
RWTH AACHEN
UNIVERSITY
INFORMATIK

DIPLOMA THESIS

Virtual Substitution in
SMT Solving

Florian Corzilius

First supervisor:
Prof. Dr. Erika Ábrahám

Second supervisor:
Prof. Dr. Jürgen Giesl

Danksagung
Ich bedanke mich bei allen, die mich auf meinem Weg bis zum heutigen Tage
begleitet haben. Jeder von Euch, ob Familienmitglied oder Freund, hat und/oder
hatte seinen Einfluss auf das, was mich heute ausmacht.
Ich möchte mich auch insbesondere bei Erika Ábrahám und Ulrich Loup bedanken,
die mir dieses wunderbare Thema anvertrauten, mich in diese Arbeit einführten und
mir stets meine Fragen beantworteten.
Mein Dank gilt natürlich auch denjenigen, die mir bei der Korrektur halfen sowie
Verbesserungsvorschläge bei der Gestaltung gaben.

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Diplomarbeit selbstständig verfasst
und noch nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten
Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wurden
als solche gekennzeichnet.

(Florian Corzilius)
Aachen, den 14.12.2010

SMT-solving combines two highly explored research topics, SAT-solving and theory
solving. SAT-solving handles the logical part of the given problem and the theory solver
resolves the arithmetic part. To optimize their interaction, the theory solver must provide
incrementality, backtracking and minimal infeasible subset generation.

Current SMT-solvers have their main focus on linear arithmetic and just a few are capable
of deciding over the more expressive but still decidable logics like the first-order theory of
the reals with addition and multiplication – real algebra. However, their approaches are
based on approximations or are not complete.

As one of the few approaches deciding real algebra, the virtual substitution method
fits to embed it in an SMT-solver providing incrementality, backtracking and minimal
infeasible subset generation. This thesis addresses a new implementation of the virtual
substitution method, providing these abilities.

Contents

1. Introduction 9

2. Basic definitions 11
2.1. Syntax of real-algebraic formulas . 11
2.2. Semantics of extended real-algebraic constraints and formulas 13
2.3. Graph theory . 14

3. SMT-solving 17
3.1. Preprocessing of the input formula . 17
3.2. SAT-solving . 17
3.3. Interaction between SAT-solving and theory solving 20

4. Virtual substitution 23
4.1. The decision procedure . 23
4.2. Example . 25

5. Incremental virtual substitution in SMT-solving 27
5.1. Data model . 28
5.2. Evaluation of a decision tuple . 30

5.2.1. Target oriented approach . 31
5.2.2. Entire substitution approach . 34

5.3. Checking consistency of a set of constraints with decision tuples 36
5.4. Choice of the next decision tuple to evaluate 38
5.5. Add new constraints to the theory solver 40

5.5.1. Target oriented approach . 41
5.5.2. Entire substitution approach . 41

5.6. Conclusion . 46
5.7. Examples . 46

5.7.1. Target oriented approach . 46
5.7.2. Entire substitution approach . 52

6. Minimal infeasible subset generation 57
6.1. Generation of all minimal infeasible subsets 57
6.2. Infeasible subset generation . 61

6.2.1. Extension of the data model . 61
6.2.2. Embedding in the theory solver 62

6.3. Backjumping using infeasible subsets 70

Virtual Substitution in SMT Solving 7

6.4. Conclusion . 71
6.5. Example . 73

7. Backtracking 81
7.1. Preconditions . 81
7.2. Removing the effects of a constraint . 82
7.3. Conclusion . 84
7.4. Example . 86

8. Experimental results 89

9. Conclusion 91
9.1. Theory solver . 92
9.2. SMT-Solver . 92

A. Substitution rules 93
A.1. Substitution by a fraction . 93
A.2. Substitution by a square root term . 94
A.3. Substitution by a term plus an infinitesimal 96
A.4. Substitution by minus infinity . 98

1. Introduction

The satisfiability problem poses the question whether a given logical formula is satisfiable,
i.e., whether we can assign values to the variables contained in the formula such that the
formula becomes True. The development of efficient algorithms and tools (solvers) for
satisfiability checking forms an active research area in computer science. A lot of effort has
been put into the development of fast solvers for the propositional satisfiability problem,
called SAT. To increase expressiveness, extensions of the propositional logic with respect
to first-order theories can be considered. The corresponding satisfiability problems are
called SAT-modulo-theories problems, short SMT. SMT-solvers exist, e.g., for equality
logic, uninterpreted functions, predicate logic, and linear real arithmetic.

In contrast to the above-mentioned theories, less activity can be observed for SMT-
solvers supporting the first-order theory of the real ordered field, which we call real
algebra. Our research goal is to develop an SMT-solver for real algebra, which is capable
of solving Boolean combinations of polynomial constraints over the reals efficiently.

Even though decidability of real algebra has been known for a long time [Tar48], the
first decision procedures were not yet practicable. Since 1974 we have known that the time
complexity of deciding formulas of real algebra is in worst case doubly exponential in the
number of variables (dimension) contained in the formula [DH88, Wei88, BD07].

Today, several methods are available which satisfy these complexity bounds, for example
the cylindrical algebraic decomposition (CAD) [CJ98] , the Gröbner basis, and the virtual
substitution method [Wei98]. An overview of these methods is given in [DSW97]. There
are also tools available which implement these methods. The stand-alone application
QEPCAD is a C++ implementation of the CAD method [Bro03]. Another example is the
Redlog package [DS97] of the computer algebra system Reduce based on Lisp, which
offers an optimized combination of the virtual substitution, the CAD method, and real root
counting.

Currently existing solvers are not suited to solve large formulas containing arbitrary
combinations of real constraints. We want to combine the advantages of highly tuned
SAT-solvers and the most efficient techniques currently available for solving conjunctions
of real constraints, by implementing an SMT-solver for real algebra capable of efficiently
solving arbitrary Boolean combinations of real constraints.

Theory solvers should satisfy specific requirements in order to embed them into an
SMT-solver efficiently:

• Incrementality: The theory solver should be able to accept theory constraints one
after the other. After it receives one or more new theory constraints it should check
the conjunction of the new constraints with the earlier constraints for satisfiability.
For efficiency it is important that the solver does not do unnecessary work and makes

Virtual Substitution in SMT Solving 9

http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://redlog.dolzmann.de/
http://www.reduce-algebra.com/

1 Introduction

use of the results of earlier checks.

• (Minimal) infeasible subsets: If the theory solver detects a conflict, it should give a
reason for the unsatisfiability. The usual way is to determine an unsatisfiable subset
of the constraints. Even better is if we find a minimal unsatisfiable subset in the
sense that if we remove a constraint the remaining ones become satisfiable.

• Backtracking: If a conflict occurs, either in the Boolean or in the theory domain,
the solver should be able to remove some constraints and continue the check at an
earlier state.

To our knowledge, these functionalities are currently not supported by the available sol-
vers for real algebra. In this thesis we extend the virtual substitution method to support
incrementality, backtracking, and the generation of (minimal) infeasible subsets.

We have chosen the virtual substitution method because it is a restricted but very efficient
decision procedure for a subset of real algebra. The restriction concerns the degree of
polynomials. The method uses solution equations to determine the zeros of (multivariate)
polynomials in a given variable. As such solution equations exist for polynomials of degree
at most 4, the method is a priori restricted in the degree of polynomials. In this thesis we
restrict ourselves to polynomials of degree 2. An extension to formulas containing higher
degrees will be future work. The idea is to extend the degree to its theoritical maximum
of 4 and to pass polynomials of higher degrees to another implementation using the CAD
method.

Related work We are only aware of the SMT-solvers Z3 [dMB08], HySAT [FHT+07]
and ABsolver [BPT07] which are able to handle nonlinear real arithmetic constraints.
The algorithm implemented in HySAT and currently in its successor tool iSAT uses
interval constraint propagation to check real constraints. This technique is only pseudo-
complete, i.e. it sometimes cannot solve the problem with a clear satisfiability result.
Nevertheless it is in practice more efficient compared to solvers based upon exact meth-
ods [FHT+07]. The structures of ABsolver and Z3 are more similar to our planned
SMT-solver. However to our knowledge, Z3 does not support full real-algebraic constraints.
The authors of ABsolver do not address the issues of incrementality and backtracking.
Though ABsolver computes minimal infeasible subsets, we did not find any information
about how they are generated.

Thesis structure The remaining part of the thesis is structured as follows: Chapter 2
introduces definitions and algorithms we use in this thesis. We formalize the SMT-solving
mechanism in Chapter 3 and the virtual substitution method in Chapter 4. In Chapter 5 we
implement the virtual substitution method such that it supports incrementality. In Chapter 6
we extend the resulting implementation by an interface to achieve a (minimal) infeasible
subset. The remaining requirement we want the theory solver to fulfill, backtracking, is
introduced in Chapter 7. We show the first experimental results in Chapter 8 and give an
outlook on our future goals in Chapter 9.

10 Virtual Substitution in SMT Solving

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://hysat.informatik.uni-oldenburg.de/
http://absolver.sourceforge.net/
http://hysat.informatik.uni-oldenburg.de/
http://isat.gforge.avacs.org/
http://absolver.sourceforge.net/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://absolver.sourceforge.net/
http://absolver.sourceforge.net/

2. Basic definitions

First we introduce the syntax and the semantics of real-algebraic formulas.

2.1. Syntax of real-algebraic formulas
In the following we give the syntax of real-algebraic formulas, being the quantified boolean
combination of real-algebraic constraints. Those constraints compare a polynomial with a
constant.

The virtual substitution method introduced later in this chapter also creates and handles
extended polynomials containing roots and fractions. Such extended polynomials do not
appear in real-algebraic formulas, but they form intermediate results during the virtual
substitution. Therefore we first give a general syntax allowing roots and fractions. Real-
algebraic formulas build a subset, which do not contain those constructs.

Assume in the following a set Var of real-valued variables.

Definition 2.1.1 (Extended polynomials, polynomials)
An extended (multivariate) polynomial e is constructed by the following abstract gram-
mar 1:

e ::= c | x | (e+ e) | (e · e) | (e/e) | (i
√
e)

with x ∈ Var, c ∈ Q, and i ∈ N with i ≥ 2. The extended polynomial (e1 + e2) is the sum
and (e1 · e2) is the product of e1 and e2; we call (i

√
e) the ith root of e and (e1/e2) is the

division of e1 by e2.
With e(x1, . . . , xn) we denote that the extended polynomial e contains only variables

from the set {x1, . . . , xn}. For k ≥ 0 we define xk, the kth power of x, by x0 = 1 and
xk = x · xk−1 for k > 0. An extended polynomial of the form

∑k
i=0 ei · xi with x ∈ Var

and e0, . . . , ek extended polynomials not containing x, is called an extended polynomial
in x. We call ei the ith coefficient of x.

A (multivariate) polynomial p is an extended polynomial not containing any roots or
divisions. The set R[x1, . . . , xn] consists of all multivariate polynomials with variables
from {x1, . . . , xk}. Polynomials in x and their coefficients are defined analogously to
extended polynomials.

Note that each extended polynomial containing a variable x can be transformed into an
equivalent2 extended polynomial in x, that means, into a formula of the form

∑k
i=0 ei · xi.

1For simplicity we do not distinguish between syntax and semantics of constants.
2With equivalent we mean that for each assignment both extended polynomials evaluate to the same value.

Virtual Substitution in SMT Solving 11

2 Basic definitions

We use the notation √ instead of 2
√. We introduce the operator − as syntactic sugar, with

(e1 − e2) defined as (e1 + (−1 · e2)).

Example 2.1.1
Let p be the polynomial (x + y) · (x + 2 · z) ∈ R[x,y,z]. The representation is not
unique. The polynomial p can be seen as a polynomial in x, y or z. E.g., the polynomial
p̂ = x2 + (y + 2 · z) · x+ 2 · y · z in x is equivalent to p. The coefficients of x in p̂ are 1,
y + 2 · z, and 2 · y · z ∈ R[y,z].

Definition 2.1.2 (Extended constraints, constraints)
An extended (theory) constraint e ∼ 0 compares the extended polynomial e to 0, where
∼∈ {= , 6= , < , > , ≤ , ≥}. If e is a polynomial, we call e ∼ 0 a (theory) constraint.

Note that e1 ∼ e2 can be transformed to e1 + (−1) · e2 ∼ 0.

Definition 2.1.3 (Syntax of extended-real-algebraic and real-algebraic formulas)
Extended real-algebraic formulas are built according to the following abstract grammar:

ϕ ::= (e ∼ 0) | (¬ϕ) | (ϕ ∧ ϕ) | (∃x ϕ)

with x ∈ Var and e ∼ 0 an extended constraint.
We introduce the logical operators ∨, → , . . . with the expected meaning as syntactic

sugar, and define (∀xϕ) by (¬(∃x(¬ϕ))). We call "∃" and "∀" existential resp. universal
quantifiers. We call ϕ in ∃xϕ the scope of x and occurrences of x in ϕ bound. We call
non-bound occurrences of a variable free. We exclude nested quantification of the same
variable. Furthermore, we assume that in formulas variables do not have both bound and
free occurrences.

The bound variables of the formula ϕ form the set Bound(ϕ), and the other variables
occuring in the constraints are the free variables forming the set Free(ϕ).

A constraint or its negation is called a (positive resp. negative) literal. A disjunction
of literals is called a clause. A formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses. Formulas of the form

(Q1x1(. . . (Qnxnϕ) . . .))

with ϕ being quantifier free, are said to be in prenex normal form.

For simplicity we do not allow Boolean variables in real-algebraic formulas, but the logic
could be easily extended to support their inclusion.

The virtual substitution extends the following standard substitution.

Definition 2.1.4 (Substitution)
The substitution of a variable x ∈ Var by an extended polynomial e in an extended

12 Virtual Substitution in SMT Solving

2.2 Semantics of extended real-algebraic constraints and formulas

real-algebraic formula ϕ, written ϕ[e/x], is defined as follows:

x[e/x] = e
y[e/x] = y , y 6= x
c[e/x] = c
(e1 + e2)[e/x] = (e1[e/x] + e2[e/x])
(e1 · e2)[e/x] = (e1[e/x] · e2[e/x])
(i
√
e1)[e/x] = (i

√
e1[e/x])

(e1/e2)[e/x] = (e1[e/x] / e2[e/x])
(e1 ∼ 0)[e/x] = (e1[e/x] ∼ 0)
(¬ϕ1)[e/x] = (¬ϕ1[e/x])
(ϕ1 ∧ ϕ2)[e/x] = (ϕ1[e/x] ∧ ϕ2[e/x])
(∃y ϕ1)[e/x] = (∃y ϕ1[e/x]) , y 6= x
(∃x ϕ1)[e/x] = (∃x ϕ1)

with x, y ∈ Var, c ∈ Q, i ∈ N with i ≥ 2, e, e1, e2 extended polynomials, e1 ∼ 0 is an
extended constraint, and ϕ1, ϕ2 extended real-algebraic formulas.

In the following we sometimes omit parentheses, when it does not cause confusion, and
use the standard arithmetic and logical binding order instead.

2.2. Semantics of extended real-algebraic
constraints and formulas

The semantics of extended real-algebraic constraints and formulas is given by an evaluation
function in the context of an assignment.

Definition 2.2.1 (Assignment)
A function α : R → R with R ⊆ Var is called a (full) assignment if R = Var and a
partial assignment otherwise. An assignment α′ : R′ → R with R ⊂ R′ is called an
extension of α.

We define α[x 7→ v] : (R ∪ {x}) → R with v ∈ R and x ∈ Var by

α[x 7→ v](y) =

{
α(y) , if x 6= y
v , otherwise.

Definition 2.2.2 (Semantics of extended real-algebraic constraints and formulas)
We define the semantics of real-algebraic formulas and extended polynomials in the context
of an assignment α : Var → R as follows:

Virtual Substitution in SMT Solving 13

2 Basic definitions

αJcK = c
αJxK = α(x)
αJe+ êK = αJeK + αJêK
αJe · êK = αJeK · αJêK
αJ i
√
eK = i

√
αJeK , if i is odd or αJeK ≥ 0

αJe/êK = αJeK/αJêK , if αJêK 6= 0

αJe ∼ 0K = True , if αJeK ∼ 0
αJ¬ϕK = True , if αJϕK = False
αJϕ ∧ ϕ̂K = True , if αJϕK = True and αJϕ̂K = True
αJ∃xϕK = True , if exists v ∈ R such that α[x 7→ v]JϕK = True

where c ∈ Q, x ∈ Var, i ∈ N with i ≥ 2, e, ê extended polynomials, e ∼ 0 is an extended
constraint and ϕ, ϕ̂ extended real-algebraic formulas.

For an extended real-algebraic formula ϕ we also write α � ϕ instead of αJϕK = True;
we call α a satisfying assignment of ϕ and ϕ satisfiable. If no satisfying assignment of ϕ
exists, it is called unsatisfiable.

The arithmetic operations +, ·, i
√, and / in the above definition are the expected plus,

times, ith root, and division, which we do not axiomatize here. The same holds for the
relations =, 6=, <, >, ≤, and ≥, such that a constraint comparing two real numbers is
mapped to True or False as expected.

Example 2.2.1
Consider the real-algebraic formulas

ϕ1 = ∃x∃y((x− 1 > 0 ∨ x2 − y ≥ 0) ∧ (x2 − 1 = 0 ∨ y2 + x < 0))
ϕ2 = ∃x∃y(x2 − y < 0 ∧ y < 0)

Let α be an assignment with α(x) = −1 and α(y) = 1, then every extension of α is a
satisfying assignment of ϕ1. The formula ϕ2 is unsatisfiable.

Now we are able to formalize the satisfiability problem for real-algebraic formulas.

Definition 2.2.3 (Satisfiability problem for real-algebraic formulas)
The satisfiability problem for a real-algebraic formula ϕ is the problem of deciding whether
there exists a satisfiable assignment for ϕ.

2.3. Graph theory
For the construction of an adequate data structure for the algorithm, we make use of the
following notions.

Definition 2.3.1 (Digraph)
A digraph or directed graph is a tuple of two sets (V,E), where V is a set of nodes and
E ⊆ V × V is a set of directed edges.

14 Virtual Substitution in SMT Solving

2.3 Graph theory

v1

v2

v3

u1

u2 u3

u4 u5

Figure 2.1.: The digraph G := ({v1,v2,v3},{(v1,v2),(v2,v2),(v2,v3),(v3,v1)}) on the left;
The directed tree T := ({u1,u2,u3,u4,u5}, {(u1,u2),(u1,u3),(u2,u4),(u2,u5)}) on the
right.

An example for a directed graph is shown in Figure 2.1.

Definition 2.3.2 (Path)
A path p in a digraph G = (V, E) is a sequence

p := v0v1 . . . vn−1vn

with the length of the path n ≥ 0 such that

1. vi ∈ V (0 ≤ i ≤ n)

2. (vi,vi+1) ∈ E (0 ≤ i < n).

In the the right graph of Figure 2.1 the sequence u1u2u4 is a path.

Definition 2.3.3 (Directed tree)
A directed tree T = (V,E) is a digraph such that the following conditions hold:

1. There exists exactly one root r ∈ V with (v, r) /∈ E for all v ∈ V .

2. For all nodes v ∈ V \{r} there exists exactly one edge (u, v) ∈ E and for this edge
u 6= v holds.

If (u,v) ∈ E we call u the father of v and v a child of u. Nodes without children are called
leaves. We say that v is reachable from u, if there is a path from u to v. Let v ∈ V and
Vv ⊆ V be the set containing all nodes reachable from v in T . Then (Vv, E ∩ (Vv × Vv))
is called a subtree of T with root v.

Virtual Substitution in SMT Solving 15

3. SMT-solving

The propositional satisfiability problem, where the variables range over the values True and
False, is NP-complete, but SAT-solvers are quite efficient in practice due to a vast progress
in SAT-solving during the recent decade. One of the main achievements in the field of
SAT-solving is the DPLL-algorithm [MMZ+01]. Furthermore, its DPLL(T) extension is
capable of performing consistency checks for propositional logic extended with theories T .
Thus, DPLL-based decision procedures can be applied to logics richer than propositional
logic, by abstracting all non-propositional atomic formulas by propositional variables. This
approach is called SAT-modulo-theories (SMT) solving.

3.1. Preprocessing of the input formula

The DPLL-based SMT-solving gets a real-algebraic formula as input.

1. We convert it into an equivalent formula in negation normal form (NNF), which
contains negations only in literals.

2. We resolve the negations of the negative literals by changing the relation symbol
according to Figure 3.1.

3. We achieve an equisatisfiable1 formula in CNF using Tseitin’s encoding [Tse83].
The complexity of the transformation is linear in time and space in the number of
Boolean operators. However, it comes at the price of a new Boolean variable for
each Boolean operator.

4. We create a Boolean skeleton of the input formula, replacing all theory constraints
in the input formula by fresh Boolean variables.

The resulting formula is passed to the SAT-solver.

3.2. SAT-solving

The SAT-solver searches for a satisfying assignment for the Boolean skeleton. A naive
approach could check all assignments whether they satisfy the formula. State-of-the-art
SAT-solvers use more sophisticated approaches. In the following we describe a method
based on propagation and conflict-driven non-chronological backtracking. In this work we

1Two formulas are equisatisfiable iff either both are satisfiable or both are unsatisfiable.

Virtual Substitution in SMT Solving 17

3 SMT-solving

Table 3.1. Inverting a relation symbol.
= 7→ 6=
6= 7→ =
< 7→ ≥
> 7→ ≤
≤ 7→ >
≥ 7→ <

do not explain the heuristics used for the variable assignments; we use VSIDS (Variable
State Independent, Decaying Sum), see [MMZ+01].

The input formula of the SAT-solver is in conjunctive normal form, that means it is
a conjunction of clauses. Each of these clauses must be satisfied in order to satisfy the
formula. To satisfy a clause, at least one literal in it must be True, since a clause is a
disjunction of literals. We classify the clauses with respect to a partial assignment as
follows:

• If all literals of a clause are False, it is called conflicting.

• If a clause has only one literal in it, which has not yet been assigned and all other
literals are false, we call it unit.

• If at least one literal is True, the clause is called satisfied.

• Otherwise, i.e., the clause is neither conflicting nor satisfied and it contains at least
two unassigned literals, it is unresolved.

In the remaining of this section, we explain DPLL-based SAT-solving considering the
pseudo code of Algorithm 1. The algorithm executes a main loop using the following
submethods:

bool CreateClauses(CNF ϕ) Create a database of clauses for the Boolean CNF for-
mula ϕ. Clauses with a single literal are not added, but those literals are assigned to
True. If an unsatisfied clause is found, return False; Otherwise return True.

bool Decide() If existing, choose an unassigned variable, assign it to a truth value, and
return True. This step is called a decision. The ith decision and the assignments
made by the subsequent propagation (see below) build the ith decision level. If no
more unassigned variable exists, return False. The choice of the decision variable
and its value is managed by a heuristics. Some example heuristics can be found in
[Boo].

Clause BCP() This submethod implements Boolean constraint propagation: As long
as there is a unit clause, assign its unassigned literal to True. If an unsatisfied clause
is found, return it. We call this a conflict. Otherwise if there are no more unit clauses,
return NULL.

18 Virtual Substitution in SMT Solving

3.2 SAT-solving

(Clause, int) AnalyzeConflict(Clause c) This submethod implements
conflict-driven non-chronological backtracking [MMZ+01]: It generates a conflict
clause, being an unsatisfied clause implying the unsatisfaction of c. This clause is
asserting, that means it has exactly one literal assigned at the current decision level.
After backtracking (see below) this clause becomes unit. The method returns the
conflict clause and the second highest decision level dl of its literals.

void Backtrack(Int dl) Erase all decision levels higher than dl. Set the current decision
level to dl.

void AddClause(Clause c) Add the unit clause c to the database of clauses and assign
True to its unassigned literal.

int DecisionLevel() Return the current decision level.

Algorithm 1 DPLL-SAT (1)

bool DPLL(CNF ϕ)
begin

if CreateClauses(ϕ)=False then (1)

return False; (2)

end if (3)

while True do (4)

if BCP()6=NULL then (5)

if DecisionLevel()=0 then (6)

return False; (7)

else (8)

(conf, btLevel) := AnalyzeConflict(); (9)

Backtrack(btLevel); (10)

AddClause(conf); (11)

end if (12)

else (13)

if Decide()=False then (14)

return True; (15)

end if (16)

end if (17)

end while (18)

end

After creating the database for the formula, we enter in a loop performing a Boolean
constraint propagation and, depending on the result of the propagation, either making
a decision or conflict resolution and backtracking. The algorithm terminates either if a
satisfying assignment is found or we found a conflict at decision level 0, which implies
that the formula is unsatisfiable.

Virtual Substitution in SMT Solving 19

3 SMT-solving

ϕ

SAT-solver UNSAT

Constraint set Reason

Theory solver SAT

Boolean abstraction

satisfiable
unsatisfiable

unsatisfiable

satisfiable

Figure 3.1.: The basic scheme of DPLL-based full lazy SMT-solving

3.3. Interaction between SAT-solving and theory
solving

The SMT-solver uses the theory solver to check, whether the set of theory constraints,
whose Boolean abstraction is assigned to True, is consistent. Note that the preprocessing
in Section 3.1 assures, that it is sufficient to check only those constraints for consistency,
whose abstraction variables are assigned to True. This relies on the fact that after pre-
processing no constraint is (directly or indirectly) negated in the formula. Thus, if an
assignment assigning False to a constraint’s abstraction variable satisfies the Boolean
skeleton, then also the assignment assigning True to that variable satisfies it.

A full lazy approach calls the theory solver each time, the SAT-solver has found a
complete satisfying assignment. The SAT-solver we use permits a less lazy approach,
which calls the theory solver each time the SAT-solver finishes a decision level.

Thus, after each completed decision level the theory solver receives the set of constraints
whose abstraction variable got assigned True at that level. It checks, whether this set
together with previously received constraints from earlier decision levels is consistent.
Hence, for efficiency it is important that the theory solver is able to make use of previous
consistency checks. This ability is called incrementality.

If the theory solver determines consistency, the assignment is either complete, which
implies that the input formula of the SMT-solver is satisfiable or it is not complete and the
SAT-solver performs another decision level. If the theory solver determines inconsistency,
it should return an infeasible subset of the constraints checked, which is then used by the
SAT-solver to refine the Boolean abstraction. The Boolean abstraction of the infeasible
subset forms an unsatisfied clause, which is used for conflict resolution. Optimally,
the infeasible subset is minimal, which means that taking away any constraint makes it
consistent.

Thereafter, the SAT-solver retracts certain decision levels, which also provokes, that
some constraints should be erased from the set of constraints the theory solver maintains. It
is useful for the theory solver to have such a backtrack mechanism, which avoids deleting
information, relevant for the future consistency checks of the remaining constraints.

Note that we strictly separate the satisfiability checks in the Boolean and in the theory
domains, that means, we do not consider theory propagation embedded in the DPLL search

20 Virtual Substitution in SMT Solving

3.3 Interaction between SAT-solving and theory solving

like, e.g., Yices does.

Virtual Substitution in SMT Solving 21

4. Virtual substitution

The virtual substitution method is a restricted but very efficient decision procedure for a
subset of real algebra. In this thesis we adapt it to support incrementality, backtracking,
and minimal infeasible subset generation (cf. Chapter 3). In this section we introduce
virtual substitution in its original form.

4.1. The decision procedure

We are interested in checking satisfiability of pure-existentially quantified formulas in
prenex normal form (PNF). The decision procedure based on virtual substitution produces
a quantifier-free equivalent of a given input formula, by successively eliminating all bound
variables starting with the innermost one. Below we explain how the innermost existentially
bound variable is eliminated using virtual substitution.

Let ∃y1 . . . ∃yn∃xϕ be the input formula, where ϕ is a quantifier-free Boolean combina-
tion of polynomial constraints as defined in Chapter 2. In this thesis we handle constraints,
whose degree in x is at most two (y1, . . . , yn may occur with higher degree). Thus we
assume that all constraints in ϕ are of the form p ∼ 0, ∼∈ {= , < , > , ≤ , ≥ , 6=},
where p is a polynomial that is at most quadratic in x. The coefficients of x are again
polynomials, but do not contain x.

Considering the problem’s domain, each constraint containing x splits it into values
which satisfy the constraint and values which do not. More precisely, the satisfying
values can be merged to a finite number of intervals whose endpoints are elements of
{∞,−∞}∪Lx, where Lx are the zeros of p in x. Given a polynomial p = ax2+bx+c and
a constraint p ∼ 0, ∼∈ {=, <,>,≤,≥, 6=}, the finite endpoints of its satisfying intervals
are the zeros of p:

Linear in x : x0 = − c
b

, if a = 0 ∧ b 6= 0

Quadratic in x, first solution: x1 =
−b+
√
b2−4ac
2a

, if a 6= 0 ∧ b2 − 4ac ≥ 0

Quadratic in x, second solution: x2 =
−b−
√
b2−4ac
2a

, if a 6= 0 ∧ b2 − 4ac > 0

The conditions on the right are called side conditions. Note that in case a = b = c = 0
(constant in x) the solution interval for x is (−∞,∞), which does not have finite endpoints.

Let us consider the previously introduced polynomial p and its zeros x0, x1 and x2. The

Virtual Substitution in SMT Solving 23

4 Virtual substitution

following table shows all possible non-empty solution intervals for p ∼ 0:

constraints possible solution intervals (0 ≤ i, j ≤ 2, i 6= j)
p = 0 [xi, xi] (−∞,∞)
p < 0 p > 0 (−∞, xi) (xi, xj) (xi,∞) (−∞,∞)
p 6= 0 (−∞, xi) (xi,∞) (−∞,∞)
p ≤ 0 p ≥ 0 (−∞, xi] [xi, xi] [xi, xj] [xi,∞) (−∞,∞)

Example 4.1.1
Let c : y · x2 + z · x ≥ 0 with the finite endpoints x0 = x1 = 0 and x2 = − z

y
. The

constraint c has the following solution intervals:

• Constant case: (−∞,∞), if y = z = 0

• Linear case: (−∞, 0] or [0,∞), if y = 0 and z 6= 0

• Quadratic case, first solution: (−∞, 0] or [0,∞), if y 6= 0

• Quadratic case, second solution: (−∞, − z
y
] or [− z

y
,∞), if y 6= 0

Assume now that we have a set of constraints {c1, . . . , cn} each containing x. Each
constraint ci, 1 ≤ i ≤ n, has a set of solution intervals {Ii,1, . . . , Ii,ki} for x. If the
constraints have a common solution for x, then for all i ∈ {1, . . . , n} there exists a
ji ∈ {1, . . . , ki} with

I = (
⋂

i∈{1,..., n}

Ii,ji) 6= ∅.

The intersection I is an interval, whose endpoints are both endpoints of some of the
intervals we intersect. If I is left-closed, its left endpoint is in I; otherwise there exists an
infinitesimal value we can add to the left endpoint, such that the result is an element of
I . In both cases we found an element of I being a solution for x. Candidates for the left
endpoint of I are the left endpoints of the possible solution intervals of the constraints.
Considering the above table, those candidates are −∞ and all finite endpoints x0, x1, x2
for all constraints. When searching for a satisfying solution for x, it is sufficient to
consider those candidates if they belong to a left-closed interval, or those candidates plus
an infinitesimal if the corresponding interval is left-open.

In other words, we check if (1) one of the left endpoints of the left-closed solution
intervals, or (2) one of the left endpoints plus an infinitesimal ε of the left-opened intervals
or (3) a very small value, which we denote by −∞, fulfills all constraints. We call
those points belonging to (1), (2), or (3) test candidates. In [Wei88] you can find the
corresponding theorem proving the soundness and correctness of the method.

Basically, the virtual substitution recursively eliminates all bound variables x in ϕ by (i)
determining all test candidates for x in all constraints in ϕ containing x, and (ii) checking
if one of these test candidates satisfies ϕ.

To check whether a test candidate t for x satisfies a constraint p ∼ 0 in ϕ, we substitute
all occurrences of x by t in p, yielding p[t/x] ∼ 0, and check the resulting constraint

24 Virtual Substitution in SMT Solving

4.2 Example

under the test candidate’s side conditions for consistency. Note that neither p[t/x] ∼ 0 nor
the solution conditions refer to x, but they may contain other bound variables. Thus the
consistency check may involve further quantifier eliminations.

Standard substitution could lead to terms not contained in real algebra, since the test
candidates include −∞, square roots, and infinitesimals ε. Virtual substitution however,
avoids these expressions in the resulting terms: it defines substitution rules yielding
formulas of real algebra that are equivalent to the result of the standard substitution.
However, these substitution rules may increase the degree of the polynomials.

4.2. Example

The virtual substitution method defines 18 substitution rules: There are six relation symbols
and three possible types of test candidates corresponding to (1), (2), and (3) as described
above. The according substitution rules can be found in Appendix A. In this section we
show two examples of the rules to demonstrate the idea:

1. We first show the case for a test candidate being the left endpoint of a left-closed
interval. So let t be a test candidate for x of type (1) and assume the constraint p̂ = 0
occurrs in ϕ. If we use standard substitution to replace x by t in p̂ = 0, the result
can be transformed to the general form r+s·

√
w

q
= 0 (see Proof A.2.1), where q, r, s

and w are polynomial terms of the real algebra.

We distinguish between the cases of s being 0 or not, i.e., if there is a square root
in the term after substitution or not. In the case s = 0 the equation r+s·

√
w

q
= 0

simplifies to r
q
= 0 and further to r = 0. In the case s 6= 0, the constraint r+s·

√
w

q
= 0

is satisfied iff r+ s ·
√
w = 0, or equivalently, iff either both r and s equal 0, or they

have different signs and |r| = |s
√
w|. Therefore the virtual substitution replaces the

constraint p̂ = 0 by

(s = 0 ∧ r = 0) ∨ (s 6= 0 ∧ r · s ≤ 0 ∧ r2 − s2 · w = 0).

2. The second case we describe is the substitution for a test candidate of type (2) in an
inequalitity p̂ < 0. The test candidate represents in this case the left endpoint t of a
left-open interval plus an infinitesimal value. The substitution of the test candidate
for x in p̂ < 0 is equivalent to the following:

p̂[t/x] < 0︸ ︷︷ ︸
Case 1

∨ p̂[t/x] = 0 ∧ p̂′[t/x] < 0︸ ︷︷ ︸
Case 2

∨ p̂[t/x] = 0 ∧ p̂′[t/x] = 0 ∧ p̂′′[t/x] < 0︸ ︷︷ ︸
Case 3

where p̂′ and p̂′′ are the first resp. second derivative of p̂.

Either p̂ maps the endpoint to a negative value satisfying Case 1, where it is sur-
rounded by negative values due to the density of R or it is zero and one of its
derivatives in x is negative satisfying Case 2 or 3, which implies that values of p̂

Virtual Substitution in SMT Solving 25

4 Virtual substitution

in the right neighborhood of t are negative. A visualization of the three cases for
univariate polynomials is shown in Figure 2.

In the above formula, the substitutions p̂[t/x] = 0 and p̂′[t/x] = 0 are computed
according to the first case above. The other substitutions p̂[t/x] < 0, p̂′[t/x] < 0, and
p̂′′[t/x] < 0 are computed using the substitution rule for test candidates of type (1)
and a strict inequality, not listed here.

x

p̂(x)

(
t

Case 1

x

p̂(x)

(
t

Case 2

x

p̂(x)

(
t

Case 3

Figure 4.1.: Case distinction for the virtual substitution of a test candidate of type (2) into
an inequaltity p̂ < 0.

Assume T is the set of all possible test candidates for x. Given a test candidate t ∈ T
with side conditions Ct, the virtual substitution method applies the substitution rules to
all constraints in the input formula ϕ and conjugates the result with Ct. Considering all
possible test candidates results in the formula

∃y1 . . . ∃yn
∨
t∈T

(ϕ[t/x] ∧ Ct).

Note that test candidates of type (3) does not have side conditions. The virtual substitution
method continues with the elimination of the next variable.

26 Virtual Substitution in SMT Solving

5. Incremental virtual substitution
in SMT-solving

As discussed in Chapter 3, a theory solver should support incrementality in order to be
suited for an efficient embedding into a less lazy SMT-solver. Note that theory solvers
in the SMT-context only have conjunctions of theory constraints as input, instead of
arbitrary combinations. If the theory solver already checked a set of theory constraints
for consistency, it should be able to accept more constraints and to check whether the
conjunction of the already added constraints and the new constraints is still consistent.

The original virtual substitution method does not provide these functionalities yet.
Nevertheless, it can be embedded into an SMT-solver. Full lazy SMT-solving does not
require incrementality, but is not very profitable compared to a less lazy approach with an
incremental theory solver. We could also embed a non-incremental theory solver into a
less lazy SMT-solver. However, in this case the theory solver has to re-do a lot of work. In
this section we propose an incremental version of the virtual substitution method.

Assume that the original virtual substitution method checks the satisfiability of a formula
and eliminates a variable x. The elimination yields a list of test candidates with corre-
sponding side conditions. After the substitution step the result is a new formula being the
disjunction of the substitution results for each test candidate of each constraint containing
x (for further details see Chapter 4).

If we want to support the belated addition of further constraints, possibly containing
x, we must be able to belatedly substitute x in the new constraints using the previously
generated test candidates. Furthermore, we have to find the test candidates of the new
constraints for x and belatedly consider them for substitution. For this purpose we must be
able to reconstruct the constraints we had before the substitution by the already generated
test candidates in order to be able to substitute them by the test candidates the new
constraints provide. We also need to store all determined test candidates with their
corresponding side conditions to be able to apply them to the new constraints belatedly.

A naive approach would be to mimic the original virtual substitution method: we could
store all the abovementioned information, apply all relevant previous substitutions to new
constraints, and extend the formula with new disjunctive components using test candidates
from the new constraint. However, this approach would lead to very large formulas,
growing exponentially in the number of variables (see [Wei97]).

Furthermore we are interested in the satisfiability of the formula. The elimination of
a variable, as we saw in Chapter 4, creates a disjunction of disjunctions of conjunctions.
This formula is satisfied if one of these conjunctions is satisfied. This leads to the idea,
that we do not need to consider the whole formula all of time, but could proceed with one
of its conjunctions as long as it keeps being consistent and switch to another conjunction

Virtual Substitution in SMT Solving 27

5 Incremental virtual substitution in SMT-solving

otherwise.
The data model underlying the consistency check must fulfill certain requirements:

• It must keep the data to be stored to a minimum.

• It must support incrementality.

• It must support an informed search and not just a breadth-first search.

5.1. Data model
Remember that the virtual substitution starts with a formula and eliminates its variables
successively using test candidate generations and substitutions. Both of these operations
lead to branching on possible solutions:

• The generation of test candidates yields substitutions, which are mappings of vari-
ables to test candidates, and their corresponding side conditions.

• The substitution itself branches on possible substitution cases according to the
virtual substitution method. An overview of all those cases can be extracted from
Appendix A.

...

. . .

...
.

...
.

test candidate generation

test candidate substitution test candidate substitution

Figure 5.1.: The branching of the different cases of generating test candidates and substi-
tutions considered as a tree.

Figure 5.1 gives an abstract illustration of this branching. As we want to be able to
belatedly apply those operations to later arrived constraints, we must remember not only
the current result but also the history of operations executed. Therefore the current solver
state is stored in a tree as defined in Definition 2.3.3. Its root should consist of the set
of constraints, which the theory solver has to check. An intermediate node results from
its antecessor by applying either the generation of test candidates or the substitution of
a variable by a test candidate in a constraint. Vice versa the children of an intermediate
node relate either to the different test candidates the node’s constraints provide or to the
different cases a substitution provokes due to the applicable rule of Appendix A. Hence,

28 Virtual Substitution in SMT Solving

5.1 Data model

the main information a node contains is the conjunction of constraints it considers, which
we represent in the following by a set. By reason of the incrementality we also need to
remember the set of substitutions we have already achieved. These two sets form almost
all information we need to remember in each node.

Definition 5.1.1 (Decision tuple)
A node of the tree in the implementation of the virtual substitution is called a decision
tuple. It has the following structure:(

Conditions
Substitutions

)
index

where:

• Conditions is a set of indexed constraints

(p ∼ 0)flag

where flag is defined as follows:

flag =


True , if the constraint was used

to generate test candidates
False , otherwise.

• Substitutions is a set of substitutions of variables by test candidates:

[test candidate / variable].

The variables of all substitutions in this set must be pairwise different.

• The index has the following definition:

index =


var , the variable for which the test candidates

in this decision tuple are generated
⊥ , if no variable is determined to generate

test candidates for.

In order to save space, we write in a text (Conditions, Substitutions)index instead of(
Conditions
Substitutions

)
index

.

In the following we explain the evaluation of a node, which constructs its successors
in the tree. Thereby it becomes clear why the information a decision tuple contains is
necessary.

Virtual Substitution in SMT Solving 29

5 Incremental virtual substitution in SMT-solving

5.2. Evaluation of a decision tuple
Starting with one decision tuple, which consists just of the conditions corresponding to
the constraints the theory solver wants to check, we want to achieve a tree as shown in
Figure 5.1. Hence, we have to extend the tree by new decision tuples, more precisely
we add children to the already existing decision tuples in the tree. The evaluation we
introduce in this section considers a decision tuple of the tree and generates children of it
by either applying test candidate generation or a substitution by a test candidate. Thus it
previously has to decide, which operation it applies. This depends on the constitution of
the considered decision tuple and on the strategy we pursue.

In this section we explain two different strategies of decision tuple evaluation. The first
approach tries to minimize the operations we do in one evaluation step. It either generates
all test candidates for a condition, which still has not served as test candidate provider, or
substitutes one variable in one condition by a test candidate we have already generated.
The second approach differs in the substitution, since it substitutes all occurrences of a
variable by a test candidate we just generated. The first approach seems to be more target
oriented, such that we get more freedom of decision and a heuristics influences more
specific. However, it unfortunately repeats substitutions within the tree unnecessarily. We
give a further explanation after introducing the approach. Nevertheless, it needs more
investigation in terms of benchmarks and a formal proof, which states that it is less efficient
in worst or even average case than the second so called entire substitution approach.

As a simplification we said that test candidate generations as well as substitutions in a
decision tuple lead to the generation of new children (see Figure 5.1). Actually, there is no
need to consider a decision tuple, when we had achieved its children by a substitution. So
the evaluation of a decision tuple by a substitution will not lead to new children, but split it
into new decision tuple according to the different cases of the substitution rule.

Note that we always discard conditions, which are variable-free and consistent, e.g.
(0 = 0)flag, (4 ≥ 0)flag, As a decision tuple considers a conjunction of conditions, the
consistency of its conditions depends on the consistency of the conditions, which are not
yet satisfied, i.e. the conditions which are not variable-free and consistent.

Keep in mind that we want to check a set of constraints for consistency. We generate
a tree of decision tuples by the evaluation approaches we introduce next. Its leaves are
those decision tuples, to which we can neither apply a test candidate generation nor a
substitution by a test candidate. Considering that we discard conditions, which are variable-
free and consistent and assuming that no condition arises with a degree higher than 2, the
leaves must be decision tuples, which just contain variable-free inconsistent conditions,
e.g. (1 = 0)flag, (2 ≤ 0)flag, 1 They are variable-free, since otherwise we can apply
a substitution or a test candidate generation. They are inconsistent, since otherwise they
have already been discarded. Thus, there are two kinds of leaves: one, which contains
an variable-free inconsistent condition, and one, which does not contain any condition.
The latter one means that we have proven the consistency of the constraints the theory

1Note that applying a substitution can increase the degree of the remaining variables. Hence, a condition
with a degree higher than 2 can be created within the tree of decision tuples, even if the constraints in the
root have all a degree smaller equal to 2 in all variables.

30 Virtual Substitution in SMT Solving

5.2 Evaluation of a decision tuple

solver checks: The path from the root to a leaf provides for each variable exactly one
test candidate and the leaf represents one case of the cases created by substituting all
occurrences of all variables by these test candidates. Having a leaf without conditions
means that it has no inconsistent conditions. Thus the corresponding case just consists of
consistent constraints and is therefore fulfilled. The mentioned test candidates on the path
of the root to such a satisfying leaf represents a satisfying assignment of the variables in
the constraints the theory solver checks for consistency. However, this assignment maps to
terms containing −∞ and t+ ε. The former term represents a sufficiently small value and
the latter term represents t plus an infinitesimal value. Checking for consistency in terms
of decision tuples then means searching for a satisfying leaf and the two approaches we
introduce next take this into account.

Possibly, we create conditions during the generation of the tree of decision tuples, which
have a degree higher than 2 in at least one variable. If we eliminate this variable next, we
must also generate test candidates of this condition. Unfortunately, we cannot generate
them in this case (see Chapter 4). In such a case we continue in both evaluation approaches
in one of the following two ways:

1. We set the flag of these conditions to True and do not consider their test candidates.
However, it distorts the result of the consistency check: If it determines consistency,
the constraints we checked are consistent; Otherwise they are either consistent or
inconsistent. It depends on the fact, that we do not consider all test candidates in this
case.

2. We stop the consistency check, since we cannot guarantee the correctness of the
result, if the theory solver determines inconsistency.

This is why we call the restriction to the degree of the input constraints of the theory solver
quadratic and beyond. It is hard to give an exact restriction. Some ideas of how we can
restrict the input constraints are shown in [Wei97]. Nevertheless, it is essential that we can
also deal with these conditions, which will be part of our future work.

5.2.1. Target oriented approach

We consider the decision tuple (C, S)v. First we check if C contains any variable-free
inconsistent condition. If so, we delete the considered decision tuple, since we cannot
get rid of a variable-free inconsistent condition neither by test candidate generations nor
by substitutions. Hence, this decision tuple cannot be part of a path from the root to a
satisfying leaf. If C has no variable-free inconsistent condition, we choose any condition
(c)flag ∈ C, with flag = False. We change the flag to True, which indicates that we have
already considered this condition for further processing. We have the following cases for
the evaluation of(C, S)v:

1. Given: The constraint c contains a variable, which is mapped by one of the substitu-
tions in S and v =⊥.

Virtual Substitution in SMT Solving 31

5 Incremental virtual substitution in SMT-solving

In this case we apply a substitution to c as follows: We choose the oldest substitution
s ∈ S, which maps a variable of c. The substitution rules of Appendix A give for c
and s a disjunction of conjunctions of real algebraic constraints as a result.

This is the only case where we do not generate children, but split the decision tuple.
More precisely, we generate brothers and delete the decision tuple afterwards. For
each conjunction we generate a brother Di = (Ci, S)⊥ of D. The conditions Ci are
formed by the constraints occuring in the conjunction or in C excluding c. They all
get the flag False. (Note that in this case all conditions in C had the flag False.)

2. Given: The constraint c contains a variable, which is mapped by one of the substitu-
tions in S and v 6=⊥.

In this case we choose c for test candidate generation. However, first we have to
apply a substitution to c. We delay the test candidate generation, that is done later in
the generated subtree.

We choose the oldest substitution s ∈ S, which maps a variable of c. The substitution
rules of Appendix A give for c and s a disjunction of conjunctions of real algebraic
constraints as a result. For each conjunction we generate a child Di = (Ci, S)v of
D. The conditions Ci are formed by the constraints occuring in the conjunction or
in C excluding c. The conditions of Ci that are inherited from C have the flag True
and the others the flag False. We set the flags of the inherited conditions to True in
order to avoid that they serve as a test candidate providers in both D and Di.

3. Given: No variable in c is mapped by a substitution in S and v =⊥.

In this case there is no belated substitution we have to apply to c and also no
variable fixed for elimination. We choose a variable v′ occuring in c to generate
test candidates for. Thereafter the index of D gets set to v′ and we generate the test
candidates of c for v′.

A constraint provides a set of finite test candidates and −∞. In Chapter 4 we
define the set of finite test candidates combined with their side conditions. For each
test candidate, whose side conditions do not contain a variable-free inconsistent
constraint, we generate a child Di = (Ci, Si)⊥ of D. The conditions Ci are formed
by the constraints occuring in the side conditions or C and all have the flag False.
The substitutions Si are those occuring in S extended by the subsitution, which maps
the chosen variable v′ to the test candidate we currently consider. The index of the
new decision tuple is ⊥, since we must determine a new variable for elimination.

4. Given: No variable in c is mapped by a substitution of S, v 6=⊥, and v is a variable
which c contains.

The case is similar to the previous one, but c is not the first constraint we use to
generate test candidates for v. The first time we generated test candidates for v we
have already added a child for the test candidate −∞. So we do not need to consider
−∞ a second time. We just generate the children for the finite test candidates, whose
side conditions do not contain a variable-free inconsistent constraint.

32 Virtual Substitution in SMT Solving

5.2 Evaluation of a decision tuple

5. Given: No variable in c is mapped by a substitution of S, v 6=⊥, and v is a variable,
which does not occur in c.

In this case c is chosen for test candidate generation for the variable v, which it does
not contain. That means c is constant in v, yielding the only test candidate −∞.
However, since c is not the first constraint we generate test candidates for (v 6=⊥),
∞ has already been considered (see case 3).

We have already set the flag of the condition we consider to True, which assures,
that we do not choose it once again to generate test candidates for v. We do not
make any further computations. We can interpret this step as generating zero (finite)
test candidates.

In Algorithm 2 you can see the evaluation of a decision tuple according to this approach
in a more compact way. Note, that along the path from the root to a leaf each variable is
mapped at most once by a substitution, since this evaluation favors substitutions over test
candidate generations.

Algorithm 2 The algorithm to evaluate a decision tuple using the target oriented approach.

void evaluateTO(Decision_tuple D = (C, S)v ∈ V)
begin

if C contains variable-free inconsistent condition then (1)

V := V \ {D}; (2)

if D is not the root then (3)

E := E \ {(Df , D)}; // (Df father of D) (4)

end if (5)

else (6)

choose a condition (c)flag ∈ C with flag = False; (7)

flag := True; (8)

if no s ∈ S maps a variable in c then (9)

generateTestCandidatesTO(D, (c)flag); // Alg. 4 (10)

else (11)

s ∈ S is oldest substitution mapping a variable in c; (12)

substituteTO(D, (c)flag, s); // Alg. 3 (13)

end if (14)

end if (15)

end

Global variables: Tree_of_decision_tuples T = (V, E);

This approach unfortunately could repeat substitutions unnecessarily. Let us consider
the decision tuple D := (C ∪ {(c)flag}, S ∪ {s})v. According to the just given evaluation
method it is possible that we generate test candidates for all conditions in C although s
maps a variable, which occurs in C. Though this substitution must be applied in each child
we just generated or even worse in their antecessors. The later we apply this substitution
the more we have to apply it.

Virtual Substitution in SMT Solving 33

5 Incremental virtual substitution in SMT-solving

Algorithm 3 The algorithm to apply one subsitution to one condition using the target
oriented approach.

void substituteTO(Decision_tuple D = (C, S)v ∈ V , Condition (c)flag ∈ C, Substitution
s ∈ S)
begin

C1 ∨ . . . ∨ Ck
App. A
:= result of s applied to c; (1)

if v =⊥ then (2)

for all 1 ≤ i ≤ k do (3)

Di := ((C \ {(c)flag}) ∪ {(ĉ)False|ĉ ∈ Ci}, S)⊥; (4)

T := (V := V ∪ {Di}, E := E ∪ {(Df , Di)}); // (Df father of D) (5)

end for (6)

T := (V := V \ {D}, E := E \ {(Df , D)}); // (Df father of D) (7)

else (8)

for all 1 ≤ i ≤ k do (9)

Di := ({(ĉ)True|(ĉ) ˆflag ∈ C \ {(c)flag}} ∪ {(ĉ)False|ĉ ∈ Ci}, S)v; (10)

T := (V := V ∪ {Di}, E := E ∪ {(D, Di)}); (11)

end for (12)

end if (13)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

5.2.2. Entire substitution approach
We call the second approach the entire substitution approach, since it applies a new
generated substitution to all conditions in the considered decision tuple before further
elimination steps. Thus it has to combine the results of each single substitution, using the
following construction.

Definition 5.2.1 (Combination of a set of sets of sets)
Let M = {M1, . . . , Mn} be a set of sets, such that Mi = {Mi,1, . . . , Mi,ki} is again a set
of sets for all i ∈ {1, . . . , n}. The combination of M is the set of sets:

{
⋃

i∈{1,..., n}

Mi,ji | (j1, . . . , jn) ∈ {1, . . . , k1} × . . .× {1, . . . , kn}}

This corresponds to the reformulation of a formula of the form∧
i

∨
j

∧
kj

ci,j,kj

to a formula ∨
j1,..., jn

∧
i

∧
kji

ci,ji,kji

The evaluation of a decision tuple D = (C, S)v has two cases:

34 Virtual Substitution in SMT Solving

5.2 Evaluation of a decision tuple

Algorithm 4 The algorithm to generate all test candidates for a variable of a condition
using the target oriented approach.

void generateTestCandidatesTO(Decision_tuple D = (C, S)v ∈ V , Condition (c)flag ∈
C)
begin

if v =⊥ then (1)

v := v′; // (v′ variable in c) (2)

Dinf := ({(ĉ)False|(ĉ) ˆflag ∈ C}, S ∪ {[−∞/v]})⊥; (3)

T := (V := V ∪ {Dinf}, E := E ∪ {(D, Dinf)}); (4)

end if (5)

{(t1,C1), . . . , (tk,Ck)}
Chap. 4
:= test candidates with side conditions of c for v; (6)

for all 1 ≤ i ≤ k do (7)

if Ci has no variable-free inconsistent conditions then (8)

Di := ({(ĉ)False|(ĉ) ˆflag ∈ C} ∪ {(ĉ)False|ĉ ∈ Ci}, S ∪ {[ti/v]})⊥; (9)

T := (V := V ∪ {Di}, E := E ∪ {(D, Di)}); (10)

end if (11)

end for (12)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

1. Given: v =⊥.

In this case we apply all substitutions in S to C. As we do this after each elimination,
just the most recent substitution of S, stamming from the last elimination, can be
applied.

This substitution applied to a single constraint in C leads to a disjunction of con-
junctions, which do not contain the variable to substitute anymore. The results of
applying this substitution to all constraints in C are combined to one disjunction
of conjunctions according to Definition 5.2.1. For each of these conjunctions we
add a brother Di = (Ci, S)vi to D. The conditions Ci are formed by the constraints
occuring in the conjunction and have the flag False. The index vi gets set to a
variable occuring in Ci. Finally, we delete D. The pseudo code for this method is
given by Algorithm 6.

2. Given: v 6=⊥
In this case we generate test candidates. Note that, as v 6=⊥ was set in the previous
case, currently there are no pending substitutions.

Firstly, we check if for the test candidate−∞ a child ofD has already been generated.
If not, we generate a childDinf = (Cinf , Sinf)⊥, such that its conditionsCinf consist
of the constraints occuring in C and have the flag False and its substitutions Sinf are
those occuring in S extended by the substitution [−∞/v]. Otherwise, we choose a

Virtual Substitution in SMT Solving 35

5 Incremental virtual substitution in SMT-solving

condition (c)flag ∈ C with flag = False and set flagto True. According to Chapter 4
we determine the set of finite test candidates for c and v together with their side
conditions. For each finite test candidate t, whose side conditions do not contain a
variable-free inconsistent constraint, we generate a child Di = (Ci, Si)⊥, such that
its conditions Ci are the constraints occuring in the side conditions or in C. Their
flags are all False. The substitutions Si are those occuring in S extended by the
substitution [t/v]. The pseudo code for this method is given by Algorithm 7.

Algorithm 5 The algorithm to evaluate a decision tuple using the entire substitution
approach.

void evaluateES(Decision_tuple D = (C, S)v ∈ V)
begin

if C contains a variable-free inconsistent condition then (1)

V := V \ {D}; (2)

if D is not the root of T then (3)

E := E \ {(Df , D)}; // (Df father of D) (4)

end if (5)

else if v =⊥ then (6)

substituteES(D); // Alg. 6 (7)

else (8)

generateTestCandidatesES(D); // Alg. 7 (9)

end if (10)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

In Algorithm 5 you can see the evaluation of a decision tuple according to this approach
in a more compact way. The data stored in a decision tuple D can be reduced by the
not recent substitutions, since applying a substitution entirely makes it superfluous to
remember the substitution in the successors of D.

5.3. Checking consistency of a set of constraints
with decision tuples

Given a set of constraints {c1, . . . ,ck}, the theory solver should check whether it is con-
sistent or not. In terms of decision tuples we initialize a tree by generating the root
node

Droot :=

(
{(c1)False, . . . ,(ck)False}

∅

)
⊥
.

We have already brought up that we want to expand the tree until one of its nodes has an
empty condition set. Starting with Droot we could follow the strategy to generate all its

36 Virtual Substitution in SMT Solving

5.3 Checking consistency of a set of constraints with decision tuples

Algorithm 6 The algorithm to apply the most recent substitution of a decision tuple
entirely.

void substituteES(Decision_tuple D = (C, S)v ∈ V)
begin

s := most recent substitution in S; (1)

for all (ci)flagi ∈ C = {(c1)flag1 , . . . , (cn)flagn} do (2)

Disji = Ci,1 ∨ . . . ∨ Ci,ki
App. A
:= result of s applied to ci; (3)

˜Disji := {{(c)False| c ∈ Ci,j}|1 ≤ j ≤ ki}; (4)

end for (5)

{C1, . . . , Ck}
Def. 5.2.1

:= combination of { ˜Disj1, . . . , ˜Disjn}; (6)

for all 1 ≤ i ≤ k do (7)

vi := any variable occuring in Ci; (8)

Di := (Ci, S)vi; (9)

T := (V := V ∪ {Di}, E := E ∪ {(Df , Di)}); // (Df father of D) (10)

end for (11)

T := (V := V \ {D}, E := E \ {(Df , D)}; // (Df father of D) (12)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

children and then to proceed with each of its children in the same way. This would be a
breadth-first search and similar to virtual substitution in its raw form, where in one step
for one variable all test candidates are generated and all occurrences of the variable get
substituted by each test candidate leading to a large disjunction. A structure, which embeds
decision tuples, has a crucial advantage: there is no need to apply breadth-first search. The
information a decision tuple stores allows us to have the arbitrary choice, which decision
tuple we evaluate next.

Let us say we have a mechanism, which gives us the next decision tuple D to evaluate.
The consistency check progresses the decision tuple by distinguishing between three forms:

1. Given: The set of conditions in D is empty.

Procedure: It implies, that the set of constraints, which the theory solver received so
far, is consistent. Hence the algorithm returns True.

2. Given: The set of conditions in D is not empty, but all conditions have the flag True.

Procedure: It implies, that all conditions are already entirely substituted according to
the set of substitutions and that all test candidates in this decision tuple were already
generated. Thus, we cannot generate further children for D and there is no need to
consider it anymore. Mark the decision tuple in order to avoid that the mechanism
to choose the next decision tuple will choose this decision tuple again. Note that
the two evaluation approaches both assure, that we first apply all substitutions to a
condition, before we use it for further test candidate generations.

Virtual Substitution in SMT Solving 37

5 Incremental virtual substitution in SMT-solving

Algorithm 7 The algorithm to generate all test candidates for a variable of a condition
using the entire substitution approach.

void generateTestCandidatesES(Decision_tuple D = (C, S)v ∈ V)
begin

choose a condition (c)flag ∈ C with flag = False; (1)

flag := True; (2)

if test canidate −∞ not yet considered in D then (3)

Dinf := ({(ĉ)False|(ĉ) ˆflag ∈ C}, S ∪ {[−∞/v]})⊥; (4)

T := (V := V ∪ {Dinf}, E := E ∪ {(D, Dinf)}); (5)

end if (6)

{(t1,C1), . . . , (tk,Ck)}
Chap. 4
:= test candidates with side conditions of c for v; (7)

for all 1 ≤ i ≤ k do (8)

if Ci contains no variable-free inconsistent conditions then (9)

Di := ({(ĉ)False|(ĉ) ˆflag ∈ C} ∪ {(ĉ)False|ĉ ∈ Ci}, S ∪ {[ti/v]})⊥; (10)

T := (V := V ∪ {Di}, E := E ∪ {(D, Di)}); (11)

end for (12)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

3. Given: D contains a condition c, which has the flag False.

Procedure: Depending on the evaluation approach we use, call either the method
given by Algorithm 2 or Algorithm 5.

The algorithm repeats choosing a decision tuple and processing it according to the
previous description until either it finds one without conditions or all decision tuples
are marked. The termination of this approach depends on the finite number of the test
candidates we generate and the fact that the substitution eliminates a variable of the
initially finite number of variables in the given set of constraints. Furthermore we do not
introduce new variables. A compact description of the just explained procedure is shown
in Algorithm 9. Algorithm 8 is just temporarily necessary to explain the so far gained ideas
and will be replaced later in order to make this approach incremental.

5.4. Choice of the next decision tuple to evaluate

The previously introduced algorithm used an unexplained mechanism to choose the next
unmarked decision tuple to evaluate. Such a mechanism is implemented by a heuristics.
An example-heuristics would be to take the most recently generated decision tuple next
(∼depth-first search) or vice versa the oldest decision tuple (∼breadth-first search). We
can achieve promising measures by analyzing the conditions and substitutions. In the
following we list some properties, which could influence the heuristics:

38 Virtual Substitution in SMT Solving

5.4 Choice of the next decision tuple to evaluate

Algorithm 8 The algorithm to determine consistency of a set of constraints using decision
tuples, where, depending on the evaluation approach, X = TO resp. X = ES.

bool is_consistent1(Set_of_constraints C)
begin

Droot := ({(c)False| c ∈ C}, ∅)⊥; (1)

T := ({Droot}, ∅); (2)

if is_consistentX() then (3)

return True; (4)

else (5)

return False; (6)

end if (7)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

• The number of conditions having the flag False.

• The number of substitutions (already eliminated variables).

• The degrees of the conditions in the variable given by the index of the decision tuple.
Here, we could also just consider the condition we are going to evaluate next.

• The relation symbol of the condition we are going to evaluate next.

• The number of variables occuring in all conditions or the conditions we are going to
evaluate next.

• The number of occurrences of the variable to eliminate/substitute in the conditions.

• The types of the substitutions, resp. of the most recent one.

How good a heuristics is depends on how fast we find a decision tuple without conditions.
Another important aspect is how much computional effort the heuristics causes. It obviously
depends on the number of decision tuples in the tree, which could increase exponentially
as you can see in [Wei97]. Our idea is to rank the decision tuples, which are still not
marked. Each decision tuple maintains a value and a unique ID. Once distributed, the
ID of a decision tuple will not change, but its value can change during the evaluation.
Every time a decision tuple is generated it is inserted into the ranking according to its
value combined with its ID. This assures that two decision tuples would never share a
rank. When a decision tuple gets changed, we first erase it from the ranking and insert
it afterwards according to the new value. The inserting operation of an element with a
certain value-ID combination can be achieved in logarithmical time, since the ranking is
sorted. The same holds for erasing. Let us say, that the best decision tuple according to
a heuristics is the first element of the ranking. Finding the best element then needs just

Virtual Substitution in SMT Solving 39

5 Incremental virtual substitution in SMT-solving

Algorithm 9 The algorithm to determine consistency of a tree of decision tuples, where,
depending on the evaluation approach, X = TO resp. X = ES.

bool is_consistentX()
begin

while exists an unmarked D = (C, S)v ∈ V do (1)

if D has a condition (c)flag with flag = False then (2)

evaluateX(D); // Alg. 2, Alg. 5 (3)

else if C 6= ∅ then (4)

mark D (to avoid choosing it again); (5)

else (6)

return True; (7)

end if (8)

end while (9)

return False; (10)

end

Global variables: Tree_of_decision_tuples T = (V, E);

constant time. Altogether, the heuristics produces an additional effort each time a decision
tuple is generated, which is logarithmic regarding to the number of (unmarked) decision
tuples, which is in worst case exponential in the number of bound variables in the given
set of constraints (see [Wei97]). Thus, the heuristics extends the exponential worst case
complexity by a linear factor if we consider the effort to create the value of a decision tuple
as constant.

This part of the implementation still has a lot of potential to exploit. Verifying the quality
of the heuristics should be done empirically and is part of our future work.

5.5. Add new constraints to the theory solver

Let us assume, that we have already received a set of constraints and that we have already
applied Algorithm 9 to check its consistency. If it determines consistency for this set of
constraints, we achieve a tree of decision tuples, where at least one of them has an empty
set of conditions. Now, we want to add some constraints belatedly to the set of the already
received constraints and check for consistency once again. A naive approach would be
to delete all generated decision tuples of the tree and to apply Algorithm 9 to the set of
constraints, including the recently added ones. We would discard all computations done so
far and thus repeat already made computations. Our goal is to avoid this, which means that
we want to retain previously made computations, if their results can be used again.

The results of already made computations are reflected in the decision tuples the previous
consistency check has created. The idea is to extend their set of conditions by the conditions
resulting from the constraints to add. It depends on the evaluation approach we use, how
we add constraints.

40 Virtual Substitution in SMT Solving

5.5 Add new constraints to the theory solver

5.5.1. Target oriented approach

For this approach it is easy to add new conditions. Indeed we just add constraints incre-
mentally, by adding them to the condition set of each decision tuple. However, we must
take care of the indices of the conditions we add. There are two cases we distinguish:

1. We consider the second case of the evaluation of a decision tuple according to
Section 5.2. It corresponds to the case that the index of the chosen decision tuple
represents a variable and that the selected condition contains a variable, which is
mapped by one of the substitutions. The generated children, in which the inherited
conditions are all indexed by True and the new conditions created by the substitution
are indexed by False, form the only exception. The new condition must be considered
as an inherited one, so it has to be indexed by True as well. We identify those decision
tuples, by checking whether the decision tuple and its father have the same variable
as index. It implies, that it resulted from the explained evaluation case.

2. In all other cases we add a constraint to a decision tuple by adding its corresponding
condition indexed by False to the condition set of the decision tuple.

In Algorithm 10 we show a method to add one constraint belatedly to a tree of decision
tuples, which represents the result of the previously made consistency check. We store this
tree in a global variable of the theory solver.

Algorithm 10 The algorithm to add a constraint to the constraints in the theory solver
using the target oriented approach.

void add_constraintTO(Constraint c)
begin

for all D = (C, S)v ∈ V do (1)

if D has father with same index then (2)

D := (C := C ∪ {(c)True}, S)v; (3)

else (4)

D := (C := C ∪ {(c)False}, S)v; (5)

end if (6)

end for (7)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

5.5.2. Entire substitution approach

Decision tuples created by the evaluation of the entire substitution approach contain either
exactly one applicable substitution or all substitutions were entirely executed. The problem,
which occurs by adding new constraints to already created decision tuples, is that it possibly

Virtual Substitution in SMT Solving 41

5 Incremental virtual substitution in SMT-solving

destroys this property and the evaluation cannot be applied anymore, since new cases arise.
We do not want to maintain just this property, but also assure, that no substitution gets
applied to the same condition twice in order to keep it as efficient as possible. The children
created by the generation of test candidates can get split as a result of the execution of the
newly created substitution in it. Thus, there could be more than one child having the same
substitutions. If we add new constraints as conditions to these decision tuples, the second
property cannot be hold. This is why new constraints can only be added to a decision tuple,
if we can assure, that no substitution can be applied to it. The root is the only decision
tuple, for which this always holds, since it does not contain any substitutions. Hence, we
add new constraints by adding them as conditions to the root. The other already generated
decision tuples get marked, such that the mechanism to choose the next decision tuple
to evaluate does not choose them. Algorithm 11 describes the pseudo code of adding a
constraint belatedly.

Algorithm 11 The algorithm to add a constraint to the constraints in the theory solver
using the entire substitution approach.

void add_constraintES(Constraint c)
begin

add (c)False to the conditions of the root of T ; (1)

mark the other decision tuples (to avoid choosing them again); (2)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

Nevertheless, we need to extend the evaluation method by another case, where the
considered decision tuple contains recently added constraints. This implies, that the
conditions must comprise another flag which indicates, if the condition relates to a recently
added constraint or not.

In the following we renew the description of the second approach to evaluate a decision
tuple D := (C, S)v, which we have already described in Section 5.2.

1. Given: v =⊥.

Procedure: In the same manner as before (see description of the evaluation approach
using the entire substitution approach in Section 5.2).

2. Given: v 6=⊥ and D contains no condition which relates to a recently added con-
straint.

Procedure: In the same manner as in the case of v 6=⊥ (see description of the
evaluation approach using the entire substitution approach in Section 5.2).

3. Given: v 6=⊥ andD contains a condition which relates to a recently added constraint.

Procedure: The decision tuple D fulfills the required property, that it does not
contain a condition, to which we can apply a substitution of D. We group the

42 Virtual Substitution in SMT Solving

5.5 Add new constraints to the theory solver

children of D according to their most recent substitutions as shown in Figure 5.2.
We apply each of these substitutions si to the recently added conditions Crecent.
Applying one substitution to the constraint of one of the recently added conditions
results in a disjunction of conjunctions of real algebraic constraints, which do not
contain the variable to substitute anymore. We combine the disjunctions, which
result from applying one substitution to all recently added conditions, according
to Definition 5.2.1. Hence, we get for each substitution si one disjunction of
conjunctions of constraints, which we add as conditions with flag False to each child
containing si. Adding a disjunction, as in our case, splits a decision tuple in the
way shown by Figure 5.3. We assumed, that D includes no condition to which a
substitution in D is applicable and we extended the children of D by the results of
applying the only new substitution in them to Crecent. So, these children also fulfill
the property, that they do not contain conditions to which its substitutions can be
applied. Finally, we mark the conditions Crecent in D as not recently added and
the newly created conditions in the children of D as recently added. Note that the
children of D have been marked before to avoid choosing them as next decision
tuple to evaluate. Now they are not marked anymore. In this way, the recently added
constraints spread out across the already achieved tree of decision tuples.

...(
C ∪ Crecent

S

)
v

(
C1,1

S ∪ {s1}

)
v1,1

. . .

(
C1,k1

S ∪ {s1}

)
v1,k1

...
...

. . .
(

Cr,1
S ∪ {sr}

)
vr,1

. . .
(

Cr,kr
S ∪ {sr}

)
vr,kr

...
...

Figure 5.2.: ntire substitution approach: Grouping of the children of a decision tuple by
their most recent substitution.

In Algorithm 12 we give an incremental version of the evalutation of a decision tuple
according to the entire substitution approach. It extends Algorithm 5 by another case,
where the considered decision tuple contains a recently added condition.

Virtual Substitution in SMT Solving 43

5 Incremental virtual substitution in SMT-solving

...

(
C
S

)
v

Add the conditions:
C1 ∨ . . . ∨ Cn

...

(
C ∪ C1

S

)
v

. . .
(

C ∪ Cn
S

)
v

Figure 5.3.: Adding a disjunction of n conjunctions of conditions to a decision tuple splits
it into n decision tuples.

Algorithm 12 The algorithm to evaluate a decision tuple supporting incrementality using
the entire substitution approach.

void evaluateES(Decision_tuple D = (C, S)v)
begin

if C contains a variable-free inconsistent condition then (1)

V := V \ {D}; (2)

if D is not the root of T then (3)

E := E \ {(Df , D)}; // (Df father of D) (4)

end if (5)

else if v =⊥ then (6)

substituteES(D); // Alg. 6 (7)

else (8)

if D contains no recently added condition then (9)

generateTestCandidatesES(D); // Alg. 7 (10)

else (11)

substituteBelatedES(D); // Alg. 13 (12)

end if (13)

end if (14)

end

Global variables: Tree_of_decision_tuples T = (V, E);

44 Virtual Substitution in SMT Solving

5.5 Add new constraints to the theory solver

Algorithm 13 The algorithm to add all recently added constraints to the children after
applying the most recent substitution entirely.

void substituteBelatedES(Decision_tuple D = (C, S)v ∈ V)
begin

C = Cold ∪ Crecent; (1)

{s1, . . . , sr} := the different most recent substitutions in the children of D; (2)

for all 1 ≤ i ≤ r do (3)

{D1 = (C1, S ∪ {si})v1 , . . . , Dki = (Cki , S ∪ {si})vki} := all children (4)

of D containing si; (5)

for all (c)flag ∈ Crecent do (6)

Disjc = Conj1 ∨ . . . ∨ Conjni
App. A
:= result of si applied to c; (7)

˜Disjc := {{(ĉ)False| ĉ ∈ Conjj}|1 ≤ j ≤ ni}; (8)

end for (9)

{Ĉ1, . . . , Ĉmi}
Def. 5.2.1

:= combininations of { ˜Disjc|c ∈ Crecent}; (10)

for all 1 ≤ j ≤ ki do (11)

TDj = (VDj , EDj)
Def. 2.3.3

:= subtree of T with root Dj; (12)

for all 1 ≤ l ≤ mi do (13)

Dj,l := (Cj ∪ Ĉl, S ∪ {si})vj ; (14)

(Vj,l, Ej,l) := copy of TDj , where Dj is replaced by Dj,l; (15)

T := (V := V ∪ Vj,l, E := E ∪ Ej,l ∪ {(D, Dj,l)}); (16)

mark conditions in Dj,l of Ĉl as recent; (17)

end for (18)

T := (V := V \ VDj , E := E \ (EDj ∪ {(D, Dj)}); (19)

end for (20)

end for (21)

mark conditions in Crecent as not recent; (22)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_tuples T = (V, E);

Virtual Substitution in SMT Solving 45

5 Incremental virtual substitution in SMT-solving

5.6. Conclusion

So far, our theory solver provides two methods for the SMT-solver and maintains a tree of
decision tuples hold in a global variable.

add_constraintX(constraint c) Depending on the underlying evaluation approach we
choose X ∈ {TO, ES}. The method adds a constraint to the set of constraints the
theory solver already received. It uses the previously made computations, which are
stored as a global variable in the theory solver forming a tree of decision tuples. The
pseudo codes to add a constraint belatedly for both evaluation approaches are shown
in Algorithm 10 resp. Algorithm 11.

is_consistentX() Depending on the underlying evaluation approach we choose X ∈
{TO, ES}. The method checks the consistency of all constraints, which the theory
solver has already received. The globally stored tree of decision tuples forms the
initial set of decision tuples, from which we choose one according to Section 5.4
in order to evaluate it according to Section 5.2. It repeats this until it considers
either a decision tuple, which has an empty set of conditions or there exists no more
decision tuple to choose. In the former case the set of already received constraints is
consistent, in the latter it is inconsistent. The pseudo code of this method is shown
in Algorithm 9.

The following examples illustrate both methods according to the two evaluation ap-
proaches we have introduced.

5.7. Examples

5.7.1. Target oriented approach

We initiate the theory solver with the tree

T =

(
{
(
∅
∅

)
⊥
}, ∅
)

as global variable. We call add_constraintTO with the argument c1 : x2 − y ≥ 0 to
hand over the first constraint to the theory solver. The method add_constraintTO adds the
condition (c1)False to the condition sets of all decision tuples in T , i.e.(

∅
∅

)
⊥

gets extended to
(
{(x2 − y ≥ 0)False}

∅

)
⊥
.

Afterwards, we perform a consistency check by calling the method is_consistentTO().
Using a heuristics, an unmarked decision tuple of T is chosen to evaluate next. The marked
decision tuples are those, which we do not need to consider anymore, because they contain

46 Virtual Substitution in SMT Solving

5.7 Examples

no condition indexed by False. In the following the gray drawn decision tuples are marked.
There is just one option, namely the root node

R =

(
{(x2 − y ≥ 0)False}

∅

)
⊥
.

We call the method evaluateTO(R, (x2 − y ≥ 0)False), since it is the only condition R has.
The index of the decision tuple is ⊥ and the chosen condition does not contain variables,
which can be substituted as there is no substitution in this decision tuple yet. According to
Algorithm 4 we generate test candidates, which do not have variable-free inconsistent side
conditions, for a variable of c1, let us say x, and get

1. −√y with side conditions 1 6= 0 ∧ 4y ≥ 0,

2.
√
y with side conditions 1 6= 0 ∧ 4y ≥ 0,

3. −∞ with no side conditions.

For each test candidate we generate a child of R. Its conditions are inherited from R
and its substitutions are the substitutions of R plus the substitution, which maps x to the
corresponding test candidate. The indices of the new decision tuples are ⊥ and the index
of R is set to x. Finally, we set the index of c1 in R to True, since it was used to generate
test candidates. The result of this evaluation is shown in Figure 5.4. As a simplification
we handle variable-free conditions in this example in the following way: If variable-free
conditions, as e.g. (1 6= 0)False, are consistent we discard them, otherwise, if they are
inconsistent, we do not generate the decision tuple, which would contain it. It is indeed
the way the algorithm handles these conditions, except in the case, if the variable-free
inconsistent conditions are resulting by reason of a substitution. Here it generates the
decision tuple, but deletes it after its evaluation.

R =

(
{(x2 − y ≥ 0)True}

∅

)
x

D1 =

(
{(x2 − y ≥ 0)False}
{[−∞/x]}

)
⊥ D2 =

 {(x2 − y ≥ 0)False,
(4y ≥ 0)False}
{[−√y/x]}


⊥

D3 =

 {(x2 − y ≥ 0)False,
(4y > 0)False}
{[√y/x]}


⊥

Figure 5.4.: Solver state after adding the constraint c1 : x2 − y ≥ 0 and the first step of a
consistency check.

In the next step we choose an unmarked decision tuple and therein a condition. If we
choose e.g. R again, we will observe, that it has no more conditions indexed by False.
Thus, we would mark R in order to avoid choosing it again. Let us take the left-most just
created decision tuple

D1 =

(
{(x2 − y ≥ 0)False}
{[−∞/x]}

)
⊥
.

Virtual Substitution in SMT Solving 47

5 Incremental virtual substitution in SMT-solving

It contains just one condition including the variable x, which is mapped by the substitution
[−∞/x]. It refers to the first case of the method evaluate(D1, (x2 − y ≥ 0)False). The
substitution rules of Appendix A consider the coefficients of x (the variable to substitute)
in x2 − y ≥ 0 (the constraint of the condition to substitute in). Inserting the coefficients in
the substitution rule results in:

(1 > 0)
∨ (1 = 0 ∧ 0 < 0)
∨ (1 = 0 ∧ 0 = 0 ∧ −y ≥ 0).

The latter two cases are inconsistent, so we do not consider them (see above 5.7.1). The
first case is consistent, thus we generate the brother D4 of D1. It has no conditions, since
the only condition in D1 got substituted and the resulting case we consider consists of just
one variable-free consistent condition, which we discard. The substitutions in D4 are those
of D1. Afterwards, we delete D1. The result is shown in Figure 5.5.

R =

(
{(x2 − y ≥ 0)True}

∅

)
x

D4 =

(
∅

{[−∞/x]}

)
⊥ D2 =

 {(x2 − y ≥ 0)False,
(4y ≥ 0)False}
{[−√y/x]}


⊥

D3 =

 {(x2 − y ≥ 0)False,
(4y > 0)False}
{[√y/x]}


⊥

Figure 5.5.: Solver state after adding the constraint c1 : x2 − y ≥ 0 and a consistency
check.

The next decision tuple we choose is

D4 =

(
∅

{[−∞/x]}

)
⊥
,

which has no conditions. Hence, the consistency check determines consistency and
terminates.

Now we add the constraint c2 : x2 − 1 = 0 by calling add_constraintTO(c2). To exploit
the previously made computation, it takes the tree of decision tuple the consistency check
created and adds the corresponding condition of c2 to the condition set of each decision
tuple. Algorithm 10 distinguishes between two cases, but in our example only the second
case occurs. We add the corresponding condition (x2−1 = 0)False and get the result which
is shown in Figure 5.6.

After adding c2, we can provoke another consistency check, that is calling the method
is_consistentTO() once again. In the same line as in the previous consistency check we
choose an unmarked decision tuple of the present tree. In the beginning of a consistency
check all are unmarked. Due to a heuristics 5.4 we choose the decision tuple

D4 =

(
{(x2 − 1 = 0)False}
{[−∞/x]}

)
⊥

48 Virtual Substitution in SMT Solving

5.7 Examples

R =

 {(x2 − y ≥ 0)True,
(x2 − 1 = 0)False}

∅


x

D4 =

(
{(x2 − 1 = 0)False}
{[−∞/x]}

)
⊥ D2 =


{(x2 − y ≥ 0)False,

(4y ≥ 0)False,
(x2 − 1 = 0)False}
{[−√y/x]}


⊥

D3 =


{(x2 − y ≥ 0)False,

(4y > 0)False,
(x2 − 1 = 0)False}
{[√y/x]}


⊥

Figure 5.6.: Solver state after adding the constraint c1 : x2 − y ≥ 0, an entire consistency
check, and a belated adding of the constraint c2 : x2 − 1 = 0.

and therein the only condition (x2 − 1 = 0)False to proceed. We can apply the substitution
[−∞/x] to it. The corresponding substitution rule says that all coefficients of x in the
condition must be zero. This is not fulfilled, thus no decision tuple is created and D4 gets
deleted. Figure 5.7 shows the intermediate result of the first step in the second consistency
check.

R =

 {(x2 − y ≥ 0)True,
(x2 − 1 = 0)False}

∅


x

D2 =


{(x2 − y ≥ 0)False,

(4y ≥ 0)False,
(x2 − 1 = 0)False}
{[−√y/x]}


⊥

D3 =


{(x2 − y ≥ 0)False,

(4y > 0)False,
(x2 − 1 = 0)False}
{[√y/x]}


⊥

Figure 5.7.: Solver state after adding the constraint c1 : x2 − y ≥ 0, an entire consistency
check, a belated adding of the constraint c2 : x2 − 1 = 0 and another step of the following
consistency check.

Now, there are three decision tuples left. We could choose each of them to continue the
consistency check. We take the decision tuple

D2 =


{(x2 − y ≥ 0)False,

(4y ≥ 0)False,
(x2 − 1 = 0)False}
{[−√y/x]}


⊥

and choose a condition in it, let us say (x2 − y ≥ 0)False. The first case of the evaluation
method occurs, where we substitute x in the chosen condition by −√y. Considering the
rules of Appendix A the result of the common substitution is the term

0 ≥ 0 ⇔ 0

1
≥ 0

Virtual Substitution in SMT Solving 49

5 Incremental virtual substitution in SMT-solving

and δ = 0, since the degree of x in the considered condition is two. In this case, the
result already does not contain any square roots and thus it is a real algebraic constraint.
Nevertheless, we apply the substitution rules as the algorithm does in order to demonstrate
the idea of the virtual substitution once again. Inserting the parameters in the equivalent
formula given by the corresponding substitution rule leads to

(10 > 0 ∧ 0 · 12 ≥ 0)
∨ (10 < 0 ∧ 0 · 12 ≤ 0)

All constraints in this formula are real algebraic. The second conjunction is inconsistent
and the first conjunction leads to the expected result, which we also would obtain by
substituting in the common way. The result is shown in Figure 5.8.

R =

 {(x2 − y ≥ 0)True,
(x2 − 1 = 0)False}

∅


x

D5 =

 {(4y ≥ 0)False,
(x2 − 1 = 0)False}
{[−√y/x]}


⊥

D3 =


{(x2 − y ≥ 0)False,

(4y > 0)False,
(x2 − 1 = 0)False}
{[√y/x]}


⊥

Figure 5.8.: Solver state after adding the constraint c1 : x2 − y ≥ 0, an entire consistency
check, a belated adding of the constraint c2 : x2 − 1 = 0 and two steps of the following
consistency check.

The next decision tuple we choose is

D5 =

 {(4y ≥ 0)False,
(x2 − 1 = 0)False}
{[−√y/x]}


⊥

and let us consider its condition (x2 − 1 = 0)False. We get a similar case as the previous
one, but with an equation. Without further explanation it results in replacing the considered
decision tuple by

D6 =

 {(4y ≥ 0)False,
(y − 1 = 0)False}
{[−√y/x]}


⊥

,

which is the next decision tuple we consider. We generate test candidates for the condition
(y − 1 = 0)False resulting in the decision tuples

D7 =

 {(4y ≥ 0)False,
(y − 1 = 0)False}
{[−√y/x], [−∞/y]}


⊥

50 Virtual Substitution in SMT Solving

5.7 Examples

and

D8 =

 {(4y ≥ 0)False,
(y − 1 = 0)False}
{[−√y/x], [1/y]}


⊥

.

The index of D6 gets set to y and the flag of the considered condition gets set to True. In
order to finish this example, we take D8 to continue. Two more substitution steps lead
to the tree of decision tuples shown in Figure 5.9. It includes a condition-free decision
tuple, so the consistency check determines consistency for the given set of constraints and
terminates. The condition-free decision tuple also defines a satisfying assignment for x
and y.

R =

 {(x2 − y ≥ 0)True,
(x2 − 1 = 0)False}

∅


x

D6 =

 {(4y ≥ 0)False,
(y − 1 = 0)True}
{[−√y/x]}


y

D3 =


{(y = 0)False,
(4y ≥ 0)False,

(x2 − 1 = 0)False}
{[−√y/x]}


⊥

D7 =

 {(4y ≥ 0)False,
(y − 1 = 0)False}
{[−√y/x], [−∞/y]}


⊥

D8 =

(
∅

{[−√y/x], [1/y]}

)
⊥

Figure 5.9.: Solver state after adding the constraint c1 : x2 − y ≥ 0, an entire consistency
check, a belated adding of the constraint c2 : x2 − 1 = 0 and the following entire
consistency check.

Virtual Substitution in SMT Solving 51

5 Incremental virtual substitution in SMT-solving

5.7.2. Entire substitution approach

We initiate the theory solver with the tree

T =

(
{
(
∅
∅

)
⊥
}, ∅
)

kept in a global variable. We call add_constraintES with the argument c1 : x2 − y ≥ 0 to
hand over the first constraint to the theory solver. The method add_constraintES adds the
constraint c1 to the condition set of the root in T , i.e.(

∅
∅

)
⊥

gets extended to
(
{(x2 − y ≥ 0)False}

∅

)
⊥
.

Until here, only one difference has occured compared to the other approach, namely, that
we underlined the flag of the condition. Conditions with underlined flags represent the
recently added ones. Afterwards, we perform a consistency check by calling the method
is_consistentES(). We start with the only existing decision tuple

R =

(
{(x2 − y ≥ 0)False}

∅

)
⊥
.

It contains recently added conditions, so we perform the third case of the evaluation method
given by Algorithm 12. The decision tuple R has no children, thus we just mark its only
condition as not recently added, i.e.

R =

(
{(x2 − y ≥ 0)False}

∅

)
⊥
.

In the next steps the evaluation behaves in the same way as in the previous example, since
there is always just one condition to substitute in. So, the final result of the consistency
check is the result shown by Figure 5.5. It is the same as we had for the other approach
after adding the constraint c1 and performing a consistency check.

Now, we add the constraint c3 : x−1 > 0 by calling add_constraintES(c3). We changed
the constraint compared to the previous example to get cases, where we have to substitute
test candidates including the infinitesimal value ε. We add c3 as a recently added condition
to the root of the tree of decision tuples achieved by the previous consistency check. All
the other decision tuples get marked in order to avoid choosing them for evaluation. The
result is shown in Figure 5.10.

We have just one opportunity to continue, namely the root node, and have to substitute
belatedly as Algorithm 12 describes in its last case 2. Firstly, we group the children of the

2Note that we also could add recently added conditions to children without applying the substitution before,
if they have not yet been considered for an entire substitution step.

52 Virtual Substitution in SMT Solving

5.7 Examples

R =

 {(x2 − y ≥ 0)True,
(x− 1 > 0)False}

∅


x

D4 =

(
∅

{[−∞/x]}

)
⊥ D2 =

 {(x2 − y ≥ 0)False,
(4y ≥ 0)False}
{[−√y/x]}


⊥

D3 =

 {(x2 − y ≥ 0)False,
(4y > 0)False}
{[√y/x]}


⊥

Figure 5.10.: Solver state after adding the constraint c1 : x2−y ≥ 0, an entire consistency
check, and a belated adding of the constraint c3 : x− 1 > 0.

considered decision tuple by their most recent substitutions resulting in:

[−∞/x] D4 =

(
∅

{[−∞/x]}

)
⊥

[−√y/x] D2 =

 {(x2 − y ≥ 0)False,
(4y ≥ 0)False}
{[−√y/x]}


⊥

[
√
y/x] D3 =

 {(x2 − y ≥ 0)False,
(4y ≥ 0)False}
{[√y/x]}


⊥

We apply each substitution to the recently added condition bearing in mind the substitution
rules of Appendix A. By applying (x− 1 > 0)[−∞/x] we get the equivalent formula

(1 < 0)
∨ (1 = 0 ∧ −1 > 0),

which is inconsistent. Hence, we delete all children, that concern this substitution, in this
case just D4. By applying the second substitution (x− 1 > 0)[−√y/x] we first consider
the result of the common substitution:

−√y − 1 > 0 ⇔
−1 + (−1) · √y

1
=̂
q̂ + r̂ ∗

√
t

ŝ
.

The right hand side shows the result of the common substitution in the so-called square
root normal form. The substitution rules consider this form to construct an equivalent real
algebraic formula. Appendix ?? shows, that we can transform the result of substituting a
variable in a real algebraic constraint by an extended real algebraic constraint in square
root normal form always to square root normal form. The degree of x in x− 1 > 0 is odd,
so δ is set to 1. Now, we can construct the equivalent real algebraic formula of the term we

Virtual Substitution in SMT Solving 53

5 Incremental virtual substitution in SMT-solving

got by the common substitution:

(−1 > 0 ∧ 11 > 0 ∧ (−1)2 − (−1)2 ∗ y > 0)
∨ (−1 < 0 ∧ 11 < 0 ∧ (−1)2 − (−1)2 ∗ y > 0)
∨ (−1 ≤ 0 ∧ −1 < 0 ∧ 11 < 0)
∨ (−1 ≥ 0 ∧ −1 > 0 ∧ 11 > 0)
∨ (−1 > 0 ∧ 11 > 0 ∧ (−1)2 − (−1)2 ∗ y < 0)
∨ (−1 < 0 ∧ 11 < 0 ∧ (−1)2 − (−1)2 ∗ y < 0).

It contains just inconsistent cases. This means, that we delete the decision tuple D2. The
result is based upon the fact, that −√y must be negative and so does −√y − 1. Therefore,
−√y − 1 > 0 cannot be fulfilled. Applying the last substitution (x− 1 > 0)[

√
y/x] leads

to the equivalent real algebraic formula in a similar manner:

(−1 > 0 ∧ 11 > 0 ∧ (−1)2 − 12 ∗ y > 0)
∨ (−1 < 0 ∧ 11 < 0 ∧ (−1)2 − 12 ∗ y > 0)
∨ (1 ≤ 0 ∧ −1 < 0 ∧ 11 < 0)
∨ (1 ≥ 0 ∧ −1 > 0 ∧ 11 > 0)
∨ (1 > 0 ∧ 11 > 0 ∧ (−1)2 − 12 ∗ y < 0)
∨ (1 < 0 ∧ 11 < 0 ∧ (−1)2 − 12 ∗ y < 0).

The only case without a variable-free inconsistent constraint is the second last one. It
contains just one constraint having variables, which we add as a recently added constraint
to D3. Then, we unmark D3 in order to make its choice as the next decision tuple to
evaluate possible again. Finally, we mark the considered conditions, in our case just
(x− 1 > 0)False, as not recently added. The result of the belated substitution step is shown
in Figure 5.11.

R =

 {(x2 − y ≥ 0)True,
(x− 1 > 0)False}

∅


x

D3 =


{(1− y < 0)False,
(x2 − y ≥ 0)False,
(4y > 0)False}
{[√y/x]}


⊥

Figure 5.11.: Solver state after adding the constraint c1 : x2−y ≥ 0, an entire consistency
check, and a belated adding of the constraint c3 : x − 1 > 0 and one step of another
consistency check.

We continue with the decision tuple

D3 =


{(1− y < 0)False,
(x2 − y ≥ 0)False,
(4y > 0)False}
{[√y/x]}


⊥

.

54 Virtual Substitution in SMT Solving

5.7 Examples

It includes a recently added condition, but no children. We had this case in the beginning of
this example and know that this just leads to marking the condition as not recently added.
We choose again D3 and have to substitute all occurrences of x by

√
y. There is just one in

the condition (x2 − y ≥ 0)False, hence the substitution step is performed in the same way
as in the other evaluation approach. The last example performed the equivalent substitution
(x2 − y ≥ 0)[−√y/x], so we know that the only resulting decision tuple, which replaced
D3, is

D5 =

 {(1− y < 0)False,
(4y > 0)False}
{[√y/x]}


⊥

.

The created decision tuple fulfills all requirements to perform another test candidate
generation. There is only one variable, namely y, and we choose the condition (1− y <
0)False as test candidate provider. We generate two test candidates: −∞, since it has not yet
been generated in this decision tuple and 1 + ε with the consistent side condition −1 6= 0.
After adding the corresponding children and setting the flag of the considered condition to
True, we get the tree of decision tuples of Figure 5.12.

R =

 {(x2 − y ≥ 0)True,
(x− 1 > 0)False}

∅


x

D5 =

 {(1− y < 0)True,
(4y > 0)False}
{[√y/x]}


y

D6 =

 {(1− y < 0)False,
(4y > 0)False}

{[√y/x], [1 + ε/y]}


⊥

D7 =

 {(1− y < 0)False,
(4y > 0)False}
{[√y/x], [−∞/y]}


⊥

Figure 5.12.: Solver state after adding the constraint c1 : x2−y ≥ 0, an entire consistency
check, and a belated adding of the constraint c3 : x − 1 > 0 and some steps of another
consistency check.

We continue with the decision tuple

D6 =

 {(1− y < 0)False,
(4y > 0)False}

{[√y/x], [1 + ε/y]}


⊥

and have to substitute all occurrences of the variable y by 1 + ε. A substitution by a term
containing ε, requires the derivates of the condition to substitute in, in order to form an
equivalent formula of real algebraic constraints. For further explanation you can study the
second example we gave in Section 4. The first substitution (1− y < 0)[1 + ε/y] leads to

Virtual Substitution in SMT Solving 55

5 Incremental virtual substitution in SMT-solving

the equivalent formula

((1− y < 0)[1/y])
∨ ((1− y = 0)[1/y] ∧ (−1 < 0)[1/y])

= ((0 < 0))
∨ ((0 = 0) ∧ (−1 < 0)).

The second substitution (4y > 0)[1 + ε/y] leads to the equivalent formula

((4y > 0)[1/y])
∨ ((4y = 0)[1/y] ∧ (4 > 0)[1/y])

= ((4 > 0))
∨ ((4 = 0) ∧ (4 > 0)).

Both have just one case, which does not contain inconsistent constraints. In both cases
all constraints are variable-free and consistent, so we discard them. Thus we get two
constraintless cases, whose combination is a constraintless case as well. This entire
substitution step results in replacing the considered D6 by a conditionless decision tuple.
This implies, that the consistency check determines consistency and terminates with the
tree of decision tuples shown in Figure 5.13.

R =

 {(x2 − y ≥ 0)True,
(x− 1 > 0)False}

∅


x

D6 =

 {(1− y < 0)True,
(4y > 0)False}
{[√y/x]}


y

D8 =

(
∅

{[√y/x], [1 + ε/y]}

)
⊥ D7 =

 {(1− y < 0)False,
(4y > 0)False}
{[√y/x], [−∞/y]}


⊥

Figure 5.13.: Solver state after adding the constraint c1 : x2−y ≥ 0, an entire consistency
check, and a belated adding of the constraint c3 : x− 1 > 0 and another entire consistency
check.

The examples covered all significant cases of Algorithm 2 and Algorithm 12 and almost
all variants we can have during a substitution. It also pointed out how much influence
the choice of the next decision tuple as well as the choice of the next condition in it has.
Our choices were motivated by the goal to step in almost all possible cases. Another
important observation is, that the incrementality turned to account, since we used in the
second consistency check a lot of the results made by the first consistency check. We also
could see how the two evaluation approaches differ and what their intersection is.

56 Virtual Substitution in SMT Solving

6. Minimal infeasible subset
generation

We have already introduced how to add constraints incrementally and how to check for
consistency. The interface we explain in this section comes into play, when the consistency
check fails, that is, the algorithm determines inconsistency. The SMT-solver should then
be able to extract a reason for the inconsistency from the theory solver, i.e., an inconsistent
subset of the set of contraints the SMT-solver passed to the theory solver. The best reason
we could achieve would be a minimal infeasible subset, an infeasible subset R, which does
not contain a infeasible proper subset R′ ⊂ R.

In the previous sections we have given two different approaches for the evaluation of a
decision tuple. Using an evaluation method, a consistency check creates a tree of decision
tuples, which fulfills certain properties. These properties differ between the two approaches.
We also need different versions for the minimal subset generation. We concentrate on
the second approach, as we are not convinced of the performance, that the first approach
achieves. A sketchy analysis exposed, that it would even be more difficult to generate
(minimal) infeasible subsets considering the first approach. So, the following abandons the
target oriented approach for the evaluation of a decision tuple and just considers the entire
substitution approach.

The remaining of this chapter is structured as follows: We first analyse the requirements
to find all minimal infeasible subsets of the set of conditions of a decision tuple. It points
out, how much effort is necessary to get the best solution for a minimal infeasible subset,
which is the smallest minimal subset of those we have. Then we scale the search for
(minimal) infeasible subsets down to a justifiable effort, such that we can embed it into
the already achieved incremental implementation of a consistency check using the entire
substitution approach. In the last part of this chapter we speed up the consistency check
using the (minimal) infeasible subsets we have achieved before.

6.1. Generation of all minimal infeasible subsets

In order to achieve all minimal infeasible subsets, we have to modify the evaluation of
a decision tuple. Both evaluation approaches assume, that decision tuples containing a
variable-free inconsistent condition get deleted. For the generation of all minimal infeasible
subsets, we assume, that we do not delete them, but still discard variable-free consistent
conditions. Considering this modification, we possibly have to evaluate a decision tuple,
whose conditions are all variable-free inconsistent. For these decision tuples the evaluation
method using the entire substitution approach given by Algorithm 12 cannot generate test

Virtual Substitution in SMT Solving 57

6 Minimal infeasible subset generation

candidates nor apply a substitution. Therefore, a second modification is, that we mark those
decision tuples in order to avoid choosing them again 1. We call this version of evaluating
decision tuples the exhaustive evaluation (using the entire substitution approach) and do
not specify it further, since it does only serve to see the theoretical effort to generate all
minimal infeasible subsets. Compared to the original version, it generates more decision
tuples, as it does not prune those subtrees of the globally stored tree of decision tuples,
whose root contains a variable-free inconsistent condition. In the following we prove, that
the exhaustive evaluation is necessary to generate all minimal infeasible subsets from the
conditions of an inconsistent decision tuple, which we define next.

Definition 6.1.1 (Inconsistent decision tuple)
Let D = (C, S)v be a decision tuple. It is inconsistent if the set of constraints occuring in
C is inconsistent.

In order to be able to identify inconsistent decision tuples during Algorithm 9, we show
in Theorem 6.1.1, which properties make a decision tuple inconsistent.

Theorem 6.1.1
Let D = (C, S)v be a decision tuple of a tree T , generated by the method
is_consistentES() of Algorithm 9. If all decision tuples of the subtree of T with root D are
marked by the algorithm in order to avoid choosing them again, then D is inconsistent.

Proof: If all decision tuples in the subtree of T with root D are marked, all test candi-
dates of each of the conditions of these decision tuples, in particular D, are generated.
Furthermore, no decision tuple in this subtree is a solution, viz. none of these decision
tuples has an empty condition set. Therefore, none of these decision tuples, including D
leads to a satisfying decision tuple. If we consider the constraints, which occur in the
conditions of one of these decision tuples, each test candidate they provide fails to fulfill
them all. In Chapter 4 we have already shown, that this implies the inconsistency of this
set of constraints and thus the inconsistency of the decision tuple containing them.

Using minimal covering sets introduced in Definition 6.1.2, Theorem 6.1.2 shows how
we can construct all minimal infeasible subsets of the conditions of an inconsistent decision
tuple.

Definition 6.1.2 (Minimal covering set)
Let M = {M1, . . . , Mk} be a set of sets of sets. A minimal covering set MC of M fulfills
the following properties:

1. ∀i ∈ {1, . . . , k} : ∃N ∈Mi : N ⊆MC

2. MC ′ ⊂MC ⇒ ∃i ∈ {1, . . . , k} : ∀N ∈Mi : N *MC ′

Note that there can exist more than one minimal covering set for a set of sets of sets.

1Note that we do not consider the case, that a condition with degree higher than 2 can be created during
substitution.

58 Virtual Substitution in SMT Solving

6.1 Generation of all minimal infeasible subsets

Theorem 6.1.2
Let D = (C, S)x be an inconsistent decision tuple constructed by a consistency check
using exhaustive evaluation.

1. If D is a leaf: {{c}| c ∈ C} are the minimal infeasible subsets of C.

2. If D is not a leaf: Let t be a test candidate provided by any condition of C (this
includes −∞). Let Ct

1, . . . , C
t
kt

be the conditions of the kt > 0 children containing
the substitution [t/x] and MIS(Ct

i), 1 ≤ i ≤ kt, be the set of all minimal infeasible
subsets of Ct

i . Let origin(c′) with c′ ∈ Ct
i be defined as follows:

origin(c′) =

{
∅ , if c′ side condition of t
c , if c′ is a result of c[t/x]

Applying origin to each element in the sets of MIS(Ct
i) results in

MIS(Ct
i)o ⊆ 2C .

The minimal covering sets of

MC = {MIS(Ct
i)o| t a test candidate of C and 1 ≤ i ≤ kt}

form the minimal infeasible subsets of C.

Proof: 1.) An inconsistent leaf just contains variable-free inconsistent conditions. Thus
each subset of these conditions consisting of one condition is infeasible, since this condition
is inconsistent, and minimal, since its only proper subset is the feasible set ∅. 2.) Let
M ∈MC. The test candidates M provides are a subset of the test candidates C provides,
since M ⊆ C. Let t be such a test candidate. For all 1 ≤ i ≤ kt there exists a
set M ′ ∈ MIS(Ct

i)o with M ′ ⊆ M by reason of the construction of MC and the
fact that M ∈ MC. We know that applying the substitution [t/x] to C ∪ Ct, with Ct
the side conditions of t, leads to the disjunction of conjunctions Ct

1 ∨ . . . ∨ Ct
kt

, since
these conjunctions are the conditions of the children of D containing [t/x] (considering
conjunctions as sets). Applying [t/x] to one condition of C ∪ Ct results in a disjunction of
conjunctions and by combining these disjunctions according to Definition 5.2.1 we achieve
Ct

1 ∨ . . . ∨ Ct
kt

. If we combine just the resulting disjunctions of conjunctions of applying
[t/x] to the conditions in (M ∪ Ct) ⊆ (C ∪ Ct) we get M t

1 ∨ . . . ∨M t
kt

with the property
M t

i ⊆ Ct
i , 1 ≤ 1 ≤ kt (1). Then it holds that

∀i ∈ {1, . . . , kt} : ∃N ∈MIS(Ct
i) : N ⊆M t

i . (2)

We prove (2) by the following: All side conditions of t are elements of M t
i , since they

do not contain the variable x and thus applying [t/x] to a side condition results in itself.
Combining it, according to Definition 5.2.1, with the results of applying [t/x] to the other
conditions in M ∪ Ct means that each combination contains the side condition, which
implies that all side conditions of t are in M t

i for all i ∈ {1, . . . , kt}. Therefore, in
particular all conditions of all N ∈MIS(Ct

i) being a side condition of t occur in M t
i . It

remains to show that there exists a setN ∈MIS(Ct
i), such that all its conditions not being

Virtual Substitution in SMT Solving 59

6 Minimal infeasible subset generation

a side condition of t are also elements of M t
i . There exists a set No in MIS(Ct

i)o such that
No ⊆M , since M ∈MC. Then there exists a N ∈MIS(Ct

i) such that applying origin
to each of its elements leads to No. Considering the property explained in (1), it holds that
N ⊆M t

i , since No ⊆M .

As (2) holds for all test candidates t, [t/x] applied to the constraints of M results just in
inconsistent sets of constraints. It follows that the constraints of M are inconsistent (for
further details see Chapter 4). Hence M is an infeasible subset of C.

Let M̃ ⊂M . The second precondition of the definition of a minimal covering set says
that if M̃ ⊂ M , there exists a test candidate t and an i ∈ {1, . . . , kt} such that for all
N ∈ MIS(Ct

i)o it holds that N * M̃ (3). We construct M̃ t
i ⊂ Ct

i analogous to M t
i

introduced in the first part of this proof. For all minimal infeasible subsets N of Ct
i , i.e.

N ∈MIS(Ct
i), it holds that N * M̃ t

i , since there exists a condition in the corresponding
No, which we get by applying origin to each element of N , such that this condition is
not in M̃ (by reason of (3)). In particular for all N ∈ MIS(Ct

i) it holds that N 6= M̃ t
i ,

hence M̃ t
i is not a minimal infeasible subset. It also cannot be an infeasible subset, since

otherwise there would be a minimal infeasible subset N ∈ MIS(Ct
i) with N ⊆ M̃ t

i .
Therefore M̃ t

i is consistent and t fulfills all conditions of M̃ , which makes M̃ infeasible.

The last part remaining to prove is that there exists no minimal infeasible subset M̂
of C, such that M̂ /∈ MC. Let us assume that there exists a minimal infeasible subset
M̂ of C with M̂ /∈ MC. Hence M̂ must violate at least one of the two precondition of
Definition 6.1.2. If it violates the second precondition, then there exists a M fulfilling the
first precondition of the definition with M ⊂ M̂ . We have already proven, that M must be
an infeasible subset (minimal if it also fulfills the second precondition of the definition).
Thus M̂ cannot be minimal. If M̂ violates the first precondition of the definition, there
exists a test candidate t and an i ∈ {1, . . . , kt} such that for all No ∈MIS(Ct

i)o it holds
that No * M̂ . In (3) we have already proven for an analogous constellation, that it implies
consistency. Hence M̂ is not infeasible, so it cannot be a minimal infeasible subset.

Theorem 6.1.2 states that, assuming the exhaustive evaluation, we can achieve not just
one minimal infeasible subset but all. This also includes a smallest one, which is an optimal
solution for a minimal infeasible subset. Unfortunately, this version requires that the whole
tree of decision tuples gets evaluated. The method is_consistentES() in Algorithm 9 prunes
subtrees, whose root is a decision tuple containing variable-free inconsistent conditions.
The smaller an infeasible subset the faster we can solve the satisfiability problem of the
given real algebraic SMT-formula, since the SAT-solver has to consider less literals for a
conflict resolution. The less literals it has to consider, the more unsatisfiable assigments the
SAT-solver can omit. In future tests we want to find a modification of our implementation,
which has a good balance between allowing more effort in order to minimize the size of
the infeasible subset we achieve and trying to check for consistency as fast as possible.

60 Virtual Substitution in SMT Solving

6.2 Infeasible subset generation

6.2. Infeasible subset generation
In this section we extend Algorithm 12, such that it generates infeasible subsets of the
conditions of an inconsistent decision tuple using the idea of Theorem 6.1.2. Compared
to the exhaustive evaluation, Algorithm 12 deletes decision tuples containing variable-
free inconsistent conditions. Furthermore, we settle for a set of some infeasible subsets,
instead of the set of all minimal infeasible subsets. In the remaining, we first construct the
necessary extension of a decision tuple, in order to support the generation of infeasible
subsets using the idea of Theorem 6.1.2. Afterwards we extend the achieved algorithms
for a consistency check of a set of constraints (entire substitution approach), such that
they generate an infeasible subset of these constraints, if they are inconsistent. Finally, we
prove the infeasibility of the found subsets and show, why we cannot achieve always a
minimal infeasible subset.

6.2.1. Extension of the data model
The decision tuples we have considered until now do not support to collect the information
we need to perform the generation of (minimal) infeasible subsets according to Theo-
rem 6.1.2. Firstly, we need to be able to reconstruct the condition c in the father of an
inconsistent decision tuple D, if applying a substitution to c leads to a condition c′ of an
infeasible subset in D. We call c the original condition of c′. The original conditions of
one infeasible subset of D form a subset of the conditions in D’s father Df . This set is an
element of the conflict set of D in Df . We cannot reconstruct an infeasible subset of D
after deleting it. Without infeasible subsets of D, we cannot generate infeasible subsets of
Df , since we need infeasible subsets of D to construct the conflict sets of D in Df . If we
consider Theorem 6.1.2, the minimal covering sets of Df ’s conflict sets form infeasible
subsets of Df . Thus, we either do not delete D or store the conflict set of D in Df . We
decided for the latter way and extend decision tuples, such that they store a conflict set of
each deleted child.
Definition 6.2.1 (Decision triples)
A decision triple has the following structure: Conditions

Substitutions
Conflict_sets


index

where:

• Conditions is a set of indexed constraints

cond = (p ∼ 0)originflag

where flag is defined as follows:

flag =


True , if the constraint was used

to generate test candidates
False , otherwise.

Virtual Substitution in SMT Solving 61

6 Minimal infeasible subset generation

and origin is defined by:

origin =


⊥ , if it is a side condition

oCond , if oCond is the original
condition of cond

• Substitutions is a set of substitutions of variables by test candidates:

[test candidate / variable].

The variables of all substitutions in this set must be pairwise different.

• For each deleted child Dc Conflict_sets contains a set of subsets of Conditions.
These subsets are the original conditions of an infeasible subset of Dc.

• The index has the following definition:

index =


var , the variable for which the test candidates

in this decision triple are generated
⊥ , if still no variable is determined to generate

test candidates for.

Note that in practicethe original condition of a condition and the conflict sets do not
contain conditions, but references to conditions of the corresponding decision tuple. An
inconsistent decision triple is defined analogously to an inconsistent decision tuple. It can
be identified in an analog manner to Theorem 6.1.1 considering that we use Algorithm 15
(see below) instead of Algorithm 9.

6.2.2. Embedding in the theory solver

Until now we have achieved two interfaces of the theory solver to the SMT-solver and we
want to extend them by another interface, which generates an infeasible subset of the set
of constraints, which failed to be consistent according to a previous consistency check.
Considering the idea of Theorem 6.1.2, it is not sufficient to add a new method, but we also
need to modify the method, which checks for consistency in order to collect the conflict
sets in each decision tuple. Furthermore, all existing methods now have to support decision
triples instead of decision tuples. Summing up, we have to establish the following:

1. Instead of generating the decision tuple D = (C, S)v, we generate a decision triple
D̃ = (C̃, S, M)v, where M is initially empty and for each (c)flag ∈ C there exists
a (c)oCondflag ∈ C̃, such that oCond is the condition’s original condition according to
Definition 6.2.1. We adapt the methods using the entire substitution approach, such

62 Virtual Substitution in SMT Solving

6.2 Infeasible subset generation

that they deal with and generate decision triples instead of decision tuples:

Method Using decision tuples Using decision triples
addConstraint Algorithm 11 Algorithm 14
isConsistent Algorithm 9 Algorithm 15
evaluate Algorithm 12 Algorithm 16
generateTestCandidates Algorithm 7 Algorithm 17
substitute Algorithm 6 Algorithm 18
substituteBelated Algorithm 13 Algorithm 19

2. Considering Algorithm 12, it deletes a decision tuple D, if it contains a variable-
free inconsistent condition. We extend this operation, such that it is responsible
for the generation of the conflict sets. In the following we delete a decision triple
not just, if it contains variable-free inconsistent conditions, but if we know, that it
is inconsistent. We assure to delete just inconsistent decision triples recursively,
starting with a decision triple, which contains variable-free inconsistent conditions
(leaf). We delete a decision triple D in the following way:

a) Generate infeasible subsets ID of D:
If D has a variable-free inconsistent condition, I contains all sets consisting of
one of the variable-free inconsistent conditions; Otherwise ID consists of the
minimal covering sets of the conflict sets in D.

b) If D has a father Df , add a set MD
Df

to Df ’s conflict sets MDf . For each
infeasible subset ĨD ∈ ID extend MD

Df
by a set consisting of the original

conditions of ĨD. If D is the root, store one of its smallest infeasible subsets as
an approximation of a minimal infeasible subset of the constraints the theory
solver checked.

c) Delete D.

d) If D has a father Df , which is marked to avoid choosing it again, and does not
have children anymore, we delete the Df in the just described manner. Note
that Df fulfills the requirements to be an inconsistent decision triple according
to Theorem 6.1.1.

The pseudo code of deleting a decision triple is shown in Algorithm 20. We call
this method in three situations: Firstly, if we evaluate (Algorithm 16) a decision
triple containing a variable-free inconsistent condition, secondly, if we delete the
last child of a decision triple, which is marked in order to avoid choosing it again
(in Algorithm 20 itself), and, thirdly, if the main method to check for consistency
(Algorithm 15) considers a decision triple, which has just conditions with flag True
(at least one), and no children.

We extend the theory solver by a global variable representing an infeasible subset of the
set of constraints the theory solver checked. Initially it is empty.

Virtual Substitution in SMT Solving 63

6 Minimal infeasible subset generation

Note that we have to extend all algorithms to be able to deal with decision triples, which
has not changed their underlying procedure. The most important change takes place in the
method to delete an inconsistent decision triple given by Algorithm 20.

Theorem 6.2.1 states, that the minimal covering sets of the conflict sets generated for an
inconsistent decision triple are indeed infeasible subsets of the conditions of this decision
triple. In particular the set of constraints represented by the theory solver’s global variable
I , is infeasible, if it was filled up by Algorithm 20.

Theorem 6.2.1
Let D = (C, S, M)v be an inconsistent decision triple constructed by a consistency check
using Algorithm 15. Then each minimal covering set of M is an infeasible subset of C.

Proof: In the following we consider the whole tree that Algorithm 15 generates until it
determines the inconsistency of the checked constraints. This includes the decision triples,
which get deleted during the consistency check. We prove the theorem by induction:

1. Base case: IfD contains variable-free inconsistent conditions, each set ofM consists
of one of these conditions. These sets obviously form infeasible subsets of C. Note
that D is a leaf, since Algorithm 16 does not generate children for it.

2. Inductive step: We assume, that for each inconsistent child Dc = (Cc, Sc, Mc)vc of
D it holds, that each minimal covering set of Mc is an infeasible subset of Cc. Hence,
each conflict set in M consists of the original conditions of an infeasible subset of
an inconsistent child of D. Algorithm 20 assures, that all children of D got deleted
and all conditions of D served as a test candidate provider, since D is marked in
order to avoid choosing it again. Let N be a minimal covering set of M . The set of
test candidates provided by the conditions in N are a subset of those provided by
C, since N ⊆ C. Let t be such a test candidate and Dt

i = (Ct
i , S ∪ {[t/v]}, M t

i)vti ,
1 ≤ i ≤ kt, the children of D containing the substitution [t/v]. By the definition
of a minimal covering set, N covers a set in each conflict set in M . We know that
applying the substitution [t/v] to C ∪Ct, with Ct the side conditions of t, leads to the
disjunction of conjunctionsCt

1∨. . .∨Ct
kt

, since these conjunctions are the conditions
of the children of D containing [t/x] (considering conjunctions as sets). Applying
[t/x] to one condition of C ∪ Ct results in a disjunction of conjunctions and by
combining these disjunctions according to Definition 5.2.1 we achieve Ct

1∨ . . .∨Ct
kt

.
If we combine just the resulting disjunctions of conjunctions of applying [t/x] to the
conditions in (N ∪Ct) ⊆ (C ∪Ct) we get N t

1∨ . . .∨N t
kt

with the property N t
i ⊆ Ct

i ,
1 ≤ 1 ≤ kt (*). Then it holds that

∀i ∈ {1, . . . , kt} : ∃ infeasible subset I ti ⊆ Ct
i : I

t
i ⊆ N t

i . (∗∗)

We prove (∗∗) by the following: All side conditions of t are elements ofN t
i , since they

do not contain the variable x and thus applying [t/x] to a side condition results in
itself. Combining it, according to Definition 5.2.1, with the results of applying [t/x]
to the other conditions in N ∪ Ct means that each combination contains the side
condition, which implies that all side conditions of t are in N t

i for all i ∈ {1, . . . , kt}.

64 Virtual Substitution in SMT Solving

6.2 Infeasible subset generation

Therefore in particular all conditions of an infeasible subset of Ct
i being a side

condition of t do also occur in N t
i . It remains to show that there exists an infeasible

subset I ti ⊆ Ct
i , such that all its conditions not being a side condition of t are also

elements of N t
i . As N is a minimal covering set, it covers a set Ĩ ti ⊆ N in the

conflict set of M we have generated after deleting Dt
i , such that its conditions are

the original conditions of I ti . Considering the property explained in (*), it holds that
I ti ⊆ N t

i , since Ĩ ti ⊆ N .

As (∗∗) holds for all test candidates t, [t/x] applied to the constraints of N results
just in inconsistent sets of constraints. It follows that the constraints of N are
inconsistent (for further details see Chapter 4). Hence N is an infeasible subset of
C.

Theorem 6.2.1 states the infeasibility of the subsets of the conditions of an inconsistent
decision triple D, that Algorithm 15 finds. According to Theorem 6.1.2, these subsets
form all minimal infeasible subsets of D’s conditions, if we also have all minimal infea-
sible subsets of each of its children. If D contains variable-free inconsistent conditions,
Algorithm 20 generates just the infeasible subsets consisting of one of these conditions.
They form obviously minimal infeasible subsets, but not necessarily all. They form all
minimal infeasible subsets, iff the set of those conditions in D, which are not variable-free,
is consistent. Unfortunately, we cannot assure this without an exhaustive evaluation. We
can build an infeasible subset of a decision triple D, if all children are inconsistent and thus
have their proper infeasible subsets. We do not suppose that this are all infeasible subsets,
but at least one. So it is sufficient to find just one infeasible subset of each child to form an
infeasible subset of D. However, the more infeasible subsets we have for each child, the
more elements its conflict set in D has. Having more opportunities to cover a conflict set
minimizes the size of the minimal covering sets of them, which are the infeasible subsets
of D’s conditions. Furthermore, the smaller the infeasible subsets of an inconsistent child
of D, the smaller the sets in the conflict set of the child in D. Again, this leads to smaller
minimal covering sets and hence smaller infeasible subsets of the conditions in D.

Algorithm 14 The algorithm to add a constraint to the constraints in the theory solver
ussing the entire substitution approach and decision triples.

void add_constraintISES(Constraint c)
begin

add (c)⊥False to the conditions of the root of T ; (1)

mark the other decision triples (to avoid choosing them); (2)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Virtual Substitution in SMT Solving 65

6 Minimal infeasible subset generation

Algorithm 15 The algorithm to determine consistency of a tree of decision triples using
the entire substitution approach.

bool is_consistentISES()
begin

while exists an unmarked Decision_triple D = (C, S, M)v ∈ V do (1)

if exists ccondflag ∈ C with flag = False then (2)

evaluateISES(D); // Alg. 16 (3)

else if C 6= ∅ then (4)

if D has children then (5)

mark D (to avoid choosing it again); (6)

else (7)

deleteIS(D); // Alg. 20 (8)

end if (9)

else (10)

return True; (11)

end if (12)

end while (13)

return False; (14)

end

Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Algorithm 16 The algorithm to evaluate a decision triple supporting incrementality using
the entire substitution approach and decision triples.

void evaluateISES(Decision_triple D = (C, S, M)v ∈ V)
begin

if C contains a variable-free inconsistent condition then (1)

deleteIS(D); // Alg. 20 (2)

else if v =⊥ then (3)

substituteISES(D); // Alg. 18 (4)

else (5)

if D contains no recently added condition then (6)

generateTestCandidatesISES(D); // Alg. 17 (7)

else (8)

substituteBelatedISES(D); // Alg. 19 (9)

end if (10)

end if (11)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

66 Virtual Substitution in SMT Solving

6.2 Infeasible subset generation

Algorithm 17 The algorithm to generate all test candidates for a variable of a condition
using the entire substitution approach and decision triples.

void generateTestCandidatesISES(Decision_triple D = (C, S, M)v ∈ V)
begin

choose a condition (c)oCondflag ∈ C with flag = False; (1)

flag := True; (2)

if test canidate −∞ not yet considered in D then (3)

Dinf := ({(ĉ)condFalse|cond = (ĉ)
ˆoCond

ˆflag
∈ C}, S ∪ {[−∞/v]}, ∅)⊥; (4)

T := (V := V ∪ {Dinf}, E := E ∪ {(D, Dinf)}); (5)

end if (6)

{(t1,C1), . . . , (tk,Ck)}
Chap. 4
:= test candidates with side conditions of c for v; (7)

for all 1 ≤ i ≤ k do (8)

if Ci has no variable-free inconsistent constraints then (9)

CDi := {(ĉ)condFalse|cond = (ĉ)
ˆoCond

ˆflag
∈ C} ∪ {(ĉ)⊥False|ĉ ∈ Ci}; (10)

Di := (CDi , S ∪ {[ti/v
′]}, ∅)⊥; (11)

T := (V := V ∪ {Di}, E := E ∪ {(D, Di)}); (12)

end for (13)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Algorithm 18 The algorithm to apply all substitutions in a decision triple using the entire
substitution approach and decision triples.

void substituteISES(Decision_triple D = (C, S, ∅)⊥ ∈ V)
begin

s := most recent substitution in S; (1)

for all (ci)oCondiFalse ∈ C = {(c1)oCond1False , . . . , (cn)
oCondn
False } do (2)

Disji = Ci,1 ∨ . . . ∨ Ci,ki
App. A
:= result of s applied to ci; (3)

˜Disji := {{(c)oCondiFalse | c ∈ Ci,j}|1 ≤ j ≤ ki}; (4)

end for (5)

{C1, . . . , Ck}
Def. 5.2.1

:= combininations of { ˜Disj1, . . . , ˜Disjl}; (6)

for all 1 ≤ i ≤ k do (7)

vi := any variable occuring in Ci; (8)

Di := (Ci, S, ∅)vi; (9)

T := (V := V ∪ {Di}, E := E ∪ {(Df , Di)}); // (Df father of D) (10)

end for (11)

T := (V := V \ {D}, E := E \ {(Df , D)}; // (Df father of D) (13)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Virtual Substitution in SMT Solving 67

6 Minimal infeasible subset generation

Algorithm 19 The algorithm to add all recently added constraints to the children after
applying the most recent substitution entirely.

void substituteBelatedISES(Decision_triple D = (C, S, M)v ∈ V)
begin

C = Cold ∪ Crecent; (1)

{s1, . . . , sr} := the different most recent substitutions in the children of D; (2)

for all 1 ≤ i ≤ r do (3)

{D1 = (C1, S ∪ {si}, M1)v1 , . . . , Dki = (Cki , S ∪ {si}, Mki)vki} := all (4)

children of D containing si; (5)

for all cond = (c)oCondflag ∈ Crecent do (6)

Disjc = Conj1 ∨ . . . ∨ Conjni
App. A
:= result of si applied to c; (7)

˜Disjc := {{(ĉ)condFalse| ĉ ∈ Conjj}|1 ≤ j ≤ ni}; (8)

end for (9)

{Ĉ1, . . . , Ĉmi}
Def. 5.2.1

:= combininations of { ˜Disjc|c ∈ Crecent}; (10)

for all 1 ≤ j ≤ ki do (11)

TDj = (VDj , EDj)
Def. 2.3.3

:= subtree of T with root Dj; (12)

for all 1 ≤ l ≤ mi do (13)

Dj,l := (Cj ∪ Ĉl, S ∪ {si}, Mj)vj ; (14)

(Vj,l, Ej,l) := copy of TDj , where Dj is replaced by Dj,l; (15)

T := (V := V ∪ Vj,l, E := E ∪ Ej,l ∪ {(D, Dj,l)}); (16)

mark conditions in Dj,l of Ĉl as recent; (17)

end for (18)

T := (V := V \ VDj , E := E \ (EDj ∪ {(D, Dj)}); (19)

end for (20)

end for (21)

mark conditions in Crecent as not recent; (22)

end

Variable-free consistent conditions get discarded.
Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

68 Virtual Substitution in SMT Solving

6.2 Infeasible subset generation

Algorithm 20 The algorithm to delete a decision triple, such that it creates the conflict sets
as well.

void deleteIS(Decision_triple D = (C, S, M)v ∈ V)
begin

ID := ∅; // (infeasible subsets of C) (1)

if C contains a variable-free inconsistent conditions then (2)

for all variable-free inconsistent ccondflag ∈ C do (3)

ID := ID ∪ {{ccondflag }}; (4)

end for (5)

else (6)

ID
Def.6.1.2
:= minimal cover sets of M ; (7)

end if (8)

if D is not root in T then (9)

Df = (Cf , Sf , Mf)vf := father of D; (10)

Mf := Mf ∪ {{{cond|ccondflag ∈ J}|J ∈ ID}}; (11)

T := (V := V \ {D}, E := E \ {(Df , D)}); (12)

if Df is marked (to avoid choosing it again) and has no children then (13)

deleteIS(Df); (14)

end if (15)

else (16)

I := {c|(c)⊥True ∈ J} with J ∈ ID, ∀J̃ ∈ ID : |J | ≤ |J̃ |; (17)

T := (∅, ∅); (18)

end if (19)

end

Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Virtual Substitution in SMT Solving 69

6 Minimal infeasible subset generation

6.3. Backjumping using infeasible subsets

We do a lot of additional effort to generate an infeasible subset of the constraints the theory
solver checked, in the case that it determines inconsistency. Certainly it is reasonable,
since it can save many calls to the theory solver, which we consider as the bottleneck of an
SMT-solver. Nevertheless, we search for more benefits we can achieve of the additional
information we generate in each decision triple. This information can extend the properties,
which influence a heuristics to find the next decision triple to evaluate introduced in
Section 5.4. In this subsection we introduce an acceleration of the consistency check given
by Algorithm 15. Theorem 6.3.1 states that, if we find an infeasible subset of the conditions
in an inconsistent decision triple, such that the constraints of this conditions also occur in
the conditions of the father of this decision triple, the father is also inconsistent.

Theorem 6.3.1
Let D = (C, S, M)v be a decision triple. Let Mi ∈M be a conflict set of a deleted child of
D. If N ∈Mi, such that none of its conditions contains the variable v, N is an infeasible
subset of C, which makes in particular D inconsistent.

Proof: Let cond1 = (c1)
oCond1
flag1

, . . . , condk = (ck)
oCondk
flagk

be the conditions of N . Applying
a substitution [t/v] to Ñ := {c1, . . . , ck} results in Ñ , since no condition in N contains
v. Hence, this also holds for those substitutions, which we create in the children of D.
Thus, if we create a child Dc = (Cc, S ∪ {[tc/v]}, Mc) of D, its set of conditions Cc has a
subset Nc = {(ci)condiflagic

|1 ≤ i ≤ k}. Let Dc be the child, whose deletion led to the conflict
set Mi. Then Nc is an infeasible subset of Cc, since the original conditions of Nc are N
and N ∈ Mi. The set of constraints formed by Ñ is inconsistent, since Nc is infeasible.
Let Dc be any other child of D. Then Nc is infeasible, since Ñ is inconsistent. Thus, all
children we can create for D contain an infeasible subset, which makes them, as well as
D, inconsistent.

We modify the method to delete a decision triple, given by Algorithm 20, such that
it also considers the property Theorem 6.3.1 deals with. It still has a decision triple
D = (C, S, M)v as argument and creates the infeasible subsets ID of D in the same way
as in Algorithm 20. If D is not the root, the algorithm distinguishes now between two
cases, when it adds a conflict set MD

Df
to the father Df = (Cf , Sf , Mf)vf of D:

1. If there exists an infeasible subset of C, such that its original conditions do not
contain the variable vf : For each of these infeasible subsets MD

Df
contains a set

consisting of their original conditions. We discard all already achieved conflict sets
in Mf , which assures that the following deletion of the father Df considers each set
of MD

Df
as an infeasible subset.

2. Otherwise: For each infeasible subset J ∈ ID extend MD
Df

by a set consisting of the
original conditions of J . Then delete the subtree of the so far created tree of decision
triples T with root D entirely. If the father Df is marked to avoid choosing it again
and has no children anymore, we delete it by calling this method recursively.

70 Virtual Substitution in SMT Solving

6.4 Conclusion

IfD is the root, the algorithm copies the constraints of one of the smallest infeasible subsets
of C to the globally stored infeasible subset I . This subset serves as an approximation of
a minimal infeasible subset of the constraints the theory solver checked. Algorithm 21
shows the pseudo code of the just explained procedure.

6.4. Conclusion
The generation of (minimal) infeasible subsets requires, that we collect more information,
which we achieve by the use of decision triples instead of decision tuples. In order to
find always a minimal infeasible subset, we have to evaluate all decision triples, even if
they contain a variable-free inconsistent condition. Considering e.g. a decision triple with
hundreds of conditions of which just one is variable-free and inconsistent, it means, that
we evaluate all decision triples of the subtree with root in this decision triple. That is why
we do not insist on a minimal infeasible subset, but want to achieve an infeasible subset.
This chapter showed an embedding of the generation of infeasible subsets in the algorithms
we have developed in the previous chapter. As a side effect we generate infeasible subsets
for each inconsistent decision triple of the globally stored tree of decision triples the theory
solver maintains. This additional information allows us to speed up the consistency check
using backjumping.

The additional interface to get an infeasible subset of the constraints the theory solver
already checked is given by the method getInfSubSet() in Algorithm 22.

Virtual Substitution in SMT Solving 71

6 Minimal infeasible subset generation

Algorithm 21 The algorithm to delete a decision triple, such that it creates the conflict sets
as well and uses backjumping.

void deleteIS+ (Decision_triple D = (C, S, M)v ∈ V)
begin

ID := ∅; // (infeasible subsets of C) (1)

if C contains a variable-free inconsistent conditions then (2)

for all variable-free inconsistent ccondflag ∈ C do (3)

ID := ID ∪ {{ccondflag }}; (4)

end for (5)

else (6)

ID
Def.6.1.2
:= minimal cover sets of M ; (7)

end if (8)

if D is not root of T then (9)

Df = (Cf , Sf , Mf)vf := father of D; (10)

ĨD := {{cond|ccondflag ∈ J}|J ∈ ID} ⊆ 2Cf ; (11)

if Ĩ ′D := {J ∈ ĨD|vf does not occur in J} 6= ∅ then (12)

Mf := {Ĩ ′D}; (13)

deleteIS(Df); (14)

else (15)

Mf := Mf ∪ {ĨD}; (16)

TD = (VD, ED)
Def. 2.3.3

:= subtree of T with root D; (17)

T := (V := V \ VD, E := E \ (ED ∪ {(Df , D)}); (18)

if Df is marked (to avoid choosing it again) and has no children then (19)

deleteIS(Df); (20)

end if (21)

end if (22)

else (23)

I := {c|(c)⊥True ∈ J} with J ∈ ID, ∀J̃ ∈ ID : |J | ≤ |J̃ |; (24)

T := (∅, ∅); (25)

end if (26)

end

Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Algorithm 22 The algorithm to return an infeasible subset of the constraints the theory
solver already checked.

Infeasible_subset getInfSubSet()
begin

return I; (1)

end

Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

72 Virtual Substitution in SMT Solving

6.5 Example

6.5. Example

In this example we check the consistency of the set of constraints

C = {x = 0, x− z = 0, z 6= 0, y2 < 0}

considering Algorithm 15, which generates infeasible subsets of inconsistent decision
triples and uses backjumping. We initialize the theory solver’s global variables by setting
the tree of decision triples

T := ({D0}, ∅)

where

D0 =



{ c0,1 : (x = 0)⊥False ,
c0,2 : (x− z = 0)⊥False ,
c0,3 : (z 6= 0)⊥False ,
c0,4 : (y2 < 0)⊥False }

∅

∅


⊥

and the infeasible subset of C

I := ∅.

The algorithm starts to apply all substitutions in D0, since its index is ⊥, and chooses
afterwards a variable to which the index of D0 gets set. It has no substitution and chooses x
as index. Afterwards we take a condition, let us say c1, set its flag to True and generate the
test candidates of c1 for x, i.e.∞ and one finite test candidate, whose side conditions do not
contain a variable-free inconsistent constraint, i.e. 0 with the side conditions 0 = 0, 1 6= 0.
The algorithm creates two children of D0, namely

D1 =



{ c1,1 : (x = 0)
c0,1
False ,

c1,2 : (x− z = 0)
c0,2
False ,

c1,3 : (z 6= 0)
c0,3
False ,

c1,4 : (y2 < 0)
c0,4
False }

{[−∞/x]}

∅


⊥

Virtual Substitution in SMT Solving 73

6 Minimal infeasible subset generation

and

D2 =



{ c2,1 : (x = 0)
c0,1
False ,

c2,2 : (x− z = 0)
c0,2
False ,

c2,3 : (z 6= 0)
c0,3
False ,

c2,4 : (y2 < 0)
c0,4
False

c2,5 : (0 = 0)⊥False
c2,6 : (1 6= 0)⊥False }

{[0/x]}

∅


⊥

.

Note that the conditions we added by reason of the side conditions get ⊥ as original
condition. We choose D1 to continue and have to apply the substitution [−∞/x] to all
conditions in D1. Using the substitution rules of Appendix A, the algorithm replaces D1

by the decision triple

D3 =



{ c3,1 : (1

= 0)

c0,1
False ,

c3,2 : (0 = 0)
c0,1
False ,

c3,3 : (1

= 0)

c0,2
False ,

c3,4 : (−z = 0)
c0,2
False ,

c3,5 : (z 6= 0)
c0,3
False ,

c3,6 : (y2 < 0)
c0,4
False }

{[−∞/x]}

∅


y

.

Note that D3 contains variable-free conditions. We discard those, which are consistent. As
D3 has also variable-free inconsistent conditions, it is inconsistent as well and we apply
the method to delete it given by Algorithm 21. The method creates the infeasible subsets
consisting of one of the variable-free inconsistent conditions, i.e. {c3,1} and {c3,3}. Then
we fill up the conflict sets of the father of D3, namely D0, by the original conditions of
these infeasible subsets, i.e. {c0,1} and {c0,2}. We delete D3, thus there are only two
decision triples left, D2 and

D0 =



{ c0,1 : (x = 0)⊥True ,
c0,2 : (x− z = 0)⊥False ,
c0,3 : (z 6= 0)⊥False ,
c0,4 : (y2 < 0)⊥False }

∅

{ {{c0,1}, {c0,2}} }


x

.

74 Virtual Substitution in SMT Solving

6.5 Example

We choose D2 to continue and substitute all occurrences of x in its conditions by 0
according to the substitution rules of Appendix A. Afterwards we replace D2 by the only
created decision triple,

D4 =



{ c4,1 : (0 = 0)
c0,1
False ,

c4,2 : (−z = 0)
c0,2
False ,

c4,3 : (z 6= 0)
c0,3
False ,

c4,4 : (y2 < 0)
c0,4
False }

{[0/x]}

∅


y

.

The index is set to one of the variables occuring in the conditions of D4. In the remaining
of this example we first consider what happens by taking y and later consider what happens
by taking z.

So, let us say, the index is y: We continue with the evaluation of the just created decision
triple D4. We generate the test candidates of the condition c4,4 for the variable y and set the
flag of c4,4 to True. In addition to −∞, there is only one finite test candidate, whose side
conditions are not variable-free and inconsistent, i.e. 0 with side conditions 1 6= 0, 0 ≥ 0
(see Chapter 4). Hence, we get two children of D4:

D5 =



{ c5,1 : (1 6= 0)⊥False ,
c5,2 : (0 ≥ 0)⊥False ,
c5,3 : (−z = 0)

c4,2
False ,

c5,4 : (z 6= 0)
c4,3
False ,

c5,5 : (y2 < 0)
c4,4
False }

{[0/x], [−∞/y]}

∅


⊥

D6 =



{ c6,1 : (1 6= 0)⊥False ,
c6,2 : (0 ≥ 0)⊥False ,
c6,3 : (−z = 0)

c4,2
False ,

c6,4 : (z 6= 0)
c4,3
False ,

c6,5 : (y2 < 0)
c4,4
False }

{[0/x], [0/y]}

∅


⊥

We continue with D5 and apply an entire substitution step considering the substitution
[−∞/y]. There is just one condition containing y, namely c5,5. The resulting cases of
applying [−∞/y] to y2 < 0 contain all variable-free inconsistent constraints, hence the

Virtual Substitution in SMT Solving 75

6 Minimal infeasible subset generation

decision triples which replace D5 have all variable-free inconsistent conditions. Each of
these conditions has the original condition c4,4, since it was the only condition to which
we applied the substitution. Thus, we delete all these inconsistent decision triples and add
for all of them a conflict set containing the set {c4,4} to D4. The evaluation of D6 goes
similarly and results also in the addition of conflict sets containing the set {c4,4} to D4.
The conditions of D4, which have not yet provided a test candidate for y, do not contain y,
thus we set their flag to True. Finally, we delete D4 according to Algorithm 21, because it
has just conditions with the flag True and no more children. All its conflict sets just consist
of one set, namely {c4,4}, hence the only minimal covering set is {c4,4} as well. It forms
the only infeasible subset of the conditions of D4, thus we add just one conflict set of D4

in its father D0 consisting of its original condition c0,4. This condition does not contain
the variable of the index of D0, i.e. x, thus we apply backjumping: It discards all conflict
sets in D0 except the just added one {c0,4} and deletes D0 according to Algorithm 21. We
form all minimal covering sets of D0’s conflict sets to achieve infeasible subsets of D0’s
conditions, resulting in one set, i.e. {c0,4}. As D0 is the root, we add the constraint in c0,4
to the globally stored variable I . It forms an approximation of a minimal infeasible subset
of C and in this case even the smallest minimal infeasible subset. We delete all decision
triples, which are part of the subtree of T with root D0, that is the entire tree T . Hence, the
consistency check determines the inconsistency of C.

Let us now consider what happens, if we take z as index: We generate the test candidates
of c4,2 for z and set the flag of c4,2 to True. The algorithm creates the following two
children of D4:

D7 =



{ c7,1 : (−z = 0)
c4,2
False ,

c7,2 : (z 6= 0)
c4,3
False ,

c7,3 : (y2 < 0)
c4,4
False }

{[0/x], [−∞/z]}

∅


⊥

D8 =



{ c8,1 : (0 = 0)⊥False ,
c8,2 : (1 6= 0)⊥False ,
c8,3 : (−z = 0)

c4,2
False ,

c8,4 : (z 6= 0)
c4,3
False ,

c8,5 : (y2 < 0)
c4,4
False }

{[0/x], [0/z]}

∅


⊥

We continue with D7 and apply its most recent substitution [−∞/z] entirely to its condi-

76 Virtual Substitution in SMT Solving

6.5 Example

tions resulting in the decision tuples

D9 =



{ c9,1 : (−1
= 0)

c4,2
False ,

c9,2 : (0 = 0)
c4,2
False ,

c9,3 : (1 6= 0)
c4,3
False ,

c9,4 : (y2 < 0)
c4,4
False }

{[0/x], [−∞/z]}

∅


y

and

D10 =



{ c10,1 : (−1
= 0)

c4,2
False ,

c10,2 : (0 = 0)
c4,2
False ,

c10,3 : (0

6= 0)

c4,3
False ,

c10,4 : (y2 < 0)
c4,4
False }

{[0/x], [−∞/z]}

∅


y

which replace D7. Both created decision triples are inconsistent and we delete them
according to Algorithm 21, which fills up the conflict sets of D4:

D4 =



{ c4,2 : (−z = 0)
c0,2
True ,

c4,3 : (z 6= 0)
c0,3
False ,

c4,4 : (y2 < 0)
c0,4
False }

{[0/x]}

{ { {c4,2} }
{ {c4,2}, {c4,3} } }


z

.

We continue with the other child of D4, namely D8, and apply again the most recent
substitution entirely. We replace D8 by the resulting decision triple

D11 =



{ c11,1 : (−0 = 0)
c4,2
False ,

c11,2 : (0

6= 0)

c4,3
False ,

c11,3 : (y2 < 0)
c4,4
False }

{[0/x], [0/z]}

∅


y

Virtual Substitution in SMT Solving 77

6 Minimal infeasible subset generation

and delete it afterwards, since it is inconsistent. It finally adds another conflict set to D4, i.e.
{{c4,3}}. We have deleted all children of D4, but there are still conditions in it, which can
provide test candidates, namely c4,3. The test candidate −∞ has already been considered,
thus we just generate the finite ones. There is only one with consistent side conditions, i.e.
0 + ε with the side conditions 0 = 0, − 1 6= 0. The resulting new children of D4 is

D12 =



{ c12,1 : (0 = 0)⊥False ,
c12,2 : (−1 6= 0)⊥False ,
c12,3 : (−z = 0)

c4,2
False ,

c12,4 : (z 6= 0)
c4,3
False ,

c12,5 : (y2 < 0)
c4,4
False }

{[0/x], [0 + ε/z]}

∅


⊥

Applying the substitution [0 + ε/z] replaces D12 by the decision triples

D13 =



{ c13,1 : (−1
= 0)

c4,2
False ,

c13,2 : (0 = 0)
c4,2
False ,

c13,3 : (1 6= 0)
c4,3
False ,

c13,4 : (y2 < 0)
c4,4
False }

{[0/x], [0 + ε/z]}

∅


y

D14 =



{ c14,1 : (−1

= 0)
c4,2
False ,

c14,2 : (0 = 0)
c4,2
False ,

c14,3 : (0

6= 0)

c4,3
False ,

c14,4 : (y2 < 0)
c4,4
False }

{[0/x], [0 + ε/z]}

∅


y

which are both inconsistent and thus get deleted. The conflict sets we add by this to D4

are {{c4,2}} and {{c4,2}, {c4,3}}. Finally, D4 has no children anymore. Its last condition
having the flag False does not provide test candidates, hence we set its flag to True and

78 Virtual Substitution in SMT Solving

6.5 Example

achieve

D4 =



{ c4,2 : (−z = 0)
c0,2
True ,

c4,3 : (z 6= 0)
c0,3
True ,

c4,4 : (y2 < 0)
c0,4
True }

{[0/x]}

{ { {c4,2} }
{ {c4,2}, {c4,3} }
{ {c4,3} }
{ {c4,2} }
{ {c4,2}, {c4,3} } }


z

.

The only minimal covering set of the conflict sets of D4 is {c4,2, c4,3}. We delete D4,
which effects the conflict sets of D0, such that it gets extended by the set containing the set
consisting of the original conditions of {c4,2, c4,3}, i.e. {{c0,2, c0,3}}:

D0 =



{ c0,1 : (x = 0)⊥True ,
c0,2 : (x− z = 0)⊥False ,
c0,3 : (z 6= 0)⊥False ,
c0,4 : (y2 < 0)⊥False }

∅

{ { {c0,1}, {c0,2} }
{ {c0,2, c0,3} } }


x

The conditions c0,3 and c0,4 do not contain the variable x and thus do not provide further
test candidates for it, except of −∞, which we have already considered. We set their flags
to True and consider the last condition of D0, which can provide test candidates for x,
namely c0,2. We set its flag to True and create children of D0 for its finite test candidates.
There is only one finite test candidate with consistent side conditions, i.e. z with the side
conditions 0 = 0, 1 6= 0. The created child is

D15 =



{ c15,1 : (x = 0)
c0,1
False ,

c15,2 : (x− z = 0)
c0,2
False ,

c15,3 : (z 6= 0)
c0,3
False ,

c15,4 : (y2 < 0)
c0,4
False

c15,5 : (0 = 0)⊥False
c15,6 : (1 6= 0)⊥False }

{[z/x]}

∅


⊥

.

We are not going to explain the remaining of the consistency check in detail, since it is
similar to the evaluation of the subtree of T with root D4 (resp. D2 before substitution),

Virtual Substitution in SMT Solving 79

6 Minimal infeasible subset generation

if we also take z as next variable to generate test candidates for. Finally, we add another
conflict set to D0, i.e. {c0,1, c0,3}, and the globally stored tree of decision triples T now
consists of only one decision triple, namely

D0 =



{ c0,1 : (x = 0)⊥True ,
c0,2 : (x− z = 0)⊥True ,
c0,3 : (z 6= 0)⊥True ,
c0,4 : (y2 < 0)⊥True }

∅

{ { {c0,1}, {c0,2} }
{ {c0,2, c0,3} }
{ {c0,1, c0,3} } }


x

.

All conditions of D0 have the flag True and it has no children anymore. Hence, we delete
D according to Algorithm 21, which results in the termination of the consistency check.
The infeasible subset of the constraints in C contains the constraints occuring in one of
the smallest minimal covering sets of the conflict sets D0 had before deleting it. The only
minimal covering set is {c0,1, c0,2, c0,3}, thus I = {x = 0, x − z = 0, z 6= 0}, which is
indeed a minimal infeasible subset of C.

In this example, we alternated the order of the variables to eliminate. As we could
observe, it influences the consistency check, in particular the generation of the infeasible
subsets. The first order provoked backjumping, which accelerated the consistency check
significantly. It also achieved a smaller infeasible subset, i.e. {y2 < 0}, than the second
order achieved, i.e. {x = 0, x− z = 0, z 6= 0}. An analysis of the conditions and conflict
sets of a decision triple can influence this order. This is one of the reasons, why we want
to investigate the information stored in a decision triple further in order to speed up the
consistency check.

80 Virtual Substitution in SMT Solving

7. Backtracking

The last interface the theory solver shall provide, is the ability to remove a subset of the
constraints, which the theory solver has already checked, and to undo all results, which are
effects of these constraints. We call this backtracking.

We already achieved a theory solver, which provides three interfaces: one to add
constraints incrementally, one to check for consistency of all already added constraints,
and one to get an infeasible subset of these constraints, if the consistency check determines
inconsistency. This theory solver bases on the entire substitution approach and uses
decision triples as data model. We extend this theory solver by an interface to perform
backtracking. The resulting theory solver fulfills all requirements we asked for in Chapter 1.
We do not consider the target oriented approach for backtracking, as we have already
abandoned it before.

Until now, we delete a decision triple, if we know that it is inconsistent. This is
reasonable for a consistency check and for later consistency checks after adding further
constraints. However, it is not reasonable, if we also consider backtracking. Undoing
the effects of the constraints we want to remove, results in removing conditions and test
candidates. Removing a condition of an inconsistent decision triple can make it consistent.
Thus, we have to remember inconsistent decision triples as well. From now on we consider
deleting a decision triple as marking it as deleted instead of erasing it definitively. It assures
that we can access its content and reconstruct it after removing some of its conditions.

7.1. Preconditions

Let us consider, that a consistency check of the set of constraints Cons := {c1, . . . , cn}
according to Algorithm 15 results in its inconsistency. The SAT-solver receives an infeasi-
ble subset of Cons by calling the method getInfSubSet() given by Algorithm 22. Then it
analyzes the conflict for the clause this infeasible subset forms, which results in a conflict
clause and a decision level dl (see Algorithm 1). Afterwards, the SAT-solver performs a
backtrack, which erases all decision levels higher than dl. As a result of this we undo the
assignments, which belong to these decision levels. Those constraints, which have been
assigned to True and are now unassigned by reason of this backtrack, form the subset of
Consb ⊆ Cons we want to remove from the theory solver.

Let the tree of decision triples T = (V, E) be the result of the previous consistency check.
All decision triples in T are marked as deleted, since Cons is inconsistent. Considering a
decision triple D = (C, S, M)v ∈ V , we want to identify its contents which are effects of
the constraints in Consb.

Virtual Substitution in SMT Solving 81

7 Backtracking

7.2. Removing the effects of a constraint
In the following we collect the data being effects of the constraints in Consb and remove
them afterwards definitively. We find these effects recursively, starting with the root R
of T . The conditions in R, which correspond to the constraints of Consb are obviously
their effects. If we have the conditions of a decision triple D = (C, S, M)v ∈ V which
are effects of Consb, i.e. Cb ⊆ C, we can find all effects of Consb in the substree of T
with root D:

1. The conditions of Cb.

2. The test candidates except −∞, which Cb has provided. Let Tb these test canidates.

3. The children of D, we created for a test candidate of Tb1.

4. The conflict set of a decision triple, we created for a test candidate of Tb.

5. The sets in a conflict set, which contain a condition of Cb. These sets are the original
conditions of infeasible subsets of D’s children. Deleting conditions from them,
means that we also delete conditions in the corresponding infeasible subset, which
can make it feasible. Thus we cannot assure that they are infeasible subsets and
therefore their original conditions cannot be considered as part of a conflict set.

6. The conflict sets, whose sets got all deleted according the previous point.

7. The effects in the remaining children, if we consider their conditions, whose original
conditions are effects of the constraints in Cons, as effects of the constraints in
Cons.

Note that each child has at most one conflict set, but due to backjumping (see Section 6.3),
there exist children, which do not concern any conflict set. Furthermore, we can mark all
decision triples of a substree of T with root in a decision triple, whose conflict set still
exists in its father, as deleted. In point 4. we delete a conflict set, if in 3. all its elements
got deleted. If any is left, it means, that the corresponding child is still inconsistent and
that is why we can mark these decision triples.

We need to extend the definition of a decision triple, such that it provides the necessary
information to reconstruct the effects of a subset of the constraints, which the theory solver
checked. Firstly, we have to store the original condition of a substitution in order to be
able to detect decision triples, which contain a substitution mapping to a test candidate
provided by a condition we remove (see the third point above). Secondly, we must know
which children of a decision triple correspond to its conflict sets. Each conflict set has one
child it correponds to. This information helps us to identify a child, if we do not delete its
conflict set and thus have to mark the child and all decision triples, which are reachable
from it, as deleted. The entire redefinition of a decision triple is given by Definition 7.2.1.

1Note that until now we did not consider, that possibly the same test candidate not being −∞ is gener-
ated more than once. Avoiding this will be one of the improvements we are going to embed in our
implementation in future work.

82 Virtual Substitution in SMT Solving

7.2 Removing the effects of a constraint

Definition 7.2.1 (Decision triples)
A decision triple has the following structure: Conditions

Substitutions
Conflict_sets


index

where:

• Conditions is a set of indexed constraints

cond = (p ∼ 0)originflag

where flag is defined as follows:

flag =


True , if the constraint was used

to generate test candidates
False , otherwise.

and origin is defined by:

origin =


⊥ , if it is a side condition

oCond , if oCond is the original
condition of cond

• Substitutions is a set of substitutions of variables by test candidates indexed by its
original condition:

[test candidate / variable]origin.

where origin is defined by:

origin =


⊥ , if the test candidate is −∞
cond , if cond is the condition

providing the test candidate

The variables of all substitutions in this set must be pairwise different.

• For each deleted child Dc Conflict_sets is a set of subsets of Conditions indexed
by Dc. The subsets form the original conditions of an infeasible subset of Dc.

• The index has the following definition:

index =


var , the variable for which the test candidates

in this decision triple are generated
⊥ , if still no variable is determined to generate

test candidates for.

Virtual Substitution in SMT Solving 83

7 Backtracking

All algorithms of Chapter 6 have to be modified, such that they generate this new
version of decision triples and that all operations, which delete nodes and edges of the
global variable T , are replaced by operations, which mark those data structures as deleted.
Definition 7.2.1 shows how to generate these decision triples, that is why we do not give
further details in the form of modified versions of the already introduced algorithms. So
it just remains the interface of the theory solver to provoke a backtracking. The method
backtrack(Set_of_constraints Consb) forms this interface to the SMT-solver, where Consb
is a subset of the constraints, the theory solver checked. It calls another method with the
root and its effected conditions as argument. This method propagates recursively from the
root to the leaves and deletes along the way all effects of the constraints in Consb, which
we detect in the way described above.

Algorithm 23 shows the pseudo code of this method and the submethod it involves.

7.3. Conclusion
This chapter has completed the interfaces we want a theory solver to provide. The previous
chapters have shown that our theory solver maintains a tree of decision triples. All results
we achieve during a consistency check are stored in it. Backtracking means, that we want
to remove those results from it, which are effects of some of the constraints, the theory
solver checked so far. Owing to the information a decision triple provides, we can retain
many achieved results.

We remove exactly one information, which we could actually reuse in some cases. We
refer to the sets in a conflict set, which contain at least one condition we remove. A set in
a conflict set of a decision triple in its father, contains the original conditions of one of the
infeasible subsets of the decision triple. If we remove a condition in such a set, we also
have to remove conditions in the corresponding infeasible subset. Removing conditions of
an infeasible subset possibly makes it feasible. That is why we remove the corresponding
set in the conflict set. If it keeps being infeasible, we removed it unnecessarily. The only
way to assure that we remove a set in a conflict set always rightly, is to assure that the
corresponding infeasible subset is minimal. This leads us back to the generation of minimal
infeasible subsets, which we cannot achieve with a justifiable effort.

The following example illustrates the redefined version of decision triples as well as the
method to perform backtracking in all its facets.

84 Virtual Substitution in SMT Solving

7.3 Conclusion

Algorithm 23 The algorithm to remove a given subset of the constraints the theory solver
already checked. It removes not only the constraints, but also all their effects during
previous consistency checks.

void backtrack(Constraints Consb)
begin

I := ∅; (1)

mark all D ∈ V and e ∈ E as not deleted; (2)

Dr = (Cr, ∅, Mr)vr := the root of T ; (3)

Cb := {(c)oCondflag ∈ Cr|c ∈ Consb}; (4)

backtrack(Dr, Cb); (5)

end

void backtrack(Decision_triple D = (C, S, M)v ∈ V , Conditions Cb ⊆ C)
begin

for all children Di = (Ci, Si, Mi)vi of D do (1)

[ti/vi] := most recent substitution in Si; (2)

if (ti provided by a constraint in Cb) and (ti 6= −∞) then (3)

M := M \ {NDi}; (4)

TDi = (VDi , EDi)
Def. 2.3.3

:= subtree of T with root Di; (5)

T := (V := V \ VDi , E := E \ (EDi ∪ {(D, Di)})); (6)

else if NDi ∈M then (7)

for J ∈ Ni do (8)

if J ∩ Cb 6= ∅ then (9)

Ni := Ni \ {J}; (10)

end if (11)

end for (12)

if Ni 6= ∅ then (13)

TDi = (VDi , EDi)
Def. 2.3.3

:= subtree of T with root Di; (14)

mark all D̃ ∈ VDi and e ∈ E as deleted; (15)

else (16)

M := M \ {(Ni, Di)}; (17)

end if (18)

end if (19)

Cb,i := {(c)oCondflag ∈ Ci|oCond ∈ Cb}; (20)

backtrack(Di, Cb,i); (21)

end for (22)

C := C \ Cb; (23)

end

Global variables: Tree_of_decision_triples T = (V, E), Infeasible_subset I;

Virtual Substitution in SMT Solving 85

7 Backtracking

7.4. Example

We illustrate backtracking by a small example. Let us say we checked consistency for the
set of constraints {x = 0, x 6= 0} using Algorithm 15 and the new version of decision
triples introduced in Definition 7.2.1. It determines inconsistency and creates the tree of
decision triples T showed in Figure 7.1. All decision triples of T are marked as deleted,
which we indicate by crossing them out. Compared to the decision triples of the last chapter
the conflict sets and the substitutions have indices. The index of a conflict set refers to the
child, for which it was created. The index of a substitution refers to the condition, which
has provided the test candidate in the substitution. The test candidate −∞ is provided by
each condition, that is why we index substitutions involving −∞ by ⊥.

���
���

���
���

��

D0 =



{ c0,1 : (x = 0)⊥True,

c0,2 : (x 6= 0)⊥True }

∅

{ { {c0,1} }D1
,

{ {c0,1}, {c0,2} }D2
,

{ {c0,2} }D3
,

{ {c0,1} }D4
,

{ {c0,1}, {c0,2} }D5
}


x

�������������

D1 =


{ c1,1 : (1

= 0)

c0,1
False

}

{[−∞/x]⊥}

∅


⊥

��������������

D2 =



{ c2,1 : (1

= 0)

c0,1
False

,

c2,2 : (0

6= 0)

c0,2
False

}

{[−∞/x]⊥}

∅


⊥

�������������

D3 =


{ c3,1 : (0

6= 0)

c0,2
False

}

{[0/x]c0,1}

∅


⊥

�������������

D4 =


{ c4,1 : (1

= 0)

c0,1
False

}

{[0 + ε/x]c0,2}

∅


⊥

�
���

���
���

����

D5 =



{ c5,1 : (1

= 0)

c0,1
False

,

c5,2 : (0

6= 0)

c0,2
False

}

{[0 + ε/x]c0,2}

∅


⊥

Figure 7.1.:

Now we call backtrack({x 6= 0}) in order to remove all effects the constraint x 6= 0
has in T . Algorithm 23 gives the pseudo code of the method we consider. We reset the
globally stored infeasible subset I , mark all decision triples in T as not deleted and call
backtrack({c0,2}, D0), since c0,2 is the only condition in the root D0 of T , which x 6= 0
effects. For each child of D0, we check, if its substitution refers to c0,2. If so, we delete
the child and its conflict set in D0 definitively. Hence, we delete D4 and D5 together with

86 Virtual Substitution in SMT Solving

7.4 Example

their conflict sets in D0 definitively. The conflict sets in D0 change in the following way:

{ { {c0,1} }D1 ,
{ {c0,1}, {c0,2} }D2 ,
{ {c0,2} }D3 ,
{ {c0,1} }D4 ,
{ {c0,1}, {c0,2} }D5 }

→
{ { {c0,1} }D1 ,
{ {c0,1}, {c0,2} }D2 ,
{ {c0,2} }D3 }

For each remaining conflict set in D0 we delete a set in it definitively, if it contains c0,2:

{ { {c0,1} }D1 ,
{ {c0,1}, {c0,2} }D2 ,
{ {c0,2} }D3 }

→
{ { {c0,1} }D1 ,
{ {c0,1} }D2 ,
{ }D3 }

Afterwards we delete those conflict sets definitively, which are empty by reason of the
previous step:

{ { {c0,1} }D1 ,
{ {c0,1} }D2 ,
{ }D3 }

→ { { {c0,1} }D1 ,
{ {c0,1} }D2 }

For all remaining children Di, 1 ≤ i ≤ 3, we call backtrack(Ci
b, Di), where Ci

b are the
conditions in Di with original condition c0,2:

• C1
b = ∅

• C2
b = {c2,2}

• C3
b = {c3,1}

Each of these decision triples have neither children nor conflict sets. We just delete their
conditions in Ci

b. Afterwards, we mark all decision triples as deleted, which occur in a
the subtree of T , whose root is a decision triple, which has a conflict set in its father. In
our case there are two decision tuples, which fulfill this property, namely D1 and D2. The
subtree of T with root D1 resp. D2, consists of D1 resp. D2, so we mark them as deleted.
Finally, we delete c0,2 from D0 and achieve the final result shown in Figure 7.2.

Virtual Substitution in SMT Solving 87

7 Backtracking

D0 =


{ c0,1 : (x = 0)⊥True }

∅

{ { {c0,1}}D1
,

{ {c0,1}}D2
}


x

�������������

D1 =


{ c1,1 : (1

= 0)

c0,1
False

}

{[−∞/x]⊥}

∅


⊥

�������������

D2 =


{ c2,1 : (1

= 0)

c0,1
False

}

{[−∞/x]⊥}

∅


⊥

D3 =


∅

{[0/x]c0,1}

∅


⊥

Figure 7.2.:

88 Virtual Substitution in SMT Solving

8. Experimental results

We are currently building a prototype implementation using the proposed algorithms. Until
now we have already completed an incremental theory solver using the entire substitution
approach of Chapter 5. To get first results for the performance of an SMT-solver involving
an incremental theory solver we embedded our implementation into an existing SMT-solver.

We want to construct an example with certain characteristics:

1. No condition with degree higher than 2 may be created during the consistency check.

2. The theory solver shall be called often.

To assure the first characteristic, we construct our example such that the set of constraints
the SMT-solver passes to the theory solver does not contain more than one constraint,
which is not linear. To assure the second characteristic, we take a CNF formula for our
example, whose clauses consist of constraints. Only a few of the sets of constraints
corresponding to the satisfying assignments of the boolean skeleton of this formula, shall
be consistent.

We have created a random set of test formulas of the form

(xaxb = d) ∧
∧

(j0,j1,j2,j3,j4,c)∈M

4∨
i=0

(xj0 + xj1 + xj2 + xj3 + xj4 = c)

where V = {0, . . . , 19}, Vc = {1, . . . , 50}, M ⊆ V 5 × Vc with |M | = 10, the xl are
variables for all l ∈ V , and a,b,d ∈ V with a 6= b. The position of the clause (xaxb = d)
in this CNF-formula is determined randomly, i.e., it is not always the first clause. Table 8.1
shows results, which are characteristic for this kind of input formula. All listed example
formulas are satisfiable.

The running times show the expected result. Less lazy solving is superior to the full lazy
approach. Note that the example formulas are relatively small, thus less lazy solving has its
main advantage in the facts that (1) in case a partial assignment already leads to a conflict,
the theory solver needs to check smaller sets of constraints only, and (2) less lazy setting
yields smaller conflicts. (As we do not yet support minimal infeasible subset generation,
we take the disjunction of the negated unsatisfiable constraints as conflicting clause.)

Since we invoke the theory solver after each decision level handing over new constraints,
the incremental version has to do less work than the non-incremental one. The running
times show that the book-keeping effort pays off.

Virtual Substitution in SMT Solving 89

8 Experimental results

Table 8.1. First experimental results (times depicted in seconds) of the prototype imple-
mentation of the less lazy SMT-solver using an incremental virtual substitution solver.

Less lazy/ incremental: 23.879 43.200 20.103 47.124
Less lazy/ non-incremental: 49.217 99.714 109.582 68.955
Full lazy/ non-incremental: 550.988 144.826 162.805 102.458
Redlog: 1147,889 2104.883 1850.559 251.474

90 Virtual Substitution in SMT Solving

http://redlog.dolzmann.de/

9. Conclusion

In this thesis we have constructed step by step a theory solver based on the virtual substitu-
tion method and which fulfills the requirements

• to receive constraints and check their consistency incrementally,

• to generate an infeasible subset of them, if the consistency check fails, and

• to remove some of the received constraints, such that we benefit from results of
previous consistency checks (backtracking).

During the development of such a theory solver, we recognized that there are a lot of sim-
ilarities between our approach and state-of-the-art SAT-solving. The recent development
of SAT-solving and its achievements foreshadow opportunities to similar achievements
for our virtual substitution approach. We discovered such similarities in decision making,
propagation, and conflict-driven non-chronological backtracking:

1. The choice of the next decision variable in SAT corresponds in our approach to the
choice of the variable to eliminate next;

2. The choice of the decision variable’s value in SAT corresponds to the choice of the
test candidate we use for substitution next;

3. Propagation in SAT is analogous to the execution of the substitution;

4. We developed a backjumping mechanism, which is analogous to the conflict-driven
backtracking in SAT.

There are further similarities we have not yet explored, e.g.,

5. heuristics to select (a) the next variable to eliminate, (b) the next condition to
consider, and (c) the next test candidate for substitution,

6. learning from conflicts, and

7. restarts.

Investigating these approaches could lead to improvements of our virtual substitution
method comparable to their impact on SAT-solving.

Virtual Substitution in SMT Solving 91

9 Conclusion

9.1. Theory solver
The data model, which serves to store intermediate results in the theory solver, forms the
basis of our implementation. It provides the information we need in order to fulfill the
above requirements. However, it provides a lot of more interesting features, which we
want to understand and exploit. The most obvious features are the heuristics to decide,
which decision triple to choose next, which variable to eliminate next and which condition
to handle next. We also want to exploit the information we pass to the SAT-solver. Beside
infeasible subsets, further information provided by the theory solver could influence the
SAT-solver’s decision heuristics.

Our implementation is restricted in the degree of the input constraints. Currently we
cannot handle constraints with a degree higher than two. However, even if we cannot
generate test candidates for these constraints, it would be possible to apply substitutions to
constraints of arbitrary degree (see [Wei97]). The next step will be to extend the degree of
the constraints for which we can generate test candidates to its theoritical maximum of 4.
Furthermore, we want to develop an incremental adaptation of the CAD method and to
call this complete1 but less efficient decision procedure in the case that the incremental
implementation of the virtual substitution method cannot continue. In this case no further
operations can be done for any decision tuples/triples, since the only conditions left for the
generation of test candidates are of degree higher than 4. We will also analyze if it is better
to call the CAD implementation earlier and to continue the consistency check parallelly.

9.2. SMT-Solver
Our implementation still does not support the theoretically developed generation of infeasi-
ble subset nor backtracking. Nevertheless, the embedding of our incremental theory solver
in an SMT-environment has already achieved promising results compared to the decision
procedure Redlog, which does not involve a SAT-solver. However, the main benefits are
situated in the generation of infeasible subsets.

Our implementation is embedded in a prototype SMT-solver, without any optimization.
We plan a reimplementation using a state-of-the-art SAT-solver, such that it dovetails
the single elements mentioned above. This includes not only the infeasible subset the
theory solver passes to the SAT-solver, but also other influences the theory solver can have
over the decision heuristics of the SAT-solver. It is also important, that we do not violate
the modularity of these elements, such that we can replace or supplement them later. In
addition, modularity provides the opportunity to parallelize e.g. the calls of the theory
solver, which form the bottleneck of an SMT-solver.

1The CAD method can handle full real algebra.

92 Virtual Substitution in SMT Solving

http://redlog.dolzmann.de/

A. Substitution rules
This chapter shows all cases occuring when a substitution

[e/x]

is applied to a constraint

p(x) ∼ 0 , with p(x) a polynomial in x.

The maximum degree of x in p(x) is k and

δ :=

{
1 , k is odd
0 , k is even .

Transforming the substitution rules given by [Wei98] serves to avoid multiplying terms,
which could increase the degrees of the resulting terms in the new created constraints. We
achieve this at the price of increasing the number of resulting clauses.

A.1. Substitution by a fraction

e =
q

r
with q, r polynomials

p(x) = 0:
p(e) ∗ rk = 0

p(x) 6= 0:
p(e) ∗ rk 6= 0

p(x) < 0:
(rδ > 0 ∧ p(e) ∗ rk < 0)

∨ (rδ < 0 ∧ p(e) ∗ rk > 0)

p(x) > 0:
(rδ > 0 ∧ p(e) ∗ rk > 0)

∨ (rδ < 0 ∧ p(e) ∗ rk < 0)

p(x) ≤ 0:
(rδ > 0 ∧ p(e) ∗ rk ≤ 0)

∨ (rδ < 0 ∧ p(e) ∗ rk ≥ 0)

p(x) ≥ 0:
(rδ > 0 ∧ p(e) ∗ rk ≥ 0)

∨ (rδ < 0 ∧ p(e) ∗ rk ≤ 0)

Virtual Substitution in SMT Solving 93

A Substitution rules

A.2. Substitution by a square root term

Considering e as a square root term, it has the form

e =
q + r ∗

√
t

s
with q, r, s, t polynomials.

Theorem A.2.1
Given are a polynomial f(x) and an expression e of the form

e :=
q + r

√
t

s
(∗).

Then f(e) is of the form (∗).

Proof: Polynomials have just the two operators plus and times. We show that both
operations will map two expressions of the form (∗) to another expression, which again
has this form. Keep in mind, that the radicand of both operands must be the same.

1. Addition of two expressions of the form (∗):

q1+r1
√
t

s1
+ q2+r2

√
t

s2

= s2(q1+r1
√
t)+s1(q2+r2

√
t)

s1s2

= s2q1+s2r1
√
t+s1q2+s1r2

√
t

s1s2

= (s2q1+s1q2)+(s2r1+s1r2)
√
t

(s1s2)

2. Multiplication of two expressions of the form (∗):

q1+r1
√
t

s1
∗ q2+r2

√
t

s2

= (q1+r1
√
t)(q2+r2

√
t)

s1s2

= q1q2+r1
√
tq2+q1r2

√
t+r1

√
tr2
√
t

s1s2

= (q1q2+r1r2t)+(r1q2+q1r2)
√
t

(s1s2)

Hence, substituting all x in p(x) by e leads according Proof A.2.1 to a square root term

p(e) =
q̂ + r̂ ∗

√
t

ŝ
with q̂, r̂, ŝ polynomials

94 Virtual Substitution in SMT Solving

A.2 Substitution by a square root term

or, if r̂ = 0, to a fraction

p(e) =
q̂

ŝ
with q̂, ŝ polynomials.

In the latter case the substitution rules of Section A.1 hold; Otherwise the following rules
define an equivalent real algebraic formula:

p(x) = 0:

q̂ ∗ r̂ ≤ 0 ∧ q̂2 − r̂2 ∗ t = 0

= (r̂ = 0 ∧ q̂ = 0)
∨ (q̂ = 0 ∧ t = 0)
∨ (q̂ < 0 ∧ r̂ > 0 ∧ q̂2 − r̂2 ∗ t = 0)
∨ (q̂ > 0 ∧ r̂ < 0 ∧ q̂2 − r̂2 ∗ t = 0)

p(x) 6= 0:

(q̂ ∗ r̂ > 0)
∨ (q̂2 − r̂2 ∗ t 6= 0)

= (r̂ > 0 ∧ q̂ > 0)
∨ (r̂ < 0 ∧ q̂ < 0)
∨ (q̂2 − r̂2 ∗ t 6= 0)

p(x) < 0:

(q̂ ∗ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (r̂ ∗ ŝδ ≤ 0 ∧ q̂ ∗ ŝδ < 0)
∨ (r̂ ∗ ŝδ ≤ 0 ∧ q̂2 − r̂2 ∗ t < 0)

= (q̂ < 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (q̂ > 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (r̂ ≥ 0 ∧ q̂ < 0 ∧ ŝδ > 0)
∨ (r̂ ≤ 0 ∧ q̂ > 0 ∧ ŝδ < 0)
∨ (r̂ > 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t < 0)
∨ (r̂ < 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t < 0)

Virtual Substitution in SMT Solving 95

A Substitution rules

p(x) > 0:

(q̂ ∗ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (r̂ ∗ ŝδ ≥ 0 ∧ q̂ ∗ ŝδ > 0)
∨ (r̂ ∗ ŝδ ≥ 0 ∧ q̂2 − r̂2 ∗ t < 0)

= (q̂ > 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (q̂ < 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t > 0)
∨ (r̂ ≤ 0 ∧ q̂ < 0 ∧ ŝδ < 0)
∨ (r̂ ≥ 0 ∧ q̂ > 0 ∧ ŝδ > 0)
∨ (r̂ > 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t < 0)
∨ (r̂ < 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t < 0)

p(x) ≤ 0:

(q̂ ∗ ŝδ ≤ 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (r̂ ∗ ŝδ ≤ 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)

= (q̂ < 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (q̂ > 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (r̂ = 0 ∧ q̂ = 0)
∨ (q̂ = 0 ∧ t = 0)
∨ (r̂ > 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)
∨ (r̂ < 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)

p(x) ≥ 0:

(q̂ ∗ ŝδ ≥ 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (r̂ ∗ ŝδ ≥ 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)

= (q̂ > 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (q̂ < 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t ≥ 0)
∨ (r̂ = 0 ∧ q̂ = 0)
∨ (q̂ = 0 ∧ t = 0)
∨ (r̂ > 0 ∧ ŝδ > 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)
∨ (r̂ < 0 ∧ ŝδ < 0 ∧ q̂2 − r̂2 ∗ t ≤ 0)

A.3. Substitution by a term plus an infinitesimal

Substitution by [e+ ε/x]:

bx+ c = 0:
b = 0 ∧ c = 0

96 Virtual Substitution in SMT Solving

A.3 Substitution by a term plus an infinitesimal

bx+ c 6= 0:
b 6= 0

∨ c 6= 0

bx+ c < 0:
((bx+ c < 0)[e/x])

∨ ((bx+ c = 0)[e/x] ∧ (b < 0)[e/x])

bx+ c > 0:
((bx+ c > 0)[e/x])

∨ ((bx+ c = 0)[e/x] ∧ (b > 0)[e/x])

bx+ c ≤ 0:
((bx+ c < 0)[e/x])

∨ ((bx+ c = 0)[e/x] ∧ (b < 0)[e/x])
∨ (b = 0 ∧ c = 0)

bx+ c ≥ 0:
((bx+ c > 0)[e/x])

∨ ((bx+ c = 0)[e/x] ∧ (b > 0)[e/x])
∨ (b = 0 ∧ c = 0)

ax2 + bx+ c = 0:
a = 0 ∧ b = 0 ∧ c = 0

ax2 + bx+ c 6= 0:
a 6= 0
b 6= 0

∨ c 6= 0

ax2 + bx+ c < 0:

((ax2 + bx+ c < 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b < 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b = 0)[e/x] ∧ (2a < 0)[e/x])

ax2 + bx+ c > 0:

((ax2 + bx+ c > 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b > 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b = 0)[e/x] ∧ (2a > 0)[e/x])

ax2 + bx+ c ≤ 0:

((ax2 + bx+ c < 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b < 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b = 0)[e/x] ∧ (2a < 0)[e/x])
∨ (a = 0 ∧ b = 0 ∧ c = 0)

Virtual Substitution in SMT Solving 97

A Substitution rules

ax2 + bx+ c ≥ 0:

((ax2 + bx+ c > 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b > 0)[e/x])
∨ ((ax2 + bx+ c = 0)[e/x] ∧ (2ax+ b = 0)[e/x] ∧ (2a > 0)[e/x])
∨ (a = 0 ∧ b = 0 ∧ c = 0)

A.4. Substitution by minus infinity
Substitution by [−∞/x]:

bx+ c = 0:
b = 0 ∧ c = 0

bx+ c 6= 0:
b 6= 0

∨ c 6= 0

bx+ c < 0:
(b > 0)

∨ (b = 0 ∧ c < 0)

bx+ c > 0:
(b < 0)

∨ (b = 0 ∧ c > 0)

bx+ c ≤ 0:
(b > 0)

∨ (b = 0 ∧ c ≤ 0)

bx+ c ≥ 0:
(b < 0)

∨ (b = 0 ∧ c ≥ 0)

ax2 + bx+ c = 0:
a = 0 ∧ b = 0 ∧ c = 0

ax2 + bx+ c 6= 0:
a 6= 0

∨ b 6= 0
∨ c 6= 0

ax2 + bx+ c < 0:
(a < 0)

∨ (a = 0 ∧ b > 0)
∨ (a = 0 ∧ b = 0 ∧ c < 0)

98 Virtual Substitution in SMT Solving

A.4 Substitution by minus infinity

ax2 + bx+ c > 0:
(a > 0)

∨ (a = 0 ∧ b < 0)
∨ (a = 0 ∧ b = 0 ∧ c > 0)

ax2 + bx+ c ≤ 0:
(a < 0)

∨ (a = 0 ∧ b > 0)
∨ (a = 0 ∧ b = 0 ∧ c ≤ 0)

ax2 + bx+ c ≥ 0:
(a > 0)

∨ (a = 0 ∧ b < 0)
∨ (a = 0 ∧ b = 0 ∧ c ≥ 0)

Virtual Substitution in SMT Solving 99

Bibliography

[BD07] C. W. Brown and J. H. Davenport. The complexity of quantifier elimination
and cylindrical algebraic decomposition. In ISSAC ’07: Proceedings of the
International Symposium on Symbolic and Algebraic Computation, pages
54–60. ACM, 2007.

[Boo] Decision Procedures - An Algorithmic Point of View. Springer-Verlag.

[BPT07] A. Bauer, M. Pister, and M. Tautschnig. Tool-support for the analysis of hybrid
systems and models. In DATE ’07: Proceedings of the Conference on Design,
Automation and Test, pages 924–929. European Design and Automation
Association, 2007.

[Bro03] C. W. Brown. QEPCAD B: A program for computing with semi-algebraic
sets using CADs. SIGSAM Bull., 37:97–108, 2003.

[CJ98] B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Texts and Monographs in Symbolic Compu-
tation. Springer-Verlag, 1998.

[DH88] J. H. Davenport and J. Heinz. Real quantifier elimination is doubly exponen-
tial. Journal of Symbolic Computation, 5:29–35, 1988.

[dMB08] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS’08:
Tools and Algorithms for the Construction and Analysis, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer-Verlag, 2008.

[DS97] A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer
logic. SIGSAM’97: Bulletin Special Interest Group on Symbolic and Alge-
braic Manipulation, 31:2–9, 1997.

[DSW97] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in
practice, 1997.

[FHT+07] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solv-
ing of large non-linear arithmetic constraint systems with complex boolean
structure. JSAT, 1:209–236, 2007.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In DAC’01: Annual ACM IEEE Design
Automation Conference, pages 530–535. ACM, 2001.

Virtual Substitution in SMT Solving 101

Bibliography

[Tar48] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1948.

[Tse83] G. Tseitin. On the complexity of proofs in propositional logics. In Automa-
tion of Reasoning: Classical Papers in Computational Logics 1967-1970,
volume 2. Springer-Verlag, 1983.

[Wei88] V. Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 5:3–27, 1988.

[Wei97] V. Weispfenning. Quantifier elimination for real algebra - the quadratic case
and beyond. Appl. Algebra Eng. Commun. Comput, 8:85–101, 1997.

[Wei98] V. Weispfenning. A new approach to quantifier elimination for real algebra.
In Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts
and Monographs in Symbolic Computation, pages 376–392. Springer-Verlag,
1998.

102 Virtual Substitution in SMT Solving

	Introduction
	Basic definitions
	Syntax of real-algebraic formulas
	Semantics of extended real-algebraic constraints and formulas
	Graph theory

	SMT-solving
	Preprocessing of the input formula
	SAT-solving
	Interaction between SAT-solving and theory solving

	Virtual substitution
	The decision procedure
	Example

	Incremental virtual substitution in SMT-solving
	Data model
	Evaluation of a decision tuple
	Target oriented approach
	Entire substitution approach

	Checking consistency of a set of constraints with decision tuples
	Choice of the next decision tuple to evaluate
	Add new constraints to the theory solver
	Target oriented approach
	Entire substitution approach

	Conclusion
	Examples
	Target oriented approach
	Entire substitution approach

	Minimal infeasible subset generation
	Generation of all minimal infeasible subsets
	Infeasible subset generation
	Extension of the data model
	Embedding in the theory solver

	Backjumping using infeasible subsets
	Conclusion
	Example

	Backtracking
	Preconditions
	Removing the effects of a constraint
	Conclusion
	Example

	Experimental results
	Conclusion
	Theory solver
	SMT-Solver

	Substitution rules
	Substitution by a fraction
	Substitution by a square root term
	Substitution by a term plus an infinitesimal
	Substitution by minus infinity

