 2.

Algorithm 2 Reachability of discrete linear time-invariant systems

Input: Lin. trans. Φ, initial sets Ω0, V, an integer N
Output: The �rst N segments of this sequence.

1: A0 ← Ω0

2: V0 ← V
3: S0 ← {0}
4: for i from 1 to N − 1 do
5: Ai ← ΦAi−1

6: Si ← Si−1⊕Vi−1

7: Vi ← ΦVi−1

8: Ωi ← Ai⊕Si
9: end for
10: return {Ω0, . . . ,ΩN−1}

We now have an alternative way of computing Ωi+1 with a separated computation of
the autonomous and non-autonomous part and as explained before we do not have
an alternation between linear transformations and Minkowski sums. Furthermore, as
approximations are mostly used for Minkowski sums, we strongly reduce the wrapping
e�ect as the impact of wrapping strongly depends on the size of the objects and in
most cases the external input V is rather small compared to the autonomous system.
This way of computing Ωi+1 has been shown to improve the computation of reach-
able sets of linear time-invariant systems both theoretically and empirically [GGM06].

34

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS 3.1. NON-AUTONOMOUS PART

Note that this decomposition is only possible if the system is time-invariant. If the
system is not time-invariant there is currently no known way to apply such a decom-
position [GGM06].

The autonomous part Ai can now be e�ciently computed as a chain of matrix mul-
tiplications but the non-autonomous part Si still needs to handle a lot of Minkowski
sums and linear transformations. For this reason we will show a way of how to re-
duce the computational e�ort needed to compute Si by usage of ellipsoids in the next
chapter.

3.1 Computation of the Non-Autonomous Part

Earlier in Chapter 2.3 we explained that the e�ciency of computing the Minkowski
sum of two or more sets strongly depends on the used representation. For support
functions representing a ball it is a simple addition of their radii and for polytopes we
would need to respect all combinations of points from the di�erent polytopes. Even
though it sounds reasonable here to use support functions, there is a huge disadvan-
tage. The Minkowski sum itself is easy to compute, but we still need to evaluate both
branches used in the Minkowski sum. Looking at the way Si is computed we see that
this will involve long chains of linear transformations that need to be evaluated. This
may yield high costs for evaluating the support function that might not not visible at
�rst. This problem have a greater impact when we need to compute �owpipes with
many segments and thus obtain large support function trees.

Looking only at the form of the external input, we see that using a support func-
tion to represent V would be the easiest way to compute the Minkowski sum of all
external inputs. Unfortunately, as explained above, the computation will slow down
after some steps. Polytopes are not suited either due to their high complexity on
Minkowski sums. That is why we will use ellipsoids to represent Vi as well as Si. For
ellipsoids we can e�ciently compute the current sets while avoiding high evaluation
costs. During the iteratively computing the �owpipe we always have a closed repre-
sentation of the ellipsoid representing the external input Vi as well as the sum of all
external inputs Si. Thus, using ellipsoids yields in a constant evaluation time in all
iteration steps for the external input while minimizing the costs to obtain Si.

Assuming that the external input V = Bβ is a ball we are already given our initial
ellipsoid, as balls are a special case of ellipsoid. From the previous explanations
on ellipsoids in Chapter 2.3.3 we already know that the linear transformation of an
ellipsoid is an ellipsoid as well and therefore the computation of Si boils down to the
Minkowski sum of i− 1 ellipsoids which, as shown in Chapter 2.3.3, can be e�ciently
computed and tightly approximated in direction l by

i−1⊕
j=0

ΦjV ⊆

i−1∑
j=0

〈l,ΦjQjΦj
T
l〉1/2

 · i−1∑
j=0

(
1

〈l,ΦjQjΦjT l〉1/2
ΦjQjΦ

jT

)

Another advantage of this way of computing the non-autonomous part is that we will
get a closed form representation that can be evaluated in an arbitrary direction by
a single matrix-vector multiplication. Because of that, the approach works well if

35

3.1. NON-AUTONOMOUS PART

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

the autonomous part is represented by a support function. Computing Ωi can then
be realized by converting Si into a support function which works in constant time
and then building the Minkowski sum of those two support functions. Evaluating Ωi
has now the costs of evaluating an autonomous system plus a single matrix-vector
multiplication. However, even if the representation of the autonomous part is not
a support function it is easy to convert Si into a given representation �tted for the
Minkowski sum with the autonomous part as shown in Chapter 2.3.3.

One thing to notice is that this approach will not work e�ciently on systems where
each segment is only evaluated a small number of times in comparison to its dimension.
In this cases the costs for construction of the ellipsoid are higher than the costs of
evaluating a support function representing the same set. Thus, in this cases we
would advise to use support functions to compute the non-autonomous part instead
of ellipsoids. However, those kind of systems are rare in practice. A more detailed
explanation on the number of evaluations that may occur on a segment or during the
�owpipe construction can be found in Chapter 3.2.2.

Example 3.1

As an example we will compare the number of necessary matrix-vector multiplications
for evaluating the non-autonomous part of a �owpipe analysis with ellipsoids and
support functions. As these multiplications have a huge in�uence on the runtime of
the �owpipe construction they are a feasible value for comparisons.
Let us consider a �owpipe with 101 segments which each describes a 3-dimensional
state set. Further, each segment is evaluated four times, twice for the invariance
of the location and twice for the guard of an outgoing transition. Evaluating the
non-autonomous part of the 101-th segment once with support functions we would
need to compute

∑100
i=1 i = 5,050 matrix-vector multiplications to cover all linear

transformations in the support function tree of S101 =
⊕100

j=0 ΦiV . For ellipsoids this
would be a single matrix-vector multiplication. However, computing the ellipsoid of
the 100-th segment would need 100 · (3 · 3) = 900 matrix-vector multiplications to
cover the linear transformations and approximately 200 matrix-vector multiplications
to cover the necessary Minkowski sums (very coarse estimation). In conclusion, for
the evaluation of the non-autonomous part with usage of ellipsoids we would need
at most 1,100 matrix-vector multiplications, whereas support functions would need
5,050. However, for ellipsoids the actual costs are even lower as the ellipsoid of the
100-th segment would already be known in an iterative implementation. Thus, the
necessary number of matrix-vector multiplications would reduce to less than 15.

3.1.1 Exact Arithmetic

Exact arithmetic are an interesting �eld of research on veri�cation topics. One of
the major advantages of exact arithmetic is the non-existence of numerical problems.
Numbers are represented by a fraction and can be arbitrary precise. Thus, we are
not bound to the precision of common data-types. The drawback of this number
representation is that numbers can be arbitrary large in the sense of memory and
therefore they can have a major impact on computational time.

Even though the computation using Minkowski sums on ellipsoids is theoretically fast
there is a major drawback. Due to the way of computing the Minkowski sum of el-

36

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS 3.1. NON-AUTONOMOUS PART

lipsoids the length of the numbers in the shape matrix blows up enormously when
using exact arithmetic leading to a massive slowdown of the computation. Note that
using �oating point arithmetics with a �xed bit-length, longer numbers do not need
more memory to be stored but more time to be processed. However, this blow-up in
size can be avoided by over-approximating the slow-computing ellipsoid by a slightly
larger one, where the numbers need less time to be processed.

A common technique to decrease computational time in the presence of exact arith-
metic is rounding. However, one has to ensure that the results are still correct after
rounding. Which brings us to the main part of this section. We will be rounding
the shape-matrix of an ellipsoid such that it is an over-approximation of the original
ellipsoid. The precision of the following approximation depends on the digit where the
numbers will be rounded. Further, the over-approximating ellipsoid will be slightly
grown and rotated.

To ensure that the new ellipsoid E(q,Q′) is an over-approximation of the original
ellipsoid E(q,Q) we have to show that the following holds

ρ(l | E(q,Q)) = 〈l,q〉+
√
〈l,Ql〉 ≤ 〈l,q〉+

√
〈l,Q′l〉 = ρ(l | E(q,Q′))

⇔ 〈l,Ql〉 ≤ 〈l,Q′l〉,

for all directions l ∈ Rd. Without loss of generality, for the following equations we
assume that all entries cj ,k are positive (otherwise round up instead of down on that
speci�c entry). Further, we assume l to be normalized.

〈l, Ql〉 =

〈
l1
...
...
ln

 ,

a1 c1,2 · · · c1,n

c1,2 a2
. . .

...
...

. . .
. . . cn−1,n

c1,n · · · cn−1,n an

l1
...
...
ln

〉

=

n∑
i=1

(
ai · l2i

)
+

n−1∑
j=1

n∑
k=j+1

(2 · cj,k · lj · lk)

=

n∑
i=1

(
ai · l2i

)
+

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk + 2 · (cj,k − bcj,kc) · lj · lk)

l is normalized, thus it holds

m∑
i=1

l2i = 1⇒ lj · lk ≤ 0.5, lj 6= lk

≤
n∑
i=1

(ai · l2i) +

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk + 2 · (cj,k − bcj,kc)

=

n∑
i=1

(ai · l2i) +

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk + (cj,k − bcj,kc) · (l21 + . . .+ l2n)︸ ︷︷ ︸
=1

)

=

n∑
i=1

(ai · l2i) +

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk)

37

3.1. NON-AUTONOMOUS PART

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

+

n−1∑
j=1

n∑
k=j+1

((cj,k − bcj,kc) · (l21 + . . .+ l2n))

=

n∑
i=1

(ai · l2i) +

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk) +

n∑
m=1

n−1∑
j=1

n∑
k=j+1

(l2m · (cj,k − bcj,kc))

=

n∑
i=1

ai +

n−1∑
j=1

n∑
k=j+1

(2 · (cj,k − bcj,kc)

 · l2i
+

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc · lj · lk)

≤
n∑
i=1

ai +

n−1∑
j=1

n∑
k=j+1

(2 · (cj,k − bcj,kc)

︸ ︷︷ ︸
a′i

·l2i

+

n−1∑
j=1

n∑
k=j+1

(2 · bcj,kc︸ ︷︷ ︸
c′j,k

·lj · lk)

introduce new variables a′i, c
′
j,k

=

n∑
i=1

(a′i · l2i) +

n−1∑
j=1

n∑
k=j+1

(2 · c′j,k · lj · lk)

=

〈
l1
...
...
ln

 ,

a′1 c′1,2 · · · c′1,n

c′1,2 a′2
. . .

...
...

. . .
. . . c′n−1,n

c′1,n · · · c′n−1,n a′n

l1
...
...
ln

〉

= 〈l, Q′l〉

This approximation can be e�ciently computed as all used operations behave well,
even for rational arithmetic. Furthermore, we can directly in�uence the accuracy of
the computation by specifying the digit where the numbers are rounded.

In addition to getting rid of 'slow' numbers, we can try to slow down the increase of
complexity of numbers used. The main course of increasing complexity of numbers
during the computation of Minkowski sums of ellipsoids are the involved multiplica-
tions with the results of a square-root. This can be avoided by limiting the in�uence
of the square-root in the �rst place. One possible way to do this is to round the
numbers before multiplication resulting in the following computation of Minkowski
sums. As a reminder, normally we compute the Minkowski sum of ellipsoids as

Q+
l =

(
k∑
i=1

〈l,Qil〉
1
2

)(
k∑
i=1

1

〈l,Qil〉
1
2

Qi

)
.

With exact arithmetic one might want to use the following over-approximation

Q+
l =

(
k∑
i=1

d〈l,Qil〉
1
2 e

)(
k∑
i=1

1

b〈l,Qil〉
1
2 c
Qi

)
,

with 〈l,Qil〉 > 0. The correctness follows directly from d〈l,Qil〉
1
2 e ≥ 〈l,Qil〉

1
2 and

1

b〈l,Qil〉
1
2 c
≥ 1

〈l,Qil〉
1
2
.

38

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS 3.2. OPTIMIZATIONS FOR SF

From our implementation and tests we have concluded that those approximations
have a huge impact on the computational time while the growth of the sets is is
negligible small for a su�ciently small digit set as rounding point.

3.2 Optimizations for Reachability with Support Func-

tions

In addition to using ellipsoids as optimizations for the computation of the non-
autonomous part, we propose some optimizations for the autonomous part in the
presence of support functions. As stated in Chapter 3 support functions and ellip-
soids work well together. However, the computation of Ai using ellipsoids still has
the drawbacks of large support function trees. In order to reduce the complexity of
the involved support functions we will propose three ways to reduce the size of the
trees and thus speed up the reachability computation.

3.2.1 Reduction of Linear Transformation Chains

As we explained in the previous Chapter, we can compute the reachable set Ai by

Ai = ΦAi−1 = ΦiΩ0,

which yields long chains of linear transformations. Thus, evaluating ΦiΩ0 with sup-
port functions needs i matrix-vector multiplications. It is easy to show that this is
not e�cient if we need to evaluate Ai or the corresponding Ωi multiple times. In
order to reduce the number of necessary multiplications, thus e�ciently reducing the
support function tree, we introduce a simple reduction method that will be referred
to as linear transformation reduction. We will search the support function tree for
chains of successive linear transformations and replace those chains by a single lin-
ear transformation. Starting from the leaves, we will search the tree for chains of i
successive linear transformations Φ. This chain will then be replaced by the linear
transformation Φ′ = Φi. To reduce the costs of computing Φ′ we suggest to choose
i = 2n, n ∈ N. For those i we can e�ciently compute Φi with only n matrix multipli-
cations.

In an optimal scenario this will reduce the size of the support function tree T to
O(logn size(T)). However, the e�ect on the reachability analysis depends strongly on
the ratio between evaluations and the number of variables of the system. For a high
number of variables and low number of evaluations this reduction can even have a
negative impact on the computation. The reason for this is that the reduction might
be more expensive than computing the �owpipe without the reduction. Furthermore,
the reduced tree has in general a higher storage complexity due to the overhead in-
troduced by the newly generated matrices.

Example 3.2

Consider a support function consisting of a polytope which is 4 times linear trans-
formed with the same transformation matrix Φ. The corresponding support function
tree is shown in Figure 3.1.
Assume we want to reduce the support function if two successive linear transforma-
tion use the same matrix. In order to do this, we traverse the support function tree

39

3.2. OPTIMIZATIONS FOR SF

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

(1) starting from the bottom. In this scenario we would �rst obtain support func-
tion (2) by reducing the second and the fourth linear transformation in the support
function and replace them by Φ2. In the reduced support function (2) both linear
transformations again use the same matrix Φ2, therefore we could again use the linear
transformation reduction and obtain support function (3).

Lin. trans Φ Lin. trans Φ Lin. trans Φ Lin. trans Φ

Lin. trans Φ2 Lin. trans Φ2

Lin. trans Φ4

Polytope

Polytope

Polytope

(1)

(2)

(3)

reduces to

reduces to

reduces to

Figure 3.1: Illustration of the linear transformation reduction performed on a support
function tree.

3.2.2 Reduction of Jump Complexity

In Chapter 2.2 we already explained how to compute the jump successors of a �ow-
pipe. We compute the union of all sets satisfying the jump guards, and then apply
the reset function corresponding to the jump to this aggregated set. For most repre-
sentations this not a complex problem. For support functions however, the union of
those segments leads to a major increase in computation complexity. Due to the way
support functions are implemented, the support function tree after the jump contains
the trees of all support functions that satis�ed the jump guard. Thus, evaluating the
�rst segment after the jump is more complex than evaluating all segments involved
in the jump at once. In the following we are going to reduce this signi�cant growth
by reducing the support function before and after the jump.

Post-Jump Reduction

A simple approach to get rid of this aggregation problem is to simply over-approximate
the set after the jump was taken by a H-polytope. This way we remove the whole
support function tree, leaving us with only a polytope-representing support function.
We will refer to this approach as post-jump reduction.

In order to approximate the current set Ω by a polytope we need to �x the number
of halfspaces that will be used as this directly in�uences the costs and precision of
the approximation. A common approach is to evaluate the support function ρΩ in
n evenly distributed directions for each pair of dimensions and build the H-polytope
from the induced halfspaces.
The construction of such a H-polytope would need n ·

(
d
2

)
evaluations. Due to the

possibly high number of necessary evaluations this approximation might be expensive
to compute. Thus, applying the post-jump reduction and then compute the �owpipe

40

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS 3.2. OPTIMIZATIONS FOR SF

might be more expensive than computing the whole upcoming �owpipe with the orig-
inal support function. Thus, in order to know where to e�ciently reduce the support
function a metric is needed.

In order to make a founded assumption about whether it is useful to reduce the current
support function we need knowledge the reduction costs as well as the expected costs
for the �owpipe construction.
First, we need to make a coarse assumption of the number of expected evaluations
for upcoming �owpipe for the current location. Note that only the next �owpipe is
of interest here and not all upcoming �owpipes. The maximal number of upcoming
segments can be computed by N

δ where N is the time horizon and δ is the step size.
In addition, we need to know how many evaluations will be computed per segment.
For each segment we need to check its containment in the invariant as well as test
if the guards of outgoing transitions are satis�ed. This results in one evaluation for
each invariant as well as one evaluation for each outgoing guarded transition. With
these values, we can calculate an estimation of the number of evaluations necessary
to compute the upcoming �owpipe by

#Eval =
N

δ
· (#Guards+ #Invariants)

Now that the number of upcoming evaluations can be estimated, we only need to
know the costs c of evaluating the current support function. To make a reasonable
assumption for these costs, we will use the number of matrix-vector multiplications
needed for an evaluation to measure the costs.
Commonly the initial set X0 is speci�ed by a polytope. Thus, the support function
representing Ω0 has an underlying polytope and, as evaluating this polytope involves
solving a linear optimization problem, we need to respect this fact as well in our
cost estimation. Further, all operations except for linear transformations are com-
putable in constant time and only occur sparsely compared to linear transformations.
Therefore, these operations will be omitted from the cost estimation. This gives us
a rather fast way to analyze the tree introduced by the support function in order
to obtain the estimated costs. We just have to sum the cost for all linear transfor-
mations, which all have costs of 1 and the costs for all polytope evaluations which
have a cost of n · max(m,n)2. Note that max(m,n)2 refers to an estimation of the
average number of matrix multiplications needed by the simplex algorithm where the
problem is given by a m × n matrix [ST01]. If the system is non-autonomous we
also need to respect ellipsoids which can be evaluated with a single linear transforma-
tion as well. A recursive algorithm computing the costs c can be found in Algorithm 3.

Now that we are able to estimate the cost per evaluation as well as the number of
upcoming evaluations we can give a closed formula to decide if a post-jump reduction
would be e�cient. We will use the reduction by over-approximating with aH-polytope
only if the following in-equation is satis�ed

#Eval · c︸ ︷︷ ︸
evaluationcosts

without reduction

≥ n ·
(
d

2

)
· c︸ ︷︷ ︸

costs of reduction

+ d · (n ·
(
d

2

)
)2 ·#Eval︸ ︷︷ ︸

evaluationcosts with reduction

,

where d · (n ·
(
d
2

)
)2 is the evaluation cost of the support function corresponding to the

newly generated polytope.

41

3.2. OPTIMIZATIONS FOR SF

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

Algorithm 3 Evaluation cost estimation

Input: Support function tree
Output: Number of matrix-vector multiplications needed for an evaluation a support
function.

1: c← 0
2: if nodeIsLinTrans ∨ nodeIsEllipsoid then
3: c← 1
4: end if
5: if nodeIsPolytope then
6: c← n ·max(m,n)2

7: end if
8: for successors of node do
9: c← c+ estimateCosts(successor)
10: end for
11: return {Ω0, . . . ,ΩN−1}

Note that this is a rather coarse estimation of the actual costs. For a more precise
calculation one would need to respect the evaluation costs of all operations as well
as get a better estimation on the evaluation costs of the maximization problem. In
addition the metric depends on the time horizon N . We later on propose a way to
dynamically compute an individual time horizon for each location in order to improve
the e�ects of our metric. The estimation of obtained hyperplanes n ·

(
d
2

)
can be re-

duced by avoiding an evaluating the same direction multiple times.

Example 3.3

For n = 8 the number of hyperplanes can be reduced from 8 ·
(
d
2

)
to 4 ·

(
d
2

)
+ 2 · d if

the evaluation directions are evenly distributed and we evaluate in direction of the
involved axis.

Pre-Jump Reduction

One problem of the post-jump reduction is its the bad scalability with higher number
of dimensions and fewer numbers of guards and invariants. Thus we propose an ad-
ditional approach aimed to reduce the support functions complexity before the jump.
This approach will be referred to as the pre-jump reduction.

We already explained that the complexity of all segments satisfying a guard will be
combined in the �rst segment after the jump. Thus, the number of operations neces-
sary to evaluate this segment can be rather large depending on the complexity of the
segments satisfying the guard. Due to this relation, we aim on reducing the complex-
ity of guard-satisfying segments as follows.
Once an outgoing transition is discovered to be enabled during the �owpipe construc-
tion the current segment Ωi which was computed as Ωi = ΦΩi−1 will be replaced by
a direct successor of the initial segment Ω0

Ω′i = Φ′Ω0,

where Φ′ = Φi. The following segments are then computed based on Ω′i. This way we
can reduce the complexity of all segments involved in the jump. However by directly

42

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS 3.2. OPTIMIZATIONS FOR SF

computing Ω′i from Ω0 we neglect all previous intersections with invariants and thus,
we might obtain an over-approximation of the original segment Ωi. An illustration of
this idea is shown in Figure 3.2.

guard

Ω0

Φ

Φ

Φ

Φ

Φ

Φ

(a) original

guard

Ω0

Φ

Φ

Φ4

(b) reduced

Figure 3.2: Reducing complexity of a support function before a jump

43

3.2. OPTIMIZATIONS FOR SF

CHAPTER 3. OPTIMIZATIONS FOR NON-AUTONOMOUS SYSTEMS USING

ELLIPSOIDS

44

CHAPTER 4
EXPERIMENTAL RESULTS

We will now analyze the in�uence of our approaches on the reachability analysis of
the HyPro tool. First, we give a detailed description of the used benchmarks as well
as used parameters and afterwards discuss the results we got on those benchmarks
with respect to the optimizations from Chapter 3.

4.1 Benchmarks

In this section we will give a detailed description of the hybrid systems, as well as the
corresponding hybrid automata and the reachability settings that were used for our
tests. For some benchmarks the corresponding hybrid automata and matrices were
moved to Appendix B due to their size.

4.1.1 Bouncing Ball

The classical bouncing ball benchmark1, which was already used in Chapter 2.1 mod-
els a ball that is dropped from a prede�ned height. After a certain time of falling
it hits the ground and bounces back o� into the air and starts to fall again. While
hitting the ground the ball will lose part of its energy and thus looses a bit of momen-
tum. This physical phenomenon can be represented by a hybrid automaton as seen
in Figure 4.1

falling

ẋ = v
v̇ = −9.81

x = 0 ∧ v ≤ 0

v := −c · v

Figure 4.1: Hybrid automaton of the bouncing ball benchmark

1https://ths.rwth-aachen.de/research/projects/hypro/bouncing-ball/

45

https://ths.rwth-aachen.de/research/projects/hypro/bouncing-ball/

4.1. BENCHMARKS CHAPTER 4. EXPERIMENTAL RESULTS

Settings

We consider the initial set

x ∈ [10; 10.2]

v = 0.

Further, we used a time horizon of N = 3, step-size δ = 0.01 and a jump depth of
3. The constant c is set to c = 0.75 and the set of bad states is the set of all states
where v ≥ 10.7.

4.1.2 Two Tanks

The two tanks benchmark describes the controlling of two water-tanks, where the
input and output can be regulated via certain valves. The �rst tank is being �lled
from two di�erent sources: a constant �ow source and a second source equipped with
a controlled value valve1, with �ows Q0 and Q1 respectively. At the bottom of tank 1
an attached drain allows the liquid to �ow directly into tank 2 with �ow QA. Tank 2
has two drains attached. One connected to a pump to assure a constant liquid out�ow
QB and a second one which's out�ow Q2 is controlled by an electronic valve valve2.
V alve1 and V alve2 can both take states On/Off . This results in four possible dis-
crete modes for the hybrid automaton as shown in Figure 4.2 [His01].

o�_o�

ẋ1 = −x1 − 2 + u
ẋ2 = x1 + u

x1 ≥ −1
x2 ≤ 1

on_o�

ẋ1 = −x1 + 3 + u
ẋ2 = x1 + u

x2 ≤ 1

o�_on

ẋ1 = −x1 − 2 + u
ẋ2 = x1 − x2 − 5 + u

x1 ≥ −1
x2 ≥ 0

on_on

ẋ1 = −x1 + 3 + u
ẋ2 = x1 − x2 − 5 + u

x1 ≤ 1
x2 ≥ 0

x1 = −1

x2 = 1 x2 = 1x2 = 0

x1 = −1

x2 = 0

x1 = 1

Figure 4.2: Hybrid automaton of the two tanks benchmark

The liquid levels in tank i are given by xi and the dynamics of the system is de�ned

46

CHAPTER 4. EXPERIMENTAL RESULTS 4.1. BENCHMARKS

by the following di�erential equations:

ẋ1 =

{
−x1 − 2 + [−0.1,0.1] if valve1 is Off
−x1 + 3 + [−0.1,0.1] if valve1 is On

ẋ2 =

{
x1 + [−0.1,0.1] if valve2 is Off
x1 − x2 − 5 + [−0.1,0.1] if valve2 is On

Settings

We consider the initial set

x1 ∈ [1.5,2.5]

x2 = 1,

with initial state off_off . Further, we used a time horizon of N = 2, step-size
δ = 0.01 and a jump depth of 2. The set of bad states are all states, where x2 <= −0.7.

4.1.3 Rod Reactor

The rod reactor example1 describes a crucial system inside a nuclear reactor. Inside
a reactor tank there are two independent nuclear control rods. The goal is to control
the coolant temperature x in the tank by putting in or taking out the rods and
avoid reaching the critical temperature. The rods rod1 and rod2 both have their
individual cooling dynamics and are both attached to a clock c1 and c2 respectively
which measures the time elapsed since the rod was last used. The hybrid automaton
corresponding to the benchmark is shown in Figure 4.3

rod 1

ẋ = 0.1 · x− 56
ċ1 = 1
ċ2 = 1

x ≥ 510

no rods

ẋ = 0.1 · x− 50
ċ1 = 1
ċ2 = 1

x ≤ 550

rod 2

ẋ = 0.1 · x− 60
ċ1 = 1
ċ2 = 1

x ≥ 510

shut down

x = 510

c1 := 0

x = 550
c1 ≥ 20

x = 510

c2 := 0

x = 550
c2 ≥ 20

x = 550
c1 < 20
c2 < 20

Figure 4.3: Hybrid automaton of the rod reactor benchmark

1https://ths.rwth-aachen.de/research/projects/hypro/rod-reactor/

47

https://ths.rwth-aachen.de/research/projects/hypro/rod-reactor/

4.1. BENCHMARKS CHAPTER 4. EXPERIMENTAL RESULTS

Settings

We consider the initial set

x = 510

c1,c2 = 20,

with initial location no_rods. Further, we used a time horizon of N = 50, step-size
δ = 0.1 and a jump depth of 4. The set of bad states are all states in location "shut
down".

4.1.4 Cruise Control

The cruise controller benchmark models a controller that is build into a vehicle. Its
goal is to keep the vehicles velocity at a certain level. The controller can access an
accelerator and service brake and an emergency brake. Both brakes can be activated
simultaneously. Further, if the car is neither actively accelerating nor braking the
vehicle will slowly decelerate due to the braking behavior of the engine itself. The
hybrid automaton describing this scenario with �xed acceleration and deceleration
values can be found in Chapter B.3 [Oeh11].

Settings

We consider the initial set

v ∈ [15,40]

t ∈ [0, 2.5]

x = 0,

with initial location loc1. Further, we used a time horizon of N = 100, step-size
δ = 0.5 and a jump depth of 5. The set of bad states are the set of states where
v ≤ −2.

4.1.5 5-Dimensional Linear Switching System

The 5-dimensional linear switching system benchmark1 models a purely �ctive sys-
tem with randomly generated �ows. It is a piecewise linear system with di�erent
controlled continuous dynamics. The matrices Ai,Bi, with i ∈ {1, . . . ,5} are gener-
ated randomly and the generated system is then stabilized with a LQR controller to
ensure a convergence to a stable attracting region. The transitions are determined
heuristically by means of simulations. The proposed benchmark consists of 5 loca-
tions and 5 transitions ordered as a cycle. The continuous dynamics in each mode qi,
i ∈ {1, . . . 5} is described by the ODE

ẋ = Aix+Biu,

where x ∈ R5 is the state vector, u is an input signal con�ned in compact bounded set
U and the matrices A1, . . . ,A5 and B1, . . . ,B5 are de�ned as in Chapter B.1. The hy-
brid automaton representing the 5-dimensional switching system is given in Figure 4.4

1https://ths.rwth-aachen.de/research/projects/hypro/5-dimensional-switching-linear

-system/

48

https://ths.rwth-aachen.de/research/projects/hypro/5-dimensional-switching-linear
-system/

CHAPTER 4. EXPERIMENTAL RESULTS 4.1. BENCHMARKS

q1

ẋ = A1 · x+B1 · u

q2

ẋ = A2 · x+B2 · u

q3

ẋ = A3 · x+B3 · u

q5

ẋ = A4 · x+B4 · u

q4

ẋ = A5 · x+B5 · u

x1 = 3

x1 = 2

x1 = 1

x1 = 0

x1 = 1

Figure 4.4: Hybrid automaton of the 5-dimensional switching system

Settings

We consider the initial set

x1 = 3.1

x2 = 4

x3 = 0

x4 = 0

x5 = 0

u ∈ [−1,1],

with initial location q1. Further, we used a time horizon of N = 0.13, step-size
δ = 0.003 and a jump depth of 4.

4.1.6 Three-Vehicle Platoon

The three-vehicle platoon benchmark models a distance control system to avoid col-
lisions within the platoon. We consider a platoon of 3 carrier vehicles guided by an
additional leader vehicle. All vehicles are able to communicate with each other and
they are trying to keep the spacing between them at a �xed distance. Due to heavy
rain, the communication may be disrupted. The spacing error ei is de�ned as the
di�erence between the distance di of the truck i to its predecessor and a reference
distance dref,i.

ei = di − dref,i.

The goal of the reachability analysis is to determine a lower bound for dref,i that
ensures a collision-free driving. The dynamics of the platoon is described by the
following ODE

ẋ(t) = Ax(t) +BaL(t),

49

4.1. BENCHMARKS CHAPTER 4. EXPERIMENTAL RESULTS

where A is a constant system matrix, B is a constant input matrix and aL is the
acceleration of the leader considered here as an external input. The state vector is
x = [e1,ė1,a1,e2,ė2,a2,e3,ė3,a3] where ai is the acceleration of vehicle i. In case of no
communication problems A and B are given by Ac and Bc and if the communication
is disrupted the matrices describing the describing the dynamics are given by An and
Bn as de�ned in Chapter B.2. The hybrid automaton corresponding to the benchmark
can be found in Figure 4.5 [MMH+11].

qc

ẋ = Ac · x+Bc · aL
ṫ = 1

aL = 0
t ≤ c1

qn

ẋ = An · x+Bn · aL
ṫ = 1

aL = 0
t ≤ c2

t ≥ c1
t := 0

t ≥ c2
t := 0

Figure 4.5: Hybrid automaton for the three-vehicle platoon benchmark

Settings

We consider the inital set

ei ∈ [0.9,1.1], i ∈ {1, . . . ,3}
ėi ∈ [0.9,1.1], i ∈ {1, . . . ,3}
ai ∈ [0.9,1.1], i ∈ {1, . . . ,3}

c1,c2 = 2

aL = 0,

with initial location qc. Further, we used a time horizon of N = 12, step-size δ = 0.2
and a jump depth of 2. The set of bad states are the states where e1 ≥ 1.7.

4.1.7 Filtered Oscillator

The �ltered oscillator benchmark1 models a two-dimensional switched oscillator with
variables x and y combined with a 4-th order �lter with variables x1, x2, x3 and
z. The �lter smoothens the input signal x and has the output signal z. At the
switching planes the system changes its mode but does not modify the variables. The
corresponding hybrid automaton with �xed values can be found in Figure 4.6.

Settings

We consider the initial set

x ∈ [0.2,0.3]

1https://ths.rwth-aachen.de/research/projects/hypro/filtered-oscillator/

50

https://ths.rwth-aachen.de/research/projects/hypro/filtered-oscillator/

CHAPTER 4. EXPERIMENTAL RESULTS 4.2. EVALUATION

loc1

ẋ = −2 · x+ 1.4
ẏ = −y − 0.7

ẋ1 = 5 · x− 5 · x1

ẋ2 = 5 · x1 − 5 · x2

ẋ3 = 5 · x2 − 5 · x3

ż = 5 · x3 − 5 · z

x ≤ 0
y + 0.714286 · x ≥ 0

loc2

ẋ = −2 · x− 1.4
ẏ = −y + 0.7

ẋ1 = 5 · x− 5 · x1

ẋ2 = 5 · x1 − 5 · x2

ẋ3 = 5 · x2 − 5 · x3

ż = 5 · x3 − 5 · z

x ≤ 0
y + 0.714286 · x ≤ 0

loc3

ẋ = −2 · x+ 1.4
ẏ = −y − 0.7

ẋ1 = 5 · x− 5 · x1

ẋ2 = 5 · x1 − 5 · x2

ẋ3 = 5 · x2 − 5 · x3

ż = 5 · x3 − 5 · z

x ≥ 0
y + 0.714286 · x ≥ 0

loc4

ẋ = −2 · x− 1.4
ẏ = −y + 0.7

ẋ1 = 5 · x− 5 · x1

ẋ2 = 5 · x1 − 5 · x2

ẋ3 = 5 · x2 − 5 · x3

ż = 5 · x3 − 5 · z

x ≥ 0
y + 0.714286 · x ≤ 0

y + 0.714286 · x = 0
x ≥ 0

0.714286 · x+ y ≤ 0
x = 0

y + 0.714286 · x = 0
x ≤ 0

0.714286 · x+ y ≥ 0
x = 0

Figure 4.6: Hybrid automaton for the �ltered oscillator benchmark

y ∈ [−0.1,0.1]

z,x1,x2,x3 = 0

with initial location loc3. Further, we used a time horizon of N = 4, step-size δ = 0.1
and a jump depth of 5. The set of bad states are the states where y ≥ 0.5.

4.2 Evaluation

All benchmarks described in Chapter 4.1 were tested within the implementation of
HyPro. We used di�erent combinations of our optimization approaches and used
boxes and H-polytopes as reference values for the runtime. Unfortunately some opti-
mizations like the in�uence of ellipsoids on non-autonomous systems and the variance
of the linear transformation reduction parameter could not be tested on all bench-
marks due to high computation times created by the usage of rational arithmetic. Note
that we used a time-limit of one hour. All times exceeding this limit are denoted by to.

First, we will analyze the gain of using ellipsoids to compute the non-autonomous

51

4.2. EVALUATION CHAPTER 4. EXPERIMENTAL RESULTS

part of the �owpipe construction instead of using the set representation used for the
autonomous part. To test this, we modi�ed the bouncing ball, two tank and cruise
control benchmarks by adding an external input that results in an initial bloating by a
ball with radius β = 0.0000001. Computations with di�erent radii had similar results.
Unfortunately, the e�ects on higher dimension could not be tested due to the massive
increase of time complexity introduced by external in�uences. In theory, the e�ects
of using ellipsoids are expected to have an even greater impact on computations on
higher dimensions.

We compared the runtimes for di�erent representations, computing the external in-
�uence once with the used representation and once with ellipsoids (marked with ∗).
The resulting computation times are shown in Table 4.1. As seen in the table using
ellipsoids is an improvement for both H-polytope and support functions. For boxes
the usage of ellipsoids has a negative in�uence which was to be expected due to the
simplicity of boxes in comparison to ellipsoids. Focusing on support functions we see
that the usage of ellipsoids is signi�cantly improving the computation time reducing
it close to the computation time of the corresponding autonomous systems shown
later on. Note that for support functions we were using the optimized version with
the approaches from Chapter 3. Without those optimizations the computation time
for support functions greatly exceeded the time-limit of one hour.

Example Box Box∗ H H∗ SF SF∗

Bouncing Ball 263 315 326,660 17,423 22,188 2,098
Cruise Control 281 297 656,049 287,324 40,241 6,972
Two Tank 173 206 47,708 27,346 175,290 1,517

Table 4.1: Comparison of computation times of non-autonomous versions of the
benchmarks. The non-autonomous part was once computed with the original rep-
resentation and once with ellipsoids. The results measured with ellipsoids are marked
with ∗. Times in [ms].

In Chapter 2.2.1 we stated that the external in�uence has a large impact on the
complexity of reachability analysis. Comparing the results from Table 4.1 with the
corresponding runtimes of the autonomous versions shown later in Table 4.5 we see
that this statement can be observed in our evaluation as well. For boxes the runtimes
increased by about 20%. For the more complex representations however, the increase
in runtime is signi�cant. Without the usage of ellipsoids the computation times for
H-polytopes were between 25 and 200 times longer whereas it was only half as much
with usage of ellipsoids. For support functions this e�ect was even greater. With the
usage of ellipsoids we could reduce the computation time to between 1

6 to 1
100 times

the computation time need with pure support functions. This reduced the increase of
necessary time for analyzing non-autonomous systems to 1.4 times the computation
time of non-autonomous systems.

In the following we will evaluate the results of the optimizations for support functions
as explained in Chapter 3.2.1 and 3.2.2. At the end, we will give a comparison of the
runtimes for optimized support functions, H-polytope and boxes.

52

CHAPTER 4. EXPERIMENTAL RESULTS 4.2. EVALUATION

First, we analyzed the in�uence of di�erent values for the linear transformation re-
duction parameter n on the bouncing ball benchmark. As explained in Chapter 3.2.1
this parameter limited the number of successive linear transformations to 2n before
applying the reduction. The results can be seen in Figure 4.7. We see that the choice
of n can have a major impact on the computation but unfortunately the runtimes for
di�erent n describe have an oscillating behavior. Thus, the choice of an optimal n is
a more complex problem than we expected. Further, for some n the linear reduction
can even have a negative in�uence on the computation. On the two tanks benchmark
we had a runtime of 1.29·106ms for n = 4, whereas the runtime without optimizations
is 1.21 · 106ms. In conclusion, the gain of the linear reduction is strongly connected
to the parameter n and the number of evaluations of the segment which's support
function tree is to be reduced.

1 2 3 4 5 6 7 8 9 10 11 12
1.55 · 105

1.6 · 105

1.65 · 105

1.7 · 105

1.75 · 105

1.8 · 105

1.85 · 105

Lin. trans. red. parameter n [log2 n]

Time [ms]

Figure 4.7: Comparison of runtimes for di�erent parameters for linear transformation
reduction on the bouncing ball benchmark

The results in Table 4.2 show that both the linear transformation reduction as well as
the pre-jump reduction improved the runtime by a small amount. However, compar-
ing the results of the two tanks benchmark with the results on the bouncing ball and
cruise control benchmark, we see that there are cases in which the pre-jump reduction
does not positively in�uence the runtime due to the overhead of computing the direct
transition matrix.

The usage of the post-jump reduction has shown to be an astonishing improvement
for support functions. As seen in Table 4.3 using the post-jump reduction has a sig-
ni�cant impact on the computational time improving it by more than a magnitude.
With this, we were able to perform reachability analysis on the rod reactor benchmark
as well as the switching system benchmark in reasonable time. Further, our proposed

53

4.2. EVALUATION CHAPTER 4. EXPERIMENTAL RESULTS

Example Original sf Lin. trans. red. Pre-jump red.
Bouncing Ball 214,106 174,839 140,035
Cruise Control 1,244,300 1,073,980 1,041,940
Two Tanks 1,214,060 1,031,010 1,059,230

Table 4.2: Comparison of runtimes using the linear transformation reduction with
n = 2 and pre-jump reduction to optimize support functions. Times in [ms].

metric has proven to be e�cient. The results with usage of the metric were in all
scenarios better than the original support function and also better than an approach
where we forced the post-jump reduction after each jump.

Example Original sf Post-jump red. Forced post-jump red.
Bouncing Ball 214,106 1,369 1,770
Cruise Control 1,244,300 5,224 6,154
Rod Reactor to 3,070,290 3,188,840

Switching System to 1,363,250 1,629,710
Two Tanks 1,214,060 1,165 1,407

Table 4.3: Comparison of runtimes using the post-jump reduction using the intro-
duced metric with a forced post-jump reduction. Times in [ms].

We �nally evaluated the combination of post-jump reduction with the other proposed
optimizations. However, as seen in Table 4.4 this had worse results than the pure
post-jump reduction.

Example Post-jump red. Post-jump red. Post-jump red
Lin. trans. red. Pre-jump red.

Bouncing Ball 1,369 1,752 1,674
Cruise Control 5,224 6,514 6,440
Rod Reactor 3,070,290 3,260,940 3,228,830

Switching System 1,363,250 to 1,619,700
Two Tanks 1,296 1,165 1,335

Table 4.4: Comparison of runtimes using the post-jump reduction combined with
linear reduction and pre-jump reduction. Times in [ms].

The combination of post-jump reduction with linear reduction is only an improvement
if the number of segments between two reductions is high enough as in the two tanks
benchmark. Lower numbers of segments only yield an overhead introduced by the lin-
ear reduction since the reduction requires a certain number of evaluations to pay o�.
Furthermore, we tried to combine the pre-jump reduction with the post-jump reduc-
tion with an interesting result. The combination of pre- and post-jump reduction also
has a negative impact on the computation time. The reason for this is that the com-
putation of a new support function introduced by the post-jump reduction nulli�es
the impact of the pre-jump reduction except for the creation of the approximating
H-polytope, where the costs for the pre-jump reduction are already higher than the

54

CHAPTER 4. EXPERIMENTAL RESULTS 4.2. EVALUATION

costs of the necessary evaluations for the post-jump reduction. However, there might
be cases where applying a pre-jump reduction instead of a post-jump reduction is
an improvement. This would be the case for high-dimensional systems with a high
number of segments per �owpipe. An approach to solve this con�ict between pre-
and post-jump reduction is explained later on in Chapter 5.1.

In Table 4.5 we illustrated a comparison of runtime results for di�erent representa-
tions. Comparing the optimized support functions with the original implementation
we see that the optimizations we proposed had a huge impact on support functions
mostly leading to better results as for H-polytopes especially for higher dimensions.
However, for the 9-dimensional vehicle platoon all representations exceeded the time-
limit due to the complexity additional dimensions introduce. For the 6-dimensional
�ltered oscillator benchmark all representations failed, except for the box representa-
tion. We assume that the high increase in computational time is mainly caused by
the drawbacks of exact arithmetic as explained in Chapter 3.1.1. Thus, using �oating
point arithmetic instead of exact arithmetic might have a drastic e�ect on the runtime.

Example d Box H Original sf Optimized sf
Bouncing Ball 2 235 3,173 214,106 1,369
Cruise Control 3 213 2,920 1,244,300 5,224

Filtered Oscillator 6 3,318 to to to
Rod Reactor 3 1,790 to to 3,070,290

Switching System 5 34,288 to to 1,363,250
Two Tanks 2 156 1,963 1,214,060 1,165

Vehicle Platoon 9 to to to to

Table 4.5: Comparison of runtimes for boxes, H-polytopes and support functions with
and without optimizations. Times in [ms].

55

4.2. EVALUATION CHAPTER 4. EXPERIMENTAL RESULTS

56

CHAPTER 5
CONCLUSION

Concluding this thesis we have explained the basics of hybrid systems and hybrid au-
tomata as well as the �owpipe-based reachability analysis on those systems. Further,
we summarized some of the most important state set representations together with
their bene�ts and drawbacks. Then, we explained how to separate the autonomous
and non-autonomous part of the reachability analysis by usage of three new sets to
reduce the wrapping e�ect and compute the systems more e�ciently. Afterwards, we
proposed a new way to compute the non-autonomous system by usage of ellipsoids
which has shown to greatly improve the overall runtime for H-polytopes as well as
support functions. In addition, we introduced three ways to optimize the computa-
tion of autonomous systems using support functions by reducing the complexity of
the involved support function tree. Evaluating those optimizations has then shown
that all three reductions improve the runtime for support functions. The post-jump
reduction has by far the greatest in�uence with a reduction of the computation time
by a magnitude. The other two approaches to improve support functions had a pos-
itive in�uence on the computation as well, even though the e�ects were quite small.
In addition, we saw that there still needs to be time invested in order to join those
optimizations and further optimize their in�uence on the computation. Thus, the
computation of �owpipe-based reachability analysis still has a lot of room for im-
provements and is currently not �tted to precisely analyze high-dimensional systems
in reasonable time. Some thoughts on how to optimize our approaches can be found in
Chapter 5.1. Unfortunately, those ideas could not be put to test during the creation
of this thesis.

5.1 Future Work

Our approaches at improving the �owpipe-computation with support functions has
still room for improvements. We have still ideas how to further optimize the three
approaches, but we could not put those ideas to the test in this thesis due to the lack
of time. Therefore we will leave them to future work and only coarsely describe the
ideas here.

57

5.1. FUTURE WORK CHAPTER 5. CONCLUSION

The �rst thing we suggest is using binary search to compute the actual time horizon
N ′ that can be reached in each location within the original time horizon N . This
could be realized by computing the set XN at time N directly from the initial set
X0 and checking if XN still satis�es the locations invariants. If it does N is a �tting
if not, we will continue with the set at time N

2 and iteratively search for N ′. This
will have a major impact on the metric introduced in Chapter 3.2.2 as the reachable
time horizon strongly depends on the dynamics and invariants of a location. This
improved metric should then be able to determine whether to use the post-jump re-
duction more precisely. Furthermore, with the actual time horizon we can exactly
compute the number of expected segments in the �owpipe. this could be used to cre-
ate an algorithm to choose the linear transformation parameter n in order to optimize
the in�uence of the linear transformation reduction from Chapter 3.2.1.

Our second suggestion is to analyze the connection between pre-jump and post-jump
reduction and �nd a metric to determine which approach is better �tted for the
current jump if a reduction would be useful. This could be realized by computing
the �owpipe without reduction up to the point where all segments satisfying a jump
guard are known. At this point it should be possible to estimate the costs for the
�owpipe generated after the jump with either reduction. If the pre-jump reduction is
determined to be less expensive one could re-compute the segments involved in the
jump using the pre-jump reduction and otherwise use the post-jump reduction.

58

BIBLIOGRAPHY

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata:
An algorithmic approach to the speci�cation and veri�cation of hybrid
systems. Springer, 1993.

[ADI03] R. Alur, T. Dang, and F. Ivancic. Progress on Reachability Analysis of
Hybrid Systems Using Predicate Abstraction. Springer, 2003.

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software,
22(4):469�483, 1996.

[Bor07] H. K. Borgwardt. Average-case analysis of the double description method
and the beneath-beyond algorithm. Discrete & Computational Geometry,
37(2):175�204, 2007.

[Che15] X. Chen. Reachability Analysis of Non-Linear Hybrid Systems Using Tay-
lor Models. PhD thesis, RWTH Aachen University, 2015.

[DA01] R. David and H. Alla. On hybrid petri nets. Discrete Event Dynamic
Systems, 11(1-2):9�40, 2001.

[FGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable veri�cation of
hybrid systems. In Computer Aided Veri�cation - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, 2011., pages 379�395. Springer,
2011.

[GG09] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems
using support functions. In Computer Aided Veri�cation, 21st Interna-
tional Conference, CAV 2009, Grenoble, France, 2009., pages 540�554.
Springer, 2009.

[GGM06] A. Girard, C. Le Guernic, and O. Maler. E�cient computation of reach-
able sets of linear time-invariant systems with inputs. In Hybrid Sys-
tems: Computation and Control, 9th International Workshop, HSCC
2006, Santa Barbara, CA, USA, 2006, pages 257�271. Springer, 2006.

59

BIBLIOGRAPHY BIBLIOGRAPHY

[Gir05] A. Girard. Reachability of uncertain linear systems using zonotopes. In
Hybrid Systems: Computation and Control, 8th International Workshop,
HSCC 2005, Zurich, Switzerland, 2005, pages 291�305. Springer, 2005.

[GK98] P. K. Ghosh and K. V. Kumar. Support function representation of convex
bodies, its application in geometric computing, and some related repre-
sentations. Computer Vision and Image Understanding, 72(3):379�403,
1998.

[GT08] S. Gulwani and A. Tiwari. Constraint-Based Approach for Analysis of
Hybrid Systems. Springer, 2008.

[His01] I. A. Hiskens. Stability of limit cycles in hybrid systems. In 34th Annual
Hawaii International Conference on System Sciences (HICSS-34), 2001,
Maui, Hawaii, USA, pages 163�328. IEEE Computer Society, 2001.

[HKPV95] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable
about hybrid automata? In 27th Annual ACM Symposium on Theory of
Computing, STOC '95, pages 373�382. ACM, 1995.

[KA96] Fukuda K. and David A. First international colloquium on graphs and op-
timization reverse search for enumeration. Discrete Applied Mathematics,
65(1):21 � 46, 1996.

[KV07] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachability
analysis of discrete-time linear systems. IEEE Transactions on Automatic
Control, 52(1):26�38, 2007.

[KV11] A. A. Kurzhanskiy and P. Varaiya. Reach set computation and control
synthesis for discrete-time dynamical systems with disturbances. Auto-
matica, 47(7):1414�1426, 2011.

[MMH+11] I. B. Makhlouf, J. P. Maschuw, P. Hänsch, H. Diab, S. Kowalewski, and
D. Abel. Safety veri�cation of a cooperative vehicle platoon with un-
certain inputs using zonotopes*. IFAC, 44(1):9769 � 9774, 2011. 18th
{IFAC} World Congress.

[Oeh11] J. Oehlerking. Decomposition of stability proofs for hybrid systems. PhD
thesis, Carl von Ossietzky University of Oldenburg, 2011.

[ST01] D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. In 33rd Annual ACM
Symposium on Theory of Computing, STOC '01, pages 296�305. ACM,
2001.

60

APPENDIX A
SET OPERATIONS

As we will need a lot of theory on sets, we give an overview of all important operations
that are used throughout this thesis.

De�nition A.1 (Minkowski sum)
The Minkowski sum is the result of a point-wise addition of two or more sets.

A⊕B = {a+ b | a ∈ A, b ∈ B}

De�nition A.2 (Union)
Joining together two or more sets

A ∪B = {x | x ∈ A ∨ x ∈ B}

De�nition A.3 (Intersection)
Identifying the common part of two or more sets

A ∩B = {x | x ∈ A ∧ x ∈ B}

De�nition A.4 (Convex Hull)
A convex set is a set X such that for all points x ∈ X it holds

x =

k∑
i=1

λixi, where all λi ≥ 0, xi ∈ X and

k∑
i=1

λi = 1.

The convex hull of a set X is de�ned analogously as

CH(X) = {x | x =
∑
i

λixi, λi ≥ 0, xi ∈ X and
∑
i

λi = 1.}

De�nition A.5 (Linear Transformation)
A linear transformation with transformation matrix A on a setX is a scaling, rotation,
skewing or a combination of those.

A ·X = {y | ∃x.y = A · x, x ∈ X}

61

APPENDIX A. SET OPERATIONS

62

APPENDIX B

ADDITIONAL INFORMATION FOR BENCHMARKS

In this chapter we give additional information for some benchmarks explained in
Chapter 4.1.

B.1 5-Dimensional Linear Switching System

The matrices A1, . . . ,A5 and B1, . . . ,B5 are de�ned as follows

A1 =

−0.8047 8.7420 −2.4591 −8.2714 −1.8640
−8.6329 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.8302 1.9869 −2.4539 −1.7726 −0.7911

A2 =

−0.8316 8.7658 −2.4744 −8.2608 −1.9033
−8.6329 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
1.5964 2.1936 −2.5872 −1.6812 −1.1324

A3 =

−0.9275 8.8628 −2.5428 −82329 −2.0324
−8.6329 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7838 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
0.7635 3.0357 −3.1814 −1.4388 −2.2538

A4 =

−1.0145 8.9701 −2.6207 −8.2199 −2.1469
−8.6329 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
0.0076 3.9682 −3.8578 −1.3253 −3.2477

63

B.2. APPENDIX B. ADDITIONAL INFORMATION FOR BENCHMARKS

A5 =

−1.4021 10.1647 −3.3937 −8.5139 −2.9602
−8.6329 −0.5860 −2.1006 3.6035 −1.8423
2.4511 2.2394 −0.7538 −3.6934 2.4585
8.3858 −3.1739 3.7822 −0.6249 1.8829
−3.3585 14.3426 −10.5703 −3.8785 −10.3111

B1 = . . . = B5 =

−0.0845

0
0
0

−0.7342

 .

B.2 Three-Vehicle Platoon

The matrices Ac, An,Bc, Bn are de�ned as follows

Ac =

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.6050 4.8680 −3.5754 −0.8198 −0.4270 −0.0450 −0.1942 −0.3626 −0.0946
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0

0.8718 3.8140 −0.0754 1.1936 3.6258 −3.2396 −0.5950 0.1294 −0.0796
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356

An =

0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

1.6050 4.8680 −3.5754 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1.1936 3.6258 −3.2396 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356

Bn = Bc =

(
0 1 0 0 0 0 0 0 0

)T

B.3 Cruise Control

The hybrid automaton corresponding to the cruise control benchmark is shown in
Figure B.1.

64

APPENDIX B. ADDITIONAL INFORMATION FOR BENCHMARKS B.3.

loc_1

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

v ≥ 15 ∧ v ≤ 40
t ≥ 0 ∧ t ≤ 2.5

loc_2

v̇ = −5
ẋ = 0
ṫ = 0

v ≥ 15 ∧ v ≤ 40

loc_4

v̇ = −t− 1.2
ẋ = 0
ṫ = 0

v ≥ 5 ∧ v ≤ 20
t ≥ 0 ∧ t ≤ 1.3

loc_3

v̇ = −2.5
ẋ = 0
ṫ = 0

v ≥ 5 ∧ v ≤ 20

loc_5

v̇ = −0.001 · x− 0.052 · v
ẋ = v
ṫ = 0

v ≥ −15 ∧ v ≤ 15
x ≥ −500 ∧ x ≤ 500

loc_6

v̇ = 1.5
ẋ = 0
ṫ = 0

v ≥ −20 ∧ v ≤ −5

t = 2.5
15 ≤ v ≤ 40

0 ≤ t ≤ 2.5
15 ≤ v ≤ 16

t := 0

t = 2.5
15 ≤ v ≤ 16

t := 0

t = 1.3
18 ≤ v ≤ 20

t := 0

x1 = −1

0 ≤ t ≤ 1.3
18 ≤ v ≤ 20

t := 0

0 ≤ t ≤ 1.3
5 ≤ v ≤ 11

x := 0

13 ≤ v ≤ 15
−500 ≤ x ≤ 500

t := 0

−15 ≤ v ≤ −14
−500 ≤ x ≤ 500

−6 ≤ v ≤ −5
−500 ≤ x ≤ 500

x := 0

Figure B.1: Hybrid automaton of the cruise control benchmark

65

	Introduction
	Preliminaries
	Hybrid Systems
	Flowpipe-Based Reachability Analysis
	Flowpipe-Computation
	Wrapping Effect

	Set Representation
	Polytopes
	Support Functions
	Ellipsoids

	Optimizations for Non-Autonomous Systems Using Ellipsoids
	Computation of the Non-Autonomous Part
	Exact Arithmetic

	Optimizations for Reachability with Support Functions
	Reduction of Linear Transformation Chains
	Reduction of Jump Complexity

	Experimental Results
	Benchmarks
	Bouncing Ball
	Two Tanks
	Rod Reactor
	Cruise Control
	5-Dimensional Linear Switching System
	Three-Vehicle Platoon
	Filtered Oscillator

	Evaluation

	Conclusion
	Future Work

	Bibliography
	Set Operations
	Additional Information for Benchmarks
	5-Dimensional Linear Switching System
	Three-Vehicle Platoon
	Cruise Control

