
RWTH Aachen University
Rheinisch-Westfälische Technische Hochschule Aachen

Chair of Computer Science 2
Theory of Hybrid Systems
Prof. Dr. Erika Ábrahám

Bachelor Thesis

Counterexample-Guided

Abstraction Refinement for

Hybrid SFC Verification

Kai Axel Driessen
Matriculation Number: 297607

- September 2012 -

Primary Referee: Prof. Dr. Erika Ábrahám
Secondary Referee: Prof. Dr.-Ing. Stefan Kowalewski

Supervisors: Dipl.-Inform. Johanna Nellen

Declaration of Academic

Integrity

I hereby declare that I have created this work completely on my own and used
no other sources or tools than the ones listed, and that I have marked any
citations accordingly.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate
kenntlich gemacht habe.

Aachen, the 3th of September 2012

Acknowledgments

At this point, I would like to thank Prof. Dr. Erika Ábrahám for giving me the
opportunity to write my bachelor thesis at the Chair of Computer Science 2
and for being primary referee of it. Secondly, I want to thank Prof. Dr.-Ing.
Stefan Kowalewski for making himself available to be the secondary referee.
I give thanks to my supervisor Dipl.-Inform. Johanna Nellen, who could always
spare some of her time and who gave me helpful advice with me during the
work on the subject.
Last but not least, I am especially grateful to my parents Dagmar and Ulrich
Driessen for their continuous support throughout my studies in every respect.
Without them, my bachelor’s course would not have been possible.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Programmable Logic Controllers . 5
2.2 Sequential Function Charts . 6

2.2.1 SFC Syntax . 6
2.2.2 SFC Semantics . 9

2.3 Tank System . 10
2.4 Conditional ODE Systems . 12
2.5 Hybrid Sequential Function Charts 14
2.6 Hybrid Automata . 15

2.6.1 Transformation of SFC to HA 17
2.6.2 Transformation of HSFC to HA 18

2.7 Reachability Analysis . 19
2.8 SpaceEx - State Space Explorer . 20
2.9 Summary . 22

3 CEGAR-based plant control verification 23
3.1 CEGAR Plant Control Verification 24
3.2 Plant Control Verification Input . 25

3.2.1 Plant Control . 25
3.2.2 Plant Dynamics . 27
3.2.3 Safety Condition . 28

3.3 SpaceEx Analysis . 29
3.3.1 Transformation to SpaceEx Model and Configuration . . . 30

3.4 SpaceEx Output . 32
3.4.1 Textual Output (TXT-File) 32
3.4.2 Interval Output (INTV-File) 33

3.5 Summary . 34

4 Counterexample-Guided Abstraction Refinement 35
4.1 Refinable Steps . 36
4.2 Refinement Procedure . 40
4.3 Refinement Strategies . 41

4.3.1 Naive by ODE . 42
4.3.2 Naive by Step . 43
4.3.3 First of Most Visited . 44

4.4 Step Refinement . 46

4.4.1 HSFC Refinement . 47
4.4.2 HA Refinement . 47

4.5 Summary . 49

5 Experimental Results 51
5.1 One Tank System . 51
5.2 Two Tank System . 58
5.3 Summary . 60

6 Conclusion and Future Work 61

Bibliography 64

Chapter 1

Introduction

This bachelor thesis deals with the verification of plant controls. The primary
goal is to verify chemical plants while keeping their models as simple as possible.
The plant behavior is often controlled by programmable logic controllers (PLCs).
Users can program PLCs, e.g., by using the graphical programming language of
sequential function charts (SFCs).

PLC controlled systems are usually safety-critical. For example, an overflowing
tank may cause a system to fail. In general, the verification of plants can
be accomplished by analyzing the SFC either in isolation or in combination
with a model of the plant [BCMP98, HKD98]. Considering this combined
approach, timed or hybrid automaton (HA) can be applied to model the SFC,
while hybrid automata specify the plant dynamics. Finally, these automata can
be verified by using existing tools for hybrid automata reachability analysis.
We combined SFCs and plant dynamics into a single hybrid automaton and
analyze it. Additionally, our verification approach uses counterexample-guided
abstraction refinement (CEGAR).

The resulting hybrid automata modeling the SFCs are likely to become too large
to be analyzed. CEGAR techniques are proposed in [ELS05]. An abstraction
of the dynamic behavior of the plant reduces the model but can also cause
the model to become too coarse due to missing or incomplete behaviour. We
propose a technique to use SFCs and conditional ordinary differential equation
(ODE) systems to describe the plant dynamics under specific conditions. We
combine them to hybrid sequential function charts (HSFCs) [NA12] that can
be converted into hybrid automata and verified accordingly.

In order to keep the model size to a minimum during this verification process,
we add parts of the plant dynamics to the model successively. Thus, we achieve
refinement by extending the HSFC. During this refinement, the above mentioned
conditional ODE systems are attached to the HSFC iteratively. In each iteration
a third-party tool is used to verify the given safety properties for the current
system. Depending on its result, we refine the system if necessary. In case a
reduced model is proven safe, the complete model containing all plant dynamics
is also safe. On the other hand, if a reduced model is unsafe, we continue
integrating the dynamic behavior until the model is either validated or remains
unsafe although all available conditional ODE systems have been included. This
CEGAR-based verification is illustrated in Figure 1.1.

2 1. Introduction

Safety
property

SFC

Plant
dynamics

Hybrid
SFC

Hybrid
automaton

Counterexample

Return
safe

Return
unsafe

Refinement
possible?

Safe?

Reachability
analysis

no

yes

yes

Refinement

no

Figure 1.1: Flow chart of the complete verification process

With respect to this verification process, some universal conditions are defined
determining whether specific plant dynamics should be added to a model.
These conditions restrict the size of the resulting hybrid automaton because
not all plant dynamics are appropriate for each part of the plant. In order
to find the best refinement sequence, we apply different heuristics to analyze
the counterexamples provided by an HA verification tool. We present three
strategies to iteratively select plant dynamics based on these counterexamples
consisting of the output of the HA verification tool.

In order to explain the basic requirements for our novel approach and, sub-
sequently, elaborate on the approach itself, this bachelor thesis is structured
in the following way. First, PLCs and HSFCs are discussed in Chapter 2 to
present the required data structures and the transformation of HSFCs to hybrid
automata. In addition we introduce an exemplary tank system which is referred
to in the subsequent chapters as well. The third-party tool SpaceEx [FLGD+11]
to analyze hybrid automata is presented. In Chapter 3, the different parts of
our CEGAR-based plant verification are described and SpaceEx is integrated
into the verification. Instructions to create models are given and the previously
introduced tank system is modeled using the third-party Beremiz [Tis12] editor.
The counterexamples provided by the verification tool in case of failed verifica-
tions are described in detail. The evaluation of these counterexamples to choose
appropriate plant dynamics, thus, iteratively extending the current model are
described in Chapter 4. Furthermore, we define the conditions under which
a system is considered refinable and implement strategies, two naive and one
more complex approach, to select the most promising candidates for refinement

1. Introduction 3

during each iteration. In Chapter 5, the tank model and one additional example
are evaluated using our verification algorithm, while employing both a naive
and a more complex refinement strategy. Chapter 6 constitutes a final comment
on the usability and the quality of the novel technique including an outlook
regarding known issues and unexploited opportunities.

4 1. Introduction

Chapter 2

Preliminaries

In this chapter, hybrid sequential function charts are introduced which are
diagrams that allow to model both the discrete and the dynamic behavior of a
plant. These HSFCs are used as a model in our CEGAR-based plant control
verification.

In Section 2.1, an introduction to programmable logic controllers is given as
they are used to control chemical plants. The operating principle of PLC
scan-cycles is explained. We introduce the syntax and the semantics of the
graphical programming language of SFCs in Section 2.2. An exemplary tank
system is given in Section 2.3 which is modeled by SFCs. By using SFCs, it
is possible to model the discrete controller behavior of a plant. Conditional
ordinary differential equation (ODE) systems, which model the continuous
behavior of a plant, are introduced in Section 2.4. How these conditional ODEs
can be added to an SFC and the resulting HSFC are explained in Section 2.5. A
formal definition of hybrid automata (HA) is given in Section 2.6. Furthermore,
a transformation of HSFCs into HA is given. Afterwards, we are able to
verify HSFCs by applying hybrid automata reachability analysis as presented
in Section 2.7 to the transformed HSFCs. Additionally, we present the tool
platform SpaceEx to analyze hybrid automata in Section 2.8.

2.1 Programmable Logic Controllers

PLCs are digital computers, which are used to control and regulate machines
or plants. PLCs have multiple input and output interfaces and are built to be
resistant to outside influences. E.g., a tank system, which consists of tanks,
water pumps and valves, may be controlled by a PLC.

PLCs run a program by using scan-cycles (Figure 2.1). The scan-cycle can be
split into four different phases. The first phase is the input scan phase, where
the analog and digital input resulting from, e.g., sensors or user interaction
are read and stored in the PLC’s input memory table. The actual program is
executed in the logic execution phase. The resulting values are written in the
memory output table. In the output scan phase, the output memory tables
values are written to the output module which are cards that typically have
between 8 and 16 output interfaces. These interfaces are used to connect, for
example, signal lights or displays. During the overhead phase diagnostics are

6 2. Preliminaries

Figure 2.1: The four phases of the PLC scan cycle

performed, e.g., the watchdog timer is checked, which resets the PLC in case of
a deadlock, and the memory is tested. This cycle is executed repeatedly until
the PLC is turned off. Multiple programs running on a PLC are synchronized
according to these cycles.

There exists an international standardization of five different PLC languages
(IEC 61131-3 [IEC03]), which includes Function Block Diagrams (FBD), Ladder
Diagrams (LD), Instruction Lists (IL), Structured Text (ST) and Sequential
Function Charts (SFC). These languages can be used to program PLCs. IL and
ST are similar to assembly languages, while FBD, LD and SFC are graphical
programming languages. We only consider SFCs to model the programs of the
PLC in the following sections as they allow us to present the control flow in a
graphically and convenient, structured manner.

2.2 Sequential Function Charts

SFCs are used as a graphical programming language for programmable logic
controllers. In this section we introduce this language and show how to use
these charts to model an exemplary tank system in Section 2.3. We present the
syntax of SFCs in Section 2.2.1 and the semantics in Section 2.2.2.

2.2.1 SFC Syntax

An SFC consists of steps which are connected by transitions. Actions blocks
denote a tuple of actions and action qualifiers. They are attached to steps and
the actions are executed according to their qualifiers.

The variables of an SFC are divided into three sets. V ar = V arI ⊍V arO ⊍V arL
is the set of variables, where V arI are the input variables, V arO the output
variables and V arL all local variables.

2. Preliminaries 7

A step in an SFC can either be active or inactive. The initial step is active at
the start of the execution. For other steps to become active, some conditions
have to be met. A transition must be taken leading to the step, all sources of
the transition have to be active, the transition guard must be satisfied and there
must not be any enabled transitions with higher priority. If these conditions are
satisfied, the next step becomes active and the source steps of the transition
become inactive. Multiple steps can be activated this way at the same time
since a transition can have multiple target steps, which are executed in parallel.
Transitions in SFCs are urgent, which means that as soon as a condition of a
transition is satisfied and all sources are active, a transition has to be taken.
If multiple transitions can be taken at the same time, the transition with the
highest priority is chosen. This priority is given by the partial order ≺.

Action blocks are tuples (q, a) consisting of a qualifier q and an action a. Action
blocks can be assigned to each step of the SFC and the contained actions are
executed during different events. An action can either be a variable assignment
or an SFC. If an action a is an SFC, it becomes active, when the action is
performed. If the SFCs history flag is active the nested SFC resumes at its
last active step. In case the SFC uses no history, the nested SFC begins at its
initial step. If the action a is a variable assignment, the value of the variable is
changed accordingly. The qualifier specifies when the action will be executed.
In the following examples, only the qualifiers entry, do and exit are used. These
qualifiers are used instead of P1, N and P0. Some examples of SFC action
qualifiers are listed in Figure 2.2.

Qualifier
Name Execution

N/do Non-stored Action is executed while the step is active
S Set (stored) Action is executed until a reset occurs
R Reset Stops a Set action when the step becomes active

P1/entry
Pulse,
rising edge Executed once when the step becomes active

P0/exit
Pulse,
falling edge Executed once when the step is deactivated

Figure 2.2: SFC action qualifiers

8 2. Preliminaries

Formally SFCs can be defined as described in Definition 2.1.

Definition 2.1 (Sequential Function Charts)
An SFC C = (V ar,Steps,Act, s0, T rans,Blocks,<,≺,Hist) is a tuple where

● V ar is a finite set of variables

● Steps is a finite set of steps

● Act is a finite set of actions referring to variables from Var in assign-
ments and to SFCs whose variable and action sets are subsets of Var
and Act resp. and whose action order is a subset of <

● s0 ∈ Steps is the initial Step

● Trans ⊂ (2Steps/{∅})×GV ar×(2Steps/{∅}) is a finite set of transitions,
where GV ar is the set of all guards over the variables V ar (transi-
tions with multiple target/source steps define the begin/end of parallel
branching)

● Blocks ∶ Steps → 2BAct is a function which assigns a set of action
blocks to each step, where 2BAct is the set of all action block sets

● <⊂ Act ×Act is a total order on the actions

● ≺⊂ Trans × Trans is a partial order on the transitions

● Hist ∈ {0,1} is a history flag
(Hist = 1: SFC with history, Hist = 0: SFC without history)

For a set T of transitions, let target(T) be the target steps and source(T) the
source steps of T . We denote by C̄ the set containing the SFC C and all its
nested SFCs at all depths, Steps(C̄) is the union of all steps and Trans(C̄)
the union of all transitions of these SFCs. SFC steps and transitions can be
visualized as illustrated in Figure 2.3.

Steps consist of a name (StepA, StepB) as well as a set of action blocks. These
action blocks are separated into three groups having the action qualifiers entry,
do and exit. The actions actiona1, actiona2, . . . and actionb3 are associated
with the qualifiers above them. The condition condt is assigned to the transition
connecting the steps. Outgoing transitions always start at the bottom of an
SFC step and incoming transitions are connected to the top of their target step.
The initial step of an SFC is double-lined as seen in StepA.

2. Preliminaries 9

StepA

entry/
actiona1

do/
actiona2

exit/
actiona3

StepB

entry/
actionb1

do/
actionb2

exit/
actionb3

condt

Figure 2.3: Two step and a transition of an SFC

2.2.2 SFC Semantics

The semantics of SFCs is described in this section. During a PLC cycle, the
input data from the environment is updated and the variables are changed
accordingly (input scan). In the logic execution phase, the set of transitions to
be taken is determined and the transitions are executed. Afterwards, actions
are determined and executed in order corresponding to the total action order
<. At the end of the cycle the output data is sent to the environment in the
output scan phase. We omit the overhead phase in all following computations
as the plant control is not affected by the diagnostics. An SFC configuration
(σ, readyS, activeS, activeA) ∈ Σ×Steps(C̄)×Steps(C̄)×Act∗ contains a state
σ ∶ V ar → D, which assigns a value to each, where D is the union of all data
type domains.

readyS is a set of ready steps and is the union of all active steps of the top-level
SFC and the nested SFCs. Additionally, readyS contains the last active steps
of the currently inactive nested SFCs.

The set activeS contains the active steps of the top-level SFC and of all nested
SFCs, to which an active action points.

The sequence activeA is a list of actions sorted by their priority. It contains
the do actions of currently active steps, the exit actions of the source steps and
the entry actions of the target steps of taken transitions. These actions are
executed in the next PLC cycle.

Conf is the set of all configurations. The initial configuration of an SFC is
(σ0,{s0},∅,∅). The state σ0 assigns an initial value to each variable. The
configuration contains the initial step s0 of an SFC C. The sets of enabled and
taken transitions can be defined as shown in Equations (2.1) and (2.2) for a
configuration c = (σ, readyS, activeS, activeA).

10 2. Preliminaries

enabled(c,C) = {(S, g, S′) ∈ Trans(C̄)∣ S ⊆ activeS ∧ c ⊧ g} (2.1)
taken(c,C) = {t = (S, g, S′) ∈ enabled(c,C)∣ ∀t1 = (S1, g1, S

′
1)

∈ enabled(c,C).S ∩ S1 = ∅ ∨ t1 ≺ t} (2.2)

Assuming that σ is the updated input data from the environment and σ′ are
the values written to the output data at the end of the PLC cycle, the changes
as shown in Definition 2.2 of the configurations can be observed, if the taken
transitions and executed actions are considered.

Definition 2.2 (SFC Semantics)
The semantics of an SFC C is defined by the transition rela-
tion →⊆ Conf × Conf with c = (σ, readyS, activeS, activeA) →
(σ′, readyS′, activeS′, activeA′) = c′ if and only if

● readyS′ = (readyS/source(taken(c,C))) ∪ target(taken(c,C))

● (activeS′, unsortedActiveA′) =
computeActiveSteps(readyS′,∅,∅,C, c, activeA ∩ C̄)

● activeA′ = sort(unsortedActiveA′,<)

The new set of ready steps can be computed by removing the source and
adding the target steps of taken transitions. The new active steps are computed
recursively. Starting at the top-level SFC, the algorithm recursively adds the
active steps of the nested SFCs. The actions are sorted according to the
total order given in the SFC by applying the function sort. The function
computeActiveSteps which computes the set of active steps is given in [NA12].

2.3 Tank System

In this section, a simple tank system is presented as an example plant system.
The plant controls are modeled using SFCs as introduced in Section 2.2. In
addition to the components of the tank system, we introduce the dynamic
behavior of the plant.

2. Preliminaries 11

T I
T1

L0
max1

L0
min1

Y O

V out
1

NO

P1

Y O

V in
2

T I
T2

L0
max1

L0
min1

Y O

V out
2

NO

P2

Y O

V in
1Pump 1 on

Pump 2 on
Pump 1 off
Pump 2 off

Figure 2.4: The tank system and its control panel

The tank system (Figure 2.4) regulates the water level of two different water
tanks using pumps and valves. The water level in either tank may not exceed a
maximum or fall below a minimum water level. Furthermore, each tank has
two sensors which can detect whether the water level is still in its allowed range.
Water can be pumped from each tank to lower its water level and increase the
water level of the other tank in the process. Valves before and after each pump
can be used to block the water flow. Additionally, the tank system includes an
input panel to allow a user to manually turn the pumps on or off.

The tank system consists of two water tanks T1 and T2, valves V in
1 , V out

1 , V in
2

and V out
2 to allow or block water flow. Furthermore, the tank system has two

water pumps P1 and P2, which are used to transfer water from T1 to T2 and
from T2 to T1 at the rates c1 and c2. The water levels h1 of T1 and h2 of T2
change depending on whether a pump Pi is on (Pi) or off (¬Pi) and the valves
V
in/out
i are open (V in/out

i) or closed (¬V in/out
i). Assuming that both tanks are

cylindrical and are built equally, and that if a pump is turned on then the
corresponding valves are open, the following water level changes can be observed
(Equations (2.3) to (2.6)).

¬P1 ∧ ¬P2 ∶ḣ1 = 0, ḣ2 = 0 (2.3)
P1 ∧ ¬P2 ∶ḣ1 = −c1, ḣ2 = c1 (2.4)
¬P1 ∧ P2 ∶ḣ1 = c2, ḣ2 = −c2 (2.5)
P1 ∧ P2 ∶ḣ1 = c2 − c1, ḣ2 = c1 − c2 (2.6)

The sensorsmin1 andmax1 check whether the water has fallen below or exceeded
a specific level for T1. In T2 the sensors min2 and max2 work analogously. The
switches P on

i and P off
i are used to manually turn the pumps Pi on and off. In

12 2. Preliminaries

order to prevent the tanks from running dry or overflowing, the pumps may
only be turned on if the sensors detect an appropriate water level. In case
of an overflowing tank, the water level remains at the tanks maximum water
level as the surplus water cannot be held by the tank. A pump is turned off
automatically, if a the corresponding tank is running dry.

The history flag is not considered in the following examples, since we do not
use nested SFCs. If the dynamic behavior of the tank system is neglected, two
SFCs describe the control flow of the example tank system (see Figure 2.5).

off1

entry/
close valve V out

1
pump P1 off
close valve V in

2

do/
exit/

on1

entry/
open valve V in

2
pump P1 on
open valve V out

1

do/
exit/

P on
1 ∧min1 ∧ ¬max2 P off

1 ∨ ¬min1 ∨max2

off2

entry/
close valve V out

2
pump P2 off
close valve V in

1

do/
exit/

on2

entry/
open valve V in

1
pump P2 on
open valve V out

2

do/
exit/

P on
2 ∧min2 ∧ ¬max1 P off

2 ∨ ¬min2 ∨max1

Figure 2.5: SFC of the tank system

The two given parallel SFCs are components that model the tank system.
Furthermore, two steps are needed for each pump, since in both systems, the
pump is either turned on or off. Once a step is entered the associated valves
are opened or closed and the pump is turned on or off. Both SFCs are executed
in parallel allowing the state changes of the two pumps simultaneously. A step
change occurs when a pump is turned on if it was previously off, the water level
is high enough and the second tank is not full or when a previously running
pump is turned off, drains the tank or the other tank is overflowing.

2.4 Conditional ODE Systems

In order to model the dynamic behavior of a plant, we use conditional ODE sys-
tems. A conditional ODE system condODEsys consists of a condition ODEcond
and associated differential equations ODElist. Each ODE system condODEsys
models the behavior of the plant dynamics under the given condition.

An equation of the form v̇ = c describes the behavior of the continuous variable
v over time. In general, we also allow linear ODEs. c is the derivate of the
function, which represents the dynamic behavior of v. In the following examples,
we omit the valves and assume they are opened when the corresponding pump is

2. Preliminaries 13

running and closed if it is turned off. The dynamic behavior of the example tank
system can be modeled as the conditional ODE systems shown in Equations (2.7)
to (2.10).

(P1 ∧ ¬max2 ∧ min1) ∧ (¬P2 ∨ max1 ∨ ¬min2) ∶ḣ1 = −c1

ḣ2 = c1 (2.7)
(¬P1 ∨ max2 ∨ ¬min1) ∧ (P2 ∧ ¬max1 ∧ min2) ∶ḣ1 = c2

ḣ2 = −c2 (2.8)
(P1 ∧ ¬max2 ∧ min1) ∧ (P2 ∧ ¬max1 ∧ min2) ∶ḣ1 = c2 − c1

ḣ2 = c1 − c2 (2.9)
(¬P1 ∨ max2 ∨ ¬min1) ∧ (¬P2 ∨ max1 ∨ ¬min2) ∶ḣ1 = 0

ḣ2 = 0 (2.10)

In this model both pumps may only be activated when the tanks are not full
to protect them from overflowing. This condition can be improved if we know
whether c1 ≤ c2 or c1 ≥ c2, since this allows us to see which tank will be filled
and which will be drained, when both pumps are running.

In the following computations a reduced model of the dynamic behavior is used.
The sensor checks of both tanks are omitted. Only the state of the pumps is
examined in the condition and influences the continuous behavior of h1 and
h2. Additionally, we use the values c1 = 1 and c2 = 2 as the water level changes,
if water is pumped from one tank to another. The disjoint conditional ODE
systems in Equations (2.11) to (2.14) model the behavior of the water levels.

¬P1 ∧ ¬P2 ∶ ḣ1 = 0, ḣ2 = 0 (2.11)
P1 ∧ ¬P2 ∶ ḣ1 = −1, ḣ2 = 1 (2.12)
¬P1 ∧ P2 ∶ ḣ1 = 2, ḣ2 = −2 (2.13)
P1 ∧ P2 ∶ ḣ1 = 1, ḣ2 = −1 (2.14)

Non-disjoint conditional ODE systems are also possible, but using them requires
prioritizing the conditional ODE systems. Non-disjoint conditions are not
considered in the following examples. In either case, the ODE system with the
first condition, which is satisfied, determines the current dynamic behavior. If
no condition holds, we assume chaotic behavior for the continuous variables.

By combining the conditional ODE systems with an SFC we can construct an
HSFC. In this HSFC, each step has conditional ODE systems attached to it,
which define the continuous growth of the variables under the given conditions.

14 2. Preliminaries

2.5 Hybrid Sequential Function Charts

HSFCs [NA12] are SFCs, which additionally consider the behavior of continuous
variables. Plant dynamics are modeled by conditional ODE systems which are
attached to the steps of the SFC. Multiple conditional ODE systems can be
assigned to each step. In case the condition of an ODE system is satisfied the
differential equations describe how the continuous variables change over time.

The set of variables V ar is now extended by continuous variables V arC . The
set of variables of an HSFC is defined as V ar = V arI ⊍ V aro ⊍ V arL ⊍ V arC .
A new function Dyn is introduced to assign conditional ODE systems to the
steps of the HSFC. Let CODEV arC

be the set of all conditional ODE systems
over the continuous variables V arC . The function in Equation (2.15) assigns a
sequence of conditional ODE systems to a step.

Dyn ∶ Steps→ CODE∗
V arC

(2.15)

Taking the conditional ODE system and the SFC model of the tank system,
which have been defined in the previous section, an HSFC can be created. The
complete HSFC, where each step has been assigned all conditional ODE systems,
for the tank1 can be constructed as seen in Figure 2.6.

off1

entry/
close valve V out

1
pump P1 off
close valve V in

2

do/
exit/

¬P1 ∧ ¬P2 ∶ ḣ1 = 0

P1 ∧ ¬P2 ∶ ḣ1 = −1

¬P1 ∧ P2 ∶ ḣ1 = 2

P1 ∧ P2 ∶ ḣ1 = 1

on1

entry/
open valve V in

2
pump P1 on
open valve V out

1

do/
exit/

¬P1 ∧ ¬P2 ∶ ḣ1 = 0

P1 ∧ ¬P2 ∶ ḣ1 = −1

¬P1 ∧ P2 ∶ ḣ1 = 2

P1 ∧ P2 ∶ ḣ1 = 1

P on
1 ∧min1 ∧ ¬max2 P off

1 ∨ ¬min1 ∨max2

Figure 2.6: SFC of tank1 is extended into an HSFC by conditional ODE systems

The HSFC of tank2 can be constructed analogously. Adding all conditional
ODE systems to each step is not reasonable, since some conditions are not
satisfiable for some steps. For example P1 ∧ ¬P2 is never satisfied in step off1 of

2. Preliminaries 15

tank1 as the pump P1 is always off in this step. A reduced system denotes a
system which does not have all conditional ODE systems attached. Verifying
reduced systems, which do not model the PLC completely, is faster and may
already prove the complete model to be correct. In the following sections those
HSFCs which do not have all available conditional ODE systems attached to
each step, are considered as well.

An HSFC configuration (σ, readyS, activeS, activeA, activeD) is similar to the
SFC configuration, but is extended by the set activeD. The set is the set of
active ODEs, which are the ODEs, that are attached to active steps. An ODE
is only in activeD, if its condition is the first satisfied condition in a step in the
sequence of all attached conditional ODE systems.

During a PLC cycle, the variables evolve according to the active ODEs. This
dynamic evolution extends the SFC semantics in order to create HSFC semantics.
Assuming a time elapse of t with δl ≤ t ≤ δu, where δl and δu are the minimal
and maximal cycle time. Additionally the values of all continuous variables at
t = 0 must correspond to the values in σ ∣V arC

. For conditional ODE systems
condODEsys = (ODEcond,ODElist), the HSFC semantics are defined as shown
in Definition 2.3.

Definition 2.3 (HSFC Semantics)
Runs of HSFCs consist of the alternating execution of steps of the
embedded SFCs and time steps (σ, readyS, activeS, activeA, activeD) →
(σ′, readyS, activeS, activeA, activeD′) with

● activeD′ = ⋃s∈activeS{d ∣ ∃i ∈ {1, . . . , n} ∶
Dyn(s) = ((ODEc1,ODEl1), . . . , (ODEcn,ODEln)) ∧ d ∈ ODEli

∧ σ ⊧ ODEci⋀i−1
j=1 σ ⊭ ODEcj},

● σ′(v) = σ(v) for all v ∉ V arC and σ′ ∣V arC
= f(t) for some δl ≤ t ≤ δu

and f a solution to ODE systems in activeD with f(0) = σ ∣V arC
.

The definition of HSFC and its transformation are adopted from the paper
“Hybrid Sequential Function Charts” [NA12], which describes HSFCs in more
detail.

2.6 Hybrid Automata

Hybrid automata [ACH+95] are automata that can model discrete as well as
continuous behavior of systems. HA are formalized in Definition 2.4.

16 2. Preliminaries

Definition 2.4 (Hybrid Automaton)
A hybrid automaton H is a tuple (Loc,Var,Edge,Act,Inv,Init)

● Loc is a finite set of locations

● Var is a finite set of real-based variables; A valuation ν ∈ V, ν ∶ V ar → R
assigns a value to each variable; A state s ∈ Loc × V is a location
valuation pair

● Edge ⊆ Loc × 2V 2 ×Loc is a set of edges

● Act is a function assigning a set of time-invariant activities f ∶ R≥0 →
V to each location, i.e., ∀l ∈ Loc ∶ f ∈ Act(l) Ô⇒ (f + t) ∈ Act(l)
where (f + t)(t′) = f(t + t′) for all t, t′ ∈ R≥0;

● Inv ∶ Loc→ 2V is a function that assigns an invariant to each location

● Init ⊆ Loc × V is a set of initial states. A pair of a location and
valuation is called a state

Each edge consists of a source location and a target location as well as a guard
and an effect. An edge can only be taken if the guard is satisfied and the
invariant of the target location is satisfied after applying the effect of the edge to
the current variable valuation. Immediately after an edge is taken the values of
the variables in V ar are updated according to the effect. The activities in each
location describe how the continuous variables change over time. An invariant
is a guard, which needs to be satisfied to allow the hybrid automaton to stay in
a location or to enter a location, which is connected by an edge to the current
location.

There are two different kinds of steps, namely discrete steps (jumps) and time
steps (flows), in hybrid automata. Discrete steps allow the automaton to change
from one location to the next if a corresponding edge exists and can be taken.
A discrete step may not enter a location if the invariant of that location is
not satisfied. Assuming l, l′ ∈ Loc and v, v′ ∈ V , a discrete step is defined in
Equation (2.16).

(l, (v, v′), l′) ∈ Edge v′ ∈ Inv(l′)
(l, v)→ (l′, v′)

(2.16)

Time elapses are modeled by time steps. A time step causes the continuous
variables to change according to the function of the current locations activities.
The activities for each location are usually given as ODE systems. A time step

2. Preliminaries 17

may not violate the locations invariant by evolving. Assuming l ∈ Loc, v, v′ ∈ V
and time t, a time step is defined in Equation (2.17).

f ∈ Act(l) f(0) = v f(t) = v′ t ≥ 0 f([0, t]) ⊆ Inv(l)
(l, v) tÐ→ (l, v′)

(2.17)

If neither a discrete or timed step can be taken in the current state of the hybrid
automaton, the system is in a deadlock.

2.6.1 Transformation of SFC to HA

The transformation of an HSFC into an HA is based on the transformation of an
SFC. Consequently, we begin our explanation of the HSFC transformation by
converting an SFC into an HA. To transform an SFC into a hybrid automaton,
for each step of the SFC a location in the hybrid automaton is created. If the
step of the SFC is initial the corresponding location in the hybrid automaton
defines the initial states. Figure 2.7 illustrates how SFC steps and transitions
are converted into a hybrid automaton.

s

entry/
entry(s)
do/
do(s)
exit/
exit(s)

s1
. . .

sn

. . .

. . .

. . .g1 gn

s

t ≤ δu

ṫ = 1

t ≥ δl ∧⋀n
i=1 ¬gi

sort({do(s))} t ∶= 0;

s1
. . .

sn

. . .

t
≥
δ l
∧
g 1

so
rt
({
ex
it(
s)
,e
nt
ry
(s

1
),d

o(
s 1
)}
)

t
∶=

0;

t
≥
δ

l
∧
g

n
∧
∧
i
=

1
n
−1
¬
g

i

sort({exit(s),entry(s
n),do(s

n)})

t ∶=
0;

. . .

Figure 2.7: Transformation of a SFC into a hybrid automaton

In order to model the time elapse between two PLC scan cycles, a continuous
variable is introduced to the hybrid automaton. This continuous variable t is
a clock variable, which keeps the cycle time from exceeding an upper bound
δu by adding the invariant t ≤ δu to each location. Since in every PLC cycle
at least some time has to pass and to avoid Zeno behavior [ACH+95] in the

18 2. Preliminaries

hybrid automaton, where infinitely many discrete steps are taken while only a
finite amount of timed steps are used, a guard is added to each transition. This
guard ensures that a time of at least δl has passed before the next cycle. The
duration of each PLC cycle is between δl ≤ t ≤ δu. The time t is reset after each
transition.

The transitions of the SFC are also translated to the hybrid automaton. The
active actions are sorted by the given action order ≺. These actions are derived
from the source and target step of the transition. The exit actions are taken
from the source step, while the entry and do actions are derived from the target
step. The actions of the SFC are moved from the steps to the transitions of the
HA during the transformation since we can only model these actions as effects
of HA transitions in the resulting automaton. Besides all transitions of the
SFC, each location has an additional self loop which only contains the sorted
do qualified actions of the step. This transition simulates the PLC staying in
the same step executing the do actions during a PLC cycle.

The transition priority < is maintained by adding the negations of all guards of
transitions with a higher priority than the current transition. The additional
self loop may only be taken, if all other guards are not satisfied. This is due to
the urgency of transitions in an SFC.

2.6.2 Transformation of HSFC to HA

SFCs extended by conditional ODE systems are HSFCs. Consequently, we need
to extend the transformation of SFC as presented in Section 2.6.1 to incorperate
these conditional ODE systems. We do not consider nested SFCs or parallel
transitions, but the transformation can be adapted to the general case.

In addition to the SFC transformation, each conditional ODE system of the
HSFC results in new locations. Each step in the HSFC with n conditional ODE
system attached is transformed into n + 1 locations in the hybrid automaton.
These n+1 ODE locations are pairwise connected by transitions without guards
and all share the same transitions as the original step. The condition of the
ODE system in each location is conjuncted with its invariant and the ODE are
added to the activities of the location.

In the additional (n + 1)th location (default location), all continuous variables
exhibit chaotic behavior and the negated conditions of all ODE systems are
conjuncted with the locations invariant. Thus, this step is only reached if no
conditional ODE system is satisfied meaning no statement about the continuous
variables can be made. In the following we do not consider this (n + 1)th
location as our current verification process is not able to create this location.

2. Preliminaries 19

The transitions which allow switching between locations do not have any guards
to allow the system to instantly switch locations if the condition of the current
ODE system has become false. In case the initial step of the HSFC has multiple
conditional ODE systems attached to it, all resulting hybrid automaton locations
are part of the initial states. Figure 2.8 shows how aN HSFC step is transformed
into several HA locations.

s
. . .

flow
ODEc1 ∶ ODEl1
. . .
ODEcn ∶ ODEln

s1

. . .
ODEl1
ODEc1

sn

. . .
ODEln
ODEcn

. . .

Figure 2.8: Transformation of a HSFC into a hybrid automaton

Since we assume disjoint conditional ODE systems, we do not need to add
the negation of the other conditional ODE systems of the step in order to
prioritize them. A priority order could be achieved by adding ODEc1 to the first,
¬ODEc1 ∧ODEc2 to the second, . . . and ¬ODEc1 ∧ . . . ∧ ¬ODEc(n−1) ∧ODEcn to
the last location. In this case the priority beginning with the highest would
be ODEl1, ODEl2, . . . , ODEln. Considering an HSFC with m steps and n
conditional ODE systems, which can be attached to each step, the total number
of locations is the product n ∗m. Both transformations are described in more
detail in [NA12].

2.7 Reachability Analysis

In order to verify hybrid automata, we need to compute their reachability.
The problem of reachability for hybrid automata in general is undecidable.
Considering linear hybrid automata, we are able to efficiently compute bounded
reachability meaning reachability within a fixed number of steps [ACH+95].

The forward analysis computes the reachability starting from the initial states.
Consequently, safety conditions can be verified by examining the reachable
states. The condition is given in the form of forbidden states, i.e, states which
should not be reached during the analysis. If any of these states is reachable, the
hybrid automaton is not safe under the given safety conditions. The backwards
analysis starts by computing the backwards reachability of the forbidden states,
i.e., the states which do not satisfy the given set of safety conditions. If any
initial state is backwards reachable from the given safety conditions, the hybrid
automaton is not safe under the given conditions.

20 2. Preliminaries

Both approaches compute the reachability of hybrid automata. The forward
(backward) analysis terminates if either forbidden (initial) states are reachable
or a fixed-point meaning a point, where no new states, i.e., states which
have not been reached during the previous analysis, is found. In order to
successfully analyze hybrid automata approximation and minimization can be
used [ACH+95]. We employ the third-party tool platform SpaceEx to perform
forward reachability analyses for hybrid automata .

2.8 SpaceEx - State Space Explorer

The safety verification of a hybrid automaton is accomplished by applying
SpaceEx [FLGD+11], a tool used for reachability and safety analysis. This
reachability analysis is an over-approximation of the reachability. Our trans-
formation creates an XML-File containing the HSFC after its transformation
into a hybrid automaton and an additional CFG-File containing the configu-
ration applied during the SpaceEx execution. In this configuration file, the
initial variable ranges and locations, the forbidden states, the output format,
the number of iterations and other preferences are defined. An advantage of
SpaceEx is, that there are two different verification scenarios available. The
PHAVer scenario uses the PHAVer tool [Fre05] and is applicable on linear hybrid
automata. Furthermore, this scenario computes the exact results for piecewise
constant flows. The LGG Support Function scenario, which implements a
variant of the Le Guernic-Girard (LGG) algorithm [GG09], is also available.

Since reachability analysis for hybrid automata is undecidable in general,
SpaceEx can set a maximum number of iterations. These iterations repre-
sent the number of discrete post computations on the cross product of locations
and variable valuations. In case a negative number is set as the number of
iterations, the reachability analysis only terminates, if a fixed point is found.
Additionally, ranges for time steps can be set. If these configurations are
chosen too cautiously, SpaceEx may produce a meaningless result, due to the
computation of too few reachable states.

Different SFCs can run in parallel on a PLC. Consequently, we obtain different
hybrid automata components as well. There are two approaches to connect
these components in order to analyze the given model. The first approach
the composition of these components is computed before the analysis starts.
SpaceEx, however, uses an on-the-fly approach, thus, the compositions are
computed at the moment they are required. Consequently, only the reachable
parts of the automaton are created in memory.

2. Preliminaries 21

SpaceEx is able to return several types of outputs. The INTV output creates a
file containing intervals, which represent the range of values for each variable in
the model. In addition, SpaceEx generates a TXT-File which contains state
information and the vertices of the polytopes of the reachable area of the
continuous variables. The state information consist of the initial values and
locations.

Figure 2.9: 2d SpaceEx output Figure 2.10: 3d SpaceEx output

Possible graphical outputs are the GEN (Vertice List) and the JVX output
[JP00]. Both outputs are presentable by third-party tools like graph of the
Plotutil package [MT00] for GEN and JavaView [Pol06] for the JVX format.
Both formats support up to three dimensions as seen in Figures 2.9 and 2.10.

The TXT-File and the graphical outputs contains the complete verification
process if a safety verification was successful, but only contains the reachable
forbidden states if the model is unsafe. The INTV-File contains the ranges of
the complete reachability analysis.

The CEGAR-based plant control verification uses TXT and INTV outputs to
analyze a counterexample of a model after a failed safety verification. These
output informations are used to find a reason for the unsafetyness of the current
model and to choose an appropriate refinement.

22 2. Preliminaries

2.9 Summary

In this chapter, programmable logic controllers are introduced as controllers for
plants. To verify the controller program, SFCs are used to model the plants
discrete behavior. An example of such a model is given for the example tank
system. The dynamic behavior of a plant can be added to the SFC in form
of conditional ODE systems. Verifying the resulting HSFC allows us to verify
the plant control, meaning its discrete and continuous behavior. Conditional
ODE systems are provided for the example tank system and combined with the
SFC of the system in order to create an HSFC. Since we want to use hybrid
automata verification to show the correctness of a plant, hybrid automata are
defined. Transforming SFC to HA additionally allows us to extend the initial
SFC model. The transformation of SFCs into HA is explained. Existing tools
to verify hybrid automata may be applied to prove the correctness of the SFC.
Additional transformations are included during the transformation of HSFCs
to HA. Hybrid automata can be verified using existing verification tools, thus
verifying the plant control. This is accomplished by reachability analysis of
hybrid automata. Therefore, an introduction to this reachability analysis is
given and the tool platform SpaceEx which we use to perform this analysis is
presented.

Chapter 3

CEGAR-based plant control

verification

In this chapter, the process of verifying hybrid sequential function charts using
a verification tool for hybrid automata is explained. Figure 3.1 shows the steps
of the transformation and of the verification which is described in the following
sections.

Safety
property

SFC

Plant
dynamics

Hybrid
SFC

Hybrid
automaton

Counterexample

Return
safeSafe?

Reachability
analysis

no

yes

Figure 3.1: Transformation and verification of a SFC and plant dynamics

Figure 3.1 describes the following parts of the our verification. The input
of the plant verification consists of the plant control in the form of SFCs,
the plant dynamics and a set of safety properties. The plant control and
dynamics are combined into an HSFC. This HSFC is transformed into an HA
which is verified using SpaceEx and the given safety condition. During this
transformation additional changes to the hybrid automaton are made to create
a viable SpaceEx model. In case the SpaceEx verification succeeds, the model
is safe. We analyze the counterexample provided by SpaceEx, if the verification
fails.

The CEGAR-based plant verification iteratively adds conditional ODE systems
to an HSFC. During each iteration, the HSFC is verified for a given safety
condition. In case this verification fails, a refinement strategy chooses one or
multiple conditional ODE systems which are added to the HSFC. Afterwards,
the next iteration begins by verifying the extended HSFC. This refinement is
described in Chapter 4.

24 3. CEGAR-based plant control verification

Firstly, the steps of the the CEGAR-based plant control verification are described
in Section 3.1. Hereinafter, we introduce the three parts of the verification
input in Section 3.2. The Beremiz PLC Open Editor [Tis12] to create SFCs
is introduced, which is used to model systems like the example tank system
(see Figure 2.4) in Section 2.3. In addition to modeling the tank system, a
custom syntax for conditions of the SFC transitions and ODE conditions is
presented. Furthermore, an XML format is given to store conditional ODE
systems. This format allows the assignment of conditional ODEs to steps of
an HSFC. Additionally, safety conditions in the form of forbidden states are
introduced. The combination of the SFC model and the conditional ODE
systems represents the HSFC of the plant.

The tool platform SpaceEx [FLGD+11] to verify hybrid automata is shown
in Section 3.3. Reachability analysis can be used to check whether a given
automaton satisfies a safety condition. Methods to circumvent the restrictions of
SpaceEx are implemented in order to correctly verify the transformed automata
without changing the semantics of the model. During the verification, the
transformation of an HSFC is performed. This transformation is extended to
include additional components simulating, e.g., user inputs and total elapsed
time. The result of the safety verification determines whether the model satisfies
the given safety property or not. In case the model is unsafe in our CEGAR-
based verification approach, we further examine whether it is refinable by
attaching additional conditional ODE systems to HSFC steps. Moreover, the
output formats of SpaceEx are elaborated in Section 3.4. They describe the
counterexamples of a failed verification.

3.1 CEGAR Plant Control Verification

In this section, we describe the procedure of our CEGAR-based plant control
verification. The plant control verification constitutes an iterative approach.
It transforms one or multiple SFC model of a plant and given conditional
ODE systems into hybrid automata. This automaton is translated into the SX
language [CFL10] and stored in an XML-File, which can be parsed by SpaceEx.
In addition to the automaton, a configuration file is generated specifying the
settings of SpaceEx. Finally, SpaceEx tries to verify the hybrid automaton
using this given configuration.

The SpaceEx [FLGD+11] safety verification yields one of two possible results
for a given model and configurations. Either the safety verification succeeds or
fails depending on whether forbidden states are reachable. At the beginning
of the verification none or only few conditional ODE systems are added to the
HSFC. This reduced model is much smaller than the complete representation,

3. CEGAR-based plant control verification 25

therefore SpaceEx is likely to verify the system much faster as well. In case
SpaceEx is able to verify the reduced model, the complete model safe.

If forbidden states are reachable and the model can be further refined, the
system is refined iteratively until the safety verification is either successful or
fails and no more conditional ODE systems can be added to the current model.

Based on these refinement iterations, the safety verification may have to run
several times. Every time the model has been refined, the next iteration of the
verification starts by transforming the refined HSFC into a hybrid automaton.

3.2 Plant Control Verification Input

In this section the three parts of the input of the CEGAR-based plant control
verification are introduced. We present the third-party tool Beremiz PLC
Open Editor [Tis12] to create SFCs in Section 3.2.1. Additionally, we propose
a format to independently store conditional ODE systems as described in
Section 3.2.2. Furthermore, the format of safety conditions in SpaceEx is
presented in Section 3.2.3.

3.2.1 Plant Control

SFCs for PLCs are created by using an appropriate editor, in our case, the
Beremiz PLC Open Editor [Tis12]. The PLC Open standard focuses around the
IEC 61131-3 [IEC03] standard, as it is the only global standard for industrial
control programming. By using Beremiz, we conform to these standards while
creating models for PLCs. The PLC Open standard contains a definition for the
five programming languages. All five of these languages can be used to model
PLCs in the editor. Furthermore, Beremiz allows the user to create multiple
programs for a PLC. These components can be modeled by SFCs. We use
Beremiz to specify the discrete plant control for our CEGAR-based verification.
The tank system is presented in Figure 2.4 in Section 2.3.

As shown in Figures 3.2 and 3.3, each component is composed of two steps (on1,
off1 and on2, off2), which represent the state of each pump. In these models only
entry (pulse, rising edge) qualified actions are attached to the SFC steps. If step
on1 is entered, pump P1 is turned on and the valves V out

1 and V in
2 are opened.

These valves are closed and the pump is turned off if the off1 step is entered.
Analogously the valves V out

2 , V in
1 of P2 are opened and closed when on2 and

off2 of the second component are entered. The transition guards Switchon and

26 3. CEGAR-based plant control verification

Figure 3.2: Beremiz model of tank1 Figure 3.3: Beremiz model of tank2

Switchoff of the first component evaluate the user input P on
1 and P off

1 as well
as the sensors min1 and max2. In the second component, the same transition
guards are applied for P on

2 , P off
2 , min2 and max1 as illustrated in Figure 2.5 in

Section 2.3.

The language of transition guards and actions in the editor is represented as
Structured Text (ST). Though Structured Text is used, guards are written using
a custom syntax for these conditions, which is explained in the following. The
syntax supports basic logic operators and comparators to check integer and real
values. The syntax is listed in Figure 3.4.

Operator Description
NOT ¬ Negation of a boolean value
AND ∧ Logic conjunction
OR ∨ Logic disjunction
== = Equality comparator

>,<,>=,<= >,<,≥,≤ Inequality comparators

Figure 3.4: Custom condition syntax

The syntax is defined as TransitionName := Condition for SFC transition
guards. The transition guard Switchon of tank1 checks for P1∧min1∧¬max2 by
applying the command Switch_on := chkb_P1_on AND min1 AND NOT max2.
The actions to open and close a valve or to start and stop a pump are imple-
mented by assigning values of 1 and 0 to the variables representing true and

3. CEGAR-based plant control verification 27

false. For instance, the execution of command V1out_open := 0; closes the
valve V out

1 . These variable assignments are commands for the actuators of the
plant. We do not consider nested SFCs as described in Section 2.6.2. The
SpaceEx analysis tool is not able to handle disjunctions and the strict operators
> and <. In Section 3.3 we propose methods to circumvent these restrictions.

3.2.2 Plant Dynamics

The plant dynamics are stored in an XML-File, which contains all specified
ODE systems and their conditions as well as the initial values of the continuous
variables. Each ODE system is stored in a separate tag <condODE> with at
least two children. The first required child is a tag <cond> containing the
condition of the ODE system. The conditions are saved as logic formulas using
the same syntax as the SFC guards (see Figure 3.4). An exemplary condition
A ∧B is stored as <cond>A AND B</cond>. Alternatively, these conditions can
be saved as CDATA sections in order to increase their readability in case in-
equality comparators are used. x ≥ 0 corresponds to <cond>x >= 0</cond>
and <cond><![CDATA[x >= 0]]></cond> in the XML-File. To represent the
equations of the ODE system, <condODE> contains one additional child tag
<equation> for each equation of the system. The ordinary differential equation
ḣ = 1 corresponds to <equation>h’==1</equation>.

The initial values of the continuous variables are stored in the file using a tag
called <init>. These can be used to overwrite the initial values given in the
SFC model. Thus, the user is able to change the initial variable assignments
of the continuous variables without changing the SFC model. Each variable
assignment requires an additional tag. These new tags <value> have a property
var containing the name of the variable which is assigned. The tag itself
contains the new initial value for this variable. The previously given reduced
conditional ODE systems for the two tank example can be stored in an XML
as demonstrated in Listing 3.1.

The variables chkb_P1_on and chkb_P2_on correspond to P1 and P2. Since
these conditions are added as an invariant to the steps of the hybrid automaton
and SpaceEx is not capable to parse disjunctions, no logic OR may be used
within the conditions. Additional transformations to circumvent this restriction
will be implemented as future work.

28 3. CEGAR-based plant control verification

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

<condODE >
<cond >NOT chkb_P1_on AND NOT chkb_P2_on </cond >
<equation >h1 ’ == 0</equation >
<equation >h2 ’ == 0</equation >

</condODE >
<condODE >

<cond >NOT chkb_P1_on AND chkb_P2_on </cond >
<equation >h1 ’ == 2</equation >
<equation >h2 ’ == -2</equation >

</condODE >
<condODE >

<cond > chkb_P1_on AND NOT chkb_P2_on </cond >
<equation >h1 ’ == -1</equation >
<equation >h2 ’ == 1</equation >

</condODE >
<condODE >

<cond > chkb_P1_on AND chkb_P2_on </cond >
<equation >h1 ’ == 1</equation >
<equation >h2 ’ == -1</equation >

</condODE >
<init >

<value var="h1">25 </value >
<value var="h2">25 </value >

</init >
</condODEsys >

Listing 3.1: Conditional ODE systems

The possibility to add conditional ODE systems to specific steps of an HSFC is
realized by attributes added to each <condODE> tag accordingly. The attribute
name denotes the name of a component and its value constitutes a list of steps
the ODE system is added to. A step is refined by a conditional ODE system if
the conditional ODE system has been attached to the step.

<condODE tank1 =" off1,on1 " tank2 ="off2">
<cond >NOT chkb_P1_on AND NOT chkb_P2_on </cond >
<equation >h1 ’ == 0</equation >
<equation >h2 ’ == 0</equation >

</condODE >

Listing 3.2: Conditional ODE system refining steps

In Listing 3.2 the conditional ODE system has already been attached to the
step on1,off1 of component tank1 and off2 of component tank2.

3.2.3 Safety Condition

Since our goal is the verification of plants, we need to specify conditions which
are verified. The safety conditions the model has to satisfy can be set in the

3. CEGAR-based plant control verification 29

configurations of SpaceEx. Forbidden states can be defined in this CFG-File by
conjunction or disjunction. In addition to ==, ≤ and ≥, SpaceEx is able to parse
>, < and parenthesis. The forbidden states can be defined as non-linear convex
constraints in contrast to the transition guards and location invariants. In case
these forbidden states are reached during the SpaceEx analysis, the model does
not satisfy the safety condition. For example, the condition (x > 5∨x < 0)∧y > 0
corresponds to the forbidden states (x > 5 | x < 0) & y > 0. Appropriate
forbidden states for the example tank system are shown in Equation (3.1).

(h1 < 10) ∨ (h1 > 40) ∨ (h2 < 10) ∨ (h2 > 40) (3.1)

The corresponding forbidden states in the SpaceEx configuration file are defined
as h1 < 10 | h1 > 40 | h2 < 10 | h2 > 40. These forbidden states are
equivalent to the safety assumption, that the water levels of the tanks will
remain between 10 and 40. A forbidden location locA for a component compA
can be defined as loc(compA)==locA. Forbidden locations are not considered
in this thesis.

3.3 SpaceEx Analysis

In this section, we elaborate on the restrictions of SpaceEx and the transforma-
tion into a viable model, i.e., a model, which can be parsed by SpaceEx. SpaceEx
version 0.9.5 [FLGD+11] has several compatibility restrictions regarding model
specifications, which have to be circumvented in order to check the example
tank system (see Figure 2.5) in Section 2.3.

For instance, boolean variables are not supported by SpaceEx. Thus, they
have to be transformed into integer values, which contain either 0 (false) or 1
(true). Furthermore, the data range of the interval output is correctly computed
for continuous variables only. During the transformations from HSFCs to HA,
all read variables vi where i ∈ {1, . . . , n}, are added as continuous variables by
assigning an ODE to each equation, which does not change the values of the
variables over time (v̇i == 0).

As SpaceEx is not capable of parsing disjunctions, the guard of each transition is
transformed into disjunctive normal form (DNF). During the transformation to
an HA, we generate one transition for each conjunctive term, thus, eliminating
the disjunction in the resulting model. Furthermore, parsing >, < and ¬ is
not possible, while using SpaceEx. As SpaceEx already over-approximates the
reachability, we replace > by ≥ and < by ≤. Consequently, this over-approximation
affects the negation of conditions. For example, the conditions ¬(v1 > v2) and
¬(v1 < v2) are converted into v1 ≤ v2 and v1 ≥ v2. Additionally, ¬(v1 == v2)

30 3. CEGAR-based plant control verification

is converted to true. A boolean variable b can be checked by b or ¬b. These
evaluations are translated into b == 1 and b == 0 as boolean variables are either
1 or 0 as described previously.

Furthermore, shared input variables of different hybrid automata are updated
instantly for each component. This immediate update changes the semantics of
SFCs as the input variables are only updated at the start of a PLC cycle as
described in Section 2.1. We introduce a new global variable corresponding to
the local input variables in each component. The global variable is updated
instantly, while its value is copied into the local input variable at the start of
every PLC cycle. Additionally, we present new locations (synch and wait) in
the hybrid automata for each step. These locations synchronize the update of
the variables and restore the SFC semantics.

The reachability analysis of SpaceEx returns the states that have been visited.
This information useful for the heuristics that compute the refinement of a
model. In case the analysis fails due to forbidden states being reached, the
tool only returns the states violating the safety condition. Unfortunately, this
restriction prevents the output file from showing of the number of visits to
each location. In order to calculate this number independent of the SpaceEx
result, during the transformation a counting variable is included for each step
of the HSFC. This variable is increased if a location corresponding to the step
is entered. Additionally, the variables are added to the set of flow variables
which do not change their value over time, to ensure a correct interval output.
Furthermore, the number of visits are used to notify the user, if certain steps of
an HSFC are never visited. In these cases our algorithm warns the user, because
any unvisited step may be the result of a restrained SpaceEx configuration.

3.3.1 Transformation to SpaceEx Model and Con-
figuration

During the transformation of the HSFCs, we add additional components to
simulate user input and synchronize the variable updates with the PLC cycle,
and circumvent the previously described restrictions of SpaceEx to create a
model which can be verified by SpaceEx. The transformation of the plant
control starts by parsing the SFC XML-File and the conditional ODE XML-File.
Both files are combined into a hybrid automaton. During the transformation of
an HSFC to an HA , boolean variables are converted to integers and additional
counter variables for each step of the HSFC are added as described in Section 3.3.
In order to track the total elapsed time, a global timer global_timer component
is integrated. This global timer component consists of one location and one
clock variable, which is never reset.

3. CEGAR-based plant control verification 31

A controller control_panel is also included to simulate random user input.
Considering the example tank system in Figure 2.4 in Section 2.3, possible user in-
puts consist of the pushable buttons controlling the pumps. The control_panel
component of the model simulates the activation and deactivation of the pumps
by setting the variables P on

1 ,P on
2 ,P off

1 and P off
2 .

After the SpaceEx model file, the configuration file is written. The initial states,
scenario, forbidden states and other SpaceEx configurations as introduced in
Section 2.8 are defined in this file.

The final SpaceEx model of the component tank1 without attached conditional
ODE systems is illustrated in Figure 3.5. We reduce the transition guards to
P on

1 and P off
1 to create a clearer model.

Figure 3.5: Hybrid automaton of tank1

32 3. CEGAR-based plant control verification

3.4 SpaceEx Output

In this section, we present two of the previously mentioned outputs of SpaceEx.
The textual output contains the run of a given model and is explained in
Section 3.4.1. This sequence of configurations is used to analyze the reachable
states. Furthermore, we analyze the interval output which provides the ranges
of the variables of the model as described in Section 3.4.2. Both outputs are
used during the refinement of the CEGAR-based plant control verification.

3.4.1 Textual Output (TXT-File)

The textual output of SpaceEx provides the run of a model according to the
given SpaceEx configurations. When the reachability analysis uses the PHAVer
scenario, only the location of each component and the corresponding initial
values are displayed. The LGG Support Function scenario also provides the user
with the reachable values of the continuous variables in Hessian normal form
which allows for the plotting of the resulting polytopes. If the safety verification
failed, the run contains only the states where the verification failed.

{(loc(control_panel)== control & loc(global_timer)== timer &
loc(tank1)== off1_1001 & Visits_1_off1 == 1 & Visits_2_on1 == 0 &
chkb_P1_on == 0 & P1_on == 0 & ...) |...}

Listing 3.3: Exemplary textual ouput of a PHAVer scenario

As shown in Listing 3.3, the location of each component of the tank model is
given by a function loc, which takes a component as an argument and returns
its current location. loc(tank1)==off1_1001 constitutes that the component
tank1 is in location off1_1001. The values or the ranges of the variables are
saved as equations or linear inequalities respectively. Each new configuration is
separated by a pipe ∣.

{(loc(tank2)== off2 & loc(tank1)== off1 & ...{[
0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10
0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10
0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10
1, 2, 3, 4, 5, 6, 7, 8, 9,10, 10
1, 2, 3, 4, 5, 6, 7, 8, 9,10, 10
1, 2, 3, 4, 5, 6, 7, 8, 9,10, 10
]}
{ variable to dimension map :[timer , tank2 .t, tank1 .t]
[-1 ,0 ,0] ,[0 , -1 ,0] ,[0 ,0 , -1] ,[0 ,0 ,1] ,[0 ,1 ,0] ,[1 ,0 ,0]}
<initial_set : tank2 .t == -0 & tank2 .h1 == -0 & ... & tank1 .t <= 10 >) |...}

Listing 3.4: Exemplary textual ouput of a LGG Support Function scenario

3. CEGAR-based plant control verification 33

As exemplified in Listing 3.4, the LGG Support Function scenario additionally
saves the ranges of the continuous variables in Hessian normal form. Every
column of values in combination with the subsequent dimension map represents
a half-space. The values denote the distance from the origin, while the vectors
of the dimension map represent the normal vectors of each plane. By combining
these half-spaces a polytope is constructed. For example, the second column
in combination with the dimension map generates the polytope shown in
Equations (3.2) to (3.7).

−1 ∗ timer + 0 ∗ (tank2.t) + 0 ∗ (tank1.t) ≤ −1 (3.2)
0 ∗ timer + −1 ∗ (tank2.t) + 0 ∗ (tank1.t) ≤ −1 (3.3)
0 ∗ timer + 0 ∗ (tank2.t) + −1 ∗ (tank1.t) ≤ −1 (3.4)
0 ∗ timer + 0 ∗ (tank2.t) + 1 ∗ (tank1.t) ≤ 2 (3.5)
0 ∗ timer + 1 ∗ (tank2.t) + 0 ∗ (tank1.t) ≤ 2 (3.6)
1 ∗ timer + 0 ∗ (tank2.t) + 0 ∗ (tank1.t) ≤ 2 (3.7)

The initial set contains the initial values of all variables upon entering the state.

3.4.2 Interval Output (INTV-File)

The interval output can either include all variables of the model or only selected
ones. A global variable range is computed for each output variable, which
consists of a lower and an upper bound with regard to the complete reachability
analysis of SpaceEx. In addition to this global range, location-wise ranges are
written into the INTV-File. These ranges provide upper and lower bounds for
the variables corresponding to a set of locations. The format of the interval
output is independent of the chosen scenario.

Bounds on the variables over the entire set:
P1_on : [-0 ,1]
global_time : [-0 ,10]
tank2 . timer : [-0 ,10]
V2out_open : [neg_infty , pos_infty]
tank1 . Visits_1_off1 : [1 ,5]
...

Location -wise bounds on the variables :

Location : loc(tank2)== off1_1001 & loc(tank1)== off1_1001 & ...
P1_on : [-0 ,1]
global_time : [-0 ,10]
tank2 . timer : [-0 ,10]
V2out_open : [neg_infty , pos_infty]
tank1 . Visits_1_off1 : [1 ,5]
...

34 3. CEGAR-based plant control verification

Location : loc(tank2)== off1_1001 & loc(tank1)== off1_wait & ...
P1_on : [-0 ,1]
global_time : [10 ,10]
tank2 . timer : [10 ,10]
V2out_open : [neg_infty , pos_infty]
tank1 . Visits_1_off1 : [1 ,3]
...

Listing 3.5: Example of an interval output

As shown in Listing 3.5, the first set of variables contains the global ranges.
For the location-wise ranges, the locations of the components and all variable
ranges are given. A bound of neg_infty or pos_infty denotes that no bound
has been found. V2out_open: [neg_infty,pos_infty] constitutes that the
value of V2out_open is between negative infinity and positive infinity.

3.5 Summary

In this chapter, we introduce the CEGAR-based plant control verification by
explaining all parts of the analysis. The Beremiz PLC Open Editor is used to
model the tank system as an SFC. Furthermore, we present the three parts of
the verification input. The Beremiz SFC model and ODE-File are combined
to the HSFCs which are transformed into hybrid automata. The guards of
the SFC and the conditions of the ODE systems both use a custom condition
syntax. Additionally, an XML format to store conditional ODE systems and
their associated HSFC steps is proposed. The safety conditions in the form
of forbidden states are presented. Afterwards, known restrictions of the tool
platform are circumvented during the transformation of the HSFC into a hybrid
automaton. Additionally, new components are integrated to monitor the total
elapsed time and simulate possible user inputs. The result of the SpaceEx
analysis determines, whether a model is safe or the refinement procedure has to
be started. A successful SpaceEx verification proves safeness of the given model.
If the verification failed for a model and it is not refinable, the model is unsafe.
Otherwise, the model is refined. Two of the outputs generated by the SpaceEx
analysis are explained in detail. These outputs are used in the refinement as
described in the next chapter.

Chapter 4

Counterexample-Guided

Abstraction Refinement

In this chapter, we propose an approach to iteratively refine plant models by
adding conditional ODE systems. A given model and its SpaceEx output files
are used to determine whether the model is safe, unsafe, or unsafe but still
refinable. In case the model is still refinable, plant dynamics are used to create
a more detailed model by adding conditional ODE systems to the steps of the
HSFC. Counterexamples in form of SpaceEx outputs analyzed used to select
refinable steps of the HSFC. We employ different heuristics to select the most
promising steps for refinement. Figure 4.1 illustrates the refinement procedure,
which are applied to refine a given model by considering a counterexample.

Plant
dynamics

Hybrid
SFC

Return
unsafe

Counterexample

Refinement
possible?

yes

Refinement

no

Figure 4.1: Counterexample-guided refinement

Firstly, we define the conditions under which a step is refinable by a conditional
ODE in Section 4.1. Using this definition we determine whether a model
is still refinable during the verification process. This procedure to create a
more detailed model are explained in Section 4.2. Afterwards, three strategies
to choose a refinable step are presented in Section 4.3. These strategies try
to find the most promising refinable steps by employing different heuristics.
We discuss how to use SpaceEx outputs to choose the next refinable step(s).
The refinement generates are more detailed model of the system by including
additional information about the behavior of specific continuous variables. This
is accomplished by choosing an appropriate conditional ODE system and joining

36 4. Counterexample-Guided Abstraction Refinement

it with the step of an HSFC. A description of the step refinement is shown in
Section 4.4 together with the explanation how this refinement extends an HSFC
and a transformed hybrid automaton.

4.1 Refinable Steps

In this section refinable steps are defined and a procedure is introduced to
analyze the SpaceEx output files in order to decide whether a model is refinable.
Definition 4.1 formalizes the required conditions for step refinability as follows:

Definition 4.1 (Refinable Step)
A step s of an HSFC C where V ar are the variables of C is refinable iff
a conditional ODE system condODEsys = (ODEcond,ODElist) exists where
ODEcond denotes the condition and ODElist the set of ODEs, which satisfy
the following conditions:

● condODEsys is not attached to s, i.e., s is not refined by condODEsys

● ODEcond has to be satisfiable in s, i.e., there exists a variable valuation
in at least one location-wise variable range of s, which satisfies ODEcond

● ODElist contains at least one ODE with visible variables V , i.e., V ⊆ V ar

To check the satisfiability, we use the interval information of a SpaceEx execution.
The global variable ranges are not considered as they might include values
unreachable in a specific step. A condition ODEcond of an ODE and its ODE
system ODElist can be added to a step s, if the condition is satisfiable in the
intervals of the condition variables meaning the location-wise variable ranges of
s. If there exists a variable valuation in at least one set of these location-wise
variable ranges, which satisfies ODEcond, then the condition is satisfied in s. If
ODEcond is always false in s, the ODE is not added since its condition will never
be satisfied and thus the new location resulting from the ODE, would never be
reached. In this case, s is declared not refinable by this ODE, since adding it
would have no effect on the reachability analysis.

As an example we analyze, the refinability of step on1 by the conditional ODE
system condODE1 given in Equation (4.1).

condODE1 (conditional ODE system)
³¹¹·¹¹µ
h1 ≥ 2 ∧ h1 ≤ 8 ∧ P1 ∧ ¬P2
´¹¹¹¸¹¹¹¶

ODEc1 (condition)

∶ ḣ1 = 3, ḣ1 = −3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ODEl1 (list)

(4.1)

4. Counterexample-Guided Abstraction Refinement 37

Considering the interval information presented in Listings 4.1 and 4.2, condODE1
is either added to on1 or the system tank1 cannot be refined by condODE1. In
Listing 4.1, there exists a valuation in a location-wise range which satisfies
the condition condODEc1. On the other hand, condODEc1 is not satisfiable
in listing 4.2. The boolean variables P1 and P2 are true if they are equal to
1 and false if they are 0. The locations of the hybrid automaton associated
with the HSFC step on1 are named on1_x00y where x and y are internal IDs to
identify the locations. The locations with synch and wait suffixes are used to
synchronize (user) input(s) and simulate the PLC cycle. These locations are
not considered in the analysis as they may contain values which are unreachable
in their corresponding steps.

When examining the satisfiability of a conditional ODE system condODEsys,
only location-wise bounds are regarded, while bounds over the entire set may
include values, which are not reachable in step on1. Consequently, the condition
could be satisfiable over the entire set of locations but not in on1. Since on1
is checked for refinability with condODEsys, only those intervals associated to
on1 have to be analyzed. Listings 4.1 and 4.2 illustrate two different cases, one
where condODE1 is satisfiable and one where condODE1 is not satisfiable.

Bounds on the variables over the
entire set:

tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [-0 ,1]
h1: [-0 ,10]

Location -wise bounds on the variables :

Location : ... & loc(tank1)== on1_2001
tank2 . chkb_P2_on : [1 ,1]
tank1 . chkb_P1_on : [1 ,1]
h1: [-0 ,10]

Location : ... & loc(tank1)== on1_wait
tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [1 ,1]
h1: [-0 ,10]

Location : ... & loc(tank1)== on1_2001
tank2 . chkb_P2_on : [-0 ,0]
tank1 . chkb_P1_on : [1 ,1]
h1: [-0 ,10]

Location : ... & loc(tank1)== on1_synch
tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [-0 ,1]
h1: [-0 ,10]

Listing 4.1: ODEc1 is satisfiable

Bounds on the variables over the
entire set:

tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [-0 ,1]
h1: [-0 ,10]

Location -wise bounds on the variables :

Location : ... & loc(tank1)== on1_2001
tank2 . chkb_P2_on : [1 ,1]
tank1 . chkb_P1_on : [-0 ,0]
h1: [-0 ,1]

Location : ... & loc(tank1)== on1_wait
tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [1 ,1]
h1: [-0 ,10]

Location : ... & loc(tank1)== on1_2001
tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [1 ,1]
h1: [-0 ,1]

Location : ... & loc(tank1)== on1_synch
tank2 . chkb_P2_on : [-0 ,1]
tank1 . chkb_P1_on : [-0 ,1]
h1: [-0 ,10]

Listing 4.2: ODEc1 is not satisfiable

38 4. Counterexample-Guided Abstraction Refinement

The variables chkb_P1_on and chkb_P2_on correspond to P1 and P2. Though
ODEc1 is not satisfied in the first location-wise bounds on the variables of the
left interval data (Listing 4.1), since P2 is always 1 which means it is always
true. But ODEc1 can be satisfied in the third location-wise bounds. This set of
variable ranges includes chkb_P2_on:[0,0] thus satisfying ¬P2. Furthermore,
chkb_P1_on:[1,1] satisfies P1 and h1:[-0,10] provides a valuation of h1 with
h1 ≥ 2 ∧ h1 ≤ 8. Therefore condODE1 can refine step on1 of tank1. Considering
Listing 4.2, on1 cannot be refined by condODE1 because both interval informa-
tion, where tank1 is in a location associated on1, do not satisfy ODEc1. The
first location-wise interval bounds do not satisfy ODEc1 because P1 is always
false (0). ODEc1 is not satisfiable in the third location-wise bounds because of
h1 ∈ [−0, 1] violates h1 ≥ 2. The ODEc1 could be satisfied in the synch and wait
location(s) of on1, but since they are used for input synchronization of local
and global variables, the intervals may include values unreachable in on1.

Another restriction on the refinability of steps are based on the equations
of condODEsys. If all equations of ODElist contain any variables unknown
(not visible) to the steps of a system, s cannot be refined by condODEsys. If
all variables of at least one equation are known, then s can be refined by
condODEsys, but during the refinement only the equations are added with
visible variables. Equations (4.2) and (4.3) show two exemplary conditional
ODE systems. Figures 4.2 and 4.3 illustrate which variables are visible to each
component and the resulting refinement possibilities.

condODE1 ∶= h1 ≥ 2 ∧ h1 ≤ 8 ∧ P1 ∧ ¬P2 ∶ ḣ1 = 3, ḣ2 = −3 (4.2)
condODE2 ∶= h1 ≥ 2 ∧ h1 ≤ 8 ∧ P1 ∧ ¬P2 ∶ ḣ1 = 3 (4.3)

We choose condODE2 as a subsystem of condODE1 to show the effects of ODEs
on the refinement.

Variables tank1 tank2
h1 �
h2 �
P1 � �
P2 � �

Figure 4.2: Variables visible to
a component are marked with �

ODE tank1 tank2

condODE1 ḣ1 = 3 ḣ2 = −3

condODE2 ḣ1 = 3 not refinable

Figure 4.3: Table displaying the ODEs
added if a component’s step is refined

System condODE1 contains two equations of which at least one is know to each
tank component. The variable h1 is visible to tank1 while h2 is not. Thus, only
the first equation ḣ1 = 3 is added during the refinement. The second equation

4. Counterexample-Guided Abstraction Refinement 39

ḣ2 = −3 is added to steps of tank2 only, since this component knows the variable
h2. The first equation is not added to the tank2, since h1 is unknown to this
component. The second system condODE2 can only be used to refine steps of
tank1 as it contains only one equation, which has variables visible to tank1 only.
Because tank2 does not know the continuous variable h1 it does not know any
equation of condODE2, no step s of tank2 is refinable by condODE2. If a step
is refinable by a conditional ODE system all possible ODEs are added during
the refinement.

In the following, two algorithms are implemented to either return a list of all
refinable steps (RefSteps) for a given conditional ODE system condODEsys or
to get all conditional ODE systems CondSys, which can refine a given step s.
Components contains all components of the given model. We define s ∈ Scomp
(s ∈ Scomps) as the set of steps of the component comp (a set of components
comps). Algorithm 4.1 returns all steps refinable by a given condODEsys.

Algorithm 4.1: getRefinableSteps
Data: condODEsys ∶= (ODEcond,ODElist)

Comp ∶= Components/{control_panel, global_timer}
Result: List of steps RefSteps refinable by condODEsys
RefSteps = ∅;
foreach s ∈ SComp do

if s is not refined by condODEsys then
if ODEcond is satisfiable in s then

if ∃C ∈ Comp ∧ s ∈ C ∧ vis(C,ODElist) ≥ 1 then
RefSteps ∶= RefSteps ∪ {s};

end
end

end
end
return RefSteps;

The function vis(C,ODElist) returns the amount of ODEs within ODElist, whose
variables are visible to C. The second algorithm getUnusedODEs computes a set
of conditional ODE systems. Algorithm 4.2 returns a subset of all conditional
ODE systems of CondSys containing the conditional ODE systems which can
refine a given step s of component C.

40 4. Counterexample-Guided Abstraction Refinement

Algorithm 4.2: getUnusedODEs
Data: s ∈ SC

CondSys ∶= {condODE1, . . . , condODEn}
Result: List of ODEs RefODEs which can refine step s
RefODEs = ∅;
foreach condODEsys = (ODEcond,ODElist) ∈ CondSys do

if s is not refined by condODEsys then
if ODEcond is satisfiable in s then

if vis(C,ODElist) ≥ 1 then
RefODEs ∶= RefODEs ∪ {condODEsys};

end
end

end
end
return RefODEs;

4.2 Refinement Procedure

In case the safety verification of the current model has failed, the model is
either incorrect or can be further refined. To determine which holds true a
refinement strategy is executed. This strategy performs two tasks at the same
time. The strategy chooses one or multiple refinable steps sref ∈ SComponents, a
conditional ODE system condODEref for each sref and returns them as tuples.
If the model cannot be further refined, the current strategy returns an empty
list, thus notifying the verification procedure, that the model is not refinable.
Afterwards all sref in this list are refined by their associated condODEref.

In order to be able to start the refinement procedure after n refinement steps,
the current conditional ODE systems condSys and their depending steps are
stored in a new XML-File. These XML-Files are of the same format as the
original XML-File storing condSys and can be used to manually start the safety
verification based on the current level of refinement. In addition, the current
hybrid automaton and the SpaceEx output files are saved to allow for a further
analysis of each refinement step.

After the XML-File has been generated, the updated conditional ODE systems
and their associated steps are used to create the refined hybrid automaton.
Finally, the SpaceEx safety verification for this updated automaton is automati-
cally started as the next iteration.

4. Counterexample-Guided Abstraction Refinement 41

4.3 Refinement Strategies

The following three refinement strategies each aim at computing the refinable
steps for the current Components. Each strategy employs a different heuristic
to determine which refinable steps are chosen in the current iteration of the
verification process. The following strategies require input parameters, which
are used during the selection of the refinable steps. These parameters are derived
from the SpaceEx output files and are used by the refinement strategies.

● Textual output

● Interval global variable ranges

● Interval local-wise variable ranges

● Set of tuples of steps and their visit count (StepVisits)

● The conditional ODE systems (CondSys) and current refinement

● All components of the model (Components)

The textual output provides the reachability analysis of the model as described
in Section 3.4.1. The interval global and location-wise ranges variable ranges are
explained in Section 3.4.2. The list StepV isits is computed using the interval
output before the refinement strategy is executed. This list contains the the
number of visits of each step. ConSys contains all conditional ODE systems
and Components are all components of the model. The strategies choose one or
multiple steps to be refined. If no refinable steps are remaining the strategies re-
turn no steps and thus there are no refinable steps and the verification algorithm
returns unsafe. The strategy is encapsulated and, consequently, exchangeable
to facilitate the development of additional strategies in the future. In the follow-
ing sections we present two naive refinement strategies (see Section 4.3.1 and
Section 4.3.2) and a more elaborated strategy which utilizes the list StepV isits.

The strategies can be set to full step refinement meaning chosen steps are
refined by all possible conditional ODE systems. This option is not included
in the following algorithms but can be achieved by calling getUnusedODEs
for a given step. The function returns all conditional ODE systems which can
refine this step. Assuming the step sref is only refinable by condODE1 and
condODE2 where condODE1, condODE2 ∈ CondSys. If a strategy selects sref to
be refined by condODE1, sref is additionally refined by all possible conditional
ODE systems. In this case sref is refined by condODE1 and condODE2.

42 4. Counterexample-Guided Abstraction Refinement

4.3.1 Naive by ODE

This refinement strategy naively selects the first conditional ODE system
condODEsys in the conditional ODE systems CondSys. The strategy checks
whether there are still steps in the Components, which can be refined using this
ODE. If no refinable steps are left the next condODEsys ∈ CondSys is selected
and checked. This procedure is repeated until a condODEsys is found that can
be used for a refinement. The first of the selected steps is chosen for refinement
by this naive heuristic. Algorithm 4.3 illustrates the algorithm of this refinment
strategy.

Algorithm 4.3: Naive by ODE
Data: CondSys ∶= {condODE1, . . . , condODEn}
Result: sref ∈ RefSteps and condODEref ∈ CondSys
foreach condODEsys ∈ CondSys do

RefSteps ∶= getRefinableSteps(condODEsys);
if ∣RefSteps∣ ≥ 1 then

return {(RefSteps.takeFirst(), condODEsys)};
end

end
return ∅;

Figure 4.4 lists an exemplary refinement sequence of the Naive by ODE strategy
under the assumptions that the condition ODEcond of each conditional ODE
system condODEsys can be satisfied in each step and at least one ODE is known
to the HSFC component of each step and the safety verification of each iteration
fails.

condODE1 condODE2 condODE3
s1 1 4 7
s2 2 5 8
s3 3 6 9

Figure 4.4: Naive by Ode refinement sequence

The naive strategy refines all steps sequentially. Assuming there is one com-
ponent C with SC ∶= {s1, s2, s3} and a set of three conditional ODE systems
CondSys ∶= {condODE1, condODE2, condODE3} the strategy starts by selecting
the first conditional ODE system condODE1 and refines the first step s1. In

4. Counterexample-Guided Abstraction Refinement 43

the next two iterations s2 followed by s3 are refined by condODE1. Afterwards,
there are no more steps which can be refined by condODE1. Thus, condODE2
is selected to refine the first available step s1 followed by s2 and s3. The same
refinement sequence is applied for condODE3. After s3 is refined by condODE3,
no further refinement is possible.

4.3.2 Naive by Step

The second naive strategy as introduced in Algorithm 4.4 takes the first step s
of the list of HSFC steps and checks whether a conditional ODE system exists
which can refine s. If s has already been refined by all available conditional
ODE systems, the algorithm selects the next step. Once the strategy has found
a step sref which can be refined by one or more conditional ODE systems, the
first of these systems condODEref is selected for the current refinement.

Algorithm 4.4: Naive by Step
Data: Comp ∶= Components/{control_panel, global_timer}
Result: sref ∈ Comp and condODEref ∈ UnusedODEs
foreach s ∈ Comp do

UnusedODEs ∶= getUnusedODEs(s);
if UnusedODEs ≥ 1 then

return {(s,UnusedODEs.takeFirst())}
end

end
return ∅

Figure 4.5 lists the refinement sequence of the Naive by Step strategy, assuming
each condition is satisfiable in each step, each step knows at least one equation
of each conditional ODE system and the safety verification of each refinement
iteration fails.

condODE1 condODE2 condODE3
s1 1 2 3
s2 4 5 6
s3 7 8 9

Figure 4.5: Naive by Step refinement sequence

44 4. Counterexample-Guided Abstraction Refinement

Assuming there is one component C with SC ∶= {s1, s2, s3} and a set of three
conditional ODE systems CondSys ∶= {condODE1, condODE2, condODE3}, this
naive strategy refines step s1 sequentially by all conditional ODE systems in
CondSys. In the first iteration s1 is refined by condODE1. In the two following
iterations, s1 is refined by condODE2 and condODE3. Afterwards, s1 can not
be further refined. The naive strategy chooses the next step s2 and refines it
by condODE1, condODE2 and condODE3 sequentially. The same refinement
sequence is applied to s3 after s2 is not refinable. After the last refinement
iteration where s3 is refined by condODE3, no further refinement is possible.

4.3.3 First of Most Visited

The third strategy takes a list of steps of the hybrid SFCs and a mapping between
steps and their number of visits during the last analysis (StepV isits) to select a
refinable step and conditional ODE system. This is data is gathered by analyzing
the interval output. During the generation of the hybrid automaton, a variable
vs for each step s is added, which is increased by one every time a corresponding
location in the hybrid automaton is entered during the reachability analysis.
Effectively these variables represent visit counters for the steps. As a result, the
global variable range of the interval output contains these variables and their
upper bounds which in turn contain the maximum number of visits to the step.

Algorithm 4.5: First of Most Visited
Data: Comp ∶= Components/{control_panel, global_timer}

StepV isits ∶= {(s, vs)∣s ∈ Comp}
CondSys ∶= {condODE1, . . . , condODEn}

Result: sref ∈ RefSteps and condODEref ∈ CondSys
while StepV isits ≥ 1 do

MostV isitedStep ∶= s where maxvs{StepV isits} = (s, vs);
foreach condODEsys ∈ condSys do

RefSteps ∶= getRefinableSteps(condODEsys);
if MostVisitedStep ∈ RefSteps then

return {(MostVisitedStep, condODEsys)};
end

end
StepV isits ∶= StepV isits/{(s, vs)}

end
return ∅

4. Counterexample-Guided Abstraction Refinement 45

Algorithm 4.5 uses the most visited step of the HSFC and checks if it is still
refinable by a conditional ODE system. If this is the case, the first unused
conditional ODE is added to refine it. If the most visited step is not refinable,
the strategy chooses the second, third and so forth most visited step and checks
it for refinability.

Assuming ODEcond of each condODEsys ∈ CondSys are satisfiable in each s ∈
SComponents, each ODElist contains at least one equation known to each s, and
the safety verification fails in every refinement step. The interval data in Listings
4.3, 4.4, 4.5 and 4.6 represent the SpaceEx output after each iteration. The list of
conditional ODE systems contains CondSys ∶= {condODE1, condODE2}. The
following listings show four different exemplary interval outputs and refinement
cases of a single verification process. The chosen steps are highlighted in green.

Bounds on the variables over the entire set:
tank1 . Visits_2_on1 : [-0 ,5]
tank1 . Visits_1_off1 : [1 ,4]
tank2 . Visits_2_on2 : [-0 ,8]
tank2 . Visits_1_off2 : [1 ,7]
...

Listing 4.3: Refining on2 by condODE1

Bounds on the variables over the entire set:
tank1 . Visits_2_on1 : [-0 ,3]
tank1 . Visits_1_off1 : [1 ,8]
tank2 . Visits_2_on2 : [-0 ,5]
tank2 . Visits_1_off2 : [1 ,3]
...

Listing 4.4: Refining off1 by condODE1

Bounds on the variables over the entire set:
tank1 . Visits_2_on1 : [-0 ,2]
tank1 . Visits_1_off1 : [1 ,9]
tank2 . Visits_2_on2 : [-0 ,10]
tank2 . Visits_1_off2 : [1 ,3]
...

Listing 4.5: Refining on2 by condODE2

Bounds on the variables over the entire set:
tank1 . Visits_2_on1 : [-0 ,6]
tank1 . Visits_1_off1 : [1 ,5]
tank2 . Visits_2_on2 : [-0 ,8]
tank2 . Visits_1_off2 : [1 ,3]
...

Listing 4.6: Refining on1 by condODE1

In the first case (Listing 4.3), the most visited step on2 of tank2 is refined
using the first conditional ODE system condODE1. In the second example
(Listing 4.4), the verification of the refined system returns an updated interval
output in which off1 of tank1 is the most visited step and, thus, off1 of tank1 is

46 4. Counterexample-Guided Abstraction Refinement

refined by condODE1. In the third iteration (Listing 4.5), on2 of tank2 is the
most visited step again. Since it has already been refined by condODE1, it is
refined by condODE2. In the fourth iteration (Listing 4.6), step on2 of tank2
is still the most visited step, but is no longer refinable, as it has been refined
by all condODEsys ∈ CondSys. This causes the strategy to choose the second
most visited step, in this case, on1 of tank1. Consequently on1 is the refined
by condODE1. Figure 4.6 illustrates the refinement sequence of the first four
refinement iterations.

condODE1 condODE2
on1 4 . . .
off1 2 . . .
on2 1 3

Figure 4.6: First of Most Visited refinement sequence

The strategy can be adapted to count visits only until forbidden states are
reached. In this case, the visit count(s) from the textual output, which only
calculates the visits after forbidden states have been reached, is subtracted from
the number of total visits extracted from the interval output.

4.4 Step Refinement

After a refinement strategy has chosen one or multiple pairs of steps sref and
conditional ODE systems condODEref, the condODEref is attached to sref in
the current HSFC for all chosen tuples (sref,condODEref). During the next
generation of the hybrid automaton these new steps are incorporated into the
model.

The following subsections consider only the refinement of step sm ∶= sref, while
m ≤ ∣Steps∣ where Steps are the number of steps in the HSFC C, by one
conditional ODE system condODE(n+1) ∶= condODEref. Section 4.4.1 explains
the update of the according HSFC during this refinement, while Section 4.4.2
illustrates the changes to the hybrid automaton resulting from the transformation
of the HSFC.

4. Counterexample-Guided Abstraction Refinement 47

4.4.1 HSFC Refinement

The HSFC refinement is accomplished by extending the ODE function Dyn
which is introduced in Section 2.5 by the step sm and the conditional ODE
system condODEn+1. condODE(n+1) ∶= (ODEc(n+1),ODEl(n+1)) is added to sm
of the HSFC C. Formally, the HSFC of the last iteration of the verification
algorithm is extended by condODE(n+1).

Dynn+1(si) = { i ≠m ∶Dynn(si)
i =m ∶Dynn(si) ∪ {condODE(n+1)}

(4.4)

If Dynn is the ODE function of C before refinement and the function shown in
Equation (4.4) assigns the conditional ODE systems after C has been refined.
After the function Dynn has been extended to Dyn(n+1), the refinement of C
is complete and the model is transformed into a hybrid automaton during the
verification procedure.

4.4.2 HA Refinement

The refinement of sm by condODE(n+1) creates a new location in the transformed
hybrid automaton. Considering condODE(n+1) ∶= (ODEc(n+1),ODEl(n+1)) and
the HSFC step sm, the location in the hybrid automaton is created by adding
ODEc(n+1) to the invariant of the location. Furthermore, the appropriate ODEs
are integrated as activities into the location. The part of the invariant not result-
ing from the refinement by condODE(n+1) and the already existing continuous
behavior are conjuncted with ODEc(n+1), respectively, ODEl(n+1).

Figures 4.7 and 4.8 illustrate the locations associated with sm before and after
the refinement of sm by condODE(n+1).

Locm1

. . .
ODEl1
ODEc1

Locmn

. . .
ODEln
ODEcn

. . .

Figure 4.7: Locations corresponding to sm before refinement

The additional location Locm(n+1), highlighted in red, denotes the location
created by condODE(n+1).

48 4. Counterexample-Guided Abstraction Refinement

Locm1

. . .
ODEl1
ODEc1

Locmn

. . .
ODEln
ODEcn

Locm(n+1)
. . .

ODEl(n+1)
ODEc(n+1)

. . .

Figure 4.8: Locations corresponding to sm after refinement

If sm of C was an initial step, the new location in the hybrid system is part of
the initial states as well.

We apply the notation for hybrid automata introduced in Definition 2.4.
Let Hn = (Locn, V arn,Edgen,Actn, Invn, Initn) be the hybrid automaton of
the last iteration. Analogously, the refined hybrid automaton is defined as
Hn+1 = (Locn+1, V arn,Edgen+1,Actn+1, Invn+1, Initn+1). Each location Locki is
associated with a step sk of C and the number i with condODEi. The set
of variables V arn stays the same after the refinement. The extended set of
locations is shown in in Equation (4.5)

Locn+1 ∶= Locn ∪ {Locm(n+1)} (4.5)

To generate the according new edges as stated in Equation (4.6), firstly all
transitions are defined that allow the automaton to switch between the condi-
tional ODE locations of sm. Afterwards, all outgoing transitions to other steps
and the self loop created by the HSFC transformation of a step are added. Tm
contains all transformed outgoing transitions to other steps and the self loop of
sm as illustrated (see Figure 2.7) in Section 2.6.1.

Edgen+1 ∶= Edgen ∪ {(Locmi,∅, Locm(n+1))∣ i ∈ {1,2, ..., n}}

∪ {(Locm(n+1),∅, Locmi)∣ i ∈ {1,2, ..., n}}

∪ Tm (4.6)

There are no guards and effects on the edges switching between the conditional
ODE locations, but the location(s) may only be visited if its invariants are sat-
isfiable. The guards and effects of the step-changing transitions are determined
by the transition guards of the HSFC and effects as well as its time guards,
which are used to remove Zeno behavior and model the PLC cycle time.

The activities of Locm(n+1) are extended by the ODEl(n+1) of Condn+1 ∶ ODEn+1.
Therefore, new behavior of the function Act is added for Locm(n+1). In this case,

4. Counterexample-Guided Abstraction Refinement 49

only the ODEs with variables known to C are included. Equationstrans contain
the equations for the timer t and all variables, which need to be read in the
output. The new activities are defined in Equation (4.7) as follows:

Actn+1(Locki) ∶= { k =m ∧ i = n + 1 ∶ Equationstrans ∪ODEl(n+1)
otherwise ∶ Actn(Locki)

(4.7)

The invariant Invtrans created during the transformation from C to the hybrid
automaton and ODEc(n+1) are conjuncted. This conjunction denotes the new
invariant of location Locm(n+1). Invtrans contains a guard (t ≤ δu) on the timer
t, which forces the automaton to take a transition after a specific amount of
time. These new invariants are shown in the subsequent Equation (4.8).

Invn+1(Locki) ∶= { k =m ∧ i = n + 1 ∶ Invtrans ∧ODEc(n+1)
otherwise ∶ Invn(Locki)

(4.8)

The initial states of the hybrid automaton are the locations associated with
initial steps of the HSFC combined with the initial valuations of variables Vinit.
If sm is initial, the initial states of the refined hybrid automaton are extended by
the new location. The new set of initial states is defined below in Equation (4.9).

Locm(n+1) ∶= { initial ∶ Initn ∪ {(Locm(n+1), v)∣ v ∈ Vinit}
otherwise ∶ Initn

(4.9)

After all elements of the hybrid automaton have been updated, the automaton
has been refined by sm and condODE(n+1). This new automaton will be checked
by SpaceEx in the next iteration.

4.5 Summary

In this chapter the analysis of counterexamples to refine a given plant model
is elaborated on. The counterexamples, consisting of SpaceEx tool platform
outputs are used to compute HSFC steps which can be refined by conditional
ODE systems. A set of conditions for refinable steps is introduced facilitating
the selection of applicable conditional ODE systems and steps to be refined. An
algorithm is given to evaluate these conditions based on the according SpaceEx
output. Three refinement strategies are presented to chose steps which should
be refined. These strategies employ different heuristics to select the refinable
steps. We presented two naive and one more complex strategy which used
the number of visits of each step to compute a refinable step. Afterwards,
the refinement of an HSFC step by a conditional ODE system is explained by
generating the resulting HSFC and the hybrid automaton. In the following
chapter, the iterative CEGAR-based verification procedure presented in this
thesis is applied to two examples including the two tank system.

50 4. Counterexample-Guided Abstraction Refinement

Chapter 5

Experimental Results

In this chapter our verification and refinement approach is applied to two
different systems. The example given in Section 5.1 is a reduced tank system
with only one pump, while the second example discussed in Section 5.2 represents
the example tank system introduced in Section 2.3. Both examples are verified
for a set of specific safety properties. An appropriate SpaceEx configuration has
to be set, in order to enable the SpaceEx verification to reach all steps of the
HSFCs. In case a step is not reached during the SpaceEx analysis, all conditions
for this step are assumed to be satisfiable. This might cause the verification to
refine steps with conditional ODE systems not satisfiable in the steps.

5.1 One Tank System

We introduce a new, reduced variant of the two tank system (see Figure 2.4) in
Section 2.3. This reduced model consists of one water tank only. Additionally,
the system includes a pump to drain this tank. The drained water is lost and
can not be used to refill the tank. The tank is filled with an initial water level of
50. We employ the safety condition that the tank may never be drained below
a water level of low1 ∶= 10. Figure 5.1 illustrates the system.

T I
T1

L0
min1

Y O

V out
1

NO

P1

Y O

V in
2

Pump 1 on Pump 1 off

Figure 5.1: The reduced tank system and its control panel

52 5. Experimental Results

We use the SFC illustrated in Figure 5.2 to model this exemplary tank system.

Figure 5.2: Complete SFC model of the reduced tank system

The duration t of a PLC cycle is between δl ∶= 2 and δu ∶= 10 time units meaning
δl ≤ t ≤ δu. The transition guards are defined as Switchon ∶= P on

1 ∧h1 ≥ low1 + δu
and Switchoff ∶= P off

1 ∨ h1 ≤ low1 + δu. The SFC is in fact an HSFC without
conditional ODE systems and consists of two steps representing the pump states
(on1 and off1). The conditional ODE systems are defined in the subsequent
Listing 5.1.

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

<condODE >
<cond > <![CDATA [NOT chkb_P1_on]]></cond >
<equation >h1 ’ == 0</equation >

</condODE >
<condODE >

<cond > <![CDATA [NOT h1 >= min1]]></cond >
<equation >h1 ’ == 0</equation >

</condODE >
<condODE >

<cond > <![CDATA [chkb_P1_on AND h1 >= min1]]></cond >
<equation >h1 ’ == -1</equation >

</condODE >
<init >

<value var="h1">50 </value >
</init >

</condODEsys >

Listing 5.1: One tank conditional ODE systems

chkb_P1_on stores whether P1 is currently running or not. Considering that
the water level of the tank should never drop below 10, the safety property

5. Experimental Results 53

which is examined, consists of the following forbidden values. h1 < 10 may
never be satisfied in any step of tank1. Three conditional ODE systems are
used to refine the initial system. condODE1 ∶= (NOT chkb_P1_on, h1’ = 0)
as well as condODE2 ∶= (NOT h1 >= min, h1’ = 0) represent the condition
¬P1∨¬(h ≥min1) as no disjunction is allowed at the moment. The third system
condODE3 ∶= (chkb_P1_on AND h1 >= min1 , h1’ = -1) models the pump
draining water from the tank. As explained in Section 3.3, NOT h1 >= min1 is
transformed into h1 <= min1. We apply the Naive by ODE refinement strategy
as described (see Algorithm 4.3) in Section 4.3.1 with the initial value h1 ∶= 50.
Furthermore, we use complete step refinement meaning a chosen step is refined
by all possible conditional ODE systems.

A hybrid automaton and a SpaceEx CFG-File are generated for the given
model automatically by our verification procedure. During the first iteration,
SpaceEx tries to verify h1 < 10 for the SFC. If not specified otherwise, we assume
chaotic behavior for the continuous variable h1. Therefore, the reachability
analysis computes a result set, which includes states where h1 < 10 in tank1.
Consequently, the SpaceEx verification fails, as shown in Figure 5.3.

Execute: ./spaceex_exe/spaceex –config ./resources/1_tank_system/result.cfg -m
./resources/1_tank_system/result.xml -o ./resources/1_tank_system/result.txt -o
./resources/1_tank_system/result.intv -o ./resources/1_tank_system/result.gen -f TXT -f INTV -a ”” -a
””
Computing reachable states...
Iteration 0... 1 sym states passed, 3 waiting 0.026s
...
Iteration 49... 50 sym states passed, 16 waiting 0.004s
Performed max. number of iterations (50) without finding fixpoint.
Computing reachable states done after 0.598s
Forbidden states are reachable.
Output of reachable states... 0.311s

Figure 5.3: SpaceEx console output

First, the Naive by ODE strategy selects condODE1. It examines all steps
starting with on1. The maximum range of each location-wise variable range
set associated with on1 is computed. In all sets which correspond to on1, the
range of chkb_P1_on is [1,1], thus the condition is not satisfied. The condition
NOT chkb_P1_on in off1 is satisfiable as the interval output contains a variable
range of chkb_P1_on:[-0,0] for off1. Listing 5.2 illustrates the two condition
satisfiability checks.

54 5. Experimental Results

Executing Naive by Ode Strategy ...
Cond: chkb_P1_on == 0 - [1.0 ,1.0] != [0.0 ,0.0]
UNSAT : chkb_P1_on == 0 - STEP: on1
Cond: chkb_P1_on == 0 - [0.0 ,0.0] == [0.0 ,0.0]
SAT: chkb_P1_on == 0 - STEP: off1
Possible Refinement Detected

Refining : tank1 .off1 - CondODESystem : chkb_P1_on == 0, Equation =[h1 ’ == 0]
Refining : tank1 .off1 - CondODESystem : h1 <= min1 , Equation =[h1 ’ == 0]

Listing 5.2: Condition checks of condODE1

By using complete step refinement, all possible conditional ODEs are added
to off1. This means condODE2 also refines off1. Step off1 cannot be refined
by condODE3 as the condition chkb_P1_on is never satisfied in off1 due to the
variable range of chkb_P1_on:[-0,0]. Listing 5.3 shows the refinement in the
XML-File.

<condODE >
<cond tank1 ="off1"> <![CDATA [NOT chkb_P1_on]]></cond >
<equation >h1 ’ == 0</equation >

</condODE >
<condODE >

<cond tank1 ="off1"> <![CDATA [NOT h1 >= min1]]></cond >
<equation >h1 ’ == 0</equation >

</condODE >

Listing 5.3: First refinement step of the model

Afterwards, a new hybrid automaton is generated based on the updated HSFC.
In the second iteration, the safety verification also fails due to step on1, which
still exhibits chaotic behavior for the continuous variable h1. This chaotic
behavior causes the SpaceEx verification to fail. The Naive by ODE refinement
strategy is executed a second time to select the next step and conditional ODE
system.

Again, the first conditional ODE system condODE1 is selected. As off1 has
already been refined by condODE1, only step on1 is examined. In this case, the
condition NOT chkb_P1_on of condODE1 is not satisfiable, because the range
of chkb_P1_on:[1,1] in every occurrence of on1 in the interval output. Thus,
no further steps are refinable by condODE1, which causes the Naive by ODE
strategy to continue with condODE2. Step off1 has already been refined by
condODE2. Step on1, however, can be refined by condODE2 as all requirements
defined in Definition 4.1 are met. The continuous variable h1 exhibits chaotic
behavior in on1, thus NOT h1 >= 2 is satisfiable. Listing 5.4 shows the condition
checks of the second iteration.

5. Experimental Results 55

Executing Naive by Ode Strategy ...
Cond: h1 <= min1 - [-Infinity , Infinity] <= [10.0 ,10.0]
SAT: h1 <= min1 - STEP: on1
Possible Refinement Detected

Refining : tank1 .on1 - CondODESystem : h1 <= min1 , Equation =[h1 ’ == -1]
Refining : tank1 .on1 - CondODESystem : chkb_P1_on == 1, Equation =[h1 ’ == -1]

Listing 5.4: Condition checks of condODE1

[-Infinity,Infinity] <= [10.0,10.0] is satisfiable as there exists a value
v ∈ [−∞,∞] ∧ v ≤ 10. All possible conditional ODE systems refine on1 due to
the complete step refinement. The chaotic behavior of h1 and the variable range
of chkb_P1_on:[1,1] in on1, cause the step to be refinable by condODE3. The
refinement of on1 by condODE2 and condODE3 is given in Listing 5.5

<condODE >
<cond tank1 =" off1,on1 "> <![CDATA [NOT h1 >= min1]]></cond >
<equation >h1 ’ == 0</equation >

</condODE >
<condODE >

<cond tank1 ="on1"> <![CDATA [chkb_P1_on]]></cond >
<equation >h1 ’ == -1</equation >

</condODE >

Listing 5.5: Second refinement step of the model

After the model has been refined by condODE2 and condODE3, h1 exhibits no
chaotic behavior as we do not consider the default location in this example.
Starting with h1 ∶= 50, the value remains unchanged in off1 or is decreased in
on1, if it is larger than low1 + δu based on the refinement of the steps. Adding
condODE3 to on1 models unwanted behavior in the step, but this behavior
is excluded by the forbidden states. If the SpaceEx analysis reaches on1 and
the condition NOT h >= 10 of condODE3 is satisfied, the analysis fails due to
forbidden states (h1 < 10) being reached.

SpaceEx now verifies the safety condition h1 ≥ 10 for the HSFC model in
Figure 5.4. The value h1 does not drop below 10 as only on1 decreases h1. The
model can stay in on1 if h1 ≥ (low1 + δu). Otherwise the transition Switchoff is
enabled and taken due to the urgency of SFC transitions. Even if on1 is entered
at a water level of 20 and stays a full PLC cycle, the water level can not drop
below 10 as the maximum cycle time is δu = 10. Consequently, the continuous
variable h1 reaches its minimum value of 20− (1∗ δu) = 10. Thus, staying in on1
and lowering the value of h1 indefinitely is impossible.

56 5. Experimental Results

off1

entry/
close valve V out

1
pump P1 off
close valve V in

2

do/
exit/

¬P1 ∶ ḣ1 = 0

¬(h1 ≥min1) ∶ ḣ1 = 0

on1

entry/
open valve V in

2
pump P1 on
open valve V out

1

do/
exit/

¬(h1 ≥min1) ∶ ḣ1 = 0

P1 ∶ ḣ1 = −1

P on
1 ∧ h1 ≥ (min1 + δu) P off

1 ∨ h1 ≤ (min1 + δu)

Figure 5.4: Safe HSFC of tank1

The model is labeled as safe. The average runtime of SpaceEx for each iter-
ation did not change distinguishably. In each iteration the verification took
approximately 1.835 seconds, while the complete verification procedure took
approximately 9.243 seconds. Listing 5.6 shows the result of the last SpaceEx
analysis and of the CEGAR-based verification.

...
Iteration 199... 200 sym states passed , 37 waiting 0.007 s
Performed max. number of iterations (200) without finding fixpoint .
Computing reachable states done after 2.513 s
Forbidden states are not reachable .
...
SpaceEx analysis is finished !

THE MODEL IS CORRECT !
Number of Refinement Steps : 2
Refinement Sequence :
Step: off1 | condODE : Cond= chkb_P1_on == 0, Eqn =[h1 ’ == 0]
Step: off1 | condODE : Cond= h1 <= min1 , Eqn =[h1 ’ == 0]
Step: on1 | condODE : Cond= h1 <= min1 , Eqn =[h1 ’ == 0]
Step: on1 | condODE : Cond= chkb_P1_on == 1, Eqn =[h1 ’ == -1]
Computation completed after : 11.4688 s

Listing 5.6: Result of the CEGAR-based verification

The SpaceEx analysis does not reach forbidden states. Consequently the model is
safe. The number of refinement steps and the refinement sequence are displayed.
Additionally, the total computation time of the CEGAR-based approach is given.
Figure 5.5 illustrates the reachable water levels h1 over time global_time.

A previous version example, which did not include the correct transition guards
and a different set of conditional ODE systems, revealed a problem of the
current verification. on1 refined by h1 ≥ 10 ∧ P1 ∶ ḣ1 = −1 could be reached, but

5. Experimental Results 57

Figure 5.5: Reachable water levels h1 over time global_time

the water level is not dropping below 10 as there is no location corresponding
to step on1 where h1 ≥ 10 ∧ P1 does not have to be satisfied. Consequently, on1
can not be left and no timed step can be done as this would violate the location
invariant. Omitting the default location (see Section 2.6.2) causes the algorithm
to consider systems safe, which are not. If no condition of a conditional ODE
system is satisfied in a step, we have to assume chaotic behavior. Since at the
moment we are not able to model this default location, we can not reproduce
this behavior.

To avoid this problem we use conditional ODE systems with conditions that are
complete, i.e., whose disjunction evaluates to true. Additionally, we apply the
complete step refinement. These two conditions allow us to omit the default
state in this example.

58 5. Experimental Results

5.2 Two Tank System

This system regarded in this section is identical to the tank system which
has been described in Section 2.3. The maximum water level of each tank is
50. The variables h1 and h2 denote the water levels in tank1 and tank2. The
initial values of h1 and h2 are h1 ∶= 25 and h2 ∶= 25. In the following, we try to
verify the model for the forbidden states h1 < 10 ∨ h1 > 40 ∨ h2 < 10 ∨ h2 > 40
because we do not want either tank to overflow or to be drained completely.
The SFCs presented in Section 3.2.1 and the conditional ODE systems given
in Equations (2.11) to (2.14) model our tank system. The sensors min1 and
max1 (min2 and max2) are used to detect the values larger than 10 and 40
respectively. The corresponding XML-File of the conditional ODE systems can
be seen in Listing 3.1. Unfortunately, this model is not a sufficient model for
the tank system as either tank can overflow. As a consequence, the given model
is incorrect.

For example, if during a PLC cycle while P1 is running max2 detects a high
water level in T2, P1 is turned off during the next cycle because the T1 gets
the updated value of max2 not until the beginning of this next cycle. During
this second cycle, T2 assumes, that P1 is still running as P1 has not yet been
turned off. P1 is turned off in this cycle. At the beginning of the third cycle T2
finally receives the updated value of P1, thus the water flow, which is filling T2,
is stopped. During the first two cycles, the water level h2 of T2 can exceed 40.

In this second example, we apply the First of Most Visited refinement strategy
as elaborated on in Section 4.3.3, which selects the most visited refinable step in
each iteration. Since the model is incorrect, our verification procedure does not
stop until all meaningful steps are refined. Additionally, we employ complete
step refinement.

The complete refinement sequence and added ODEs (highlighted in green) are
illustrated in Figure 5.6. In the first iteration, all continuous variables exhibit
chaotic behavior. Thus, the verification fails because both h1 and h2 can reach
values below 10, respectively, above 40. The most visited step off1 of tank1 is
refined by the all possible conditional ODE system. In the second iteration, step
off2 is the most visited step and the algorithm continues refining it. Afterwards,
step on1 is the most visited refinable step. There exist two satisfiable conditional
ODE systems which are attached to the step until it is no longer refinable.
Finally, the steps on1 and on2 are refined.

5. Experimental Results 59

Iteration Step Conditional ODE System

1 off1 ¬P1 ∧ ¬P2 ∶ ḣ1 = 0, , ḣ2 = 0
off1 ¬P1 ∧ P2 ∶ ḣ1 = 2 , ḣ2 = −2

2 off2 ¬P1 ∧ ¬P2 ∶ ḣ1 = 0 ,ḣ2 = 0
off2 P1 ∧ ¬P2 ∶ ḣ1 = −1 ,ḣ2 = 1

3 on1 P1 ∧ ¬P2 ∶ ḣ1 = −1 , ḣ2 = 1
on1 P1 ∧ P2 ∶ ḣ1 = 1 , ḣ2 = −1

4 on2 ¬P1 ∧ P2 ∶ ḣ1 = 2 ,ḣ2 = −2
on2 P1 ∧ P2 ∶ ḣ1 = 1 ,ḣ2 = −1

Figure 5.6: Refinement sequence (FirstOnMostVisited)

Further refinement is impossible because in the steps off1/off2 (on1/on2), P1/P2
(¬P1/¬P2) are never satisfied. For example off1 cannot be refined by P1 ∧ P2 ∶
ḣ1 = 1, ḣ2 = −1 as P1 is not satisfiable in off1.

After conducting all possible refinements of the current model, the SpaceEx
verification computes the set of reachable states, which still includes forbidden
states. These forbidden states are reachable because a pump might still be
assumed running by another tank. This can cause a tank to overflowing as
described previously. Our verification procedure evaluates the refinability of
the model, but since no additional refinements are possible and the SpaceEx
verification fails, the model is labeled unsafe as shown in Listing 5.7.

...
Forbidden states are reachable .
Output of reachable states ... 6.255 s
SpaceEx Verification failed !
SpaceEx analysis is finished !

Executing First On Most Visited Strategy ...
...
THE MODEL IS INCORRECT !
Number of Refinement Steps : 8
No more refinable steps available !
Refinement Sequence :
Step: off1 | condODE : Cond= chkb_P1_on == 0 & chkb_P2_on == 0, Eqn =[h1 ’ == 0]
Step: off1 | condODE : Cond= chkb_P1_on == 0 & chkb_P2_on == 1, Eqn =[h1 ’ == 2]
Step: off2 | condODE : Cond= chkb_P1_on == 0 & chkb_P2_on == 0, Eqn =[h2 ’ == 0]
Step: off2 | condODE : Cond= chkb_P1_on == 1 & chkb_P2_on == 0, Eqn =[h2 ’ == 1]
Step: on1 | condODE : Cond= chkb_P1_on == 1 & chkb_P2_on == 0, Eqn =[h1 ’ == -1]
Step: on1 | condODE : Cond= chkb_P1_on == 1 & chkb_P2_on == 1, Eqn =[h1 ’ == 1]
Step: on2 | condODE : Cond= chkb_P1_on == 0 & chkb_P2_on == 1, Eqn =[h2 ’ == -2]
Step: on2 | condODE : Cond= chkb_P1_on == 1 & chkb_P2_on == 1, Eqn =[h2 ’ == -1]
Computation completed after : 2119.1602 s

Listing 5.7: Result of the CEGAR-based verification

60 5. Experimental Results

In each iteration the verification took approximately 240.653 seconds, while the
complete verification procedure took approximately 2180.273 seconds. These
large iteration times are due to the extended number of iterations set for the
SpaceEx analysis. If the number of iterations is too low, not all steps are reached.
Evidently, the model is not adequate as the delayed variable updates due to
the PLC cycles cause the water level changes of the tanks to be asynchronous.

5.3 Summary

In this chapter we exemplified two different variants of the verification and
refinement process. In the first example a reduced one pump system is used,
where the tank is drainable by a pump. We apply the naive refinement strategy
Naive by ODE to the first example. Our verification procedure needs three
iteration to verify the one tank system for a given safety property. The model
for this example is correct. Unfortunately, a previous version of the tank model
revealed a problem of our algorithm, which causes the verification procedure
to falsely verify a tank model. We are currently working on a solution for this
problem. The second example is the two tank system which has been introduced
in the previous chapters. As Naive by Step is a naive strategy as well, we apply
the more complex strategy First of Most Visited. The model of the two tank
system is not sufficient. The safety property is violated even when no further
refinements are possible. In both cases our verification procedure computes the
correct result.

Chapter 6

Conclusion and Future Work

The proposed iterative CEGAR-based verification approach provides an au-
tomated process to analyze plant control. The initial input SFCs and plant
dynamics are combined into HSFCs. Afterwards, this HSFCs is transformed
into HA. Safety condition and the third-party tool SpaceEx are used to analyze
the HA. A successful SpaceEx verification proves the model safe. If the analysis
fails, our verification procedure checks if the current model is still refinable. A
refinement strategy is executed to select one or multiple refinable steps and
conditional ODE systems. These steps are refined by the conditional ODE
systems. Subsequently, the new model is analyzed in the next iteration of the
verification. This verification cycle is performed until either SpaceEx verifies
the model or it cannot be refined further. In case no refinement is possible and
the SpaceEx verification still fails, the model is unsafe.

The discrete and continuous behavior of a plant are verified, because the
method integrates control logic and the plants dynamic behavior into the
analysis. This type of system analysis may generate a smaller, verifiable model,
thus circumventing a state-space explosion which might occur. We identified
the number of refinement steps and the configuration of the hybrid automata
verification tool to be important factors referring to the runtime of the algorithm.
Verifying small examples, i.e., example with few steps and conditional ODE
systems, does not exhibit distinguishable changes in the runtime of each iteration.
In these cases using the complete model as the initial model should be preferred
as only one safety verification has to be performed. Since a large model can
result in a state-space explosion the CEGAR-based verification approach should
be favored. We need additional and larger models to get conclusive results
about which approach is recommendable for different models.

The experimental results revealed a problem of the current algorithm. An unsafe
may be declared safe due to missing chaotic behavior. In case no conditional
ODE systems are satisfied in a step, a default location has to be entered where
the continuous variables exhibit chaotic behavior. This default location has
not yet been included in the verification. To model the behavior of the plant
correctly this location will implemented as future work.

Based on a modular architecture, exchangeable refinement strategies allow for
convenient modifications of the refinement process and adaptation with regard
to different inputs. The number of refinement steps might vary depending on
the applied strategy. The preliminary results are promising but the verification

62 6. Conclusion and Future Work

of more advanced models is required before conclusive statements about strategy
efficiency may be made. In conclusion the our verification approach constitutes
an intelligible and convenient technique to verify plant controls and dynamics.

There are several aspects concerning our verification procedure, which can
be extended in the future. These extensions will allow the user to analyze
more complex plants and use additional functionalities. New strategies and
transformations could be implemented to ensure the compatibility with other
verification tools for hybrid automata. In addition, the already existing strategies
can be adapted to support these other tools as well. By using different safety
verification tools, the performance of the verification and refinement might
change. This would allow for further test scenarios based on various combinations
of strategies and verification tools in order to determine the fastest combination
to verify plants.

The presented refinement strategies can be improved by allowing the user to
specify the number of steps which are refined during one iteration. Instead of
one refinable step, each strategy would select several and refine them in same
refinement iteration. This feature would affect the runtime of our verification
approach as fewer reachability analyses have to be performed. Furthermore, it
is possible to adapt the more elaborated strategy to compute the steps which
were visited last, before the verification failed. Refining these steps may result
in a faster verification of a model.

Currently, our approach supports only three different action qualifiers of SFCs.
The transformation of the SFC and of the plant dynamics is suited to transform
additional qualifiers into a hybrid automaton as well. For example, a time
delayed action, activating some time after having entered the associated step
might be integrated into the transformation.

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, et al.
The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995.
(cited on pages 15, 17, 19 and 20)

[BCMP98] L. Baresi, S. Carmeli, A. Monti, and M. Pezzé:. PLC Programming
Languages: A Formal Approach. Associazione Nazionale Italiana
Per L’Automazione, 1998.
(cited on page 1)

[CFL10] S. Cotton, G. Frehse, and O. Lebeltel. The SpaceEx Model-
ing Language. http://spaceex.imag.fr/sites/default/files/
spaceex_modeling_language_0.pdf, 2010.
(cited on page 24)

[ELS05] S. Engell, S. Lohmann, and O. Stursberg. Verification of embedded
supervisory controllers considering hybrid plant dynamics. Interna-
tional Journal of Software Engineering and Knowledge Engineering,
2005.
(cited on page 1)

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-
ton, et al. SpaceEx: Scalable Verification of Hybrid Systems. In
Shaz Qadeer Ganesh Gopalakrishnan, editor, Proceedings of the
23rd International Conference on Computer Aided Verification,
2011.
(cited on pages 2, 20, 24 and 29)

[Fre05] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems
Past HyTech. In Proceedings of the 8th International Conference
on Hybrid Systems: Computation and Control, 2005.
(cited on page 20)

[GG09] C. Guernic and A. Girard. Reachability Analysis of Hybrid Systems
Using Support Functions. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, pages 540–
554, Berlin, Heidelberg, 2009. Springer-Verlag.
(cited on page 20)

http://spaceex.imag.fr/sites/default/files/spaceex_modeling_language_0.pdf
http://spaceex.imag.fr/sites/default/files/spaceex_modeling_language_0.pdf

[HKD98] G. Hassapis, I. Kotini, and Z. Doulgeri. Validation of a SFC
Software Specification by using Hybrid Automata. In Proceedings
of the 9th Symposium on Information Control in Manufacturing,
1998.
(cited on page 1)

[IEC03] An Open Source IEC 61131-3 Integrated Development Environment,
2003.
(cited on pages 6, 25)

[JP00] M. Joswig and K. Polthier. JavaView JVX Format. http://www.
eg-models.de/formats/Format_Jvx.html, 2000.
(cited on page 21)

[MT00] R. Maier and Nick Tufillaro. Gnu Plotutils. http://www.gnu.org/
software/plotutils/, 2000.
(cited on page 21)

[NA12] J. Nellen and E. Ábrahám. Hybrid Sequential Function Charts.
In Proceedings of the 15. Workshop Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen, 2012.
(cited on pages 1, 10, 14, 15 and 19)

[Pol06] K. Polthier. Javaview. http://www.javaview.de, 2006.
(cited on page 21)

[Tis12] E. Tisserant. Beremiz PLC Open Editor. http://www.beremiz.
org/, 2012.
(cited on pages 2, 24 and 25)

http://www.eg-models.de/formats/Format_Jvx.html
http://www.eg-models.de/formats/Format_Jvx.html
http://www.gnu.org/software/plotutils/
http://www.gnu.org/software/plotutils/
http://www.javaview.de
http://www.beremiz.org/
http://www.beremiz.org/

	Title Page
	Declaration of Academic Integrity
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Programmable Logic Controllers
	2.2 Sequential Function Charts
	2.2.1 SFC Syntax
	2.2.2 SFC Semantics

	2.3 Tank System
	2.4 Conditional ODE Systems
	2.5 Hybrid Sequential Function Charts
	2.6 Hybrid Automata
	2.6.1 Transformation of SFC to HA
	2.6.2 Transformation of HSFC to HA

	2.7 Reachability Analysis
	2.8 SpaceEx - State Space Explorer
	2.9 Summary

	3 CEGAR-based plant control verification
	3.1 CEGAR Plant Control Verification
	3.2 Plant Control Verification Input
	3.2.1 Plant Control
	3.2.2 Plant Dynamics
	3.2.3 Safety Condition

	3.3 SpaceEx Analysis
	3.3.1 Transformation to SpaceEx Model and Configuration

	3.4 SpaceEx Output
	3.4.1 Textual Output (TXT-File)
	3.4.2 Interval Output (INTV-File)

	3.5 Summary

	4 Counterexample-Guided Abstraction Refinement
	4.1 Refinable Steps
	4.2 Refinement Procedure
	4.3 Refinement Strategies
	4.3.1 Naive by ODE
	4.3.2 Naive by Step
	4.3.3 First of Most Visited

	4.4 Step Refinement
	4.4.1 HSFC Refinement
	4.4.2 HA Refinement

	4.5 Summary

	5 Experimental Results
	5.1 One Tank System
	5.2 Two Tank System
	5.3 Summary

	6 Conclusion and Future Work
	Bibliography

